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Abstract 
 
In many situations we need a system for detecting changes early. Examples are early 
detection of disease outbreaks, of patients at risk and of financial instability. In influenza 
outbreaks, for example, we want to detect an increase in the number of cases. Important 
indicators might be the number of cases of influenza-like illness and pharmacy sales (e.g. 
aspirin). By continually monitoring these indicators, we can early detect a change in the 
process of interest. The methodology of statistical surveillance is used. Often, the 
conclusions about the process(es) of interest is improved if the surveillance is based on 
several indicators. Here three systems for multivariate surveillance are compared. One 
system, called LRpar, is based on parallel likelihood ratio methods, since the likelihood 
ratio has been shown to have several optimality properties. In LRpar, the marginal 
density of each indicator is monitored and an alarm is called as soon as one of the 
likelihood ratios exceeds its alarm limit. The LRpar is compared to an optimal alarm 
system, called LRjoint, which is derived from the full likelihood ratio for the joint 
density. The performances of LRpar and LRjoint are compared to a system where the 
Hotellings T2 is monitored. The evaluation is made using the delay of a motivated alarm, 
as a function of the times of the changes. The effect of dependency is investigated: both 
dependency between the monitored processes and correlation between the time points 
when the changes occur. When the first change occurs immediately, the three methods 
work rather similarly, for independent processes and zero correlation between the change 
times. But when all processes change later, the T2 has much longer delay than LRjoint 
and LRpar. This holds both when the processes are independent and when they have a 
positive covariance. When we assume a positive correlation between the change times, 
the LRjoint yields a shorter delay than LRpar when the changes actually do occur 
simultaneously, whereas the opposite is true when the changes do actually occur at 
different time point. 
 
Keywords: Multivariate; Surveillance; Dependency; Optimal; Covariance; Likelihood 
ratio. 
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1. Introduction 
 
In many situations it is important to monitor a process in order to detect an important 
change as soon as possible. Examples are turning point detection in business cycles 
(Neftci (1982), Hamilton (1989), Andersson et al. (2004)), in hormone cycles (Royston 
(1991)), in influenza cycles (Baron (2002)) and in financial cycles (Bock (2003)). 
Another area is detection of growth retardation of foetuses (Petzold et al. (2004)). Yet 
another is detection of an increased level, emerging from a source and spreading spatially 
(Järpe (1999)). In on-line monitoring we have repeated decisions: at each time point, a 
new observation becomes available and a new decision is made as to whether the process 
has changed or nor. The methodology of statistical surveillance is appropriate.   
  Statistical surveillance is a methodology for discriminating between two events, ”the 
change has occurred” and ”the change has not occurred”. The time of change is unknown. 
The time scale can differ between applications (days, weeks, months), but common to all 
surveillance are the repeated decisions, made at each time point. The decision is made 
using an alarm statistic and an alarm limit. In industrial quality control charts (e.g. xbar-
charts), the decision rule can be that an alarm is given as soon as an observation crosses 
the alarm limit (Shewhart (1931)). There is always a risk for a false alarm, but the 
parameters of the surveillance method are chosen so that we know the false alarm 
property. For motivated alarms, i.e. when the change actually happens, we want a quick 
detection. Since we have repeated decisions, hence size and power are not appropriate 
measures. Instead we have a trade-off between false alarms and delay of motivated 
alarms or detection probability. The false alarms are often controlled by a fixed average 
run length, ARL0. The delay can be measured by the expected delay time between the 
change time and the alarm. Besides the Shewhart method, the EWMA method (Roberts 
(1959)) and the CUSUM method (Page (1954)) can be mentioned. 
  In many situations we monitor several processes, which may change simultaneously or 
at different times. There are different approaches in multivariate monitoring: the data can 
be reduced to a scalar at each time or we can use separate alarm systems for each process 
in combination with an inference rule like union intersection. Also, multivariate versions 
of univariate methods have been suggested, for example MEWMA and MCUSUM. The 
choice of method depends on e.g. whether the processes under surveillance are correlated 
and whether the change times are dependent.    
  The aim of this paper is to compare different multivariate surveillance systems. In 
Section 1, optimal univariate surveillance is discussed and different approaches to 
multivariate surveillance are exemplified. This section also includes some previously 
suggested methods for multivariate surveillance. Section 2 presents the surveillance 
methods, used in this paper. In Section 3 and 4, the results of the study are presented and 
section 5 contains a discussion. 
 

 1.1 Optimal statistical surveillance 
 
Statistical surveillance is a methodology for discriminating between the two events C and 
D, such that C=”the change has occurred” and D=”the change has not occurred”. By an 
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alarm system we decide whether D or C is the most likely. Optimal alarm systems are 
based on the likelihood ratio between C and D (Shiryaev (1963), Frisén and de Maré 
(1991)), see further in Section 1.2.3.  
  Statistical surveillance is used for on-line detection of an important change in the 
underlying process, for instance the expected value. For daily data, a new decision is 
made each day, based on the available data. When there is enough evidence of a change, 
an alarm is called. The surveillance system (alarm statistic and alarm limit) is specified to 
have a known false alarm risk by adjusting the alarm limit.   
  Generally, we get a new observation on the observed process X at each time s={1, 2, 
…} and the surveillance system is used to discriminate between events C(s) and D(s). At 
an unknown time, τ, there is a change in the distribution of X, so that 
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The events D and C are specified according to the change of interest.  
  As mentioned above, the likelihood ratio between C and D is optimal. If we want to 
detect a change at the current time s, then C={τ=s}, D={τ>s} and the likelihood ratio is  
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where xs={x(1), x(2), ..., x(s)} and k=alarm limit. E.g. if it is of interest to detect a change 
in the expected value (from μ0 to μ1) and the observations are independent and normally 
distributed, then the optimal LR reduces to the last observation, x(s) 
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This is the Shewhart method, used in e.g. an xbar-chart. Contrary to using only the latest 
observation, the CUSUM method cumulates the obsrvations since the start of the 
surveillance. CUSUM is the maximal of the likelihood ratios at the decision time s. 
Another surveillance method is EWMA, where all observations are weighted together. 
EWMA can not be exactly derived from the likelihood ratio, but for certain values of the 
smoothing constant, EWMA is approximately the same as LR (see Frisén and Sonesson 
(2002)).  
  For the situation when it is important to detect if there has been a change at some time 
point since the start of the surveillance, we specify C ={τ≤s}={{τ=1}, {τ=2}, ..., {τ=s}}. 
Then the LR consists of s components   
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where wi=P(τ=i)/P(τ≤s) and ks = k⋅P(τ≥s)/P(τ<s). Thus for C={τ≤s}, it is optimal to use 
all observations {x(1), ..., x(s)}. The time of alarm, tA, is defined as the first time that the 
alarm statistic exceeds the alarm limit, 
  tA=min[s: LR(s)>ks]. 
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When P(C) = 1-P(D), the likelihood ratio is equivalent to the posterior probability, with 
alarm rule 
  ( )sP C x k> , 
 
where k is the constant alarm limit. The posterior probability is often used in hidden 
Markov model approaches (HMM).  
  The alarm limit is adjusted so that the false alarm property has a specified value. In 
quality control, a common false alarm property is the average run length to the first false 
alarm, ARL0=E[tA⏐τ=∞]. Gan (1993) instead suggested the use of the median run length 
(MRL0). In many theoretical work, the false alarm probability is used, which summarize 
the false alarm distribution using the distribution of τ, such that 
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For an on-line system, the ability to detect a change quickly is important, i.e. to have a 
short delay for motivated alarms. For most surveillance methods, the delay of an alarm 
depends on when the change do occur, in relation to the start of the surveillance and the 
delay is often longest when the change occurs at the start (τ=1). The conditional expected 
delay of an alarm (see Frisén and Wessman (1999)) is defined as   
  CED= [ , ]A AE t t tτ τ τ− ≥ = . 
 
Many evaluations are made using τ=1, e.g CED(1) which is equivalent to ARL1-1. 
However it is important to consider other change point times also.  
  

1.2 Different approaches to multivariate surveillance  
 
In a multivariate setting there are p processes {X1, X2, ..., Xp} for which 
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where j={1, 2, ..., p}.  
  An overview of multivariate surveillance is given in Sonesson and Frisén (2005), who 
categorize different approaches to multivariate surveillance into the following groups; 
reduction of dimensionality, reduction to one scalar statistic, parallel surveillance, vector 
accumulation and simultaneous solution. In this paper, three of these approaches are 
compared; reduction to scalar, parallel surveillance and simultaneous solution. A 
reduction to one scalar statistic at each time means that a summary statistic is calculated 
from the p X-processes and that this statistic can be monitored by a system for univariate 
surveillance. In parallel surveillance, the marginal distribution of each variable is 
monitored with p parallel systems, from which the information is combined. In a 
simultaneous solution, the full p-variate joint distribution of the processes is used.   
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1.2.1 Reduction to one scalar statistic at each time 
 
The p processes can be reduced to a scalar at each time, for example by calculating the 
(weighted) mean. Wessman (1998) showed that when the processes have identical change 
times (τ1=τ2=...=τp=τ), then there exists a sufficient univariate reduction of the variables 
{X1, ..., Xp}. Thus, without loss of information, the multivariate data can be reduced to a 
scalar statistic and then univariate surveillance can be applied. The sufficiency also holds 
when the changes times are not identical but the lag times between them are known.  
 

1.2.2 Parallel surveillance 
 
Multivariate surveillance can be made by monitoring the marginal density of each 
process. One drawback is that no information about the dependency structure is used. The 
surveillance system for X1 is only concerned with τ1, and correspondingly for X2, X3 etc. 
For process Xj at time s, we have alarm statistic p(xjs) and alarm limit kjs, so that an alarm 
is called when 
  p(xjs) > kjs.,  
 
where xjs={xj(1), xj(2), ..., xj(s)}. The time of alarm of Xj is 
  tAj=min t: p(xjt) > kjt. 
 
The time of alarm for the whole system is defined as 
  tA = min {tA1, tA2...}. (2) 
 
Does et al. (1999) uses separate surveillance for of each process (there each principal 
component) in a case study.  
 

1.2.3 Simultaneous solution 
 
It was shown by Shiryaev (1963) that the likelihood ratio between C and D is optimal in 
the sense that is maximized the expected utility, E[u], where u equals 
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The optimality was proven for the situation when τ follows a Geometric distribution 
(with parameter ν). The utility expression above is easily applied to the univariate 
situation. If the function h(tA - τ) is a constant, b, then it has been shown that the utility is 
maximized when the delay, tA-τ, is minimized (see Frisén (2003)). The minimal expected 
delay was shown to hold also for a situation where τ is not Geometrically distributed 
(Andersson (2004)).  
  For multivariate data, {X1, X2, ..., Xp}, there can be p change points (τ1, τ2, ..., τp). We 
study the situation when we want to detect the first change, i.e. we want to make 
inference about τ(1) = min[τ1, τ2, ..., τp].  
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Then the utility can be written as 
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where tA is the time of alarm for the whole system (e.g. (2) in Section 1.2.2). The 
distribution of τ(1) depends on the p-variate distribution for (τ1, ..., τp). For p=2, we use 
the bivariate Geometric distribution, see e.g. Marshall and Olkin (1997). Then τ(1) follows 
a Geometric distribution (Sun and Basu (1995)) and the optimality holds: the likelihood 
ratio maximizes the expected utility.  
  Wessman (1999) investigated the situation where it is of interest to decide whether the 
first change has occurred at the current time point, C={τ(1)=s}. In this paper we want to 
decide whether the first change has started at any time point since the beginning of the 
surveillance, C={τ(1)≤s}={{τ(1)=1},...,{τ(1)=s}}. The D event is specified as {τ(1)>s}.  The 
optimal surveillance system (simultaneous solution) is derived from the likelihood ratio. 
Since P(C)=1-P(D), the likelihood ratio is equivalent to the posterior probaility 
  ( )sP C m k> , 
 
where ms={m(1),..., m(s)}={{x1(1), ..., xp(1)},..., {x1(s)..., xp(s)}} and k=constant alarm 
limit. Since P(C) = 1-P(D), the alarm rule is  
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Hence forward we express the likelihood function by f(*) instead of P(*), so that 
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We specify C={τ(1)≤s} and D={τ(1)>s} and the likelihood ratio alarm rule consists of 
partial likelihood ratios  
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The weights, wt

s=P(τ(1)=t)/P(τ(1)≤s), and the limit, ks=k’⋅P(τ(1)>s)/P(τ(1)≤s), depends on 
the distribution of τ(1), which in turn depends on the joint distribution of (τ1, ..., τp). The 
time of alarm is defined as 
  tA = min t: LR(ms) > ks. 
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1.3 Suggested approaches for multivariate surveillance 
 
Some of the suggested approaches for monitoring multivariate data are reviewed. 
 

1.3.1 Multivariate monitoring using a reduction 
 
As mentioned before, Wessman (1998) showed that when the changes occur 
simultaneously, there exists a sufficient reduction of the data. Multivariate data can e.g. 
be reduced by the Hotellings T2 statistic or by principal component analysis.  
  When the changes occur at different time points, a problem with a reduction is to 
determine which variable that causes the alarm. Javaheri and Houshmand (2001) suggest 
a follow-up with discriminant analysis to investigate which variables that cause the 
alarm. Jolayemi (2000) constructs multiple control regions for two assignable causes. 
Kalagonda and Kulkarni (2003) propose constructing a model for the in-control process 
and using dummy variables to determine the nature of the change. Mason et al. (1995) 
decompose T2 into independent components, each reflecting an individual variable Xj.  
  Kourti and MacGregor (1996) show that the T2 reduction works well when the 
dimension is not too high.   
  Wikström et al. (1998) use principal component analysis to derive the most important 
principal components and then univariate CUSUM and univariate EWMA is applied to 
the first principal component.      
  Abu-Shawiesh and Abdullah (2001) study surveillance of two correlated processes. 
The T2 statistic is based on robust estimates of location and scale and the situation is one 
where both scale and location change. This approach is compared to the ordinary T2.  
  Mason et al. (2003) find that AR processes result in a U shaped T2 curve and if the 
data contains trend, the T2 values will exhibit a trend.  
  Another reduction is to use the minimum and maximum values at each time, as is done 
in Sepúlveda and Nachlas (1997). Charnes (1995) studies the situation where the 
processes under surveillance are time dependent and where the residuals (or forecasting 
errors) are used in the monitoring. Kang and Albin (2000) model the variable Y as a 
function of the variable X and monitor the slope and intercept by T2 statistic as well as 
the residuals (deviations from reference line).   
  Aparisi et al. (2001) reduce the covariance matrix through the determinant or the trace. 
This scalar is monitored, using univariate Shewhart and univariate EWMA and CUSUM. 
Guerrero-Cusumano (1995) uses an entropy measure instead of the determinant.     
   Stoumbos and Jones (2000) reduce the multivariate data to a probability measure 
which shows how “central” the observation is.  
  Lu et al. (1998) study correlated variables and the proportion of non-conforming units. 
The multivariate data are reduced to a scalar by weighting together the non-conforming 
units and then monitored by univariate Shewhart.  
  Cheng and Liu (2000) use a rank measure for how outlying an observation is and then 
the univariate rank variable is monitored using a Shewhart approach. 
  Koskinen and Öller (2004)suggest the use of a weighted index, which is monitored 
using univariate methods. A similar approach is used in Talluri and Sarkis (2002).  
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  Qiu and Hawkins (2001) use the anti-ranks of the p observations at each time and 
summarizes the anti ranks in a statistic which is monitored using univariate CUSUM.  
 

1.3.2 MEWMA and MCUSUM 
 
From the univariate specification of the EWMA and CUSUM methods, several 
multivariate variants have been developed. 
   Bodden and Rigdon (1999) use a multivariate EWMA and smooth all p processes 
using the same constant, λ, and then the vector of the smoothed values is reduced by the 
T2 statistic. This approach is also used in Love and Linderman (2003) and Molnau et al. 
(2001) and by Stoumbos and Sullivan (2002), who show that if the smoothing constant 
equals 1 (no smoothing) and the process is not normally distributed, then the ARL0 is 
over estimated if the alarm limits are determined under normality assumptions. But for a 
small smoothing constant, the ARL0 is not so biased, if the normality assumption is 
violated. A small smoothing constant gives approximately equal weight to all 
observations, which is approximately normal according to the central limit theorem.  
  Lowry et al. (1992) use EWMA smoothing with separate λ values, and then reduction 
by the T2 statistic. The λ values are determined so as to minimize the ARL1. Yumin 
(1996) suggests that if the p X processes are correlated, they should be transformed into 
principal components, which are then smoothed separately. Runger et al. (1999) reduce 
the dimension by a transform similar to principal component analysis, then the 
transformations are smoothed using the same λ and then the T2 statistic is calculated 
from the smoothed series. Gan (1997) constructs a control chart with the smoothed 
variance on one axis and the smoothed mean on the other, called a combined EWMA 
chart. The advantage, to a T2 reduction, is that the chart shows whether it is the mean or 
the variance that is out-of control.  
  A similar approach is used in Woodall and Ncube (1985), but with a univariate 
CUSUM for each of the p processes. Hawkins (1991) applied a univariate CUSUM to a 
linear combination of the variables {X1, X2, ..., Xp}. Wessman (1998) showed that if the 
p processes have identical change times, then data can, without loss of information, be 
reduced to a univariate index. 
  Crosier (1988) and Pignatiello and Runger (1990) used an MCUSUM on the same 
form as as the univariate CUSUM, only with matrixes instead of scalars.  
 

2. Model and methods 
 
In this paper we study the situation when two processes may change at different time 
points, i.e. τ1 and τ2 may have different values. The τ values can be dependent.  
  The aim is to detect an increase in the expected value, for example increases in the 
expected number of confirmed influenza cases and expected number of patients with 
influenza-like illness (Swedish institute of infectious disease, SMI).  
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At decision time s, the observations (X, Y) are modeled according to 
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The stochastic term at time t, ( )( ) ( )X Yt tε ε , follows a bivariate normal distribution, 
with expected value zero and covariance matrix 

  2 1
1
ρ

σ
ρ
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where ρ=correlation between X(t) and Y(t). 
  The variables X(t) and Y(t) are (possibly) dependent but not X(t) and X(t-j), Y(t) and 
Y(t-j) or X(t) and Y(t-j). The aim is to detect the first change in either of the μ vectors 
(μX, μY), where one application is detection of the start of an influenza epidemic. The 
SMI receives weekly information about confirmed cases (laboratory diagnosed, see 
Figure 1) and suspected cases. The development is roughly captured through the 
following parametric model for μ, which will be used for both X and Y in the 
investigation below.   

    μ(t): 
D

01
Cτ 3

02 1 2

μ (t): β  ,                                 t  τ
μ (t): β   β (t+1-τ)  β (t+1-τ) ,  t  τ

⎧ <
⎨

+ ⋅ + ⋅ ≥⎩
      (6) 

 
where β1 < 0, β2 > 0. Thus, for τX=τY, X and Y have the same distribution and they are 
independent (or dependent) conditional on τ. The model above might be too crude in a 
real situation, but is used here to demonstrate the inferential aspects.  
 

Time

876543210

μ

τ
5

3

1

Infinity

 
Figure 1: Left: The number of confirmed cases of influenza in Sweden for three con-
sequtive seasons (source: SMI). Right: The model for μ (for different starting times). 
 
As mentioned above, a bivariate Geometric distribution is used for (τX, τY), with 
parameters (ν01, ν10, ν11). The marginal distributions are τX∼Geo(ν1.=ν10+ν11) and 
τY∼Geo(ν.1=ν01+ν11). The two marginal intensities are assumed to be equal 
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(ν1.=ν.1=0.10). The value of ν11 will be varied, thereby yielding different correlations, 
here {0, 0.80}. The correlation between τX and τY is from now denoted ψ.   
  Three methods will be compared, corresponding to the approaches of reduction to a 
scalar, parallel surveillance and simultaneous solution. 
 

2.1 The T2 method in surveillance 
 
An early multivariate method is the T2 method of Hotelling (1947). The statistic,          
(x-μD)’ Σ-1 (x-μD), is here assumed to have a known covariance matrix, see e.g. Alt 
(1985). The T2 is an example of a reduction. We assume that X and Y have the same 
distribution, conditional on τX and τY and thus an alarm is given when 

  T2(s) = 
2 2

2 2 2 2 2 2
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2.2 Parallel likelihood ratio systems  
 
The parallel surveillance system in this paper is based on separate likelihood ratio 
methods for X and Y. This system is hence forward denoted LRpar. For the process X we 
have the following likelihood ratio alarm statistic  

 LRX(s) = 
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where μD and μC are defined in (6) and τ is assumed to follow a geometric distribution. 
The LRY(s) statistic is defined correspondingly. The time of alarm for X is defined as 
  tAX = min[LRX(s) > kX

s]    
 
where kX

s =k⋅(PτX>s)/P(τX≤s), and correspondingly for Y. The time of alarm for the 
LRpar system is the first time for which either alarm system gives an alarm, i.e.  
  tA=min{tAX, tAY}. 
 
If X and Y are independent, the distribution of tA is a direct function of the distributions 
of tAX and tAY. 
  The two alarm limits, kX

s and kY
s, are adjusted to yield a specified false alarm property 

for the whole system. If there is no particular information regarding the cost for false 
alarms, then it is natural to have the same false alarm property for the two methods (e.g. 
equal ARL0). This approach is used in this paper since we assume that X and Y have the 
same distribution, conditional on τX and τY. If inspection and restoration costs are not the 
same for the processes, Serel et al. (2000) suggest to have different type I errors.  
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2.3 Simultaneous solution using the joint likelihood ratio 
 
The optimal surveillance method for C={τ(1)≤s} was derived in Section 1.2.3 and was 
shown to consist of s weighted partial likelihood ratios {L(s,1), ..., L(s,s)}, such that 

  wj
s⋅L(s, j)= (1)(1)

(1) (1)
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( ) ( )
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s

f m jP j
P s f m s

ττ
τ τ

==
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The event {τ(1) = j} consists of the following sub-events:  
  {τX =j ∩ τY >j}, event C-D, “a turn in X at time j”  
  {τX >j ∩ τY =j }, event D-C, “a turn in Y at time j”  
  {τX =j ∩ τY =j}, event C-C, “turn in both X and Y at time j”.  
 
Thus, wj

s⋅L(s,j) is weighted together as 
  0 0( , , ) ( , , ) ( , , )j j jj

s s sw L s j C D w L s j D C w L s j C C⋅ − + ⋅ − + ⋅ − = 

  0 0( , ) ( , ) ( , )
( , ) ( , ) ( , )

s X Y s X Y s X Yj j jj
s s s

s X Y s X Y s X Y

f m j j f m j j f m j j
w w w

f m j j f m j j f m j j
τ τ τ τ τ τ
τ τ τ τ τ τ

= > > = = =
⋅ + ⋅ + ⋅

> > > > > >
 

 
where the weights are 

  0

(1)

( )
( )

j X Y
s

P j jw
P s

τ τ
τ

= ∩ >
=

≤
, 0

(1)

( )
( )

j X Y
s

P j jw
P s

τ τ
τ

> ∩ =
=

≤
, 1 2

(1)

( )
( )

jj
s

P j jw
P s

τ τ
τ

= ∩ =
=

≤
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Thus, the information about the bivariate distribution of (τX, τY) is included through the 
weights and the alarm limit, k’ P(τ(1)>s)/P(τ(1)≤s). 
  The complete optimal LR statistic at decision time s consists of 3⋅s components 

  0 0

1

( , ) ( , ) ( , )
( , ) ( , ) ( , )

s
s X Y s X Y s X Yj j jj

s s s
j s X Y s X Y s X Y

f m j j f m j j f m j j
w w w

f m j j f m j j f m j j
τ τ τ τ τ τ
τ τ τ τ τ τ=

⎡ ⎤= > > = = =
+ +⎢ ⎥

> > > > > >⎢ ⎥⎣ ⎦
∑ . 

 
For example, the event {τX =j, τY >j} means that there is a change in μX at time j, but no 
change yet in μY. Then the L(s,j) equals  

  0
( , , )

( , , )

Cj D
s s X Yj

s D D
s s X Y

f x y
w

f x y

μ μ μ μ

μ μ μ μ

= =

= =
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D Cj
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s D D
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s s X Yjj
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where f(xs, ys) is the bivariate normal distribution with expected values as in (4) and 
covariance matrix as in (5). Because of independence over time, we have e.g.  

  L(s, j, C-C)=
( , , )

( , , )

X Cj Y Cj
s s

X D Y D
s s

f x y

f x y

μ μ μ μ

μ μ μ μ

= =

= =
= 

1

( ( ), ( ) , )

( ( ), ( ) , )

X Cj Y Cjs

X D Y D
j
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μ μ μ μ
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= =
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For example, the denominator, ( , , )X D Y D
s sf x y μ μ μ μ= = , is  

2 2

1 2
1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )exp 2
D D D Ds

t X X Y Y

x t t x t t y t t y t tc c μ μ μ μρ
σ σ σ σ=

⎛ ⎞⎡ ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞− − − −⎜ ⎟⎢ ⎥⋅ − ⋅ − +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠⎣ ⎦⎝ ⎠
∑  

where 2 12 2

1 1,
2 (1 ) 2 1X Y

c c
ρ πσ σ ρ

= =
⋅ − −

. 

 
This system is an example of a simultaneous solution where the joint distribution is used, 
both for (τX, τY) and for (X,Y). The system is hence forward denoted the LRjoint. If X 
and Y are independent, the L(s, j) simplifies to  

 0 ( )
( )

s Xj
s

s X

f x j
w

f x s
τ
τ

=
>

+ 0 ( )
( )

s Yj
s

s Y

f y j
w

f y s
τ
τ

=
>

+
( ) ( )
( ) ( )

s X s Yjj
s

s X s Y

f x j f y j
w

f x s f y s
τ τ
τ τ

= =
⋅

> >
. 

  
Thus, for independent X and Y, the components L(s,j,C-D) and L(s,j, D-C) are the same 
components that are used in the LRpar. 
 

2.4 Alarm regions for the methods 
 
The methods T2, LRpar and LRjoint are made comparable by adjusting their respective 
alarm limits so that they all have the false alarm probability 0.10, defined as  

  PFA= (1)
1

( ) ( )A
i

P t i P iτ
∞

=

< ⋅ =∑ . (3) 

 
The alarm regions for the three methods are illustrated in Figure 2, for different values of 
ψ (correlation between the change times) and different values of ρ (dependency between 
X and Y). 
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Figure 2: Alarm limit is marked by open square for {ψ=0, ρ=0}, filled square for 
{ψ=0.8, ρ=0}, star for {ρ=0.5, ψ=0 }. Left: LRpar, middle: LRjoint, right: T2.   
 
For LRpar, an alarm is called if at least one of the two LR statistics exceeds its alarm 
limit, thus if either X or Y deviates largely from the D-state. The LRjoint consists of three 
components, corresponding to changes in either μX or μY or both. When X and Y are 
independent, LRjoint calls an alarm if at least one of the LR statistic are high or if the 
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joint LR statistic is high, thus if either X or Y or (X+Y) deviates from the D-state. The 
same holds for T2.  
  For LRpar, the shape of the alarm region (square) is unaffected by both ψ and ρ. For 
LRjoint, the shape changes in one direction when ψ increases and in another direction 
when ρ increases. The T2 method has a circle shaped alarm region for independent X and 
Y, whose size changes with ψ. But when ρ increases, the shape of the alarm region 
becomes more tilted and oval. 
 

2.5 Evaluation in multivariate surveillance 
 
The aim is to make inference about the first change, τ(1), and the false alarms are 
controlled by PFA (see (3)). The performance in surveillance can be measured by the 
delay of a motivated alarm, e.g. by the CED in Section 1.1. In multivariate surveillance, 
the delay depends on both change times, τX and τY, and the CED can be defined as 
  CED(t1, t2) = E[tA-τ(1)⏐ tA≥τ(1), τX=t1, τY =t2].  (7) 
 

3. Results on false alarms 
 
The methods T2, LRpar and LRjoint are compared for different types of dependencies. 
The methods are comparable by all having PFA=0.1, where PFA is summarized using the 
bivariate Geometric distribution that results in a specified ψ (correlation between τX and 
τY). In LRpar, the intensity ν=0.1 is used. LRjoint includes the intensity parameters 
ν1.=0.1, ν.1=0.1 and ν11, where ν11 takes different values for different ψ’s.   
 
Table 1: MRL0 (median run length), for PFA=0.10    
 ρ(X,Y) = 0 ρ(X,Y) = 0.5 
 ψ(τX, τY) = 0 ψ(τX, τY) = 0.8 ψ(τX, τY) = 0 
LRjoint 14 (ν11=0.01) 36 (ν11=0.0895) 14 (ν11=0.01) 
LRpar 14 34 14 
T2 26 50 26 
 
For a specific situation in Table 1, LRpar and LRjoint have similar MRL0, whereas T2 
has a higher median, because of the many early alarms (see Figure 3).   
  For all methods, MRL0 is almost independent on ρ (dependency between X and Y), 
but very dependent on ψ (correlation between τX and τY). The reason is that the density of 
τ(1) is used to weight together the alarm times. As ψ increases towards 1.00, the alarms 
tend to be more uniformly distributed and MRL0 is longer (see Figure 3). 
  The MRL0 increases when ψ=0.8 is assumed. For LRpar, the alarm limit needs to be 
changed when a different τ(1)-density is used to summarize the false alarm distribution 
(Figure 4). This also holds for T2. For LRjoint, the alarm statistic itself is changed when 
ψ=0.8, since the three components C-D, D-C and C-C are weighted differently (see 
Section 2.3) and this affects the false alarm distribution. 
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Figure 3: False alarm density, P(tA=t).  Left:  ψ=0, right: ψ= 0.8.  
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Figure 4: Probability density for τ(1), when ψ={0,0.8}. 
 

4. Using information about correlation between change times 
 
Situations where X and Y may change at different time points, τX and τY, are considered. 
The delay of a motivated alarm, in relation to the first change point, is used to compare 
the methods (CED(t1,t2) in (7)). The delay is studied for ψ={0, 0.8}, i.e. when we assume 
that the changes occur independently and when they tend to occur more simultaneously.   
 

4.1 Comparison between the three methods 
 
The effect of assumptions regarding the correlation between τX and τY is investigated. 
The LRjoint is the only method (of these three) that uses the information of ψ in the 
alarm statistic, by different weights for the three components (see Section 2.3). 
  Results on CED(t1,t2) are presented for two situations, the first of which is when the 
first change occurs immediately, τ(1)=1. The second situation concerns later changes: for 
LRjoint and LRpar, the CED-pattern stabilizes after a while, e.g. CED(10, t) has the same 
pattern as CED(14,t), t={1, 2, ..., 14}, see Figure 5. For T2 the pattern is stabilized from 
the start. The stabilized pattern for CED(t1,t2) is here denoted steady curve. 
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Figure 5: CED(t1, t2), for t1={1, 10, 14}, where the pattern is the same for CED(10, t2) 
and CED(14, t2). This is called steady curve. Left: LRpar, middle: LRjoint, right: T2. 
 

4.1.1 First change occurs immediately 
 
The CED(t1,t2) is compared between the methods for ψ={0, 0.8}, when the first change 
occurs immediately, i.e. τ(1)=1.  
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Figure 6: CED(t1,t2) when t1=1 and t2={1, 2, ..., 14}. Left: ψ=0, right: ψ=0.8.   
 
 For all methods the delay is shortest when both changes occur immediately (τX=τY=1), 
independent of ψ.  
  When independent change times are assumed (ψ=0), the methods give similar delay. 
For LRjoint and LRpar, this is also indicated by the similar alarm regions in Figure 2. 
The exception is at (τX = τY =1) where LRjoint has slightly shorter delay. LRjoint 
consists of three components (C-D, D-C, C-C, see section 2.3), whereas LRpar is based 
on two components (C-D and D-C). For ψ=0, T2 has the shortest delay. 
  When a positive correlation is assumed between the change times (ψ=0.8), LRjoint is 
superior at (τX = τY =1). LRjoint assigns a large weight to the C-C component and when 
the changes actually occur simultaneously, LRjoint has a short delay.  
 

4.1.2 Steady curve  
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In Figure 7, the CED(t1, t2) of the steady curve is compared between the methods for 
ψ={0, 0.8}.  
  When one change occurs late (here t1=10), the methods are more different than for 
t1=1. For ψ=0, T2 has the longest CED, except at (t1=10, t2=1). The CED curves for 
LRpar and LRjoint are rather similar.  
  Also for ψ=0.8, T2 has longer CED than the two LR methods. For ψ>0, the difference 
is larger between LRpar and LRjoint: at simultaneous change times (τX = τY), LRjoint has 
shortest delay, but for τX≠τY, LRpar is a little better. LRjoint assigns a large weight to the 
C-C-component, which is an advantage when τX=τY, but not when τX≠τY. 
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Figure 7: CED(t1,t2) when t1=10 and t2= {1, 2, ..., 14}.  Left: ψ=0, right: ψ=0.8.  
 

4.2 Effect of change times 
 
As mentioned above, the delay depends on the change times, τX and τY. The effect of 
assumptions about the correlation between τX and τY is studied for each method.  
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Figure 8a: CED(t1,t2) for LRpar when t1={1, 5, 10}. Left: ψ=0, right: ψ=0.8.     
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Figure 8b: CED(t1,t2) for LRjoint when  t1={1, 5, 10}. Left: ψ=0, right: ψ=0.8.  
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Figure 8c: CED(t1,t2) for T2 when  t1={1, 5, 10}. Left: ψ=0, right: ψ=0.8.   
 
From Figure 8 we conclude that for each value of t1, the CED(t1,t2) curve reaches an 
asymptote after a while, CED(t1,∞). For T2, this asymptote is independent of t1, whereas 
for LRpar and LRjoint it depends on t1, for small values of t1. 
 For all methods, CED is longer when ψ>0. For LRpar, the CED-curve, for each value 
of t1, is higher as a result of the higher alarm limit. The same holds for T2. Also for 
LRjoint, the CED values are higher, but there is also a larger difference between CED(t,t) 
and CED(t,∞). As discussed above, for ψ>0 the LRjoint works well when the changes do 
actually occur simultaneously. 
  Both for ψ=0 and ψ=0.8, simultaneous changes have shortest delay for each method, 
i.e. CED(t,t)<CED(t,j), j≠t. For CED(t,t), both X and Y are in C-state at each time point.  
  For the two LR methods, simultaneous later changes have shortest delay, because then 
more data are available at the change times (e.g. CED(1,1) > CED(5,5)). But T2 has the 
same delay for e.g (τX = τY =1) as for (τX = τY =5), since T2 does only use observations 
from the current time point, thus T2 is not based on more data at later time points.  
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5. Processes under surveillance are dependent 
 
The methods are compared when the processes X and Y are independent or have a 
positive covariance, ρ={0, 0.5}. No correlation is assumed between the change times 
(ψ=0).  
 

5.1 Comparison between the three methods 
 
For T2 and LRjoint, the alarm statistic does incorporate the information of ρ, whereas the 
alarm statistic of LRpar is the same, independent of ρ. 

5.1.1 First change occurs immediately 
 
The CED curves, when τ(1)=1, are compared between the methods, for ρ={0, 0.5}.  
  For immediate changes in both processes (τX =τY =1), the T2 has the shortest CED and 
LRpar the longest, when X and Y are independent (ρ=0). However, for ρ=0.5, LRpar has 
shortest delay and LRjoint longest. One reason for the long delay of LRjoint is the 
assumption that ψ=0. Also, Wessman (1999) investigated multivariate surveillance for 
the situation C={τ(1)=s} and showed that if changes occur in all processes, the probability 
of detecting it is lower if the observations are highly correlated. This agrees with the long 
CED for T2 and LRjoint for τX =τY =1 (see section 5.2.1). 
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Figure 9: CED(t1,t2) when t1=1 and t2= {1, 2, ..., 10}. Left: ρ=0, right: ρ=0.5.   
 

5.1.2 Steady curve  
 
The methods are compared for ρ={0, 0.5}, using the steady delay curve.  
  Both when X and Y are independent and when they have a positive covariance, T2 has 
longer CED than both the LR methods (except for ρ=0.5, t1=10, t2=1). Also, both for ρ=0 
and ρ=0.5, LRpar and LRjoint are more similar than LRjoint and T2 (or LRpar and T2). 
However, for ρ=0.5, LRpar has a shorter delay for simultaneous changes (τX =τY), 
compared to LRjoint.   
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  For ρ=0, the CED(t,t) is much smaller than CED(t,∞) for all three methods. But for 
ρ=0.5, when we use LRjoint or T2, the CED(t,∞) is only just smaller than CED(t,t), since 
here CED(t,t) is comparatively long. 
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Figure 10: CED(t1,t2) when t1=10 and t2= {1, 2, ..., 14}.  Left: ρ=0, right: ρ=0.5.   
  
 

5.2 Effect of change times 
 
The effect of the covariance between X and Y is studied, ρ={0, 0.5}, for each of the three 
methods. For LRjoint and T2, the CED(t,t) is shorter than CED(t,⏐t-1⏐), but the 
difference is small for ρ=0.5, compared to ρ=0. Both T2 and LRjoint do include the 
components of the Mahalanobis distance, namely (x-μD), (y-μD) and (-2ρ(x-μD)(y-μD)). 
Wessman (1999) pointed out that, when ρ>0.5, the Mahalanobis distance is smaller for 
unit shifts in both processes than for a shift in only one process. For LRjoint and T2, the 
CED(t,∞) is shorter when ρ>0, indicating that far apart changes are easy to detect for 
methods that incorporate ρ. 
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Figure 11a: CED(t1,t2) forLRpar when  t1={1, 5, 10}. Left:  ρ=0.0, right: ρ=0.0.   
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Figure 11b: CED(t1,t2) for LRjoint when t1={1, 5, 10}. Left:  ρ=0.0, right: ρ=0.0.  
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Figure 11c: CED(t1,t2) for T2 when t1={1, 5, 10}. Left:  ρ=0.0, right: ρ=0.0.  
 
A positive covariance between the processes (X and Y) does not affect the CED of LRpar 
to any large extent.    
  For LRjoint, the immediate change situation, τX=τY=1, is quicker detected if the 
processes are independent. For positive ρ-values X and Y tend to be alike, thus 
independent processes contain more information. Also for T2, the (τX =τY =1) situation is 
easier to detect if the processes are independent.  
 For late first changes (τ(1)≥5), the difference in CED(t, ∞) between LRpar and LRjoint 
is larger when ρ=0.5, compared to ρ=0.  
  The steady curve of T2 only dependens on the distance (t1-t2). This was proven 
generally in Andersson (2005). 
 

5.2.1 The delay for close changes  
 
When ρ>0 (and ψ=0) and the changes occur simultaneously (τX =τY), LRpar has the 
shortest CED, contrary to when ρ=0. These results (Figure 9, 10) indicate that the alarm 
probability, when the changes do occur close, is low for methods that incorporate ρ 
(LRjoint and T2). For LRjoint and T2, the shape of the alarm region changes when ρ 
changes, whereas for LRpar the shape is the same (see Section 2.4). A consequence is 
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that the situation that produces an alarm differs between ρ=0 and ρ=0.5, for LRjoint and 
T2.  
 For LRjoint, one reason for the long delay for (τX =τY) is the assumption of ψ=0, 
which results in a low weight for the C-C component. However, the result with long 
delay for close changes is present also for T2, which does not use information about ψ. 
  For both LRjoint and T2, Figure 2 demonstrates that, when ρ=0, an alarm is called 
when either X’=(X-μD) or Y’=(Y-μD) or (X’+Y’) is large. The sum of two variables that 
changed simultaneously (from 0 to a positive value μ) is stochastically larger than the 
sum of two variables with different change times (and thus different expected values, at 
least at one time point). This can be illustrated by the probability calculations below. 

   P(X’+Y’ > k⏐μX=μY=μ) = 2( ( (2 )) / 2P Z k μ σ> − , for τX =τY, 

  P(X’+Y’ > k⏐μX=0, μY=μ)= 2{ ( ( )) / 2 }P Z k μ σ> − , for τX ≠ τY,  
 
where the probability is larger for τX =τY, i.e. P(Z>k-2μ) > P(Z> k-μ).  
 When ρ>0, Figure 2 indicate that an alarm is called when the absolute difference,  
⏐X’-Y’⏐, is large enough. The difference between two variables that change 
simultaneously (from 0 to a positive value μ) is stochastically smaller than the difference 
between variables with different change times, illustrated by 

   P(X’-Y’ > k⏐μX=μY=μ) = 2{ ( (2 )) / 2 (1 )}P Z k μ σ ρ> − − , for τX =τY,  

  P(X’-Y’ > k⏐μX=μ, μY=0)= 2{ ( ( )) / 2 (1 )}P Z k μ σ ρ> − − , for τX ≠τY,  
 
where the probability is larger for τX ≠τY, i.e.  P(Z>k-μ) > P(Z>k-2μ).   
 However, for “moderate” covariance, ρ=0.5, the long CED for simultaneous changes 
does not always hold. E.g in Figure 11b-11c, we have CED(1,1) < CED(1,2). The CED 
also depends on the model for μD and μC. The Mahalanobis distance is proportional to  
   ( ) ( ) ( )( )2 2

( ) ( ) 2 ( ) ( )D D D Dx t y t x t y tμ μ ρ μ μ− + − − − − , 
 
where E[X(t)] and E[Y(t)] depend on τX and τY. We compare the expected Mahalanobis 
distance, here denoted EM, for two situations: (τX =τY =1) and (τX =1, τY =2).  
     EM(1,1)= ( ) ( )

21 1 2C Dμ μ ρ− ⋅ − , when τX =τY =1, 

  EM(1,2)= ( ) ( ) ( )( )2 21 2 1 22C D C D C D C Dμ μ μ μ ρ μ μ μ μ− + − − − − , when τX =1, τY =2. 
 
The inequality EM(1,1)<EM(1,2) is an indication of the inequality CED(1,1)>CED(1,2). 
The difference {EM(1,1)-EM(1,2)} depends on ρ as well as {(μC1-μD)-(μC2-μD)}. If 
{(μC1-μD)-(μC2-μD)} is small, then ρ needs to be close to 1.00 in order for 
EM(1,1)<EM(1,2). 
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6. Discussion 
 
Warning systems are used in many areas: public health, bio terrorism, radiation, 
pregnancy, intensive care patients. Very often, several processes can be used to detect an 
underlying change, e.g. confirmed and suspected cases of a disease. Then we need a 
warning (or surveillance) system for multivariate data. When monitoring more than one 
process, we must consider the dependency between the processes, the correlation 
between the change times and the possible differences between the processes.  
  In this paper, the effect of different types of dependencies is investigated for three 
methods of multivariate surveillance. One method uses the Hotellings T2, where the 
multivariate data is reduced to a scalar at each time point. The second method is a parallel 
system, where the likelihood ratio method is applied to each marginal process, here called 
the LRpar system. The third method is optimal according to the Shiryaev criterion. It is a 
simultaneous solution, derived from the joint likelihood ratio, here called LRjoint. 
  The alarm limits of each of the three systems are adjusted to yield the same false alarm 
probability for some different situations. One situation is where we assume that the 
changes occur independent (i.e. change times τX and τY are uncorrelated) and also that the 
processes (X and Y) are independent, conditional on τX and τY. In another situation, we 
assume a positive correlation between τX and τY (ψ>0, changes tend to occur more 
simultaneously). In a third situation there is a positive covariance between the monitored 
processes X and Y, conditional on τX and τY (ρ>0). The evaluation is made using the 
delay of an alarm, in relation to the first change time.  
 The methods are first compared for independent processes and no correlation between 
the change times (ρ=0, ψ=0). For immediate changes in both processes (τX=τY=1), T2 
has the shortest delay, followed by LRjoint and then LRpar. T2 allocates the alarms early, 
whereas the two LR methods have very few early alarms. LRjoint has a slightly shorter 
delay than LRpar, since LRjoint is based on three components, corresponding to a change 
in either X or Y or both, whereas LRpar is based on only two components: change in 
either X or Y and thus not optimal for simultaneous changes. However, the difference is 
very small since ψ=0 (we do not expect simultaneous changes to be too frequent). Also 
for later simultaneous changes, LRjoint is slightly better than LRpar, whereas T2 here 
yields a long delay (an effect of allocating the alarms early). Thus, even if T2 is a 
reduction, which is sufficient at simultaneous change times, the method is not nessecarily 
optimal here. In univariate surviellance, the Shewhart method has a constant CED(t) over 
all values of t, and the corresponding holds for T2 (constant CED(t,t) over all t). 
However, for τ>1, Shewhart does not have the shortest delay, and neither has T2. Both 
Shewhart (univariate) and T2 (multivariate) allocate many alarms early and few at later 
time points, thus producing longer delay for later changes. For (ρ=0, ψ=0), when we 
consider different change times, LRpar has the same delay as LRjoint and T2 has the 
longest delay, because of the alarm allocation. 
  Next we investigate the effect of assuming a positive correlation between the change 
times, but still with independent processes (ψ=0.8, ρ=0). For immediate change in both 
processes, τX=τY=1, LRjoint has the shortest delay, followed by T2 and then LRpar. 
LRjoint uses the information that the change times are likely to occur simultaneously, 
which results in a short delay. T2 benefits from allocating the alarm early, whereas LRpar 
has neither of these advantages. For later simultaneous changes, LRjoint has the shortest 
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delay. T2, as for ψ=0, only works well for early simultaneous changes and for late 
simultaneous changes, LRpar has shorter delay than T2. For (ρ=0, ψ=0.8), when we have 
different change times, LRpar gives slightly shorter delay than LRjoint, and T2 gives the 
longest delay. LRjoint uses the information that ψ>0, which is a disadvantage when the 
changes actually do occur at different times. 
 Next, the three methods are compared for the situation when X and Y have a positive 
covariance, but the change times are uncorrelated (ρ=0.5, ψ=0). For immediate changes 
in both processes, τX=τY=1, LRpar has the shortest delay, followed by T2 and then 
LRjoint. For late simultaneous changes, LRpar gives shorter delay than LRjoint (although 
LRjoint now works better than T2). One explanation to the long delay for LRjoint is the 
assumption that τX and τY are independent (ψ=0). If we used the assumption ψ>0, 
LRjoint would perform better at the simultaneous changes. However, the long delay for 
close changes is present also for T2, which does not use information about ψ. The alarm 
statistics of LRjoint and T2 both include ρ. When ρ>0, an alarm is called when the 
absolute difference between (X-μD) and (Y-μD) is large, both for LRjoint and for T2. The 
probability that this difference is large, is lower when τX =τY. Both the LRjoint statistic 
and the T2 statistic includes the Mahalanobis function, thus when the components (x-μD) 
and (y-μD) both are large and ρ is large, then (-2ρ(x-μD)(y-μD)) is also large and therefore 
the alarm statistic produces a small value if ρ is large. Heuristically, we may say that 
when X and Y have a positive covariance, they give similar information, especially if 
they have the same distribution (τX=τY) and this may explain the long delay. For (ρ=0.5, 
ψ=0), when we have different change times, LRjoint gives a shorter delay than LRpar 
and T2 yields the longest delay.   
  Generally, the difference in delay is large between LRjoint and T2, in so that LRjoint 
gives shorter delay than T2, except at early, simultaneous changes. The difference 
between LRjoint and LRpar is smaller than between LRjoint and T2.  
  If all processes change immediately, T2 gives shortest delay, in case of total 
independence (ρ=0, ψ=0), whereas LRjoint is best if there is a positive correlation 
between the change times (ρ=0, ψ>0). If there is a positive covariance between the 
processes and no correlation between the change times (ρ>0, ψ=0), then LRpar gives the 
shortest delay for τX=τY=1. For later simultaneous changes, LRjoint is best, for all non-
negative correlations, when the processes are independent (ψ≥0, ρ=0). For processes with 
a positive covariance, LRpar yields the shortest delay for later simultaneous changes, at 
least when no correlation is assumed between the change times (ρ>0, ψ=0).        
  If the processes change at different time points, LRjoint gives the shortest delay, 
except for a positive correlation between the change times (ψ>0). This holds for both 
independent processes and when the covariance is positive (ρ≥0). 
 In this paper we only deal with positive dependency. A negative correlation between 
the change times, ψ<0, implies that the change times do not coincide. Then it would be 
best to have a very small weight for the component for simultaneous changes. If the 
processes themselves have a negative covariance (ρ<0), the implication is that X= -Y. 
Then the alarm region would constitute of large values of (X+Y) and the alarm region for 
ρ<0 would be similar to that of a positive correlation between the change times (ψ>0).   
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Appendix 
 
The Mij(t) is based on two distances, namely 
   di(t)=(μCi(t)-μD)/σ and dj(t)=(μCj(t)-μD)/σ.  
 
, we compare M1,1(t) and M1,2(t) (below the time index t is dropped):  

  M1,1= 
2 2

1 1 1 1
2

2
(1 )

d d d dρ
ρ

+ −
−

 and M1,2= 
2 2

1 2 1 2
2

2
(1 )

d d d dρ
ρ

+ −
−

.  

 
If the inequality M1,2 > M1,1 holds, this does indicate that CED(1,1)<CED(1,2). The 
inequality between the M-values holds when 2 2

1 2 1 1 2( ) / 2 ( )d d d d d ρ− − < . Thus, if d2 is 
small compared to d1, then M1,1 < M1,2 for rather moderate covariance. But if d2 is closer 
in size to d1, then ρ needs to be close to 1.00 in order for M1,1 < M1,2. In our model, the 
relative difference between d1 and d2 is in fact rather small, thus only for large values of 
ρ, we would get CED(1,1)>CED(1,2). 
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