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Notation

X a random variable or point process
x a realization of a random variable or point pattern
X a vector of values X1, . . . , Xn

1{x} the indicator function, which is 1 if x is true and 0 if
false

X̆ a marked point process
xV, xT validation and training sets
xp a point pattern thinned with some probability p
Vx(x,W ) the Voronoi cell of the point x which is in the point

pattern x which is observed in the window W
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Abstract

Point process learning is a new statistical theory that gives us a way to esti-
mate parameters using cross-validation for point processes. By thinning a point
pattern we are able to create training and validation sets which are then used
in prediction errors. These errors give us a way to measure the discrepancy
between two point processes and are used to measure how well the training sets
can predict the validation sets. We investigate non-parametric intensity estima-
tion methods with a focus on the resample-smoothing Voronoi estimator. This
estimator works by repeatedly thinning a point pattern, finding the Voronoi
intensity estimate of the thinned point pattern, and then using the mean as the
final intensity estimate. Previously, only a thumb rule was given as to how to
choose parameters for the resample-smoothing Voronoi estimator but with the
help of point process learning we now have a data-driven method to estimate
these parameters.

5



Acknowledgements

First and foremost, I would like to thank Ottmar Cronie, to whom I am deeply
grateful for his continuous support and guidance during this thesis and all his
work on both point process learning and the re-sample smoothing Voronoi esti-
mator which enabled this thesis.

I would also like to give my deepest appreciation to Aila Särrkä for her
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1 Introduction

A point process is essentially a random collection of points on some space where
both the number and locations of points follow some random distribution. The
locations of trees in a forest, calls to emergency services, and the positions of
bacterial growth in a petri dish can all be seen as point processes.

An important characteristic of all point processes is the intensity function
or intensity for short. The intensity ρ(x) governs the expected number of points
of a point process X in a region W via

E[X(W )] =

∫
W

ρ(x)dx

whereX(W ) is the number of points inW . There are many methods to estimate
the intensity, both parametric and non-parametric. For a long time, the most
popular non-parametric intensity estimation method has been kernel estimation
which utilizes some kernel function parameterized by a bandwidth h. The choice
of this bandwidth is the main challenge in kernel intensity estimation and there
are several popular methods that can be used to make this choice as described
by Silverman [1998, p. 43].

Another non-parametric intensity estimation method is the Voronoi estima-
tor. This estimator works by creating a Voronoi tessellation of an observed
point pattern and then taking the inverse of the size of each Voronoi cell as
the estimated intensity. A recent development using this intensity estimation
method that shows great potential is the resample-smoothing Voronoi estimator
as seen in Moradi et al. [2018]. This method takes the average of m Voronoi
intensity estimates for which each underlying point pattern has been thinned
with some retention probability p. To thin a point pattern simply means that
each point is independently retained with some probability p. Using the thumb
rule as proposed by Moradi et al. [2018] the resample-smoothing Voronoi estima-
tor achieves better performance than the state-of-the-art bandwidth selection
method for the kernel estimator.

Another promising recent result is point process learning which is a data-
driven parameter selection method as seen in Cronie et al. [2021] and has shown
very promising results when used for bandwidth selection. In this thesis, we will
investigate how point process learning performs when selecting the number of
estimates m and the retention probability p for the resample-smoothing Voronoi
estimator and compare its performance to kernel intensity estimation.

In this thesis, we will start by introducing some general point process theory,
introduce the specific point process models we will investigate, and then intro-
duce the kernel and resample-smoothing Voronoi estimators. After that, we will
move on to the theory behind point process learning. Finally, we will see the re-
sults of using point process learning to select parameters for the aforementioned
intensity estimators.
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2 Preliminaries

2.1 Point processes

We start by laying the foundation for this entire thesis; a point process. A point
process X at its most foundational level is a random sequence of points in some
space S where each point represents the site of some event. In this thesis, we
will only investigate point processes defined on R2 which are observed on the
unit square window [0, 1]× [0, 1]. An example of a realization of a point process,
which is called a point pattern, can be seen in Figure 1.

Figure 1: An example of a point process on the unit square.

To begin to formally define a point process we first need to establish some
preliminaries, the first of which is a σ-algebra. Given some set Y , a σ-algebra,
Σ, of Y , has the following properties [Chiu et al., 2013, p. 28]:

1. Y ∈ Σ

2. if A ∈ Σ then AC ∈ Σ

3. if A1, A2, . . . ∈ Σ then
⋃∞

i=1 Ai ∈ Σ.

The tuple of Y and the σ-algebra Σ, [Y,Σ] is called a measurable space.
Now that we have defined a σ-algebra we can introduce the so-called Borel

σ-algebra. A Borel σ-algebra is created by taking the open subsets of some set
and then applying the above described σ-algebra operations on them. We will
reserve the notation ⊆ for Borel sets, i.e. members of a Borel σ-algebra.

Now we can formally define a point process X = {Xi}Ni=1, on S as a random
variable or element in the measurable space [Y,Σ]. Y is the collection of all
point patterns x = {x1, . . . , xn} ⊆ S which are

• locally finite, i.e. for a bounded A ⊆ S we have x(A) = #(x ∩A) < ∞,

• simple, i.e. xi ̸= xj if i ̸= j [Chiu et al., 2013, p. 108-109].
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N is the σ-algebra generated by x 7→ x(A),x ∈ X , A ⊆ S. The elements of
N are subsets of the collection of point patterns with specific properties, e.g.
{x : x(A) = 0} ∈ N ,x ∈ X for some specific A ⊆ S.

Furthermore, given a probability space [Ω,A,P], a point process X is a
measurable mapping into [X ,N ] which generates a distribution P ofX on [X ,N ]
[Chiu et al., 2013, p. 109]. This distribution can be seen as

P (Y ) = P(X ∈ Y ) = P({ω ∈ Ω : X(ω) ∈ Y }) for Y ∈ N . (1)

Note that point process is the term for the random collection of points while
a realization of the point process is called a point pattern. Henceforth the
cardinality of a point pattern x in some A ⊆ S will be denoted x(A).

Furthermore, the family of so-called finite-dimensional distributions of a
point process X is the collection of joint distributions of (X(A1), . . . , X(An))
for bounded Borel sets Ai ⊆ S, i = 1, . . . , n. Given a metric d such that (S, d)
is a complete and separable metric space the distribution of X on that space is
entirely determined by its finite-dimensional distributions [Van Lieshout, 2000,
p. 7]. The most common such metric space, and the only one we will consider
in this thesis, is Rd and the Euclidean distance d(u, v) = ∥u− v∥ with u, v ∈ Rd

[Cronie et al., 2021, p. 4].

2.1.1 Intensity function

The intensity function ρ, or intensity for short, of a point process, governs the
expected number of points of a point process X in any set A and is as such
of interest in all investigations regarding point processes. The intensity can be
seen as a heatmap of how likely an event is to occur at any point of A. It can be
seen as the equivalent of a probability distribution function of a random variable
for a point process with the exception that it does not necessarily integrate to
1.

Formally, it is defined as the function satisfying [Chiu et al., 2013, p. 51]

E[X(A)] =

∫
A

ρ(x)dx (2)

with ρ(x) able to take many forms such as:

• a constant ρ(x) = ρ

• a function with respect to the position x, ρ(x)

• or even be an element of a random distribution.

Given a point process X = {Xi}Ni=1, we say that X is stationary if the
translated point process Xt = {Xi + t}Ni=1 has the same distribution for any
real-valued t. Furthermore, we say that X is isotropic if the same is true for the
rotated point process Xr = {rXi}Ni=1 for any rotation r about the origin [Chiu
et al., 2013, p. 42]. Obviously, if a point process X is stationary it must also
have a constant intensity ρ.
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The point process we saw in Figure 1 has a constant intensity of ρ = 15
meaning that we have

E[X(A)] =

∫
A

ρ(x)dx =

∫
A

ρdx = ρ

∫
A

dx = ρ|A|

and since A = [0, 1]2 and thus |A| = 1 we get that the expected number of
points is simply 15.

2.1.2 Papangelou conditional intensity

The Papangelou conditional intensity λ(·; ·) may be described as [Van Lieshout,
2000, p. 39]

λ(u;x)du = P (X(du) = 1|X ∩ (du)c = x ∩ (du)c). (3)

Heuristically, the Papangelou conditional intensity is simply the probability of
observing a point in the infinitesimal region du around u conditioned on observ-
ing the point pattern x in the complement to this infinitesimal region, (du)c.

The Papangelou conditional intensity λ(u;X) is then a random variable
whose mean is [Illian et al., 2008, p. 29]

E[λ(u;X)] = ρ(u) (4)

which is an alternative definition of the intensity function. We remind ourselves
that the expected number of points of a point process X in a set W is given by

E[X(W )] =

∫
W

ρ(u)du

and if we let W be an infinitesimally small area, du around some location u, we
get

E[X(du)] = 0 · P (X(du) = 0) + 1 · P (X(du) = 1) = P (X(du) = 1) = ρ(u)du

since we are only interested in simple point processes that can at most have
1 point at each location. Furthermore, given a density p(x) with respect to
a Poisson process, the Papangelou conditional intensity can alternatively be
written as [Van Lieshout, 2000, p. 41]

λ(u;x) =
p(x ∪ u)

p(x)
.

2.1.3 Product densities

In this section, we will continue developing the concept of intensity by defining
the intensity of higher orders. To begin, we introduce the concept of a measure.
Previously we noted that the tuple of a set Y and the σ-algebra Σ of Y , [Y,Σ]
is called a measurable space. A so-called measure on such a tuple is a function
µ : Σ → [0,∞] with the following properties:
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• µ(∅) = 0,

• µ (
⋃∞

i=1 Ai) =
∑∞

i=1 µ(Ai)

∀A1, A2, . . . ∈ Σ such that Ai ∩ Aj = ∅ if i ̸= j [Chiu et al., 2013, p. 29]. An
important measure that will be useful later on in this section is the Lebesgue
measure, νd on [Rd,Bd], which is defined as

νd(Q) = (v1 − u1) · . . . · (vd − ud)

when Q = [u1, v1] × . . . × [ud, vd] [Chiu et al., 2013, p. 30]. Here Bd is the
σ-algebra of Borel sets on Rd [Chiu et al., 2013, p. 28].

Now that we know what a measure is we can move on and introduce the
concept of moment measures for point processes. For random variables, the
moments are useful tools, particularly the first raw moment and the second
central moment which are also known as the mean and variance. An equivalent
concept exists for point processes and is called moment measures. Given Borel
sets, B,B1, . . . , Bn, and a Borel σ-algebra, Bnd, in Rd, the nth moment measure
of a point process X, µ(n), is defined on Bnd by

∫
Rnd

f(x1, . . . , xn)µ
(n)(d(x1, . . . , xn)) = E

 ∑
x1,...,xn∈X

f(x1, . . . , xn)


where f is any non-negative measurable function on Rnd [Chiu et al., 2013,
p. 120-121]. If

f(x1, . . . , xn) = 1{x1 ∈ B1} · . . . · 1{xn ∈ Bn}

we have
µ(n)(B1 × . . .×Bn) = E[X(B1) · . . . ·X(Bn)].

Furthermore, if B1 = . . . = Bn = B then

µ(n)(Bn) = E[X(B)n]

and is then the nth moment of the random variable X(B) [Chiu et al., 2013,
p. 121]. When n = 1 we have

µ(1)(B) = E[X(B)]

which, as we saw in the previous section, is governed by the intensity of X and
is the expected number of points of X in B.

Closely related to moment measures is the so-called factorial moment mea-
sures, α(n) again defined on Bnd by∫

Rnd

f(x1, . . . , xn)α
(n)(d(x1, . . . , xn)) = E

[∑ ̸=

x1,...,xn∈X
f(x1, . . . , xn)

]

11



where
∑ ̸=

indicates that we are summing over all n-tuples of distinct points
in X. If we have that B1, . . . , Bn are pairwise disjoint, then [Chiu et al., 2013,
p. 121]

µ(n)(B1 × . . .×Bn) = α(n)(B1 × . . .×Bn).

Now, we can finally introduce the concept of product densities. If α(n) is
locally finite and absolutely continuous with respect to νd, then α(n) has an
nth-order product density ϱ(n) which is defined by

α(n)(B1 × . . .×Bn) =

∫
B1

. . .

∫
Bn

ϱ(n)(x1, . . . , xn)dx1 . . . dxn.

Furthermore, for any non-negative bounded measurable function f we also have

E
[∑̸=

x1,...,xn∈X
f(x1, . . . , xn)

]
=

∫
. . .

∫
f(x1, . . . , xn)ϱ

(n)(x1, . . . , xn)dx1 . . . dxn.

Heuristically, given pairwise disjoint balls C1, . . . , Cn with centers x1, . . . , xn

and infinitesimal volumes dV1, . . . , dVn then ϱ(n)(x1, . . . , xn)dV1 . . . dVn is the
probability that there is a point of a point process X in each of C1, . . . , Cn

[Chiu et al., 2013, p. 122].
Alternatively, if we introduce the so-called intensity measure Λ(B) which is

defined as [Chiu et al., 2013, p. 51]

Λ(B) = E[X(B)] =

∫
B

ρ(x)dx

we can define the nth-order product density as

ϱ(n)(x1, . . . , xn) = E

[
n∏

i=1

Λ(xi)

]

if x1, . . . , xn are pairwise disjoint [Møller et al., 1998, p. 456].
Given that n = 1 we already saw that

µ(1)(B) = E[X(B)] =

∫
B

ρ(x)dx

where ρ(x) is the intensity of a point process X.
Furthermore, we also obviously have that µ(1)(B) = α(1)(B) and that

α(1)(B) =

∫
B

ϱ(1)(x)dx.

and therefore ϱ(1)(x) = ρ(x).
In particular, we are interested in ϱ(2) which is used to construct the pair

correlation function which is defined as

g(x1, x2) =
ϱ(2)(x1, x2)

ϱ(1)(x1)ϱ(1)(x2)
=

ϱ(2)(x1, x2)

ρ(x1)ρ(x2)

12



for any x1, x2 ∈ Rd [Van Lieshout, 2019, p. 100]. The pair correlation function
is useful in quantifying whether or not a point process is regular, in which case
g(x1, x2) < 1, clustered, in which case g(x1, x2) > 1, or completely spatially
random, in which case g(x1, x2) = 1.

2.1.4 Marked point process

The points of a point process can be seen as events and it is quite common to
want to associate some extra characteristic with these events which gives rise to
the marked point process. Given some space S and a point processX = {Xi}Ni=1,
which we call the ground process, the marked point process is then the sequence
X̆ = {(Xi,Mi)}Ni=1 with the marks Mi belonging to a so-called mark space, M.
Some examples are:

• if xi is the location of a tree, then mi could be the diameter or radius of
that tree,

• if xi is a particle, mi is that particle’s size,

• if xi is the location of an earthquake, mi is the time the earthquake hap-
pened [Chiu et al., 2013, p. 116].

2.1.5 Thinned point process

For various reasons, we can sometimes want to thin a point process by some
degree. To thin a point process simply means to randomly remove some points
of the process according to some rule. Given a point process X on some space
S, the thinned process Xt is some subset of X,Xt ⊂ X. The simplest form of
thinning is p-thinning, which given a p ∈ (0, 1) and a point process X = {Xi}Ni=1

can be seen as the marginal point process Cronie et al. [2021]

Xt = {Xi : (Xi,Mi) ∈ X̆,Mi = 1} (5)

where X̆ is a marked point process

X̆ = {(Xi,Mi)}Ni=1 ⊆ S ×M,M = {0, 1}. (6)

In this case, we have that a point is retained with probability p and deleted with
probability 1 − p, i.e. P (Mi = 1) = p. Furthermore, all Mi are independent
of each other resulting in an independent thinning. In general, if the thinning
does not depend on X, i.e. p(u;X) = p(u), u ∈ S, we say that the thinning is
independent [Chiu et al., 2013, p.159]. The function p(u) is a generalization of
p-thinning where we instead let the retention probability be a function of the
location u. Such a thinning process is called p(u)-thinning.

In general, if the original point process X has intensity ρ(x) then the point
process Xt that has been thinned with some probability p(x) will have intensity
p(x)ρ(x) [Chiu et al., 2013, p. 160].
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2.2 Random field

A random field or spatial random process Xs, s ∈ S is a family of random
variables and is determined by its joint distributions

F (y1, . . . , yn; s1, . . . , sn) = P (Xs1 ≤ y1, . . . , Xsn ≤ yn)

for finite n and every collection of s1, . . . , sn of locations in S where Xs is the
random variable at location s [Van Lieshout, 2019, p. 9]. A random field is
called Gaussian if the above distribution is a normal distribution.

In a previous section, we introduced the intensity as governing the expected
number of points of a point process in an observed region W . Later on, we will
see a point process model which uses a random field as the intensity. Heuristi-
cally, a random field can be seen as a family of random variables indexed by the
locations of some region. For example, the temperatures over a map of Sweden.

This process can be characterized by its mean,

µ(s) = E[Xs], (7)

and covariance,
C(s, t) = E[(Xs − µ(s))(Xt − µ(t))], (8)

functions. The only requirements for a function C(s, t) to be a valid covariance
function is that it

• is symmetric, C(s, t) = C(t, s),

• is positive-semidefinite,
∑

i

∑
j aiajC(si, sj) ≥ 0 ∀s1, . . . , sn ∈ S, a ∈ Rn.

A spatial random process is stationary if invariant under translation by a
vector t ∈ Rn, i.e. if

F (y1, . . . , yn; s1, . . . , sn) = F (y1, . . . , yn; s1 + t, . . . , sn + t).

In this case the covariance function C(s, t) only depends on s− t. Furthermore,
a stationary random process is called isotropic if it is invariant under rotation.
In this case, the covariance function only depends on |s− t| = r. The covariance
function can then be written as

C(s, t) = σ2c(|s− t|) = σ2c(r) (9)

where c(r) is called the correlation function and σ2 is the variance. A common
correlation function is the exponential correlation function given by [Rudemo,
2020, p.70]

c(r, θ) = exp (−r/θ) (10)

where θ is a scaling parameter.

2.3 Point process models

Next, we describe some of the point processes that we will be investigating later
on.
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2.3.1 Poisson process

We start with the Poisson process, one of the most basic point processes. While
it is a very basic process, it is still a cornerstone of the field of point processes.
Before we define the Poisson process, we first remind ourselves that if a random
variable Y , is Poisson distributed and is parameterized by some λ > 0, Y ∼
Po(λ), then Y has probability density function

fY (k) = P (Y = k) =
λke−λ

k!
.

Given some window W ⊆ S and a constant intensity ρ, the homogeneous
Poisson process, which we will call X, has the following properties:

• the number of points of X in W is Po(ρ|W |) distributed, i.e.

X(W ) ∼ Po(ρ|W |), (11)

• given disjoint regions W1,W2, . . . the counts X(W1), X(W2), . . . are inde-
pendent,

• the points of X ∩W are uniformly, independently distributed in W .

We have already seen an example of this point process in Figure 1 with
ρ = 15.

A Poisson process is completely spatially random, abbreviated CSR. Com-
plete spatial randomness is often used as a hypothesis to determine if a point
pattern is Poisson or not [Chiu et al., 2013, p. 56-57]. For Poisson processes
in general, we have that the pair correlation function is g(x1, x2) = 1 since
ϱ(1)(x) = ρ and ϱ(2)(x1, x2) = ρ(x1)ρ(x2) = ρ2.

2.3.2 Inhomogeneous Poisson process

In the previous section, we defined a homogeneous Poisson process where the
term homogeneity refers to the fact that the intensity is constant. However,
we can instead let the intensity be a function of the location of the space it is
defined on. If we are in the same setting as the previous section, the intensity
is then a function ρ(u), u ∈ S. In this case the number of points of X in W is
then Poisson distributed with

X(W ) ∼ Po

(∫
W

ρ(u)du

)
. (12)

If we look at Figure 2 we can see an example of such a point process where
the intensity is

ρ(u) = ρ(x, y) = 10 + 100x.
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Figure 2: An example of an inhomogeneous Poisson process.

2.3.3 Log-Gaussian Cox process

Now we introduce an interesting model; the Log-Gaussian Cox process. This
process is given by a Poisson process where the intensity function is given by a
realization of a random function, more specifically, a log-Gaussian random field.
To define such a process we start with a Gaussian random field Z = (Zs)s∈S

defined on some space S, as described in Section 2.2, characterized by some mean
function µ(s), s ∈ S and a covariance function C(s, t), s, t ∈ S [Van Lieshout,
2019, p. 120-121]. One might think to use a realization of this Gaussian field as
the intensity function of a Poisson process but it may be possible for the field to
take values less than 0 regardless of mean and covariance, which is not allowed
for an intensity function. Instead, we let the intensity be given by a realization
of exp(Zs) = P (s) where P (s) is the so-called stochastic intensity. The intensity
is then given by

ρ(u) = E[P (u)] = exp

(
µ(u) +

C(u, u)

2

)
= exp

(
µ(u) +

σ2

2

)
. (13)

After a stochastic intensity has been generated it is then used as the intensity
for an inhomogeneous Poisson process as described in the previous Section.

To see that the intensity is indeed given by (13) we remind ourselves that
the moment-generating function of a random variable X is given by

MX [t] = E[eXt]

and if X is a Gaussian distributed random variable with mean µ and variance
σ2 we have

MX [t] = eµte
σ2t2

2

which is exactly what we see in (13).
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If the random field Zs, s ∈ S is stationary and isotropic and given pairwise
disjoint s1, . . . , sn ∈ S, let ξ =

∑n
i=1 µ(si) and

κ =

n∑
i=1

σ2(si) + 2
∑

1≤i<j≤n

σ(si)σ(sj)c(si, sj),

We then have that
n∑

i=1

Zsi ∼ N(ξ, κ)

We remind ourselves that the covariance function of a random field is given by

C(s, t) = σ2c(s, t)

where c(s, t) is the correlation function. We also remind ourselves that

ϱ(n)(s1, . . . , sn) = E

[
n∏

i=1

Λ(si)

]

and for a Log-Gaussian Cox process, we have that Λ(s) = exp (Zs). This gives
us that [Møller et al., 1998, p. 456]

ϱ(n)(s1, . . . , sn) = E

[
n∏

i=1

Λ(si)

]
= E

[
n∏

i=1

exp (Zsi))

]

= E

[
exp

(
n∑

i=1

Zsi

)]
= exp (ξ +

κ

2
).

In Figure 3 we can see an example of the point process with

µ(u) = µ(x, y) = 4.5x

and
C(s, t) = σ2 exp (|s− t|/θ) = 2 exp (|s− t|/0.1).

In the left plot, we see a realization of the process, in the middle, we see
the stochastic intensity, and to the right, we see the realization of the Gaussian
random field which was transformed and used as the stochastic intensity.
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Figure 3: An example of a Log-Gaussian Cox process along with the underlying
intensity and the Gaussian field. Left: point pattern, middle: intensity, and
right: Gaussian field.

2.3.4 Simple sequential inhibition process

Many natural phenomena that can be modeled as a point process, such as the
locations of trees in a forest, exhibit a quality known as inhibition. Inhibition
is the property that for all points xi of a point process X ∈ W ⊆ S there is a
distance d ∈ (0,∞] such that the probability of observing another point xj of
X within a d-radius ball of xi is lower than outside the ball. If this probability
is 0 we say that X is a hard-core process and otherwise we say that X is a
soft-core process. This distance d is called the soft- or hard-core distance [Chiu
et al., 2013, p. 176]. Alternatively, point processes are said to display inhibition
if their pair correlation function is g < 1 [Van Lieshout, 2019, p. 102].

We will be investigating the so-called simple sequential inhibition process
which is an example of a hard-core process. This point process can be simu-
lated by starting with an empty point process X = ∅ and thereafter iteratively
adding new points to X in W ⊆ S. We start by adding a point that is uni-
formly distributed on the entirety of W , thereafter, new points are distributed
uniformly on W \

⋃n
i=1 b(xi, d) for xi ∈ X where b(xi, d) is a d-radius disc

centered on xi [Illian et al., 2008, p. 133].
For this thesis, we will only consider point processes of this kind with r

such that it is always possible to generate the desired number of points n, i.e.
E[X(W )] = n, in which case the process is stationary. Therefore, we have that
the intensity is

E[X(W )] = n =

∫
W

ρ(u)du = ρ|W |

and since we are only interested in the unit window and thus |W | = 1 we get
ρ = n.

2.4 Intensity estimation

As we now have seen, the intensity is an important characteristic of point pro-
cesses and as such the estimation of it is of great interest. We will now describe
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some methods that are used to do this.
If we have a constant intensity ρ and observe a point pattern x in some

observation window W a fairly natural estimation method of ρ is simply

ρ̂ =
x(W )

|W |
.

In this thesis, we will only look at non-parametric intensity estimation meth-
ods. In parametric methods, we assume that the observed data comes from such
distribution parameterized by some θ and try to find an estimate θ̂ using the
data. In non-parametric methods, we make no assumptions about the distribu-
tion which has generated the data.

2.4.1 Kernel density estimation

Before we can describe the first intensity estimation method we have to in-
troduce the general concept of kernel estimation, which is a method for es-
timating probability density functions. Given an independent and identically
distributed sample x1, . . . , xn from some unknown distribution with probability
density function f(x) we use a kernel function k(x) which satisfies∫ ∞

−∞
k(x)dx = 1

to find an estimate of f(x) via

f̂(x) =
1

n

n∑
i=1

kh(x− xi) =
1

nh

n∑
i=1

k(
x− xi

h
)

where h is the so-called bandwidth. The kernel function is usually a symmet-
ric probability density function [Silverman, 1998, p. 13-15]. One of the main
challenges in kernel estimation is choosing an appropriate bandwidth.

2.4.2 Kernel intensity estimation

Kernel estimation has been the most prominent method to estimate the intensity
function of a point process for some time. In this scenario, given a point pattern
x, the intensity estimate is given by

ρ̂Kh (u) =
∑
x∈x

kh(u− x)

wh(u, x)

where wh(u, x) is an edge-correction term [Cronie et al., 2021, p. 11].
If we look at Figure 4 we can see an example of how this intensity estimation

works. We have a homogeneous Poisson process with ρ = 5 and on each point
x of X we center a, in this case, Gaussian kernel with bandwidth 0.1. As we
can see this bandwidth is far from optimal but it serves well to illustrate the
method.

19



Figure 4: An example of kernel intensity estimation on a homogeneous Poisson
process with ρ = 5. Left: point pattern, middle: estimated intensity with point
pattern overlaid, and right: 3d plot of estimated intensity.

The current state-of-the-art bandwidth selection method was presented by
Cronie and Lieshout [2018] which we will now give a brief description of. Given
a point process X on R2 with intensity function ρ(x) the so-called Campbell
theorem states that for any non-negative, measurable function h : Rd → R+ we
have

E[
∑
x∈X

h(x)] =

∫
Rd

h(x)ρ(x)dx

where R+ = {x | x ∈ R, x ≥ 0} [Cronie and Lieshout, 2018, p.456]. Given this
theorem, and if we observe X in a window W , we have that

E

[ ∑
x∈X∩W

1

ρ(x)

]
=

∫
W

1

ρ(x)
ρ(x)dx = |W |

if ρ(x) > 0 for any x ∈ W . We have that
∑

x∈X∩W
1

ρ(x) is an unbiased estimator

of the size of the window W which is what this bandwidth selection method
utilizes. Define

Tκ(h;X,W ) =

{∑
x∈X∩W

1
ρ̂h(x;X,W ) if X ∩W ̸= ∅

|W | otherwise

and
Fκ(h;X,W ) = (Tκ(h;X,W )− |W |)2

where ρ̂h(x) is the kernel intensity estimate at location x with bandwidth h.
The bandwidth h is then chosen by finding the bandwidth that minimizes
Fκ(h;X,W ) [Cronie and Lieshout, 2018, p. 457]. If X ∩ W = ∅ we can make
no conclusion about what bandwidth is optimal and so for any h we have that
Fκ(h;X,W ) is 0. Essentially, this approach allows us to choose a bandwidth
that optimally estimates the size of the observation window instead of trying to
optimally estimate the intensity.
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2.4.3 Voronoi tessellations

Now we move on to the next intensity estimation method we will investigate
and start by introducing the Voronoi tessellation. Let x = {x1, . . . , xn} be a
collection of points in some space S. Each point of S then belongs to a Voronoi
cell Vxi(x) for some xi ∈ x. A Voronoi cell is defined as [Chiu et al., 2013, p.
347]

Vxi
(x) = {u ∈ S : d(u, xi) ≤ d(u, xj),∀xj ∈ x \ {xi}} (14)

where d(u, v) is the distance metric on S between the points u and v. Since
we are only interested in R2, d(u, v) is simply the Euclidean distance d(u, v) =
∥u− v∥. If we instead have a point process x ∈ W ⊆ S, we write

Vxi(x,W ) = {u ∈ W : d(u, xi) ≤ d(u, xj),∀xj ∈ x \ {xi}}. (15)

If we look at Figure 5 we can see an example of a Voronoi tessellation on
the same point pattern as in Figure 4.

Figure 5: An example of a Voronoi tessellation of a homogeneous Poisson process
with ρ = 5.

2.4.4 Voronoi intensity estimation

Now that we know what a Voronoi tessellation is we can describe how it can be
used to estimate the intensity. Given a point process X in some window W ⊆ S
the Voronoi intensity estimator for a point u ∈ W is given by [Moradi et al.,
2018]

ρ̂V(u;X,W ) =
∑

x∈X∩W

1{u ∈ Vx}
|Vx|

. (16)

The idea here is that at a point u of W with few nearby points of x its corre-

sponding Voronoi cell will be larger and as such the estimated intensity 1{u∈Vx}
|Vx|

at u will be smaller.
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If we look at Figure 6 we can see an example of this intensity estimation
method on an inhomogeneous Poisson process with

ρ(u) = ρ(x, y) = 5 + 50x.

Figure 6: An example of Voronoi intensity estimation on an inhomogeneous
Poisson process. Left: point pattern, middle: Voronoi tessellation with point
pattern overlaid, and right: estimated intensity with Voronoi tessellation over-
laid.

2.4.5 Resample-smoothing of Voronoi intensity estimators

As we saw in the previous section the estimated intensity was not terribly ac-
curate. However, if we instead perform a series of these estimations based on
thinned point patterns and use the mean as the estimate we get much better
results. Note, that this is not a method exclusive to the Voronoi estimator and
works for all types of intensity estimators. The general idea is that if a point
process is thinned with a probability p(x) then the intensity of that thinned
point process is ρt(x) = p(x)ρ(x). We can then estimate the intensity of this
thinned point process and use it to find an estimate of the original intensity via

ρ̂(x) =
ρ̂t(x)

p(x)
.

Furthermore, if we thin the point processm times and findm intensity estimates
we get

ρ̂(x) =
1

m

m∑
i=1

ρ̂t(x)

p(x)
=

1

mp(x)

m∑
i=1

ρ̂t(x).

Given a point process X in some window W ⊆ S, a retention probability
pv and a number m of random independent thinnings, the resample-smoothed
Voronoi intensity estimator is given by Moradi et al. [2018]

ρ̂Vpv,m(u;X,W ) =
1

mpv

m∑
i=1

∑
x∈Xpv

i

1{u ∈ Vx(X
pv

i ,W )}
|Vx(X

pv

i ,W )|
(17)
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where Xp
i is the ith random thinning.

In short, we perform Voronoi intensity estimation on m copies of the point
pattern that each have been thinned with some, but the same for all copies,
probability pv ∈ (0, 1) and then use the mean as the intensity estimate. Since
this intensity estimate is based on thinned point patterns we must also finally
divide by pv to ensure that we are on the right scale.

Moradi et al. [2018] propose as a rule of thumb to let pv ≤ 0.2 and m = 400.
In general, Moradi et al. [2018] found that lower values of pv performed better
and that there was only a small performance improvement to be gained by
letting m ≥ 200.

2.4.6 Conditional intensity estimation

It is important to point out that for both estimators we have seen, given a point
pattern x of some point process X, we have that the intensity estimate is of the
form ρ̂(u;x) i.e., the estimator depends on the point pattern which means that
it is a conditional intensity. Since we also have

ρ(u) = E[λ(u;X)]

and that we can assume that the point pattern x is fairly typical in the distri-
bution of X we also get that

ρ(u) = E[λ(u;X)] ≈ λ(u,x).

Previously in this thesis, we have seen non-parametric intensity estimation
methods that depend on some parameter θ. The goal of this thesis is to in-
vestigate whether or not point process learning can choose this parameter θ
well. If we do choose θ well, we have λ(u,x) ≈ ρ̂θ̂(u;x), i.e. the intensity

estimate parameterized by θ̂ is close to the true intensity, and thus we get

ρ(u) = E[λ(u;X)] ≈ λ(u,x) ≈ ρ̂θ̂(u;x)

which we can then use as our estimate for the intensity function.

2.5 Edge effects

A common problem that affects most point process inference is edge effects.
Edge effects are caused by the fact that we, in most situations, only observe a
part of the point process. However, some of the points that are not observed
would still have had an impact on what we are trying to estimate in the observed
window. For example, if we consider a kernel intensity estimation using a Gaus-
sian kernel then the kernels centered on points close to our observed window W
would still have parts in W . The same is true for the Voronoi estimator, for
points in W close to the edge of the window it can be true that there would be a
point just outside the edge of the window, resulting in the points corresponding
Voronoi cell being larger than it should and thus the intensity will be lower.
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If we look at Figure 7 we can see an example of how edge effects look when
using Voronoi intensity estimation. We start with a homogeneous Poisson pro-
cess with ρ = 50 on the unit window marked by the dashed line. We then, at
first, only observe and estimate the intensity on the window [0.2, 0.8]2 which is
seen in the middle plot. As we can see, the intensity around the edges is in this
case much larger. Looking at the right plot, where the full point pattern was
used to estimate the intensity, we see that the estimate in the sub-window looks
much better.

Figure 7: An example of edge effects on Voronoi intensity estimation on a
homogeneous Poisson process with ρ = 50.

3 Point process learning

Now, we can move on to the main topic of this thesis: point process learning,
which is a new statistical theory for point processes. Point process learning
utilizes cross-validation to create training and validation sets which are then
used in point process prediction errors parameterized by some parameter of
interest θ. These errors are then combined and transformed and used as loss
functions allowing us to choose an optimal θ.

3.1 Cross-validation

An important concept in the field of statistical and machine learning which we
will be using is cross-validation. The term cross-validation within statistical
learning refers to the method of splitting the available data into a training and
validation set. The training set is used to estimate the parameters of a statis-
tical model after which the validation data is used to evaluate the statistical
model given the estimated parameters. There are different methods for con-
structing cross-validation sets. A cross-validation method for point patterns is
to construct independent thinned copies [Cronie et al., 2021, p. 13]. Given a
point pattern x we can construct training and validation sets via random p-
thinning of x, for some p ∈ (0, 1). Given a random p-thinning z, the training
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and validation sets are then given by [Cronie et al., 2021, p. 14]

xT = z

xV = x \ z.

Often we have that we perform repeated cross-validations which means we in-
stead have k > 1 independent thinnings, z1, . . . , zk. We then get

xT
i = zi

xV
i = xi \ zi

i = 1, . . . , k.

We will investigate two methods of choosing cross-validation sets; multi-
nomial k-fold and Monte Carlo. Both of these cross-validation methods use
independent thinning which is important as in such cases we know that the
thinned intensity is ρt(x) = p(x)ρ(x) and can therefore be used to estimate the
original intensity.

3.1.1 Multinomial k-fold cross-validation

Given some k ≥ 2 and a point pattern x, we create training and validation sets
by generating the marked pattern x̆ = {(xi,mi)}ni=1,mi ∈ {1, . . . , k} where mi

are from a multinomial distribution with k outcomes and p1 = . . . = pk = 1/k.
We then create k validation and training sets via

xV
i = {xj ∈ x : mj = i}

xT
i = x \ xT

i = {xj ∈ x : mj ̸= i}.

The difference between multinomial k-fold cross-validation and the general
cross-validation idea as described in Section 3.1 is that xV

i ∩ xV
j = ∅, i ̸= j.

We note that multinomial k-fold is different from the classical k-fold cross-
validation. In classical k-fold cross-validation we have some data y = {y1, . . . , yn}
which is then randomly shuffled after which y is split into k-separate subsets. A
statistical or machine learning model is then trained using k−1 of these subsets
with the last being used to evaluate the model. This is done a total of k times to
ensure that each subset is used to evaluate a model exactly one time. The rea-
son for not using this approach is that this is not a case of independent thinning
and as such the alternative multinomial k-fold cross-validation was introduced
by Cronie et al. [2021] for point process learning.

3.1.2 Monte Carlo cross-validation

In the same setting as the previous section along with some probability p ∈ (0, 1)
we create k training and validation sets by creating k p-thinnings z1, . . . , zk.
Using these we create training and validation sets via

xV
i = zi

xT
i = x \ zi.
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Note that in this setting we do not necessarily have xV
i ∩ xV

i = ∅, i ̸= j.

3.2 Prediction errors

We will now describe the foundational concept of this entire thesis: point process
prediction errors. We start by giving a general description of what an estimator
is. If we have a point process X which we observe in some W ⊆ S an estimator
assigns some numerical value to a characteristic of X based on the observed
realization x. The family of so-called general parameterized estimators can be
described as

ΞΘ = {ξθ : θ ∈ Θ},

with
ξθ(u;x) ∈ Rd, u ∈ S, θ ∈ Θ ⊆ Rl

where d, l ≥ 1. Note that it is not always true that ξθ(u;x) depends on x, for
example, if ξ(u;x) is constant with respect to x, we have instead ξθ(u). In our
case we have that ξ(u;x) = wρ(u;x) with either the Voronoi estimator, ρV and
θ = (pv,m) or the kernel estimator ρK with θ = h. We also have a weight w,
which is to ensure that the prediction error has an expected value of 0.

Point process prediction errors, or innovations as they have also been referred
to, for two point patterns y and z, are measures of how well Y can predict Z.
A bivariate prediction error is defined as [Cronie et al., 2021, p. 9]

Ihθ

ξθ
(W ; z,y) =

∑
x∈z∩W

hθ(x;y \ x)−
∫
W

hθ(u;y)ξθ(u;y)du. (18)

Furthermore, in this thesis we will assume that hθ(u;x) is given by

hθ(u;x) = f(ξθ(u;x))

for some f : R → R which is called the test function, which gives us

Ihθ

ξθ
(W ; z,y) =

∑
x∈z∩W

f(ξθ(x;y \ x))−
∫
W

f(ξθ(u;y))ξθ(u;y)du

=
∑

x∈z∩W

f(wρθ(x;y \ x))−
∫
W

f(wρθ(u;y))wρθ(u;y)du

where w is, as previously mentioned, a weight that ensures that

E[Ihθ

ξθ
(W ;xV,p

i ,xT,p
i )] = 0

where xT,p
i and xV,p

i are a pair of training and validation sets that have been
thinned by some retention probability p. This weight is dependent on whether
or not the process being investigated is attractive or repulsive. Given a point
process X which generates a point pattern x and a y ⊆ x we say that X is
attractive or repulsive if the conditional intensity λ(·;y) is smaller or larger,
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respectively, than λ(·;x) [Cronie et al., 2021, p. 4]. If Z is an independent p-
thinning of X and Y = X \Z then we have that w ≤ p if X is repulsive, w ≥ p if
X is attractive, and w = p if X is a Poisson process [Cronie et al., 2021, p. 10].
For this thesis, we will use w = p as it works for all types of point processes.

A common group of test functions is f(x) = x−γ with γ = 0.5 or γ = 1 with
the choice of γ = 1 resulting in low variance of estimators [Cronie et al., 2021,
p. 8]. In the case of γ = 1 we get that (18) becomes

Ihθ

ξθ
(W ; z,y) =

∑
x∈z∩W

hθ(x;y \ x)−
∫
W

hθ(u;y)ξθ(u;y)du

=
∑

x∈z∩W

1

ξθ(x;y \ x)
−
∫
W

ξθ(u;y)

ξθ(u;y)
du

=
∑

x∈z∩W

1

ξθ(x;y \ x)
−
∫
W

1du

=
∑

x∈z∩W

1

ξθ(x;y \ x)
− |W |.

If we apply the prediction error to a pair of training and validation sets we
get

Ihθ

ξθ
(W ;xV

i ,x
T
i ) =

∑
x∈xV

i

hθ(x;x
T
i )−

∫
W

hθ(u;x
T
i )ξθ(u;x

T
i )du (19)

=
∑
x∈xV

i

f(ξθ(x;x
T
i ))−

∫
W

f(ξθ(u;x
T
i ))ξθ(u;x

T
i )du

=
∑
x∈xV

i

f(wρθ(x;x
T
i ))−

∫
W

f(wρθ(u;x
T
i ))wρθ(u;x

T
i )du.

Heuristically, we have that the actual prediction is done by the summation
in (18) while the integral simply ensures that that prediction error is 0 when
ξθ(u) = wρ(u) is the true intensity of y and z. Simply put, the prediction error
is 0 when it is based on the true intensity. If we use an intensity estimate, ρ̂ in
(19), then the closer the intensity estimate is to the true intensity ρ, the closer
the prediction error will be to 0.

3.3 Loss functions

Next, we describe how to combine and transform the prediction errors from
the training and validation sets into one loss value. Loss functions are used
in optimization problems in order to find an approximate optimal solution. In
general, these problems can be described as, assuming that the obtained data, x,
comes from one of the models within a family parameterized by θ and that the
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loss function is intended to bring us as close to the true parameter as possible,
using the data to find an estimate θ̂ = θ̂(x) of θ, which is a minimizer of the loss
function L(θ), θ ∈ Θ. The closer the estimate is to the true value θ the lower

L(θ̂) will be. Hence, the goal is to find

argmin
θ

L(θ)

which we choose as our final parameter estimate, i.e. a candidate for the true,
unknown, parameter.

In the case of point process learning, we have that [Cronie et al., 2021, p.
16]

L(θ) = L(θ; {(xV
i ,x

T
i )}ki=1, pc, k,ΞΘ,HΘ), θ ∈ Θ (20)

for Monte-Carlo and

L(θ) = L(θ; {(xV
i ,x

T
i )}ki=1, k,ΞΘ,HΘ), θ ∈ Θ

for k-fold cross-validation, and will be based on an estimate of the point pre-
diction error. Here we have a point pattern, x, which is a realization of a point
process X which has then been split into the k validation and training sets
{(xV

i ,x
T
i )}ki=1 by some cross-validation method. In the case of Monte Carlo

cross-validation, the validation sets are independent pc-thinnings of x. Further-
more, we have that ΞΘ and HΘ are the families of estimators and test functions,
respectively, parameterized by θ ∈ Θ. In the case of the resample-smoothed
Voronoi intensity estimator, we have that θ = (m, pv) and that Θ = N × (0, 1)
where N = {1, 2, . . .}, and in the case of the kernel intensity estimator, we have
that θ = h and Θ = [0,∞).

We should note at this point that it is possible for both cross-validation
methods described to produce training and validation sets that are empty. In
such a case the summation in (19) would disappear and might affect the esti-
mation. To counteract this we modify the prediction error to instead be

Ĩhθ

ξθ
(W ;xV

i ,x
T
i ) = 1{xV

i (W ) > 0 ∧ xT
i (W ) > 0}Ihθ

ξθ
(W ;xV

i ,x
T
i ).

Some common choices of loss functions are

L1(θ) =
1

k

k∑
i=1

|Ĩhθ

ξθ
(W ;xV

i ,x
T
i )|

L2(θ) =
1

k

k∑
i=1

(
Ĩhθ

ξθ
(W ;xV

i ,x
T
i )
)2

L3(θ) =
1

k

(
k∑

i=1

Ĩhθ

ξθ
(W ;xV

i ,x
T
i )

)2

.
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3.4 Evaluation metrics

Now that we have described the method of choosing optimal parameters we
also need to introduce some methods of evaluating these choices. Given the
true intensity ρ(u) at some location u in an observation window W and an
intensity estimate ρ̂θ(u) we will use

• Integrated Absolute Bias,

IAB =

∫
W

|E[ρ̂θ(u;X)]− ρ(u)|du =

∫
W

|ρ̄θ(u;X)− ρ(u)|du

• Integrated Variance,

IV =

∫
W

Var(ρ̂θ(u;X))du

• Integrated Square Bias,

ISB =

∫
W

(E[ρ̂θ(u;X)]− ρ(u))
2
du =

∫
W

(ρ̄θ(u;X)− ρ(u))2du

• Mean Integrated Square Error, MISE = IV + ISB.

4 Simulation study

Now that the relevant preliminaries and theory have been explained we can
move on to the actual simulation study. We start by further describing the
point processes that will be investigated and the methods that will be used.

4.1 Point process models

The point processes used in this project are the same as the ones used in the
paper by Moradi et al. [2018] so that the results obtained here can be compared
to previous results. These point processes are:

• A homogeneous Poisson process with ρ = 60.

• An inhomogeneous Poisson process with ρ(x, y) = |10 + 90 sin(16x)|.

• A simple sequential inhibition (SSI) process with an inhibition distance of
0.03 and a total number of points of 450. With this inhibition distance,
it is always possible to place 450 points which means that the intensity is
simply ρ(x, y) = 450. Next, this process is further thinned with retention
probability

p(x, y) =1{x < 1/3}|x− 0.02|+
1{1/3 ≤ x < 2/3}|x− 0.5|+
1{x ≥ 2/3}|x− 0.95|

resulting in an inhomogeneous model with intensity ρ(x, y) = 450p(x, y).
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• A Log-Gaussian Cox process with mean function µ(x, y) = log(40| sin(20x)|)
and covariance function C(s, t) = 2 exp {−∥s− t∥/0.1} for the underlying
random field. This results in the intensity

ρ(x, y) = E[P (x, y)] = exp {log(40| sin(20x)|) + 2

2
} = 40| sin(20x)|e1.

All these point processes are realized on the unit window W = [0, 1]2. When
realized on such a window these processes have an expected number of points
of 60, 58.6, 68.4, and 53.6 respectively.

Choosing these point processes allows us to test the method on a variety
of types of point processes. We have both homogeneous and inhomogeneous
Poisson processes, inhibition and inhomogeneity in the thinned SSI process,
and clustering and inhomogeneity in the Log-Gaussian Cox process.

4.2 Set-up

Before we start applying point process learning we will discuss some of the
parameter and hyperparameter choices as well as give an overview of the general
algorithm that we apply.

The primary parameter of interest in this simulation study is the retention
probability pv in the resample-smoothing Voronoi intensity estimator (equation
17). As seen in Tables 1-7 in Moradi et al. [2018] and discussed in sections
4.1-4.4 the optimal choice seems to follow the thumb-rule pv ≤ 0.2. Given this,
we employ a higher degree of granularity in our choices for pv ≤ 0.2 and let

pv ∈ {.01, .02, .03, .04, .05, .06, .07, .08, .09, .1, .15, .25, .5, .75, .9}.

Originally, we had even more choices of pv in the interval [0.1, 0.2] but decided to
cut these out due to the computational complexity. The choice of the number of
samples in the Voronoi estimator, m, is also an important parameter. Looking
again at Tables 1, 3, 5, and 7 in Moradi et al. [2018] we see that it seems
like IAB and ISB do not improve much for m ≥ 200. However, we do see
that IV improves noticeably which would result in MISE also improving. As
we see that larger values of m improve performance we will investigate m ∈
{250, 500, 1000, 2000}. Ideally, we would investigate some values of m > 2000
but due to the computational complexity, we limit ourselves to these values.

There are also a number of hyperparameters that are used to create the
cross-validation sets: k for both k-fold and MCCV and pc for MCCV. We choose
the common values k ∈ {2, 5, 10} for k-fold. For Monte Carlo cross-validation
Cronie et al. [2021] recommend fixing k ≥ 100 as performance above that does
not significantly increase. However, due to the computational complexity of
MCCV, we limit ourselves to k = 50.

In this setting, we also need to choose a pc ∈ (0, 1) which is the reten-
tion probability for the p-thinning used to create the training and validation
sets. We again take inspiration from Cronie et al. [2021] and investigate pc =
0.1, 0.3, 0.5, 0.7, 0.9.
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As previously mentioned, the test function f(x) as described in section 3.2
is chosen to be f(x) = x−γ = x−1.

4.2.1 Algorithm

Finally, we present an overview of the algorithm used.

• Given a point process X, generate x1, . . . ,x100 realizations

• For each xi, i = 1, . . . , 100

– find the set {L(θ;xi)} for all parameter candidates θ ∈ Θ

– Choose a parameter estimate θ̂i = argmin{L(θ;xi)}
– Calculate the intensity estimate on the full point pattern using the

estimated parameter, ρ̂θ̂i(xi)

• Finally, find the evaluation metrics based on all intensity estimates ρ̂θ̂i(xi),
i = 1, . . . , 100.

4.3 Voronoi intensity estimation

We start by presenting the result of applying point process learning to choose
parameters for the Voronoi intensity estimator. A number of tables will be
present where the column ”all k” appears. This is the result when treating k as
a parameter and not a hyperparameter. More precisely, instead of selecting

θ̂ = argmin
θ

{L(θ)} = argmin{L(θ; {(xV
i ,x

T
i )}ki=1, pc, k,ΞΘ,HΘ)}

with θ = (m, pv), we choose

θ̂ = argmin
θ

{L(θ)} = argmin{L(θ; {(xV
i ,x

T
i )}ki=1, pc,ΞΘ,HΘ)}

where θ = (m, pv, k).
The values we will see in this subsection will work as a baseline for future

comparisons.

4.3.1 Homogeneous Poisson process

In Table 1 we see the evaluation metrics for the homogeneous Poisson process
where we can see that k = 5 seems to achieve the lowest MISE score of around
225-230. Comparing this to Table 1 in Moradi et al. [2018] we see that the best
performance is pv = 0.01 with a MISE of around 85-100 which is better than
what our method achieves.

Looking at Figure 8 we see three plots, an intensity estimate, the intensity
error which is simply the intensity estimate minus the true intensity, and finally,
the true intensity. All of these plots have the point pattern overlaid. As we can
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see, the intensity estimate looks quite homogeneous although it is affected by
edge effects.

(a) IV

k L1 L2 L3

2 239.32 234.86 237.31
5 187.64 179.13 179.05
10 205.13 195.44 176.05
all 193.14 190.14 170.17

(b) ISB

k L1 L2 L3

2 39.90 38.39 38.92
5 45.77 45.81 46.20
10 43.49 46.35 47.28
all 43.55 43.88 47.09

(c) IAB

k L1 L2 L3

2 5.21 5.17 5.19
5 5.76 5.80 5.81
10 5.60 5.78 5.87
all 5.57 5.64 5.87

(d) MISE

k L1 L2 L3

2 279.22 273.25 276.23
5 233.42 224.94 225.25
10 248.62 241.78 223.33
all 236.69 234.02 217.26

Table 1: Evaluation metrics for the Voronoi estimated intensity of the homoge-
neous Poisson process with parameters selected by k-fold cross-validation.

(a) pv

k L1 L2 L3

2 0.160 0.163 0.160
5 0.111 0.109 0.106
10 0.130 0.110 0.100

(b) m

k L1 L2 L3

2 617.5 565.0 617.5
5 602.5 577.5 590.0
10 510.0 480.0 535.0

Table 2: Average parameter values selected for the Voronoi estimator of the
homogeneous Poisson process.

Figure 8: Left: intensity estimate, middle: intensity error, and right: true
intensity, in this case, a constant 60. This estimate was produced by the Voronoi
method on the homogeneous Poisson process by L1 and k = 10.
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4.3.2 Inhomogeneous Poisson process

Looking at Table 3 we see similar results in terms of MISE for k = 5, 10 and
that k = 2 seems to perform slightly worse. Comparing this to pv = 0.01 in
Table 3 in Moradi et al. [2018] we see very similar results in terms of ISB and
larger values of IV for our method.

Looking at Figure 9 we see that the intensity estimate looks fairly homoge-
neous with a fair degree of edge effects. We also note that the periodicity of the
true intensity is not captured.

(a) IV

k L1 L2 L3

2 257.46 243.23 260.38
5 200.33 197.43 200.08
10 200.70 172.06 177.45
all 198.64 183.57 179.01

(b) ISB

k L1 L2 L3

2 884.71 884.98 883.94
5 888.59 885.91 887.07
10 886.16 891.84 890.21
all 889.48 888.85 889.19

(c) IAB

k L1 L2 L3

2 25.45 25.48 25.43
5 25.51 25.46 25.49
10 25.49 25.53 25.52
all 25.51 25.52 25.53

(d) MISE

k L1 L2 L3

2 1142.16 1128.21 1144.32
5 1088.92 1083.34 1087.15
10 1086.85 1063.90 1067.65
all 1088.12 1072.42 1068.21

Table 3: Evaluation metrics for the Voronoi estimated intensity of the inhomo-
geneous Poisson process with parameters selected by k-fold cross-validation.

(a) pv

k L1 L2 L3

2 0.169 0.166 0.169
5 0.119 0.122 0.118
10 0.124 0.100 0.106

(b) m

k L1 L2 L3

2 680.0 722.5 680.0
5 602.5 517.5 615.0
10 612.5 522.5 575.0

Table 4: Average parameter values selected for the Voronoi estimator of the
inhomogeneous Poisson process.
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Figure 9: Left: intensity estimate, middle: intensity error, and right: true inten-
sity. This estimate was produced by the Voronoi method on the inhomogeneous
Poisson process by L1 and k = 10.

4.3.3 Log-Gaussian Cox process

Looking at Table 5 we can see the evaluation metrics for the Log-Gaussian Cox
process. Comparing this to previous point processes we see much larger values
here. We see that k = 10 has the lowest MISE, with k = 5 in second place. We
also see that the different loss functions do not give similar results as we have
seen previously, noticeably L1 with k = 10 performs best. Looking at Table 5
in Moradi et al. [2018] we see that IV decreases with pv which is what we see
here as well.

Looking at Figure 10 we again see a fair degree of edge effects and that the
intensity estimate looks fairly homogeneous and fails to capture the periodicity
of the intensity.

(a) IV

k L1 L2 L3

2 4193.32 4400.82 4152.71
5 2716.68 2921.55 3120.62
10 1750.73 1879.86 3286.17
all 2358.39 2472.93 3198.98

(b) ISB

k L1 L2 L3

2 1177.52 1169.44 1178.11
5 1199.63 1200.23 1192.39
10 1219.94 1212.15 1194.01
all 1210.68 1208.59 1194.10

(c) IAB

k L1 L2 L3

2 29.87 29.76 29.87
5 30.23 30.21 30.08
10 30.59 30.48 30.18
all 30.40 30.34 30.14

(d) MISE

k L1 L2 L3

2 5370.84 5570.25 5330.82
5 3916.31 4121.78 4313.01
10 2970.67 3092.01 4480.18
all 3569.06 3681.51 4393.08

Table 5: Evaluation metrics for the Voronoi estimated intensity of the Log-
Gaussian Cox process with parameters selected by k-fold cross-validation.
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(a) pv

k L1 L2 L3

2 0.231 0.249 0.230
5 0.164 0.166 0.177
10 0.106 0.114 0.167

(b) m

k L1 L2 L3

2 685.0 595.0 660.0
5 792.5 755.0 725.0
10 615.0 652.5 760.0

Table 6: Average parameter values selected for the Voronoi estimator of the
Log-Gaussian Cox process.

Figure 10: Left: intensity estimate, middle: intensity error, and right: true
intensity. This estimate was produced by the Voronoi method on the Log-
Gaussian Cox process by L1 and k = 10.

4.3.3.1 Monte Carlo cross-validation
Of all the point processes investigated the Log-Gaussian Cox process had the
worst performance in terms of MISE but also displayed a significant amount of
variance with respect to k. Due to this, we decided to see how Monte Carlo
cross-validation performed on this model the results of which can be seen in
Table 7. If we compare this to Table 5 we can see that only pc = 0.1 achieves
better results than k = 10 in the k-fold setting. In general, we can see that ISB
decreases slightly with respect to pc but that IV drastically increases.

Furthermore, we also treated pc as a parameter rather than a hyperparam-
eter, choosing pc by finding the lowest loss value. The results of this approach
can be seen in Table 8 which, as we can see, offers no improvement over fixing
pc = 0.1.

In Table 60 in the appendix, we can see the number of times each parameter
was selected. We can clearly see that pc is only ever chosen to be 0.1 or 0.3
which is tabulated in Table 61.
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(a) IV

pc L1 L2 L3

0.1 1516.11 1523.35 2447.29
0.3 2632.21 2620.55 3044.13
0.5 3645.27 3668.46 3679.32
0.7 4832.23 4956.10 4848.08
0.9 11818.61 13193.57 11799.82

(b) ISB

pc L1 L2 L3

0.1 1215.13 1218.83 1200.51
0.3 1200.38 1199.82 1199.48
0.5 1186.88 1187.70 1184.81
0.7 1181.28 1180.45 1180.96
0.9 1112.36 1107.43 1112.22

(c) IAB

pc L1 L2 L3

0.1 30.40 30.46 30.21
0.3 30.18 30.20 30.15
0.5 30.01 30.04 29.98
0.7 29.89 29.86 29.87
0.9 28.75 28.64 28.75

(d) MISE

pc L1 L2 L3

0.1 2731.24 2742.18 3647.80
0.3 3832.60 3820.38 4243.61
0.5 4832.15 4856.16 4864.13
0.7 6013.51 6136.55 6029.04
0.9 12930.96 14301.00 12912.03

Table 7: Evaluation metrics for the Voronoi estimated intensity of the Log-
Gaussian Cox process with parameters selected by MCCV.

L1 L2 L3

IV 1867.33 1870.06 2404.49
ISB 1206.67 1206.79 1198.79
IAB 30.32 30.29 30.21
MISE 3074.01 3076.85 3603.28

Table 8: Evaluation metrics for the Voronoi estimated intensity of the Log-
Gaussian Cox process with parameters selected by MCCV, treating pc as a
parameter.

4.3.4 Simple sequential inhibition process

Looking at Table 9 we see MISE values of around 1550-1560 and that all values
of k seem to perform very similarly. Comparing this to pv = 0.01 in Table 7
in Moradi et al. [2018] we see that our method achieves slightly lower ISB but
higher IV when looking at p = 0.01. As we have seen before, there appears to
be no difference between the different loss functions.

Looking at Figure 11 we again see a fair degree of edge effects. Here we note
that we see some of the higher intensity regions of the true intensity.
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(a) IV

k L1 L2 L3

2 179.22 173.32 176.77
5 227.25 182.99 192.08
10 134.19 118.02 163.94
all 193.35 174.42 166.28

(b) ISB

k L1 L2 L3

2 1373.39 1372.32 1371.92
5 1327.31 1375.28 1363.95
10 1430.04 1450.33 1390.86
all 1355.26 1375.91 1391.64

(c) IAB

k L1 L2 L3

2 31.10 31.09 31.09
5 30.47 31.02 30.94
10 31.68 31.87 31.26
all 30.78 31.02 31.28

(d) MISE

k L1 L2 L3

2 1552.61 1545.64 1548.70
5 1554.56 1558.27 1556.02
10 1564.23 1568.35 1554.80
all 1548.61 1550.32 1557.91

Table 9: Evaluation metrics for the simple sequential inhibition process.

(a) pv

k L1 L2 L3

2 0.200 0.201 0.200
5 0.203 0.169 0.179
10 0.147 0.132 0.165

(b) m

k L1 L2 L3

2 630.0 647.5 627.5
5 522.5 460.0 537.5
10 610.0 550.0 662.5

Table 10: Average parameter values selected for the Voronoi estimator of the
simple sequential inhibition process.

Figure 11: Left: intensity estimate, middle: intensity error, and right: true
intensity. This estimate was produced by the Voronoi method on the simple
sequential inhibition process by L1 and k = 10.

4.4 Kernel intensity estimation

In order to compare the results of the Voronoi estimator we will also perform
kernel intensity estimation. To do this we need to choose some bandwidths to
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investigate. Given a point pattern, x = {xi}ni=1 ⊆ W , the nearest neighbor
distance for a point xi is

min{d(xi, xj) : xj ∈ x}

where d(xi, xj) is the distance from xi to xj . The smallest nearest neighbor
distance is then

min{d(xi, xj) : xi, xj ∈ x, xi ̸= xj}.

Next, we find the diameter of the window W ,

diam(W ) = max{d(u, v) : u, v ∈ W}.

Knowing these two values we create a geometric sequence, i.e. a logarithmically
linear sequence, from the smallest nearest neighbor distance to diam(W )/2. For
each value in this sequence, the intensity is estimated using a Gaussian kernel.
This method will not always work but the point processes examined here have
a large enough mean number of points that it was not a problem. These are
the default bandwidths used in the Cronie-van Lieshout bandwidth selection
method as implemented in the R library spatstat [Baddeley].

In Section 2.4.2 we mentioned an edge-correction term. As there are no
equivalent edge-correction methods for the resample-smoothing Voronoi esti-
mator we will not use edge-correction for the kernel intensity estimator. We
should note that using edge-correction would improve the results we will see in
this section.

We now move on to present the results of using point process learning to
select a bandwidth for the kernel intensity estimator.

4.4.1 Poisson process

Comparing Table 11 to Table 1 we see that the kernel estimator achieves much
worse results than the Voronoi estimator. Although both estimators achieve
similar IV, the kernel estimator has much worse performance in terms of bias.
In Table 12 we can see the average bandwidth chosen with respect to k. In
Figure 12 we can see plots of the intensity estimate. As we can see the kernel
performs well but suffers due to edge effects. We note that edge effects for
the kernel estimator result in the intensity estimate around the boundary being
lower which is the opposite of what we saw for the resample-smoothing Voronoi
estimator.

Moradi et al. [2018] found that using the Cronie-van Lieshout bandwidth
selection method with so-called uniform edge-correction resulted in a MISE of
ca. 690.
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(a) IV

k L1 L2 L3

2 161.95 162.72 161.95
5 232.92 225.52 232.58
10 241.12 224.86 253.02
all 250.69 234.23 253.02

(b) ISB

k L1 L2 L3

2 348.11 352.76 348.11
5 270.71 278.80 270.12
10 262.60 274.87 251.65
all 255.50 267.68 251.65

(c) IAB

k L1 L2 L3

2 15.68 15.88 15.68
5 12.86 13.19 12.83
10 12.55 13.01 12.14
all 12.27 12.74 12.14

(d) MISE

k L1 L2 L3

2 510.06 515.48 510.06
5 503.63 504.32 502.70
10 503.73 499.74 504.68
all 506.19 501.91 504.68

Table 11: Evaluation metrics for the kernel estimated intensity of the homoge-
neous Poisson process with parameters selected by k-fold cross-validation.

k L1 L2 L3

2 0.183 0.186 0.183
5 0.149 0.154 0.149
10 0.145 0.151 0.140
all 0.142 0.148 0.140

Table 12: Average bandwidth chosen for the homogeneous Poisson process by
k-fold cross-validation.

Figure 12: Left: intensity estimate, middle: intensity error, and right: true
intensity, in this case, a constant 60. This estimate was produced by the kernel
method on the homogeneous Poisson process by L1 and k = 10.

4.4.2 Inhomogneous Poisson process

Comparing Table 3 to Table 13 we see similar results as in the previous section,
namely that the kernel estimator achieves similar values of IV but larger ISB
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resulting in a larger MISE. Looking at Figure 13 we can see plots of the intensity
estimate. As we can see the average intensity looks very homogeneous and it
fails to capture the periodicity of the true intensity. Furthermore, we again see
some edge effects affecting the performance of this estimator.

Moradi et al. [2018] found that using the Cronie-van Lieshout bandwidth
selection method with uniform edge-correction resulted in a MISE of ca. 1430.

(a) IV

k L1 L2 L3

2 188.40 182.58 188.40
5 261.14 251.77 266.82
10 278.89 268.55 296.72
all 287.93 275.08 297.96

(b) ISB

k L1 L2 L3

2 1180.08 1191.59 1180.08
5 1076.65 1091.64 1069.92
10 1054.81 1076.36 1042.55
all 1045.25 1063.85 1040.63

(c) IAB

k L1 L2 L3

2 29.30 29.44 29.30
5 28.09 28.28 28.01
10 27.84 28.11 27.69
all 27.72 27.95 27.67

(d) MISE

k L1 L2 L3

2 1368.48 1374.17 1368.48
5 1337.79 1343.41 1336.74
10 1333.70 1344.90 1339.27
all 1333.17 1338.93 1338.59

Table 13: Evaluation metrics for the kernel estimated intensity of the inhomo-
geneous Poisson process with parameters selected by k-fold cross-validation.

k L1 L2 L3

2 0.182 0.187 0.182
5 0.146 0.152 0.144
10 0.140 0.149 0.135
all 0.136 0.144 0.135

Table 14: Average bandwidth chosen for the inhomogeneous Poisson process by
k-fold cross-validation.
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Figure 13: Left: intensity estimate, middle: intensity error, and right: true
intensity. This estimate was produced by the kernel method on the inhomoge-
neous Poisson process by L1 and k = 10.

4.4.3 Log-Gaussian Cox process

Comparing Table 15 to Table 5 we see that the kernel estimator offers a very
small improvement compared to the Voronoi estimator. We do note that the
best result achieved by the Voronoi estimator is the same as for the kernel
estimator and that results do not vary much with respect to the loss function.
Furthermore, we note that the kernel estimator is worse in terms of ISB and
better in terms of IV. Looking at Table 16 we see that the average bandwidth
appears to be negatively correlated with k. This is similar to the behavior in
Table 6a. Looking at Figure 14 we see the average intensity estimate looks fairly
homogeneous and fails to capture the periodicity of the true intensity. We again
note a fair degree of edge effects.

Moradi et al. [2018] found that using the Cronie-van Lieshout bandwidth
selection method with so-called uniform edge-correction resulted in a MISE of
ca. 10980.

41



(a) IV

k L1 L2 L3

2 1361.43 1339.32 1361.43
5 1682.43 1547.75 1747.49
10 1605.52 1432.21 1799.11
all 1766.48 1549.63 1802.60

(b) ISB

k L1 L2 L3

2 1624.61 1633.10 1624.61
5 1549.01 1589.08 1539.21
10 1524.34 1560.90 1490.33
all 1512.16 1541.86 1488.01

(c) IAB

k L1 L2 L3

2 35.18 35.26 35.18
5 34.39 34.81 34.29
10 34.17 34.57 33.81
all 34.02 34.36 33.78

(d) MISE

k L1 L2 L3

2 2986.04 2972.42 2986.04
5 3231.44 3136.83 3286.70
10 3129.86 2993.11 3289.44
all 3278.64 3091.49 3290.62

Table 15: Evaluation metrics for the kernel estimated intensity of the Log-
Gaussian Cox process with parameters selected by k-fold cross-validation.

k L1 L2 L3

2 0.186 0.189 0.186
5 0.165 0.177 0.162
10 0.159 0.169 0.147
all 0.154 0.162 0.146

Table 16: Average bandwidth chosen for the Log-Gaussian Cox process by k-
fold cross-validation.

Figure 14: Left: intensity estimate, middle: intensity error, and right: true in-
tensity. This estimate was produced by the kernel method on the Log-Gaussian
Cox process by L1 and k = 10.

4.4.4 Simple sequential inhibition process

Comparing Table 17 to Table 9 we see that the kernel estimator actually per-
forms quite a lot better than the Voronoi estimator. We note that IV is similar
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for both estimators but the ISB is much lower for the kernel estimator. It is
important to point out that this result was previously found in Moradi et al.
[2018]. Looking at Figure 15 we can see a plot of the average intensity estimate.
As we can see the kernel estimator captures the two high intensity regions nicely
which the resample-smoothing Voronoi estimator did not.

Moradi et al. [2018] found that using the Cronie-van Lieshout bandwidth
selection method with so-called uniform edge-correction resulted in a MISE of
ca. 1170.

(a) IV

k L1 L2 L3

2 173.93 171.19 173.93
5 223.88 216.54 233.59
10 203.75 202.30 242.66
all 226.93 221.39 244.36

(b) ISB

k L1 L2 L3

2 1043.24 1056.04 1043.24
5 899.74 925.14 859.34
10 913.16 931.45 829.50
all 873.47 893.21 826.58

(c) IAB

k L1 L2 L3

2 24.62 24.79 24.62
5 22.66 23.02 22.05
10 22.83 23.10 21.61
all 22.27 22.56 21.56

(d) MISE

k L1 L2 L3

2 1217.17 1227.22 1217.17
5 1123.62 1141.67 1092.93
10 1116.91 1133.75 1072.17
all 1100.40 1114.60 1070.95

Table 17: Evaluation metrics for the kernel estimated intensity of the simple
sequential inhibition process with parameters selected by k-fold cross-validation.

k L1 L2 L3

2 0.155 0.157 0.155
5 0.135 0.138 0.130
10 0.136 0.139 0.127
all 0.131 0.134 0.126

Table 18: Average bandwidth chosen for the simple sequential inhibition process
by k-fold cross-validation.
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Figure 15: Left: intensity estimate, middle: intensity error, and right: true
intensity. This estimate was produced by the kernel method on the simple
sequential inhibition process by L1 and k = 10.

4.5 Anisotropic kernel

We recall that kernel intensity estimators are of the form

ρ̂h(u) =
∑
x∈x

kh(u− x)

wh(u, x)

where h > 0 is some bandwidth. This is a special case where h is a matrix. This
matrix is the equivalent of the covariance matrix in a multivariate Gaussian
distribution. In this case, we construct bandwidth matrices of the form

H = h

[
wx wxy

wxy wy

]
with wx, wy ∈ {1, 2, 4} and wxy ∈ {−0.8,−0.2, 0, 0.2, 0.8} and h chosen as in
Section 4.4. As we have seen the intensities of all models, except the homoge-
neous Poisson, are periodic with respect to x and remain constant with respect
to y. Our hypothesis was that using a matrix that resulted in a kernel that was
stretched out along the y-axis would result in intensity estimates that performed
well. In Figure 16 we can see examples of Gaussian kernels with different band-
width matrices. Top left we have the case where wx = wy = 1, wxy = 0, top
right we have wx = 1, wy = 4, wxy = 0, bottom left wx = 4, wy = 1, wxy = 0
and bottom right wx = wy = 1, wxy = 0.8.

As we will see, the performance of anisotropic kernel intensity estimation
performed worse than the isotropic kernel. This is quite interesting as one
of the choices of matrices investigated was the same as the isotropic. As the
anisotropic variant is more flexible it can also overfit to a higher degree and
therefore have lower bias but higher variance which is exactly what we will see
in the results presented in this section. The hope for this idea was that the
optimal bandwidth matrix would be elliptical, stretching out along the y-axis,
as most of the investigated intensities are periodic with respect to x.
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Figure 16: Examples of Gaussian kernels with different bandwidth matrices.

4.5.1 Log-Gaussian Cox process

Looking at Table 19 we see the results of point process learning for the anisotropic
kernel estimator. Comparing these results to what we see in Table 15 we see
that this estimator performs worse in terms of IV and slightly better in terms
of ISB. As this method is more flexible than the isotropic kernel it can overfit to
a higher degree which is what we see here. Previously, the best results in terms
of MISE came from the resample-smoothing Voronoi estimator with k = 2 and
using L(1) with values ca. 2970.

In Figure 17 we can see the intensity estimate which looks very homoge-
neous and does not capture the periodic characteristic of the true intensity.
Furthermore, we can also see a fair degree of edge effects.
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(a) IV

k L1 L2 L3

2 1782.48 1596.75 1782.48
5 2011.13 2003.35 2233.83
10 1802.68 1796.89 2160.40
all 2112.52 2074.98 2189.09

(b) ISB

k L1 L2 L3

2 1574.06 1587.11 1574.06
5 1505.23 1529.99 1483.73
10 1491.33 1503.60 1444.02
all 1472.69 1487.92 1440.01

(c) IAB

k L1 L2 L3

2 34.68 34.81 34.68
5 33.96 34.21 33.72
10 33.85 33.97 33.31
all 33.63 33.78 33.28

(d) MISE

k L1 L2 L3

2 3356.54 3183.86 3356.54
5 3516.37 3533.34 3717.56
10 3294.02 3300.50 3604.42
all 3585.21 3562.91 3629.10

Table 19: Evaluation metrics for the anisotropic kernel estimated intensity of the
Log-Gaussian Cox process with parameters selected by k-fold cross-validation.

Figure 17: Left: intensity estimate, middle: intensity error, and right: true
intensity. This estimate was produced by the anisotropic kernel method on the
Log-Gaussian Cox process by L1 and k = 10.

4.5.2 Simple sequential inhibition process

Comparing Table 20 to Table 17 we again see that the anisotropic kernel per-
forms worse than the isotropic one. Interestingly enough, however, we do not
see the same results as for the Log-Gaussian Cox process. Here we instead see
a decrease in IV and an increase in ISB. Previously, the best results in terms of
MISE came from using the isotropic kernel intensity estimator with values ca.
1100.

In Figure 18 we see the intensity estimate. We see that it manages to capture
the fact that there are two areas with higher intensity. However, it fails to fully
capture the low intensity area in the middle.
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(a) IV

k L1 L2 L3

2 96.34 97.85 96.34
5 100.37 105.73 103.60
10 102.34 100.84 99.57
all 100.07 100.39 99.57

(b) ISB

k L1 L2 L3

2 1287.29 1289.93 1287.29
5 1268.34 1266.42 1265.27
10 1266.51 1273.94 1267.68
all 1266.49 1268.11 1267.68

(c) IAB

k L1 L2 L3

2 27.71 27.73 27.71
5 27.55 27.52 27.51
10 27.52 27.59 27.55
all 27.53 27.53 27.55

(d) MISE

k L1 L2 L3

2 1383.63 1387.78 1383.63
5 1368.71 1372.16 1368.87
10 1368.85 1374.78 1367.25
all 1366.56 1368.50 1367.25

Table 20: Evaluation metrics for the anisotropic kernel estimated intensity of
the simple sequential inhibition process with parameters selected by k-fold cross-
validation.

Figure 18: Left: intensity estimate, middle: intensity error, and right: true
intensity. This estimate was produced by the anisotropic kernel method on the
simple sequential inhibition process by L1 and k = 10.

4.6 Localized tessellations

One of the flaws of the Voronoi estimator is that it can fail to capture localized
features. For example, if we have an intensity function

ρ(x, y) = 0 · 1{x ≥ 0.5 ∧ y ≥ 0.5}+ 50 · 1{x < 0.5 ∨ y < 0.5}

of an inhomogeneous Poisson process, X, simulated in W = [0, 1]2, the Voronoi
estimator will perform quite poorly in [0.5, 1]2 due to the fact that this sub-
window will still belong to tessellations centered on points elsewhere. The kernel
estimator, on the other hand, would not as it is the sum of symmetric kernel
functions centered on the points of a point pattern. If there are no points in a
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sub-window and a sufficiently small enough bandwidth is chosen, the estimated
intensity will be approximately 0 there.

What if instead of creating a tessellation of a point pattern x, which is then
used to estimate the intensity via

ρ̂V(u;X,W ) =
∑
x∈x

1{u ∈ Vx(x,W )}
|Vx(x,W )|

,

we split W into a number of disjoint sub-windows, W =
⋃n

i=1 Wi, giving us

ρ̂V(u;x,W) =

n∑
i=1

∑
x∈x

1{u ∈ Vx(x ∩Wi,Wi)}
|Vx(x ∩Wi,Wi)|

.

To investigate this we will create sub-windows by splitting W into quadrats.
If we have a square window W = [a, b]× [c, d] we partition both intervals, [a, b]
and [c, d], into nq subintervals, a = a0 < a1, < . . . anq = b, c = c0 < c1, <
. . . cnq = d. We then let Wi,j = [ai−1, ai] × [cj−1, cj ]. For simplicity’s sake we

denote a sub-window Wi and let W =
⋃n2

q

i=1 Wi.
Due to the increased computational complexity, we again limit ourselves

to only investigating the Log-Gaussian Cox and simple sequential inhibition
processes.

As we will see, this method failed quite badly. As we have seen in almost all
plots of the average intensity estimates, almost no intensity estimation method
has managed to capture the periodic nature of either the inhomogeneous Poisson
or the Log-Gaussian Cox process. The hope for localized tessellations was that
it would then be able to capture the intensity’s fluctuation on a smaller scale.
However, as we saw the edge effects simply outweighed any benefit they might
have had. Perhaps using periodic or some other form of edge-correction could
have improved results but overall this method showed no potential.

4.6.1 Log-Gaussian Cox process

In Table 21 we see the results for the Log-Gaussian Cox process. We see that
IV, ISB, and MISE all increase with respect to nq and that this method offers
no improvement. Previously, the best results in terms of MISE came from the
resample-smoothing Voronoi estimator with values ca. 2970.

Looking at Figure 19 we can see a large degree of edge effects which affects
the performance of this method negatively. We note that the edge effects are
exacerbated by the fact that each quadrat is affected by its own boundary.
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(a) IV

nq k L1 L2 L3

2 2 5589.2 5379.6 5552.0
2 5 4603.8 4574.3 3851.0
2 10 3541.3 3254.9 4154.5
2 all 4722.8 4637.3 4192.5
4 2 5393.0 5493.9 5372.3
4 5 4179.4 3368.6 4154.2
4 10 3667.3 3009.8 3889.0
4 all 4020.4 3423.6 3964.9
6 2 6946.9 6955.9 6762.7
6 5 5182.4 5366.9 5119.4
6 10 4691.3 4468.9 4618.9
6 all 5019.1 5249.2 4860.9

(b) ISB

nq k L1 L2 L3

2 2 1177.5 1183.9 1174.6
2 5 1175.3 1180.1 1182.9
2 10 1176.3 1183.7 1176.7
2 all 1178.9 1180.0 1175.2
4 2 1200.7 1199.7 1191.4
4 5 1389.2 1446.4 1387.7
4 10 1453.5 1546.5 1465.8
4 all 1408.2 1409.8 1416.5
6 2 1290.7 1287.8 1302.4
6 5 1578.9 1545.8 1595.6
6 10 1660.6 1699.8 1659.8
6 all 1601.2 1553.0 1604.5

(c) IAB

nq k L1 L2 L3

2 2 29.8 29.9 29.8
2 5 29.9 30.0 30.0
2 10 29.9 30.1 29.9
2 all 29.9 29.9 29.8
4 2 30.4 30.3 30.2
4 5 32.6 33.3 32.6
4 10 33.4 34.3 33.5
4 all 32.9 33.0 33.0
6 2 31.5 31.5 31.7
6 5 34.7 34.4 34.9
6 10 35.5 35.9 35.5
6 all 35.0 34.5 35.0

(d) MISE

nq k L1 L2 L3

2 2 6766.7 6563.5 6726.6
2 5 5779.1 5754.4 5033.9
2 10 4717.7 4438.6 5331.2
2 all 5901.7 5817.3 5367.7
4 2 6593.7 6693.5 6563.7
4 5 5568.5 4815.0 5541.9
4 10 5120.8 4556.3 5354.8
4 all 5428.6 4833.4 5381.4
6 2 8237.6 8243.7 8065.1
6 5 6761.3 6912.7 6715.0
6 10 6351.9 6168.7 6278.7
6 all 6620.3 6802.2 6465.4

Table 21: Evaluation metrics for the Voronoi estimated intensity of the Log-
Gaussian Cox process with parameters selected by k-fold cross-validation.
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Figure 19: Left: intensity estimate, middle: intensity error, and right: true
intensity. This estimate was produced by the Voronoi method on sub-windows
on the Log-Gaussian Cox process by L1 and k = 10.

4.6.2 Simple sequential inhibition process

In Table 22 we see the results of the localized Voronoi estimator. For nq = 4 we
see some improvement in terms of ISB but this is accompanied by a large increase
in variance resulting in a larger MISE. For nq = 6 we see a larger improvement
in ISB which is also accompanied by an increase in IV. However, the resulting
MISE is still lower than for nq = 4 which might indicate that even larger values
of nq might display better results. For all nq we see no improvement in terms
of MISE when comparing Table 22 to Table 9. Previously, the best results in
terms of MISE came from using the isotropic kernel intensity estimator with
values ca. 1100.

As we can see in Figure 20 the edge effects are exacerbated by this method
which negatively affects the results.
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(a) IV

nq k L1 L2 L3

2 2 281.7 279.5 279.9
2 5 271.2 274.2 260.2
2 10 269.6 255.4 288.3
2 all 264.6 270.5 293.5
4 2 673.5 665.0 674.1
4 5 559.3 537.3 573.2
4 10 536.6 494.5 531.2
4 all 586.4 579.9 548.5
6 2 1427.3 1420.4 1416.0
6 5 1021.5 1021.4 1010.2
6 10 916.6 913.2 922.2
6 all 933.8 977.4 994.1

(b) ISB

nq k L1 L2 L3

2 2 1423.9 1430.0 1425.3
2 5 1427.8 1427.2 1446.8
2 10 1440.9 1452.0 1408.7
2 all 1423.7 1438.5 1409.4
4 2 1291.0 1291.4 1287.0
4 5 1389.9 1430.8 1389.8
4 10 1425.1 1473.4 1428.9
4 all 1389.9 1397.4 1398.2
6 2 463.0 456.2 458.0
6 5 660.7 680.9 679.4
6 10 790.0 759.1 760.0
6 all 740.5 698.1 722.6

(c) IAB

nq k L1 L2 L3

2 2 31.8 31.9 31.8
2 5 31.8 31.8 32.1
2 10 32.0 32.1 31.6
2 all 31.8 32.0 31.6
4 2 30.3 30.3 30.2
4 5 30.7 30.9 30.7
4 10 30.8 31.1 30.9
4 all 30.7 30.7 30.7
6 2 18.2 18.1 18.1
6 5 20.7 21.0 21.0
6 10 22.4 22.0 22.1
6 all 21.8 21.2 21.6

(d) MISE

nq k L1 L2 L3

2 2 1705.6 1709.5 1705.2
2 5 1699.0 1701.4 1707.0
2 10 1710.5 1707.5 1697.0
2 all 1688.4 1708.9 1702.9
4 2 1964.5 1956.3 1961.1
4 5 1949.2 1968.1 1963.0
4 10 1961.8 1967.9 1960.1
4 all 1976.3 1977.3 1946.6
6 2 1890.3 1876.6 1873.9
6 5 1682.2 1702.2 1689.6
6 10 1706.6 1672.3 1682.3
6 all 1674.4 1675.4 1716.7

Table 22: Evaluation metrics for the Voronoi estimated intensity of the simple
sequential inhibition process with parameters selected by k-fold cross-validation.
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Figure 20: Left: intensity estimate, middle: intensity error, and right: true
intensity. This estimate was produced by the Voronoi method on sub-windows
on the simple sequential inhibition process by L1 and k = 10.

4.7 Parameter re-scaling

As previously mentioned, the goal of point process learning for the Voronoi
estimator is to find an optimal probability pv with which to create thinned point
patterns in the resample-smoothing. These thinned patterns are then used in
(17) to create an intensity estimate. This pv will then be used on the full point
pattern to construct a new intensity estimate. When finding the optimal pv the
Voronoi estimator uses the training set

ρ̂Vpv,m(u;xT
i ,W ) =

1

mpv

m∑
j=1

∑
x∈xT,pv

i

1{u ∈ Vx(x
T,pv

i )}
|Vx(x

T,pv

i )|

where xT,pv

i is the ith training fold of the point pattern x that has been thinned
with retention probability pv. If x contains n points and is split into k folds, the
ith training fold, xT

i , will on average contain n− n
k points. Given an optimal pv

the expected number of points used to create each Voronoi tesselation will be
pv(n − n

k ) during training. When the intensity is finally estimated on the full
point pattern, x, the expected number of points used to create each Voronoi
tesselation will instead be pvn points. For small values of k, this difference
can be quite large and might be responsible for the poor performance we saw
in Section 4.3. Because of this, we will investigate what happens when pv is
re-scaled to pv − pv

k to see if the results are affected.
In the tables that will be presented, there will be an entry with k = all.

This is the result of treating the parameter k as a parameter rather than a
hyperparameter. In this case, we choose k, as well as m and pv, as the minimizer
of the loss function as described in Section 3.3. This k is then used to rescale
pv in the same manner as described previously.

4.7.1 Poisson process

In Table 23 we see the results of using the re-scaled pv parameter on the homo-
geneous Poisson process. Comparing this to using the original pv parameter in

52



Table 1 we see varying degrees of improvements in terms of MISE. We see that
the largest improvement happens for k = 2 and that for k > 2 the results are
diminishing. Previously, the best results in terms of MISE came from using the
resample-smoothing Voronoi estimator with values ca. 230.

Looking at Table 23 we see that ISB values now seem fairly constant for all
k. Comparing this to Table 1 we see that k = 2 appears to have a slightly lower
ISB.

In Table 23 we see that the variance for all values of k seems to be improved,
with the largest improvement for k = 2.

Looking at Figure 21 we see that the intensity estimate looks quite homoge-
neous even more so than what we saw in Figure 8.

(a) IV

k L1 L2 L3

2 142.22 150.79 154.29
5 160.91 155.22 153.56
10 189.47 172.67 158.29
all 182.58 173.05 157.00

(b) ISB

k L1 L2 L3

2 46.62 46.28 47.43
5 46.60 46.49 47.83
10 45.28 47.65 48.46
all 44.91 46.50 48.04

(c) IAB

k L1 L2 L3

2 5.89 5.89 5.93
5 5.88 5.87 5.95
10 5.70 5.89 5.96
all 5.71 5.80 5.95

(d) MISE

k L1 L2 L3

2 188.85 197.07 201.72
5 207.52 201.71 201.39
10 234.76 220.31 206.76
all 227.48 219.55 205.04

Table 23: Evaluation metrics for the Voronoi estimated intensity of the homoge-
neous Poisson process with parameters selected by k-fold cross-validation with
re-scaled pv.

4.7.2 Inhomogeneous Poisson process

Looking at Table 24 we see the results of re-scaling the pv parameter for the
inhomogeneous Poisson process. If we compare this to Table 3 we see similar
improvements as when re-scaling the homogeneous Poisson process. In terms of
ISB the results here seem fairly constant which we saw in Section 4.3.2 as well. In
terms of IV, we see improvements for all k with the largest improvement for k =
2. Comparing the MISE values in Table 24 to Table 3 we see some improvements
with the most notable decrease for k = 2. Previously, the best results in terms of
MISE came from using the resample-smoothing Voronoi estimator with values
ca. 1070.

Comparing Figure 22 to Figure 9 we can see that the intensity estimates
look quite similar.
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Figure 21: Left: intensity estimate, middle: intensity error, and right: true
intensity, in this case, a constant 60. This estimate was produced by the Voronoi
method with re-scaled pv parameter on the homogeneous Poisson process by L1

and k = 5.

(a) IV

k L1 L2 L3

2 156.46 155.71 155.56
5 169.59 174.35 168.45
10 192.44 164.63 166.42
all 174.92 167.67 167.82

(b) ISB

k L1 L2 L3

2 890.12 892.58 891.12
5 890.49 887.92 889.81
10 887.14 892.85 891.76
all 890.95 890.88 891.17

(c) IAB

k L1 L2 L3

2 25.61 25.62 25.63
5 25.55 25.53 25.55
10 25.49 25.55 25.57
all 25.56 25.56 25.52

(d) MISE

k L1 L2 L3

2 1046.58 1048.28 1046.68
5 1060.09 1062.26 1058.26
10 1079.59 1057.48 1058.18
all 1065.87 1058.55 1058.98

Table 24: Evaluation metrics for the Voronoi estimated intensity of the inho-
mogeneous Poisson process with parameters selected by k-fold cross-validation
with re-scaled pv.

4.7.3 Log-Gaussian Cox process

In Table 25 we see the results using the re-scaled pv parameter on the Log-
Gaussian Cox process. Comparing this to Table 5, we see improvements in
MISE for all values of k, with k = 10 again achieving the best results. We note
that L3 achieves much worse results than the other loss functions. Comparing
ISB values we see that they seem very similar for both methods. For IV values we
see that the re-scaled pv does offer some improvement for all k with the biggest
improvement for k = 2. Previously, the best results in terms of MISE came
from using the resample-smoothing Voronoi estimator with values ca. 2970.

Looking at Figure 23 we again see that it looks very similar to Figure 10.
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Figure 22: Left: intensity estimate, middle: intensity error, and right: true
intensity. This estimate was produced by the Voronoi method with re-scaled pv
parameter on the inhomogeneous Poisson process by L1 and k = 5.

(a) IV

k L1 L2 L3

2 2100.57 2191.78 2083.30
5 2188.47 2329.71 2420.88
10 1664.24 1715.95 2953.24
all 1913.51 2122.00 2830.75

(b) ISB

k L1 L2 L3

2 1209.39 1204.76 1209.77
5 1215.00 1210.84 1205.59
10 1225.20 1219.42 1197.95
all 1219.61 1216.59 1199.42

(c) IAB

k L1 L2 L3

2 30.39 30.35 30.41
5 30.46 30.39 30.30
10 30.64 30.58 30.25
all 30.54 30.47 30.24

(d) MISE

k L1 L2 L3

2 3309.96 3396.54 3293.07
5 3403.46 3540.54 3626.47
10 2889.45 2935.38 4151.18
all 3133.12 3338.59 4030.17

Table 25: Evaluation metrics for the Voronoi estimated intensity of the Log-
Gaussian Cox process with parameters selected by k-fold cross-validation with
re-scaled pv.

4.7.4 Simple sequential inhibition process

In Table 26 we see the results of using the re-scaled pv parameter on the simple
sequential inhibition process. If we compare this to Table 9 we see that this
method offers no real improvement in terms of MISE. We do note improvements
in terms of IV but those are canceled out by increases in ISB. Previously, the
best results in terms of MISE came from using the kernel estimator with values
ca. 1100.

Looking at Figure 24 we see that the intensity estimate looks very similar
to Figure 11.
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Figure 23: Left: intensity estimate, middle: intensity error, and right: true
intensity. This estimate was produced by the Voronoi method with re-scaled pv
parameter on the Log-Gaussian Cox process by L1 and k = 5.

(a) IV

k L1 L2 L3

2 92.01 92.86 92.40
5 173.01 139.26 145.05
10 119.24 100.24 145.01
all 155.56 140.62 143.82

(b) ISB

k L1 L2 L3

2 1486.79 1489.48 1487.05
5 1379.14 1419.35 1408.76
10 1444.61 1462.14 1411.57
all 1394.36 1412.58 1411.07

(c) IAB

k L1 L2 L3

2 32.28 32.29 32.26
5 31.06 31.49 31.43
10 31.80 31.99 31.47
all 31.22 31.41 31.48

(d) MISE

k L1 L2 L3

2 1578.81 1582.34 1579.45
5 1552.15 1558.60 1553.81
10 1563.86 1562.38 1556.58
all 1549.92 1553.20 1554.89

Table 26: Evaluation metrics for the Voronoi estimated intensity of the simple
sequential inhibition process with parameters selected by k-fold cross-validation
with re-scaled pv.

4.8 Regularization

Regularization is the process of adding some sort of regularization term to a loss
function with the goal of obtaining a simpler solution. In our case, since Moradi
et al. [2018] showed that lower values of pv in the Voronoi estimator result in
better estimates, it seems natural to add a regularization term in the form of a
function of pv. Previously we chose an optimal θ̂ via

θ̂ = argmin{L(θ)}, θ = (m, p),

which becomes
θ̂ = argmin{L(θ) + λrR(θ)}
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Figure 24: Left: intensity estimate, middle: intensity error, and right: true
intensity. This estimate was produced by the Voronoi method with re-scaled pv
parameter on the simple sequential inhibition process by L1 and k = 5.

where R(θ) is the regularization term, which is commonly the L1 or L2 norm,
and λr > 0 is the regularization factor or strength. Note that λr = 0 is simply
the same as no regularization, therefore, we restrict λr > 0.

In this Section, we will present the results of choosing optimal θ̂ via point
process learning with regularization. We investigate λr = 0.5, 1, 5, 10 and
R1(θ) = |p| and R2(θ) = p2. Note that we restrict our investigation to reg-
ularization terms as functions of pv and not m. There is nothing forcing us to
do this and regularizing m could be of interest if we are limited in computational
power and would prefer a smaller number of re-samples.

Obviously, this has never been done before and so there is no literature to
reference in the choice of λr or R(θ) but λr = 0.5, 1, 5, 10 seem like reasonable
choices, and are commonly used in machine learning. Picking λr too small
means that the regularization term will not have any impact on the choice of θ̂,
and picking a λr that is too large means that it will eclipse the value of L(θ).
As such, these choices seem like reasonable choices to investigate.

4.8.1 Poisson process

In Tables 27 and 28 we can see the evaluation metrics of choosing θ with different
regularization terms and strengths. We see that MISE seems to be decreasing
with respect to λr. Looking at IV and ISB we see that IV is decreasing and
ISB increasing with respect to λr but that the decrease in IV is larger than
the increase in ISB. This suggests that regularization decreases the amount of
overfitting. We also note that in Table 28 we see a smaller scale of improvement
which is to be expected since the regularization term here is p2. Previously, the
best results in terms of MISE came from using the resample-smoothing Voronoi
estimator with re-scaled pv parameter with values ca. 190.

Comparing this to Table 1 we see improvements for both R, all λr, and all
k.

Looking at Tables 65 and 66 we see that pv decreases with respect to λr and
that R1(θ) = |p| decreases faster.
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Looking at Figure 25 and comparing it to Figure 8 we see that degree of edge
effects has increased by applying regularization. We also note that the intensity
estimate looks quite homogeneous.

(a) IV

λr k L1 L2 L3

0.5 2 208.5 223.9 218.7
0.5 5 160.2 157.9 150.0
0.5 10 144.1 153.6 130.8
0.5 all 148.4 150.1 136.5
1.0 2 190.1 207.7 207.0
1.0 5 147.5 144.3 143.6
1.0 10 146.4 132.9 123.8
1.0 all 141.5 136.8 121.9
5.0 2 152.9 177.6 171.2
5.0 5 123.9 127.3 118.0
5.0 10 103.3 116.6 111.6
5.0 all 113.9 111.1 104.6
10.0 2 147.3 158.6 153.7
10.0 5 109.2 119.5 109.3
10.0 10 103.8 110.0 89.8
10.0 all 113.4 113.3 99.5

(b) ISB

λr k L1 L2 L3

0.5 2 42.3 40.9 39.6
0.5 5 50.8 50.1 51.4
0.5 10 51.3 51.6 49.6
0.5 all 51.3 50.5 50.6
1.0 2 46.6 43.4 43.5
1.0 5 51.3 50.8 51.3
1.0 10 50.9 50.1 51.3
1.0 all 50.9 50.6 50.9
5.0 2 51.7 46.6 50.6
5.0 5 51.8 51.1 50.4
5.0 10 55.7 52.1 57.0
5.0 all 55.7 52.0 57.4
10.0 2 52.0 50.1 49.6
10.0 5 58.0 52.5 57.1
10.0 10 88.9 62.2 88.6
10.0 all 86.6 61.4 83.8

(c) IAB

λr k L1 L2 L3

0.5 2 5.5 5.3 5.3
0.5 5 6.1 6.1 6.1
0.5 10 6.1 6.2 6.1
0.5 all 6.1 6.1 6.1
1.0 2 5.8 5.6 5.6
1.0 5 6.2 6.1 6.2
1.0 10 6.1 6.1 6.1
1.0 all 6.1 6.1 6.1
5.0 2 6.2 5.8 6.1
5.0 5 6.0 6.1 5.9
5.0 10 6.0 6.0 6.1
5.0 all 6.1 6.0 6.1
10.0 2 6.2 6.1 6.1
10.0 5 6.1 6.0 6.1
10.0 10 7.7 6.3 7.7
10.0 all 7.6 6.3 7.4

(d) MISE

λr k L1 L2 L3

0.5 2 250.9 264.8 258.3
0.5 5 211.0 208.0 201.5
0.5 10 195.3 205.3 180.4
0.5 all 199.7 200.6 187.1
1.0 2 236.7 251.1 250.6
1.0 5 198.8 195.0 195.0
1.0 10 197.3 183.0 175.1
1.0 all 192.3 187.4 172.8
5.0 2 204.6 224.2 221.9
5.0 5 175.7 178.4 168.4
5.0 10 159.0 168.7 168.6
5.0 all 169.7 163.1 162.0
10.0 2 199.3 208.8 203.3
10.0 5 167.2 172.0 166.4
10.0 10 192.7 172.2 178.5
10.0 all 200.0 174.7 183.3

Table 27: Evaluation metrics for the Voronoi estimated intensity of the homoge-
neous Poisson process with parameters selected by k-fold cross-validation with
regularization |p|.
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(a) IV

λr k L1 L2 L3

0.5 2 224.1 237.6 238.6
0.5 5 171.0 167.9 166.6
0.5 10 171.0 161.3 159.1
0.5 all 165.5 162.9 155.0
1.0 2 210.3 229.3 230.3
1.0 5 165.5 165.0 161.0
1.0 10 156.4 155.7 150.2
1.0 all 162.5 153.5 147.4
5.0 2 187.0 197.0 201.2
5.0 5 156.6 151.1 147.8
5.0 10 131.8 152.7 132.5
5.0 all 139.5 141.8 127.8
10.0 2 169.3 189.9 190.8
10.0 5 143.4 147.2 142.8
10.0 10 134.8 136.7 121.2
10.0 all 138.8 136.2 121.5

(b) ISB

λr k L1 L2 L3

0.5 2 39.5 39.4 40.7
0.5 5 47.8 47.8 50.3
0.5 10 49.0 50.4 50.7
0.5 all 48.7 50.0 49.7
1.0 2 41.2 40.8 40.7
1.0 5 50.9 48.2 50.4
1.0 10 50.2 51.0 50.7
1.0 all 48.4 50.2 50.5
5.0 2 46.2 44.0 45.8
5.0 5 51.5 50.6 50.2
5.0 10 50.7 50.8 50.2
5.0 all 50.3 50.9 50.6
10.0 2 50.3 45.5 47.9
10.0 5 50.1 52.3 51.4
10.0 10 51.1 50.4 51.0
10.0 all 50.6 49.9 50.4

(c) IAB

λr k L1 L2 L3

0.5 2 5.2 5.2 5.3
0.5 5 5.9 5.9 6.1
0.5 10 6.0 6.1 6.1
0.5 all 6.0 6.1 6.0
1.0 2 5.4 5.3 5.3
1.0 5 6.1 6.0 6.1
1.0 10 6.1 6.1 6.1
1.0 all 6.0 6.1 6.1
5.0 2 5.8 5.6 5.7
5.0 5 6.2 6.1 6.1
5.0 10 6.1 6.1 6.1
5.0 all 6.1 6.1 6.1
10.0 2 6.1 5.8 5.8
10.0 5 6.1 6.2 6.2
10.0 10 6.1 6.1 6.1
10.0 all 6.1 6.1 6.0

(d) MISE

λr k L1 L2 L3

0.5 2 263.6 277.0 279.3
0.5 5 218.8 215.8 216.9
0.5 10 220.0 211.7 209.8
0.5 all 214.1 212.9 204.7
1.0 2 251.5 270.1 271.0
1.0 5 216.3 213.2 211.4
1.0 10 206.6 206.7 200.9
1.0 all 210.9 203.8 197.8
5.0 2 233.2 241.0 247.0
5.0 5 208.1 201.7 197.9
5.0 10 182.5 203.5 182.7
5.0 all 189.8 192.6 178.5
10.0 2 219.7 235.4 238.7
10.0 5 193.6 199.5 194.2
10.0 10 185.9 187.1 172.1
10.0 all 189.4 186.1 171.8

Table 28: Evaluation metrics for the Voronoi estimated intensity of the homoge-
neous Poisson process with parameters selected by k-fold cross-validation with
regularization p2.
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Figure 25: Left: intensity estimate, middle: intensity error, and right: true
intensity, in this case, a constant 60. This estimate was produced by the Voronoi
method with regularization strength λr = 1 and factor R(θ) = |pv| on the
homogeneous Poisson process by L1 and k = 10.

4.8.2 Inhomogeneous Poisson process

Looking at Tables 29 and 30 we see the results for the inhomogeneous Poisson
process. We see similar results here as we did in the previous Section, a decrease
in IV and an increase in ISB with respect to λr resulting in an overall decrease
in MISE. Previously, the best results in terms of MISE came from using the
resample-smoothing Voronoi estimator with re-scaled pv parameter with values
ca. 1050.

Looking at Figure ?? and comparing it to Figure 9 we again see an increased
amount of edge effects and that the intensity estimate looks more homogeneous.
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(a) IV

λr k L1 L2 L3

0.5 2 214.0 234.2 223.3
0.5 5 161.0 162.6 158.3
0.5 10 145.1 148.6 139.1
0.5 all 157.7 151.7 144.3
1.0 2 200.1 220.5 221.6
1.0 5 160.7 153.0 144.4
1.0 10 136.8 138.3 128.6
1.0 all 141.8 141.5 134.7
5.0 2 154.3 179.3 171.0
5.0 5 124.5 123.1 114.5
5.0 10 106.8 111.7 99.2
5.0 all 124.6 118.3 102.4
10.0 2 138.0 159.8 164.4
10.0 5 113.5 119.1 102.9
10.0 10 104.5 104.1 96.5
10.0 all 104.5 110.2 96.2

(b) ISB

λr k L1 L2 L3

0.5 2 885.2 886.4 885.5
0.5 5 894.0 893.0 894.4
0.5 10 893.1 892.7 893.5
0.5 all 893.9 893.6 895.0
1.0 2 888.7 886.0 886.8
1.0 5 894.3 892.5 893.7
1.0 10 893.8 893.1 894.1
1.0 all 893.4 892.1 895.5
5.0 2 893.1 891.7 892.8
5.0 5 895.8 895.2 896.9
5.0 10 904.0 897.9 908.3
5.0 all 897.6 897.0 909.3
10.0 2 895.6 893.0 894.9
10.0 5 911.6 900.4 907.3
10.0 10 932.8 912.4 926.9
10.0 all 931.4 910.8 929.6

(c) IAB

λr k L1 L2 L3

0.5 2 25.5 25.5 25.5
0.5 5 25.6 25.6 25.6
0.5 10 25.6 25.6 25.6
0.5 all 25.6 25.6 25.7
1.0 2 25.5 25.5 25.5
1.0 5 25.6 25.6 25.6
1.0 10 25.6 25.6 25.7
1.0 all 25.6 25.6 25.7
5.0 2 25.6 25.5 25.5
5.0 5 25.9 25.7 25.9
5.0 10 26.1 25.9 26.2
5.0 all 25.9 25.9 26.2
10.0 2 25.7 25.6 25.5
10.0 5 26.3 26.0 26.2
10.0 10 26.7 26.3 26.6
10.0 all 26.6 26.2 26.6

(d) MISE

λr k L1 L2 L3

0.5 2 1099.2 1120.6 1108.8
0.5 5 1055.1 1055.6 1052.7
0.5 10 1038.2 1041.4 1032.6
0.5 all 1051.6 1045.3 1039.3
1.0 2 1088.8 1106.5 1108.4
1.0 5 1055.0 1045.5 1038.1
1.0 10 1030.6 1031.4 1022.7
1.0 all 1035.2 1033.6 1030.2
5.0 2 1047.4 1071.0 1063.8
5.0 5 1020.3 1018.3 1011.4
5.0 10 1010.8 1009.5 1007.5
5.0 all 1022.2 1015.3 1011.8
10.0 2 1033.6 1052.8 1059.3
10.0 5 1025.1 1019.5 1010.2
10.0 10 1037.3 1016.5 1023.4
10.0 all 1035.9 1021.0 1025.8

Table 29: Evaluation metrics for the Voronoi estimated intensity of the inho-
mogeneous Poisson process with parameters selected by k-fold cross-validation
with regularization |p|.
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(a) IV

λr k L1 L2 L3

0.5 2 236.4 237.1 244.6
0.5 5 173.2 180.4 173.5
0.5 10 170.7 170.9 163.8
0.5 all 170.1 169.5 163.4
1.0 2 226.2 236.5 237.3
1.0 5 168.5 167.1 163.9
1.0 10 165.0 161.5 158.8
1.0 all 158.7 168.1 153.0
5.0 2 202.3 211.5 206.5
5.0 5 155.5 151.3 154.5
5.0 10 143.2 149.6 137.9
5.0 all 143.9 151.0 134.0
10.0 2 172.4 200.9 195.3
10.0 5 145.2 144.6 139.5
10.0 10 129.5 143.0 134.4
10.0 all 141.2 134.8 127.8

(b) ISB

λr k L1 L2 L3

0.5 2 885.4 885.7 885.8
0.5 5 891.4 890.2 892.4
0.5 10 891.6 892.3 894.5
0.5 all 891.2 892.2 892.4
1.0 2 886.4 887.3 886.9
1.0 5 892.9 893.2 892.4
1.0 10 892.7 893.4 895.2
1.0 all 891.4 893.5 893.7
5.0 2 889.0 887.3 886.0
5.0 5 894.0 894.3 894.6
5.0 10 893.8 894.8 894.8
5.0 all 893.9 894.5 894.5
10.0 2 892.7 888.6 888.0
10.0 5 894.3 893.4 894.5
10.0 10 893.8 894.5 894.9
10.0 all 894.0 893.0 893.5

(c) IAB

λr k L1 L2 L3

0.5 2 25.4 25.5 25.5
0.5 5 25.5 25.6 25.5
0.5 10 25.5 25.5 25.6
0.5 all 25.5 25.5 25.5
1.0 2 25.4 25.5 25.5
1.0 5 25.6 25.6 25.5
1.0 10 25.6 25.6 25.6
1.0 all 25.5 25.6 25.6
5.0 2 25.5 25.5 25.5
5.0 5 25.6 25.6 25.6
5.0 10 25.7 25.6 25.7
5.0 all 25.6 25.6 25.6
10.0 2 25.5 25.5 25.5
10.0 5 25.6 25.6 25.6
10.0 10 25.7 25.6 25.7
10.0 all 25.6 25.7 25.7

(d) MISE

λr k L1 L2 L3

0.5 2 1121.8 1122.7 1130.4
0.5 5 1064.6 1070.6 1065.9
0.5 10 1062.2 1063.2 1058.3
0.5 all 1061.3 1061.7 1055.8
1.0 2 1112.6 1123.8 1124.2
1.0 5 1061.3 1060.3 1056.4
1.0 10 1057.7 1054.9 1053.9
1.0 all 1050.2 1061.6 1046.7
5.0 2 1091.3 1098.9 1092.5
5.0 5 1049.5 1045.6 1049.1
5.0 10 1037.0 1044.3 1032.7
5.0 all 1037.8 1045.6 1028.5
10.0 2 1065.1 1089.5 1083.3
10.0 5 1039.5 1038.0 1034.0
10.0 10 1023.2 1037.5 1029.2
10.0 all 1035.2 1027.8 1021.3

Table 30: Evaluation metrics for the Voronoi estimated intensity of the inho-
mogeneous Poisson process with parameters selected by k-fold cross-validation
with regularization p2.
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Left: intensity estimate, middle: intensity error, and right: true intensity. This
estimate was produced by the Voronoi method with regularization strength
λr = 1 and factor R(θ) = |pv| on the inhomogeneous Poisson process by L1

and k = 10.

4.8.3 Log-Gaussian Cox process

Looking at Tables 31 and 32 we see the results for the Log-Gaussian Cox process.
The results here seem to follow the same trend that we saw for the two Poisson
processes. We see that IV decreases with λr and that ISB increases. The
increase in ISB however, is quite small compared to the decrease in IV leading
to improvements in MISE. We again observe that the improvements when using
R2 are smaller than when usingR1. Previously, the best results in terms of MISE
came from using the resample-smoothing Voronoi estimator with re-scaled pv
parameter with values ca. 2890.

Looking at Figure 26 we see the same trend as previously in this section,
an increased amount of edge effects, and a more homogeneous average intensity
estimate.
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(a) IV

λr k L1 L2 L3

0.5 2 3497.4 3755.7 3630.1
0.5 5 1903.0 1932.2 1669.3
0.5 10 1419.3 1503.1 1386.7
0.5 all 1655.1 1715.2 1390.3
1.0 2 2724.6 3659.4 3349.6
1.0 5 1634.1 1790.2 1473.3
1.0 10 1324.8 1414.7 1346.4
1.0 all 1551.1 1589.0 1331.1
5.0 2 1771.2 2707.1 2261.4
5.0 5 1311.5 1285.3 1164.6
5.0 10 1129.7 1113.1 1067.5
5.0 all 1260.9 1140.0 1080.9
10.0 2 1599.3 1869.0 1867.5
10.0 5 1136.1 1168.2 1113.8
10.0 10 1021.5 1069.7 978.9
10.0 all 1129.3 1159.0 1038.7

(b) ISB

λr k L1 L2 L3

0.5 2 1194.5 1183.4 1186.7
0.5 5 1216.5 1224.0 1224.3
0.5 10 1228.6 1227.4 1245.6
0.5 all 1227.5 1226.3 1246.3
1.0 2 1202.0 1184.4 1195.6
1.0 5 1222.5 1225.9 1234.9
1.0 10 1240.0 1236.1 1254.6
1.0 all 1234.0 1233.1 1259.3
5.0 2 1218.5 1211.3 1213.7
5.0 5 1256.9 1260.1 1271.0
5.0 10 1297.3 1286.9 1315.8
5.0 all 1274.0 1288.4 1314.2
10.0 2 1228.7 1218.5 1217.6
10.0 5 1294.2 1288.3 1297.2
10.0 10 1361.8 1320.0 1358.0
10.0 all 1326.8 1300.9 1340.1

(c) IAB

λr k L1 L2 L3

0.5 2 30.1 29.9 30.0
0.5 5 30.5 30.5 30.6
0.5 10 30.7 30.7 30.9
0.5 all 30.6 30.6 31.0
1.0 2 30.2 30.0 30.1
1.0 5 30.6 30.6 30.8
1.0 10 30.9 30.8 31.1
1.0 all 30.7 30.7 31.1
5.0 2 30.4 30.3 30.3
5.0 5 31.1 31.2 31.3
5.0 10 31.7 31.5 31.9
5.0 all 31.3 31.5 31.9
10.0 2 30.6 30.5 30.4
10.0 5 31.6 31.5 31.7
10.0 10 32.5 32.0 32.4
10.0 all 32.0 31.7 32.2

(d) MISE

λr k L1 L2 L3

0.5 2 4691.8 4939.2 4816.8
0.5 5 3119.6 3156.2 2893.6
0.5 10 2648.0 2730.5 2632.3
0.5 all 2882.6 2941.5 2636.6
1.0 2 3926.6 4843.8 4545.2
1.0 5 2856.7 3016.1 2708.2
1.0 10 2564.9 2650.8 2600.9
1.0 all 2785.1 2822.1 2590.4
5.0 2 2989.6 3918.5 3475.1
5.0 5 2568.4 2545.4 2435.6
5.0 10 2426.9 2400.0 2383.4
5.0 all 2534.9 2428.5 2395.1
10.0 2 2828.0 3087.5 3085.0
10.0 5 2430.2 2456.6 2411.0
10.0 10 2383.3 2389.7 2336.9
10.0 all 2456.1 2460.0 2378.8

Table 31: Evaluation metrics for the Voronoi estimated intensity of the Log-
Gaussian Cox process with parameters selected by k-fold cross-validation with
regularization |p|.
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(a) IV

λr k L1 L2 L3

0.5 2 3812.7 3781.7 3998.3
0.5 5 2290.0 2270.7 2178.1
0.5 10 1692.4 1655.0 1643.8
0.5 all 2070.4 2051.9 1613.0
1.0 2 3477.2 3777.2 3800.6
1.0 5 2189.4 2074.2 1871.8
1.0 10 1504.1 1632.2 1494.1
1.0 all 1872.6 1886.9 1455.8
5.0 2 2417.6 3272.0 3014.7
5.0 5 1704.6 1773.4 1561.8
5.0 10 1355.4 1419.5 1376.5
5.0 all 1610.3 1646.5 1352.4
10.0 2 2303.9 3127.9 2468.7
10.0 5 1595.0 1513.7 1468.0
10.0 10 1327.5 1366.6 1254.1
10.0 all 1514.8 1473.6 1228.8

(b) ISB

λr k L1 L2 L3

0.5 2 1183.5 1184.1 1182.5
0.5 5 1212.5 1214.9 1217.5
0.5 10 1225.8 1223.2 1226.7
0.5 all 1212.5 1217.5 1230.0
1.0 2 1191.0 1182.1 1186.0
1.0 5 1212.6 1216.6 1217.0
1.0 10 1229.6 1226.7 1234.9
1.0 all 1221.0 1219.9 1233.2
5.0 2 1205.0 1193.7 1197.7
5.0 5 1227.1 1218.9 1228.5
5.0 10 1233.9 1237.7 1245.9
5.0 all 1230.4 1228.0 1245.9
10.0 2 1208.8 1199.6 1208.2
10.0 5 1231.0 1230.3 1234.6
10.0 10 1244.2 1241.9 1259.9
10.0 all 1234.7 1237.7 1259.8

(c) IAB

λr k L1 L2 L3

0.5 2 29.9 30.0 29.9
0.5 5 30.4 30.4 30.4
0.5 10 30.6 30.6 30.6
0.5 all 30.4 30.4 30.7
1.0 2 30.1 29.9 30.0
1.0 5 30.4 30.4 30.4
1.0 10 30.7 30.6 30.8
1.0 all 30.5 30.5 30.7
5.0 2 30.2 30.1 30.1
5.0 5 30.6 30.5 30.6
5.0 10 30.8 30.8 30.9
5.0 all 30.7 30.6 30.9
10.0 2 30.3 30.1 30.3
10.0 5 30.7 30.7 30.7
10.0 10 30.9 30.8 31.1
10.0 all 30.8 30.8 31.1

(d) MISE

λr k L1 L2 L3

0.5 2 4996.2 4965.8 5180.8
0.5 5 3502.5 3485.6 3395.6
0.5 10 2918.3 2878.2 2870.5
0.5 all 3282.9 3269.4 2843.0
1.0 2 4668.2 4959.3 4986.6
1.0 5 3402.0 3290.8 3088.8
1.0 10 2733.7 2858.9 2729.0
1.0 all 3093.5 3106.8 2689.0
5.0 2 3622.6 4465.7 4212.4
5.0 5 2931.7 2992.3 2790.3
5.0 10 2589.3 2657.2 2622.4
5.0 all 2840.7 2874.5 2598.3
10.0 2 3512.6 4327.4 3676.9
10.0 5 2826.0 2744.0 2702.6
10.0 10 2571.7 2608.5 2514.0
10.0 all 2749.5 2711.3 2488.6

Table 32: Evaluation metrics for the Voronoi estimated intensity of the Log-
Gaussian Cox process with parameters selected by k-fold cross-validation with
regularization p2.
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Figure 26: Left: intensity estimate, middle: intensity error, and right: true in-
tensity. This estimate was produced by the Voronoi method with regularization
strength λr = 1 and factor R(θ) = |pv| on the Log-Gaussian Cox process by L1

and k = 10.

4.8.4 Simple sequential inhibition process

In Tables 33 and 34 we see the results for the simple sequential inhibition process
and again note similar trends as in the previous two Sections. However, for this
process, we see no real improvement in terms of MISE when comparing results to
Table 9. In fact, we see that this method seems to perform slightly worse even.
We see noticeable improvements in terms of IV that are outweighed by increases
in terms of ISB. Looking at Table 34 we see slightly better results than in Table
33 which would suggest that a smaller regularization, and thereby larger pv,
achieve better results. Previously, the best results in terms of MISE came from
using the kernel estimator with values ca. 1100.

Looking at Figure 27 we again see an increased amount of edge effects and
that the intensity estimate looks more homogeneous. We also note that the two
regions of high intensity of the true intensity were not captured by the average
intensity estimate.
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(a) IV

λr k L1 L2 L3

0.5 2 123.4 144.5 136.4
0.5 5 84.4 88.2 80.0
0.5 10 74.1 76.1 70.7
0.5 all 78.9 85.1 69.9
1.0 2 111.6 131.2 125.4
1.0 5 77.9 76.9 73.4
1.0 10 73.5 69.7 65.0
1.0 all 74.8 76.4 64.8
5.0 2 83.3 98.4 96.5
5.0 5 58.7 62.6 56.0
5.0 10 54.5 59.4 52.0
5.0 all 54.4 61.4 50.0
10.0 2 73.2 84.0 85.6
10.0 5 53.8 58.1 54.1
10.0 10 49.8 54.0 47.1
10.0 all 45.9 49.1 52.8

(b) ISB

λr k L1 L2 L3

0.5 2 1454.7 1418.0 1427.4
0.5 5 1509.2 1502.0 1507.9
0.5 10 1512.8 1512.6 1514.7
0.5 all 1505.0 1505.3 1512.9
1.0 2 1464.3 1436.9 1449.4
1.0 5 1509.1 1510.9 1509.6
1.0 10 1515.7 1512.8 1520.1
1.0 all 1509.2 1509.9 1515.2
5.0 2 1507.7 1486.8 1495.8
5.0 5 1518.1 1514.0 1518.2
5.0 10 1521.7 1516.8 1526.9
5.0 all 1518.2 1517.8 1526.5
10.0 2 1517.9 1505.6 1506.5
10.0 5 1526.3 1521.4 1526.2
10.0 10 1547.9 1526.3 1549.3
10.0 all 1536.8 1524.2 1544.7

(c) IAB

λr k L1 L2 L3

0.5 2 32.0 31.6 31.7
0.5 5 32.6 32.5 32.5
0.5 10 32.5 32.5 32.5
0.5 all 32.5 32.5 32.5
1.0 2 32.1 31.8 32.0
1.0 5 32.5 32.6 32.5
1.0 10 32.5 32.5 32.5
1.0 all 32.5 32.5 32.5
5.0 2 32.5 32.4 32.4
5.0 5 32.4 32.4 32.4
5.0 10 32.3 32.4 32.3
5.0 all 32.3 32.4 32.2
10.0 2 32.6 32.5 32.5
10.0 5 32.2 32.3 32.3
10.0 10 32.2 32.2 32.2
10.0 all 32.2 32.2 32.2

(d) MISE

λr k L1 L2 L3

0.5 2 1578.1 1562.5 1563.8
0.5 5 1593.6 1590.3 1587.8
0.5 10 1586.9 1588.8 1585.4
0.5 all 1583.9 1590.4 1582.8
1.0 2 1575.9 1568.2 1574.8
1.0 5 1587.0 1587.8 1582.9
1.0 10 1589.2 1582.5 1585.2
1.0 all 1584.1 1586.3 1580.0
5.0 2 1591.0 1585.2 1592.3
5.0 5 1576.9 1576.6 1574.2
5.0 10 1576.2 1576.2 1578.9
5.0 all 1572.7 1579.2 1576.5
10.0 2 1591.1 1589.6 1592.1
10.0 5 1580.1 1579.5 1580.3
10.0 10 1597.7 1580.3 1596.4
10.0 all 1582.7 1573.3 1597.5

Table 33: Evaluation metrics for the Voronoi estimated intensity of the simple
sequential inhibition process with parameters selected by k-fold cross-validation
with regularization |p|.
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(a) IV

λr k L1 L2 L3

0.5 2 143.5 149.7 143.3
0.5 5 101.5 100.3 90.8
0.5 10 86.4 87.5 86.9
0.5 all 90.3 91.5 81.4
1.0 2 128.8 145.3 145.5
1.0 5 97.1 90.5 88.4
1.0 10 78.8 84.4 79.1
1.0 all 83.5 86.5 79.3
5.0 2 109.9 120.3 117.9
5.0 5 79.4 76.7 79.4
5.0 10 74.9 72.7 65.4
5.0 all 77.5 75.6 62.9
10.0 2 90.7 115.0 109.3
10.0 5 73.7 74.0 69.6
10.0 10 65.8 74.1 65.4
10.0 all 69.6 68.9 64.3

(b) ISB

λr k L1 L2 L3

0.5 2 1422.6 1406.9 1418.4
0.5 5 1483.5 1489.0 1497.2
0.5 10 1506.4 1504.4 1507.1
0.5 all 1493.6 1496.6 1505.9
1.0 2 1440.4 1415.2 1419.9
1.0 5 1492.1 1496.0 1501.8
1.0 10 1509.6 1504.1 1509.8
1.0 all 1501.1 1501.0 1510.1
5.0 2 1477.1 1452.9 1462.5
5.0 5 1512.2 1508.8 1513.7
5.0 10 1515.0 1511.9 1515.6
5.0 all 1511.5 1509.6 1516.4
10.0 2 1500.0 1464.6 1471.2
10.0 5 1512.1 1510.7 1513.8
10.0 10 1514.8 1514.2 1514.0
10.0 all 1515.4 1513.6 1517.5

(c) IAB

λr k L1 L2 L3

0.5 2 31.7 31.5 31.6
0.5 5 32.3 32.4 32.4
0.5 10 32.5 32.5 32.5
0.5 all 32.4 32.4 32.5
1.0 2 31.9 31.6 31.7
1.0 5 32.4 32.5 32.5
1.0 10 32.5 32.5 32.5
1.0 all 32.5 32.5 32.5
5.0 2 32.3 32.0 32.1
5.0 5 32.5 32.5 32.6
5.0 10 32.6 32.5 32.5
5.0 all 32.5 32.5 32.5
10.0 2 32.5 32.1 32.2
10.0 5 32.5 32.5 32.5
10.0 10 32.5 32.5 32.4
10.0 all 32.5 32.5 32.5

(d) MISE

λr k L1 L2 L3

0.5 2 1566.1 1556.6 1561.7
0.5 5 1585.0 1589.3 1588.0
0.5 10 1592.7 1591.9 1594.0
0.5 all 1583.9 1588.1 1587.2
1.0 2 1569.2 1560.5 1565.4
1.0 5 1589.2 1586.5 1590.3
1.0 10 1588.4 1588.5 1588.9
1.0 all 1584.7 1587.5 1589.5
5.0 2 1587.0 1573.2 1580.3
5.0 5 1591.7 1585.5 1593.1
5.0 10 1589.9 1584.6 1581.0
5.0 all 1589.0 1585.2 1579.4
10.0 2 1590.7 1579.6 1580.5
10.0 5 1585.8 1584.6 1583.4
10.0 10 1580.6 1588.4 1579.5
10.0 all 1585.0 1582.6 1581.8

Table 34: Evaluation metrics for the Voronoi estimated intensity of the simple
sequential inhibition process with parameters selected by k-fold cross-validation
with regularization p2.
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Figure 27: Left: intensity estimate, middle: intensity error, and right: true
intensity. This estimate was produced by the Voronoi method with regulariza-
tion strength λr = 1 and factor R(θ) = |pv| on the simple sequential inhibition
process by L1 and k = 10.

4.9 Fixed thinning size

In Equation (17) we create thinnings of a point pattern with retention proba-
bility pv by independently marking each point xi of the point pattern x with a
mark of 1 with probability pv. The result is that the number of points in the
thinned pattern is Bin(n, pv) distributed where n is the number of points of x.
An alternative approach to this is to draw a random sample of a fixed size of
points without replacement from x where the size is ⌊pvn⌋. The difference here
is that we avoid scenarios where the outcome of Bin(n, pv) is 0 or 1 in which
case the estimated intensity is 0 or 1/|W |. These scenarios are quite common
for low values of pv which Moradi et al. [2018] showed had better performance.

In Moradi et al. [2018] it was shown that lower values of pv result in better
intensity estimates with p = 0.01 generally having the best performance. We
know that we need at least 2 or more points in the thinned pattern for the
Voronoi estimator to actually result in something that is not 0 or 1/|W |. At
low values of pv the probability that 2 or more points are retained is quite
low meaning that we might observe interesting results by instead looking at
fixed sizes of 2, 3, . . . , 10. Note that this means we choose pv such that pvn =
2, 3, . . . , 10.

Due to the computational complexity, we limit this investigation to the Log-
Gaussian Cox and simple sequential inhibition processes as they have displayed
the worst results so far.

4.9.1 Log-Gaussian Cox process

We can see the results for the Log-Gaussian Cox process in Table 35. If we
compare this to what we see in Table 5 we see very nice improvements for all
k. The results in terms of ISB seem very similar to the random thinning size
but the improvement in IV is very noticeable. In Table 5 we see that variance
is very large for lower values of k which is something we see here as well but on
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a much smaller scale. Comparing the results here to Table 5 in Moradi et al.
[2018] we see that this method achieves almost the same results as random size
thinnings with p = 0.01. Previously, the best results in terms of MISE came
from using the resample-smoothing Voronoi estimator with regularization with
values ca. 2400.

In Table 36 we see the average parameter values selected. We see that the
selected size seems to be around 5 points for all loss functions except L3 where
we see some variance.

In Figure 28 we can see plots of the intensity estimate. As we can see the
intensity estimate looks quite homogeneous.

(a) IV

k L1 L2 L3

2 1396.08 1409.27 1364.07
5 1234.58 1288.54 1711.04
10 1175.46 1133.25 1379.24
all 1185.65 1202.72 1458.28

(b) ISB

k L1 L2 L3

2 1217.82 1212.57 1211.02
5 1213.52 1201.16 1209.60
10 1201.40 1203.52 1218.56
all 1204.25 1205.71 1214.59

(c) IAB

k L1 L2 L3

2 30.67 30.57 30.56
5 30.59 30.29 30.45
10 30.28 30.31 30.49
all 30.41 30.33 30.45

(d) MISE

k L1 L2 L3

2 2613.91 2621.84 2575.09
5 2448.09 2489.70 2920.65
10 2376.85 2336.77 2597.80
all 2389.90 2408.43 2672.87

Table 35: Evaluation metrics for the Voronoi estimated intensity of the Log-
Gaussian Cox process with parameters selected by k-fold cross-validation with
fixed size thinnings.

(a) pv

k L1 L2 L3

2 5.010 5.160 5.020
5 5.280 5.780 7.190
10 5.120 5.110 6.750

(b) m

k L1 L2 L3

2 552.5 515.0 557.5
5 515.0 542.5 540.0
10 532.5 545.0 577.5

Table 36: Average parameter values selected for the Voronoi estimator of the
Log-Gaussian Cox process.
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Figure 28: Left: intensity estimate, middle: intensity error, and right: true in-
tensity. This estimate was produced by the Voronoi method with fixed thinning
size on the Log-Gaussian Cox process by L1 and k = 10.

4.9.2 Simple sequential inhibition process

The results for the simple sequential inhibition process can be seen in Table
37. Comparing these results to Table 9 we see that this method achieves worse
performance in terms of ISB and MISE and small improvements in terms of
IV. Previously, the best results in terms of MISE came from using the kernel
estimator with values ca. 1100.

If we compare Figure 29 to 11 we can see that the intensity estimate with
fixed thinning size looks more homogeneous with an increased amount of edge
effects.

(a) IV

k L1 L2 L3

2 150.67 152.33 150.37
5 164.87 165.35 159.83
10 147.79 169.14 163.21
all 167.23 166.73 162.59

(b) ISB

k L1 L2 L3

2 1496.56 1495.93 1493.89
5 1491.02 1488.50 1492.30
10 1500.85 1501.91 1500.32
all 1495.35 1492.62 1500.38

(c) IAB

k L1 L2 L3

2 32.19 32.19 32.16
5 32.15 32.14 32.16
10 32.31 32.27 32.24
all 32.20 32.18 32.24

(d) MISE

k L1 L2 L3

2 1647.23 1648.26 1644.26
5 1655.89 1653.85 1652.13
10 1648.63 1671.05 1663.53
all 1662.58 1659.35 1662.97

Table 37: Evaluation metrics for the Voronoi estimated intensity of the simple
sequential inhibition process with parameters selected by k-fold cross-validation
with fixed size thinnings.
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(a) pv

k L1 L2 L3

2 2.430 2.540 2.430
5 3.050 3.210 2.740
10 3.730 3.540 3.080

(b) m

k L1 L2 L3

2 487.5 500.0 487.5
5 505.0 532.5 575.0
10 520.0 567.5 570.0

Table 38: Average parameter values selected for the Voronoi estimator of the
simple sequential inhibition process.

Figure 29: Left: intensity estimate, middle: intensity error, and right: true in-
tensity. This estimate was produced by the Voronoi method with fixed thinning
size on the simple sequential inhibition process by L1 and k = 10.

4.10 Periodic edge-correction

As we have seen in the plots of the average estimated intensities, the Voronoi
estimator suffers from edge effects. For the kernel estimator, there are a number
of edge-correction methods available but this is not the case for the Voronoi esti-
mator. One edge-correction method that would work on the Voronoi estimator
is periodic edge-correction. This method takes copies of the point pattern of
interest and creates a 3×3 grid, i.e. surrounding the original point pattern with
8 copies of itself, estimates the intensity on the full 3×3 grid, and then uses the
central subwindow as the final intensity estimate. An example of this method
can be seen in Figure 30.

While there are other edge-correction methods available for the kernel esti-
mator we limit our investigation to periodic edge-correction so that results are
comparable.

The investigation of this edge-correction method comes with an increase in
computational complexity and as such, we restrict the parameter m to only be
m = 250, 500.
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Figure 30: A realization of a homogeneous Poisson process with ρ = 15, with
periodic edge-correction.

4.10.1 Voronoi intensity estimation

We start by presenting the results of using periodic edge-correction on the
Voronoi estimator.

4.10.1.1 Poisson process If we compare Table 39 to 1 we see that this
edge-correction method eliminates almost all bias and also decreases the vari-
ance. Previously, the best results in terms of MISE came from using the
resample-smoothing Voronoi estimator with regularization with values ca. 165.

Looking at Figure 31 we can see that the intensity estimate looks quite
homogeneous and is close to the true intensity. Comparing this Figure to 8 we
can see that the edge effects have been eliminated.
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(a) IV

k L1 L2 L3

2 146.68 146.21 151.36
5 107.79 111.41 108.25
10 112.37 100.82 97.17
all 105.49 108.23 100.66

(b) ISB

k L1 L2 L3

2 1.65 1.68 1.96
5 0.73 0.61 1.10
10 0.74 0.59 0.69
all 0.91 1.05 0.93

(c) IAB

k L1 L2 L3

2 1.06 1.07 1.17
5 0.66 0.62 0.86
10 0.70 0.62 0.69
all 0.77 0.85 0.83

(d) MISE

k L1 L2 L3

2 148.34 147.88 153.32
5 108.53 112.02 109.35
10 113.12 101.41 97.86
all 106.40 109.28 101.60

Table 39: Evaluation metrics for the Voronoi estimated intensity of the homo-
geneous Poisson process with parameters selected by k-fold cross-validation.

Figure 31: Left: intensity estimate, middle: intensity error, and right: true
intensity, in this case, a constant 60. This estimate was produced by the Voronoi
method with periodic edge-correction on the homogeneous Poisson process by
L1 and k = 10.

4.10.1.2 Inhomogeneous Poisson process Looking at Table 40 and com-
paring that to Table 3 we see a clear improvement in IV and a smaller improve-
ment in ISB. Previously, the best results in terms of MISE came from using
the resample-smoothing Voronoi estimator with regularization with values ca.
1010.

Furthermore, looking at Figure 32 we see that the intensity estimate has
less edge effects and looks quite homogeneous compared to Figure 9. However,
it fails to capture the periodicity of the true intensity which is what we see in
Figure 9 as well.
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(a) IV

k L1 L2 L3

2 147.30 139.93 147.99
5 126.65 119.47 113.50
10 129.07 107.15 97.40
all 119.08 109.01 100.72

(b) ISB

k L1 L2 L3

2 864.38 864.63 864.78
5 867.00 865.81 865.74
10 862.57 864.27 865.23
all 866.64 866.90 865.97

(c) IAB

k L1 L2 L3

2 25.25 25.28 25.28
5 25.28 25.28 25.26
10 25.22 25.25 25.27
all 25.28 25.27 25.28

(d) MISE

k L1 L2 L3

2 1011.67 1004.57 1012.77
5 993.65 985.28 979.24
10 991.64 971.42 962.63
all 985.72 975.91 966.69

Table 40: Evaluation metrics for the Voronoi estimated intensity of the inho-
mogeneous Poisson process with parameters selected by k-fold cross-validation.

Figure 32: Left: intensity estimate, middle: intensity error, and right: true
intensity. This estimate was produced by the Voronoi method with periodic
edge-correction on the inhomogeneous Poisson process by L1 and k = 10.

4.10.1.3 Log-Gaussian Cox process Comparing Table 41 to Table 5 we
see an increasing degree of improvement with respect to k. For k = 2 the
improvement is quite small while noticeably larger for k = 10. We again see
that the main improvement comes from the decrease in IV alongside a smaller
improvement in ISB. Previously, the best results in terms of MISE came from
using the resample-smoothing Voronoi estimator with fixed thinning size with
values ca. 2350.

Looking at Figure 33 we see that it resembles Figure 10 however, using this
method we see that the interval of intensity estimate is smaller. We again see
that it fails to capture the periodicity of the true intensity.
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(a) IV

k L1 L2 L3

2 4097.86 3948.94 4094.32
5 2202.32 2279.19 3113.36
10 1253.04 1275.35 3908.04
all 2058.49 1980.64 3079.98

(b) ISB

k L1 L2 L3

2 1108.39 1110.36 1107.68
5 1122.50 1125.18 1112.44
10 1130.73 1133.19 1114.51
all 1124.57 1124.00 1114.18

(c) IAB

k L1 L2 L3

2 29.19 29.23 29.17
5 29.44 29.48 29.25
10 29.58 29.62 29.25
all 29.47 29.46 29.29

(d) MISE

k L1 L2 L3

2 5206.25 5059.30 5202.00
5 3324.83 3404.37 4225.81
10 2383.78 2408.54 5022.55
all 3183.05 3104.64 4194.16

Table 41: Evaluation metrics for the Voronoi estimated intensity of the Log-
Gaussian Cox process with parameters selected by k-fold cross-validation.

Figure 33: Left: intensity estimate, middle: intensity error, and right: true
intensity. This estimate was produced by the Voronoi method with periodic
edge-correction on the Log-Gaussian Cox process by L1 and k = 10.

4.10.1.4 Simple sequential inhibition process Comparing Tables 42
and 9 we see similar results as in previous Sections, a larger decrease in IV
and a smaller decrease in ISB. Previously, the best results in terms of MISE
came from using the kernel estimator with values ca. 1100.

Looking at Figure 34 we can see that the edge effects are decreased.

76



(a) IV

k L1 L2 L3

2 124.89 120.79 124.28
5 125.65 147.43 169.54
10 129.29 112.06 171.24
all 132.39 140.93 166.53

(b) ISB

k L1 L2 L3

2 1292.38 1295.68 1292.49
5 1304.47 1267.81 1219.66
10 1300.05 1328.23 1232.95
all 1296.72 1274.53 1233.61

(c) IAB

k L1 L2 L3

2 30.20 30.21 30.20
5 30.28 29.86 29.22
10 30.22 30.60 29.40
all 30.19 29.94 29.39

(d) MISE

k L1 L2 L3

2 1417.27 1416.47 1416.77
5 1430.13 1415.24 1389.20
10 1429.35 1440.29 1404.19
all 1429.11 1415.46 1400.13

Table 42: Evaluation metrics for the Voronoi estimated intensity of the simple
sequential inhibition process with parameters selected by k-fold cross-validation.

Figure 34: Left: intensity estimate, middle: intensity error, and right: true
intensity. This estimate was produced by the Voronoi method with periodic
edge-correction on the simple sequential inhibition process by L1 and k = 10.

4.10.2 Kernel intensity estimation

We now move on to presenting the results of using periodic edge-correction on
the kernel estimator.

4.10.2.1 Poisson process Comparing Table 43 to Table 11 we see that
this edge-correction method offers a very large improvement. As we can see the
integrated square bias is very close to 0 for all k and L.

Comparing Figure 35 to Figure 12 we can see that the edge effects have been
removed by this method.
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(a) IV

k L1 L2 L3

2 83.81 83.81 83.81
5 91.42 87.42 85.11
10 122.49 113.53 87.17
all 115.12 100.90 87.17

(b) ISB

k L1 L2 L3

2 0.62 0.62 0.62
5 0.94 0.86 0.71
10 0.81 0.89 0.65
all 0.89 0.81 0.65

(c) IAB

k L1 L2 L3

2 0.76 0.76 0.76
5 0.81 0.81 0.78
10 0.77 0.81 0.77
all 0.79 0.78 0.77

(d) MISE

k L1 L2 L3

2 84.43 84.43 84.43
5 92.35 88.28 85.82
10 123.30 114.41 87.83
all 116.01 101.72 87.83

Table 43: Evaluation metrics for the kernel estimated intensity of the homoge-
neous Poisson process with parameters selected by k-fold cross-validation.

Figure 35: Left: intensity estimate, middle: intensity error, and right: true
intensity, in this case, a constant 60. This estimate was produced by the kernel
method with periodic edge-correction on the homogeneous Poisson process by
L1 and k = 10.

4.10.2.2 Inhomogeneous Poisson process Comparing Table 44 to Table
13 we see that that this edge-correction method results in a large decrease in
both IV and ISB.

Comparing Figure 36 to 13 we can see that this method eliminates edge
effects. We also note that the intensity estimate looks very homogeneous and
fails to capture the periodicity of the true intensity.
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(a) IV

k L1 L2 L3

2 94.43 94.21 94.43
5 93.78 95.45 91.04
10 99.94 92.62 88.26
all 91.87 91.10 88.26

(b) ISB

k L1 L2 L3

2 865.30 865.31 865.30
5 865.58 865.58 865.61
10 863.67 864.25 865.81
all 865.13 865.04 865.81

(c) IAB

k L1 L2 L3

2 25.25 25.25 25.25
5 25.25 25.25 25.25
10 25.23 25.24 25.25
all 25.24 25.25 25.25

(d) MISE

k L1 L2 L3

2 959.73 959.52 959.73
5 959.37 961.04 956.65
10 963.61 956.86 954.07
all 957.00 956.14 954.07

Table 44: Evaluation metrics for the kernel estimated intensity of the inhomo-
geneous Poisson process with parameters selected by k-fold cross-validation.

Figure 36: Left: intensity estimate, middle: intensity error, and right: true
intensity. This estimate was produced by the kernel method with periodic edge-
correction on the inhomogeneous Poisson process by L1 and k = 10.

4.10.2.3 Log-Gaussian Cox process Comparing Table 45 to Table 15 we
see the same results as we have for the previous processes, a decrease in both
IV and ISB.

Furthermore, comparing Figure 37 to 14 we again see no noticeable edge
effects. We again note that the intensity estimate fails to capture the periodicity
of the true intensity.
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(a) IV

k L1 L2 L3

2 1289.41 1280.86 1289.41
5 1282.29 1354.28 1544.84
10 1123.27 1066.45 1285.28
all 1248.55 1286.42 1523.19

(b) ISB

k L1 L2 L3

2 1138.60 1139.19 1138.60
5 1138.46 1138.05 1137.42
10 1138.72 1138.86 1139.13
all 1138.78 1140.26 1139.71

(c) IAB

k L1 L2 L3

2 29.71 29.72 29.71
5 29.72 29.71 29.70
10 29.70 29.70 29.69
all 29.71 29.72 29.72

(d) MISE

k L1 L2 L3

2 2428.01 2420.06 2428.01
5 2420.75 2492.33 2682.27
10 2261.99 2205.30 2424.42
all 2387.34 2426.68 2662.89

Table 45: Evaluation metrics for the v estimated intensity of the Log-Gaussian
Cox process with parameters selected by k-fold cross-validation.

Figure 37: Left: intensity estimate, middle: intensity error, and right: true
intensity. This estimate was produced by the kernel method with periodic edge-
correction on the Log-Gaussian Cox process by L1 and k = 10.

4.10.2.4 Simple sequential inhibition process If we compare Table 46
to Table 17 we see a decrease in IV but an increase in ISB resulting in a higher
MISE.

Comparing Figure 38 to Figure 15 we can see that the edge effects have
disappeared. We note that the intensity estimate manages to capture some of
the two higher intensity regions.
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(a) IV

k L1 L2 L3

2 133.83 127.22 134.57
5 155.71 156.70 173.99
10 127.32 152.52 207.43
all 162.66 169.58 211.11

(b) ISB

k L1 L2 L3

2 1158.23 1168.91 1155.18
5 1133.45 1135.46 1066.37
10 1158.50 1115.48 969.60
all 1099.59 1099.28 965.88

(c) IAB

k L1 L2 L3

2 28.31 28.46 28.27
5 27.97 28.00 27.04
10 28.32 27.72 25.62
all 27.51 27.49 25.56

(d) MISE

k L1 L2 L3

2 1292.06 1296.13 1289.75
5 1289.16 1292.16 1240.36
10 1285.82 1268.00 1177.03
all 1262.25 1268.86 1176.99

Table 46: Evaluation metrics for the kernel estimated intensity of the simple
sequential inhibition process with parameters selected by k-fold cross-validation.

Figure 38: Left: intensity estimate, middle: intensity error, and right: true
intensity. This estimate was produced by the kernel method with periodic edge-
correction on the simple sequential inhibition process by L1 and k = 10.

4.10.3 Fixed-size Voronoi intensity estimation

As we have seen the periodic edge-correction performs quite well, with a no-
ticeable increase in performance. Before this, the best results were seen when
using thinnings of fixed size in the Voronoi estimator. We will now investigate
what happens if we apply periodic edge-correction to this method. Note that
previously we investigated fixed-size thinnings with 2, 3, . . . , 10 points. Since
we now surround the original point pattern with 8 copies of itself we instead
investigate 9 · 2, 9 · 3, . . . , 9 · 10.

4.10.3.1 Poisson process Looking at Table 47 we see MISE scores of
around 90-95. Comparing this to Table 39 this is a noticeable improvement.

81



However, if we compare it to Table 43 we see that the kernel estimator performs
better at k = 2.

Looking at Figure 39 we can see that the intensity estimate looks quite
homogeneous and is close to the true intensity.

(a) IV

k L1 L2 L3

2 91.35 90.17 91.78
5 92.52 87.18 89.23
10 94.71 90.15 92.92
all 95.08 93.40 90.41

(b) ISB

k L1 L2 L3

2 0.52 0.49 0.52
5 0.51 0.44 0.64
10 1.01 0.79 0.69
all 0.88 0.80 0.96

(c) IAB

k L1 L2 L3

2 0.60 0.63 0.64
5 0.55 0.58 0.65
10 0.82 0.75 0.70
all 0.78 0.72 0.82

(d) MISE

k L1 L2 L3

2 91.87 90.66 92.30
5 93.03 87.62 89.87
10 95.72 90.95 93.61
all 95.96 94.20 91.38

Table 47: Evaluation metrics for the Voronoi estimated intensity of the homo-
geneous Poisson process with parameters selected by k-fold cross-validation.

Figure 39: Left: intensity estimate, middle: intensity error, and right: true in-
tensity, in this case, a constant 60. This estimate was produced by the Voronoi
method with periodic edge-correction and fixed thinning size on the homoge-
neous Poisson process by L1 and k = 10.

4.10.3.2 Inhomogeneous Poisson process If we compare Table 48 to
Table 40 we see that using fixed size thinnings offers some improvement. Com-
paring this method to the kernel intensity estimator in Table 44 we again see
that the kernel estimator performs just a tad better by having a slightly lower
IV.

If we look at Figure 40 we can see a plot of the intensity estimate. We again
see that this estimator fails to capture the periodic nature of the true intensity.
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(a) IV

k L1 L2 L3

2 100.65 100.75 99.48
5 101.46 100.48 102.00
10 104.06 97.13 102.40
all 100.12 96.74 104.49

(b) ISB

k L1 L2 L3

2 866.06 865.11 866.55
5 865.89 865.97 865.02
10 864.67 864.79 865.77
all 864.60 865.56 864.89

(c) IAB

k L1 L2 L3

2 25.29 25.27 25.27
5 25.25 25.29 25.26
10 25.25 25.26 25.25
all 25.25 25.28 25.25

(d) MISE

k L1 L2 L3

2 966.71 965.87 966.03
5 967.35 966.45 967.02
10 968.74 961.92 968.17
all 964.72 962.30 969.38

Table 48: Evaluation metrics for the Voronoi estimated intensity of the inho-
mogeneous Poisson process with parameters selected by k-fold cross-validation.

Figure 40: Left: intensity estimate, middle: intensity error, and right: true
intensity. This estimate was produced by the Voronoi method with periodic
edge-correction and fixed thinning size on the inhomogeneous Poisson process
by L1 and k = 10.

4.10.3.3 Log-Gaussian Cox process Comparing Table 49 to Table 41 we
can see that using fixed size thinnings offers a large improvement in IV resulting
in a MISE of around 2065 which is the lowest score this model has achieved yet.
Furthermore, looking at Table 45 we can see that Voronoi estimator performs
better than the kernel estimator for this model.

Looking at Figure 41 we see that it looks quite similar to Figure 37.
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(a) IV

k L1 L2 L3

2 1196.76 1038.35 1197.97
5 1027.81 1024.31 1169.44
10 930.46 935.66 990.38
all 983.07 1016.51 1066.18

(b) ISB

k L1 L2 L3

2 1130.41 1131.47 1128.00
5 1135.21 1132.32 1131.72
10 1132.82 1134.19 1135.66
all 1131.13 1131.03 1133.33

(c) IAB

k L1 L2 L3

2 29.61 29.62 29.56
5 29.68 29.64 29.60
10 29.64 29.65 29.66
all 29.62 29.61 29.63

(d) MISE

k L1 L2 L3

2 2327.16 2169.82 2325.97
5 2163.02 2156.63 2301.16
10 2063.28 2069.85 2126.04
all 2114.20 2147.54 2199.51

Table 49: Evaluation metrics for the Voronoi estimated intensity of the Log-
Gaussian Cox process with parameters selected by k-fold cross-validation.

Figure 41: Left: intensity estimate, middle: intensity error, and right: true
intensity. This estimate was produced by the Voronoi method with periodic
edge-correction and fixed thinning size on the Log-Gaussian Cox process by L1

and k = 10.

4.10.3.4 Simple sequential inhibition process Comparing Table 50 to
Table 42 we see that fixed size thinnings actually performs slightly worse. This
behavior is also seen when comparing Tables 9 and 37.

Looking at Figure 42 we see that the intensity estimate looks worse than in
Figure 38 with no real separation of the two higher intensity regions.
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(a) IV

k L1 L2 L3

2 47.12 46.28 46.82
5 51.96 56.86 52.88
10 53.15 52.18 51.38
all 52.73 55.99 53.29

(b) ISB

k L1 L2 L3

2 1411.50 1408.26 1409.87
5 1402.56 1395.27 1400.31
10 1400.80 1402.74 1404.18
all 1403.20 1394.47 1401.53

(c) IAB

k L1 L2 L3

2 31.57 31.53 31.56
5 31.47 31.41 31.47
10 31.45 31.49 31.49
all 31.48 31.38 31.48

(d) MISE

k L1 L2 L3

2 1458.63 1454.54 1456.69
5 1454.52 1452.13 1453.19
10 1453.95 1454.92 1455.56
all 1455.93 1450.46 1454.82

Table 50: Evaluation metrics for the Voronoi estimated intensity of the simple
sequential inhibition process with parameters selected by k-fold cross-validation.

Figure 42: Left: intensity estimate, middle: intensity error, and right: true
intensity. This estimate was produced by the Voronoi method with periodic
edge-correction and fixed thinning size on the simple sequential inhibition pro-
cess by L1 and k = 10.

5 Discussion

As we have now seen, neither estimator managed to capture the periodic nature
of the inhomogeneous Poisson and Log-Gaussian Cox process. The kernel esti-
mator managed to capture it in the simple sequential inhibition process as did
the resample-smoothing Voronoi estimator at first. In the latter results, where
most often techniques were used to try to achieve a lower pv, the Voronoi esti-
mator failed to capture the periodicity. This is also reflected in the evaluation
metrics as we saw the best mean integrated squared error for the simple se-
quential inhibition process in Subsection 4.3. This suggests that for some point
process models using a lower pv is not always better.
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While both estimators have their advantages and disadvantages, the clear
winner when it comes to performance is the kernel estimator. Not only does it
only have one parameter to select but it also does not use resample-smoothing
which makes it significantly faster. It should be noted that I experimented
briefly with applying resample-smoothing to the kernel estimator and found
that the results were much slower than for the resample-smoothing Voronoi
estimator.

5.1 Cross-validation

At the start of this project, we had planned on using both k-fold and Monte
Carlo cross-validation but we quickly realized that MCCV was incredibly com-
putationally expensive. The problem already scales in time with respect to k
and in the MCCV setting, we have both large values of k and a separate hyper-
parameter to investigate resulting in unfeasible run times. We did investigate
MCCV on the Log-Gaussian Cox process but as we saw the improvements, if
any, were quite small and thus decided to not investigate it further. In the k-fold
setting we have to compute a total of

∑
k∈k

∑
mj∈m

∑
pv∈p

k∑
i=1

mj∑
m=1

1

Voronoi tessellations. Comparatively, in the MCCV setting, we have

∑
pc∈pc

∑
k∈k

∑
mj∈m

∑
pv∈p

k∑
i=1

mj∑
m=1

1

an additional sum over the retention probabilities used to create the training
and validation sets. The potential small performance improvement of MCCV
is outweighed by the large increase in computational complexity and is in most
scenarios not worth it.

5.2 Regularization

As we saw, applying regularization to the loss functions results in noticeable
improvements. However, I am hesitant in interpreting these results. On one
hand, it is a valid machine learning technique, and on the other, maybe it
simply forces pv to be lower artificially. When fitting a linear model

Y = Xβ

a regularization term is added when estimating

argmin
β

∥Xβ − Y ∥+ λ∥β∥

which essentially penalizes each βi that is non-zero to prevent overfitting. In this
setting, we add regularization to avoid including features that do not actually
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affect the outcome resulting in a simpler model. However, in our case we add
regularization to prefer a lower pv but what is to say that a lower pv is a simpler
model? In the end, we know from Moradi et al. [2018] that a lower pv is better
and, as we will see, regularization does improve results so this method must at
least have some merit.

Throughout this thesis, we have been comparing Voronoi and kernel estima-
tors and to have a fair comparison we should also have included a regularized
kernel estimator. However, how would one go about regularizing the kernel es-
timator? For the Voronoi estimator, we have a fairly obvious choice of making
the regularization term a function of pv but for the kernel estimator, there is
no such clear choice. One idea is perhaps to try and formulate a regulariza-
tion term as a function of the variance of the estimated intensity, to prefer a
smoother intensity. Another idea that was suggested by Moradi et al. [2018]
is to use resample-smoothing on the kernel estimator as well, in which case we
could apply regularization on the thinning probability, assuming that results
improve with a lower retention probability.

5.3 Re-scaling parameters

As seen in the Tables of the average parameter values in Section 4.3 it is clear
that pv decreases with respect to k. In the k-fold setting, for a given k and a
point pattern with n points, we have that the training set contains n− n

k points.
The fact that we see a decrease in pv as k increases suggests that the optimal
pv is dependent on the number of points n. For that reason, something of
interest is to investigate how the Voronoi estimator performs on point processes
with a larger range in the number of points. In this thesis we investigated
four processes: homogeneous and inhomogeneous Poisson, simple sequential
inhibition, and Log-Gaussian Cox processes with an expected number of points
60, 58.6, 68.4, and 53.6 respectively. All these intensities are quite close to each
other and it would be interesting to see how the Voronoi estimator compares to
the kernel estimator on point processes with an expected number of points of
around 10 and past 100. Furthermore, as we saw in Section 4.7, re-scaling the
parameter pv to address this dependence improved results.

Looking at the Tables that display average bandwidth in Section 4.4 we see
that the average bandwidth decreases as k increases. This is, to me, somewhat
easier to understand why, as for low values of k we have fewer points in the
training set, and is thus sparser. Therefore, to ensure that at least the majority
of the observation window has non-zero intensity, the bandwidth has to be
larger. For this reason, it might be of interest to investigate what happens
when the bandwidth is re-scaled.

5.4 Edge effects

As we have seen in plots of the average estimated intensities of the Voronoi
estimator, edge effects are a large problem regardless of pv. In Section 4.10 we
suggested an edge-correction method that did improve results noticeably but it
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is accompanied by a further increase in computational complexity. In general,
the time complexity of creating a Voronoi tessellation scales linearly with the
number of points and as such, using this edge-correction method increases the
time complexity 9-fold. By default, the intensity estimates are represented as
128 × 128 matrices. To ensure that the final intensity estimate has the same
dimensions, the intensity estimate on the periodic edge-corrected pattern has to
use 384 × 384 matrices which further increases the computational complexity.
Another issue with this edge-correction method is that it requires that the obser-
vation window W is rectangular as we otherwise would not be able to surround
the original point pattern with copies of itself. Furthermore, it also assumes that
the intensity is symmetric about the center of the observation window which
is not always the case. Nonetheless, this edge-correction method produced in-
tensity estimates that were clearly better than the intensity estimates using no
edge-correction.

5.5 Thinning

One of the main insights about the Voronoi estimator from this thesis is that
fixed-size thinnings perform much better than randomly, independently deleting
points. Note that it is not necessarily that the thinnings are all of the same size
but rather that we avoid ever having thinned point patterns that contain no
or only 1 point. It would be of interest to investigate an alternative sampling
method, i.e. use some distribution that does not assume the value 0 or 1 to
determine the number of points in the thinned pattern rather than keep the
number of points constant.

Throughout this thesis, we have used a fixed probability to create thinned
point patterns to be used in the Voronoi estimator. However, as described in
Section 2.1.5, the thinning probability can also be a function of the location,
i.e. instead of a constant p, we have a function p(u) for u ∈ W , when W is the
observation window of a point process. This function could be determined via
point process learning by fixing some function and then gradually changing the
coefficients. In such a case the resample-smoothing Voronoi intensity estimator
would look like

ρ̂Vpv,m(u;X,W ) =
1

mpv(u)

m∑
i=1

∑
x∈Xpv

i

1{u ∈ Vx(X
pv

i ,W )}
|Vx(X

pv

i ,W )|
.

Another area of interest is to investigate how using gradient descent or an-
other optimization algorithm would affect the results of using point process
learning. That is, rather than fixing some parameter values to investigate, we
start with some initial parameter value and then change it by some small value
to estimate the gradient of the loss function. We then move in the opposite di-
rection of this estimated gradient and repeat until we, hopefully, find the global
minimum of the loss function.
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6 Conclusion

Our working hypothesis as this thesis began was that the Voronoi estimator
was simply better than the kernel estimator but as we have shown this is not
the case. The results of this thesis have shown that both estimators have their
advantages and disadvantages. Further investigations into variations of both
estimators are needed to come to a conclusion regarding this. As we have seen
the Voronoi estimator is vastly improved by using resample-smoothing and as
such, it would be of great interest to investigate how resample-smoothing affects
the kernel estimator.

In this thesis we have applied point process learning on a number of estima-
tors with success, further demonstrating the potential of this framework.

89



7 Appendix

7.1 Voronoi intensity estimation

7.1.1 Poisson process

(a) k = 2

pv m L1 L2 L3

0.09 250 7 7 7
0.09 500 2 2 2
0.1 250 11 12 11
0.1 500 2 1 2
0.1 1000 2 1 2
0.1 2000 0 1 0
0.15 250 17 18 17
0.15 500 17 17 17
0.15 1000 10 9 10
0.15 2000 9 6 9
0.25 250 10 13 10
0.25 500 8 8 8
0.25 1000 4 4 4
0.25 2000 1 1 1

(b) k = 5

pv m L1 L2 L3

0.06 250 1 3 2
0.06 500 1 1 1
0.07 250 7 4 3
0.07 500 1 1 2
0.08 250 11 7 9
0.08 500 1 3 3
0.08 1000 2 3 2
0.08 2000 0 1 0
0.09 250 10 15 15
0.09 500 8 7 7
0.09 1000 1 1 1
0.09 2000 2 2 3
0.1 250 10 11 8
0.1 500 7 8 9
0.1 1000 10 7 9
0.1 2000 2 1 4
0.15 250 7 5 9
0.15 500 6 7 6
0.15 1000 3 4 2
0.15 2000 4 4 2
0.25 250 1 2 0
0.25 500 3 3 3
0.25 1000 1 0 0
0.25 2000 1 0 0

Table 51: Number of times each parameter was selected for the homogeneous
Poisson process.
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(a) k = 10

pv m L1 L2 L3

0.05 250 2 1 1
0.06 250 1 2 1
0.06 500 0 2 0
0.06 1000 2 2 1
0.07 250 7 6 4
0.07 500 4 4 5
0.07 1000 1 1 0
0.07 2000 1 0 0
0.08 250 7 8 10
0.08 500 4 4 7
0.08 1000 3 3 4
0.08 2000 0 1 0
0.09 250 8 9 10
0.09 500 5 7 11
0.09 1000 1 5 3
0.09 2000 0 0 4
0.1 250 13 11 9
0.1 500 11 10 8
0.1 1000 3 1 4
0.1 2000 0 0 1
0.15 250 6 8 8
0.15 500 5 6 5
0.15 1000 2 2 2
0.15 2000 2 0 0
0.25 250 3 3 1
0.25 500 1 2 1
0.25 1000 3 0 0
0.25 2000 1 1 0
0.5 250 1 0 0
0.5 500 1 1 0
0.75 250 2 0 0

(b) all k

pv m L1 L2 L3

0.05 250 1 0 1
0.06 250 2 3 1
0.06 500 1 2 0
0.06 1000 1 0 1
0.07 250 4 5 4
0.07 500 3 3 5
0.07 1000 0 1 0
0.08 250 11 6 10
0.08 500 2 5 7
0.08 1000 2 2 4
0.08 2000 0 1 0
0.09 250 8 8 10
0.09 500 4 7 11
0.09 1000 1 4 3
0.09 2000 2 2 4
0.1 250 17 12 9
0.1 500 9 8 8
0.1 1000 5 5 4
0.1 2000 1 1 1
0.15 250 9 6 8
0.15 500 2 6 5
0.15 1000 1 2 2
0.15 2000 3 3 0
0.25 250 3 4 1
0.25 500 3 2 1
0.25 1000 3 0 0
0.25 2000 0 1 0
0.5 250 1 0 0
0.5 500 0 1 0
0.75 250 1 0 0

Table 52: Number of times each parameter was selected for the homogeneous
Poisson process.
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(a) k = 2, 5

k pv m L1 L2 L3

5 0.06 250 1 3 0
5 0.06 500 1 1 0
5 0.07 250 3 3 0
5 0.07 500 1 1 0
5 0.08 250 4 3 0
5 0.08 500 0 3 0
5 0.08 1000 1 2 0
5 0.09 250 4 4 0
5 0.09 500 2 3 0
5 0.09 2000 2 2 0
5 0.1 250 7 6 0
5 0.1 500 4 3 0
5 0.1 1000 3 4 0
5 0.1 2000 1 1 0
5 0.15 250 3 2 0
5 0.15 500 0 2 0
5 0.15 1000 1 2 0
5 0.15 2000 2 3 0
5 0.25 250 1 1 0
5 0.25 500 2 1 0

(b) k = 10

k pv m L1 L2 L3

10 0.05 250 1 0 1
10 0.06 250 1 0 1
10 0.06 500 0 1 0
10 0.06 1000 1 0 1
10 0.07 250 1 2 4
10 0.07 500 2 2 5
10 0.07 1000 0 1 0
10 0.08 250 7 3 10
10 0.08 500 2 2 7
10 0.08 1000 1 0 4
10 0.08 2000 0 1 0
10 0.09 250 4 4 10
10 0.09 500 2 4 11
10 0.09 1000 1 4 3
10 0.09 2000 0 0 4
10 0.1 250 10 6 9
10 0.1 500 5 5 8
10 0.1 1000 2 1 4
10 0.1 2000 0 0 1
10 0.15 250 6 4 8
10 0.15 500 2 4 5
10 0.15 1000 0 0 2
10 0.15 2000 1 0 0
10 0.25 250 2 3 1
10 0.25 500 1 1 1
10 0.25 1000 3 0 0
10 0.25 2000 0 1 0
10 0.5 250 1 0 0
10 0.5 500 0 1 0
10 0.75 250 1 0 0

Table 53: Number of times each parameter, including k, was selected for the
homogeneous Poisson process.
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7.1.2 Inhomogeneous Poisson process

(a) k = 2

pv m L1 L2 L3

0.08 250 1 1 1
0.08 500 0 1 0
0.09 250 5 5 5
0.09 500 1 0 1
0.1 250 5 5 5
0.1 500 4 5 4
0.1 1000 1 1 1
0.1 2000 2 2 2
0.15 250 25 21 25
0.15 500 14 15 14
0.15 1000 4 8 4
0.15 2000 9 9 9
0.25 250 12 9 12
0.25 500 7 7 7
0.25 1000 4 5 4
0.25 2000 6 6 6

(b) k = 5

pv m L1 L2 L3

0.06 250 0 1 1
0.07 250 2 2 1
0.07 500 4 1 2
0.07 1000 2 1 1
0.08 250 10 11 9
0.08 500 4 3 3
0.08 1000 3 2 2
0.08 2000 0 1 0
0.09 250 9 7 6
0.09 500 4 5 5
0.09 1000 2 3 2
0.09 2000 4 1 4
0.1 250 9 10 16
0.1 500 8 9 8
0.1 1000 5 4 4
0.1 2000 0 0 2
0.15 250 9 13 10
0.15 500 9 11 7
0.15 1000 4 5 8
0.15 2000 2 1 2
0.25 250 4 5 3
0.25 500 2 2 1
0.25 1000 2 1 2
0.25 2000 2 1 1

Table 54: Number of times each parameter was selected for the inhomogeneous
Poisson process.
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(a) k = 10

pv m L1 L2 L3

0.06 250 4 5 2
0.06 500 1 2 0
0.07 250 2 6 3
0.07 500 3 2 1
0.07 1000 2 0 2
0.08 250 4 5 5
0.08 500 2 3 3
0.08 1000 0 2 2
0.08 2000 1 0 0
0.09 250 10 14 12
0.09 500 7 5 8
0.09 1000 3 5 3
0.09 2000 1 0 1
0.1 250 8 11 9
0.1 500 8 13 11
0.1 1000 7 9 10
0.1 2000 4 2 2
0.15 250 12 6 15
0.15 500 6 4 5
0.15 1000 7 3 3
0.15 2000 0 1 3
0.25 250 1 0 0
0.25 500 3 2 0
0.25 1000 1 0 0
0.25 2000 1 0 0
0.5 1000 1 0 0
0.75 1000 1 0 0

(b) all k

pv m L1 L2 L3

0.06 250 1 2 2
0.06 500 1 2 0
0.07 250 3 6 3
0.07 500 2 0 1
0.07 1000 1 0 2
0.08 250 8 8 5
0.08 500 3 3 3
0.08 1000 1 0 2
0.08 2000 0 1 0
0.09 250 10 7 12
0.09 500 4 6 8
0.09 1000 2 3 3
0.09 2000 4 0 1
0.1 250 9 15 9
0.1 500 6 8 11
0.1 1000 8 9 10
0.1 2000 3 2 2
0.15 250 14 9 15
0.15 500 7 11 5
0.15 1000 6 3 3
0.15 2000 0 1 3
0.25 250 1 1 0
0.25 500 3 2 0
0.25 2000 2 1 0
0.5 1000 1 0 0

Table 55: Number of times each parameter was selected for the inhomogeneous
Poisson process.
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(a) k = 2, 5

k pv m L1 L2 L3

5 0.07 250 1 2 0
5 0.07 500 2 0 0
5 0.07 1000 1 0 0
5 0.08 250 7 6 0
5 0.08 500 2 3 0
5 0.08 1000 1 0 0
5 0.08 2000 0 1 0
5 0.09 250 7 3 0
5 0.09 500 2 3 0
5 0.09 1000 1 2 0
5 0.09 2000 3 0 0
5 0.1 250 6 7 0
5 0.1 500 5 5 0
5 0.1 1000 3 2 0
5 0.15 250 6 6 0
5 0.15 500 5 9 0
5 0.15 1000 2 2 0
5 0.25 250 1 1 0
5 0.25 500 1 1 0
5 0.25 2000 1 1 0

(b) k = 10

k pv m L1 L2 L3

10 0.06 250 1 2 2
10 0.06 500 1 2 0
10 0.07 250 2 4 3
10 0.07 500 0 0 1
10 0.07 1000 0 0 2
10 0.08 250 1 2 5
10 0.08 500 1 0 3
10 0.08 1000 0 0 2
10 0.09 250 3 4 12
10 0.09 500 2 3 8
10 0.09 1000 1 1 3
10 0.09 2000 1 0 1
10 0.1 250 3 8 9
10 0.1 500 1 3 11
10 0.1 1000 5 7 10
10 0.1 2000 3 2 2
10 0.15 250 8 3 15
10 0.15 500 2 2 5
10 0.15 1000 4 1 3
10 0.15 2000 0 1 3
10 0.25 500 2 1 0
10 0.25 2000 1 0 0
10 0.5 1000 1 0 0

Table 56: Number of times each parameter, including k, was selected for the
inhomogeneous Poisson process.
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7.1.3 Log-Gaussian Cox process

(a) k = 2

pv m L1 L2 L3

0.06 250 1 1 1
0.07 250 1 0 0
0.07 500 0 1 1
0.08 250 2 3 2
0.08 500 1 1 1
0.09 250 3 2 3
0.09 500 0 1 0
0.09 1000 0 1 0
0.1 250 2 6 2
0.1 1000 1 0 1
0.15 250 17 17 17
0.15 500 6 6 7
0.15 1000 5 4 5
0.15 2000 3 0 3
0.25 250 12 10 11
0.25 500 15 14 16
0.25 1000 11 8 11
0.25 2000 10 8 9
0.5 250 4 5 4
0.5 500 3 6 4
0.5 1000 0 2 0
0.5 2000 1 1 0
0.75 250 2 2 2
0.9 500 0 1 0

(b) k = 5

pv m L1 L2 L3

0.02 250 1 0 1
0.03 500 1 1 0
0.03 2000 1 1 1
0.04 250 1 0 0
0.04 500 0 1 0
0.04 1000 2 2 0
0.05 250 2 0 1
0.05 500 1 1 0
0.05 1000 1 1 0
0.05 2000 2 0 0
0.06 250 0 2 0
0.06 500 1 2 0
0.06 2000 1 0 0
0.07 250 1 3 1
0.07 500 0 1 1
0.07 1000 0 1 1
0.08 250 5 5 4
0.08 500 2 1 1
0.08 1000 1 1 3
0.08 2000 0 1 0
0.09 250 3 6 5
0.09 500 3 2 4
0.09 1000 4 1 2
0.1 250 5 5 2
0.1 500 1 1 2
0.1 1000 1 3 0
0.1 2000 3 3 0
0.15 250 10 9 9
0.15 500 8 5 11
0.15 1000 6 5 6
0.15 2000 7 8 8
0.25 250 3 4 9
0.25 500 7 6 11
0.25 1000 7 8 10
0.25 2000 1 2 3
0.5 250 2 4 2
0.5 500 2 3 0
0.5 1000 2 0 1
0.5 2000 2 1 1

Table 57: Number of times each parameter was selected for the Log-Gaussian
Cox process.
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(a) k = 10

pv m L1 L2 L3

0.02 250 0 0 1
0.02 500 3 1 1
0.02 1000 0 1 0
0.03 250 2 2 1
0.03 500 2 2 1
0.03 2000 1 0 0
0.04 250 0 1 2
0.04 500 2 2 2
0.04 1000 0 0 1
0.04 2000 1 0 2
0.05 250 0 1 0
0.05 500 1 2 0
0.05 1000 1 2 1
0.05 2000 3 1 1
0.06 250 6 5 0
0.06 500 4 2 1
0.06 2000 0 0 1
0.07 250 6 9 2
0.07 500 2 1 1
0.07 1000 1 1 0
0.08 250 5 4 2
0.08 500 6 2 0
0.08 1000 0 2 0
0.08 2000 0 1 1
0.09 250 9 5 5
0.09 500 1 2 1
0.09 1000 2 1 0
0.09 2000 1 2 1
0.1 250 5 4 7
0.1 500 4 4 1
0.1 1000 1 2 3
0.1 2000 0 1 2
0.15 250 8 12 12
0.15 500 6 3 8
0.15 1000 4 4 3
0.15 2000 2 4 5
0.25 250 5 6 7
0.25 500 1 1 7
0.25 1000 1 3 8
0.25 2000 4 4 3
0.5 250 0 0 3
0.5 2000 0 0 2
0.75 2000 0 0 1

(b) all k

pv m L1 L2 L3

0.02 250 1 0 1
0.02 500 1 0 0
0.03 250 0 0 1
0.03 500 1 2 1
0.03 2000 1 1 1
0.04 250 1 0 1
0.04 500 1 1 1
0.04 1000 1 2 0
0.04 2000 0 0 2
0.05 250 2 0 0
0.05 500 1 1 0
0.05 1000 1 1 1
0.05 2000 2 0 1
0.06 250 4 5 0
0.06 500 1 1 1
0.06 2000 1 0 1
0.07 250 2 3 3
0.07 500 2 1 1
0.07 1000 0 1 1
0.08 250 4 5 2
0.08 500 6 2 0
0.08 1000 1 1 1
0.08 2000 0 0 1
0.09 250 6 8 5
0.09 500 3 1 1
0.09 1000 2 1 0
0.09 2000 0 2 1
0.1 250 6 6 7
0.1 500 0 2 1
0.1 1000 0 2 3
0.1 2000 1 2 2
0.15 250 10 8 12
0.15 500 6 4 8
0.15 1000 4 6 2
0.15 2000 8 8 7
0.25 250 3 5 7
0.25 500 5 5 8
0.25 1000 4 5 8
0.25 2000 2 3 2
0.5 250 1 2 3
0.5 500 2 2 0
0.5 1000 1 0 0
0.5 2000 2 1 1
0.75 2000 0 0 1

Table 58: Number of times each parameter was selected for the Log-Gaussian
Cox process.
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(a) k = 2, 5

k pv m L1 L2 L3

2 0.08 500 0 1 0
5 0.02 250 1 0 1
5 0.03 500 0 1 0
5 0.03 2000 1 1 1
5 0.04 250 1 0 0
5 0.04 1000 1 2 0
5 0.05 250 2 0 0
5 0.05 500 1 1 0
5 0.05 1000 1 1 0
5 0.05 2000 1 0 0
5 0.06 250 0 2 0
5 0.06 500 0 1 0
5 0.06 2000 1 0 0
5 0.07 250 1 2 1
5 0.07 1000 0 1 1
5 0.08 250 4 4 0
5 0.08 500 2 0 0
5 0.08 1000 1 1 1
5 0.09 250 2 5 0
5 0.09 500 3 1 0
5 0.09 1000 2 0 0
5 0.1 250 4 4 0
5 0.1 500 0 1 0
5 0.1 1000 0 1 0
5 0.1 2000 1 1 0
5 0.15 250 5 5 0
5 0.15 500 4 3 0
5 0.15 1000 3 3 0
5 0.15 2000 7 6 2
5 0.25 250 1 3 1
5 0.25 500 4 5 1
5 0.25 1000 4 4 0
5 0.25 2000 1 2 0
5 0.5 250 1 2 1
5 0.5 500 2 2 0
5 0.5 1000 1 0 0
5 0.5 2000 2 1 0

(b) k = 10

k pv m L1 L2 L3

10 0.02 500 1 0 0
10 0.03 250 0 0 1
10 0.03 500 1 1 1
10 0.04 250 0 0 1
10 0.04 500 1 1 1
10 0.04 2000 0 0 2
10 0.05 1000 0 0 1
10 0.05 2000 1 0 1
10 0.06 250 4 3 0
10 0.06 500 1 0 1
10 0.06 2000 0 0 1
10 0.07 250 1 1 2
10 0.07 500 2 1 1
10 0.08 250 0 1 2
10 0.08 500 4 1 0
10 0.08 2000 0 0 1
10 0.09 250 4 3 5
10 0.09 500 0 0 1
10 0.09 1000 0 1 0
10 0.09 2000 0 2 1
10 0.1 250 2 2 7
10 0.1 500 0 1 1
10 0.1 1000 0 1 3
10 0.1 2000 0 1 2
10 0.15 250 5 3 12
10 0.15 500 2 1 8
10 0.15 1000 1 3 2
10 0.15 2000 1 2 5
10 0.25 250 2 2 6
10 0.25 500 1 0 7
10 0.25 1000 0 1 8
10 0.25 2000 1 1 2
10 0.5 250 0 0 2
10 0.5 2000 0 0 1
10 0.75 2000 0 0 1

Table 59: Number of times each parameter, including k, was selected for the
Log-Gaussian Cox process.
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(a) p < 0.1

pv m pc L1 L2 L3

0.03 250 0.1 1 1 0
0.03 1000 0.1 0 0 2
0.03 2000 0.1 1 1 0
0.04 250 0.3 0 0 1
0.04 500 0.3 0 0 1
0.04 1000 0.1 1 0 0
0.04 1000 0.3 0 0 1
0.05 250 0.1 1 1 1
0.05 500 0.1 2 0 1
0.05 1000 0.1 0 0 1
0.05 2000 0.3 0 0 1
0.06 250 0.1 3 3 2
0.06 250 0.3 0 1 0
0.06 500 0.1 0 1 0
0.06 2000 0.3 1 1 1
0.07 250 0.1 3 4 1
0.07 250 0.3 0 1 0
0.07 500 0.1 1 0 0
0.07 2000 0.1 1 1 1
0.08 250 0.1 6 2 0
0.08 500 0.1 3 2 0
0.08 500 0.3 0 1 1
0.08 1000 0.1 0 1 0
0.08 1000 0.3 1 0 0
0.08 2000 0.1 0 0 1
0.08 2000 0.3 1 1 0
0.09 250 0.1 0 3 0
0.09 250 0.3 0 1 1
0.09 500 0.1 2 2 1
0.09 1000 0.1 7 4 3
0.09 1000 0.3 1 0 0
0.09 2000 0.1 1 0 1

(b) p ≥ 0.1

pv m pc L1 L2 L3

0.1 250 0.1 4 5 4
0.1 250 0.3 1 1 1
0.1 500 0.1 1 2 1
0.1 500 0.3 2 2 1
0.1 1000 0.1 3 4 3
0.1 1000 0.3 0 0 2
0.1 2000 0.1 1 3 2
0.1 2000 0.3 1 1 0
0.15 250 0.1 6 10 5
0.15 250 0.3 2 2 0
0.15 500 0.1 6 8 5
0.15 500 0.3 3 1 2
0.15 1000 0.1 10 5 5
0.15 1000 0.3 1 2 2
0.15 2000 0.1 4 3 8
0.15 2000 0.3 3 1 3
0.25 250 0.1 3 3 7
0.25 250 0.3 1 0 0
0.25 500 0.1 2 4 7
0.25 500 0.3 0 0 1
0.25 1000 0.1 1 2 8
0.25 1000 0.3 2 3 0
0.25 2000 0.1 4 2 5
0.25 2000 0.3 0 1 1
0.5 250 0.1 1 0 1
0.5 250 0.3 0 0 1
0.5 500 0.1 0 1 1
0.5 500 0.3 0 1 0
0.5 2000 0.1 0 1 1
0.5 2000 0.3 1 0 0
0.75 500 0.1 0 0 1

Table 60: Number of times each parameter was selected for the Log-Gaussian
Cox process.

pv L1 L2 L3

0.1 79 75 100
0.3 21 25 0

Table 61: Number of times each pc was chosen for the Log-Gaussian Cox process.
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7.1.3.1 Monte-Carlo cross-validation

7.1.4 Simple sequential inhibition process

(a) k = 2

pv m L1 L2 L3

0.08 250 1 1 1
0.09 250 3 3 3
0.1 250 4 5 4
0.1 500 1 0 1
0.1 2000 1 1 1
0.15 250 19 20 19
0.15 500 19 16 19
0.15 1000 9 8 9
0.15 2000 7 7 7
0.25 250 12 14 13
0.25 500 9 7 8
0.25 1000 5 7 5
0.25 2000 3 4 3
0.5 250 4 4 4
0.5 500 1 1 1
0.5 1000 1 2 1
0.75 250 1 0 1

(b) k = 5

pv m L1 L2 L3

0.07 250 2 3 1
0.08 250 3 3 0
0.08 500 2 2 2
0.08 1000 1 2 1
0.08 2000 0 1 0
0.09 250 7 6 9
0.09 500 1 3 3
0.09 1000 2 2 1
0.1 250 17 22 13
0.1 500 8 9 9
0.1 1000 0 1 3
0.1 2000 1 1 1
0.15 250 18 17 22
0.15 500 8 8 11
0.15 1000 2 2 3
0.15 2000 2 0 3
0.25 250 5 2 2
0.25 500 1 5 2
0.25 1000 2 0 1
0.25 2000 2 0 0
0.5 250 4 0 2
0.5 500 4 6 5
0.5 1000 2 2 2
0.5 2000 2 1 3
0.75 250 1 1 0
0.75 500 0 0 1
0.75 1000 2 1 0
0.9 1000 1 0 0

Table 62: Number of times each parameter was selected for the simple sequential
inhibition process.
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(a) k = 10

pv m L1 L2 L3

0.06 250 2 2 0
0.07 250 4 5 3
0.07 500 0 1 1
0.07 1000 1 2 0
0.07 2000 1 1 0
0.08 250 9 13 7
0.08 500 7 7 1
0.08 1000 3 1 0
0.08 2000 0 0 1
0.09 250 11 7 10
0.09 500 9 12 11
0.09 1000 3 3 2
0.09 2000 2 3 3
0.1 250 5 7 11
0.1 500 9 6 6
0.1 1000 3 1 2
0.1 2000 2 1 6
0.15 250 6 9 8
0.15 500 2 2 4
0.15 1000 2 4 3
0.15 2000 3 2 3
0.25 250 4 2 1
0.25 500 0 2 2
0.25 1000 1 1 1
0.25 2000 2 0 0
0.5 250 5 3 5
0.5 500 1 2 5
0.5 1000 2 0 2
0.5 2000 0 0 2
0.75 500 1 0 0
0.75 1000 0 1 0

(b) all k

pv m L1 L2 L3

0.06 250 1 2 0
0.07 250 4 3 3
0.07 500 0 1 1
0.07 2000 1 1 0
0.08 250 7 6 7
0.08 500 2 4 1
0.08 1000 1 1 0
0.08 2000 0 1 1
0.09 250 7 5 11
0.09 500 4 7 10
0.09 1000 2 3 2
0.09 2000 0 1 3
0.1 250 15 16 11
0.1 500 6 7 6
0.1 1000 0 0 2
0.1 2000 1 0 6
0.15 250 15 16 8
0.15 500 6 4 4
0.15 1000 2 2 3
0.15 2000 3 1 3
0.25 250 3 1 1
0.25 500 0 4 2
0.25 1000 2 1 1
0.25 2000 2 0 0
0.5 250 6 3 5
0.5 500 3 5 5
0.5 1000 4 2 2
0.5 2000 2 1 2
0.75 250 1 1 0
0.75 1000 0 1 0

Table 63: Number of times each parameter was selected for the simple sequential
inhibition process.
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(a) k = 2, 5

k pv m L1 L2 L3

5 0.07 250 1 1 0
5 0.08 250 3 1 0
5 0.08 1000 0 1 0
5 0.08 2000 0 1 0
5 0.09 250 4 3 1
5 0.09 500 0 1 0
5 0.09 1000 1 1 0
5 0.1 250 12 12 0
5 0.1 500 4 5 0
5 0.1 2000 1 0 0
5 0.15 250 13 11 0
5 0.15 500 6 4 0
5 0.15 1000 1 1 0
5 0.15 2000 2 0 0
5 0.25 250 3 1 0
5 0.25 500 0 4 0
5 0.25 1000 2 0 0
5 0.25 2000 2 0 0
5 0.5 250 2 0 0
5 0.5 500 3 5 0
5 0.5 1000 2 2 0
5 0.5 2000 2 1 0
5 0.75 250 1 1 0

(b) k = 10

k pv m L1 L2 L3

10 0.06 250 1 2 0
10 0.07 250 3 2 3
10 0.07 500 0 1 1
10 0.07 2000 1 1 0
10 0.08 250 4 5 7
10 0.08 500 2 4 1
10 0.08 1000 1 0 0
10 0.08 2000 0 0 1
10 0.09 250 3 2 10
10 0.09 500 4 6 10
10 0.09 1000 1 2 2
10 0.09 2000 0 1 3
10 0.1 250 3 4 11
10 0.1 500 2 2 6
10 0.1 1000 0 0 2
10 0.1 2000 0 0 6
10 0.15 250 2 5 8
10 0.15 500 0 0 4
10 0.15 1000 1 1 3
10 0.15 2000 1 1 3
10 0.25 250 0 0 1
10 0.25 500 0 0 2
10 0.25 1000 0 1 1
10 0.5 250 4 3 5
10 0.5 500 0 0 5
10 0.5 1000 2 0 2
10 0.5 2000 0 0 2
10 0.75 1000 0 1 0

Table 64: Number of times each parameter, including k, was selected for the
simple sequential inhibition process.
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7.2 Regularization

7.2.1 Poisson process

(a) pv

λr k L1 L2 L3

0.5 2 0.132 0.149 0.148
0.5 5 0.086 0.088 0.083
0.5 10 0.074 0.080 0.068
1.0 2 0.121 0.135 0.133
1.0 5 0.078 0.081 0.074
1.0 10 0.065 0.070 0.060
5.0 2 0.081 0.105 0.101
5.0 5 0.050 0.057 0.051
5.0 10 0.043 0.050 0.041
10.0 2 0.066 0.089 0.085
10.0 5 0.041 0.046 0.043
10.0 10 0.033 0.040 0.033

(b) m

λr k L1 L2 L3

0.5 2 655.0 642.5 667.5
0.5 5 527.5 530.0 627.5
0.5 10 565.0 515.0 605.0
1.0 2 620.0 597.5 660.0
1.0 5 600.0 542.5 552.5
1.0 10 605.0 632.5 677.5
5.0 2 505.0 582.5 547.5
5.0 5 657.5 627.5 600.0
5.0 10 707.5 725.0 815.0
10.0 2 460.0 495.0 527.5
10.0 5 700.0 610.0 707.5
10.0 10 802.5 830.0 937.5

Table 65: Average parameter values selected for the Voronoi estimator of the
homogeneous Poisson process with regularization |p|.

(a) pv

λr k L1 L2 L3

0.5 2 0.152 0.158 0.155
0.5 5 0.097 0.097 0.094
0.5 10 0.093 0.089 0.087
1.0 2 0.139 0.153 0.154
1.0 5 0.091 0.094 0.091
1.0 10 0.087 0.086 0.080
5.0 2 0.114 0.129 0.127
5.0 5 0.080 0.082 0.078
5.0 10 0.069 0.073 0.064
10.0 2 0.097 0.121 0.120
10.0 5 0.071 0.077 0.069
10.0 10 0.064 0.067 0.058

(b) m

λr k L1 L2 L3

0.5 2 677.5 632.5 685.0
0.5 5 567.5 550.0 540.0
0.5 10 450.0 485.0 557.5
1.0 2 670.0 640.0 677.5
1.0 5 527.5 555.0 540.0
1.0 10 532.5 507.5 577.5
5.0 2 582.5 617.5 662.5
5.0 5 622.5 565.0 635.0
5.0 10 605.0 587.5 677.5
10.0 2 562.5 565.0 592.5
10.0 5 597.5 572.5 567.5
10.0 10 672.5 660.0 715.0

Table 66: Average parameter values selected for the Voronoi estimator of the
homogeneous Poisson process with regularization p2.

104



7.2.2 Inhomogeneous Poisson process

(a) pv

λr k L1 L2 L3

0.5 2 0.136 0.151 0.150
0.5 5 0.085 0.089 0.082
0.5 10 0.077 0.080 0.069
1.0 2 0.122 0.141 0.138
1.0 5 0.079 0.080 0.074
1.0 10 0.067 0.071 0.061
5.0 2 0.084 0.106 0.100
5.0 5 0.051 0.058 0.052
5.0 10 0.044 0.049 0.041
10.0 2 0.067 0.091 0.087
10.0 5 0.041 0.046 0.043
10.0 10 0.034 0.040 0.035

(b) m

λr k L1 L2 L3

0.5 2 622.5 632.5 652.5
0.5 5 485.0 542.5 587.5
0.5 10 492.5 502.5 532.5
1.0 2 580.0 655.0 620.0
1.0 5 542.5 457.5 577.5
1.0 10 545.0 520.0 655.0
5.0 2 452.5 567.5 540.0
5.0 5 670.0 680.0 670.0
5.0 10 872.5 822.5 935.0
10.0 2 492.5 495.0 482.5
10.0 5 757.5 720.0 730.0
10.0 10 720.0 825.0 790.0

Table 67: Average parameter values selected for the Voronoi estimator of the
inhomogeneous Poisson process with regularization |p|.

(a) pv

λr k L1 L2 L3

0.5 2 0.154 0.157 0.162
0.5 5 0.099 0.105 0.098
0.5 10 0.094 0.092 0.089
1.0 2 0.142 0.155 0.157
1.0 5 0.096 0.099 0.094
1.0 10 0.088 0.088 0.083
5.0 2 0.118 0.134 0.130
5.0 5 0.080 0.082 0.078
5.0 10 0.071 0.076 0.066
10.0 2 0.100 0.123 0.121
10.0 5 0.073 0.076 0.071
10.0 10 0.064 0.067 0.059

(b) m

λr k L1 L2 L3

0.5 2 657.5 715.0 667.5
0.5 5 570.0 535.0 615.0
0.5 10 575.0 545.0 595.0
1.0 2 667.5 712.5 650.0
1.0 5 565.0 545.0 607.5
1.0 10 567.5 537.5 572.5
5.0 2 610.0 692.5 627.5
5.0 5 535.0 515.0 600.0
5.0 10 535.0 500.0 575.0
10.0 2 532.5 612.5 602.5
10.0 5 527.5 542.5 592.5
10.0 10 577.5 580.0 737.5

Table 68: Average parameter values selected for the Voronoi estimator of the
inhomogeneous Poisson process with regularization p2.
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7.2.3 Log-Gaussian Cox process

(a) pv

λr k L1 L2 L3

0.5 2 0.169 0.192 0.182
0.5 5 0.094 0.100 0.087
0.5 10 0.073 0.080 0.065
1.0 2 0.141 0.177 0.164
1.0 5 0.075 0.082 0.072
1.0 10 0.064 0.070 0.056
5.0 2 0.087 0.118 0.111
5.0 5 0.050 0.054 0.048
5.0 10 0.043 0.048 0.040
10.0 2 0.069 0.096 0.093
10.0 5 0.041 0.045 0.041
10.0 10 0.033 0.041 0.034

(b) m

λr k L1 L2 L3

0.5 2 707.5 640.0 685.0
0.5 5 702.5 695.0 750.0
0.5 10 595.0 580.0 697.5
1.0 2 582.5 705.0 680.0
1.0 5 577.5 662.5 730.0
1.0 10 637.5 640.0 675.0
5.0 2 595.0 692.5 687.5
5.0 5 627.5 655.0 737.5
5.0 10 715.0 745.0 710.0
10.0 2 510.0 567.5 632.5
10.0 5 667.5 707.5 687.5
10.0 10 812.5 777.5 805.0

Table 69: Average parameter values selected for the Voronoi estimator of the
Log-Gaussian Cox process with regularization |p|.

(a) pv

λr k L1 L2 L3

0.5 2 0.192 0.204 0.202
0.5 5 0.125 0.128 0.118
0.5 10 0.093 0.098 0.086
1.0 2 0.179 0.192 0.190
1.0 5 0.110 0.116 0.101
1.0 10 0.082 0.090 0.078
5.0 2 0.125 0.153 0.145
5.0 5 0.077 0.084 0.076
5.0 10 0.068 0.072 0.061
10.0 2 0.110 0.132 0.127
10.0 5 0.070 0.072 0.067
10.0 10 0.060 0.065 0.054

(b) m

λr k L1 L2 L3

0.5 2 717.5 637.5 680.0
0.5 5 812.5 782.5 745.0
0.5 10 635.0 615.0 642.5
1.0 2 707.5 655.0 682.5
1.0 5 822.5 752.5 682.5
1.0 10 617.5 590.0 647.5
5.0 2 705.0 652.5 637.5
5.0 5 602.5 707.5 737.5
5.0 10 615.0 592.5 755.0
10.0 2 722.5 670.0 690.0
10.0 5 562.5 652.5 667.5
10.0 10 640.0 635.0 712.5

Table 70: Average parameter values selected for the Voronoi estimator of the
Log-Gaussian Cox process with regularization p2.
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7.2.4 Simple sequential inhibition process

(a) pv

λr k L1 L2 L3

0.5 2 0.148 0.173 0.167
0.5 5 0.092 0.095 0.088
0.5 10 0.080 0.082 0.075
1.0 2 0.136 0.159 0.152
1.0 5 0.082 0.086 0.081
1.0 10 0.072 0.077 0.064
5.0 2 0.086 0.115 0.107
5.0 5 0.055 0.063 0.056
5.0 10 0.047 0.054 0.045
10.0 2 0.074 0.093 0.091
10.0 5 0.044 0.051 0.046
10.0 10 0.037 0.044 0.038

(b) m

λr k L1 L2 L3

0.5 2 667.5 700.0 627.5
0.5 5 547.5 500.0 540.0
0.5 10 482.5 597.5 592.5
1.0 2 652.5 715.0 667.5
1.0 5 615.0 527.5 592.5
1.0 10 527.5 597.5 602.5
5.0 2 465.0 630.0 575.0
5.0 5 585.0 580.0 600.0
5.0 10 765.0 630.0 802.5
10.0 2 512.5 522.5 472.5
10.0 5 667.5 710.0 672.5
10.0 10 807.5 670.0 835.0

Table 71: Average parameter values selected for the Voronoi estimator of the
simple sequential inhibition process with regularization |p|.

(a) pv

λr k L1 L2 L3

0.5 2 0.172 0.178 0.172
0.5 5 0.113 0.113 0.104
0.5 10 0.093 0.095 0.092
1.0 2 0.156 0.175 0.172
1.0 5 0.105 0.104 0.098
1.0 10 0.087 0.092 0.087
5.0 2 0.128 0.146 0.142
5.0 5 0.084 0.088 0.083
5.0 10 0.076 0.078 0.070
10.0 2 0.101 0.137 0.134
10.0 5 0.076 0.079 0.074
10.0 10 0.067 0.073 0.061

(b) m

λr k L1 L2 L3

0.5 2 637.5 692.5 635.0
0.5 5 452.5 500.0 525.0
0.5 10 607.5 575.0 692.5
1.0 2 665.0 695.0 635.0
1.0 5 457.5 555.0 482.5
1.0 10 575.0 587.5 682.5
5.0 2 647.5 735.0 697.5
5.0 5 605.0 530.0 577.5
5.0 10 510.0 612.5 632.5
10.0 2 572.5 692.5 675.0
10.0 5 610.0 520.0 655.0
10.0 10 595.0 627.5 620.0

Table 72: Average parameter values selected for the Voronoi estimator of the
simple sequential inhibition process with regularization p2.
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7.3 Anisotropic kernel

k L1 L2 L3

2

[
3.81e−2 4.68e−4
4.68e−4 3.19e−2

] [
3.96e−2 9.61e−4
9.61e−4 3.44e−2

] [
3.81e−2 4.68e−4
4.68e−4 3.19e−2

]
5

[
2.89e−2 6.03e−5
6.03e−5 2.72e−2

] [
3.20e−2 2.69e−5
2.69e−5 2.92e−2

] [
2.66e−2 −3.88e−5
−3.88e−5 2.43e−2

]
10

[
2.59e−2 3.41e−4
3.41e−4 2.64e−2

] [
2.96e−2 1.39e−5
1.39e−5 2.67e−2

] [
2.10e−2 −1.51e−4
−1.51e−4 2.17e−2

]
all

[
2.50e−2 −2.12e−4
−2.12e−4 2.46e−2

] [
2.78e−2 6.57e−5
6.57e−5 2.35e−2

] [
2.10e−2 −1.61e−4
−1.61e−4 2.15e−2

]

Table 73: Average bandwidth matrix for the Log-Gaussian Cox process.

k L1 L2 L3

2

[
3.34e−2 9.59e−4
9.59e−4 3.88e−2

] [
3.38e−2 1.20e−3
1.20e−3 3.94e−2

] [
3.34e−2 9.59e−4
9.59e−4 3.88e−2

]
5

[
3.20e−2 1.29e−3
1.29e−3 3.27e−2

] [
3.22e−2 2.27e−3
2.27e−3 3.30e−2

] [
3.20e−2 1.66e−3
1.66e−3 3.24e−2

]
10

[
3.20e−2 −5.80e−4
−5.80e−4 3.33e−2

] [
3.27e−2 −1.57e−3
−1.57e−3 3.53e−2

] [
3.20e−2 −5.28e−5
−5.28e−5 3.21e−2

]
all

[
3.20e−2 −2.69e−4
−2.69e−4 3.24e−2

] [
3.20e−2 1.72e−4
1.72e−4 3.39e−2

] [
3.20e−2 −5.28e−5
−5.28e−5 3.21e−2

]

Table 74: Average bandwidth matrix for the simple sequential inhibition pro-
cess.
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