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Abstract In systems for on-line detection of regime shifts, a process is 
continually observed. Based on the data available an alarm is given when there is 
enough evidence of a change. There is a risk of a false alarm and here two different 
ways of controlling the false alarms are compared: a fixed average run length until the 
first false alarm and a fixed probability of any false alarm (fixed size). The two 
approaches are evaluated in terms of the timeliness of alarms. A system with a fixed 
size is found to have a drawback: the ability to detect a change deteriorates with the 
time of the change. Consequently, the probability of successful detection will tend to 
zero and the expected delay of a motivated alarm tends to infinity. This drawback is 
present even when the size is set to be very large (close to 1). Utility measures 
expressing the costs for a false or a too late alarm are used in the comparison. How 
the choice of the best approach can be guided by the parameters of the process and the 
different costs of alarms is demonstrated. The technique is illustrated by financial 
transactions of the Hang Seng Index. 
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1. Introduction 
 

Online detection of an important change in the underlying process is important in 
many areas. In economics and finance, we are interested in detecting turning points in 
the business cycle (Andersson (2002) and Andersson et al. (2006)) and changes in 
volatility in financial asset returns (see e.g. Schipper and Schmid (2001)), e.g. for 
timely trading of assets (Bock et al. (2005)). In medicine and public health, we aim at 
quick detection of e.g. kidney failures (Smith and West (1983)), the most fertile phase 
of the menstrual cycle (Royston (1991)), a foetal lack of oxygen (Frisén (1992)), and 
an increased disease incidence (Sonesson and Bock (2003) and Radaelli (1992)). In 
quality control, if a manufacturing process produces contaminated products, we want 
to detect it early (Abujiya and Muttlak (2004)). 

In a situation where we have repeated decisions, the methodology of statistical 
surveillance is appropriate. Repeated decisions are also made in sequential analysis, 
but surveillance is different since even when we conclude that no change has 
happened, the monitoring is not stopped but continued (the null hypothesis is never 
accepted). Methods for on-line detection have been developed in different areas (e.g. 
econometrics and quality control). Much of the work has emerged from the work of 
Shewhart (1931) and is often referred to as statistical process control or statistical 
surveillance. In this field the false alarms are often characterized by measures 
reflecting the timeliness of these, for example the average run length to the first false 
alarm. For a review of statistical surveillance, see Frisén and de Maré (1991), 
Srivastava and Wu (1993), Lai (1995), Frisén and Wessman (1999) and Frisén (2003).  

On-line detection problems are receiving increasing attention in the econometric 
literature. In e.g. Chu et al. (1996),  Leisch et al. (2000), Carsoule and Franses (2003), 
Zeileis et al. (2004) and Bock (2006) hypothesis tests for retrospective detection of 
structural change are combined with the prospective aspect of surveillance, i.e. a 
hypothesis is repeatedly tested each time a new observation becomes available. The 
false alarms are controlled by a fixed size during an infinitely long surveillance period 
(asymptotic size).   

In this paper the aim is to compare the behavior of monitoring methods where the 
false alarms are controlled in either of two ways: by using a fixed asymptotic size or a 
fixed measure reflecting the timeliness of false alarms. This was briefly discussed in 
Frisén (1994) and Bock (2006) but no thorough analysis has previously been made. 

In on-line detection it is important that the change is detected quickly without 
having too many false alarms. Therefore, the behavior is investigated in terms of the 
timeliness of motivated alarms and for different specifications of utility, expressing 
the different costs for the gain of a motivated alarm and the loss of a false alarm.  

The plan of this paper is as follows. Notations and specifications are given in 
section 2. In section 3 different ways of evaluating surveillance systems are presented 
and in section 4 the methods under study are presented. In section 5 a comparison is 
made between the two approaches. We discuss drawbacks and advantages of the 
different approaches in different situations and specifications of the utility. Some 
concluding remarks are given in section 6.    

 
2. Notations and specifications 

 
The process under surveillance, denoted by X, is measured at discrete time points t=1, 
2, …, where X may be an average or some other derived statistic. We consider a 
regime shift that occurs in the expected value μ of the process 
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X(t) = μ(t) + ε(t) (1)

 
from an acceptable level μ0 to an unacceptable level μ1 where μ0 and μ1 are constant, 
μ1 > μ0 and ε(t)~iid N[0, σ2], t=1, 2, ... Model (1) might be too simple for economic 
time series However the model is often used, and here it is used to emphasize the 
inferential issues of statistical surveillance. Surveillance of autocorrelated and 
multivariate processes are studied in e.g. Kalgonda and Kulkarni (2004) and Pan 
(2005).    
The shift occurs at an unknown time point, denoted by τ such that μ(t)=μ0 and μ(t)=μ1 
for t< τ and t≥τ, respectively. When μ=μ0 the process is said to be in control whereas 
when μ=μ1 it is said to be out-of-control. Other types of changes treated in the 
literature are e.g.  in the monotonicity of μ (Andersson (2002)), in σ2 (Yeh et al. 
(2003)) or both μ and σ2 (Costa and Rahim (2004) and Wu et al. (2005)).  

The parameters μ0, μ1 and σ2 are regarded as known. Without loss of generality 
we impose μ0 = 0 and σ=1, i.e. the size of the shift is specified by μ1. The variable τ is 
random with a constant intensity ν=P(τ=t| τ ≥ t) that is τ has a Geometric distribution 
on t=1, 2, …, which is a common assumption in the literature, see e.g. Shiryaev 
(1963) and Frisén and Wessman (1999).   

At each decision time s, s=1, 2, …, we make a decision whether there has been a 
regime shift or not. In statistical surveillance this is expressed as discriminating 
between two events, C(s) and D(s), where C(s) is the critical event implying that the 
process is out-of-control and D(s) implies that it is in-control. The two events can be 
specified in various ways and different methods are optimal for different 
specifications. For the situation when it is important to see whether there has been a 
change since the start of the surveillance, the following specification is used  

 
C(s)={τ ≤ s} and D(s)={τ > s}. 

 
When the monitoring is done from a repeated hypothesis testing angle, then at 

each time s that a new observation becomes available, we formulate it as a testing of a 
null hypothesis 

 
H0(s): No change has occurred up to time s, (2)

   
i.e. μ(1)=μ(2)= ... =μ(s)=μ0. This H0(s) corresponds to D(s)={τ > s}. The event 
C(s)={τ ≤ s} corresponds to the alternative hypothesis  

 
HA(s): A change has occurred at some time point t ≤ s,  

 
i.e. μ(1)=μ(2)= … =μ(t-1)=μ0 and μ(t)= … =μ(s)=μ1. Hence, there is a different null 
and alternative hypothesis for each s.  

An alarm set A(s) is constructed, with the property that as soon as Xs={X(1), …, 
X(s)}∈A(s) we infer that a change has occurred. The alarm set consists of a function 
p(Xs) and a limit g(s), where the time of an alarm, tA, is defined as  

 
tA = min{s: p(Xs) > g(s)}. 

 
The alarm limit g(s) is determined in order to control the false alarms and this can be 
done in various ways to be described below.  
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3. Evaluation in on-line monitoring 

 
The monitoring situation is characterized by repeated decisions as well as not having 
fixed hypotheses and an increasing sample size. With repeated decisions, it is 
important to consider the timeliness aspect. In the traditional hypothesis testing 
framework the behavior of the procedure under the alternative hypothesis is usually 
characterized by the power. There is however no information in the power about when 
the alarm was called in relation to the regime shift, for example how long after the 
shift the alarm was given. A natural evaluation measure in a monitoring situation is 
instead the delay of a motivated alarm. Desirable properties of a surveillance method 
are that the delay between the time of the alarm, tA, and the time of the change, τ, is 
short and that there are not too many false alarms.   

As mentioned above, monitoring is often made by repeatedly testing a hypothesis 
each time a new observation becomes available. If we define the alarm set such that at 
each decision time the type I error probability is fixed to e.g. 5%, then the probability 
of ever falsely rejecting the null hypothesis will tend to 1 as we repeat the test. This 
has sought to be avoided by instead constructing alarm sets in such a way that this 
probability is fixed below one. 

The probability that a false alarm is given before time i, as i→∞, is hereafter 
referred to as the asymptotic size or α. It is defined as  

 

i
lim α(i)  α
→∞

=   

 
where α(i)=P(tA ≤ i|H0) and H0 is defined in (2), i.e. α(i)=P(tA≤i|τ>i). A sequence of 
alarm sets is constructed resulting in α < 1. It is hence a situation with strict 
significance testing. When α<1 the false alarm probabilities, P(tA=i|τ > i), will not sum 
to 1 and then tA is not a random but a generalized random variable. 

In the methodology of statistical surveillance the type I error is characterized by 
the run length distribution of the false alarms. Usually in the quality control literature 
the average run length, conditional of no change, ARL0=E[tA⏐τ=∞], summarizes the 
information. A similar measure is the median run length conditional of no change, 
MRL0=Median[tA⏐τ=∞]. Another summarizing measure is the probability of a false 
alarm (PFA) where the expectation is taken with respect to the distribution of τ, 

 
PFA=P(tA<τ)=Eτ[P(tA< τ| τ=t)].  

   
There are several measures which reflect the timeliness of a motivated alarm. In 

some applications, an alarm that comes too late is of no value. The probability of 
successful detection within d time units measures how good a method is when we 
only have a limited time for action. It is defined as 

 
PSD(t, d)=P(tA-τ<d|tA ≥ τ, τ=t)   

 
where d ≥ 1. Timeliness can also be reflected by the delay of a motivated alarm, here 
presented as the conditional expected delay (CED), 

 
CED(t) = E[tA-t|tA ≥ τ, τ=t].  
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An evaluation measure that is often used is the average run length, given a change 
at the start of the monitoring, ARL1=E[tA⏐τ=1], which equals CED(1)+1. A widely 
used optimality criteria in the literature on quality control is that of a minimal ARL1 
for a fixed ARL0. This criterion might be suitable in some situations but there are 
however some drawbacks with this optimality criterion, see e.g. Frisén (2003).  

Another important aspect when evaluating a method, is the trust you should have 
in an alarm at a specific time. The predictive value of an alarm at time t 
PV(i)=P(C(i)|tA=i), suggested by Frisén (1992) reflects the trust of an alarm. 

In the utility treated by Girshick and Rubin (1952) and Shiryaev (1963) the gain 
of an alarm is a linear function of the expected delay and the loss associated with a 
false alarm is a function of the same difference. The utility is 

 
( )
( )
A A

A
1 A 2 A

h t - τ          , t  τ
u(t , τ)

a t - τ a ,  t  τ
<⎧⎪= ⎨ ⋅ + ≥⎪⎩

 
 
(3)

 
where h(tA-τ) is an arbitrary function. In a situation where the intensity of a change is 
constant, the full likelihood ratio method (LR, described in section 4.1) maximizes the 
expected value of the utility, E[u(tA, τ)] (see Shiryaev (1963) and Frisén and de Maré 
(1991)). If h(tA-τ) is a constant, a1<0 and PFA is fixed then E[u(tA, τ)] is maximized 
for a minimal expected delay (ED), defined as Eτ[ED(t)] where ED(t)=CED(t)·P(tA≥ 
t). This is sometimes referred to as the expected delay criterion. 

 
4. Methods 

 
4.1. The Shewhart and the Moving average methods in statistical surveillance 
 
It was shown by Frisén and de Maré (1991) that the optimal method for 
discriminating between events C(s) and D(s) is based on the likelihood ratio (LR) 
between the events, and an alarm is given when 

 
( ) ( )Xs s Xs sf x |C(s) f x |D(s) = s

t=1
w(t) L(s, t)⋅∑ > g(s), 

 
where L(s, t)=fXs(xs|τ=t)/fXs(xs|D) is the partial likelihood ratio when τ=t, 
w(t)=P(τ=t)/P(τ ≤ s) is the weight for L(s, t) and g(s) is a time dependent limit equal to 
k·P(τ≤ s)/P(τ> s), k> 0.  

Many methods are based on the LR, where the difference depends on how the 
partial likelihood ratios are weighted. When C(s)={τ=s} the LR method simplifies to 
the Shewhart approach which puts all weight to the last partial likelihood ratio and 
signals an alarm as soon as L(s, s) exceeds the alarm limit. For independent variables 
with a Gaussian distribution the Shewhart approach gives an alarm as soon as 

 
X(s)–μ0 > g, (4)

 
where g is a constant.  

When C(s)={τ=s-p+1} and D(s)={τ>s}, the LR method simplifies to the Moving 
average (MA) approach which puts all weight on the partial likelihood ratio L(s, s-
p+1). For independent variables with a Gaussian distribution, the MA approach gives 
an alarm as soon as 
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( )s
0i=s-p+1

x(i)-μ∑ > g,  (5)

 
where g is a constant. This approach was studied in e.g. Wong et al. (2004) and Yu 
and Chen (2005). The methods in (4) and (5) are hereafter referred to as ShewSur and 
MASur, respectively in order to distinguish methods derived in the literature on 
surveillance from those of the next section.  

In the culture of statistical surveillance, when we compare several methods, their 
respectively alarm limits are adjusted to yield the same false alarm property (e.g. 
ARL0=100). For the ShewSur and MASur methods in (4) and (5), respectively, the 
probability of exceeding the alarm limit is the same for each decision time s, given 
that all observations used in the statistic is from the same state. Consequently, 

( )Ai
lim P t i|τ i
→∞

≤ > =1, i.e. a false alarm will be given with probability 1. 

 
4.2. Shewhart and MA methods modified to allow false alarms controlled by a fixed 
asymptotic size 

 
If we want a system that satisfies α < 1, the alarm limit should not be a constant as 
above. Leisch et al. (2000) suggested the following alarm limit for decision time s   

 

g(s) =
c               ,  s e

c ln s      ,   else

≤⎧⎪
⎨
⋅⎪⎩

    

 
where  and c> 2  is a constant to be determined and e is the natural logarithmic base 
used to ensure that g(s)≥c.  

The methods based on the  moving sum in (5) but where the constant alarm limit 
g in (5) is replaced by the limit g(s) above are for p=1 (only the last observation) and 
p≥2 in (5) hereafter referred to as ShewTest and MATest, respectively.  

 
Theorem: ShewTest with c> 2  yield α < 1. 
 
Proof: According to theorem 4.1 in Frisén and de Maré (1991), it holds that α<1 

if and only if P(tA=s|τ>s, tA≥s)<1 for all s and ( )A As 1
P t s | t s,  τ s∞

=
= ≥ > < ∞∑ . We 

have that P(tA=s|τ>s, tA≥s)=1-Φ(g(s))<1 since Φ(g(s))>0 for all s, where Φ(·) is the 
standard Normal probability distribution function.  

( )A As 1
P t s | t s,  sτ∞

=
= ≥ >∑ = ( )( )s 1

1 Φ g(s)∞

=
−∑ = ( ) ( )-1/2 2

s=1 g(s)
2 π exp -z 2 dz

∞∞
⋅ ⋅∑ ∫  

≤ ( ) ( )-1/2 2
s 1 g(s)

z2 π exp -z 2 dz
g(s)

∞∞

=
⋅ ⋅ ⋅∑ ∫ = ( ) { }1/ 2 2

s 1
2 π exp -g (s) 2 g(s)∞ −

=
⋅ ⋅∑  

= ( ) ( ) ( )2 211/ 2 1/ 2-1 -c 2 -c /2
s 3

2 π c e 2 π c ln s s
−∞ −

=
⋅ ⋅ + ⋅ ⋅ ⋅ ⋅∑ . The last sum converges for 

c> 2  by Abel’s convergence test since the sequence ( ){ }1c ln s
−

⋅  is monotone and 

converges to zero for c≠0, s>1 and 
2-c /2

s 1
s∞

=∑  is convergent for c> 2 . Therefore α<1 

for c> 2 . 
Leisch et al. (2000) gave a related theorem in continuous time. 
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5. A comparison between the two approaches 

 
In this section we discuss the two approaches for controlling the false alarms, a fixed 
α < 1 and a fixed ARL0. We will demonstrate the consequences of these two 
approaches in terms of the timeliness of alarms. The in- and out-of-control properties 
are investigated in section 5.1 and 5.2, respectively. The predictive value and the 
utility of alarms are discussed in section 5.3 and 5.4, respectively. 

Chu et al. (1996) assume that sampling under the null hypothesis is costless, 
whereas resetting the monitoring system after a false alarm is expensive, i.e. false 
alarms are severe and from this point of view we should set α to a small value, e.g. 
α=0.10. In a situation where the cost of a false alarm is low, we can instead set α to a 
large value, e.g. 0.90.  

The respective alarm limits of ShewTest and MATest are adjusted to give 
α={0.10, 0.90}. A low value of ARL0 can be interpreted as a situation where 
observations are made seldom and a high value with more frequent observations. 
ShewSur is adjusted to give ARL0 ={50, 100, 250}. The limit of MASur is adjusted to 
give ARL0 ={50, 100}. For MASur and MATest, p=2 is considered as in e.g. 
Vanbrackle and Williamson (1999) and Yu and Chen (2005) and simulations 
determine the alarm limits.  

For all approaches data is collected from time t=1. The alarm statistic of the 
moving average approach is based on the likelihood ratio L(s, s-p+1) where p=2 and 
can hence not be constructed at t=1. Therefore, we start the monitoring at t=2 as in 
Ryan (2000) and Wetherhill and Brown (1991).  

To distinguish between the same methods with different values of ARL0 or α, the 
value will be given as argument, e.g. ShewSur(50) and ShewTest(0.10). 
 
5.1. In-control properties 

 
In this section, we analyze the in-control behaviour that is the false alarm 
distributions. In Fig. 1 below, the false alarm probability and the cumulative false 
alarm probability are shown for ShewSur and the ShewTest.  
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Figure 1. Panel a: False alarm probability. Panel b: Cumulative false alarm probability. 
ShewTest(0.10) (òòò ), ShewSur(50) (ò ò), ShewSur(100) (VVV). 
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The probability of a false alarm for the ShewTest becomes small very fast and 
almost all alarms are located at early time points (panel a) that is the size level 0.10 is 
quickly reached (panel b). The pronounced left-skewness in the false alarm density of 
methods that use a fixed asymptotic size has been pointed out by Chu et al. (1996), 
Leisch et al. (2000) and Zeileis et al. (2004). The tendency to give early alarms for the 
test approach is an important difference to the surveillance approach as will be evident 
in the next section.  

The PFA in section 3 summarizes the false alarm distribution in Fig. 1 and is 
shown in Fig. 2 below. For a constant intensity ν, PFA=1-ν/(1-(1-ν)·Ф(g)) for 
ShewSur.  
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Figure 2. The probability of a false alarm, as a function of the intensity ν. ShewTest(0.10) (òòò), 
ShewSur(50) (ò ò), ShewSur(100) (VVV).  

 
The difference in level between the two surveillance methods (ShewSur) is due to 

the difference in the value of ARL0. When ν→1, PFA tends to zero. The reason is that 
ν close to 1 implies that the density of τ will be much concentrated to the left and only 
alarm probabilities at early time points influence PFA. When ν = 1 it follows that 
P(τ=1)=1 which implies that PFA = 0. When ν→0, the density of τ tends to a uniform 
distribution, i.e. the regime shift is equally likely to occur early as very late. Most of 
the alarms are therefore false. When ν→0, PFA for the test and the surveillance 
methods tends to α and 1, respectively, as is seen in Fig. 2.  

Apart from that the alarm probability by construction is zero at the first time point 
and very high at the first decision time 2, the shapes of the curves of the false alarm 
probability and the cumulative false probability for MASur and the MATest are very 
similar to those of the Shewhart approaches (Fig. 1) and therefore not depicted here.  

 
5.2. Out-of-control properties 

 
In this section, we analyze the out-of-control behaviour that is the ability to detect a 
change. It was proved by Frisén (1994) that methods which have α<1 have a low 
probability of a late false alarm (a false alarm long after the monitoring has started):  

 
( ) ( )i

A A Aj=1i i
lim α(i)= lim P t j | t j P t j =α  1
→∞ →∞

= ≥ ⋅ ≥ <∑  
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( )A Aj
lim P t j | t j 0
→∞

⇒ = ≥ =  since ( ) ( )i
A A Aj=1i

α > lim P t i P t j | t j
→∞

≥ ⋅ = ≥∑ . 

 
This explains the shapes of the false alarm probability of the test approaches in Fig. 1.  
That the false alarm probability is low might at a first glance seem like a good 
property. But if 

j
lim
→∞

P(tA=j|tA ≥ j)=0, then probability to detect a change that happens a 

long time after the monitoring has started also tends to zero. This was pointed out by 
Pollak and Siegmund (1975) and Frisén (1994). The reason is that 

j
lim
→∞

P(tA=j|tA ≥ 

j)=0, implies that the alarm limit tends to infinity as j→∞. Therefore also
j
lim
→∞

P(tA=j|tA 

≥ j, τ=j)=0. Consequences of this will be illustrated below. 
A change occurs at the same time as the surveillance was started (τ=1) is the most 

widely considered case for evaluation in literature. ARL1 is the average run length, 
given a change at the start of the monitoring. This corresponds to τ=1 and τ=2 for the 
Shewhart and MA approach with p=2, respectively. For ShewSur, ARL1=1/(1-Ф(g-
μ1)). The ARL1 is given the graphs of CED in fig. 4 below (since ARL1= CED(1)+1).  

The test approaches yield the smallest ARL1. Thus in terms of ARL1, the test 
approaches are better and the reason is that they allocate the alarms early. This is 
especially pronounced when α=0.90, where the false alarm rate is high as a result of 
the low alarm limit and this low alarm limit, in turn, results in a short ARL1. The trust 
of these early alarms are however low (see section 5.3). 

When α < 1, the probability of successful detection, PSD in section 3, tends to 
zero as the time of the change tends to infinity. We have that PSD(t, d) 
= ( )d-1

A Aj=0
P t t j | t t, τ t= + ≥ =∑  and for the test methods, 

t
lim
→∞

P(tA=t+j|tA ≥ t, τ=t)=0, 

j=0, 1, ... Therefore 
t
lim PSD(t, d) 0
→∞

=  for any d ≥ 1. For ShewSur and ShewTest 

PSD(t, d) equals to 1-Φ(g-μ1)d and ( )d-1
1j=0

1- Φ g(t j)-μ+∏ , respectively. For ShewTest, 

the PSD(t, d) is decreasing (not always strict) with t, since the alarm limit is 
increasing (i.e. PSD(t, d) ≥ PSD(t+1, d) for all t and d, since g(t) ≤ g(t+1) for all t and 
μ1). The PSD(t, d) curves are shown in Fig. 3 for d=2 and μ1=1.  
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Figure 3. The probability of successful detection PSD(t, d=2) for different values of the time of the 
change when μ1=1. Test(0.10) (òòò Ð), Test(0.90) (òòòC), Sur(50) (ò ò), Sur(100) (VVV), Sur(250) 
(ò ò ò ò ). Panel a: ShewSur and Shewtest. Panel b: MASur and MATest. 
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Since 

t
lim PSD(t, d) 0
→∞

=  for the test methods, these methods have very little 

chance of detecting a change that occurs late. This drawback can not be overcome by 
changing α. As seen in Fig. 3, the behavior is the same for α=0.10 and α=0.90 and the 
difference is mainly in the level but not in the general shape of the curve. 

As the probability of a motivated alarm becomes smaller the later the change 
occurs, the delay of alarms will consequently be higher the later the change occurs, as 
was pointed out by Pollak and Siegmund (1975). This was in fact noticed by Chu et 
al. (1996), Leisch et al. (2000) and Zeileis et al. (2004) from simulation experiments. 
However, it was not recognized as a direct consequence of having α < 1 but as a 
consequence of the way the alarm limit changed with time.  
Chu et al. (1996) motivated using a α < 1 in terms of the cost of false alarms, but the 
cost of the delay of motivated alarms was not considered. Here the delay is 
summarized by the CED in section 3. The CED functions are shown in Fig. 4 for 
μ1=3. For ShewSur, CED(t)=ARL1-1 and for ShewTest,  

 
( )( ) ( )( ) ( )i-1

1 1 1i=t+1 j=t
CED(t)=t 1-Φ g(t)-μ i 1-Φ g(i)-μ Φ g(j)-μ -t∞

⋅ + ⋅ ⋅∑ ∏ . 
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Figure 4. The conditional expected delay CED(t) for different values of t (the time of the change) when 
μ1=3. Test(0.10) (òòò Ð), Test(0.90) (òòòC),Sur(50) (ò ò), Sur(100) (VVV),Sur(250) (ò ò ò ò ). Panel a: 
ShewSur and Shewtest. Panel b: MASur and MATest. 
 

The CED(t) of the test approaches are seen to increase with t and we confirm 
what was pointed out by Pollak and Siegmund (1975) and later proved by Frisén 
(1994); the delay of alarms will be higher the later the change occurs. 

Generally, the CED(t) can be written as ( )A Ad 0
P t -t d | t τ, τ t∞

=
> ≥ =∑ , which is 

the same as ( )d 1
1-PSD(t, d)∞

=∑ . For the ShewTest we have that PSD(t, d) ≥ PSD(t+1, 
d) for all t and d, and then it follows that CED(t) ≤ CED(t+1), i.e. CED(t) is increasing 
with t. Since 

t
lim PSD(t, d) 0
→∞

=  when α < 1, CED(t) will tend to infinity as t→∞ for 

the test approaches. Comparing the PSD and CED curves of the test approaches for 
α=0.10 and 0.90, there is a large difference in level but not substantially in the shape. 
The limited ability to detect changes that occur late remains at any level of α. Though 
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different alarm limits can increase the detection power at later time points the 
probability of a motivated alarm will still tend to zero.  

 
5.3. Predictive value 
 
The predictive value at time i, PV(i), reflects the trust of an alarm at that time and can 
be expressed as 

 
PV(i)=PMA(i)/(PMA(i)+PFA(i))  

 
where PFA(i)=P(tA=i| i < τ)·P(τ > i) and PMA(i)= ( ) ( )i

Aj=1
P τ j P t i|τ j= ⋅ = =∑  are 

probabilities of a false and a motivated alarm at time i, respectively. For ShewSur 
expressions for PMA(i), PFA(i) and the asymptote 

i
lim PV(i)
→∞

 are given in Frisén 

(1992) for a two-sided case, but they can easily be expressed for our one-sided case. 
For ShewTest, PFA(i)= ( ) i-1i

j=1
(1-ν) 1-Φ(g(i) Φ(g(j))⋅ ⋅∏  and  

 

PMA(i)= ( )
j-1 i-1

i j-1
1 1j 1

t=1 t=j

ν (1-ν) Φ(g(t)) Φ(g(t)-μ ) 1-Φ(g(i)-μ )
=

⋅ ⋅ ⋅ ⋅∑ ∏ ∏ . 

    
The PV is shown as a function of the time of the alarm in Fig. 5. The shapes of the 
curves of the PV for MASur and the MATest are very similar to those of the Shewhart 
approaches and therefore not depicted here.  
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Figure 5. The predictive value as a function of i when μ1=1. Test(0.10) (òòò Ð), Test(0.90) (òòòC), 
Sur(50) (ò ò ê), Sur(100) (VVV),Sur(250) (ò ò ò ò G ). Panel a: ShewSur and Shewtest, ν=0.01, Panel 
b: ShewSur and Shewtest, ν=0.1.  

 
The test approaches have predictive values that are lower than the surveillance 

approaches at early time points. Alarms given early by the test approach are therefore 
not reliable. The opposite relation appears at late time points. However the probability 
to get a late alarm with the test approach is very low. Thus the better predicted value 
in this case has no practical importance.  
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For all approaches under consideration, especially the test approach, the 
predictive value varies substantially with time. A constant predictive value with 
respect to time can be a good property as it simplifies matters if the same action can 
be used whenever an alarm occurs. For the LR method, the predictive value was 
found by Frisén and Wessman (1999) to be relatively constant.  

 
5.4. Utility 

 
Timeliness can be measured indirectly as the utility of an action after an alarm is 
given. In a situation where the intensity of a change is constant, the LR method 
maximizes the expected value of the utility function (3), E[u(tA, τ)]. The LR does not 
have a fixed size below one. Methods which have a fixed size will, as pointed out by 
Frisén (1994), not be optimal in the sense they maximize E[u(tA, τ)]. Now we discuss 
some factors influencing E[u(tA, τ)] and illustrate the calculation of it.  
 
5.4.1. Example: Trading Hang Seng Index 

 
The techniques of using a utility function to determine which method to choose will 
now be illustrated by (a slightly simplified version of) the problem of timely trading 
of the Hang Seng Index (HSI). HSI is a marked-value weighted index of the stock 
prices of the 33 largest companies on the Hong Kong stock market.  

Bock et al. (2005) and Lam and Yam (1997) considered trading closing HSI using 
different surveillance systems. The aim was to timely detect turning points and trade 
units of HSI as soon as an alarm was given that a turn had occurred. An assumption 
made was that the logarithm of the price in Hong Kong dollar had a piecewise linear 
trend around the turn (a linear regression on time, where the slope changes sign at the 
turn). A turn then implies a shift from one constant mean level to another of the 
differentiated series. The case of a peak corresponds to a change from a positive to a 
negative level (μ0 ≥ 0, μ1 < 0) or vice versa in case of a trough.  One of the methods 
considered by Lam and Yam (1997) further relied on the assumption that the slope of 
the linear trend is equally steep before and after the turn, which in the case of a trough 
implies that μ0=-μ1, μ1 > 0, for the differentiated series. 

 
5.4.2. Utility and return 

 
The E[u(tA, τ)] depends on the false alarm behavior and the delay properties of 
motivated alarms. Depending on which function is chosen for h(tA-τ) in (3), the 
E[u(tA, τ)] will be influenced by the false alarms in different ways.  

What are reasonable specifications of the utility function? One measure of the 
gain of an action is the return earned by timely trading financial assets. It is often 
measured along the log-price scale. If the asset is bought at t=0 and sold at t=tA, the 
return (r) can be defined as 

 
r(tA)=c+x(tA)-x(0) 

 
where X is the logarithm of the price and c ≤ 0 would depend on e.g. the transaction 
cost. The utility function can be defined as the expected return, i.e.   

 
u(tA, τ) = E[r(tA) | tA, τ]. (6) 
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Hence forward we exemplify the turning point with a peak and in that situation, 
E[r(tA)|tA, τ] is maximized at the peak, i.e. when tA=τ-1.  

The return does not explicitly take the timeliness of an alarm into account. 
However, when the return is a known function of time, return and timeliness are 
related as discussed in Bock et al. (2005). If the X function in the return expression 
above can be modelled by a piecewise linear trend, then (6) can be written as 

 

u(tA, τ)= ( )
0 A A

0 1 A A

 μ t ,                           t   τ
c

 μ τ-1 μ (t -τ 1), t   τ
⋅ <⎧

+ ⎨ ⋅ + ⋅ + ≥⎩
. 

 
(7) 

 
where τ is the first time after the peak and μ0 and μ1 are the pre-peak slope and post-
peak slope, respectively. In some cases, e.g. that of trading HSI, (7) is a reasonable 
specification of the utility function. The expected value of (7) depends on the 
behavior of both false and motivated alarms and given τ=t, E[u(tA, τ)|τ=t] equals to 

 
c+μ0·E[tA|tA<τ, τ=t]·P(tA<τ)+{μ0·(τ-1)+μ1·E[tA-t+1|tA≥τ, τ=t]}·P(tA≥ τ). 

 
When we summarize the whole utility with respect to the distribution of τ, we get 

 
E[u(tA, τ)] = c+μ0·{EFA+Eτ[τ·P(tA ≥ τ)]-Eτ[P(tA ≥ τ)]}+μ1·{ED+Eτ[P(tA ≥ τ)]} 

 
where EFA=Eτ[E[tA|tA<τ, τ=t]·P(tA<τ)] and ED is the expected delay. 

For a constant intensity ν, E[u(tA, τ)] of ShewSur equals to   
 

( ) ( )( ) ( ) ( ) ( ) ( )
1

-1
A 0 1

ν ν ARLE u t , τ =c μ 1-Φ g 1- μ
1- 1-ν Φ g 1- 1-ν Φ g

⎧ ⎫⎛ ⎞ ⎛ ⎞⋅⎪ ⎪+ ⋅ ⋅ + ⋅⎡ ⎤ ⎜ ⎟ ⎜ ⎟⎨ ⎬⎣ ⎦ ⎜ ⎟ ⎜ ⎟⋅ ⋅⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭
. 

 
For ShewTest the values of the components can be numerically approximated. For 
ShewTest ED= ( ) ( ) ( ) ( )A A At=1 i=t

P τ t i-t P t i | t τ,τ t P t τ∞ ∞
= ⋅ ⋅ = ≥ = ⋅ ≥∑ ∑ . A lower 

boundary for ED is  
 

( ) ( ) ( ) ( ) ( ){ } ( )T´ T
A A A A At=1 i t

P τ t i-t P t i|t τ,τ t T 1-t P t T|t τ,τ t P t τ
=

= ⋅ ⋅ = ≥ = + + ⋅ > ≥ = ⋅ ≥∑ ∑ . 

 
In the calculations of ED in section 5.4.4 below, the lower bound is calculated using 
T= 200 and T´= 100. T represents the number of tA-points and T’ the values of τ used 
in the calculation. Basing u(tA, τ) on values of tA up to 200 and τ up to 100 is 
reasonable in view of the situation at hand with the length of a cycle (trough to 
trough) of approximately 100 days (see section 5.4.3 and 5.4.4).  

 
5.4.3. The costs of different errors 

 
The relation between the costs for false alarms and the delay of a motivated alarm 
determines the relative importance of the false alarm distribution and the delay 
properties in influencing E[u(tA, τ)] and that determines which of the surveillance and 
test approaches that gives the best utility.  

Chu et al. (1996) did not take the cost of the delay of motivated alarms into 
account. This means that the gain of an action caused by a motivated alarm does not 
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depend on the delay, i.e. a1 = 0 in (3). If a1=0, then the maximization of E[u(tA, τ)] 
would imply a method which never gives an alarm. A less extreme case is when the 
loss of a false alarm is relatively large compared to the gain of a motivated alarm. 
Then the false alarm properties would still dominate the utility.  

The transaction cost differs between types of investors and can sometimes be 
negligible. We will use no transaction cost (c=0 in (7)) in the utility illustration below.  

The period February 10 to May 28, 1999 for HSI (analyzed by Bock et al. (2005)) 
including a peak is used to estimate reasonable values for the parameters in the utility 
expression. The pre-peak slope is slightly steeper than the post-peak slope (the ratio 
between the slopes is 1.09). In the illustration below, a symmetric peak is considered a 
reasonable approximation, i.e. μ0=-μ1=μ > 0 where μ=(|μ0|+|μ1|)/2=0.0069. Then 
E[u(tA, τ)]=μ·{EFA–ED+E[τ·P(tA ≥ τ)]-2·E[P(tA≥ τ)]}, which is maximized for a 
minimal E[|tA-(τ-1)|]. That is because 

 
E[|tA-(τ-1)|]= -{EFA-ED-Eτ[τ·P(tA< τ)]+Eτ[P(tA< τ)]-Eτ[P(tA≥ τ)]} 

 
which is equals to -{E[u(tA, τ)]-maxtA{E[u(tA, τ)]}}/μ where maxtA{E[u(tA, τ)]}= 
Eτ[(τ-1)]. Since for a given ν, Eτ[(τ-1)] is a known constant, the minimization of E[|tA-
(τ-1)|] is the same as maximizing the utility. 

 
5.4.4. The influence of the parameters of the process 

 
In what ways do the intensity ν and the shift size μ1 influence E[u(tA, τ)]? The false 
alarm distribution depends on ν and the delay properties depend on both ν and μ1. The 
smaller the size of the shift, the larger the delay and the larger the impact of ED on 
E[u(tA, τ)] as compared to the impact of EFA. Thus for very small shifts, the utility is 
dominated by the delay and the cost of it. Thus for small shifts the surveillance 
approach will be preferred since the delay is shorter.  

If on the other hand the size of the shift tends to infinity, the delay is small and the 
false alarm distribution and the cost of false alarms are instead of major importance.  

Reasonable values of the shift size μ1 vary in different practical situations. For the 
above mentioned period of HSI the standardized (μ0=0 and σ2=1) downward shift 
(negative μ1) in the differences had an by Bock et al. (2005) estimated size of 0.82. 
For a shift of such size, the level of the CED curve for the Shewhart approaches will 
be substantially higher than in Fig. 4 where μ1=3, so it is reasonable to say that much 
concentration is on the delay. Then the surveillance approach will be preferred except 
possibly for very large values of ν. In the above mentioned period of HSI, ν was 
estimated to 0.018, which is not very large. 

As an illustration we calculate ED, PFA and E[u(tA, τ)] for the estimated 
parameters of the period of HSI. With the costs and parameter discussed above we 
have the results in Table 1. 

 
Table 1. Results from the illustration on HSI 

 ShewSur(50) ShewSur(100) ShewTest(0.10) 
ED 3.994 9.191 112.164 
PFA 0.519 0.351 0.0913 
E[u(tA, τ)] 0.149 0.174 -0.442  

 
The utility in (6) depends on the return, r, which is a function of the price at time 

t, p(t). If we approximate E[p(tA)/p(0)] by exp{E[u(tA,τ)]}, the price at which the HSI 
is sold is, on the average, 16% higher than it was bought for, for ShewSur(50). The 
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corresponding figure for ShewSur(100) is 19%. Due to the truncation when 
calculating ED for ShewTest(0.10) (see section 5.4.2) the value is less than -0.442 for 
the utility. The price at which the HSI is sold is hence on average less than 64% of the 
price it was bought for. The ShewTest will here yield such large delays that an alarm 
will be of no practical value. This illustrates that in the current setting the test 
approach is not a reasonable method.    

   
6. Discussion and concluding remarks 

 
The properties of two approaches for monitoring have been investigated. The 
approaches that are compared here differ with respect to how the false alarms are 
controlled: by a fixed asymptotic size (below 1) or by a fixed measure reflecting the 
timeliness of the false alarms (e.g. ARL0).  

To use a monitoring method with a fixed size (a test method) is convenient in the 
sense that ordinary statements of hypothesis testing can be made. One argument 
against controlling by a fixed size is that ordinary statements for hypothesis testing do 
not consider the timeliness of alarms.  

The use of a fixed size gives the result that the probability of making an alarm 
long after the monitoring has started is very low. A consequence of this is a limited 
ability to detect late occurring regime shifts. This drawback can not be adjusted by 
choosing a large asymptotic size. It remains at any level of the size. Though different 
alarm limits can increase the detection power at later time points, the probability of a 
motivated alarm will still tend to zero.   

The methods under study that are controlled by a fixed size yield many early but 
few late alarms compared to the surveillance methods, where the timeliness of false 
alarms are controlled. The alarms given early by the test methods are less reliable, as 
measured by the predictive value, compared to those of the surveillance methods. The 
predictive value of the test methods is higher at late alarms but has no practical 
importance since the alarms are rare and tend to be given with great delay.  

In order to compare different monitoring methods, a utility function can be used. 
The utility often consists of two parts: one concerning the false alarms and the other 
the delay of motivated alarms. Chu et al. (1996) argue in favor of a fixed size when 
sampling under the null hypothesis is costless but resetting the monitoring system 
after a false alarm does create a large cost. In terms of the utility this means the cost of 
the delay of an alarm is ignorable, compared to the cost of a false alarm.  

Which of the two approaches that is best in terms of utility depends on the 
specification of the utility function and the relation between the costs of an alarm that 
is given too early or too late. Also the parameters of the process have an influence as 
they affect the false alarm and delay properties. If the size of the shift tends to infinity, 
the delay is small and the false alarm distribution and the cost of false alarms are 
instead of major importance. As the false alarms are fewer for the test approaches, 
these might then be preferred.  

When the aim is on-line detection, and not hypothesis testing, methods for 
surveillance are suitable, as they have high probability to detect regime shifts at early 
as well as late time points.  
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