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Machine Learning Prediction of Enzymes’ Optimal Catalytic Temperatures
CAMILLE FINLINSON PORTER
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
Enzymes that have been genetically engineered to withstand high temperatures are
used by industry to make products with less waste and pollution. Different features
of protein structure affect the optimal catalytic temperature ("topt") at which en-
zymes catalyze reactions most efficiently. We sought to use information from protein
structures to predict the topt. To do this, we analyzed the structures and optimal
catalytic temperatures of 1379 proteins in 7 different ways. For a set of analyses
based on Delaunay atomic interactions, the atoms for each protein were categorized
by their Tsai atomic group, Popelier atomic group, or by their amino acid, and the
nearest neighbors of each atom were then found by Delaunay triangulation. Next,
the neighbors were classified by their atomic group and their frequencies calculated.
For a separate analysis of atomic interactions (“threshold residue atomic interac-
tions”), the atoms for each protein were categorized by the beta carbon of their
amino acids. Any beta carbons within 8Å were found to be interacting. A third set
of analyses based on the frequencies of each category of atom on the protein interior
and surface was also performed. Each atom was again categorized by Tsai atomic
group, Popelier atomic group, or amino acid residue. All of the frequencies in these
seven groups were separately used as the predictor variables in regression to pre-
dict the response variable, the optimal catalytic temperature. Four different kinds
of regression were tried: elastic net, sparse group lasso, decision tree, and support
vector. The predictions had maximum testing R2 values of 0.4. These results are
similar to results in previous work done by Ulfenborg 2020. We found that being
very detailed in defining interactions and categories did not give better results.

Keywords: enzyme, protein, amino acid, protein structure, optimal catalytic tem-
perature

v





Acknowledgements
I wish to thank Dr. Martin Engqvist and Dr. Graham Kemp and for their valuable
suggestions and support.

Camille Finlinson Porter, Gothenburg, January 2022

vii





Contents

List of Figures xi

List of Tables xiii

1 Introduction 1

2 Background 3
2.1 Protein Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Bond Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Protein Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.5 Atomic Group Classifications . . . . . . . . . . . . . . . . . . . . . . 9

2.5.1 Tsai Atomic Groups . . . . . . . . . . . . . . . . . . . . . . . 9
2.5.2 Popelier Atomic Groups . . . . . . . . . . . . . . . . . . . . . 10
2.5.3 Amino Acid Residue . . . . . . . . . . . . . . . . . . . . . . . 11

3 Theory 13
3.1 Delaunay Triangulation . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.1 Delaunay Algorithms . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Distance from Delaunay Neighbor . . . . . . . . . . . . . . . . . . . . 15
3.3 Atom Frequency Classifications . . . . . . . . . . . . . . . . . . . . . 19

3.3.1 Atomic Group Interaction . . . . . . . . . . . . . . . . . . . . 19
3.3.2 Atomic Threshold Residue Interaction . . . . . . . . . . . . . 21
3.3.3 Surface Inner Atomic Frequencies . . . . . . . . . . . . . . . . 24

4 Methods 29
4.1 Pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 Collinearity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3 Regression Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.3.1 Ordinary Least Squares Regression . . . . . . . . . . . . . . . 38
4.3.2 Ridge Regression . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3.3 Lasso Regression . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3.4 Elastic Net . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.3.5 Sparse Group Lasso Regression . . . . . . . . . . . . . . . . . 40
4.3.6 Random Forest Regression . . . . . . . . . . . . . . . . . . . . 41
4.3.7 Support Vector Regression . . . . . . . . . . . . . . . . . . . . 42

4.4 Scoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

ix



Contents

5 Results 45
5.1 Elastic Net . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.2 Group Lasso . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.3 Random Forest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.4 SVR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6 Discussion 65
6.1 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Bibliography 69

A Appendix 1 I

x



List of Figures

2.1 Model amino acid three dimensional structure . . . . . . . . . . . . . 3
2.2 α-helix and β-sheet formation . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Optimal catalytic temperature histogram . . . . . . . . . . . . . . . . 7

3.1 Preferred Delaunay triangle . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 When points are projected onto a lower parabola in one higher di-

mension, the result is a convex hull made of flat Delaunay triangles.
This property also holds for higher dimensions, thought it is difficult
to visualize. Image from Gallier and Quaintance 2017. . . . . . . . . . 15

3.3 Delaunay triangulation of a toy example protein . . . . . . . . . . . . 16
3.4 Delaunay neighbor atom distance . . . . . . . . . . . . . . . . . . . . 18
3.5 Atomic group counts for a toy example protein . . . . . . . . . . . . . 20
3.6 Delaunay atomic interaction counts for a transferase protein . . . . . 22
3.7 Atomic interaction frequencies for transferase protein . . . . . . . . . 23
3.8 Threshold residue interactions for the transferase protein . . . . . . . 24

4.1 The Tsai atomic group interaction correlation plot . . . . . . . . . . . 31
4.2 The Popelier atomic group interaction correlation plot . . . . . . . . 32
4.3 The Delaunay residue correlation plot . . . . . . . . . . . . . . . . . . 33
4.4 The threshold residue correlation plot . . . . . . . . . . . . . . . . . . 34
4.5 Tsai surface inner frequency correlation plot . . . . . . . . . . . . . . 35
4.6 Popelier surface inner frequency correlation plot . . . . . . . . . . . . 36
4.7 Residue surface inner frequency correlation plot . . . . . . . . . . . . 37
4.8 An example decision tree . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.9 Decision tree vs random forest boundary line . . . . . . . . . . . . . . 43

5.1 The elastic net R2 values . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.2 Silhouette scores for correlation matrices . . . . . . . . . . . . . . . . 52
5.3 Hierarchical clustering for Tsai atomic group interactions . . . . . . . 53
5.4 Hierarchical clustering for Popelier atomic group interactions . . . . . 54
5.5 Hierarchical clustering of Delaunay residue atomic group interaction . 55
5.6 Hierarchical clustering of threshold residue atomic group interaction . 56
5.7 Hierarchical clustering of Tsai surface inner frequency correlation . . . 57
5.8 Hierarchical Clustering of Popelier surface inner frequency correlation 58
5.9 Hierarchical clustering residue surface inner correlation . . . . . . . . 59
5.10 The group lasso R2 values . . . . . . . . . . . . . . . . . . . . . . . . 60
5.11 The random forest regression R2 values . . . . . . . . . . . . . . . . . 63

xi



List of Figures

5.12 The SVR R2 values . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

xii



List of Tables

2.1 Tsai atomic group sizes . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Popelier atomic group composition. . . . . . . . . . . . . . . . . . . . 12

3.1 Delaunay neighbors for the toy example protein . . . . . . . . . . . . 16
3.2 Atomic groups for the toy example protein . . . . . . . . . . . . . . . 18
3.3 Counts and frequencies of atoms classified by their Tsai atomic group

on the surface and interior of a transferase protein . . . . . . . . . . . 25
3.4 The counts and frequencies of atoms classified by their Popelier atomic

groups on the surface and interior of the transferase protein . . . . . 26
3.5 The counts and frequencies of the residues on the surface and interior

of a transferase protein . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.1 The elastic net Popelier surface inner frequency model . . . . . . . . 47
5.2 Model from the Residue atomic interactions . . . . . . . . . . . . . . 48
5.3 Threshold residue atomic interaction model . . . . . . . . . . . . . . 50
5.4 Random forest weights for residue surface inner frequencies . . . . . . 62

6.1 Number of correlated covariates in each dataset . . . . . . . . . . . . 66

A.1 The Popelier atomic group classifications . . . . . . . . . . . . . . . . III

xiii



List of Tables

xiv



1
Introduction

The fundamental dogma of biology is that DNA is transcribed to RNA, which is
then translated to make proteins. Proteins are the machines of the cell; almost every
function that is done by or in the cell is performed by a protein. Proteins are made
of a string of amino acids which fold into a complex structure. The shape that the
protein folds into determines its function.

An enzyme is a specific type of protein that acts as a biological catalyst to speed
up a chemical reaction. Enzymes can function at different temperatures but have
an optimal temperature ("topt") at which they catalyze reactions most efficiently.
At temperatures higher than the optimal temperature, the catalytic rate decreases
because the protein begins to denature or unfold. At lower temperatures cataly-
sis proceeds more slowly because diffusion occurs more gradually as temperature
decreases.

Enzymes are used in industrial chemical reactions to make products with less
waste and less toxic byproducts than traditional manufacturing methods. For in-
dustrial purposes, it is desirable to create enzymes that can withstand high tem-
peratures. Because of the diffusion effect, chemical reactions proceed more rapidly
when the reaction temperature is increased. This makes the reaction more effi-
cient. Higher temperatures also help remove unwanted reaction byproducts (Vogt,
Woell, and Argos 1997). The enzymes that are used in industry are often the result
of genetic engineering because no enzyme from nature has been found to perform
the needed task at the desired speed. In order to avoid denaturation, the thermal
stability needs to be enhanced when the protein is designed.

The overall goal for this thesis is to find features from an enzyme that influence
the optimal catalytic temperature. A protein can be divided into amino acids, which
can be divided into atoms. It is the combination of the environment and interactions
of each atom that effectuate how the protein folds and functions. We hypothesize
that we should therefore be able to find meaningful information about protein’s
stability by examining them at the atomic level. We will examine the interactions
of the protein’s atoms with each other to try to predict the temperature at which the
enzyme is optimally functioning. Learning more about these features could inform
future protein engineering efforts.

In the background section (Chapter Two) we discuss protein structure and the
different chemical bonds which are present in proteins. These bonds affect general
protein stability. We also present different ways to classify the atoms into atomic
groups. In the theory section (Chapter Three) we discuss Delaunay triangulation
in order to find the nearest atomic neighbors. This is important because we hy-
pothesized that the environment of each atom was crucial to understanding protein
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1. Introduction

stability. In Chapter Four we present the statistical methods that were used to
analyze the dataset. The results and conclusion are covered in Chapters Five and
Six.
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2
Background

2.1 Protein Structure
The primary structure of a protein is the order of its amino acids. Each amino
acid has the same backbone with a nitrogen bonded to a carbon, which is bonded
to another carbon, which in turn is bonded to an oxygen (N-Cα-C-O). The first
carbon is the Cα as shown in Figure 2.1. The sidechain, or R group, is attached to
the Cα in the backbone and begins with another carbon (Cβ). The atoms in the
sidechain determine the amino acid identity. There are 20 standard amino acids
used by most organisms, so there are 20 standard side chains, each with different
atoms and properties. When multiple amino acids connect, the nitrogen connects
to an oxygen of the previous amino acid. This forms a chain along the backbone of
the amino acids (sometimes called the main chain).

Figure 2.1: The structure of the amino acid alanine in 3D from Kessel, Amit 2021.
Green represents carbon, blue represents nitrogen, red represents oxygen, and grey
represents hydrogen. All amino acids have a central Cα which is bonded to four
things: a hydrogen, a carboxyl group, an amino group, and a fourth group called
side chain. The side chain can vary and its composition determines which amino
acid it is.

The secondary structure of a protein is made by local folded structures (α-
helices and β-sheets) that form due to hydrogen bonds between the main-chain
peptide groups, as shown in Figure 2.2. An α-helix is formed by a hydrogen bond
between the backbone N-H hydrogen and the backbone C=O of an amino acid four
residues earlier in the primary sequence. α-helices are the most numerous local
structure in proteins. β-sheets are also generally made by a hydrogen bond between

3



2. Background

Figure 2.2: α-helices and β-sheets are formed by interactions of the side-chains of
amino acids. The R in the amino acid structure represents the side chain. Image
from OpenStax 2014.

the backbone N-H hydrogen and the backbone C=O. It is fairly simple to predict
the secondary structure based on only knowledge of the primary structure.

Tertiary structure is formed because of the interactions (ionic, hydrogen, and
Van der Waals bonds) between the side chains of the amino acids. They can form
between amino acids that are quite far from each other in the primary structure and
are hard to predict. Quaternary structure comes from multiple amino acid chains
interacting together. It is only present when there are multiple amino acid chains,
which is not always the case. It is also hard to predict.

An amino acid can be close in space to another amino acid that is far away
from it in the primary structure. If amino acids are far apart from each other in
the primary structure but close to each other in space after the protein folds, we
assume that they are important to protein domain architecture or are important
for substrate specificity. These amino acids are not covalently bonded together, so
they are not forced to be physically near each other. Instead, they are close because
that is the most energetically favorable configuration for the protein to take. The
non-covalent bonds that are formed by their association increase the stability of the
protein.

In this work, we will consider the environment of each atom in a protein. At
the atomic level, the space around a protein is very full of water molecules and other
substrates. Each atom is usually influenced only by things that are very close to it;
potential interaction from a faraway molecule in the protein will generally be blocked
by closer atoms in the surrounding water. There are some long-range electrostatic
interactions in proteins, but these are not considered in this.

4



2. Background

2.2 Bond Types

Protein stability is an important consideration because stable proteins can withstand
higher temperatures without denaturing, therefore, stable enzymes have higher op-
timal catalytic temperatures. In general, more rigid protein structures increase
protein stability (Vihinen 1987). This rigidity is caused by intramolecular interac-
tions. These interactions include covalent bonds, ionic bonds, hydrogen bonds, Van
der Waals bonds, and hydrophobic bonds (Vogt, Woell, and Argos 1997; Kopp and
Schwede 2004). These bonds are described below.

The strongest chemical bonds in a protein structure are covalent bonds. Cova-
lent bonds are formed as atoms fill their outer shell by sharing electrons with other
atoms. Covalent bonds connect the atoms in an amino acid and connect the amino
acids to each other. This type of bond is very hard to break. Cysteine an example
of an amino acid with a side chain that can form a covalent bond. Cysteine can
bond with another cysteine, creating a disulfide bridge (–CH2-S-S-CH2–). Disul-
fide bridges have been shown to increase protein stability (Boutz, Whitelegge, and
Yeates 2007).

Ionic bonds, or salt bridges, are formed when one positively charged atom
donates an electron to a negatively charged atom. The atoms then become attracted
to each other because they have opposite charges. In a protein, these bonds are not
as strong as covalent bonds because they take place in the presence of water, which
can break them. Salt bridges have been found to increase stability in many proteins
(Petsko 2001). The amino acids that are involved in salt bridges are the three
alkaline amino acids (arginine, lysine, and histidine) and the two acidic amino acids
(aspartic acid and glutamic acid). The ionic bonds have different strengths which
depend on the difference of the amino acids’ pKas (Xie et al. 2015).

Hydrogen bonds come from the electrostatic attraction from a hydrogen that
is covalently bonded to an electronegative atom (such as nitrogen or oxygen). This
results in a molecule that has a partial positive charge on one side and a partial
negative charge on the other. The partial positive charge of the molecule is attracted
to a partial negative charge of other molecules. These bonds can form in many
different places in a protein as well as with the surrounding water molecules. Each
amino acid forms on average two hydrogen bonds when the protein is folded (Gong,
Porter, and Rose 2011). A higher number of hydrogen bonds is associated with
protein stability (Vogt, Woell, and Argos 1997). The exposed polar surface is able
to form hydrogen bonds with water. An increase in polar fractional surface means
more hydrogen bonding with water and more energetic stability (Vogt, Woell, and
Argos 1997).

Van der Waals bonds are transient, weak bonds formed by attractions to oppo-
site charges. They are made by electrons which are constantly moving and creating
brief negative and positive charges. They can form between atoms that are packed
tightly together, which happens in the protein interior. Having a more compact
interior and therefore more Van der Waals bonds is associated with protein stability
(DeDecker et al. 1996).
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2. Background

2.3 Protein Stability

Different methods have been used to study protein thermal stability. One is to
compare the same protein from different organisms. Some of the organisms are
mesophiles which grow best at temperatures between 20 to 50°C, some are ther-
mophiles which prefer temperatures between 50 and 75°C, and some are psychrophiles
which prefer temperatures between 0 and 20°C (Hickey and Singer 2004). Proteins
are said to be more thermostable if they can withstand higher temperatures. By
comparing similar proteins from organisms with different preferred temperatures,
it is possible to see which parts of the protein are correlated with higher or lower
temperatures.

Another method used to study protein thermal stability is determining the
denaturation temperature, the temperature at which the protein begins to unfold
and break its non-covalent bonds. Harrington and Schellman first showed that
ribonuclease A becomes denatured at high temperatures and that this is reversible
when the temperature is lowered (Harrington and Schellman 1956). The denatured
proteins were chains of amino acids bonded together with only covalent bonds.
In this state, the proteins resembled strings rather than globular structures. The
proteins folded back into their original structures when the harsh conditions were
reversed. Thermal denaturation is now commonly used to study a protein’s stability.
It occurs when all or most of the tertiary structures have been disrupted (Petsko
2001). Having more weak bonds that hold a protein together increases a protein’s
stability. When the disruption temperature is higher, the protein is more stable
because it has more bonds holding it together.

The method that we will use to study protein stability is the optimal catalytic
temperature (topt). Only enzymes have a topt as other proteins do not catalyze
reactions. Up to a point, higher temperatures cause catalysis to occur more rapidly.
Diffusion, or the movement of particles in fluid, occurs more quickly at higher tem-
peratures. When the enzyme becomes too warm, the non-covalent bonds begin to
break and the protein begins to denature or unfold. This causes the catalytic rate to
decrease. The warmest temperature that an enzyme can endure while holding the
required shape will be the temperature when catalysis occurs the most quickly. This
can be measured by quantifying how quickly the substrate is converted at different
temperatures.

There is a problem with the way the optimal catalytic temperatures are mea-
sured. The temperature are not tested with one degree changes, but with gaps of
several degrees. Therefore, the optimal temperature histogram of our dataset is not
smooth as it should be, but bumpy. There are temperatures that are common to
test. Any enzyme with a topt close to that temperature will have that common tem-
perature selected as its topt, though it may be a little inaccurate. The histogram
of the data is shown in Figure 2.3. This is not a fatal flaw for analysis, but it will
make the results slightly less accurate.

6



2. Background

Figure 2.3: A histogram of the optimal catalytic temperatures in our dataset.
When the optimal catalytic temperature is tested, it is common to only test a few
temperatures, and not every possible temperature. This results in a histogram that
is not smooth as it should be, instead it has gaps in the temperatures that are
uncommon to test.
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2. Background

2.4 Context
The thermal stability of proteins is not due to a single cause, but instead to a
combination of all of the elements mentioned above as well as other factors (Petsko
2001). Many studies have compared a few related proteins and drawn conclusions
about what makes those proteins more or less stable. But now that so much work
has already been done to sequence and find structures for many proteins, there is a
large dataset of proteins available. This large dataset of proteins now allows us to
study larger trends and uncover new factors affecting thermostability.

Previous PhD and Master’s theses have focused on this problem and laid the
groundwork (G. Li et al. 2019; Ulfenborg 2020). This work will expand upon those
efforts. The first thesis from this group that predicted enzyme catalytic temper-
ature only used the amino acid frequencies, dipeptide frequencies and other basic
protein properties of different amino acids to predict the optimal temperature (G.
Li et al. 2019). They used protein sequence data from 7565 archaea, bacteria, fungi
and protozoa. The growth temperature of the organism was used as the optimal
catalytic temperature. This growth temperature is less accurate than an experimen-
tally measured optimal catalytic temperature because organisms can have different
temperatures in different locations. It used because it allowed for a much larger
number of sequences to be annotated. Most of these proteins did not have verified
structures, and therefore structural data was not used. Although the dataset was
imperfect, they were able to create a model with an R2 value of 0.48. They were
able to explain about half of the variation which was present in their dataset with
their model which used only information from the primary structure of the proteins.

The next thesis project used a set of proteins that had more accurate opti-
mal catalytic temperatures and known structures (Ulfenborg 2020). This thesis
used enzymes that had experimentally determined optimal catalytic temperatures,
which are much more accurate. Finding the optimal temperature for each enzyme is
time consuming and expensive and therefore there are many fewer enzymes in this
dataset compared to the first dataset. The position of each atom in each protein
was known for this dataset. Some of the protein structures were experimentally
verified with crystallography, which is exceedingly time consuming. Some of the
protein structures come from SWISS-MODEL or ModBase, where a computer gen-
erates the structure based on homologous (or related) proteins (Kopp and Schwede
2004; Pieper et al. 2004). This can only be done when similar proteins have exper-
imentally verified structures. Only 1903 enzymes had structural information and
measured catalytic optima.

Information from the physical structure of each protein was extracted, includ-
ing pairwise interaction between residues, contact order, radius of gyration, atomic
groups on the surface, and residue torsion angles. Each category of features was
analyzed separately as well as in different combinations of categories. When ana-
lyzed separately, the best category of features was a pairwise distance matrix and
the second best was the frequency of surface atoms. The pairwise distance matrix
measured how frequently different amino acid residues came into contact within the
protein. The surface atoms categorized each atom into different groups and then
found the frequency of each group on the protein surface.

8



2. Background

The goal of this project is to learn more about the previous features that per-
formed the best—the amino acid residue contacts and the surface atoms. Those
features looked promising, and perhaps a more detailed study of them will lead
to better results. The dataset used in the current project was very similar to the
dataset used by Ulfenborg 2020. The main difference with the current project was
the way the atoms were classified and how atomic interactions were counted.

There is a drawback to using the experimentally verified structures. Because it
is so time consuming to experimentally verify protein structures, many proteins do
not have verified structures. The computer generated structures are based on the
proteins with verified structures. This creates a set of homologous (related) proteins
that do not reflect the full diversity of possible protein configurations.

The problem of a non-diverse set of proteins led to poor results in another study.
Yang et al. 2019a compared 100 pairs of proteins which were almost identical. Each
pair consisted of a protein from nature (the wild-type protein) and a mutated ver-
sion of that protein. The wild-type protein had a higher denaturation temperature
than the mutant. They used only 9 different wild-type proteins, but 125 different
mutant proteins were paired with them. They tried to predict the difference in the
denaturation temperature for each pair. Their results indicated significantly over-
trained models with poor performance on the testing data. They concluded that
this was either due to their training data or the features they used to build models.
Due to only using mutations of 9 base proteins, merely a small part of the possible
protein configurations were sampled.

2.5 Atomic Group Classifications
In this project, we classified the atoms in three different ways: by their Tsai atomic
group, by their Popelier atomic group, or by their amino acid residue. An expla-
nation of each follows. The atoms were classified in hope that by classifying atoms
into groups it would be possible to see which parts of amino acids are most impor-
tant for protein stability. We hypothesized that we would get more accurate and
more understandable results by breaking the proteins down by their atomic groups
instead of by their amino acids. Thus, we would be able to see which parts of the
amino acids were interacting.

2.5.1 Tsai Atomic Groups
A protein is made of amino acids, each of which is composed of a different com-
bination of only five atoms: hydrogen, carbon, nitrogen, oxygen, and sulfur. The
position of the hydrogen atoms is usually not known in the experimental structures.
There are 13 ways to combine carbon, nitrogen, oxygen, and sulfate with different
numbers of hydrogen. Tsai et al. 1999, used each possible combination as an atomic
group and measured the size of each group. The group size includes the covalently
bonded hydrogen atoms that are always present but have not been included in the
positional data. The groups are therefore named by how many hydrogen atoms are
bonded to each atom and by their valency in the outer shell. For example, C3H0
is a carbon with three non-hydrogen covalent bonds. C4H3 is a carbon with three

9



2. Background

atomic group chemical formula radius (Å)
C3H0 -C< 1.61
C3H1 -CH- 1.76
C4H1 -CH< 1.88
C4H2 -CH2- 1.88
C4H3 -CH3 1.88
N3H0 >N- 1.64
N3H1 >NH 1.64
N3H2 -NH2 1.64
N4H3 -NH+

3 1.64
O1H0 =O or -O− 1.42
O2H1 -OH 1.46
S2H0 -S- 1.77
S2H1 -SH 1.77

Table 2.1: Atomic groups with their sizes from Tsai et al. 1999. Because the sulfurs
in cysteine form a covalent bond if and only if they are within 2.5 Å, these sulfurs
were examined. When two sulfurs were found to be within the threshold distance,
they were re-assigned from S2H1 to S2H0.

covalently bonded hydrogen atoms. Table 2.1 shows the size and composition of
each Tsai atomic group.

These groups contain a wide variety of atoms. C3H0, for example, contains
the alpha carbon from all amino acids, but it also contains the gamma carbon
from asparagine, aspartic acid, histidine, phenylalanine, tryptophan, and tyrosine,
the delta carbon from glutamine and glutamic acid, and part of the side chain in
tryptophan and tyrosine. These atoms are not bonded to the same things and do
not all have the same properties such as polarity or pKa. These groups were made
by Tsai to classify their atoms by their size, nothing more. We therefore decided to
try classifying the atoms with an additional atomic group.

2.5.2 Popelier Atomic Groups
Popelier and Aicken 2003 created a different way of categorizing atoms in which
each atom is classified according to the atoms it is covalently bonded to. Table 2.2
shows the 23 possible atomic groups. The actual classifications that were used for
each atom in each amino acid are included in the Appendix in Table A.1.

Popelier categorized many kinds of atoms. Some are not contained in amino
acids, and we therefore do not use all of their categories. There are 23 different
Popelier atomic groups which are found in amino acids. We hypothesized that the
Popelier groups would be more accurate than the Tsai groups. Each Popelier group
should have more properties in common than the Tsai groups because the atoms
are classified by the atoms they are bonded to and not by their sizes. There are
many more groups than in the Tsai atomic groups because there are many different
possible ways for each atom to bond.

The Popelier atomic groups may also be an imperfect system. A few of the
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2. Background

groups seem imperfect for our purposes, but we have used them as they were delin-
eated. One such group is C10, which contains the Cα of glycine, serine, and tyrosine.
It makes sense that the Cα from glycine has its own group, because it has no side
chain, but putting serine and tyrosine together with it is odd since they have side
chains. We think it would have made more sense to categorize the Cα in serine and
tyrosine as C8 with the other Cα.

2.5.3 Amino Acid Residue
This categorization is simple. The atoms were classified only by which amino acid
they were a part of. This is less precise than categorizing every atom by its type,
so our hypothesis was that this categorization would be less useful and have lower
scores than classifying the atoms by their atomic groups.
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2. Background

Atomic Group Coordination Description
C2 [H|H|H|C,S] Methyl bonded to C or S
C3 [H|H|C|C,S] Methylene bonded to C or S
C4 [H|C|C|C] Tertiary C
C7 [H|C|C|N] Cα in Lys
C8 [H|C|C|N] Cα in 16 amino acids
C9 [H|C|C|O] Cβ in Thr (secondary alcohol)
C10 [H|C,H|C|N] Cα in Gly, Ser, Tyr and methylene bonded to N
C12 [C|C|C,H] Olefinic, in conjugated ring
C14 [C|C|C] Olefinic, in conjugated ring
C15 [H|C|N] Enaminic C (C2 in indole) (C4,5 in imidazole)
C17 [H|N|N] C2 in imidazole
C18 [C|C|N,O] Bridge C in indole, Cα in phenol
C19 [C|N,O|O] Amidic/carboxy bonded to C
C21 [N|N|N] Guanidinic
O2 [C|H] Phenol O (ArOH) or hydroxy

oxygen in Glu and Asp derivatives
O3 [C|H] Alcohol O bonded to alkyl group
O4 [C] Keto O in the carboxy group
O5 [C] Amide O
N1 [H|C,H|C,H] tricoordinated and (nearly) tetrahedral
N2 [H|C,H|C,H] or Tricoordinated and largely planar or

[C|H] bicoordinated
S3 [C|H] S in Cys
S6 [C|C] S in Met
SS [S] Disulfide bridge

Table 2.2: Relevant atomic groups from Popelier and Aicken 2003. Vertical bars
separate the atoms bonded to carbon atoms and alternatives are separated by a
comma. The coordination contains the atoms that the central atom is covalently
bonded to. An extra group was created for disulfide bonds. When two sulfur atoms
were found to be within 2.5 Å of each other, they were reclassified as SS. This group
of sulfurs is covalently bonded together, forming a disulfide bridge.
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3
Theory

A protein is made of many atoms bonded together. We hypothesized that by study-
ing the environment of each atom we would be able draw conclusions about the
protein as a whole. In order to study the atoms’ environment, we measured how
each atom interacts with every other atom within the protein by finding the closest
atomic neighbors. Interactions with distant neighbors are blocked by atoms within
the protein and by the fluid in which the protein exists, therefore, atoms can only
interact with their close neighbors. We want to find the nearest atomic neighbor for
each atom in every direction. This will give a picture of the environment for each
atom.

Finding the neighbors in three-dimensions is difficult; this is not a simple nearest
neighbor problem. Most nearest neighbor algorithms such as K-Nearest Neighbors,
find one closest neighbor or a fixed number of close neighbors. Other algorithms find
all neighbors within a threshold distance. These algorithms are not optimal for our
purposes because there could be atoms in between supposed neighbors, blocking
their interaction. A Delaunay triangulation can provide the nearest neighbors in
every direction, and is not based on finding a certain number of neighbors. An
explanation of Delaunay triangulation follows.

3.1 Delaunay Triangulation

A geometrical triangulation is a subdivision of a planar object or a higher-dimensional
geometrical object into simplices. A given set P of discrete points in the geomet-
rical object are used as the vertices of the simplices. Points in two dimensions are
subdivided into two dimensional simplices, or triangles. Points in three dimensions
are subdivided into three dimensional simplices, or tetrahedrons. A Delaunay tri-
angulation is a special kind of triangulation with specific properties. In Delaunay
triangulation, the triangles are chosen such that no point is inside the circumcircle
of any triangle. Delaunay triangulations maximize the minimum angle of all of the
triangles in the triangulation (Lawson 1977). This means that the triangle that
is the nearest to an equilateral triangle will be preferred (Figure 3.1). Because of
this, Delaunay triangles usually avoid sliver triangles. A sliver triangle has a long,
thin shape, and would result in connection to a further-away point. As a result of
Delaunay triangulation, every point is connected to every close point. This provides
an elegant way to find the nearest neighbors.
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3. Theory

Figure 3.1: If there are multiple possible triangles for a set of points, the triangula-
tion that maximizes the minimum angle will be preferred. This will create triangles
more similar to equilateral triangles. In this graphic, the triangulation on the right
is preferred as it maximizes the smallest angle.

3.1.1 Delaunay Algorithms

There are many different possible ways to calculate a Delaunay triangulation. First
we will discuss a simple method and then a more complex method.

The flip algorithm is an easy-to-understand way of computing a Delaunay tri-
angulation. We begin with the set of points to be triangulated. It begins with the
property that a triangulation is Delaunay if and only if every edge in the triangu-
lation is locally Delaunay. A locally Delaunay edge is not always a Delaunay edge,
but if every edge in a triangulation is locally Delaunay, then all of the edges are
Delaunay edges. The flip algorithm constructs any triangulation, then chooses any
edge that is not locally Delaunay and flips it (Lawson 1977). This is repeated until
every triangle is Delaunay. Figure 3.1 shows a non-Delaunay triangulation being
flipped to become a Delaunay triangulation. It is possible that flipping one edge
will change what was formerly a Delaunay triangle into a non-Delaunay triangle.
Therefore, this can be a slow method. This algorithm is easy to understand, but
it takes O(n2) time (Hurtado, Noy, and Urrutia 1999) in the worst case. It will be
unreasonably slow for large numbers of points.

There is another property of Delaunay triangulation that has not been previ-
ously discussed. Given a set of P points in m dimensions, it is possible to project the
points onto a paraboloid of m+1 dimensions. This can be done by giving each point
p an extra coordinate p2, which will form a paraboloid shape. This process is known
as lifting. The paraboloid shape is a lower convex hull. When P is projected onto a
lower convex hull, the result is a curve made of flat Delaunay triangles. This is shown
in Figure 3.2. This property was discovered by Brown 1979. The paraboloid method
created an efficient algorithm for computing Delaunay Triangulation in O(n log(n))
time.

The algorithm we used is known as Quickhull or QHULL (Barber, Dobkin, and
Huhdanpaa 1996), which is a popular program. It finds the convex hull as well as the
Delaunay Triangulation in O(n log(n)) time while using less memory than Brown’s
version of the convex hull. It can also compute the convex hull in two, three, or four
dimensions.

14



3. Theory

Figure 3.2: When points are projected onto a lower parabola in one higher dimen-
sion, the result is a convex hull made of flat Delaunay triangles. This property also
holds for higher dimensions, thought it is difficult to visualize. Image from Gallier
and Quaintance 2017.

3.2 Distance from Delaunay Neighbor
In order to find the closest atomic neighbors, the atomic locations in three-dimensional
space were used as points for our Delaunay triangulations. This means the atoms
were simplified and modeled as having the same size. In reality, different atoms
(carbon, nitrogen, oxygen, etc) have slightly different sizes.

We define the neighborhood of any point as the set of points that the point is
connected to. We began our triangulation by numbering each atom uniquely. The
result of a Delaunay triangulation is a series of triangles, or in our case, simplices.
Each simplex is made of four numbered atoms. We defined neighbors as any atom
that was contained in the same simplex. There are usually multiple simplices that
contain any one atom. The neighbors for each atom were saved as a set of all of the
atoms which were found in the same simplex.

We will show how this was used with a toy example of 6 atoms. The atoms’
position are shown in Figure 3.3. Delaunay neighbors are given by their simplices.
The simplices for this toy example are: [1 5 0 4], [1 3 5 4], [1 3 2 4], and [1 3 2 0].
Anything in the same simplex is a Delaunay neighbor. The neighbors for the toy
example protein are shown in Table 3.1.

When atoms are Delaunay neighbors, there is no atom in the dataset directly
in between them blocking them from interacting. However, there could be atoms
that are not a part of the dataset that would be present in reality that could block
interactions. Proteins are found in a fluid made mainly of water. It is possible for
this fluid to block the interaction of atoms. This would result in atoms which were
Delaunay neighbors but were in actuality blocked from interacting with each other.

In order to solve the problem of non-neighbor interactions, the next step was
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Atom Number Neighbors
0 1, 2, 3, 4, 5
1 0, 2, 3, 4, 5
2 0, 1, 3, 4
3 0, 1, 2, 3, 4, 5
4 0, 1, 2, 3, 5
5 0, 1, 3, 4

Table 3.1: Delaunay neighbors for the toy example protein.

Figure 3.3: Right: The Delaunay triangulation for a toy example consisting of 6
atoms. Left: The Delaunay triangulation for the same 6 atoms with the Triominoes
closest water positions added (represented by the points above 5).
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to find a method to winnow the Delaunay neighbors that are not representative of
atomic interactions. One possibility would be to use a threshold to remove atoms
that are Delaunay neighbors but are actually far apart. In this case, any Delau-
nay neighbor greater than the threshold distance would be removed. We decided
against this method in favor of a more precise approach. Instead, a program called
Triominoes (Kemp 2019) was used to winnow the neighbors. Triominoes takes in
the position of each atom in a protein and calculates its size. Since the positions
of the hydrogen atoms are unknown, it uses the sizes found by Tsai et al. 1999 to
find the amount of space the atoms and their associated hydrogen atoms are taking
up. It then rolls a sphere the size of a water molecule (which has a radius of 1.5 Å)
over the surface of the protein, finding each place where the sphere can touch three
atoms at once. Each of those locations is the deepest place on the protein surface
that a water molecule can be found near the protein. The output of the program is
all of the locations where the sphere can touch three atoms at once. The result is
a net of points that hover just over the entire protein surface. We used this net of
points to winnow the neighbors from Delaunay triangulation and find which atoms
were actually interacting.

We used Delaunay triangulation combined with this net of points to in order to
winnow the neighbors. The Delaunay triangulation was calculated for the dataset
which consisted of the position of the atoms combined with the nearest sphere
positions. These positions are the closest positions that water molecules could fit
into the protein. Then any simplex that included a Delaunay probe position was
removed. This removes atoms that are Delaunay neighbors, but are not actually
interacting because a water molecule is blocking their interactions. The close sphere
positions follow the surface of the protein, so removing any simplex with a close
sphere position lets us break up large gaps between Delaunay neighbors without
setting an arbitrary threshold. It allows us to break up any far away contacts that
are on the exterior of the protein. Removing the simplices with water molecules
allows us to break up exterior connections and keep interior connections.

In the toy example none of the atoms are very far apart—the maximum distance
is 3.78 Å between atoms 2 and 4. After including the Triominoes water positions,
the Delaunay neighbors are the same except atoms 2 and 4 are no longer neighbors.
Atoms 2 and 4 were the furthest apart, and their interaction is blocked by atoms
1 and 3. We can also see there is a small convexity in the [1,2,3,4] simplex that is
causing the relationship between 2 and 4 to become broken after interacting with
water molecules. This is just a toy example, but we can see from Figure 3.4 that
this method does successfully remove the relationships between neighbors that are
far apart in a real protein.

Another method was also used to winnow the counts of atomic neighbors. The
most common interactions were removed from the counts of atomic group interac-
tions so that their numbers don’t overwhelm the other interactions and drown out
the signal. First, all atom contacts from the same amino acid were excluded. Sec-
ond, contacts that are between atoms belonging to the protein backbone (nitrogen,
carbonα, carbon, and oxygen) that are one amino acid before or after the current
amino acid in the primary sequence were also excluded. This removed the covalent
bonds from the dataset.
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Figure 3.4: Histograms of distances from Delaunay neighbor for the oxidoreductase
protein group III alcohol dehydrogenase (Elleuche et al. 2013). The left graph shows
all the distances from any Delaunay neighbor. The larger distances do not represent
atomic interactions and are not useful. The right graph shows distances when they
have been filtered by removing simplices with water positions. This graph shows the
distances before covalent bonds have been removed, which is why there are contacts
between 1-2A.

Atom Number Atom Name Amino Acid Tsai Atomic Popelier Atomic
Group Group

0 N HIS N3H1 N2
1 CA HIS C4H1 C8
2 CG HIS C3H0 C15
3 CB HIS C4H2 C3
4 C HIS C3H0 C19
5 O HIS O1H0 O5

Table 3.2: The atoms found in the toy example protein come from one amino acid
in a real protein. Their atomic groups have been included. When the atoms are
found to interact, then the atomic groups they belong to are found to interact.
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After finding and winnowing the Delaunay neighbors, the remaining neighbors
were counted to find which atomic groups were interacting. We will show how this
occurs with the toy example protein. The atoms and positions in the toy example
protein were taken from a real protein and can be categorized into atomic groups.
Their chemical composition and atomic group numbers are shown in Table 3.2.
When atoms 0 and 1 are found to be Delaunay neighbors, this means that N3H1 and
C4H1 interact once for the Tsai atomic groups and N2 and C8 interact once for the
Popelier atomic groups. When atoms 0 and 2 are found to be Delaunay neighbors,
this means that N3H1 and C3H0 interact once for the Tsai atomic groups and N2 and
C15 interact once for the Popelier atomic groups. All of the neighbors’ interactions
are added together to produce Figure 3.5. There are 13 unique relationships in the
toy example: 0-1, 0-2, 0-3, 0-4, 0-5, 1-2, 1-3, 1-4, 1-5, 2-3, 2-5, 3-4, and 4-5. If the
number of atomic interactions from the upper right triangle of the matrix of Figure
3.5 are added, they sum to 13. The atoms were also classified based on which amino
acid residue they belong to.

Since all the toy atoms come from the same histidine, once the atomic interac-
tions from within an amino acid are removed, there are no interactions left and the
atomic group interaction matrix is all zeros for every different grouping of atoms
that we have. In a normally sized protein, there would be interactions remaining
after same amino acid contacts are removed.

3.3 Atom Frequency Classifications
The frequencies of the atoms were examined in several different ways. First, the
atoms’ interactions were classified four different ways to create four different data
sets. They are classified by breaking them into Tsai and Popelier atomic groups
as well as by their residues (the residue interactions were calculated two different
ways). Second, the surface / inner frequencies were examined for the Tsai and
Popelier atomic groups and for the residues. The result is seven unique data sets
that classify atomic frequencies based on their composition and location. Each type
of interaction is described below.

3.3.1 Atomic Group Interaction
The first way that atoms were counted was by their interactions with nearby atoms.
The neighbors from Delaunay triangulation were used to find which atomic groups
are interacting. Three different ways of categorizing the atoms have been used with
these Delaunay neighbors: by the Tsai atomic groups, by the Popelier atomic groups,
and by the amino acid residues.

There are 13 different Tsai atomic groups and if they are combined in every
possible way, there are 13 + 12 + 11 + ... + 2 + 1 = 91 different Tsai atomic group
interactions to count. There are 23 Popelier atomic groups with 23+22+...+2+1 =
276 different possible Popelier atomic group interactions. There are 20 residues
which can create 20 + 19 + ... + 2 + 1 = 210 different possible residue interactions.
One matrix for each classification (sized 13x13, 23x23, and 20x20) was created to
count the atomic interactions.
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Figure 3.5: Upper: the Tsai atomic group interaction counts for the toy example
protein. Middle: the Popelier atomic group interaction counts for the toy example
protein. Lower: the residue interaction counts for the toy example protein. All
atoms come from the same amino acid, so they are all in one residue group, His-His.
There are 13 unique interactions and therefore the upper right triangle of all of the
matrices sums to 13. All of these atoms come from the same amino acid, so when
same-amino acid interactions are removed, the counts become zero for each group.
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After two atoms are found to be interacting, each atom is classified by which
atomic groups are interacting. Then the interaction is added to the total number of
interactions. For example, if an Cα from an Alanine is found to interact with a N
from an Alanine, the carbon is classified as C4H1 for the Tsai group and C8 for the
Popelier group. The nitrogen is classified as N3H1 for the Tsai group and N2 for
the Popelier group. Then one is added to each of the counts of C4H1-N3H1, C8-N2,
and Ala-Ala. The counts for one protein are found by looking at all close atomic
Delaunay neighbors, classifying each into their respective atomic groups, and then
counting each interaction one at a time.

In the end, there are three different matrices which have separately counted
their respective atomic group interactions. The Tsai atomic group interaction table
has 91 different atomic group interaction counts, the Popelier table has 267 atomic
group interaction counts, and the residue table has 210 residue interaction counts.
When they are displayed in a matrix where each row and column are the 13 different
atomic groups, it is symmetrical around the main diagonal–the upper left and lower
right values are identical because they represent the same group interactions. An
example of all three Delaunay counts for one protein is shown in Figure 3.6.

The atomic group interaction counts are dependent on the size of the protein.
A larger protein will have a higher count of every type of interaction. Therefore, to
normalize the counts, they were converted to frequencies. The frequencies were cre-
ated by dividing each atomic group interaction count by the total number of atoms
in the protein. The frequency was preferred in order to have a more universal mea-
sure of the interactions. The number of atoms was included as a separate variable
in each dataset.

The frequencies were calculated by finding the total of the upper right matrix
(including the main diagonal), which is the total number of atomic interactions. All
three categories for the atoms (Tsai, Popelier, and residue) had the same total count
of atoms. Then every cell was divided by that total. When all the frequencies of
either the upper right or lower left matrices are added, they sum to one. The atomic
interaction frequencies for an example protein are shown in Figure 3.7.

3.3.2 Atomic Threshold Residue Interaction
This method was first implemented in a previous master’s thesis by Ulfenborg 2020.
It was the best category of features from that thesis. The atomic interactions were
created to try to improve upon this feature set. This method was implemented in
the current study in order to compare it to the Tsai, Popelier, and Delaunay residue
atomic interactions.

The threshold residue-residue interactions determine how often any pair of
amino acid residues interact. Instead of considering the position of every atom
in an amino acid, only the Cβ were considered. Glycine does not have a Cβ, so
in its place its Cα was used. Delaunay triangulation was not used to find which
atoms were interacting. Instead, the distance between all Cβ was calculated and the
amino acids were considered to interact if the Cβ were less than 8Å apart. Adja-
cent residues were not included in the counts. Because only one kind of atom was
used, the only classification of atoms that was considered was the residues. There
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Figure 3.6: Delaunay atomic interaction counts for a transferase, the levansucrase
from Gluconacetobacter Diazotrophicus (uniprot id: Q43998). The top is the Tsai
interaction counts, the middle is the Popelier interaction counts, and the bottom is
the residue interaction counts. The matrices are symmetric along the main diagonal.
The 2 in the S2H0-S2H0 and SS-SS groups show that there are two separate disulfide
bonds in this protein. Carbon is the most common element in proteins, while sulfur
is rare. This is reflected in the atomic counts.
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Figure 3.7: The three different kinds of atomic interaction frequencies for the same
transferase protein as above. The top is the Tsai interaction frequencies, the middle
is the Popelier interaction frequencies, and the bottom is the residue interaction
frequencies. The matrices are symmetric along the main diagonal, and both the
upper and lower halves sum to one.
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Figure 3.8: The threshold residue interactions counts (above) and frequencies
(below) of the transferase protein shown previously. Only the residues with Cβs
that are within an 8 Å threshold are included. Because only one atom in each
residue is counted, the counts are lower than for the Delaunay method. Once the
counts are converted to frequencies, the methods become very similar again.

are a few different Cβ categorizations for the Tsai and Popelier atomic groups but
using these groups would not lead to interesting knowledge of how the atoms are
interacting, so these classifications were not used.

There are 20 different amino acid residues, so a matrix of size 20x20 was created
to count the interactions. When two amino acids were found to be interacting,
one was added to the count of those amino acid interactions. This matrix is also
symmetrical around the main diagonal. Figure 3.8 shows the threshold residue
counts and frequencies for one protein. In the end, there are 20+19+...+2+1 = 210
different possible amino acid interactions.

3.3.3 Surface Inner Atomic Frequencies
In addition to counting the interactions of the atoms, the frequencies on the atom
surface and interior were also considered. This began as a feature similar to a feature
from Ulfenborg 2020. Their second-best category of features was finding the counts
of the atomic groups on the surface of the protein and converting them to frequencies.
That paper used only the Tsai atomic groups to categorize the atoms. The current
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Tsai Atomic Group Surface Counts Inner Counts Surface Freq Inner Freq
C3H0 441 1034 0.0578 0.1354
C3H1 240 374 0.0314 0.0490
C4H1 422 697 0.0553 0.0913
C4H2 685 427 0.0897 0.0559
C4H3 248 253 0.0325 0.0331
N3H0 18 48 0.0024 0.0063
N3H1 381 660 0.0499 0.0864
N3H2 177 39 0.0232 0.0051
N4H3 14 0 0.0018 0
O1H0 712 585 0.0933 0.0766
O2H1 86 76 0.0113 0.0100
S2H0 2 14 0.0003 0.0018
S2H1 0 2 0 0.0003

Table 3.3: Counts and frequencies of atoms classified by their Tsai atomic group
on the surface and interior of the transferase protein used previously (uniprot id:
Q43998). Carbon atoms are the most common. The atoms that participate in a
disulfide bond were reclassified as S2H0.

work used the Tsai groups as well as the Popelier groups and the residues.
The work of calculating which atoms were on the surface and which were on

the interior of the protein was done by the Triominoes program (Kemp 2019; Lee
and Richards 1971). The program, as previously described, rolls a sphere over the
protein. Any atom that is touched by the probe is on the surface and any molecule
that is not touched by the probe is on the interior.

The frequencies of all three categories of groups on the inside of the protein
were also counted. The Tsai classification has 13 different groups, so 13 counts were
performed for the interior of the atom and 13 counts were done for the exterior.
The count for each group was divided by total number of atoms in the protein
and therefore the inner and outer frequencies of the Tsai groups sum to one. This
was done for the Tsai atomic groups (creating 13 + 13 = 26 different categories),
the Popelier atomic groups (creating 23 + 23 = 46 different categories), and the
residues (creating 20 + 20 = 40 different categories). The counts and frequencies
for an example protein are included in Tables 3.3, 3.4, and 3.5.
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Popelier Atomic Group Surface Counts Inner Counts Surface Freq Inner Freq
C2 246 243 0.0322 0.0318
C3 576 390 0.0754 0.0511
C4 43 117 0.0056 0.0153
C7 6 8 0.0008 0.0010
C8 371 488 0.0486 0.0639
C9 42 30 0.0055 0.0039
C10 69 91 0.0090 0.0120
C12 189 351 0.0247 0.0460
C14 18 120 0.0024 0.0157
C15 40 34 0.0052 0.0045
C17 24 4 0.0031 0.0005
C18 16 44 0.0021 0.0058
C19 369 832 0.0483 0.1090
C21 27 33 0.0035 0.0043
O2 191 39 0.0250 0.0051
O3 399 708 0.0523 0.0927
O4 30 12 0.0039 0.0016
O5 56 64 0.0073 0.0084
N1 237 75 0.0310 0.0098
N2 475 510 0.0622 0.0668
S3 0 2 0 0.0003
S6 2 10 0.0003 0.0013
SS 0 4 0 0.0005

Table 3.4: The counts and frequencies of atoms classified by their Popelier atomic
groups on the surface and interior of the transferase protein used previously (uniprot
id: Q43998). Atoms in a disulfide bridge are reclassified as SS.
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Residue Surface Counts Inner Counts Surface Freq Inner Freq
ALA 274 211 0.0359 0.0276
ARG 296 232 0.0388 0.0304
ASN 300 244 0.0393 0.0320
ASP 329 263 0.0431 0.0344
CYS 4 32 0.0005 0.0042
GLN 250 218 0.0327 0.0286
GLU 95 103 0.0124 0.0135
GLY 223 169 0.0292 0.0221
HIS 164 116 0.0215 0.0152
ILE 114 270 0.0149 0.0354
LEU 125 291 0.0164 0.0381
LYS 85 41 0.0111 0.0054
MET 20 76 0.0026 0.0100
PHE 205 455 0.0269 0.0596
PRO 258 204 0.0338 0.0267
SER 104 184 0.0136 0.0241
THR 207 297 0.0271 0.0389
TRP 64 188 0.0084 0.0246
TYR 171 333 0.0224 0.0436
VAL 138 282 0.0181 0.0369

Table 3.5: The counts and frequencies of the residues on the surface and interior
of the transferase protein used previously (uniprot id: Q43998).
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4
Methods

This project’s focus was to learn which features from enzyme structures can be used
to predict their optimal operational temperature and thereby learn which features
are important for protein thermostability. First, the data was cleaned and then
categorized in seven different ways: by the Delaunay Tsai atomic interactions (Tsai
AI), by the Delaunay Popelier atomic interactions (Pop AI), by the Delaunay residue
atomic interactions (Del Res AI), by the threshold atomic interactions (Thr Res SI),
and by the frequency of atoms on the surface and interior of the protein for the Tsai
(Tsai SI), Popelier (Pop SI), and residue groups (Res SI). Next, the correlations
of each dataset were inspected to determine if there were correlations that would
change the way that the datasets need to be analyzed. Finally, each dataset was
analyzed using four different regression methods: SVR, random forest regression,
elastic net regression, and group lasso regression. These methods are described in
more detail below.

4.1 Pre-processing
The protein structures were taken from three different repositories: SWISS-MODEL,
Protein Data Bank (PDB), and Modbase. Modbase is a database with protein
structure models which were simulated by MODPIPE (Pieper et al. 2004). SWISS-
MODEL is similar, it’s a database with protein structure models which were simlu-
lated by SWISS-MODEL (Kopp and Schwede 2004). PDB is a database of proteins
each of which has been experimentally determined though much painstaking work
and is therefore the most accurate (Berman et al. 2000). We are using proteins from
sources in addition to PDB to increase the size of our dataset. All enzymes from
those databases with experimentally verified optimal enzyme temperatures (topt)
were used in this project. The script to download the proteins was provided by
Martin Engqvist.

The data was pre-processed with a script written by Martin. Some of the
proteins have multiple chains or models. Only the first was used. There were 10
proteins that included the positions for the hydrogen atoms. Our methods assume
that we do not know the position of these atoms, so the hydrogen atoms were
deleted. Then the test / train / val split was done by Martin with a script. He used
CD-HIT (W. Li and Godzik 2006) to cluster the proteins based on their sequences.
All proteins which clustered together were assigned to the same data set to ensure
that the testing, training, and validation data sets were separate and did not contain
extremely similar proteins. The purpose of separating related proteins is to prevent
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data leakage. If related proteins are present both in the test and training sets, this
will result in scores that are better than they should be.

There are 218 proteins that have extremely similar homologs or multiple struc-
tures in our dataset. Many of the multiple versions were computationally simulated
proteins from SWISS-MODEL. These proteins were judged by the GMQE score if
it was available, or the QMEAN score otherwise. Only the highest quality protein
of the homolog group was kept in the dataset. When the homologs did not have
a verified physical structure, no quality score was available, so a Qmean score was
estimated using the SWISS-MODEL website and the protein with the highest score
was kept. Where there were experimental and simulated proteins available, the best
experimental proteins were kept. 316 homologous structures were removed. One
of the training proteins, P19515, had many atoms with unknown positions, leaving
a structure that was almost completely made of carbon atoms. This protein was
removed from the dataset. After pre-processing was completed, there were 1122
training proteins, 126 test proteins, and 131 validation proteins.

4.2 Collinearity
Collinearity occurs when two or more predictor variables have a linear relation-
ship. When different predictors are collinear, it means they share much of the
same information. The degree of collinearity can be measured with different scores.
Collinearity can cause problems with a regression analysis, particularly with the
interpretation of the covariates. When there is collinearity present in the data, the
estimates of the parameters are unstable; they can have large fluctuations with only
small changes in the sample. This means that the model is unstable and it is im-
possible to say which variables are most important (Dormann et al. 2013). This is
problematic for our analysis because the goal is to interpret the final model.

When covariates are correlated in a dataset, the methods needed to analyze
the dataset are different. Therefore, the correlations of the covariates within each
dataset were examined. Each dataset was analyzed separately to test its effective-
ness. Therefore, the correlation for each category was examined individually as well.
This allows us to compare this work to previous work. This was also done because
the correlation graph with all covariates is too large to view properly.

Correlation is generally thought to be problematic if there are covariates that
have Pearson correlation coefficients more extreme than 0.5 and -0.5 or alternately
0.7 and -0.7 (Dormann et al. 2013). Unfortunately, there are many correlations with
coefficients above that in our datasets. The correlation plots are shown in Figures
4.1 - 4.7.

There is a lower amount of correlation in the residue data categories (Figures
4.3, 4.4, and 4.7) than the graphs with the Popelier and Tsai atomic groups (Figures
4.1, 4.2, 4.5, 4.6). The amount of extreme correlation (greater than 0.7 or less than
-0.7) is much lower for the residue groups. The lower levels of correlation in the
residue groups could be due to the fact that the categories are less well defined.
Categorizing atoms by their residues groups together a wider variety of atoms than
categorizing based on atomic group. Perhaps this leads to a "smearing" effect which
lessens the amount of correlation.
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Figure 4.1: The correlation plot of each Tsai atomic interaction with every other
Tsai atomic interaction. Out of 4186 total correlations, there are 236 with coefficients
stronger than +/-0.5 and 85 with coefficients stronger than +/-0.7. The diagonal
correlation trends are created when an atomic group is correlated to itself. For
example, O1H0 interacting with O1H0, O2H1, S2H0, or S2H1 are all positively
correlated to each other. When more O1H0 is found, it is interacting more with
several groups.
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Figure 4.2: The correlation plot of each Popelier atomic group with every other
Popelier atomic group. There are too many variables to list their names readably.
The same diagonal trends from the previous plot are found in this plot. Out of
38,226 total correlations, there are 856 with coefficients stronger than +/-0.5 and
164 with coefficients stronger than +/-0.7.
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Figure 4.3: The correlation plot of each Delaunay residue atomic group with every
other Delaunay residue atomic group. The upper left blue box has all the proteins
that begin with alanine, the next blue box has all the proteins that begin with
arginine, and so on. It appears that the residue frequencies that contain the same
amino acid residue are correlated with each other. Out of 22,155 total correlations,
there are 87 with coefficients stronger than +/-0.5 and 4 with coefficients stronger
than +/-0.7. Although the residues are correlated with each other, this correlation
lower than the correlations found in the Popelier and Tsai atomic group interaction
datasets, especially at the more extreme values. The residues have very strong
diagonal trends–they are very correlated with themselves, though the strength of
the correlation is low.
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Figure 4.4: The correlation plot of each threshold residue atomic group with
every other threshold residue atomic group. This correlation plot is nearly identical
to the previous plot, indicating that the Delaunay and threshold residue atomic
interactions are very similar. Out of 22,155 total correlations, there are 147 with
coefficients stronger than +/-0.5 and 5 with coefficients stronger than +/-0.7.
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Figure 4.5: The correlation plot of each Tsai atomic group frequency on the protein
surface and inside the protein. Most if the internal frequencies are correlated with
each other and most of the surface frequencies are correlated with each other. Out
of 351 total correlations, there are 91 with coefficients stronger than +/-0.5 and 42
with coefficients stronger than +/-0.7.
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Figure 4.6: The correlation plot of each Popelier atomic group frequency on the
protein surface and inside the protein. Most if the internal frequencies are correlated
with each other, and most of the surface frequencies are correlated with each other.
Out of 1081 total correlations, there are 173 with coefficients stronger than +/-0.5
and 47 with coefficients stronger than +/-0.7.

36



4. Methods

Figure 4.7: The correlation plot of each residue frequency on the protein surface
and inside the protein. Most if the internal frequencies are correlated with each
other, and most of the surface frequencies are correlated with each other. Out of
861 total correlations, there are 9 with coefficients stronger than +/-0.5 and 1 with
a coefficient stronger than +/-0.7.
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There is a high degree of multicollinearity in these datasets. These datasets are
compositional–made of things that sum to 1. Compositional datasets are collinear
because when there is more of something, there must necessarily be less of another
Dormann et al. 2013. There may be an amount of intrinsic collinearity as well.
Perhaps some atoms are often found near each other because of the chemical bonds
in proteins. We did lessen this by excluding any atoms in the same amino acid
and any atoms in the protein backbone of neighboring amino acids, but a lot of
correlation persists.

4.3 Regression Methods
Regression is the best method to use for our analysis because we want to know
which covariates are the most useful in predicting the optimal temperature. This
could reveal which parts of the protein structures are most essential for maintaining
structural integrity. Regression is appealing because the covariates are interpretable–
it is possible to analyze the covariates and find the strength of their effect, as well
as if they positively or negatively affect the optimal temperature.

Traditional ordinary least squares (OLS) regression is not able to accurately
analyze a dataset with correlated covariates. Therefore, different regression meth-
ods were used which were purportedly better. These methods were: random forest
regression, support vector regression (SVR), elastic net regression, and group lasso
regression. Elastic-net and group lasso are forms of linear regression that are use-
ful for this dataset because they can perform model selection and treat correlated
covariates in the same way. They are forms of regularized regression. Regularized
regression adds a penalty to the OLS regression. This means feature selection (de-
ciding which covariates will be included in the model) becomes part of the model
estimation process. Choosing a model with a smaller number of variables is desir-
able when there are datasets with many features (also known as covariates) because
it will create a more manageable model which is easier for humans to understand.
Elastic net is a combination of two common kinds of regularized regression: lasso
regression and ridge regression. Support vector regression and random forest regres-
sion are quite different from (OLS) regression. All of these methods are explained
below.

4.3.1 Ordinary Least Squares Regression
Ordinary least squares (OLS) regression assumes that the relationship between the
dependent variable y and the independent variables X is linear. There is also an
assumed error ε which adds random noise to the relationship. The model takes the
form:

y = β0 + β1xi1 + ...+ βpxip + εi = xiβ + εi, i = 1, ..., n

This can be be summarized by writing it in matrix notation

y = Xβ + ε
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In the matrix notation, y is a vector of values yi (i = 1...n) called the dependent
variables. X is an n × p matrix of row-vectors xi called the independent variables.
The βs form a p-dimensional vector also known as the regression coefficient. They
are the numbers by which the data values x are multiplied. They are chosen so as
to minimize the distance between the actual and predicted data. The variable ε is
also a vector of values εi called the error or noise. These variables are all included
in the different regression variants, and they have the same meanings. Often when
the formulas are discussed, the error ε is not included, but it is always assumed to
exist.

4.3.2 Ridge Regression
Ridge regression was introduced by Hoerl and Kennard 1970. It begins with the
OLS equation with a penalty added to regularize the data.

β̂ridge(λ) = argmin ||y −Xβ||22 + λ||β||22

where λ is a hyper-parameter between 0 and 1 that determines the strength of the
penalty, the lower 2 on the penalty term indicates the use of Euclidean norm, and the
upper 2 means it is squared. The penalty term λ||β||22 constrains the β parameters.
When λ is high, the β values are penalized when they grow large. A λ value close
to zero means that the βs are not penalized very much. Although the β values are
smaller, ridge regression does not set any β coefficients equal to zero.

Ridge regression uses the L2 norm, or Euclidean distance. Because the ridge
penalty is convex, it exhibits a grouping effect where highly correlated variables
have similar coefficients (Zou and Hastie 2005). Ridge regression is good at treating
correlated variables in the same way—their β coefficients will be similar. This is a
beneficial outcome of ridge regression. However, it also has the negative property
of being non-parsimonious because all covariates are included in the model. Using
ridge regression by itself for this dataset would result in a very large model (with all
variables included) that is hard to interpret. Therefore, another penalty, the lasso
penalty, was added for model selection.

4.3.3 Lasso Regression
Lasso regression begins with the same OLS equation as linear regression but adds a
different penalty than ridge regression.

β̂lasso(λ) = argmin ||y −Xβ||22 + λ||β||1

The λ value again indicates the strength of the penalty to the β values. When it
is large (close to 1), the β values are smaller. The subscript 1 on the penalty term
indicates the use of the L1 norm. Lasso regression uses the L1 instead of the L2
norm; it uses Manhattan distance instead of Euclidean distance. Because of this,
many coefficients are forced to become zero and a sparse solution is produced. If any
of the variables are not very useful, their β coefficients will become zero instead of
just being a small number. As a result, are fewer variables in the final model, which
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makes the model more simple and more useful for interpretation. This property
means that lasso regression is useful for model selection.

A lasso has some potential problems. Each variable is considered separately,
and therefore correlated variables are not necessarily treated in the same way. When
a cluster of variables has high pairwise correlation, the lasso arbitrarily selects only
one variable from the cluster (Zou and Hastie 2005). If there are many non-relevant
variables that are correlated with relevant variables, this can lead to the selection
of a non-optimal model.

4.3.4 Elastic Net
Elastic Net regression was introduced by Zou and Hastie 2005 and combines the
lasso regression penalty with the ridge regression penalty.

argmin
β

1
2
∣∣∣∣∣∣y −Xβ∣∣∣∣∣∣2

2
+ λ

(1− α
2 ||β||22 + α||β||1

)

This is a hybrid of the L1 and L2 norms. The ridge penalty ensures that all
correlated variables have similar coefficients. The lasso penalty picks just a few of
the terms to have a coefficient and and makes the rest equal 0. This combination
of both penalties means elastic-net regression groups correlated covariates together
and either keeps or eliminates the group as a whole.

There are two hyper-parameters to optimize when using elastic net. The first
is α, which is a measure of the mix of the lasso (L1) and ridge (L2) penalties.
When α = 0 then ridge regression is performed and when α = 1, lasso regression
is performed. Any number in between will result in an elastic net regression with
a mix of the ridge and lasso penalties. When α is closer to 0, the penalty is most
similar to ridge regression, with only a little lasso regression used. The second is λ,
which is a measurement of how much the data is regularized. When λ is high, the
coefficients are forced to have a normal distribution with a mean of 0. The model
will be more simple. A low λ (close to 0) will result in β coefficients that have a
flatter distribution. When λ is 0, the penalty terms have no effect and coefficients
are not regularized–it is the same as performing ordinary least squares. Their values
will be more similar to each other and few of them will become 0, resulting in a more
complex model. λ has no upper limit, but a value of 5 would be quite high.

4.3.5 Sparse Group Lasso Regression
Group lasso regression is similar to elastic net regression in that it is a version of
penalized linear regression. The difference is that there are user-defined groups that
are input into the equation. These groups are forced to have similar coefficients.
This can be useful because when groups form in data, the whole group should be
treated similarly. Similar variables should either be in the model together or be
forced to have a coefficient of 0. The elastic net can find correlated clusters, but
only does so for highly correlated variables.
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Group lasso from Yuan and Lin 2006 solves:

argmin
β

1
2
∣∣∣∣∣∣y −Xβ∣∣∣∣∣∣2

2
+ λ

K∑
k=1

∣∣∣∣∣∣Bk

∣∣∣∣∣∣
2

where Bk is a vector of coefficients βi for the k-th group and λ is a measure of how
much the data is regularized. By regularizing, group lasso encourages the clusters
of variables to have a β coefficient of zero or non-zero with similar coefficients.

Sparse group lasso from Simon et al. 2013 gives us sparsity of groups and within
each group. β can be zero for a whole group but for the groups that are non-zero,
some of the β coefficients are still allowed to be set to zero. The equation for sparse
group lasso is

argmin
β

1
2n

∣∣∣∣∣
∣∣∣∣∣y −

m∑
l=1

X(l)β(l)
∣∣∣∣∣
∣∣∣∣∣
2

2
+ (1− α)λ

m∑
l=1

√
pl
∣∣∣∣∣∣β(l)

∣∣∣∣∣∣
2

+ αλ||β||1

where X(l) is the submatrix of X with columns corresponding to the predictors in
group l, β(l) is the coefficient vector of that group, pl is the number of covariates in
group l, and λ is the regularization coefficient. α ∈ [0, 1] is a convex combination of
the lasso and group lasso penalties (where α = 0 has a group lasso fit and α = 1 has
a lasso fit). It is different from elastic net because the L2 penalty is undifferentiable
at zero, which means the β values for some groups are set to zero and completely
removed from the model. This will result in a parsimonious model.

4.3.6 Random Forest Regression
Random forest regression is quite different from OLS regression. A random forest
is made by combining many decision trees. An example of one decision tree is given
in Figure 4.8. This tree examines different features of real trees and predicts an age
in years. A random forest is made of many trees, each of which includes different
features. Random forest regression calculates the average of all of the decision trees’
predictions to create an estimate. The result is not a straight line predicting the
outcome, as would be returned from linear regression, but a line with many steps
and jumps, as seen in Figure 4.9. This creates a model that can fit the training data
very well, but there is also a danger of overfitting the data, especially when there is
correlation in the data. Correlation in the data can cause the correlated covariates
to be over-weighted in a random forest model (Tolosi and Lengauer 2011). The
resulting model is less accurate.

We are mainly interested in performing regression so that we may interpret the
model. Interpreting the results of a random forest can be difficult because it is an
amalgamation of many decision trees. One decision tree alone with a depth of 10 can
contain thousands of decision boundaries. Combining many together in a random
forest is more difficult. It is possible to partially interpret them by following the
paths in the forest that lead to particular y-values. We can see which explanatory
variables lead to the decision with the software package treeinterpreter (Saabas,
Ando 2015). This does not lead to a perfect understanding of the model but can
reveal a glimpse of what it is doing.
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Figure 4.8: An example decision tree. This tree predicts the age of a tree in years.
A decision tree begins at the root node. Branches examine one variable at a time
and the leaf nodes contain the final outcomes.

4.3.7 Support Vector Regression
Support vector regression (SVR) performs linear regression in higher dimensional
space. Support vector machines uses the kernel-trick to project the data to a higher-
dimensional space (Awad and Khanna 2015). It then fits the data to a hyperplane
(or a multidimensional line). The hyperplane y = βX + b + ε is created where ε is
the distance from the hyperplane. When ε is added, a tube is formed around the
function. Any errors that are within the tube are ignored, and errors outside the tube
are penalized. Changing the value of ε changes the radius of the tube. Support vector
regression uses all of the training data to choose the optimal hyper-parameters.
After the hyper-parameters are chosen, SVR uses a subset of the training data,
called support vectors, for future prediction (Awad and Khanna 2015). Support
vector regression is often better than simple linear regression at making predictions
because it can easily capture non-linearity.

4.4 Scoring
Different scoring methods were used to find the best models and to compare the
models to each other.

The Mean Squared Error, or MSE, is the sum of the squared residuals.

MSE =
∑n
i=1(yi − ŷi)2

n− 2
The residuals are the difference between what the model predicts and what the

response variable actually is. RMSE is the square root of the MSE. It was used
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Figure 4.9: This is an example of the boundary line for a decision tree regressor
and a random forest regressor. The resolution of a decision tree regressor depends
on the max depth the tree is allowed to have. We have a decision tree with a max
depth of 2, which is under-fitting the data, and a decision tree with a max depth
of 5, which is over-fitting that data. The under-fit tree (light blue) has a boundary
that doesn’t capture all of the points because it is not flexible enough. The over-fit
tree (dark blue) is too flexible and moves to fit every data point, which will not
generalize well. The random forest tree (red) is a better fit for the data because it
averages many decision trees.
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during the model selection process.
R2 is used to evaluate the results after the final models are selected.

R2 = 1− Unexplained Variation
Total Variation

The highest possible value is 1, and getting that score would mean that the
model explains every change in the response variable. If the score is lower than 1,
there are things that are not accounted for in the model that cause the response
variable to have a different value than expected.
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Results

The protein structures have been analyzed in seven different ways: by their De-
launay Tsai atomic interactions (Del Tsai AI), by their Delaunay Popelier atomic
interactions (Del Pop AI), by their Delaunay residue atomic interactions (Del Res
AI), by their threshold residue atomic interactions (Thr Res AI), by their Tsai sur-
face inner frequencies (Tsai SI), by their Popelier surface inner frequencies (Pop
SI), and by their residue surface inner frequencies (Res SI). The number of atoms
were added to every dataset except for the threshold residue atomic interaction,
because the threshold method didn’t use all the atoms. The seven datasets were
analyzed in four different ways–with Support Vector Regression (SVR), Random
Forest Regression, Elastic Net Regression, and group lasso regression.

Three of the methods that were used come from SciKit-learn (Pedregosa et al.
2011) (SVR, Random Forest, and Elastic Net). For these methods, grid search
with 5-fold cross-validation was used to find the optimal hyper-parameters. Group
lasso was installed separately as its own package (yngvem 2019). Grid search was
implemented manually for this method. The root mean squared error (RMSE) was
used as the criterion for goodness of fit during training for all methods. The models
with the lowest RMSE for each dataset were selected as the best models, and then
the testing and training R2 values were calculated.

5.1 Elastic Net
A grid search was performed using 5-fold cross validation to find the best hyper-
parameters with 15 evenly spaced α values from 0.01 to 1 (values less than 0.01 are
unstable for SkiKit Learn) and 15 evenly spaced lambda values from 0.01 to 1.5.

The best hyper-parameters for each data category were:
1. All data combined
λ: 0.54, l1 ratio / α: 1
R2 train: 0.48, R2 test: 0.37

2. Tsai AI λ: 0.33, l1 ratio / α: 0.43
R2 train: 0.21, R2 test: 0.21

3. Popelier AI λ: 0.65, l1 ratio / α: 0.86
R2 train: 0.27, R2 test: 0.21

4. Residue Del AI λ: 0.54, l1 ratio / α: 0.51
R2 train: 0.38, R2 test: 0.28

5. Residue Thr AI λ: 0.44, l1 ratio / α: 0.79
R2 train: 0.38, R2 test: 0.28
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Figure 5.1: The R2 values for elastic net regression for different categories of data.
There is not over-fitting from this method as the training R2 scores are not very
much higher than the testing R2 scores. The best performing category is the whole
dataset. The best sub-categories are: first, the Popelier Surface Inner Frequencies,
and second, the residue interactions (both the Delaunay and Popelier score almost
exactly the same.)

6. Tsai Surface Inner Freq λ: 0.01, l1 ratio / α: 1.0
R2 train: 0.21, R2 test: 0.23

7. Popelier Surface Inner Freq λ: 0.01, l1 ratio / α: 1.0
R2 train: 0.32, R2 test: 0.29

8. Residue Surface Inner Freq λ: 0.22, l1 ratio / α: 0.93
R2 train: 0.32, R2 test: 0.24
The R2 results are shown in Figure 5.1. The whole dataset combined scores

higher than any one piece. This method does not over-fit very much on the training
dataset and is easy to interpret, so the best models will be examined despite their low
scores. The models that have the highest R2 testing values are the Popelier Surface
Inner Frequency at 0.29, and the Residue Atomic Interactions (both the threshold
and Delaunay versions), which both have a testing R2 value of 0.28. The coefficients
with the most extreme values (positive or negative) have the most influence on the
model. Negative values mean an inverse correlation with the explanatory variable,
temperature.

First, the Popelier Surface Inner Frequency will be examined. The whole model
is shown in Figure 5.1 The most extreme value for the Pop SI is for O3. O3 comes
from an alcohol O bonded to an alkyl group. It is present only in serine and thre-
onine, both of which are polar amino acids. It is interesting that the presence of
an O3 is most important when it is on the exterior of the protein, but it is also
important when it is on the interior. It has negative values both times, therefore it
is associated with protein instability. Threonine on the protein surface was found
to be important by the random forest residue surface inner frequency model, but it
had a positive value then. The next most extreme value is for C10, which is located
on the Cα in glycine, serine, and tyrosine. It has a strong positive value when found
on the interior and surface.

The second category of data that will be examined is the residue atomic in-
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Atom Type β coef value Atom Type β coef value
O3 sf -13.411 C8 if 0.694
O3 if -7.577 number atoms 0.865
C21 sf -6.076 SS sf 0.956
C2 sf -5.418 C12 sf 1.072
C19 sf -5.181 C18 sf 1.239
C17 sf -4.472 C14 if 1.391
C3 if -4.339 S6 sf 1.501
S3 if -3.237 C15 if 1.538
C19 if -3.039 C14 sf 1.568
C3 sf -2.96 C7 if 1.694
C21 if -2.489 SS if 1.773
C12 if -2.449 C2 if 2.102
N1 if -1.916 O4 if 2.113
O2 sf -1.736 S6 if 2.358
C17 if -1.511 N2 sf 2.511
S3 sf -1.277 O5 sf 3.363
O4 sf -1.067 C9 if 3.565
N1 sf -0.429 O5 if 3.637
O2 if -0.132 C4 if 4.842
C8 sf 0 C4 sf 6.275
C15 sf 0 C9 sf 7.024
C18 if 0 C10 sf 7.832
N2 if 0 C10 if 8.14
C7 sf 0.095

Table 5.1: The Popelier Surface Inner Frequency had the best training R2 scores
out of all of the elastic net models. The β coefficients are listed in order from smallest
to greatest. Sf stands for surface frequency and if stands for inner frequency. There
are few enough covariates in this dataset that all coefficients have been shown. The
amount of O3 and C10 on the surface and the interior have the biggest influence in
this model.
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teractions. Cys-Cys (1.84) has the highest positive score, which confirms that the
model is working well, as the presence of disulfide bridges is known to be stabilizing.
The next highest score is for the number of atoms (1.31), meaning that a larger pro-
tein is more stable. The next most positive interactions are Glu-Val (1.25), Ile-Tyr
(1.23), and Glu-Tyr (1.17). The interactions that most negatively affect the model
are Gln-Lys (-1.55), Cys-Ile (-1.36), Pro-Ser (-1.36), Cys-Leu(-1.11) and Arg-Gln
(-1.09).

Table 5.2: Coefficients with non-zero values from residue-residue Delaunay atomic
interactions. There are 211 coefficients in the full model, but only 117 in the final
model. The 10 most extreme values are darker blue and the 10 next extreme are
lighter blue.

interacting amino acids β coef value interacting amino acids β coef value
ALA-ARG -0.05 GLN-MET -0.018
ALA-ASP -0.785 GLN-PHE -0.541
ALA-CYS -0.985 GLN-PRO 0.551
ALA-GLU -0.609 GLN-SER -0.07
ALA-GLY -0.195 GLN-THR -0.232
ALA-ILE 1.056 GLU-GLU 0.355
ALA-LYS -0.006 GLU-GLY 0.24
ALA-PHE 0.161 GLU-HIS 0.247
ALA-PRO -0.149 GLU-ILE 0.548
ALA-SER -0.091 GLU-LEU 0.493
ALA-TYR 0.605 GLU-LYS 0.177
ALA-VAL 0.238 GLU-PRO 0.906
ARG-ARG -0.021 GLU-SER -0.496
ARG-ASN -0.048 GLU-TRP 0.409
ARG-CYS -0.331 GLU-TYR 1.172
ARG-GLN -1.094 GLU-VAL 1.254
ARG-GLU 0.871 GLY-HIS -0.316
ARG-GLY 0.194 GLY-PHE 0.021
ARG-HIS -0.292 GLY-TRP 0.328
ARG-MET -0.211 HIS-LEU -0.247
ARG-SER -0.935 HIS-LYS -0.695
ARG-THR -0.813 HIS-PRO -0.053
ARG-TRP -0.54 HIS-SER -0.277
ARG-VAL 0.529 HIS-TYR -0.217
ASN-CYS 0.142 HIS-VAL -0.583
ASN-GLN -0.642 ILE-ILE 0.655
ASN-GLY 0.029 ILE-MET -0.269
ASN-HIS -0.766 ILE-PHE -0.391
ASN-ILE -0.072 ILE-PRO 0.282
ASN-LEU -0.399 ILE-SER -0.121
ASN-LYS -0.075 ILE-TYR 1.228
ASN-PHE -0.814 LEU-LYS 0.717
ASN-TRP 0.217 LEU-MET -0.167
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ASN-VAL 0.104 LEU-SER -0.492
ASP-CYS 0.503 LEU-THR -0.585
ASP-GLN -0.247 LEU-TYR -0.345
ASP-GLU -0.097 LEU-VAL 0.209
ASP-LEU -0.611 LYS-MET 0.429
ASP-LYS -0.429 LYS-VAL 0.591
ASP-MET 0.027 MET-PRO 0.175
ASP-PRO 0.062 MET-SER -0.668
ASP-TYR 0.244 MET-THR 0.399
ASP-VAL 0.087 MET-TRP -0.062
CYS-CYS 1.836 PHE-PHE 0.015
CYS-GLN 0.474 PHE-TYR 0.653
CYS-GLU -0.826 PRO-PRO 0.168
CYS-GLY -0.441 PRO-SER -1.359
CYS-ILE -1.36 PRO-THR -0.797
CYS-LEU -1.112 PRO-TYR 0.375
CYS-LYS -0.095 PRO-VAL 0.157
CYS-MET -0.103 SER-THR -0.417
CYS-PHE -0.695 SER-TYR -0.252
CYS-VAL -0.486 SER-VAL -0.429
GLN-GLU -0.313 TRP-TYR 0.082
GLN-GLY 0.691 TYR-TYR -0.202
GLN-HIS -0.342 TYR-VAL 0.657
GLN-ILE -0.691 VAL-VAL 0.799
GLN-LEU -0.958 num atoms 1.309
GLN-LYS -1.55

The third category of data that will be examined is the threshold residue atomic
interactions. The full model is shown in Figure 5.3. The model is a bit different
from the Delaunay interaction model even though the R2 scores are so similar. The
highest score is for Arg-Glu (1.87) which has a negative value in the Delaunay model.
Ile-Tyr (1.72), Cys-Cys (1.70), Glu-Val (1.25), and Ala-Ile (1.35) have strong values
in both models. Pro-Ser (-1.92) and Cys-Ile(-1.78) have about the same values as in
the Delaunay model. Cys-Glu (-1.52), Gln-Phe (-1.30), and Arg-Ser(-1.224) have a
much stronger values in the threshold than Delaunay model. If these models were
really accurate, they should have similar scores for the same amino acid interactions.
Some of the scores are the same, and these are probably the more trustworthy results.
Alanine, isoleucine, and cysteine are α-helix promoters (Adams et al. 2002), which
may explain the Ile-Tyr and Ala-Ile relationships. Proline and glycine can be helix
breakers, which may explain the Pro-Ser relationship. Glutamic Acid and Arginine
have a strong ionic bond. It is interesting that Aspartic Acid and Arginine are not
present in the model at all, though they have the strongest ionic bond. The way that
we measured the amino acid interactions does not ensure that there was a bond,
only that one atom from the amino acid was about 8A or less from an atom in the
other amino acid.
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Table 5.3: Covariates with non-zero values from threshold residue-residue atomic
interactions. There are 211 coefficients in the full model, but only 91 are in the final
model. The 10 most extreme values are darker blue and the 10 next extreme are
lighter blue.

interacting amino acids β coef value interacting amino acids β coef value
ALA-ARG -0.193 GLN-LYS -1.091
ALA-ASP -0.793 GLN-PHE -1.297
ALA-CYS -0.725 GLN-SER -0.071
ALA-GLN -0.257 GLN-TRP 0.222
ALA-GLU -0.731 GLN-VAL -0.067
ALA-ILE 1.345 GLU-GLU 0.016
ALA-LYS -0.198 GLU-HIS 0.19
ALA-THR -0.118 GLU-ILE 0.529
ALA-TYR 0.356 GLU-LEU 0.339
ALA-VAL 0.684 GLU-LYS 0.664
ARG-ARG -0.357 GLU-PRO 1.258
ARG-CYS -0.163 GLU-THR -0.176
ARG-GLN -0.165 GLU-TRP 0.424
ARG-GLU 1.87 GLU-TYR 0.49
ARG-LYS 0.077 GLU-VAL 1.481
ARG-SER -1.224 GLY-PHE -0.016
ARG-THR -1.163 GLY-TRP 0.531
ARG-TRP -0.429 HIS-ILE -0.113
ARG-TYR 0.417 HIS-LEU -0.316
ASN-ASP 0.21 HIS-LYS -0.653
ASN-GLN -0.385 HIS-MET -0.216
ASN-GLU -0.266 HIS-SER -0.001
ASN-HIS -0.997 HIS-TYR -1.124
ASN-LEU -0.397 HIS-VAL -0.779
ASN-LYS -0.434 ILE-ILE 0.423
ASP-CYS 0.854 ILE-TYR 1.722
ASP-GLN -0.047 LEU-LYS 0.904
ASP-ILE -0.348 LEU-MET -0.245
ASP-LEU -0.327 LEU-SER -0.316
ASP-LYS -0.315 LEU-THR -0.719
ASP-PHE 0.125 LEU-VAL 0.031
ASP-TRP 0.592 LYS-TYR 0.085
ASP-VAL -0.386 MET-SER -0.937
CYS-CYS 1.696 MET-THR 0.615
CYS-GLN 0.197 PHE-TYR 1.025
CYS-GLU -1.524 PRO-SER -1.917
CYS-ILE -1.798 PRO-THR -0.048
CYS-LEU -0.916 PRO-TYR 1.267
CYS-LYS -0.088 SER-THR -0.586
CYS-PHE -0.64 SER-TYR -0.579
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CYS-VAL -0.205 THR-TYR -0.191
GLN-GLU -0.572 THR-VAL 0.266
GLN-GLY 0.627 TRP-TRP 0.068
GLN-HIS -0.628 TYR-VAL 0.824
GLN-ILE -0.29 VAL-VAL 1.211
GLN-LEU -0.797

5.2 Group Lasso
Group lasso requires that the groups of covariates be predefined before running. In
order to find which groups of covariates were correlated, hierarchical clustering with
ward linkage was done on the covariate correlation matrix. Covariates with similar
correlations were clustered together. Different numbers of clusters (between 2 and
25) were scored based on their silhouette value, which is calculated by using the mean
intra-cluster distance (i) and the mean nearest-cluster distance (n). The silhouette
value balances the cohesion of an object (how similar it is to the cluster it is in)
compared to the separation (how similar it is to other clusters). The mean silhouette
value for all samples is taken (i−n)/max(i, n). Higher values are better and indicate
clusters with more separation. The plot of the silhouette scores in Figure 5.2 shows
the optimal number of clusters for each dataset. Basing the covariate clustering on
their correlation scores meant that correlated clusters of covariates were forced to
have similar coefficients.

Those clusters that are shown in Figures 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, and 5.9
were used as the group labels for group lasso. Then these scores were compared to
the scores where all clusters were forced to be together. Then a manual grid search
of 20*15*2*3 different parameters was performed. These are the parameter options
searched: group reg [20 evenly spaced numbers between 0 and 1.5], l1 reg [15 evenly
spaced numbers between 0 and 1], frobenius [True, False], and scale reg [group size,
none, inverse group size]. The validation RMSE was used to find the best possible
combination of hyperparameters.

The best hyper-parameters for each category of data were:
1. All

Group Reg: 0.2, L1 Reg: 0, frobenius: True, scale reg: group size, Number
variables: 900, Number of chosen variables: 900
Train R2:0.32 Test R2: 0.28

2. Tsai Atomic Interaction
Group Reg: 1, L1 Reg: 0, frobenius: True, scale reg: inverse group size,
Number variables: 92, Number of chosen variables: 88
Train R2:0.21 Test R2: 0.20

3. Popelier Atomic Interaction
Group Reg: 0.4, L1 Reg: 0.07, frobenius: True, scale reg: inverse group size,
Number variables: 277, Number of chosen variables: 205
Train R2:0.37 Test R2: 0.16

4. Residue Delaunay Atomic Interaction
Group Reg: 0, L1 Reg: 0.57, frobenius: False, scale reg: group size, Number
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Figure 5.2: The silhouette scores for different numbers of clusters. Higher scores
are best. The optimal number of clusters for the whole dataset was 2, for Delaunay
Tsai AI was 9, for Delaunay Popelier AI was 12, 14 for Delaunay Residue AI, 22 for
Threshold Residue AI, 2 for Tsai Surface Inner, 2 for Popelier Surface Inner, and
for Residue Surface Inner was 3.
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Figure 5.3: The results of hierarchical clustering on the Tsai atomic group in-
teraction correlation matrix. Dividing the data into nine clusters had the highest
silhouette score. The green cluster are all bonded to O2H1: O2H1, O1H0, N3H1,
C4H2, C4H1, and C3H0. The yellow cluster is N3H2-O2H1, C3H0-C3H0, and every
C3H1 interaction except S2H0. The gray cluster is bonded to N3H2: C3H0, C4H1,
C4H2, C4H3, N3H1, N3H2, and O1H0. The black color is every S2H0 group except
N4H3. The red cluster is N3H1-O1H0, C3H0-N3H1, C4H1-O1H0, C4H1-C4H2,
and C4H3 bonded to O1H0, N3H1, C4H3, C4H2, and C4H1. The white cluster
is every S2H1 interaction except N4H3. The peachy pink cluster is C4H2-O1H0,
C4H2-C4H2, and every N4H3 cluster except S2H1, and S2H0. The hot pink clus-
ter is O1H0-O1H0, N3H1-N3H1, C3H0-O1H0 and C3H0-C4H1. The blue cluster
is num atoms, N4H3-S2H1, N4H3-S2H0, C4H3-O2H1, C4H2-N3H1, C3H0-C4H3,
C4H1-N3H1, C4H1-C4H1, and every N3H0 group except S2H0. There is a lot of
correlation of same Tsai group with itself.

53



5. Results

Figure 5.4: The results of hierarchical clustering on the Popelier atomic group
interaction correlation matrix. Dividing the data into twelve clusters had the highest
silhouette score. Green is C2 interacting with 7 groups, N2-O5, C8-O5, C4-O5, C4-
N2, C4-C8, C3-C8, C3-C4, and C19-N2. The salmon cluster is S6 interacting with
12 groups and C21 interacting with 14 groups. The brown cluster is every S3 group.
The orange cluster is interactions for C4 (7 groups) and C2 (5 groups). Black is
interactions for C7 (16 groups) and C3 (4 groups). Gray is C12 (13 groups), C14 (8
groups), O2 (8 groups), and C18 (8 groups). The hot pink cluster is every interaction
involving SS. The lighter blue cluster is C9-O5, O3 (10 groups) and C9 (8 groups).
The white cluster is O5-O5, N2-N2, C8-N2, C8-C8, O4 with 5 groups, and C19 (4
groups). The red cluster is a mix of C15 and C17 interactions. They interact with
the same 15 things and each other. The yellow cluster is O2 (8 groups), C18 (8
groups), C14 (9 groups), and C12 (7 groups). The dark blue cluster is num atoms,
O2-S6, C9-C14, C3-O4, C18-S6, C18-C18, C14-O3, C7 (4 groups), C10 (8 groups)
and N1 (7 groups).
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Figure 5.5: The results of hierarchical clustering on the residue Delaunay atomic
group interaction data. The optimal number of clusters is 19 according to the
silhouette scores. There are too many residue groups to list them all.
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Figure 5.6: The results of hierarchical clustering on the threshold residue atomic
group interaction data. The optimal number of clusters is 19 according to the
silhouette scores. There are too many residue groups to list them all.
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Figure 5.7: The results of hierarchical clustering on the Tsai surface / inner fre-
quency correlations. There are two clusters, one containing the surface atoms and
the other containing the inner atoms. The number of atoms is correlated with the
inner atoms because the number of atoms on inside the protein increases the most
as protein grows larger.
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Figure 5.8: The results of hierarchical clustering on the Popelier surface / inner
frequency correlations. The optimal number of clusters is two according to the
silhouette scores. The yellow cluster contains inner atomic groups. The blue cluster
contains a few inner atomic groups and all of the surface atomic groups.
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Figure 5.9: The results of hierarchical clustering on the residue surface / inner fre-
quency correlations. Dividing the data into three clusters gave the highest silhouette
score.
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Figure 5.10: The testing and training R2 values for the group lasso models. They
perform the worst out of all the models tested.

variables: 211, Number of chosen variables: 77
Train R2:0.26 Test R2: 0.21

5. Residue Threshold Atomic Interaction
Group Reg: 0, L1 Reg: 0.36, frobenius: False, scale reg: none, Number vari-
ables: 210, Number of chosen variables: 118
Train R2:0.30 Test R2: 0.22

6. Tsai Surface Inner Frequency
Group Reg: 1, L1 Reg: 0, frobenius: True, scale reg: none, Number variables:
27, Number of chosen variables: 27
Train R2:0.12 Test R2: 0.18

7. Popelier Surface Inner Frequency
Group Reg: 0.75, L1 Reg: 0, frobenius: True, scale reg: none, Number vari-
ables: 47, Number of chosen variables: 47
Train R2:0.25 Test R2: 0.30

8. Residue Surface Inner Frequency
Group Reg: 2, L1 Reg: 0.14, frobenius: True, scale reg: inverse group size,
Number variables: 41, Number of chosen variables: 30
Train R2:0.28 Test R2: 0.21

The L1 regularizer is the α variable from the equation that was previously
discussed. When α = 0, there is a group lasso fit and α = 1, there is a lasso fit.
Most of the L1 regularizers have alpha values closer to 0, so group lasso fits have
the highest scores. λ measures how much the data is regularized, and the optimal
values range from 0 (no regularization) to 2 (a high level of regularization) for these
categories of data.

The R2 values are shown in Figure 5.10. The training models generalize well–
the testing scores are about the same as the training scores. Unfortunately, the
group lasso models have the lowest testing R2 scores out of all the models, so these
models will not be examined.
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5.3 Random Forest
A grid search with 5-fold cross validation was performed to find the best hyper-
parameters for each dataset from the following choices: max depth: [5, 10], max
features: [sqrt, log2], number estimators: [50, 100, 150], min impurity decrease:
[0.3, 0.4, 0.5], ccp alpha: [0.1, 0.2, 0.3]

The best parameters for each category were:
1. All

ccp alpha: 0.1, max depth: 10, max features: sqrt, min impurity decrease:
0.4, num estimators: 150
R2 train: 0.82, R2 test 0.37

2. Tsai Atomic Interactions ccp alpha: 0.3, max depth: 10, max features: log2,
min impurity decrease: 0.5, num estimators: 50
R2 train: 0.70, R2 test 0.27

3. Popelier AI ccp alpha: 0.2, max depth: 10, max features: sqrt, min impurity
decrease: 0.5, num estimators: 50
R2 train: 0.75, R2 test 0.20

4. Residue Del AI ccp alpha: 0.2, max depth: 10, max features: sqrt, min impu-
rity decrease: 0.4, num estimators: 150
R2 train: 0.80, R2 test 0.31

5. Residue Threshold AI ccp alpha: 0.1, max depth: 10, max features: sqrt, min
impurity decrease: 0.3, num estimators: 150
R2 train: 0.81, R2 test 0.33

6. Tsai Surface Inner Freq ccp alpha: 0.1, max depth: 10, max features: sqrt,
min impurity decrease: 0.3, num estimators: 50
R2 train: 0.75, R2 test 0.20

7. Popelier Surface Inner Freq ccp alpha: 0.1, max depth: 10, max features: sqrt,
min impurity decrease: 0.5, num estimators: 150
R2 train: 0.75, R2 test 0.24

8. Residue Surface Inner Freq ccp alpha: 0.2, max depth: 10, max features: sqrt,
min impurity decrease: 0.5, num estimators: 100
R2 train: 0.77, R2 test 0.38
The test and training R2 values in Figure 5.11 show that all of the random

forest models have over-fit the data. The training scores are lower than the testing
scores, but they are still some of our highest scores. The datasets with the residues
score the most highly. Our hypothesis is that this is due to the smaller amounts of
correlation in these datasets.

In order to interpret the Random Forest models, the features that were used by
the testing data were traced with the treeinterpreter program Saabas, Ando 2015.
Each protein in the test set gives a weight for how much each covariate was used.
The weights for the test set were then averaged. This method for finding weights is
not as good as the weights for linear regression, but it is the best possible explanation
for random forest regression. The weights for the best model, the residue surface
inner frequencies, are included in Table 5.4. These weights are more like a rough
approximation for the model than the exact model that is used. Glutamic acid on
either the surface or the interior was found to be impactful. It is a polar amino acid
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GLU if 0.3 TRP sf -0.01
THR sf 0.24 ARG sf -0.01
GLU sf 0.21 ALA if -0.01
CYS if 0.08 LYS if -0.02
ILE if 0.07 MET if -0.02
LEU sf 0.04 MET sf -0.02
ASP if 0.03 ASP sf -0.03
PRO sf 0.03 SER if -0.03
HIS sf 0.03 PHE sf -0.04
PHE if 0.02 GLY if -0.04
VAL if 0.02 CYS sf -0.04
TRP if 0.02 TYR sf -0.04
ALA sf 0.01 TYR if -0.05
HIS if 0.0 SER sf -0.05
THR if 0.0 GLN if -0.05
ILE sf -0.0 LYS sf -0.05
LEU if -0.01 num atoms -0.08
ASN if -0.01 GLN sf -0.08
VAL sf -0.01 PRO if -0.08
ARG if -0.01 ASN sf -0.09
GLY sf -0.01

Table 5.4: Random forest weights for residue surface inner frequencies. Sf stands
for surface frequency and in stands for inner frequency. The weights are an average
of the weights from the test data. The most impactful variables are the frequency
of glutamic acid on the interior (GLU if), the frequency of threonine on the surface
(THR sf), and the frequency of glutamic acid on the surface (GLU sf).

that can be involved in ionic bonds. Threonine is another polar amino acid and was
influential when on the protein surface.

5.4 SVR
A grid search using 5-fold cross validation was performed to find the best hyper-
parameters from the following possibilities: epsilon: [1, 5, 10, 15], kernel: [linear,
rbf, poly, sigmoid], C: [1, 10, 20]. The results are found in Figure 5.12. All of the
datasets experienced problems with over-training, with the training set having R2

scores twice as high as the testing set. The best performing category of data was
the threshold residue atomic interactions (Res Thr AI), which was the method used
in an earlier thesis by Ulfenborg 2020. It is interesting that this method scored
higher than the Delaunay residue atomic interaction (Del Res AI), which measures
the same interactions, only more carefully. The residue surface interior frequencies
(Res SI) also scored really well.

The best hyper-parameters and scores for each dataset were:
1. All

C: 20, epsilon: 1, kernel: rbf
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Figure 5.11: The R2 values for Random Forest Regression for different categories
of data. The Residue SI is one of the best performing models in this work and is
examined in detail.

R2 train: 0.83, R2 test 0.41
2. Tsai Delaunay AI

C: 10, epsilon: 10, kernel: rbf
R2 train: 0.46, R2 test 0.24

3. Popelier Delaunay AI
C:10, epsilon: 10, kernel: rbf
R2 train: 0.51, R2 test: 0.23

4. Residue Delaunay AI
C: 10, epsilon: 5, kernel: rbf
R2 train: 0.62, R2 test: 0.34

5. Residue Threshold AI
C:20, epsilon:1, kernel: rbf
R2 train: 0.78, R2 test: 0.40

6. Tsai Surface Inner Freq
C: 10, epsilon: 5, kernel: rbf
R2 train: 0.44, R2 train: 0.27

7. Popelier Surface Inner Freq
C: 10, epsilon: 5, kernel: rbf
R2 train: 0.53, R2 test: 0.34

8. Residue Surface Inner Freq
C: 10, epsilon: 1, kernel: rbf
R2 train: 0.64, R2 test 0.41
All of the categories of data appear to be over-fitting; the training R2 values are

twice as high as the testing R2. These are the models with the highest training R2

scores. The RBF kernel was selected as the best kernel for all of our models. Unfor-
tunately, Support Vector Regression with an RBF kernel is not human-interpretable
and therefore our goal of understanding which covariates are the most important
for predicting the optimal temperature is impossible for this model. The QQ-plots
of the residuals for all of the SVR models were examined and found to be normally
distributed.
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Figure 5.12: The R2 values for SVR for different categories of data. The best
models involve the residues: the residue surface inner frequencies, threshold residue
atomic interactions, and Delaunay residue atomic interactions. The models are over-
trained, but are still perform better than models from other statistical methods.
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6
Discussion

The aim of this thesis was to learn more about the effect of protein structure on
thermostability. Our hypothesis was that breaking the protein structures down into
fine detail and classifying each atom by its atomic group would give very good
results. When atoms are classified into their atomic groups, we thought it would be
easier to see ionic or covalent bonds that should have a positive effect on the protein
structure, and therefore also on the optimal temperature. We have not seen the
results that we were looking for; the predictive power was lower than we thought
it would be. There are two possibilities that could be responsible for the lower
scores: either the frequency of these interactions does not explain that much of the
temperature variation, or the amount of collinearity impedes proper analysis.

We examined the collinearity of the variables because it was potentially prob-
lematic. However, it does not appear to be the main hindrance to the models’
performance. Table 6.1 shows the amount of correlation in each data collection
and what percent of the covariates are highly correlated. The Tsai surface inner
frequencies (Tsai SI freq) have the highest amount of correlation. If the amount
of correlation were the only factor in the scores, the Tsai SI freq should be the
worst-performing group. Instead, the Tsai atomic interactions (Tsai AI) are often
the worst-performing group, and its level of correlation is five times lower than the
Tsai SI freq. If correlation were the main impediment to the models’ performance,
the Tsai SI freq should have the lowest score for every statistical method. In the
SVR analysis, the groups with the least amount of correlation do perform better,
though it doesn’t match the magnitude of the degree of correlation. This trend does
not hold for the other statistical methods. Therefore, the amount of collinearity is
not the most significant factor influencing the models’ scores.

Having ruled out collinearity as being the major contributor to the low scores,
we are left with the possibility that the frequency of atoms on the surface/interior
and the frequency of the atomic interactions do not adequately explain the response
variable (topt) because it is not possible for them to do so. The atomic interactions
can conceivably measure ionic and covalent bonds (namely disulfide bridges), but
it is difficult to see how other types of bonds would be captured by the interaction
frequencies. Hydrogen bonds could perhaps be captured by nitrogen and oxygen
interactions. But other features that are known to affect protein stability are pro-
tein packing (the density of atoms within the protein), hydrogen bonds with the
surrounding fluid, and hydropathy (Yang et al. 2019b). These features are not able
to be measured by our atomic interaction models.

Besides not including some factors known to be important for protein stabil-
ity, we are also miscounting the surface interactions by examining only the within-
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Data Num Covariate Num Corr Num Corr Percent Percent
Collection Interactions >0.5 >0.7 >0.5 >0.7
Tsai AI 4186 236 85 0.0564 0.0203

Popelier AI 38226 856 164 0.0224 0.0043
Del Res AI 22155 87 4 0.0039 0.0002
Thr Res AI 22155 147 5 0.0066 0.0002
Tsai SI 351 91 42 0.2593 0.1197
Pop SI 1081 173 47 0.1600 0.0435

Residue SI 861 9 1 0.0105 0.0012

Table 6.1: This table captures the number of correlated covariates in each dataset.
For each collection of data, the number of covariate interactions is shown, along
with the number of covariate interactions with a Pearson correlation score greater
than 0.5 and the number of covariate interactions with a Pearson correlation score
greater than 0.7. The amount of covariate correlation is also shown as a percentage
of the total number of covariate interactions. The Tsai surface inner frequencies
have the highest amount of correlation, with 26% of the covariates having a high
amount of correlation and 12% of the covariates having an extremely high amount
of correlation.

protein interactions. This is a problem because the atoms are forming bonds that we
are not counting. When the surface atoms’ neighbors are reduced to remove inter-
actions with non-protein atoms, the number of interactions that each surface atom
has is reduced. Therefore, they will have lower counts of neighbors than atoms that
are within the protein. The surface atoms’ frequencies are therefore artificially lower
than they should be, and this could interfere with the models’ performance. In addi-
tion to having artificially low counts, the total number of stabilizing hydrogen bonds
is not being accurately calculated. With our nearest neighbor interaction method,
no atom can have a nearest neighbor that is not part of the protein. Therefore,
hydrogen bonds with the surrounding fluid are not measured. Having potentially
polar atoms (namely nitrogen and oxygen) on the surface has been shown to increase
stability (Vogt, Woell, and Argos 1997). The surface inner models could possibly
measure hydrogen bonds with the surrounding fluid by counting the atoms on the
surface, and this could be the reason they perform better.

One defining feature of this study was how many different ways the same data
was examined. We had a hypothesis that breaking down the proteins finely would
give the best results. We tested this in several different ways. The Popelier, Tsai,
and residue groups all had different levels of granularity and comparing their results
tests our assumption about granularity. We hypothesized that the Popelier atomic
groups would be better than the Tsai atomic groups because they broke the data
down more finely. The results are inconclusive as to which category is better. The
Tsai atomic group interactions scored slightly higher than the Popelier atomic group
interactions for all methods. However, the Popelier surface interior scores were all
higher than the Tsai surface interior scores. Neither category is decisively better.

Another way we tested the granularity hypothesis was by comparing the De-
launay and threshold residue atomic interactions. It is surprising that the threshold
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residue atomic interactions (Thr Res AI), which only examine the position of one
atom in the protein, gives very similar results to breaking down the results by their
Delaunay residue atomic interactions (Del Res AI). There are several differences in
how the datasets were created. First, for the threshold interactions, all of the atoms
were used instead of only the carbon beta. Second, instead of using a threshold of
8Å, we painstakingly found the closest Delaunay neighbors. Third, the atoms were
classified by their atomic group instead of by which amino acid residue they are in.
If there is useful information to be found from these interactions, then being more
careful about defining which things are interacting should be better. However, in the
group lasso and elastic net results, the Delaunay and threshold residue interactions
score almost exactly the same. In the SVR and random forest models, the threshold
interactions score higher. Being more careful with the defining of which atoms were
interacting did not increase the predictive power.

The ultimate test of granularity comes from finding which models performed
the best. The highest scoring models were those with the lowest levels of granularity.
Our best models were the SVR residue surface inner frequencies (Res SI R2 = 0.409),
random forest residue surface inner frequencies (Res SI R2 = 0.406), and SVR
threshold residue atomic interactions (Thr Res AI R2 = 0.395). All of these models
use the residues instead of atomic groups. None of the models give insight into
atomic neighbor interactions. Surprisingly, categorizing the data finely was not
effective.

One possible limitation of our model is related to the dataset and not to the
way the data was analyzed. Previous studies have had difficulties with dataset
limitations leading to poor performance (Yang et al. 2019a). That dataset was
quite limited, only studying variations of 9 proteins. Our dataset contained many
more proteins, with 1122 training proteins, 126 test proteins, and 131 validation
proteins. The proteins in the analysis are not extremely similar, because the similar
proteins were removed. Though we have more than 9 proteins, the proteins we used
do not cover the full range of possible protein configurations. Only 295 protein
structures were experimentally verified, and the rest are based on verified proteins.
With the introduction of AlphaFold, there should soon be an even larger number
of protein structures available to study. AlphaFold is a recently released computer
program that can predict protein structures very accurately and quickly (Jumper
et al. 2021). It does not depend so heavily on previous structures. Perhaps adding
more AlphaFold structures to the training data could increase the utility of our
models.

There are some overall conclusions to be drawn from this study. First, breaking
down the protein into the most detailed categories did not give better results than
broader categories. Second, examining a protein’s interactions with itself did not
give the best results. The surrounding environment of the protein is also important
and should also be considered when investigating protein stability. Doing so could
help us to learn more about protein structure, thermostability, and how to build
better enzymes.
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6. Discussion

6.1 Future Directions
Our best scores are similar to the best scores from Ulfenborg 2020, the original
study that inspired this work. It seems that there are no higher scores to be gained
from these data categories and methods. It is possible that a different statistical
method that can better handle collinearity could produce higher scores. Collinearity-
weighed regression, octagonal shrinkage clustering and regression (OSCAR), latent
root regression, principal component regression, and partial least squares are all
methods that were made to analyze collinear data (Dormann et al. 2013). They
are uncommon methods, but it is possible they would work better. Other features
that are known to influence protein stability, such as protein packing, could also be
included.

When the structures were broken down by their atomic types, perhaps some
information was lost. Other studies show that protein stability is due to a combina-
tion of many factors. A method that could examine many factors at the same time
would probably work better because it could mirror the complexity inherent in the
dataset. Doing these things could improve the predictions in a future analysis.
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A
Appendix 1

The Popelier atomic groups that were used to classify each atom are listed in Table
A.1.

Amino Acid Atom Popelier Group Amino Acid Atom Popelier Group
ALA C C19 LEU N N2
ALA CA C8 LEU O O5
ALA CB C2 LEU OXT O4
ALA N N2 LYS C C19
ALA O O5 LYS CA C7
ALA OXT O4 LYS CB C3
ARG C C19 LYS CD C3
ARG CA C8 LYS CE C3
ARG CB C3 LYS CG C3
ARG CD C10 LYS N N2
ARG CG C3 LYS NZ N1
ARG CZ C21 LYS O O5
ARG N N2 LYS OXT O4
ARG NE N2 MET C C19
ARG NH1 N1 MET CA C8
ARG NH2 N1 MET CB C3
ARG O O5 MET CE C21
ARG OXT O4 MET CG C3
ASN C C19 MET N N2
ASN CA C8 MET O O5
ASN CB C3 MET SD S6
ASN CG C19 MET OXT O4
ASN N N2 PHE C C19
ASN ND2 N1 PHE CA C8
ASN O O5 PHE CB C3
ASN OD1 O4 PHE CD1 C12
ASN OXT O4 PHE CD2 C12
ASP C C19 PHE CE1 C12
ASP CA C8 PHE CE2 C12
ASP CB C3 PHE CG C14
ASP CG C19 PHE CZ C12
ASP N N2 PHE N N2
ASP O O5 PHE O O5

I



A. Appendix 1

ASP OD1 O4 PHE OXT O4
ASP OD2 O4 PRO C C19
ASP OXT O4 PRO CA C8
CYS C C19 PRO CB C3
CYS CA C8 PRO CD C3
CYS CB C3 PRO CG C3
CYS N N2 PRO N N2
CYS O O5 PRO O O5
CYS SG S3 PRO OXT O4
CYS OXT O4 SER C C19
GLN C C19 SER CA C10
GLN CA C8 SER CB C3
GLN CB C3 SER N N2
GLN CD C19 SER O O5
GLN CG C3 SER OG O3
GLN N N2 SER OXT O4
GLN NE2 N1 THR C C19
GLN O O5 THR CA C8
GLN OE1 O4 THR CB C9
GLN OXT O4 THR CG2 C2
GLU C C19 THR N N2
GLU CA C10 THR O O5
GLU CB C3 THR OG1 O3
GLU CD C19 THR OXT O4
GLU CG C3 TRP C C19
GLU N N2 TRP CA C8
GLU O O5 TRP CB C3
GLU OE1 O4 TRP CD1 C15
GLU OE2 O4 TRP CD2 C14
GLU OXT O4 TRP CE2 C18
GLY C C19 TRP CE3 C12
GLY CA C8 TRP CG C14
GLY N N2 TRP CH2 C12
GLY O O5 TRP CZ2 C12
GLY OXT O4 TRP CZ3 C12
HIS C C19 TRP N N2
HIS CA C8 TRP NE1 N2
HIS CB C3 TRP O O5
HIS CD2 C15 TRP OXT O4
HIS CE1 C17 TYR C C19
HIS CG C15 TYR CA C10
HIS N N2 TYR CB C3
HIS ND1 N2 TYR CD1 C12
HIS NE2 N2 TYR CD2 C12
HIS O O5 TYR CE1 C12
HIS OXT O4 TYR CE2 C12

II
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ILE C C19 TYR CG C14
ILE CA C8 TYR CZ C18
ILE CB C4 TYR N N2
ILE CD1 C2 TYR O O5
ILE CG1 C3 TYR OH O2
ILE CG2 C2 TYR OXT O4
ILE N N2 VAL C C19
ILE O O5 VAL CA C8
ILE OXT O4 VAL CB C4
LEU C C19 VAL CG1 C2
LEU CA C8 VAL CG2 C2
LEU CB C3 VAL N N2
LEU CD1 C2 VAL O O5
LEU CD2 C2 VAL OXT O4
LEU CG C4

Table A.1: A table of each atom in every amino acid classified according to Pope-
lier’s categories.
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