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Machine Learning Prediction of Enzymes' Optimal Catalytic Temperatures
CAMILLE FINLINSON PORTER

Department of Computer Science and Engineering

Chalmers University of Technology and University of Gothenburg

Abstract

Enzymes that have been genetically engineered to withstand high temperatures are
used by industry to make products with less waste and pollution. Di erent features

of protein structure a ect the optimal catalytic temperature ("topt") at which en-
zymes catalyze reactions most e ciently. We sought to use information from protein
structures to predict the topt. To do this, we analyzed the structures and optimal
catalytic temperatures of 1379 proteins in 7 di erent ways. For a set of analyses
based on Delaunay atomic interactions, the atoms for each protein were categorized
by their Tsai atomic group, Popelier atomic group, or by their amino acid, and the
nearest neighbors of each atom were then found by Delaunay triangulation. Next,
the neighbors were classi ed by their atomic group and their frequencies calculated.
For a separate analysis of atomic interactions (threshold residue atomic interac-
tions ), the atoms for each protein were categorized by the beta carbon of their
amino acids. Any beta carbons within 8A were found to be interacting. A third set

of analyses based on the frequencies of each category of atom on the protein interior
and surface was also performed. Each atom was again categorized by Tsai atomic
group, Popelier atomic group, or amino acid residue. All of the frequencies in these
seven groups were separately used as the predictor variables in regression to pre-
dict the response variable, the optimal catalytic temperature. Four di erent kinds

of regression were tried: elastic net, sparse group lasso, decision tree, and support
vector. The predictions had maximum testingR? values of 0.4. These results are
similar to results in previous work done by Ulfenborg 2020. We found that being
very detailed in de ning interactions and categories did not give better results.

Keywords: enzyme, protein, amino acid, protein structure, optimal catalytic tem-
perature
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1

Introduction

The fundamental dogma of biology is that DNA is transcribed to RNA, which is
then translated to make proteins. Proteins are the machines of the cell; almost every
function that is done by or in the cell is performed by a protein. Proteins are made
of a string of amino acids which fold into a complex structure. The shape that the
protein folds into determines its function.

An enzyme is a speci c type of protein that acts as a biological catalyst to speed
up a chemical reaction. Enzymes can function at di erent temperatures but have
an optimal temperature ("topt") at which they catalyze reactions most e ciently.

At temperatures higher than the optimal temperature, the catalytic rate decreases
because the protein begins to denature or unfold. At lower temperatures cataly-
sis proceeds more slowly because diusion occurs more gradually as temperature
decreases.

Enzymes are used in industrial chemical reactions to make products with less
waste and less toxic byproducts than traditional manufacturing methods. For in-
dustrial purposes, it is desirable to create enzymes that can withstand high tem-
peratures. Because of the di usion e ect, chemical reactions proceed more rapidly
when the reaction temperature is increased. This makes the reaction more e -
cient. Higher temperatures also help remove unwanted reaction byproducts (Vogt,
Woell, and Argos 1997). The enzymes that are used in industry are often the result
of genetic engineering because no enzyme from nature has been found to perform
the needed task at the desired speed. In order to avoid denaturation, the thermal
stability needs to be enhanced when the protein is designed.

The overall goal for this thesis is to nd features from an enzyme that in uence
the optimal catalytic temperature. A protein can be divided into amino acids, which
can be divided into atoms. It is the combination of the environment and interactions
of each atom that e ectuate how the protein folds and functions. We hypothesize
that we should therefore be able to nd meaningful information about protein's
stability by examining them at the atomic level. We will examine the interactions
of the protein's atoms with each other to try to predict the temperature at which the
enzyme is optimally functioning. Learning more about these features could inform
future protein engineering e orts.

In the background section (Chapter Two) we discuss protein structure and the
di erent chemical bonds which are present in proteins. These bonds a ect general
protein stability. We also present di erent ways to classify the atoms into atomic
groups. In the theory section (Chapter Three) we discuss Delaunay triangulation
in order to nd the nearest atomic neighbors. This is important because we hy-
pothesized that the environment of each atom was crucial to understanding protein
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stability. In Chapter Four we present the statistical methods that were used to
analyze the dataset. The results and conclusion are covered in Chapters Five and

Six.
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