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ABSTRACT

Charged particles emit radiation in the presence of strong electromagnetic
fields. Emission implies a recoil on the charge, altering its dynamics and is
referred to as radiation reaction (RR). Current experiments are on the verge of
probing the quantum regime of RR by usage of intense laser pulses colliding
with high-energy electron beams. The framework for quantum RR is de-
scribed by quantum electrodynamics (QED) and becomes nonperturbative
in the strong-field limit (SFQED). Theoretical knowledge beyond it is limited
but could potentially be detectable with upcoming laser facilities. Here, the
presence of electron-positron cascades and low-energy emissions masks
any signal emergent in such experiments. Hence, the appeal for strategies to
extract signals of SFQED and/or the adoption of advanced statistical tech-
niques. In this thesis, strategies are developed to retrieve information in
laser-electron experiments. Firstly, a selection rule is established based on
the kinematic properties of electrons and their emissions to form a descrip-
tive reading at the detector. Secondly, the role of tight focusing of lasers is
explored to attain extreme regimes of interest. The optimal solution for this is
derived and is denoted a bidipole wave. Finally, an experimental framework
capable of inferring parameters of models designated to capture SFQED
effects using Bayesian techniques is proposed.
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1

Introduction

From the first notion on stimulated emission by Albert Einstein [1] and the
advent of the maser oscillator [2] the idea of generating coherent radiation
at sub-millimeter and infrared wavelengths paved the way for the first laser
observed in ruby crystals [3–5]. The basic principle of a laser require a gain
medium, a pump source and a set of mirrors (optical resonator). The gain
medium can be a gas, liquid or a solid compound whose electrons are excited
to a higher energy state by e.g. an electrical current or light of a different
wavelength. By bouncing between the set of mirrors the emitted photons
traverse the media multiple times, each time stimulating emission and am-
plifies into a coherent beam of radiation. Over the decades the laser found
several applications such as cornea reshaping, destruction of tumors and
gallstones [6] but also uses in photography and interferometry [7]. A number
of laser media can operate in a continuous-wave mode meaning that the
output power of the light is constant in time. In contrast, the medium can be
intentionally made to only yield intense bursts of light with a certain duration
and rate of repetition. These are referred to as pulsed lasers and the effort
to make them as short and intense as possible is central in controlling the
electron motion in solids [8], tunneling of electrons in nanodevices [9] and
areas of attosecond physics [10–13].

As intensity is the energy transferred per unit time and per unit area it be-
comes clear that intense lasers are attained by 1) increasing the total input
energy, 2) focus said radiation to a small spot and 3) decreasing the pulse
duration. Combining all of these can result in extreme intensities, raising
the question what level can be reached with present-day laser facilities? This
is best answered with the aid of Fig. 1 where the timeline of record peak
intensities obtained with high-intensity lasers are shown. Shortly after the
first laser came the technique of Q-switching where an attenuating element
is introduced to the traditional laser setup [15]. The component prevents
lasing and results in a large buildup of energy in the gain medium, producing
a short and intense laser pulse once the attenuator is deactivated. In close
succession came mode-locking, a method where the longitudinal modes
of the laser is made to interfere constructively, resulting in bursts of light
[16]. Then, in the mid 1980s a drastic increase in peak intensity emerged
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Figure 1: History of record peak intensities attained with high-intensity lasers.
Typical electron energies obtained at these intensities with a laser wavelength
of λ = 1 µm are displayed on the right axis. The shaded area correspond to
the range of intensities that upcoming 10 PW facilities might produce. Figure
adapted from [14].

with the technique of chirped pulse amplification (CPA) by Strickland and
Mourou [17], awarding them the 2018 Nobel Prize in Physics. CPA is used to
further amplify ultra-short laser pulses by elongating them in time, ensuring
a safe amplification of the long pulse which in the end is compressed, having
drastically increased in peak power. In the 1990s, a useful variation of this
technique known as optical parametric CPA (OPCPA) was discovered [18]
and was employed by several facilities [19, 20].

In terms of peak laser power, contemporary facilities can now reach the order
of 1 PW [21, 22] and have recently toppled the 10 PW level [23]. More facilities
are in development to reach this level [24–27] and even the 100 PW barrier
[28]. A comprehensive overview of laser facilities can be seen in Fig. 2 in
which they are placed on a map in terms of their pulse energy and duration.

3

With the ample number of ultra-intense laser facilities one might ask the
question what the practicality of these pulses are? In the field of laser-plasma
physics, examples range from electron/ion acceleration, high-harmonic
generation (HHG) and inertial confinement fusion (ICF) [29]. However, at
these extreme intensities there is an opportunity to conduct studies of the
fundamental theory of light-matter interactions which is dictated by quan-
tum electrodynamics (QED). Its framework, originally developed during the
1930s by Dirac, Heisenberg and Weisskopf and later finalized by Feynman,
Schwinger, Dyson, Tomonaga and others encompass any process where one
or several photons interact with electrons or positrons and so forth [30]. Com-
mon processes predictable with QED include the Breit-Wheeler process [31]
and nonlinear inverse Compton scattering [32]. QED also predicts that in the
presence of an exceptionally intense field, electron-positron pairs can spon-
taneously emerge from the vacuum which is known as the Sauter-Schwinger
mechanism [33]. Unfortunately, no facility in the near future can reach the
critical field required for this to happen; Ecr =m 2

e c 3/qeħh � 1018 V m−1 where
ħh is the reduced Planck constant, c is the speed of light, me and qe are the
electron mass and charge respectively. For optical wavelengths this translates
to intensities ≈ 1029 W cm−2 which is six orders of magnitude greater than
the current intensity record (≈ 1023 W cm−2) [34]. Probing such strong-field
QED (SFQED) processes in an all-optical environment using e.g. laser-laser
collisions is thus demanding.

Question is, are there other schemes to study SFQED processes experimen-
tally? If one consider the collision of a high-intensity laser and a beam of
high-energy electrons the situation becomes different. In the rest frame of the
electron, the particle will experience a Lorentz boosted electromagnetic field.
Depending on the energy of the electrons they can experience field strengths
on the order of the critical field and hence entail strong-field processes. As a
quantitative measure one can form the quantum nonlinearity parameter χ
as the ratio of the electron acceleration in said rest frame to the acceleration
caused solely by Ecr. Additionally, electrons (all charged particles in fact)
emit radiation when they are accelerated by electromagnetic fields and their
response to it is commonly known as radiation reaction. In the classical limit
χ � 1 and particles emit radiation continuously of which synchrotron radia-
tion is an example of this [35]. When the combination of strong fields and
high-energy electrons reach magnitudes of χ � 1 the emissions become of
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discrete nature where individual photons are radiated away probabilistically
and various quantum effects emerge such as pair creation [36]. A map of in-
teractions relevant to laser-electron dynamics is found in Fig. 3 as a function
of χ and a0. Here, a0 is the normalized electric field amplitude of the laser
where a0 ≈ 1 designates the field amplitude necessary to accelerate electrons
to relativistic energies within a single oscillation of the electromagnetic wave.

On the subject of limits, scientists have always pushed the boundaries of
theories to their extremities and the theory of QED is no exception. It is
conjectured that the theory becomes non-perturbative when α f χ

2/3 � 1
[38, 39]where α f ≈ 1/137 is the fine-structure constant. In other words, the
perturbation approach fails to work in this limit and the theory beyond it is
limited. Consulting Fig. 3 once more it becomes evident that both contem-
porary and past experimental efforts (numbered green circles) have made
prospects around the quantum regime χ ∼ 1 [40–43] and is far away from
the conjectured breakdown. In this thesis, several concepts to probe this
domain from an experimental point of view is demonstrated.

The thesis is divided into two parts. Part I entail theoretical principles of radi-
ation from accelerated charges and radiation reaction, forming six sections.
The opening sections derive the classical result of J. J. Larmor which concerns
the radiated power from an accelerated charge (Sec. 1.1) and extend this
result to include relativistic motion and analyze the radiation pattern (Sec.
1.2). Since the emitting charge responds to its own radiation, classical RR
is discussed by analyzing the resulting force on the charge Frad (Sec. 1.3).
One shall find that the shape of Frad is deficient and leads to nonphysical
solutions which are remedied by finding the relativistic generalization by
consulting the work of L. Landau and E.M. Lifshitz (Sec. 1.4). In covering the
classical and relativistic approach to RR, the question on how to express RR
in the quantum picture is posed. The answer will be that the formulation
need to encompass the discreteness of individual photons and the possibility
to create electron-positron pairs which is described by QED (Sec. 1.5). Part
I is concluded by discussing the quantum processes of interest (Sec. 1.6)
obtained using QED; photon emission (nonlinear Compton scattering) and
electron-positron pair creation (Breit-Wheeler process).

Part II is devoted to provide solutions to some of the difficulties faced in

5

Figure 2: Laser facilities in the space of pulse duration and energy assuming
a linearly polarized laser with spatiotemporal Gaussian profile, wavelength
λ= 1 µm and ideal f /2 focusing. Colored regions show regions of attainable
physics; (yellow) intensity corresponding to one atomic unit of field strength (≈
3.5 ·1016 W cm−2), (green) relativistic electrons (a0 ≈ 1 =⇒≈ 1.37 ·1018 W cm−2),
(blue) radiation losses of an electron become comparable to the energy gain
from the acceleration in the electromagnetic field during each laser cycle. (≈
8 ·1022 W cm−2), (teal) cascading of electron-positron pairs commence (≈ 3.5 ·
1023 W cm−2) and (violet) intensity equivalent to the critical field Ecr (≈ 4.65 ·
1029 W cm−2). The inset displays the effective intensity boost by splitting the
laser power between the given number of beams and adding the electric field
coherently. This is shown as a relative shift on the map between the cases of
f /2 (left) and f /1 (right) focusing in which the dotted line displays the optimal
limit: a dipole wave. Adapted from [37].

laser-electron experiments that aim to probe the extreme regimes of QED.
Experimentalists are now equipped with lasers and accelerators whose com-
bined capabilities are enough to observe quantum effects (χ � 1) but there
is an active appeal to yield larger values of χ to study the breakdown regime
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Figure 2: Laser facilities in the space of pulse duration and energy assuming
a linearly polarized laser with spatiotemporal Gaussian profile, wavelength
λ= 1 µm and ideal f /2 focusing. Colored regions show regions of attainable
physics; (yellow) intensity corresponding to one atomic unit of field strength (≈
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coherently. This is shown as a relative shift on the map between the cases of
f /2 (left) and f /1 (right) focusing in which the dotted line displays the optimal
limit: a dipole wave. Adapted from [37].

laser-electron experiments that aim to probe the extreme regimes of QED.
Experimentalists are now equipped with lasers and accelerators whose com-
bined capabilities are enough to observe quantum effects (χ � 1) but there
is an active appeal to yield larger values of χ to study the breakdown regime
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Figure 3: Interaction map in the space of the quantum nonlinearity param-
eter χ and dimensionless laser (assumed wavelength λ = 1 µm) amplitude
a0: (black solid line) delimits dynamics in which electrons radiate away the
majority of their energy where Ld denote the distance over which the electron
has lost all of its energy due to emissions, (checkered area) demarcates whether
radiation can be described as continuous (white) or individual photons (check-
ered), (shaded blue region) domain where the process of electron-positron
pair creation becomes significant where Lp denote the average distance before
generating a pair, (shaded violet region) the onset of vacuum pair-production,
(yellow line) boundary for which the electromagnetic field can be considered
constant where L f is the distance required for an electron to emit a photon,
(solid blue line) nonperturbative limit of QED, (dashed red line/shaded red
area) prospects for experiments using stationary plasma targets and (solid
green line) experiments involving an ultrarelativistic electron beam where the
numbered points highlight past and contemporary experiments (1)-[41], (2)-
[40], (3)-[42] and (4)-[43]. Adapted from [37].

of QED (χ � 1600). One approach to detect it is to consider the resulting
energy spectrum of electrons and their emitted photons to identify a devia-
tion from what has previously been measured and/or predicted with QED.
Nonetheless, the difficulty lies in distinguishing such a deviation possibly

7

minuscule as χ � 1600, from the vast majority of background noise inherent
in such experiments operating at these extremities (Sec. 2.1). In this thesis,
concepts that circumvent these difficulties are provided which comprise of
three milestones outlined in chapters 2 and 3. Firstly, a strategy to extract
information from these experiments based on the kinematic traits of pho-
tons emitted from electrons is developed, which provides a feasible way of
separating the background noise. Secondly, the optimization problem that
results in the maximum achievable χ in laser-electron collisions is defined.
This is then solved which yields a solution whose structure is shown to be
feasible in terms of implementation in experiments. Lastly, prospects of
experiments incorporating Bayesian inference by comparing results from
repeated simulations and experiments are demonstrated. The summaries of
papers A and B can be found in Secs. 4.1 and 4.2.
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PART I

THEORETICAL PRINCIPLES AND METHODS

1 The nexus of charged particles and electro-
magnetic fields

This chapter covers the basic ideas behind radiation from accelerated charges
in electromagnetic fields and the concept of radiation reaction which span
six sections. In Sec. 1.1 the total instantaneous power emitted from a non-
relativistic charge being accelerated is derived. Obtaining the result is done
by calculating the electromagnetic potentials from the current density arising
from the moving charge. These can later be used in evaluating the Poynting
vector which describes the instantaneous energy flux. In Sec. 1.2 the relativis-
tic formulation in which the charge may have arbitrary velocity is attained.
This is done by invoking Lorentz covariance onto the previous result which
must reduce to the classical expression for velocities much smaller than c .
Sec. 1.3 considers the impact on the radiating charge responding to its own
emission which can be encapsulated by a force Frad. In finding its expression,
Newtons second law in conjunction with the conservation of momentum
within a spherically symmetric and robust charge is employed. Sec. 1.4
points out that Frad admits nonphysical solutions which is resolved by again
appealing to Lorentz covariance. Lastly, in Secs. 1.5 and 1.6 the quantum
formulation of radiation reaction is introduced which no longer treats the
coaction between the emitting charge and its radiation as a continuous pro-
cess. Instead, the emission and absorption of individual photons becomes
the dominant feature and the generation of electron-positron pairs becomes
possible. Such a description is provided with QED for which the specific
focus is on processes connected to photon emission and electron-positron
pair production. The following derivations are based on Refs. [44–48].
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10 THE NEXUS OF CHARGED PARTICLES AND ELECTROMAGNETIC FIELDS

1.1 Radiation from charged particles in electromagnetic
fields

All charged particles radiate when accelerated, hence they must lose energy
due to conservation of energy. The radiation itself may be dependent on
the trajectory, velocity and/or other traits of the particle in question. In this
section, the spectral properties of an accelerated, non-relativistic charge is
derived. This will serve as a stepping stone in describing radiation reaction
and its relativistic variations.

To begin with, the electromagnetic field vectors are denoted as E and B.
These are required to calculate the emitted power which is directly related to
the Poynting vector, representing the energy flux of an electromagnetic field

S=
c

4π
E×B. (1.1)

All electromagnetic fields obey the Maxwell equations and can be further
expressed using potentials:

E=−∇φ−
∂ A

∂ t
, (1.2)

B=∇×A (1.3)

where φ has been introduced as the scalar potential and A as the vector
potential. A relativistic description ofφ and A is achieved by introducing the
four-vector Aµ = (A,φ). Here, the metric tensor is chosen to have signature
ηµ = (−,+,+,+). In the case of a localized charge the potential Aµ at any time
t can be written [44]

Aµ(r, t ) =
1

c

∫ ∫

Jµ(r′, t ′)

|r− r′|
δ(t ′+

|r− r′|
c
− t )d V ′d t ′ (1.4)

where Jµ = (J, cρ) is the four-current density with spatial components equiv-
alent to the current density J and temporal component ρ being the charge
density and r= (x , y , z ) is the coordinate vector. Here, δ(·) denotes the Dirac
delta function. Considering a single particle with charge q and four-velocity

RADIATION FROM CHARGED PARTICLES IN ELECTROMAGNETIC FIELDS 11

vµ = (γv,γc )where v is the particle velocity and γ= 1
�

1− v 2

c 2

is its correspond-

ing Lorentz factor (v = |v|) it is straightforward to express the four-current
density as

Jµ(r, t ) = q vµδ(r− rp (t )) (1.5)

where rp (t ) is the location of the particle in space and at time t . With Jµ given
by Eq. (1.5) the spatial integration in (1.4) can be carried out effortlessly due
to the spatial delta function

Aµ(r, t ) =
q

c

∫ ∫

vµ(r′, t ′)

|r− r′|
δ(r′ − rp (t

′))δ(t ′+
|r− r′|

c
− t )d V ′d t ′ (1.6)

=
q

c

∫

vµ(rp (t ′), t ′)

|r− rp (t ′)|
δ(t ′+

|r− rp (t ′)|
c

− t )d t ′

where the following property of delta functions has been used

∫

f (x ′)δ(x − x ′)d x ′ = f (x ). (1.7)

Determining the fields can be done directly with Eq. (1.6) by introducing
R= r− rp (t ′) noting that the gradient operator reduces to

∇→∇R
∂

∂ R
=n

∂

∂ R
(1.8)

where n is the unit vector directed from the charge location to the point of ob-
servation. This is possible since the only dependence on spatial coordinates
r is through R = |R|. Employing Eq. (1.2) one finds that

E(r, t ) = q

∫

n

R 2
δ(t ′+

R

c
− t ) +

1

c R
(v/c −n)

∂ δ

∂ R
(t ′+

R

c
− t )d t ′ (1.9)

= q

∫

n

κR 2
δ(tret− t ) +

1

κc R
(v/c −n)

∂ δ

∂ R
(tret− t )d tret

where in the last line the substitution tret = t ′+ R (t ′)
c and abbreviationκ= 1− v

c
has been made. From Eq. (1.9) the derivative on the delta function can be
integrated by parts, giving
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Figure 1.1: Geometrical illustration of a charged particle trajectory showing
relevant quantities that appear in the derivation of its emitted ration. Here, O
and P denote the origin and point of observation respectively.

E(r, t ) = q
�

n

κR 2
+

1

cκ

d

d t ′

�

n−v/c

κR

��

t ′=tret

. (1.10)

Although not shown here, the calculation of B reveals that it is related to the
electric field in the following way

B=n×E. (1.11)

The final thing to do is to evaluate the derivative on the second term in Eq.
(1.10). For this, the following identities are consulted

d n

d t ′
=

n× (n×v)
R

(1.12)

d v

d t ′
= v̇ (1.13)

d

d t ′
(κR ) =

v 2

c
−v ·n−

R

c
n · v̇. (1.14)

To convince oneself of Eq. (1.12), a brief look at Fig. 1.1 indicates that the time
rate of change of n will be the negative ratio of the perpendicular components

TRANSITION TO RELATIVISTIC FORMULATION 13

of v to that of R . Thus, using Eqs. (1.12)-(1.14) in Eq. (1.10) the electric field
will be given by

E(r, t ) =
q

γ2κ3R 2
[n−v/c ]t ′=tret

+
q

cκ3R
[n× ((n−v/c )× v̇/c )]t ′=tret

. (1.15)

Note that E comprise of two parts. The first depends linearly on the particle
velocity, diminishing as R−2 whereas the second contribution depend on
the particle acceleration, falling off as R−1. In the non-relativistic case, a
reference frame where the particle velocity v � c but its acceleration is
non-negligible can be considered so that Eq. (1.15) simplifies to

E(r, t ) =
q

c 2

�

n× (n× v̇)
R

�

t ′=tret

. (1.16)

Recall that the power can be obtained through the Poynting vector (Eq. (1.1))

S=
c

4π
E× (n×E)
︸ ︷︷ ︸

=B

=
c

4π
|E|2n (1.17)

and because |S|= d P
d A =

d P
R 2dΩ , the power radiated per unit solid angle is

d P

dΩ
=

c

4π
|E|2R 2 =

q 2

4πc 2
|n× (n× v̇)|2. (1.18)

Further, introducing the angle Θ so that v̇ ·n= v̇ cos(Θ) enables one to com-
pute the total instantaneous radiated power

P =

∫

q 2

4πc 3
v̇ 2 sin2(Θ)
︸ ︷︷ ︸

d P
dΩ

dΩ=
q 2

4πc 3
·2π
∫ π

0

sin3(Θ)dΘ

︸ ︷︷ ︸

=4/3

=
2

3

q 2v̇ 2

c 3
(1.19)

which is the famous result of J. J. Larmor for a non-relativistic charge being
accelerated [49].

1.2 Transition to relativistic formulation

One can argue that there should exist a Lorentz transformation to a frame of
reference for arbitrary particle velocity. Additionally, the power P is a Lorentz
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invariant [50]. Thus, if one can find a suitable Lorentz invariant for the right-
hand side of Eq. (1.19) which reduce to the non-relativistic expression in the
limit v � c then one has the desired result. Realizing that the electric field
emitted from the particle according to Eq. (1.16) depend on v and v̇ implies
that the relativistic form also need to depend only on these. To highlight the
correct choice of the Lorentz invariant, the Larmor formula (1.19) can be
expressed using the particle momentum p

P =
2

3

q 2

m 2c 3

�

d p

d t

d p

d t

�

(1.20)

where m is the mass of the particle. Now the choice is obvious, d p
d t →

d pµ
dτ

where dτ= d t /γ is the proper infinitesimal time, pµ = (p, E /c ) is the four-
momentum of the particle and E its energy. Then the relativistic generaliza-
tion must be

P =
2

3

q 2

m 2c 3

�

d pµ
dτ

d pµ

dτ

�

(1.21)

with an implicit sum over the indices. Evaluating the above four-product
yields

d pµ
dτ

d pµ

dτ
=
�

d p

dτ

�2

−
v 2

c 2

�

d p

dτ

�

(1.22)

where p = |p| which indeed reduce to Eq. (1.19) when v � c . It is possible to
put Eq. (1.21) in a non-covariant form by expressing E =m c 2γ and p=mvγ.
Then, Eq. (1.21) takes the form

P =
2

3

q 2

c 3

�

�

v̇

c

�2

−
�

v

c
×

v̇

c

�2
�

(1.23)

which was originally found by Liénard [51]. Evidently, the radiated power
now depend on both the particle velocity and its acceleration, making the
angular distribution more complex than that of Eq. (1.18). However, consider
the example of linear motion and when the charge is accelerated for a short
period of time. Then, if the emission is observed from far away one finds [44]

d P

dΩ
=

q 2v̇ 2

4πc 3

sin2Θ

(1− v
c cosΘ)5

(1.24)
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where Θ is the angle of observation measured from the joint direction of
v and v̇. This also approach Eq. (1.18) when v � c . The radiation pattern
now emerge as two lobes tilted toward the direction of propagation as op-
posed to the non-relativistic result where the lobes are perpendicular to the
propagation axis.

1.3 Classical radiation reaction

Perhaps one of the most well-known forces related to the motion of charges
in an electromagnetic field is that of the Lorentz force [52, 53]

Fl = q
�

E+
v

c
×B
�

(1.25)

with the velocity of the charge being constant. Note that E, B now denote ex-
ternal electromagnetic field vectors. Coincidentally, by Newtons second law
the charge in question must experience an acceleration v̇= Fl

m which must
give rise to emission of radiation according to Sec. 1.1. Emitting particles
must lose energy and deposit its momentum as well as angular momentum
to the radiation. This alters the equations of motion for the charge and Eq.
(1.25) is not enough to describe trajectories for situations where the energy
loss is non-negligible. This suggests that there should exist an additional
force term Frad which capture the correct dynamics. The description of a
charged particle, including the self-force from its emitted radiation dates
back to the attempts of Abraham and Lorentz [45–47]. In what follows, the
discussion of [44] is adopted in order to unravel the form of Frad and one
shall find that this form is incorrect and admits nonphysical solutions.

Similar to Sec. 1.1, one can consider a particle with charge q and strongly
localized charge density ρ(r) present in electromagnetic fields E and B. To
commence the analysis, acknowledge the fact that the rate of change of total
momentum is conserved within the volume of the charge

d

d t
(Pmech+PEM) = 0 (1.26)

where Pmech and PEM are the mechanical momentum and electromagnetic
momentum respectively. Under the assumption that the mechanical mo-
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invariant [50]. Thus, if one can find a suitable Lorentz invariant for the right-
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3

q 2

m 2c 3

�

d p

d t

d p

d t

�

(1.20)

where m is the mass of the particle. Now the choice is obvious, d p
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d pµ
dτ
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3

q 2
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�
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dτ

d pµ

dτ

�

(1.21)

with an implicit sum over the indices. Evaluating the above four-product
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d pµ
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�

d p

dτ

�2

−
v 2

c 2

�

d p
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�

(1.22)

where p = |p| which indeed reduce to Eq. (1.19) when v � c . It is possible to
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�2
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angular distribution more complex than that of Eq. (1.18). However, consider
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commence the analysis, acknowledge the fact that the rate of change of total
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where Pmech and PEM are the mechanical momentum and electromagnetic
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mentum is of electromagnetic origin (as Abraham and Lorentz argued) then
Eq. (1.26) can be expressed in terms of the Lorentz force

∫

Fl d V =

∫

�

ρEtot+
1

c
J×Btot

�

d V = 0 (1.27)

where the integral runs over the volume of the particle and Etot, Btot are the
total fields

Etot = E+Erad,

Btot =B+Brad

being composed of the external ones and the fields related to the emitted
radiation Erad, Brad. In turn, the integral (1.27) decompose to

F=

∫

�

ρE+
1

c
J×B
�

d V , (1.28)

Frad =

∫

�

ρErad+
1

c
J×Brad

�

d V (1.29)

and implies that −d p
d t = Frad where p=Pmech is the particle momentum. To

evaluate Eq. (1.29) two assumptions must be made to simplify the calculation.
First, assume that the charge is instantaneously at rest and secondly, that the
charge distribution is spherically symmetric and robust. The latter implies
J(r, t ) = ρ(r, t ) · v(t ), that is, every part of the charge travels with the same
velocity. From these assumptions one has v = 0 → J = 0 and Eq. (1.29)
collapse to

d p

d t
=−
∫

ρ(r, t )Erad(r, t )d V . (1.30)

Recall from Eq. (1.2) that the electric field can be expressed in terms of the
potentialsφ and A so that

d p

d t
=

∫

ρ(r, t )
�

∇φ(r, t ) +
1

c

∂ A(r, t )
∂ t

�

d V (1.31)
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where it is understood thatφ =φrad and A=Arad. In turn, the potentials are
given by Eq. (1.4), hence

Aµ(r, t ) =
1

c

∫

Jµ(r′, t ′ = tret)

R
d V ′ (1.32)

where again R = |r− r′|. Here, Jµ must be evaluated at the retarded time

t ′ = t − R
c . However, since the integration spans the extent of the particle the

term R
c ∼

rq

c with rq being the spatial dimension of the charge. By the second
assumption, rq must be exceptionally small due to the highly localized charge
distribution. Therefore, one can attempt to Taylor expand Eq. (1.32) around
t ′ = t in powers of −R

c

Jµ(t
′) =

∞
∑

n=0

(−1)n

n !

�

R

c

�n ∂ n Jµ(t )

∂ t n
. (1.33)

Putting Eq. (1.33) into Eq. (1.31) one finds

d p

d t
=
∞
∑

n=0

(−1)n

c n n !

∫ ∫

ρ(r, t )
∂ n

∂ t n

�

ρ(r′, t )∇R n−1+
R n−1

c 2

∂ J(r′, t )
∂ t

�

d V ′d V .

(1.34)
To facilitate the analysis, consider only the contribution from the scalar
potentialφ. Its first term (n = 0) in the expansion is proportional to

∝
∫ ∫

ρ(r, t )ρ(r′, t )∇
�

1

R

�

d V ′d V (1.35)

∝
∫ ∫

ρ(r, t )ρ(r′, t )
r− r′

|r− r′|3
d V ′d V = 0

which is true for spherically symmetric charge distributions (reversal of r→ r′

inverts the sign). Here, the identity∇R n = nR n−2R is employed. Next, the
term n = 1 also has zero contribution due to the term ∇R n−1 = ∇R 0 = 0.
As a consequence, all non-zero scalar contributions come from n ≥ 2 and
its sum can be re-expressed by shifting the index n by +2. Note that the
vector potential contribution is non-zero for n = 0, 1 and its indices remain
unchanged. Then, Eq. (1.34) can be cast in the following form
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d p

d t
=
∞
∑

n=0

(−1)n

n !c n+2

∫ ∫

ρ(r, t )R n−1 ∂
n+1

∂ t n+1

� ∂ ρ(r′,t )
∂ t

∇R n+1

R n−1

(n +2)(n +1)
+ J(r′, t )

�

d V ′d V .

(1.36)
Apart from the momentum conservation in Eq. (1.26), charge must also be
conserved. This is formulated using the continuity equation [54]

∂ ρ

∂ t
+∇· J= 0 (1.37)

and states that any charge transported out of a volume must decrease the
amount of charge inside that volume. Applying Eq. (1.37) to the current
density term in Eq. (1.36) yields

d p

d t
= ...

∫ ∫

ρ(r, t )R n−1 ∂
n+1

∂ t n+1

�

J(r′, t )−∇′ · J(r′, t )
R

(n +2)

�

d V ′d V (1.38)

where ∇′ denotes differentiation with respect to r′ and the sum has been
omitted for readability. Additionally, the second term in the square brackets
can be integrated by parts to yield

d p

d t
= ...

∫ ∫

ρ(r, t )R n−1 ∂
n+1

∂ t n+1

� (n +1)
(n +2)

J(r′, t )−
(n −1)
(n +2)

(J ·R)R
R 2

�

d V ′d V .

(1.39)
According to the second assumption, the spherically symmetric charge dis-
tribution suggest that the only relevant direction of the problem is along its
velocity v. As a result, only the components inside the square brackets of Eq.
(1.39) oriented along v will survive the integration. Utilizing the robustness
of the charge and projecting the components along v one can write

d p

d t
= ...

∫ ∫

ρ(r, t )R n−1 ∂
n+1

∂ t n+1

�

ρ(r′, t )v

�

(n +1)
(n +2)

−
(n −1)
(n +2)

·
(R ·v)2

R 2v 2

��

d V ′d V .

(1.40)
The only angular dependence comes from (R·v)2

R 2v 2 and it can be shown that

integrating over the angles for this term gives (R·v)
2

R 2v 2 → 1
3 , leading to the simpler

expression

CLASSICAL RADIATION REACTION 19

d p

d t
=

2

3

∞
∑

n=0

(−1)n

n !c n+2

∂ n+1v

∂ t n+1

∫ ∫

ρ(r′)R n−1ρ(r)d V ′d V . (1.41)

Now, defining the characteristic extent of the charge as

r n−1
p �

1

q 2

∫ ∫

ρ(r′)R n−1ρ(r)d V ′d V (1.42)

it is possible to see that the n :th term in the expansion is proportional to

�

d p

d t

�

n
∝ r n−1

p . (1.43)

Taking the limit of point-like charges (rp → 0), only the terms n = 0,1 con-
tribute to the self-force expression. These contributions read

�

d p

d t

�

n=0
=

2v̇

c 3

∫ ∫

ρ(r′)ρ(r)
R

d V ′d V =
4

3
mq v̇, (1.44)

�

d p

d t

�

n=1
=
−2v̈

3c 3

∫ ∫

ρ(r′)ρ(r)d V ′d V =
−2q 2

3c 3
v̈ (1.45)

where the electrostatic self-energy has been identified as

U =
1

2

∫ ∫

ρ(r′)ρ(r)
R

d V ′d V (1.46)

and the electromagnetic mass mq =
U
c 2 connecting the self-energy contri-

bution to the mass of the particle. Finally, the expression for the self-force
becomes

Frad =
4

3
mq v̇−

2q 2

3c 3
v̈ (1.47)

which is the classical result describing the response of a charge to its own
electromagnetic radiation. Being a classical result, there is a deficiency of it
not being relativistic and possessing incorrect Lorentz covariance (the factor
4
3 in Eq. (1.47) is in fact wrong). Additionally, neglecting higher-order terms
is not sustainable as the assumption rp → 0 implies mq →∞. To resolve
this issue, one can at least take the observable mass of the charge for a finite
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is not sustainable as the assumption rp → 0 implies mq →∞. To resolve
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spatial extent. In the case of electrons one can take rp ∼ 10−13cm which is
the classical electron radius. Despite the smallness of rp , it is still possible
for the motion to be rapid enough to make contributions beyond n ≥ 2 in
the expansion important. Thus, the radiation force in Eq. (1.47) can at best
be taken as an approximated theory.

1.4 Landau & Lifshitz approach to radiation reaction

Considering the difficulties of the self-force derived in Sec. 1.3 one can
briefly observe another derivation made by L. Landau and E.M. Lifshitz [48]
on classical radiation reaction. In their book they make the remark that the
self-force stated by Eq. (1.47) lead to nonphysical solutions. To exemplify,
take a charged particle not present in any external field and only affected by

Frad =−
2q 2

3c 3 v̈. Writing the equation of motion for the particle as

m v̇=
2q 2

3c 3
v̈ (1.48)

the non-constant solution for v̇ is proportional to e
3m c 3 t

2q 2 which increase indef-
initely in time. In other words, if a charge were to experience electromagnetic
fields for a finite period, it would begin to self-accelerate exponentially in
time upon leaving the fields. Before deriving the relativistic case for the
self-force, recall that the classical version is only valid as an approximation
in the limit |Frad|

|Fl | � 1.

To obtain the relativistic generalization one can use the same arguments
as motivated in Sec. 1.2. Now, a four-force f rad

µ = ( γc f · v,γf) is sought after
that reduce to the right-hand side of Eq. (1.48) in the limit v � c . Here, f is
the three-dimensional vector describing the self-force. Starting off, one can
write the equation of motion for the charge in relativistic form

m
d vµ
dτ
= q F µνvν+ f rad

µ (1.49)

where Fµν is the electromagnetic tensor given by
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Fµν =









0 Ex /c Ey /c Ez /c
−Ex /c 0 −Bz By

−Ey /c Bz 0 −Bx

−Ez /c −By Bx 0









. (1.50)

The shape of f rad
µ is built by

f rad
µ =

2q 2

3c

d 2vµ
dτ2

(1.51)

since this retrieves the classical result in the limit v � c . All four-forces must
follow the orthogonal property f µvµ = 0 which is not fulfilled by Eq. (1.51).
To enforce this requirement one needs to add an auxiliary four-vector to
Eq. (1.51) which in turn must have its spatial components go to zero when
v→ 0. It turns out that the four-vector vµ is sufficient and the inclusion of
this auxiliary contribution is written as

f rad
µ =

2q 2

3c

d 2vµ
dτ2

+ζvµ (1.52)

where ζ is a constant determined by the condition f rad
µ vµ = 0. Evaluating it

leads to

ζ=−
2q 2

3c 3

d 2vµ
dτ2

vµ (1.53)

giving

f rad
µ =

2q 2

3c

�

d 2vµ
dτ2
−

1

c

d 2v ν

dτ2
vνvµ

�

. (1.54)

It is possible to write the four-acceleration in terms of the external field using

d vµ

dτ
=

q

m
F µνvν→ (1.55)

→
d 2vµ

dτ2
=

q

m

∂ F µν

∂ xγ
vνv γ+

q 2

m 2
F µνFνγv γ.
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spatial extent. In the case of electrons one can take rp ∼ 10−13cm which is
the classical electron radius. Despite the smallness of rp , it is still possible
for the motion to be rapid enough to make contributions beyond n ≥ 2 in
the expansion important. Thus, the radiation force in Eq. (1.47) can at best
be taken as an approximated theory.

1.4 Landau & Lifshitz approach to radiation reaction

Considering the difficulties of the self-force derived in Sec. 1.3 one can
briefly observe another derivation made by L. Landau and E.M. Lifshitz [48]
on classical radiation reaction. In their book they make the remark that the
self-force stated by Eq. (1.47) lead to nonphysical solutions. To exemplify,
take a charged particle not present in any external field and only affected by

Frad =−
2q 2

3c 3 v̈. Writing the equation of motion for the particle as

m v̇=
2q 2

3c 3
v̈ (1.48)

the non-constant solution for v̇ is proportional to e
3m c 3 t

2q 2 which increase indef-
initely in time. In other words, if a charge were to experience electromagnetic
fields for a finite period, it would begin to self-accelerate exponentially in
time upon leaving the fields. Before deriving the relativistic case for the
self-force, recall that the classical version is only valid as an approximation
in the limit |Frad|

|Fl | � 1.

To obtain the relativistic generalization one can use the same arguments
as motivated in Sec. 1.2. Now, a four-force f rad

µ = ( γc f · v,γf) is sought after
that reduce to the right-hand side of Eq. (1.48) in the limit v � c . Here, f is
the three-dimensional vector describing the self-force. Starting off, one can
write the equation of motion for the charge in relativistic form

m
d vµ
dτ
= q F µνvν+ f rad

µ (1.49)

where Fµν is the electromagnetic tensor given by
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The shape of f rad
µ is built by

f rad
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dτ2

(1.51)

since this retrieves the classical result in the limit v � c . All four-forces must
follow the orthogonal property f µvµ = 0 which is not fulfilled by Eq. (1.51).
To enforce this requirement one needs to add an auxiliary four-vector to
Eq. (1.51) which in turn must have its spatial components go to zero when
v→ 0. It turns out that the four-vector vµ is sufficient and the inclusion of
this auxiliary contribution is written as

f rad
µ =

2q 2

3c

d 2vµ
dτ2

+ζvµ (1.52)

where ζ is a constant determined by the condition f rad
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It is possible to write the four-acceleration in terms of the external field using
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As the final step, substitute Eq. (1.55) into Eq. (1.54) recalling that the inner
product between the antisymmetric tensor ∂ F µν

∂ xγ
and the symmetric tensor

vµvν is zero and find

f rad
µ =

2q 3

3m c

�

∂ Fµν
∂ x γ

v νvγ−
q

m
FµγF νγvν+

q

m
Fνγv γF νδvδ

�

(1.56)

which is the result originally obtained by L. Landau and E.M. Lifshitz [48].
It is worth mentioning that there exist other options than vµ in making the
expression Lorentz covariant resulting in alternative theories besides Eq.
(1.56). Reviewing them is outside the scope of this thesis but a comprehen-
sive overview can be found in Ref. [55].

To untangle the expression (1.56) one can consider the example in which a
charge approaches the speed of light. Then its components containing the
third derivatives of the velocity contribute the most so that one can show

frad =
2q 4

3m 2c
(FνγuγF νδuδ)v (1.57)

which is in fact opposite in the direction of v. Taking the axis of propagation
along x , Eq. (1.57) can be cast to

fx =−
2q 4

3m 2c γ2

�

(Ey −Hz )
2+ (Ez +Hy )

2
�

(1.58)

which is proportional to the square of its emitted energy.

1.5 Quantum regime of radiation reaction

Having treated radiation reaction in the classical and relativistic limits it
is appropriate to ask the question on how radiation reaction emerge in a
quantum picture? In contrast to previous sections, consider now the charge
to be an electron. To quantify the significance of quantum effects, another
Lorentz invariant quantity is introduced

χ =
qeħh

m 3
e c 4

�

pµFµνF µνpν =
γe

Ecr

√

√
�

E+
v

c
×B
�2
−
�

E ·
v

c

�2
(1.59)
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where pµ, v and γe are the momentum, velocity and Lorentz factor for an
electron respectively. This quantity can be seen as the dimensionless accel-
eration of the electron in its rest frame. This parameter delimits the theory
of radiation reaction where χ � 1 signify the presence of quantum effects
and χ � 1 implies its classical domain.

In treating the quantum aspect it no longer makes sense to treat the interac-
tion between charges and field as a continuous process since the emission
and/or absorption of single photons becomes the dominant feature [56].
Additionally, the probability to generate electron-positron pairs from this
scenario becomes non-negligible [37]. A correct description would be to
account for every possible interaction channel between the charges, emit-
ted/external photons and pair-generated particles. As noted in the introduc-
tion, this is described using QED. Although there are infinite ways to form
interaction processes, only those that are non-negligible and relevant for
papers A and B are covered. In other words, the significant processes that
govern the photon emission and pair-production in laser-electron collisions.

1.6 Photon emission and pair-generation

One can envision that when an electron enters a strong laser field, it can ab-
sorb some amount of its photons (or any other external photon) and quickly
thereafter emit one or many new photons. Classically, this can be seen as the
elastic scattering between electrons and photons, also known as Compton
scattering [57]. In the framework of QED, interactions like these are depicted
using Feynman diagrams and the cross-section of them are computed with
their concomitant Feynman rules. In general, the absorption and emission
of photons by scattering with an electron is given by the following Feynman
diagram in figure 1.3a. Here, time flows to the right in the diagram and one
electron absorbs a laser photon γL which later on emits a separate photon γ′.
Note that the diagram could be extended to include the absorption and emis-
sion of multiple photons (non-linear Compton scattering). Additionally, the
rate of high-energy photon emissions from non-linear Compton scattering
computed from QED is governed by [58, 59]
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Figure 1.2: Illustration of the first (blue solid line) and second (orange solid
line) Synchrotron functions.
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where δ = ħhω
me c 2γe

is the energy of the emitted photon with frequency ω

normalized to the emitting electron energy and zc =
2
3

δ
(1−δ)χ . The functions

F1 and F2 are known as Synchrotron functions, expressed using modified
Bessel functions of the second kind Kν(ξ):

F1(ξ) = ξ

∫ ∞

ξ′
K5/3(ξ

′)dξ′, F2(ξ) = ξK2/3(ξ). (1.61)

A graph over the Synchrotron functions given by Eq. (1.61) can be found
in Fig. 1.2. Another process that can occur is the collision between two
photons which then generate an electron-positron pair. In figure 1.3b the
interaction diagram is displayed and could likewise be extended to include
many interacting photons (non-linear or multiphoton Breit-Wheeler). While
the diagrams are similar in structure, the Breit-Wheeler channel is restricted
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Figure 1.3: Tree-level Feynman diagrams for (a) Compton scattering and (b)
the Breit-Wheeler process. Solid and curvy lines depict fermions (electrons
with e − and positrons with e +) and photons (γL being laser photons and γ’
emitted or external photons) respectively.

in terms of the colliding photon energy. Considering the impact of two pho-
tons with four-momenta kµ = (k, |k|) and k ′µ = (k

′, |k′|), the pair-production

would need to satisfy |k||k′| > (2me c 2)2. In other words, there must be at
least enough energy supplied by the photons to overcome the rest energy of
the pair. Inclusion of many photons and considering different laser pulse
configurations alters this condition in various ways [32, 60].

Just as for Compton scattering, the rate of produced pairs from the Breit-
Wheeler process per unit time t can be shown to be [58]
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(1.62)

where now zb =
2
3

1
χγ(1−δe )δe

, δe =
me c 2γ
ħhω and

χγ =
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√
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|k|
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(1.63)

is a generalization of χ but for photons with momentum k and frequencyω.

As a final remark, there are at least two more processes on the tree-level apart
from those displayed in figure 1.3. One of them is the annihilation of an
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electron-positron pair into a single photon and the other is absorption of a
single photon by an electron (no emission thereafter). Additionally, there
are higher-order processes including multiple interaction vertices which
describe related processes. In the scope of QED simulations, the latter can
be included in the simulation routine using the diagrams for non-linear
Compton scattering and pair-production [37]. As for the two additional
tree-level processes, they can be rightfully neglected [32].

27

PART II

ANALYSIS AND RESULTS

2 Extraction of SFQED signals and optimal fo-
cusing

This chapter is devoted to introduce the theoretical results that constitute
paper A. Before outlining its sections, recall from the introduction the advan-
tage in exploiting the collision between high-powered lasers and high-energy
electrons. This setting provides a Lorentz boosted field on the order of Ecr

perceived by the electrons and is quantified by the quantum nonlinearity
parameter χ given by Eq. (1.59). Contemporary laser-beam experiments
analyze the post-collision energy spectrum of the electrons and emitted
photons, comparing them to that of theoretical predictions made with QED
and/or RR models to draw conclusions [42, 43]. Such experiments now op-
erate at values of χ � 1 but there are also efforts to probe effects occurring
at large values of χ ∼ 102 − 103 (SFQED) [61–66] of which the conjectured
breakdown of QED is of particular interest χ � 1600 [67–72]. Apart from
gaining large values of χ , the onset of QED cascades at these magnitudes
pose another difficulty [73] in extracting information from the experiment.
Briefly, a QED cascade is the process of generating electron-positron pairs
and photons at an exponential rate which is described in Sec. 2.1. This
sheer amount of pairs and photons (possessing low χ) can overshadow the
sought after deviation in the energy spectrum coming from the limited por-
tion of descriptive electrons/photons (having large χ). To circumvent this,
a strategy is developed to retrieve information in such experiments based
on the kinematic properties of the electrons and emitted photons found
in Sec. 2.1. In addition to this, it is shown how experimentalists can focus
their laser optimally for the purpose of achieving the maximal value of χ . In
Secs. 2.3-2.5 this optimization problem is formulated as follows: "For which
focusing geometry can one yield the maximal value of χ in the interaction
region for a given power P ?" and solve it. The solution, which is referred to
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as a bidipole wave is detailed in Sec. 2.6 in terms of its radiation pattern and
how to implement one in practice.

2.1 Signal extraction and cascade development

In this section, the specific difficulties mentioned in the premise to this chap-
ter concerning laser-electron collision experiments is presented. To begin
with, general experimental obstacles not related to the interaction physics is
discussed and then follow the definitions of the properties that are relevant
in reading signals from such experiments. Additionally, the process of QED
cascades and its impact on reading signals is described. In what follows, the
term signal is defined as measurable quantities in said experiment capable
of signaling a deviation compared to past experiments or theoretical models.
For instance, the signal can be formed by observing the energy spectrum of
electrons and/or photons but could also include the polarization and spin
of emitted photons or other theoretical parameters. An example of the latter
is the notion of an effective electron and positron mass, introduced later in
Ch. 3.

One could argue that future laser-matter facilities will reach very large values
ofχ and thus make a direct detection of SFQED signals. While this statement
holds some truth, recall that in the quantum description photons are emitted
probabilistically at the rate given by Eq. (1.60). Thus, there is no knowledge
at what field strength |E|, |B| (hence χ) and neither at what electron gamma
factor γe emissions occur. Consequentially, it is not possible to make a direct
detection of any signal mapping to values of χ . This calls for a statistical
approach in which one compares the result of many simulations to that of
experiments. For this to be successful, the experiment must be repeatable
and robust. Repeatability ensures that one can gather enough data over a
reasonable period of time necessary to carry out the statistical analysis and
make conclusions. Robustness implies that for each shot, the alignment of
the experiment does not vary too much in order to have informative data.
To exemplify, if the collision between the laser and the electron beam is not
head-on, a substantial fraction of electrons does not experience the strong-
field region.

SIGNAL EXTRACTION AND CASCADE DEVELOPMENT 29

SFQED signals can be carried by electrons having emitted a single hard pho-
ton around the maximum achievable χ of the laser-beam system. Hard
photons are defined as those having more than a half of the initial kinetic
energy of an electron in the beam (> 0.5me c 2γe ). A large value ofχ indicates
that the electron has emitted in the vicinity of strong fields and that it has
retained its initial kinetic energy (negligible radiative losses prior to entering
the strong-field region). The emission of a single hard photon at large χ thus
becomes a characteristic that separate multiple emissions of lower energy.
However, the emitting electrons falling under this category are difficult to
distinguish at a detector due to the vast majority of the background. Here-
inafter, the background is defined as the electrons or photons that do not
provide information on SFQED physics i.e. those with low energy or low χ .
These can stem from (c.f. Fig. 2.1):

� Electrons bypassing the strong-field region which "miss out" on the
interaction provides no information at the detector nor does it radiate
away photons with substantial energy.

� Electrons emitting a single high-energy photon are indistinguishable
from those emitting multiple low-energy photons.

� Electrons that radiate significantly before entering the strong-field
zone have lower energy and hence lower values of χ . Additionally, this
restricts electrons to emit high-energy photons.

Stimulated by this complication, the chain of logic that results in the strat-
egy to obtain a feasible signal at the detector is provided. First, note that
electrons conserve their transverse momentum in the interaction with the
electromagnetic field of the laser [74]

d

d t

�

p⊥ −
1

c
A⊥

�

= 0 (2.1)

where p⊥ and A⊥ denote the transverse components of the electron momen-
tum and the vector potential of the electromagnetic field respectively. A
result of Eq. (2.1) is that at any instance of time, the electron forms an angle
α as measured from its initial axis of propagation:

α= arctan

�

|p⊥|
|p‖|
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(2.2)
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SFQED signals can be carried by electrons having emitted a single hard pho-
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where p‖ denote the longitudinal component of the electron momentum.
Thus, in the region of strongest field the electron will experience the maximal
deviation α and could potentially be separated from the majority of back-
ground cases in which α→ 0. Nonetheless, Eq. (2.1) implies that the net gain
of transverse momentum is zero meaning that the deviation angle is small
when electrons reach the detector. In the end, the signal and background
electrons share small values ofαmaking them difficult to separate regardless.
If instead the emitted photons from these electrons are considered there
are multiple advantages at hand. First, photons emitted in the strong-field
region also have large values of α but they retain this value since they do not
obey Eq. (2.1). Second, in the limit of high χ the average distance before re-
combining into a pair is �pp ≈ 3�rad where �rad is the mean-free path between
photon emissions [75]

�rad ≈ 15λC γ
1/3
e (a0/acr)

−2/3 (2.3)

where λC =
h

me c is the Compton wavelength, a0 =
e |E|

meωc is the dimensionless
amplitude of the laser electric field |E| and acr is the critical field Ecr in the
same dimensionless units. In other words, these photons have a greater
chance to escape the strong-field region and contribute to the signal whereas
electrons would be more likely to emit multiple times, contributing to the
background. Note that electrons emitting hard photons are less likely to
have emitted before this. Conclusively, it is anticipated that a large portion
of these photons, having large α and high energy ħhω to constitute a feasible
signal.

When the laser is linearly polarized there is a chance that photons can be
emitted with high energy and high χ when α= 0 (see Fig. 2.1) which is due
to the phase dependence within the laser field. If the polarization is circular
the unfavorable phase dependence is eliminated, making α and χ correlated
[72]. The benefit is then that large values of α implies large values of χ .

Large values of χ increase the risk of generating a vast blend of electron-
positron pairs and photons, commonly referred to as a QED cascade. This
avalanche of particles and photons can mask the few electrons or photons
that carries information about the interaction in the strong-field regime.
In what follows, the difficulties that arise with QED cascades are described.
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Figure 2.1: Concept illustrating various paths and emissions electrons can
undergo in the collision with a tightly focused laser pulse. Adapted from [72].

From section 1.6 the processes of photon emission and pair-production were
discussed. One may have realized that under appropriate conditions, a single
electron could trigger an avalanche of electron-positron pairs. To see this,
consider a single electron emitting a high-energy photon in the presence of a
high-intensity laser field. This photon can combine with other laser photons
through the Breit-Wheeler process (see Fig. 1.3b), generating a pair. Both the
electron and the positron have the opportunity to emit high-energy photons
which in turn can combine with the laser photons, forming more pairs. This
results in an avalanche of particles conceptualized in Fig. 2.2. The formation
of the cascade is exponential in time [73, 76] and the formation length can be
quantified by Eq. (2.3). For an electron with energy 2 GeV [77] and χ ∼ 1 the
average distance between photon emissions according to Eq. (2.3) is on the
order of a few nm. Comparing this to a typical laser pulse with a duration of
15fs (spatial extent on the order of tens of µm ) the electron is very likely to
trigger a cascade. Returning to the discussion on signal extraction in experi-
ments it is clear that QED cascades constitute an extensive background of
low energy and low χ photons and pairs that conceal the signal.

To conclude, the proposal is to make statistical inferences by measuring
distributions of (1) emitted photons (as opposed to initial electrons) which,
(2) are restricted to have sufficiently large deviation angles and (3) energies,
in contrast to previous experimental endeavours.

Based on the analysis of this section, it is expected that such data is formed by
a larger fraction of photons originating from the strong-field QED processes
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e −

Figure 2.2: Depiction of a seed electron emitting a photon(s) which eventually
results in a cascade of electron-positron pairs and photons. Dashed lines
indicate the continued trajectory of the emitting fermion. Here it is understood
that photons collide with background photons to form pairs.

at high χ . As such, this provides a more prominent signal to reach any given
confidence level whether it be hypothesis testing or parameter estimation.

2.2 Optimal focusing

So far, a strategy to extract signals of SFQED by selecting photons at high
values ofχ from laser-electron collisions has been developed. The next intent
is to assess how one can reach the maximum value of χ in such experiments
for a given laser power P . To elucidate this matter, consider a single focused
laser beam of peak power P with peak electric field E (1). If the power is split
into two separate beams which are summed coherently at focus in e.g. a
counter-propagating scheme, the resulting peak electric field becomes

E (2) =
E (1)
�

2
+

E (1)
�

2
=
�

2E (1) (2.4)

which increase the original peak electric field by a factor of
�

2. This result
can be generalized by splitting the original beam into N separate ones in
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one plane such that

E (N ) =
�

N E (1) (2.5)

where E (N ) denote the peak electric field achieved by coherently adding N
beams at focus. Logically, it is possible to add even more beams at an angle
to this plane given that the N beams must not overlap on their way to the
focus. This concept is known as multiple colliding laser pulses (MCLP) and
was formulated in Ref. [78]. The theoretical limit for the peak electric field for
a power P is given by the dipole wave solution [79, 80]which will be covered
shortly.

The concept above concerns reaching the strongest electric field at focus for
a power P which is appealing in reaching the critical field Ecr. However, the
aim is to maximize the value of χ since the scheme involve electron beams.
Certainly, maximizing the electric field strength is beneficial for high χ but
Eq. (1.59) also suggest that the magnetic field can contribute. Therefore,
one considers the problem of finding the focusing geometry that maximize
the value of χ for a given electron under the assumption of straightforward
propagation, which is practically warranted by its high energy.

In what follows, the dipole wave solution is elaborated on in Secs. 2.3-2.4
firstly, using the approach of I.M. Bassett whom in 1986 demonstrated that
the dipole component provides the highest possible electromagnetic energy
density for a given P . Then, in Sec. 2.5 the optimization problem for maxi-
mizing of χ is defined and solved. Lastly, the structure of the solution and its
practical implementation is detailed in Sec. 2.6.

2.3 Optimal focusing : field strength

In this section, the following optimization problem: "What focusing geom-
etry yields the largest electromagnetic energy density at focus, hence the
strongest peak field for a given power P ?" is solved. The derivation of I. M.
Basset is adapted [79]where the author express the Maxwell equations using
the multipole representation. Then, by stating that this optimum is achieved
at the origin in this representation the analysis is simplified to a few electro-
magnetic field components and the solution can be obtained. This result
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will act as a stepping stone in attaining the optimal focusing geometry for
reaching the highest value for χ .

The Maxwell equations in the absence of external charges and current densi-
ties in Cartesian coordinates x , y and z read [81]

∇·E= 0, (2.6)

∇×E=−
1

c

∂ B

∂ t
, (2.7)

∇·B= 0, (2.8)

∇×B=
1

c

∂ E

∂ t
. (2.9)

The multipole representation is found by switching to spherical coordinates
x , y , z → r,θ ,φ. Any real solution of Eqs. (2.6)-(2.9) can be expressed as the
real part of some complex electric and magnetic multipole fields multiplied
by e −iωt whereω is its the central frequency. These multipole components
can be written [82]
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where �= 1, 2, 3, ..., m =−�,−�+1, ...�, k =ω/c and j�, Y m
� (θ ,φ) are spherical

Bessel functions and spherical harmonics respectively. Subscripts indicate
the vector components of the fields in the spherical coordinates
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r̂= x̂ sinθ cosφ+ ŷ sinθ sinφ+ ẑ cosθ , (2.16)

θ̂ = x̂ cosθ cosφ+ ŷ cosθ sinφ− ẑ sinθ , (2.17)

φ̂ =−x̂ sinφ+ ŷ cosφ (2.18)

where x̂, ŷ and ẑ denote the Cartesian unit vectors. The relation between
electric multipole and magnetic multipole fields satisfy the following rule:

EB =−BE , (2.19)

BB = EE (2.20)

where superscripts E , B denote electric and magnetic multipole fields. To be
clear, the magnetic components of an electric multipole field will vanish at
the origin and vice versa for the magnetic multipole field. Nevertheless, with
the components given by Eqs. (2.10)-(2.15) one is in a position to answer the
following: "Which multipole component will provide the maximal energy
density U and hence the peak electric or magnetic field?". If the optimum is
taken to be attained at the origin, i.e. r → 0, an expansion of the spherical
Bessel functions for small arguments x can be employed

j�(x )≈
x �

(2�+1)!!

�

1−
x 2

2(2�+3)
+ ...

�

(2.21)

where the double factorial is defined as n !!= n ·(n−2)·(n−4)·...·5·3·1. Taking
the limit of Eqs. (2.10)-(2.15) and making use of (2.21) only the multipole
modes with �= 1 i.e. the dipole terms contribute. Without loss of generality
one can consider an electric dipole of which six components remain:

EE
1,−1 =BB

1,−1 = k (6π)−1/2
�

x̂− i ŷ
�

, (2.22)

EE
1,0 =BB

1,0 = k (3π)−1/2 ẑ, (2.23)

EE
1,1 =BB

1,1 =−k (6π)−1/2
�

x̂+ i ŷ
�

(2.24)

where subscripts indicate values of � and m . Evidently, any of the electric
field components (2.22)-(2.24) will provide the optimum. One can show that
the peak dimensionless amplitude a d

0 of such a field becomes
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a d
0 ≈ 780 (P /(1 PW))1/2 . (2.25)

The same holds for the peak magnetic field of magnetic dipole waves. Appli-
cations of dipole waves range from particle trapping [83], photon generation
[84–86] and the generation of extreme electron-positron plasma states [87,
88]. Note that all solutions under the multipole analysis have been con-
sidered monochromatic i.e. with an infinite temporal extent. This can be
generalized to pulsed solutions with arbitrary temporal envelopes (see Ref.
[89]).

The mathematical expressions alone are not necessarily enough to identify
the structure of such waves. However, dipole waves can be regarded as the
time reversed process of an antenna emitting dipole radiation. Fig. 2.3a and
2.3b provide a cross sectional view of two dipole waves with perpendicular
symmetry axes as well as a bidipole wave which will be defined shortly.

2.4 Additive property of multipoles

An important result following from the previous analysis is that both the
electromagnetic energy density and the incoming power are additive. Put
differently, the total of either quantity is the sum of the individual quantity
from each multipole. That is, any cross terms vanish.

Without loss of generality one can analyze the superposition of two multipole
fields where one of them is defined by a set of �, m and the other by �′, m ′.
The energy density for a specific mode is given by

u�,m =
1

4π

�

|E�,m |2+ c 2|B�,m |2
�

(2.26)

where the superscripts E , B have been dropped and it is explicitly stated
which type of multipole field is concerned from now on. Then, the resulting
energy density from the sum of two multipoles is

1

4π

�

|E�,m +E�′,m ′ |2+ c 2|B�,m +B�′,m ′ |2
�

(2.27)

which is equivalent to
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Figure 2.3: Cross section of the electric field strength in the plane x y−plane
where z = 0 for (a) an electric dipole pulse, (b) a magnetic dipole pulse and (c)
a bidipole pulse. In all cases the wavelength was λ= 0.8 µm and the duration
τ= 5λ/c . The pulses are displayed at a time t = 9λ/c before reaching focus.

u�,m +u�′,m ′ +
1

2π

�

E�,m ·E�′,m ′ + c 2B�,m ·B�′,m ′
�

. (2.28)

In order to prove the additive property for this quantity it is enough to show
that the cross term in Eq. (2.28) vanishes. Recall that at the origin, the electric
(magnetic) field will vanish for magnetic (electric) multipole waves. Thus,
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1

4π

�

|E�,m +E�′,m ′ |2+ c 2|B�,m +B�′,m ′ |2
�

(2.27)

which is equivalent to
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Figure 2.3: Cross section of the electric field strength in the plane x y−plane
where z = 0 for (a) an electric dipole pulse, (b) a magnetic dipole pulse and (c)
a bidipole pulse. In all cases the wavelength was λ= 0.8 µm and the duration
τ= 5λ/c . The pulses are displayed at a time t = 9λ/c before reaching focus.

u�,m +u�′,m ′ +
1

2π

�

E�,m ·E�′,m ′ + c 2B�,m ·B�′,m ′
�

. (2.28)

In order to prove the additive property for this quantity it is enough to show
that the cross term in Eq. (2.28) vanishes. Recall that at the origin, the electric
(magnetic) field will vanish for magnetic (electric) multipole waves. Thus,



38 EXTRACTION OF SFQED SIGNALS AND OPTIMAL FOCUSING

the cross term is zero for waves of different type. In the case of identical types
but for arbitrary �,�′ and m , m ′ one can be reminded that only the dipole
terms contribute at the origin. Hence, the proof is completed by verifying
the orthogonality between the expressions given in Eqs. (2.22)-(2.24). An
analogous procedure can be done for the magnetic dipole waves.

To sketch the proof of the additive property for power, the Poynting vector
for a sum of two multipole waves can be expressed as

Stot∝
�

E�,m +E�′,m ′
�

×
�

B�,m +B�′,m ′
�

(2.29)

∝ S�,m +S�′,m ′ +
�

E�,m ×B�′,m ′
�

+
�

E�′,m ′ ×B�,m
�

where S�,m and S�′,m ′ denote the Poynting vector for each multipole. Recall
from Sec. 1.1 that

|Stot|=
d Ptot

R 2dΩ
(2.30)

where R is now the radius of an arbitrary sphere and dΩ a solid angle element
in this coordinate system respectively. To facilitate the analysis, consider the
power crossing the sphere by projecting Stot along r̂ = R

R so that Eq. (2.30)
can be reformulated as

P C
tot∝ P C

�,m +P C
�′,m ′ +R 2

∫

�

E�,m ×B�′,m ′
�

· r̂ +
�

E�′,m ′ ×B�,m
�

· r̂ dΩ (2.31)

where the superscript denote the power crossing the surface of the sphere and
subscripts have the same meaning as previously. Proving that the cross-terms
in Eq. (2.31) are zero requires an extensive calculation which is omitted here.
The full proof can be found at p.285 of Ref. [79]where the idea is to exploit
the orthogonal properties between spherical harmonics when substituting
in arbitrary multipole fields given by Eqs. (2.10)-(2.15).

2.5 Optimal focusing : maximization of χ

It might be natural to think that the solution given by Eqs. (2.22)-(2.24) could
provide the largest value of χ because it provides the strongest peak electric
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field. However, the expression for χ suggests that both E and B can con-
tribute. So the question arise if there exist a better choice for the focusing
geometry than the dipole wave in this context?

To arrive at the solution one can continue the discussion from Sec. 2.3 with
the exception that both electric and magnetic field contributions exist at
the origin. Again, only dipole modes exist here so the solution must be a
combination of them. Whatever the solution, one can take its electric field
to point in the ẑ− direction so that its electric field component comprise of
Eq. (2.23):

Esol = EE
1,0. (2.32)

Choosing its magnetic field to be oriented in the x z -plane, one observes that
this must be a combination of Eqs. (2.22)-(2.24)

Bsol = BB
1,0
︸︷︷︸

∝ ẑ

+
�

2
�

BB
1,−1−BB

1,1

�

︸ ︷︷ ︸

∝ x̂

(2.33)

where the factor of
�

2 ensure synchronous peaking. The solution can be
divided into three parts due to the additive property outlined in Sec. 2.4.
That is, for a given power P a portion a P goes into the electric dipole wave in
Eq. (2.32) and portions b P and (1−a −b )P go to the magnetic dipole waves
in Eq. (2.33) respectively. It is understood that 0 ≤ a b ≤ 1 and a + b ≤ 1.
From this the solution can be expressed as

Esol∝
�

a ẑ, (2.34)

Bsol∝
�

b ẑ+
�

1−a − b x̂. (2.35)

So far the discussion has only involved electromagnetic fields. Accounting for
the propagation of electrons, note that the value of χ is maximal if electrons
travel along ŷ since then v ·Esol = 0. Putting the expressions (2.34) and (2.35)
into (1.59) one obtains

χ∝
�

�
��

a +
�

1−a − b
�2
+ b
�

. (2.36)

To find the optimum, the derivative of χ2 with respect to b is taken
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∂ χ2

∂ b
∝−
�

a

1−a − b
≤ 0. (2.37)

Hence, b = 0 must give the maximum. Next, evaluating ∂ χ
2

∂ a at b = 0 yields

∂ χ2

∂ a
∝

1−2a
�

a (1−a )
(2.38)

with extremum at a = 1/2. As a result, the solution according to Eqs. (2.34)
and (2.35) comprise out of one electric dipole wave and one magnetic dipole
wave with perpendicular orientations (c.f. Figs. 2.3a and 2.3b ). This solution
achieves the maximal value of χ for a given power P and is referred to as a
bidipole wave in paper A [72]

χmax = κ
� ε

1 GeV

�

�

P

1 PW

�1/2 � λ

1 µm

�−1

(2.39)

where λ is the bidipole wavelength, ε is the initial energy of the electron and
κ≈ 5.25. Contours of the bidipole electric field strength in the x y -plane can
be seen in Fig. 2.3c. As a matter of fact, the study of mixed dipole waves
has been covered in Ref. [90]. Nonetheless, the realization that this specific
mixed dipole wave gives the maximum value of χ introduces novelty.

2.6 Structure of the bidipole wave

This section is allocated to derive the intensity dependence of the bidipole
wave to build further insight in addition to Fig. 2.3c. Further, it is demon-
strated how the bidipole wave can be constructed by reflecting a suitable
laser beam off a parabolic mirror. By suitable, the spatial dependency of the
polarization and the intensity across the beam before reflection needs to be
specified in achieving the bidipole structure which is computed next.

In the far-field region r →∞ the electric field of the bidipole wave, now
denoted as Ebd, scales as

Ebd∝
EE

1,0+EB
1,0

r
(2.40)

where
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EE
1,0∝ (ẑ× n̂)× n̂, (2.41)

EB
1,0∝ (x̂× n̂) (2.42)

and n̂ = r̂. Directions are chosen so that the electron propagates along ŷ.
Here the unit vector n̂ is written as n̂=

�

nx , ny , nz

�

where its components are
given by

nz = cosθ ,

nx = sinθ cosϕ,

ny = sinθ sinϕ.

Now, let us compute the intensity dependence of such a wave by rewriting
Eqs. (2.41) and (2.42)

EE
1,0∝ nx nz x̂−
�

n 2
x +n 2

y

�

ẑ+ny nz ŷ, (2.43)

EB
1,0∝ ny ẑ−nz ŷ (2.44)

so that

I (r,θ ,ϕ)∝|EE
1,0+EB

1,0|
2 = n 2

x n 2
z +
�

n 2
x +n 2

y −ny

�2
+n 2

z

�

ny −1
�2

. (2.45)

In fact, the intensity is independent of ϕ by noting

∂ nz

∂ ϕ
= 0,

∂ nx

∂ ϕ
=−ny ,

∂ ny

∂ ϕ
= nx .

Using this fact and taking the derivative of Eq. (2.45) with respect to ϕ yields

∂ I

∂ ϕ
∝ 2nx ny

�

1−n 2
x −n 2

y −n 2
z

�

= 0 (2.46)

which proves the independence of ϕ. Arbitrarily, ϕ = 0 can then be chosen
so that sinϕ = 0 and cosϕ = 1 and one can re-express Eq. (2.45) as

I ∝ (1− cosθ )2 /r 2. (2.47)
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Having derived the intensity scaling for the bidipole wave it is possible to
state the following. First, the radiation pattern has a (1− cosθ )2 dependence
meaning that radiation arrives predominantly from one side. Secondly, this
scaling is rotationally invariant around the ŷ-axis because of the ϕ indepen-
dence. Putting this together one can better understand the cross section of
the bidipole wave as seen in Fig. 2.3c.

Next, the generation of a bidipole wave in practice is shown. Despite its
mathematical solution being a sum of two dipole waves, the practical imple-
mentation only requires a single laser beam being reflected off a parabolic
mirror. Additionally, this probe beam need to have 1) linear polarization
everywhere and 2) a bell-shaped intensity distribution prior to reflection.
To prove the former, consider the electric field of the probe pulse before
reflection EP which can be written

EP = E−2 (E ·N)N (2.48)

to within a constant factor. Here, N =
�

ŷ− n̂
�

/|ŷ− n̂| is the mirror normal.

observing that E ·N= nz

�

ny −1
�

/|ŷ− n̂| and evaluating the x component of
EP one finds

EP · x̂= nx nz +2nz (ny −1)nx

�

n 2
x +n 2

z +
�

ny −1
�2�−1

= 0 (2.49)

implying that the probe need to have linear polarization along ẑ everywhere.
The intensity of the probe before reflection IP can be derived by employing
Eq. (2.47) and the expression for N. The result is

IP ∝
�

1+
�

R

2L

�2
�−4

(2.50)

where R is now the transverse distance to the ẑ-axis (not to be confused with
the radius of the sphere from the previous section.) and L is the distance to
the parabolic mirror. Indeed, the intensity distribution given by Eq. (2.50) is
bell-shaped.

Both the discussion of signal extraction in Sec. 2.1 and the bidipole solution
constitute the core of paper A. While the discussion has been thorough, any
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results or limitations of these topics is postponed to the introductory text of
paper A provided in Sec. 4.1.
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3 Bayesian approach to radiation reaction

It has been clear from the previous chapter that experimentally probing QED
in the limit of high χ is not straightforward due to the vast portion of low χ
background stemming from QED cascades and low-energy emissions. The
situation is worsened if the goal is to study nonperturbative QED effects by
measuring early signals from this regime. By early one refers to the capabili-
ties of contemporary and future experiments in measuring minor deviations
attributed to the conjectured breakdown of QED at χ ∼ 1600 already at val-
ues χ ∼ 10−100. A statistical approach might then be crucial. For instance,
one could embed such effects within a parameterized model and compare
the results of simulations and experiments to infer the values of the model
parameters.

This chapter conveys the versatility of Bayesian techniques in experiments
to benchmark models linked to nonperturbative effects which is the essence
of paper B. In Sec. 3.1 the concepts of model, experiment and data are de-
fined and embedded in the Bayesian framework. Importantly, circumstances
when the likelihood becomes intractable is discussed, calling for methods
that mitigate this difficulty. The idea to overcome it is presented in Sec. 3.2
by considering the standard rejection sampling algorithm and its connection
to the Bayesian scheme. Further, it is demonstrated how simulation data
through the model can mitigate an uncomputable likelihood but instead
poses a deficiency related to the dimensionality of the data. The remedy for
this issue is given in Sec. 3.3 by means of dimensionality reduction from
summary statistics and kernel functions, culminating in the formulation of
the ABC algorithm. In Sec. 3.4 the difficulties of latent variables are exempli-
fied in applying ABC sampling to a model which represent the idea of a mass
shift. In Sec. 3.5 the problem of latent variables is solved by assessing the
measured data and choice of summary statistics.

3.1 Bayesian inference

Suppose one has a model� (ϑ) dependent on a parameter ϑ (which can
be a vector) which one seek to infer by observing data�obs. One approach
would be to assign a set of probabilities on the data�obs by performing e.g.
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hypothesis testing, forming confidence intervals and so on. If additional
data �′obs, complementary to �obs appear it is not obvious how to incor-
porate this new knowledge to improve the current result. For instance, an
experiment � might produce many sets of newly observed data. For each,
the ambition is to improve the previous result of the inference. This scenario
is suitable for a Bayesian approach which incorporates prior knowledge to
update results.

In Bayesian statistics, information regarding the model parameters are encap-
sulated by a posterior probability distribution π(ϑ|�obs). This is formulated
via Bayes’ theorem [91]

π(ϑ|�obs) =
� (�obs|ϑ) ·π(ϑ)
π(�obs)

(3.1)

where� (�obs|ϑ) is the likelihood, expressing the probability to observe the
data�obs given ϑ. Further,π(ϑ) is the prior distribution, reflecting any knowl-
edge on ϑ prior to the analysis. Lastly, π(�obs) is known as the evidence and
acts as the normalizing factor. Here, selecting the best set of parameters
is not a binary outcome as in hypothesis testing. The inference is done by
computing an estimate ϑ̂ from π(ϑ|�obs) e.g. the mode of this density or the
location of its mean. To assess the significance of the estimate, credible inter-
vals can be formed using the posterior (not to be confused with confidence
intervals). These can be defined in the following way

∫ ϑmax

ϑmin

π(ϑ|�obs)dϑ = 1−β (3.2)

where 0≤β ≤ 1 sets the probability to observe ϑmin <ϑ <ϑmax given the data
�obs.

Obtaining the posterior can be done in various ways. In rare cases, a closed
form can be found using conjugate priors [92]. If the likelihood is in closed
form or if one can motivate a suitable one the choice of a prior distribution
belonging to the same probability distribution family makes also the poste-
rior analytically tractable. As an example, if� (�obs|ϑ)∼� (µobs,σ2)where
� denote the normal distribution with known mean µobs and unknown
variance σ2 the choice of π(ϑ)∼�� (αIG,βIG) ensures a closed form of the
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π(ϑ|�obs) =
� (�obs|ϑ) ·π(ϑ)
π(�obs)

(3.1)

where� (�obs|ϑ) is the likelihood, expressing the probability to observe the
data�obs given ϑ. Further,π(ϑ) is the prior distribution, reflecting any knowl-
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ϑmin

π(ϑ|�obs)dϑ = 1−β (3.2)
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form can be found using conjugate priors [92]. If the likelihood is in closed
form or if one can motivate a suitable one the choice of a prior distribution
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rior analytically tractable. As an example, if� (�obs|ϑ)∼� (µobs,σ2)where
� denote the normal distribution with known mean µobs and unknown
variance σ2 the choice of π(ϑ)∼�� (αIG,βIG) ensures a closed form of the
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posterior. Here, �� (αIG,βIG) denote the inverse gamma distribution with
hyperparameters αIG and βIG.

Many times, no closed form exist for the posterior. Instead, it can be ap-
proximated by collecting a finite amount of samples from it using numerical
routines. Common methods include importance sampling, Markov chain
Monte Carlo (MCMC) and sequential Monte Carlo (SMC) [93–95]. All Monte
Carlo methods require evaluation of the likelihood at some point, which
becomes difficult when the likelihood is computationally expensive or sim-
ply not possible. An example of the former can arise when �obs is of large
dimensionality, making the evaluation of� demanding. In the latter case,
the likelihood might be defined implicitly as a data generating process such
that�sim ∼� (ϑ). This chapter will be focusing on the latter, when the model
is defined in a way only accessible through simulations with input parameter
ϑ. Finally, the data will be considered discrete in the following discussion but
will later be relaxed to continuous data. By discrete it is implied that the data
entries are integers.

3.2 Likelihood mitigation

To resolve the issue of likelihood incomputability an alternative approach to
sample the posterior becomes central. Such methods exist and this section
adopts a similar motivation made in Ref. [96].

Consider the problem of sampling a target distribution T (ϑ) provided an
auxiliary sampling density A(ϑ)with A(ϑ)> 0 if T (ϑ)> 0. Standard rejection
sampling can then be used:

Algorithm 1 : Standard rejection sampling algorithm

1: Acquire a sample ϑ∗ from the auxiliary density : ϑ∗ ∼ A(ϑ).
2: Admit the sample with probability T (ϑ∗)

K A(ϑ∗) where K ≥ argmax
�

T(ϑ)
A(ϑ)

�

.
3: Discard ϑ∗ if it was not admitted : Repeat steps (1)-(2) as many times

necessary.

In the end, the result is a collection of samples from T (ϑ). The connection
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to Bayesian inference is made by assigning T (ϑ) =π(ϑ|�obs) and A(ϑ) =π(ϑ).
By comparing Eq. (3.1) with step 2 of Alg. 1 it is evident that such a choice
makes the acceptance probability proportional to the likelihood, which is
intractable by the premise. Nonetheless, the opportunity to generate data
�sim ∼ � (ϑ) from the model turns out to be essential in evading direct
computation of the likelihood. Because, if the model were to produce data
for some ϑ∗ that coincide with data from that of the experiment�obs =�sim

then the probability for this is exactly � (�obs|ϑ∗). Thus, the acceptance
probability in Alg. 1 could be replaced by the requirement of a perfect match
between data. Implementing the aforementioned changes allows one to
express likelihood-free sampling:

Algorithm 2 : Likelihood-free rejection sampling

1: Sample a proposal ϑ∗ ∼π(ϑ).
2: Generate data�sim ∼� (ϑ∗) from the model.
3: If�sim =�obs the proposal is admitted, if not it is discarded.
4: Repeat (1)-(3) as many time necessary.

In line with Ref. [96] one should note that "likelihood-free" can be a con-
fusing term as the likelihood is indeed involved within this framework. By
likelihood-free it is usually implied that direct evaluation of it is averted.
Unfortunately, the acceptance rate in Alg. 2 is vanishingly small for highly
dimensional data.

To illustrate this, envision a scenario where data�obs e.g. from a spectrum
or counts from a detector is binned in to an array of B bins. A analogous
procedure can be done for such simulated data�sim given a parameter ϑ∗.
Then

�obs = [c1, c2, c3, ..., cB ] ,

�sim =
�

c ′1, c ′2, c ′3, ..., c ′B
�

where cb , c ′b ∈� denote integer counts in the b :th bin. Then, let the probabil-
ity of a match between counts cb = c ′b in the b :th bin read pb assuming that
this is independent between bins. Then, the probability to match everywhere
(hence accept a proposal) is
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p (�obs =�sim) =
b=B
∏

b=1

pb (3.3)

and p (�obs =�sim)→ 0 as B →∞. The probability of acceptance becomes
even lower or impossible in the limit of continuous data. For instance, if
cb , c ′b were floating point numbers the probability pb might be close to zero.
As a result, the appeal for an exact match need to be relieved in order to have
a feasible acceptance rate.

3.3 Approximate Bayesian computation

Having seen the difficulty arising in the requirement�obs =�sim the chain
of logic that will yield ABC sampling is now delivered.

Noting that the rate of acceptance in Eq. (3.3) becomes significantly larger
if one allows�obs ≈�sim it is possible to formulate the condition to accept
samples when

||�obs−�sim|| ≤ h (3.4)

where || · || is a suitable distance metric and h ≥ 0 is a scale parameter some-
times referred to as the kernel size. Consequentially, samples are no longer
drawn from the exact posterior distribution (unless h = 0) but rather an ap-
proximate one πABC(ϑ|�obs). Thus, choosing h becomes a trade-off between
the acceptance rate and quality of the approximate posterior. Still, large
dimensionality impairs the selection rule given by Eq. (3.4). To clarify this,
take the aforementioned example of binned data. Without loss of generality
one can take the Euclidean distance metric and express Eq. (3.4) as

�

b=B
∑

b=1

�

cb − c ′b
�2

�1/2

≤ h (3.5)

for some fixed value of h . In a favorable scenario when the difference cb−c ′b ∼
∆� 1 varies negligibly between bins one can naively state Eq. (3.5) as

B ≤ (h/∆)2 . (3.6)
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As a consequence, the dimension of�obs,�sim is bounded by the scale pa-
rameter and the average error between entries. Stimulated by this example,
the need for dimensionality reduction becomes crucial. Further, it is desir-
able that this reduction retains information that characterize the data. To
achieve this, one can introduce summary statistics

S :�B �→�B̄ (3.7)

being any collection of descriptive quantities derived from the data having
dimension B̄ � B . As an example one can form the collection S (�) =

�

µ,σ2
�

containing the sample mean and variance of data �. Hereon, � denote
either of the data �sim/obs retrieved from a model or experiment and S (�)
denote conversion of data into summary statistics. Logically, there is no re-
striction in defining the summary statistics other than being data descriptive.
However, it should be noted that choosing a suitable set may be strongly
dependent on the problem at hand, which will be exemplified later on.

Instead of computing the distance between �sim and �obs one can obtain
a set of summary statistics S (�) = [s1, s2, ..., sB̄ ] and evaluate the distance in
this subspace

||S (�sim)−S (�obs)|| ≤ h . (3.8)

While the inequality (3.8) is a viable criterion, it is a binary trial in the sense
that the probability of acceptance is either 1 or 0. This does not discriminate
between cases when the left-hand side of (3.8) evaluates to zero or boundary
cases equating to h . This suggests a smooth scaling between the cases,
attainable by defining

K :�B̄ �→�= K
� ||S (�sim)−S (�obs)||

h

�

(3.9)

commonly referred to as a kernel function and examples of them can be
seen in Fig. 3.1. Here, the scale parameter h enters the argument of K which
dictates the range of the function.

Lastly, reinforcing Alg. 2 with the improvements via dimensionality reduc-
tion, ABC sampling is obtained:
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Figure 3.1: Examples of four different kernel functions. The uniform kernel
amounts to accepting or rejecting based on Eq. (3.8).

Algorithm 3 : ABC sampling algorithm

1: Sample a proposal ϑ∗ from the prior distribution : ϑ∗ ∼π(ϑ).
2: Generate data from the model given the proposal: �sim ∼� (ϑ∗).
3: Accept the sample with probability K

�

||S (�sim)−S (�obs)||
h

�

.
4: Repeat (1)-(3) as many time necessary.
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In addition to model parameters ϑ there can exist latent parameters s in a
realistic scenario. These are uncontrollable variables that significantly im-
pact the result of experiments, potentially masking the effects attributed to
ϑ. However, a core strength of ABC lies in the freedom to select summary
statistics. If done correctly the effects of ϑ and s can be disentangled so that
sampling is possible. This along with the demonstration of ABC will pre-
sented shortly where a model on the effective mass of electrons and positrons
due to quantum corrections is outlined.

To summarize, ABC sampling is a method that circumvent the direct calcu-
lation of the likelihood by employing repeated comparisons of results from
simulations and experiments. While being a powerful tool, it come with
a few drawbacks. First, there is no prescribed idea in choosing the scale
parameter h . It can be estimated via trial and error or by investigating the
dependence on the acceptance rate for the problem at hand. Second, the
choice of summary statistics is problem dependent in the sense that they
need to describe the data given a particular ϑ. At the same time, they must
be able to separate the effects ascribed to latent variables should they exist.

3.4 Effective mass model

By recapitulating the premise of this chapter, one is reminded that the com-
bined magnitude of upcoming laser facilities and electron accelerators give
the possibility to reach large values of χ . The extremities of the physical laws
at these values of χ is an interesting matter for experimental studies. One
prediction is the effective mass of electrons and positrons motivated in Ref.
[69]. In making an experimental observation of such effects one can design
a model with a parameter ϑ so that its value can be inferred by comparing
results of experiments to that of simulations with varying ϑ. Again, the ob-
stacle lies in measuring a signal which is masked by the predominant noise
stemming from rates at low χ . The goal is then to devise an experiment. In
other words, propose an interaction geometry, assess the data to be mea-
sured and the method to process it so that the value of ϑ can be inferred.

The model� , based on the idea behind the effective mass change is now
designed. It was mentioned in the introduction that theoretical knowledge
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is limited for the QED rates in the nonperturbative regime, that is when
χ � 1600 [38, 39]. The authors of Ref. [69] bring up the notion of an effective
mass for electrons and protons m̃e as a result of quantum corrections. More
specifically, they estimate it to be

m̃ 2
e =m 2

e +δm 2
e ≈m 2

e

�

1+0.84α f χ
2/3
�

(3.10)

and argue that the estimate given by Eq. (3.10) can gauge the order of mag-
nitude of nonperturbative corrections in the regime χ � 1600. The authors
remark that the effective mass change is not necessarily the only such ef-
fect existing in this domain. This estimate is analogous to that of including
a recoil correction to the classical rates in estimating the role of quantum
effects in the regime χ � 1 (see supplementary material of Ref. [97]). From
now on, the phenomenological model given by Eq. (3.10) is adopted and
the value of 0.84→ ϑ is retained, treatingϑ as a parameter of the model� (ϑ).

The effective mass appearing in Eq. (3.10) implies an effective value of χ
(mass enters Eq. (1.59) via the critical field):

χ̃2/3 =
χ2/3

1+ϑα f χ2/3
(3.11)

where χ̃ denote its effective value. Now, the goal is to devise an experiment
capable of inferring the value of ϑ. For this, an interaction scheme in which a
single electron with longitudinal momentum pz =−me c γe impinge a plane
wave pulse with electric field is employed

Ex (z , t ) = (1−d )E0 sin(kξ)cos2(ξπ/L ) ·Π[ξ,−L/2, L/2] (3.12)

where E0 is the peak electric field amplitude, ξ= z − c t is the moving coordi-
nate, k and L are the pulse wavenumber and length respectively and Π is a
function which is unity inside ξ ∈ [−L/2, L/2] and zero elsewhere. Here, a
latent parameter, 0 ≤ d ≤ 1, has been introduced to model any amplitude
discrepancy present in a real experiment. For instance, the timing of the
laser-electron collision could vary or the impact could occur off-axis and so
forth. As a result, the model is dependent on two parameters� =� (ϑ, d )
of which the latter is uncontrollable. One may argue that a realistic setup
ought to include a tightly focused laser pulse and an electron bunch with
specified shape. This is true, but as a proof of principle one can consider
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this basic layout and the intent is to progressively improve the scheme in
upcoming research works. In addition, the formation of electron-positron
pairs is neglected which prohibit the onset of QED cascades and consider
only the emission of photons from the electron.

Having determined the interaction geometry the data� measured from it
must be assessed. Hereinafter, � labels any data stemming from either a
simulation�sim or the experiment�obs. In line with Sec. 2.1 an option is to
measure the photon energy spectrum. However, even by neglecting QED
cascades this is problematic. To see this, recall that the emitted energy is
governed by Eq. (1.60) which depends on the value of χ at the instance of
emission. Moreover, χ is dependent on ϑ by virtue of Eq. (3.11) but also on
d as it decreases the electric field amplitude experienced by the electron.
Combining these facts it appears that the effects of ϑ and/or d can produce
similar values of χ . For instance, compare the two cases where d = 0,ϑ �= 0
and d �= 0,ϑ = 0. The value of χ according to Eq. (3.11) in the former case is
on the order of

∼
χ0
�

1+α f ϑχ
2/3
0

�3/2
(3.13)

where χ0 = γe E0/Ecrit is the peak value of χ . In the latter case, the value of χ
is lowered due to nonzero d :

∼ (1−d ) ·χ0. (3.14)

Evidently, Eqs. (3.13) and (3.14) coincide if

d ∼ 1−
�

1+θα f χ
2/3
0

�−3/2
. (3.15)

Consequentially, there exist values of ϑ and d that yield comparable values
of χ and hence results in similar photon spectra. In turn, any summary
statistics derived from it will be near-identical. When this happens, step 3
of Alg. 3 is no longer accurate as it will confuse the effects between ϑ and d .
It is concluded that the energy spectrum alone is not indicative enough to
infer the value of ϑ since the experiment (and hence model) is dependent
on the uncontrollable variable d .
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this basic layout and the intent is to progressively improve the scheme in
upcoming research works. In addition, the formation of electron-positron
pairs is neglected which prohibit the onset of QED cascades and consider
only the emission of photons from the electron.

Having determined the interaction geometry the data� measured from it
must be assessed. Hereinafter, � labels any data stemming from either a
simulation�sim or the experiment�obs. In line with Sec. 2.1 an option is to
measure the photon energy spectrum. However, even by neglecting QED
cascades this is problematic. To see this, recall that the emitted energy is
governed by Eq. (1.60) which depends on the value of χ at the instance of
emission. Moreover, χ is dependent on ϑ by virtue of Eq. (3.11) but also on
d as it decreases the electric field amplitude experienced by the electron.
Combining these facts it appears that the effects of ϑ and/or d can produce
similar values of χ . For instance, compare the two cases where d = 0,ϑ �= 0
and d �= 0,ϑ = 0. The value of χ according to Eq. (3.11) in the former case is
on the order of

∼
χ0
�

1+α f ϑχ
2/3
0

�3/2
(3.13)

where χ0 = γe E0/Ecrit is the peak value of χ . In the latter case, the value of χ
is lowered due to nonzero d :

∼ (1−d ) ·χ0. (3.14)

Evidently, Eqs. (3.13) and (3.14) coincide if

d ∼ 1−
�

1+θα f χ
2/3
0

�−3/2
. (3.15)

Consequentially, there exist values of ϑ and d that yield comparable values
of χ and hence results in similar photon spectra. In turn, any summary
statistics derived from it will be near-identical. When this happens, step 3
of Alg. 3 is no longer accurate as it will confuse the effects between ϑ and d .
It is concluded that the energy spectrum alone is not indicative enough to
infer the value of ϑ since the experiment (and hence model) is dependent
on the uncontrollable variable d .
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3.5 Latent variable elimination

Spurred by the complication posed by the latent parameter d , the elimina-
tion of it by extending the information contained in� and choosing suitable
summary statistics is demonstrated.
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Figure 3.2: Heatmap of� as a function of δ and α sampled from simulations.
Here, � is discretized by a grid with 100× 100 cells where (a) ϑ = d = 0, (b)
ϑ = 1.0, d = 0, (c) ϑ = 0, d = 0.4 and (d) ϑ = 0.0, d ≈ 0.2 with an inset showing
the photon energy spectra of (b) and (d).

In identifying complementary data to that of the photon energy spectrum
one can pose the question "Is there a quantity affected by d but not by ϑ
or vice versa?". Reminded by the discussion in Sec. 2.1 one can explore
the option to include the angular spectrum of emitted photons. Because,
the angle α of a photon inherited from its parent electron is given by Eq.
(2.2) of which the electron transverse momentum follows from Eq. (2.1),
independent of ϑ. In contrast, a non-zero value of d lowers the electric field
strength and hence the transverse momentum of the electron. Therefore,
the formed angle is smaller meaning that a property has been found that
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might distinguish between the parameters ϑ and d .

From this finding one can redefine � =�(δ,δ+∆δ,α,α+∆α) as the frac-
tional energy distribution per unit frequency∆ω and per unit angle∆α as
a function of δ = ħhω

me c 2γe
and α. Theoretically, � is a continuous function

but here it is defined as a two dimensional grid sampled from simulations.
Various samplings of� from simulations can be observed in Fig. 3.2 where
the parameters ϑ and d have been varied. In the simulation corresponding
to 3.2d the latent variable was chosen in line with Eq. (3.15) to mimic the
energy spectrum of 3.2b where ϑ = 1.0. The inset confirms the near-identical
features of the spectra whereas the angular components of � (along the
y-axis) are different in terms of the cutoff. For reference, all simulation pa-
rameters can be found in Tab. 3.1.

It is now time to discuss the set of summary statistics to extract from this
distribution. Without loss of generality one can evaluate moments of�

Mi , j =

∫ ∫

�(δ,δ+∆δ,α,α+∆α)δiα j dδdα (3.16)

where Mi , j denote moments of order i in δ and j in α of the distribution�.

In choosing summary statistics based on Eq. (3.16) one might speculate
about the strategy to find a set Mi , j that separate the effects of ϑ and d . In
Sec. 3.3 a remark was made that there is no prescribed way in making the
choice of this set. Since summary statistics are problem dependent, it is up to
the experimentator to decide a suitable approach. Nonetheless, it is always
possible to investigate the dependence of a chosen statistic as a function of
the parameters. In this case, one could visualize a number of the moments
from Eq. (3.16) as a function of ϑ and d to see if there exist a unique set
of moments for every point in this parameter space. Two examples can be
viewed in Fig. 3.3 where four distinct moments are compared to each other.
Obviously, the set of moments in 3.3a is a good choice as the contours are
not parallel anywhere, suggesting a nearly unique pair for every ϑ and d .
In contrast, Fig. 3.3b depicts a scenario when the contours become paral-
lel at several points in the parameter space, confusing the effects of ϑ and
d . Thus, selecting M0,0 and M1,2 is a feasible input for ABC sampling. It is
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Figure 3.3: Contours of Mi , j in the space of ϑ and d , (a) comparison of M0,0

and M1,2 and (b) comparison of M0,1 and M1,1. The darkness of the contours
indicate large values Mi , j but is unimportant for the comparison.

Simulation
parameter

a0 γe L χ0 λ

Value 100 ∼ 105 4.8 µm ∼ 100 0.8 µm

Table 3.1: A table of simulation parameters for the interaction between the
plane wave pulse and the electron.

likely that there exist several moments that satisfy this condition. However,
the aim is to perform the ABC analysis not using a too complicated compi-
lation of summary statistics. Thus, the choice S (�) =

�

M0,0, M1,2

�

is sufficient.

Having proposed the interaction geometry, the data to be measured and the
choice of summary statistics the demonstration of the ABC algorithm to infer
the value of ϑ is in order. This final element of the ABC implementation will
be given in the introductory text for paper B found in Sec. 4.2.

57

4 Current and upcoming research

In this chapter we place summaries of the appended papers. Sec. 4.1 restates
and extends the findings of Ch. 2 which summarizes paper A. Following
the achievements of photon-based signal selection and optimal focusing
for maximum χ value in experiments, we here introduce and compute a
signal ratio and an effective cross-section. These quantities propel the fi-
nal conclusion of paper A stating that a signal based on electron energy
loss would require orders of magnitude more experimental shots to that of
photon-based diagnostics in detecting a significant deviation of the rates.
The summary of paper B is found in Sec. 4.2 which gives an overview of Ch.
3 but extends the analysis by providing the approximate posterior from sam-
pling the parameter ϑ via ABC sampling. The results strongly indicate that
our proposed experimental scheme is worth elaborating further on. Primary
improvements in this matter range from realistic laser pulse and electron
bunch modeling as well as the inclusion of background noise, such as QED
cascades. The thesis is concluded with a few words on the future prospects
of this research area.

4.1 Summary of paper A

Paper A conveys two substantial ideas: How to extract SFQED signals in
laser-electron collision experiments and the role of optimal laser focusing
to attain large values of χ . It is recommended to have covered Ch. 2 to be
equipped with the relevant expressions and nomenclature associated with
this summary.

The premise to the first idea comes from the obstacles in measuring SFQED
rates at large values of χ through electron energy-loss:

� The probabilistic nature of the QED rates gives "noisy" data.

� Measured energy loss of an electron due to the emission of a high-
energy photon is identical to that of multiple low-energy emissions.

� There is no diagnostic capable in determining the exact electromag-
netic fields within the experiment, hence the exact value of χ .



56 BAYESIAN APPROACH TO RADIATION REACTION

0.0 0.5 1.0 1.5 2.0

0.00

0.02

0.04

0.06

0.08

0.10

d

(a)

M

0, 0

M

1, 2

0.0 0.5 1.0 1.5 2.0

(b)

M

0, 1

M

1, 1

Figure 3.3: Contours of Mi , j in the space of ϑ and d , (a) comparison of M0,0

and M1,2 and (b) comparison of M0,1 and M1,1. The darkness of the contours
indicate large values Mi , j but is unimportant for the comparison.

Simulation
parameter

a0 γe L χ0 λ

Value 100 ∼ 105 4.8 µm ∼ 100 0.8 µm

Table 3.1: A table of simulation parameters for the interaction between the
plane wave pulse and the electron.

likely that there exist several moments that satisfy this condition. However,
the aim is to perform the ABC analysis not using a too complicated compi-
lation of summary statistics. Thus, the choice S (�) =

�

M0,0, M1,2

�

is sufficient.

Having proposed the interaction geometry, the data to be measured and the
choice of summary statistics the demonstration of the ABC algorithm to infer
the value of ϑ is in order. This final element of the ABC implementation will
be given in the introductory text for paper B found in Sec. 4.2.

57

4 Current and upcoming research

In this chapter we place summaries of the appended papers. Sec. 4.1 restates
and extends the findings of Ch. 2 which summarizes paper A. Following
the achievements of photon-based signal selection and optimal focusing
for maximum χ value in experiments, we here introduce and compute a
signal ratio and an effective cross-section. These quantities propel the fi-
nal conclusion of paper A stating that a signal based on electron energy
loss would require orders of magnitude more experimental shots to that of
photon-based diagnostics in detecting a significant deviation of the rates.
The summary of paper B is found in Sec. 4.2 which gives an overview of Ch.
3 but extends the analysis by providing the approximate posterior from sam-
pling the parameter ϑ via ABC sampling. The results strongly indicate that
our proposed experimental scheme is worth elaborating further on. Primary
improvements in this matter range from realistic laser pulse and electron
bunch modeling as well as the inclusion of background noise, such as QED
cascades. The thesis is concluded with a few words on the future prospects
of this research area.

4.1 Summary of paper A

Paper A conveys two substantial ideas: How to extract SFQED signals in
laser-electron collision experiments and the role of optimal laser focusing
to attain large values of χ . It is recommended to have covered Ch. 2 to be
equipped with the relevant expressions and nomenclature associated with
this summary.

The premise to the first idea comes from the obstacles in measuring SFQED
rates at large values of χ through electron energy-loss:

� The probabilistic nature of the QED rates gives "noisy" data.

� Measured energy loss of an electron due to the emission of a high-
energy photon is identical to that of multiple low-energy emissions.

� There is no diagnostic capable in determining the exact electromag-
netic fields within the experiment, hence the exact value of χ .



58 CURRENT AND UPCOMING RESEARCH

1TW

1PW

P

m

a

x

/

2

=

1

m

a

x

/

2

=

1

0

m

a

x

/

2

=

1

0

0

m

a

x

/

2

=

1

0

0

0

(a)

10

1

1 10

10

2

10

3

(GeV)

1TW

1PW

eff

(cm

2

)

m

a

x

/

2

=

1

m

a

x

/

2

=

1

0

m

a

x

/

2

=

1

0

0

m

a

x

/

2

=

1

0

0

0

(b)

(%)

10

13

10

12

10

11

10

10

0

50

100

Figure 4.1: Parameter scan of the signal ratio η and effective cross sectionσeff

for (a) linear polarization and (b) circular polarization. Adapted from [72].

� Shot-to-shot variations such as ill-timed collisions or misalignment
impairs the signal.

� Electrons can radiate away the majority of their energy before reaching
the strong-field region, restricting their ability to reach high χ .

� QED cascades provide an immense background noise of low-energy
photons and electron-positron pairs.

Here we reason that if the electron beam is unfocused, the strong-field region
is formed within a uniform stream of particles, mitigating any spatiotempo-
ral jitter in the experiment. As for signal extraction, we argue that emitted
photons pose a feasible signal as they retain the angle of deviation α and are
more prone to escape the strong-field region of the laser.

Nonetheless, there are phase dependencies within the laser field that inhibit
high χ emissions at α ≈ 0 which is shared with background emissions. A
fortunate finding was that switching the polarization from linear to circu-
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Figure 4.2: A possible experimental layout for creating and colliding a bidipole
pulse into a beam of electrons (deviation angles are exaggerated). The leftmost
inset displays the interaction in the case of circular polarization whereas the
rightmost inset illustrates the view of the scheme from above. Adapted from
[72].

lar makes χ and α correlated. As a result, photons with large α were likely
emitted at large χ . Secondly, if a photon has high energy it is unlikely that
its parent electron underwent emission prior to it, separating these from
the background. We concluded that of all photons, the ones with large α
and high energy would constitute a viable signal despite the presence of
substantial background. Our second achievement was to find the optimal fo-
cusing of a laser to maximize the value of χ in such experiments. We defined
this maximization problem, expressing the solution in terms of the Maxwell
equations in a multipole representation. We then appeal to the expression
for χ , arguing that its maximum is satisfied at the origin. In solving this we
found that the solution was a sum of two dipole waves which we refer to as a
bidipole wave. The derivation and prospects of them were outlined in Secs.
2.3-2.6.

We performed simulations with a bidipole pulse propagating into a stream
of electrons to demonstrate the capability of both achievements in a real
experiment. A potential layout for this experiment can be seen in Fig. 4.2.
Concisely, the simulations were repeated for a discrete set of points in the
parameter space of the input power P and initial electron beam energy ε. To
quantify the outcome, we defined a signal ratio
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� Shot-to-shot variations such as ill-timed collisions or misalignment
impairs the signal.

� Electrons can radiate away the majority of their energy before reaching
the strong-field region, restricting their ability to reach high χ .

� QED cascades provide an immense background noise of low-energy
photons and electron-positron pairs.

Here we reason that if the electron beam is unfocused, the strong-field region
is formed within a uniform stream of particles, mitigating any spatiotempo-
ral jitter in the experiment. As for signal extraction, we argue that emitted
photons pose a feasible signal as they retain the angle of deviation α and are
more prone to escape the strong-field region of the laser.

Nonetheless, there are phase dependencies within the laser field that inhibit
high χ emissions at α ≈ 0 which is shared with background emissions. A
fortunate finding was that switching the polarization from linear to circu-

SUMMARY OF PAPER A 59

electron beam 
source

laser pulse
(intensity distribution)

high-energy 
photon detector

log(𝐸𝐸𝑧𝑧2 + 𝐵𝐵𝑥𝑥2)

flat mirror

parabolic  mirror, 
f-number = 0.25

case of circular 
polarization

high-energy
photon

low-energy
photon

𝑥𝑥

𝑧𝑧
𝑦𝑦

electron beam

𝐸𝐸

𝐵𝐵

intensity 
distribution

photon 
detector

electron 
beam 

source

top view (central cut)

𝑥𝑥
𝑦𝑦

Figure 4.2: A possible experimental layout for creating and colliding a bidipole
pulse into a beam of electrons (deviation angles are exaggerated). The leftmost
inset displays the interaction in the case of circular polarization whereas the
rightmost inset illustrates the view of the scheme from above. Adapted from
[72].

lar makes χ and α correlated. As a result, photons with large α were likely
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its parent electron underwent emission prior to it, separating these from
the background. We concluded that of all photons, the ones with large α
and high energy would constitute a viable signal despite the presence of
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cusing of a laser to maximize the value of χ in such experiments. We defined
this maximization problem, expressing the solution in terms of the Maxwell
equations in a multipole representation. We then appeal to the expression
for χ , arguing that its maximum is satisfied at the origin. In solving this we
found that the solution was a sum of two dipole waves which we refer to as a
bidipole wave. The derivation and prospects of them were outlined in Secs.
2.3-2.6.

We performed simulations with a bidipole pulse propagating into a stream
of electrons to demonstrate the capability of both achievements in a real
experiment. A potential layout for this experiment can be seen in Fig. 4.2.
Concisely, the simulations were repeated for a discrete set of points in the
parameter space of the input power P and initial electron beam energy ε. To
quantify the outcome, we defined a signal ratio
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η=
Nsignal

Ntotal
(4.1)

where Ntotal represent all photons at the detector having α > 0.6αmax and
energy Eγ > 0.5me c 2γe of which Nsignal also fulfill χ > 0.5χmax from parent
electrons that hadn’t lost more than 1% energy prior to emission. In this case,
αmax ∼ a max

0 /γe where a max
0 denote the peak dimensionless amplitude and

χmax denote the maximal value of χ attained at the center of the bidipole
wave. In addition to the signal ratio, we introduce an effective cross section
of the interaction

σeff =
Nsignal

neτl c
(4.2)

where ne is the electron density and τl the bidipole pulse duration. A core
result from our paper is the parametric scan seen in Fig. 4.1. This motivated
us to estimate the number of shots needed to reach a 3σ confidence level
in detecting a 1% deviation of the emission rates at χ � 10. We considered
a 10 GeV electron beam with total charge 100 pC spread over a spherical
volume with radius 2.5 µm (ne ≈ 1019 cm−3) and a bidipole pulse with a
5-cycle duration. As a test statistic we chose Nexp total shots with cumulative
Ntotal so that 3σNexp

≤ 0.01Nsignal is the desired statistical significance where

σNexp
≈
�

Ntotal. With these parameters and the aid of Fig. 4.1a, χmax/2� 10

is reached with P ∼ 100 TW so that σeff ∼ 10−11 cm−3 and η∼ 0.1. This im-

plies Nsignal ∼ 5 ·105 signal photons per shot and the criterion is
�

3
0.01η

�2
∼ 107

photons in total, demanding 200 shots. An analogous derivation implied
that in measuring the electron energy loss the number shots required was
5 ·105 times larger to that of photon-based diagnostics.

We end the paper by stating that photons based on their deviation and energy
can provide detectable signals of SFQED rates at χ ∼ 10−100 reachable with
PW−10−GeV−class facilities. We further highlight that the use of optimal fo-
cusing to increaseχ values is beneficial, of which the bidipole wave offers the
optimal value. However, probing χ ∼ 1000 requires higher intensity and/or
electron energy which precipitates further studies of electron injection and
pulse steepening.
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4.2 Summary of paper B

In paper B we propose an experimental layout capable of gauging the ex-
treme limits of interest for QED. That is, we suggest an interaction scheme,
the data to be measured from this setup and a statistical framework that
enables the inference of such parameters. Again, we advise the reader to
consult Ch. 3 to acquire any notation and definitions used in this summary.

We stress in paper B that experiments designed to test QED predictions
around its breakdown limit are prone to noisy data stemming primarily from
QED cascades. Secondly, misalignment inherent in such experiments adds
to this obstacle. To mitigate this we explain the benefit in adopting Bayesian
methods to infer parameters of aforementioned predictions embedded in
models. Particularly interesting are techniques that sample parameters by
comparing results of the experiment to that of simulations specified by a
model. This can bypass direct evaluation of the likelihood which is many
times problematic due to computational demands or other intractabilities.
We demonstrated that this technique is susceptible to data of large dimen-
sionality as the sampling rate is rendered unfeasible. In making the rate
practical, we appeal to summary statistics and kernel functions in order to
reduce the dimensionality of the data. All of this culminates in what is known
as approximate Bayesian computation (ABC).

We then elaborate on our layout by providing a proof of principle by adopting
the notion of a mass shift for electrons and positrons mentioned in Ref. [69].
This is argued to be one of many potentially measurable nonperturbative
effects of QED. From it we constructed a model with a parameter ϑ to signify
the strength of the mass shift. Next, we developed the simulation geometry
comprised of a plane wave pulse impinging a single counter-propagating
electron. Appealing to the realism in an experiment we included a latent
parameter d which mimics any uncontrollable features which reduce the
laser amplitude experienced by the electron. We mention examples of such
features as off-axis or ill-timed collisions. As our prospects are based on first
principles we chose to neglect pair formation to avoid noisy data from QED
cascades.

Having defined the setup and model we assessed the role of data measured
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η=
Nsignal

Ntotal
(4.1)
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σeff =
Nsignal

neτl c
(4.2)
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σNexp
≈
�
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�

3
0.01η

�2
∼ 107
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4.2 Summary of paper B
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comprised of a plane wave pulse impinging a single counter-propagating
electron. Appealing to the realism in an experiment we included a latent
parameter d which mimics any uncontrollable features which reduce the
laser amplitude experienced by the electron. We mention examples of such
features as off-axis or ill-timed collisions. As our prospects are based on first
principles we chose to neglect pair formation to avoid noisy data from QED
cascades.
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Figure 4.3: ABC sampled posterior forϑwith Nϑ = 1600 accepted samples using
h = 0.1. The shaded region indicate the 68% credible interval 0.58<ϑ < 1.13.

in experiments. We gave the example that an experimentator can measure
the photon energy spectrum and use this data for the inference. However,
we then argued that a nonzero value of ϑ will have the same effect on the
spectrum to that of d �= 0, suggesting the necessity of using complementary
data to disentangle the influence ascribed to latent variables. Based on this
and results of paper A we also included the angular spectrum of the emitted
photons as ϑ has no effect on it contrary to d . Combining the information
contained in these properties we proposed to measure a fractional energy
distribution per unit frequency and per unit angle as a function of normal-
ized photon energy and angle.

We underlined that selecting informative data is not enough as the disentan-
glement of parameters ultimately depend on the choice of summary statistics.
For our model in consideration we showed that a set of summary statistics
in the form of statistical moments could be used to separate the effects of ϑ
and d (recall Fig. 3.3 and the discussion therein). In choosing the data and
summary statistics we were in a position to sample ϑ in simulations by set-
ting the experiment as a blind test. That is, we fix the value of ϑ = ϑtrue = 0.84
prior to the analysis while 0≤ d ≤ 1 is allowed to vary randomly. Our paper
culminates in giving the approximate posterior using ABC for a given scale

CONCLUSIONS 63

parameter h and collected samples Nϑ visible in Fig. 4.3. Although the analy-
sis was based on first principles, it strongly suggests that ABC can possibly be
used as a tool to benchmark models of QED in extreme limits of interest. We
discuss that a more realistic proof of principle will impact the computational
load of the simulation as well as the ABC sampling rate. We explained that
these difficulties can be combatted by the use of machine learning methods
and high-performance computers.

4.3 Conclusions

In this thesis, we have provided the principles of radiation reaction in the
scope of laser-electron collision experiments, stimulating the interest to
study its extreme limits currently unreachable by contemporary facilities. In
addition to this, we have given the theoretical grounds for signal extraction
in such experiments using photon-based diagnostics and the opportunity to
boost χ values with optimized focusing in which the maximum was found
to be achieved by the bidipole wave solution. Likewise, we have dedicated
a part to the introduction of Bayesian statistics and the discussion on sam-
pling techniques which avoid direct evaluation of the likelihood. Of specific
interest were methods utilizing data obtained from repeated simulations and
experiments. This motivated the use of ABC sampling and we put emphasis
on the role of data selection and summary statistics. The latter also vital in
separating effects of model parameters to that of latent variables.

Further, we presented the achievements of paper A by introducing strategies
to select SFQED signal photons in such experiments and demonstrated the
significance of optimal focusing in unfocused electron beams to provide
large values of χ where we derived the optimal solution. Then, we argued
that emitted photons having a large angle of deviation α (hence high χ value
in the case of a circularly polarized wave) and energy ħhω carry the SFQED
signal. We introduced and computed the signal ratio η and effective cross
sectionσeff in simulations with a bidipole pulse colliding with a stream of
high-energy electrons. With these results we concluded that the number of
shots needed in an experiment to detect a 1% deviation of the QED rates on
a 3σ confidence level is ∼ 105 larger for electron energy-based diagnostics to
that of photon-based.
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We also show the implementation of ABC sampling on a model which en-
capsulates the idea of an effective electron/positron mass stemming from
quantum corrections. Here the parameter of the model tunes their effective
mass and we include a latent parameter d , lowering the experienced laser
amplitude for electrons due to any mismatch in the collision experiment.
Our results provide a strong evidence of a successful inference based on
selecting data and summary statistics that separate ϑ and d .

As for future research, improvements of paper B holds great interest due
to the strong inference obtained from first principles. Simulating a realis-
tic tightly focused laser, accounting for QED cascades, modeling electron
bunches and including more sophisticated latent parameters are examples
of improvements one can make to further elaborate proposals for experi-
ments. Even if these additions pose a computational demand, convergence
of ABC sampling can be accelerated by the use of machine learning methods
to suggest better sample proposals. Additionally, the use of supercomputer
clusters may allow many independent ABC samplers to run in parallel to as-
semble the posterior. We are content with the findings of paper A, primarily
because the bidipole wave is the optimal solution in reaching values of high
χ but also because the results appeal to upcoming laser-matter facilities.
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Colliding bunches of high-energy electrons with intense laser pulses provides a basis for studying strong-field
QED processes enabled by high values of quantum nonlinearity parameter χ . Nevertheless, the signal deconvolu-
tion is intricate due to the probabilistic nature of the processes and shot-to-shot variation of the impact parameter,
which disfavors the use of tight focusing. We propose a concept for distinguishing the signal of high-χ emissions
that enables the use of optimal focusing to attain the highest χ ≈ 5.25[ε/(1 GeV)][P/(1 PW)]1/2[(1 µm)/λ] for
a given electron energy ε, laser power P, and wavelength λ. Reaching such a χ with f /2 focusing requires more
than 10 times higher power.

DOI: 10.1103/PhysRevA.106.063512

I. INTRODUCTION

High-intensity laser facilities [1–5] in combination with
conventional or laser-based electron accelerators open up op-
portunities to study extreme regimes of radiation reaction
(RR) and of other effects due to strong-field quantum elec-
trodynamics (SFQED) [6–8]. The effect of laser-generated
electromagnetic fields on an electron is characterized by the
dimensionless acceleration in its rest frame χ = γ E−1

cr {[E +
(v/c) × B]2 − (E · v/c)2}1/2, where v and γ are the electron
velocity and gamma factor, c is the speed of light, and E and
B are the electric- and magnetic-field vectors. The critical
field of QED is defined as Ecr = m2c3/eh̄, where h̄ is the
reduced Planck constant and m and e are the electron mass
and charge. The experimental objectives range from testing
existing predictions at χ � 1, which designates the quantum
regime of RR, to the detection of early signs of unknown
behavior at χ � 1600, which demarcates qualitatively unex-
plored regimes characterized by the conjectured breakdown
of perturbative nonlinear QED [9–11].

In the 1990s the collision of 46.6-GeV electrons with fo-
cused laser pulses was used to observe multiphoton Compton
scattering [12] and multiphoton Breit-Wheeler pair creation
[13]. Revisiting this experimental configuration with extended
experimental program is a matter of several initiatives, includ-
ing the E320 collaboration at FACET-II [14] and the LUXE
collaboration at the European XFEL [15]. Another experi-
mental alternative is based on the replacement of conventional
acceleration by laser wake-field acceleration (LWFA). In re-
cent experiments, signatures of RR at χ ∼ 0.1 have been
observed by colliding LWFA electrons with a laser pulse fo-
cused by an f /2 parabolic mirror [16,17]. For further studies
at higher χ , apart from increasing electron energy and laser
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power, it is natural to consider how large an increase of χ we
can get from more advanced focusing.

It is reasonable to think that this question has little prac-
tical meaning because a smaller strong-field region formed
by tighter focusing implies an enhanced role of the shot-
to-shot variation of the impact parameter, which is present
due to limited capabilities for laser–electron-beam alignment.
In addition, 4π focusing may require unprecedentedly large
parabolic mirrors, while reaching strong fields itself may re-
quire low vacuum [18] to prevent early cascade development
[19]. Finally, it is unclear how to distinguish the signal of
SFQED at high χ from the dominating signal of emissions
at low χ .

In this paper we consider the problem of detecting and
measuring the evidences of SFQED predictions that has not
yet been experimentally verified. Specifically, we elaborate
a strategy to reveal such evidences without accessing the
regimes when these phenomena become prominent and sig-
nificantly change the interaction physics. This is done under
the assumption that the influence of these phenomena on the
interaction process gradually rises with χ . In this case high
accuracy of measurements and/or statistical analysis can be
used to infer the sought signal from experiments with a χ

value well below than that needed for the prominent change
of physics. One example of a possible objective is to detect
the effective mass change discussed in Ref. [14].

As the main result of the paper, we propose a way to extract
the signal of SFQED events occurring at high χ and for elec-
trons having known initial energy such that high localization
of the strong-field region is no longer an obstacle. Assuming
this possibility, we determine the optimal focusing geometry,
which we call a bidipole wave, and identify prospects and
limitations of the proposed concept.

II. SIGNAL DISTINGUISHING

Since emissions probabilistically happen at unknown field
strength and γ (in the case of prior emissions), it is not possi-
ble to do a direct measurement of the SFQED emission rate as
a function of χ , fractional photon energy h̄ω/mc2γ , and other
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Colliding bunches of high-energy electrons with intense laser pulses provides a basis for studying strong-field
QED processes enabled by high values of quantum nonlinearity parameter χ . Nevertheless, the signal deconvolu-
tion is intricate due to the probabilistic nature of the processes and shot-to-shot variation of the impact parameter,
which disfavors the use of tight focusing. We propose a concept for distinguishing the signal of high-χ emissions
that enables the use of optimal focusing to attain the highest χ ≈ 5.25[ε/(1 GeV)][P/(1 PW)]1/2[(1 µm)/λ] for
a given electron energy ε, laser power P, and wavelength λ. Reaching such a χ with f /2 focusing requires more
than 10 times higher power.
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I. INTRODUCTION

High-intensity laser facilities [1–5] in combination with
conventional or laser-based electron accelerators open up op-
portunities to study extreme regimes of radiation reaction
(RR) and of other effects due to strong-field quantum elec-
trodynamics (SFQED) [6–8]. The effect of laser-generated
electromagnetic fields on an electron is characterized by the
dimensionless acceleration in its rest frame χ = γ E−1

cr {[E +
(v/c) × B]2 − (E · v/c)2}1/2, where v and γ are the electron
velocity and gamma factor, c is the speed of light, and E and
B are the electric- and magnetic-field vectors. The critical
field of QED is defined as Ecr = m2c3/eh̄, where h̄ is the
reduced Planck constant and m and e are the electron mass
and charge. The experimental objectives range from testing
existing predictions at χ � 1, which designates the quantum
regime of RR, to the detection of early signs of unknown
behavior at χ � 1600, which demarcates qualitatively unex-
plored regimes characterized by the conjectured breakdown
of perturbative nonlinear QED [9–11].

In the 1990s the collision of 46.6-GeV electrons with fo-
cused laser pulses was used to observe multiphoton Compton
scattering [12] and multiphoton Breit-Wheeler pair creation
[13]. Revisiting this experimental configuration with extended
experimental program is a matter of several initiatives, includ-
ing the E320 collaboration at FACET-II [14] and the LUXE
collaboration at the European XFEL [15]. Another experi-
mental alternative is based on the replacement of conventional
acceleration by laser wake-field acceleration (LWFA). In re-
cent experiments, signatures of RR at χ ∼ 0.1 have been
observed by colliding LWFA electrons with a laser pulse fo-
cused by an f /2 parabolic mirror [16,17]. For further studies
at higher χ , apart from increasing electron energy and laser
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power, it is natural to consider how large an increase of χ we
can get from more advanced focusing.

It is reasonable to think that this question has little prac-
tical meaning because a smaller strong-field region formed
by tighter focusing implies an enhanced role of the shot-
to-shot variation of the impact parameter, which is present
due to limited capabilities for laser–electron-beam alignment.
In addition, 4π focusing may require unprecedentedly large
parabolic mirrors, while reaching strong fields itself may re-
quire low vacuum [18] to prevent early cascade development
[19]. Finally, it is unclear how to distinguish the signal of
SFQED at high χ from the dominating signal of emissions
at low χ .

In this paper we consider the problem of detecting and
measuring the evidences of SFQED predictions that has not
yet been experimentally verified. Specifically, we elaborate
a strategy to reveal such evidences without accessing the
regimes when these phenomena become prominent and sig-
nificantly change the interaction physics. This is done under
the assumption that the influence of these phenomena on the
interaction process gradually rises with χ . In this case high
accuracy of measurements and/or statistical analysis can be
used to infer the sought signal from experiments with a χ

value well below than that needed for the prominent change
of physics. One example of a possible objective is to detect
the effective mass change discussed in Ref. [14].

As the main result of the paper, we propose a way to extract
the signal of SFQED events occurring at high χ and for elec-
trons having known initial energy such that high localization
of the strong-field region is no longer an obstacle. Assuming
this possibility, we determine the optimal focusing geometry,
which we call a bidipole wave, and identify prospects and
limitations of the proposed concept.

II. SIGNAL DISTINGUISHING

Since emissions probabilistically happen at unknown field
strength and γ (in the case of prior emissions), it is not possi-
ble to do a direct measurement of the SFQED emission rate as
a function of χ , fractional photon energy h̄ω/mc2γ , and other
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FIG. 1. Schematic illustration of interaction scenarios for various
electrons passing through a tightly focused laser pulse.

parameters of interest. Instead, we have to make inferences by
comparing experimental and numerical results for some mea-
surable quantities or distributions that notably depend on this
rate but preferably independent of unmeasurable shot-to-shot
variations. The influence of the impact parameter becomes
largely eliminated if the electron bunch is underfocused or di-
verged such that tight laser focusing occurs somewhere within
a nearly uniform flux of electrons. Despite yielding a smaller
number of emissions in the strong-field region, we choose
this layout because it corresponds to data accumulation from
repeated experiments and, more importantly, permits reaching
higher χ by arbitrary tight focusing. An explicit signal of the
high-χ SFQED rate is carried by electrons that have emitted
a single photon at about maximal χ . Unfortunately, at the
detector these electrons can hardly be distinguished from the
majority of those bypassing the strong-field region, emitting
multiple photons and/or at low χ , and those being generated
by the Breit-Wheeler process (see Fig. 1). However, a fortu-
nate opportunity to distinguish an informative signal occurs
for photons based on their energy and deviation angle α, the
angle between propagation directions of a photon and initial
electrons. First, among electrons having initial energy only the
ones passing through the strong-field region have the chance
to emit photons with large α ∼ amax/γ , where amax is the
peak field amplitude in units of mcω0/e, with ω0 the laser fre-
quency. Note that α is required to be measurable but can still
be assumed small due to large γ so that electrons deviate by a
distance negligible as compared to the wavelength λ (in Fig. 1
the deviation is exaggerated for illustrative purposes). Second,
the higher the energy of a detected photon the less likely it
was emitted after another emission or by a newly generated
particle. It is clear that among photons with large energy and α

we can expect a large part of those carrying the signal. As we
show further, this makes possible reaching a given confidence
level of statistical inferences with the number of shots many
orders of magnitude smaller than that required in the case of
electron-based diagnostics. Finally, note that Fig. 1 shows an
unfavorable phase dependence α = 0 when the field peaks and
vice versa. Using circular polarization (CP) makes α and χ

correlated (see the insert on Fig. 2 and also Fig. 3), permitting
direct measurements of the rate as a function of χ .

III. OPTIMAL FOCUSING

The possibility of creating the strongest field for a given
power P by the dipole wave [20–22] using multiple colliding
laser pulses [23] has been recognized to enable many possi-

/
ma
x

ln 2 /
a.u.

1-1 0LP
CP

FIG. 2. Relative time that the electrons spend with various α and
χ while passing through the bidipole wave for the CP and LP cases
shown in Fig. 3.

bilities, ranging from particle trapping and photon generation
[18,24–26] to the creation of sustained electromagnetic cas-
cades and extreme electron-positron plasma states [27,28].
Nevertheless, the problem of maximizing χ for a given power
has received little attention in the literature. In Ref. [29] the
analysis was restricted to the case of several beams focused to
a point from the directions laying in a single plane. Here we
consider the general case.

To quantify the role of focusing we note that in the focal
region the intensity is proportional to P and inversely propor-
tional to the focal area being proportional to λ2. Therefore,
the field strength scales proportionally to λ−1P1/2 and χ ∝
γ λ−1P1/2. Thus, a focusing geometry can be quantified by a
single dimensionless parameter κ that determines the peak χ

value (we assume that |v| ≈ c and γ � amax):

χmax = κ
( ε

1 GeV

)(
P

1 PW

)1/2(
λ

1 µm

)−1

. (1)

The problem of maximizing κ belongs to the class of op-
timization problems in optics. Using multipole expansion,
Bassett showed that the dipole component provides the high-
est possible energy density for a given P and this optimal
component also provides the strongest field strength a0 ≈
780[P/(1 PW)]1/2 [20].

To determine the optimal geometry we assume that the
maximal value of χ is achieved at the origin of the spherical
coordinate system (r, θ, φ) with the electric field point-
ing towards θ = 0. Assuming that the incoming wave is
monochromatic, the field can be expressed as the real part
of exp(−iω0t ) multiplied by some complex field (Eχ , Bχ ),
which in turn can be expressed using the basis of electric
(EE , BE ) and magnetic (EB, BB) multipoles (exact solutions
of Maxwell’s equations) given by [30]

EE
r = l (l + 1)r−1 jl (kr)Y m

l (θ, φ),

EE
θ = r−1∂r[r jl (kr)]∂θY m

l (θ, φ),

EE
φ = im sin−1 θr−1∂r[r jl (kr)]Y m

l (θ, φ),
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BE
r = 0, BE

θ = km sin−1 θ jl (kr)Y m
l (θ, φ),

BE
φ = ik jl (kr)∂θ

[
Y m

l (θ, φ)
]
,

EB = −BE , BB = EE , (2)

where l = 1, 2, 3, . . ., m = −l,−l + 1, . . . , l , k = ω0/c, and
jl (kr) and Y m

l (θ, φ) are spherical Bessel functions and spher-
ical harmonics, respectively. The subscripts denote vector
components along the unit vectors.

Bassett showed that in terms of incoming power the mul-
tipolar components are additive, i.e., for any combination of
them, the incoming power is the sum of incoming powers of
the components (see Sec. 3 in Ref. [20]). Following Bassett,
we consider the limit r → 0 and note that only six compo-
nents contribute to the field at r = 0 (E is formed by EE

l,m and
B is formed by BB

l,m, in both cases l = 1 and m = −1, 0, 1),

EE
1,−1 = BB

1,−1 = k(6π )−1/2(x̂ − iŷ), (3)

EE
1,0 = BB

1,0 = k(3π )−1/2ẑ, (4)

EE
1,1 = BB

1,1 = −k(6π )−1/2(x̂ + iŷ), (5)

where x̂, ŷ, and ẑ are the Cartesian system unit vectors point-
ing towards (θ = π/2, φ = 0), (θ = π/2, φ = π/2). and
(θ = 0), respectively. According to our assumption, Eχ is
pointing towards θ = 0 and thus it is formed exclusively by
the component EE

1,0. Without loss of generality, we can assume
that the coordinate system is oriented so that Bχ (r = 0) is
laying in the xz plane and thus it is formed by a combination of
BB

1,0 and 21/2(BB
1,−1 − BB

1,1) components (the factor is chosen
to provide synchronous peaking). The components EE

1,0 and
BE

1,0 correspond to the electric and magnetic dipole waves
with symmetry axis along ẑ, whereas 21/2(BB

1,−1 − BB
1,1) cor-

responds to the magnetic dipole wave with symmetry axis
along x̂. Given that the power of components is additive,
we can describe all cases by splitting the total power P into
three portions: aP is delivered by the electric dipole wave,
whereas the portions bP and (1 − a − b)P are delivered by
the magnetic dipole waves with symmetry axes along ẑ and
x̂, respectively; 0 � a, b � 1, and a + b � 1. The strength of
components in relativistic units is given by

E = ad [P/(1 PW)]1/2a1/2ẑ, (6)

B = ad [P/(1 PW)]1/2[b1/2ẑ + (1 − a − b)1/2x̂], (7)

where ad ≈ 780. If we were interested in the maximal energy
density [(E2 + B2)/8π ] all the cases were indifferent because
the energy density is independent of a and b. Nevertheless,
searching for the strongest possible acceleration yields one
specific optimum. First we note that the maximal Lorentz
force is achieved if the electron propagates along the y axis.
In this case the absolute value of the Lorentz force and the χ

value is proportional to

χ ∝ {[a1/2 + (1 − a − b)1/2]2 + b}1/2. (8)

Searching for the maximum of χ2, we first notice that
∂χ2/∂b � 0 for all a and b, meaning that the maximum is
achieved at b = 0. Next we compute ∂χ2/∂a and determine
that the maximum is achieved at a = 1

2 .

As one can see, the maximum corresponds to the
equal destitution of energy between electric and magnetic
dipole waves that have perpendicular axes. That is why we
choose to call this geometry a bidipole wave. The field
strength is |Eχ | = |Bχ | = amax = ad [P/(1 PW)]1/2/

√
2 ≈

550[P/(1 PW)]1/2 (in relativistic units) and the value of κ is
approximately 5.25.

So far we have been considering monochromatic radiation.
Lifting this limitation, i.e., considering the electromagnetic
pulse shape as another matter of optimization, yields an ill-
posed maximization problem: Higher frequency gives smaller
focal volume and thereby higher field strength for the same
power, which means that χ is unbound from above in the
case of an unrestricted spectrum. This is also manifested by
the χmax dependence on the wavelength shown in Eq. (1).
Nevertheless, a fortunate possibility to assess practically im-
portant pulsed solutions is provided by the theory of dipole
pulses developed in Ref. [21]. Since the bidipole wave is a
sum of two dipole waves, we can generalize our result and
define a bidipole pulse as a sum of two dipole pulses (one
electric and one magnetic, both synchronized in time, with
perpendicular axes of symmetry). For example, using this we
can answer one, probably quite practical, question: What ben-
efit can we get from the shortness of a focused Gaussian-like
pulse? Using the theory of dipole pulses, we obtain that the
relative increase of χ is 3 ln 2τ−2

0 /π2, where τ0 is the pulse
duration in cycles, determined according to the full width at
half maximum for the intensity. Practically this means that
the benefit is moderate: Even for a two-cycle pulse it is about
5%, while for common Ti:sapphire pulses (approximately five
cycles) it is less than 1%.

IV. BIDIPOLE WAVE STRUCTURE

We continue by considering the structure of the bidipole
wave and the way to generate it in practice. To within a
constant factor, the electric-field vector in the far-field region
can be given by

E(r → ∞) ∝ r−1(Ee + Eb), (9)

Ee = (ẑ × n) × n, Eb = (x̂ × n), (10)

where n = r/r, whereas Ee and Eb are proportional to the
electric-field vectors of the radiation forming electric and
magnetic dipole waves, respectively. The signs are chosen so
that the constructive summation of the electric and magnetic
components is provided for a charge propagating towards the
negative y direction.

Along each direction the dipole waves are formed by lin-
early polarized, in-phase waves and thus the bidipole wave is
also formed by linearly polarized wave. Let us demonstrate
that the distribution of intensity I of this wave is symmetric
about the y axis. To do so we compute the intensity as a
function of n:

Ee = nxnzx̂ − (
n2

x + n2
y

)
ẑ + nynzŷ, Eb = nyẑ − nzŷ,

I ∝ |Ee + Eb|2 = n2
xn2

z + (
n2

x + n2
y − ny

)2 + n2
z (ny − 1)2.

To demonstrate the axial symmetry of I we introduce a spher-
ical coordinate system (θy, ϕ) so that the unit vector has the
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FIG. 1. Schematic illustration of interaction scenarios for various
electrons passing through a tightly focused laser pulse.

parameters of interest. Instead, we have to make inferences by
comparing experimental and numerical results for some mea-
surable quantities or distributions that notably depend on this
rate but preferably independent of unmeasurable shot-to-shot
variations. The influence of the impact parameter becomes
largely eliminated if the electron bunch is underfocused or di-
verged such that tight laser focusing occurs somewhere within
a nearly uniform flux of electrons. Despite yielding a smaller
number of emissions in the strong-field region, we choose
this layout because it corresponds to data accumulation from
repeated experiments and, more importantly, permits reaching
higher χ by arbitrary tight focusing. An explicit signal of the
high-χ SFQED rate is carried by electrons that have emitted
a single photon at about maximal χ . Unfortunately, at the
detector these electrons can hardly be distinguished from the
majority of those bypassing the strong-field region, emitting
multiple photons and/or at low χ , and those being generated
by the Breit-Wheeler process (see Fig. 1). However, a fortu-
nate opportunity to distinguish an informative signal occurs
for photons based on their energy and deviation angle α, the
angle between propagation directions of a photon and initial
electrons. First, among electrons having initial energy only the
ones passing through the strong-field region have the chance
to emit photons with large α ∼ amax/γ , where amax is the
peak field amplitude in units of mcω0/e, with ω0 the laser fre-
quency. Note that α is required to be measurable but can still
be assumed small due to large γ so that electrons deviate by a
distance negligible as compared to the wavelength λ (in Fig. 1
the deviation is exaggerated for illustrative purposes). Second,
the higher the energy of a detected photon the less likely it
was emitted after another emission or by a newly generated
particle. It is clear that among photons with large energy and α

we can expect a large part of those carrying the signal. As we
show further, this makes possible reaching a given confidence
level of statistical inferences with the number of shots many
orders of magnitude smaller than that required in the case of
electron-based diagnostics. Finally, note that Fig. 1 shows an
unfavorable phase dependence α = 0 when the field peaks and
vice versa. Using circular polarization (CP) makes α and χ

correlated (see the insert on Fig. 2 and also Fig. 3), permitting
direct measurements of the rate as a function of χ .

III. OPTIMAL FOCUSING

The possibility of creating the strongest field for a given
power P by the dipole wave [20–22] using multiple colliding
laser pulses [23] has been recognized to enable many possi-
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FIG. 2. Relative time that the electrons spend with various α and
χ while passing through the bidipole wave for the CP and LP cases
shown in Fig. 3.

bilities, ranging from particle trapping and photon generation
[18,24–26] to the creation of sustained electromagnetic cas-
cades and extreme electron-positron plasma states [27,28].
Nevertheless, the problem of maximizing χ for a given power
has received little attention in the literature. In Ref. [29] the
analysis was restricted to the case of several beams focused to
a point from the directions laying in a single plane. Here we
consider the general case.

To quantify the role of focusing we note that in the focal
region the intensity is proportional to P and inversely propor-
tional to the focal area being proportional to λ2. Therefore,
the field strength scales proportionally to λ−1P1/2 and χ ∝
γ λ−1P1/2. Thus, a focusing geometry can be quantified by a
single dimensionless parameter κ that determines the peak χ

value (we assume that |v| ≈ c and γ � amax):

χmax = κ
( ε

1 GeV

)(
P

1 PW

)1/2(
λ

1 µm

)−1

. (1)

The problem of maximizing κ belongs to the class of op-
timization problems in optics. Using multipole expansion,
Bassett showed that the dipole component provides the high-
est possible energy density for a given P and this optimal
component also provides the strongest field strength a0 ≈
780[P/(1 PW)]1/2 [20].

To determine the optimal geometry we assume that the
maximal value of χ is achieved at the origin of the spherical
coordinate system (r, θ, φ) with the electric field point-
ing towards θ = 0. Assuming that the incoming wave is
monochromatic, the field can be expressed as the real part
of exp(−iω0t ) multiplied by some complex field (Eχ , Bχ ),
which in turn can be expressed using the basis of electric
(EE , BE ) and magnetic (EB, BB) multipoles (exact solutions
of Maxwell’s equations) given by [30]

EE
r = l (l + 1)r−1 jl (kr)Y m

l (θ, φ),

EE
θ = r−1∂r[r jl (kr)]∂θY m

l (θ, φ),

EE
φ = im sin−1 θr−1∂r[r jl (kr)]Y m

l (θ, φ),
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BE
r = 0, BE

θ = km sin−1 θ jl (kr)Y m
l (θ, φ),

BE
φ = ik jl (kr)∂θ

[
Y m

l (θ, φ)
]
,

EB = −BE , BB = EE , (2)

where l = 1, 2, 3, . . ., m = −l,−l + 1, . . . , l , k = ω0/c, and
jl (kr) and Y m

l (θ, φ) are spherical Bessel functions and spher-
ical harmonics, respectively. The subscripts denote vector
components along the unit vectors.

Bassett showed that in terms of incoming power the mul-
tipolar components are additive, i.e., for any combination of
them, the incoming power is the sum of incoming powers of
the components (see Sec. 3 in Ref. [20]). Following Bassett,
we consider the limit r → 0 and note that only six compo-
nents contribute to the field at r = 0 (E is formed by EE

l,m and
B is formed by BB

l,m, in both cases l = 1 and m = −1, 0, 1),

EE
1,−1 = BB

1,−1 = k(6π )−1/2(x̂ − iŷ), (3)

EE
1,0 = BB

1,0 = k(3π )−1/2ẑ, (4)

EE
1,1 = BB

1,1 = −k(6π )−1/2(x̂ + iŷ), (5)

where x̂, ŷ, and ẑ are the Cartesian system unit vectors point-
ing towards (θ = π/2, φ = 0), (θ = π/2, φ = π/2). and
(θ = 0), respectively. According to our assumption, Eχ is
pointing towards θ = 0 and thus it is formed exclusively by
the component EE

1,0. Without loss of generality, we can assume
that the coordinate system is oriented so that Bχ (r = 0) is
laying in the xz plane and thus it is formed by a combination of
BB

1,0 and 21/2(BB
1,−1 − BB

1,1) components (the factor is chosen
to provide synchronous peaking). The components EE

1,0 and
BE

1,0 correspond to the electric and magnetic dipole waves
with symmetry axis along ẑ, whereas 21/2(BB

1,−1 − BB
1,1) cor-

responds to the magnetic dipole wave with symmetry axis
along x̂. Given that the power of components is additive,
we can describe all cases by splitting the total power P into
three portions: aP is delivered by the electric dipole wave,
whereas the portions bP and (1 − a − b)P are delivered by
the magnetic dipole waves with symmetry axes along ẑ and
x̂, respectively; 0 � a, b � 1, and a + b � 1. The strength of
components in relativistic units is given by

E = ad [P/(1 PW)]1/2a1/2ẑ, (6)

B = ad [P/(1 PW)]1/2[b1/2ẑ + (1 − a − b)1/2x̂], (7)

where ad ≈ 780. If we were interested in the maximal energy
density [(E2 + B2)/8π ] all the cases were indifferent because
the energy density is independent of a and b. Nevertheless,
searching for the strongest possible acceleration yields one
specific optimum. First we note that the maximal Lorentz
force is achieved if the electron propagates along the y axis.
In this case the absolute value of the Lorentz force and the χ

value is proportional to

χ ∝ {[a1/2 + (1 − a − b)1/2]2 + b}1/2. (8)

Searching for the maximum of χ2, we first notice that
∂χ2/∂b � 0 for all a and b, meaning that the maximum is
achieved at b = 0. Next we compute ∂χ2/∂a and determine
that the maximum is achieved at a = 1

2 .

As one can see, the maximum corresponds to the
equal destitution of energy between electric and magnetic
dipole waves that have perpendicular axes. That is why we
choose to call this geometry a bidipole wave. The field
strength is |Eχ | = |Bχ | = amax = ad [P/(1 PW)]1/2/

√
2 ≈

550[P/(1 PW)]1/2 (in relativistic units) and the value of κ is
approximately 5.25.

So far we have been considering monochromatic radiation.
Lifting this limitation, i.e., considering the electromagnetic
pulse shape as another matter of optimization, yields an ill-
posed maximization problem: Higher frequency gives smaller
focal volume and thereby higher field strength for the same
power, which means that χ is unbound from above in the
case of an unrestricted spectrum. This is also manifested by
the χmax dependence on the wavelength shown in Eq. (1).
Nevertheless, a fortunate possibility to assess practically im-
portant pulsed solutions is provided by the theory of dipole
pulses developed in Ref. [21]. Since the bidipole wave is a
sum of two dipole waves, we can generalize our result and
define a bidipole pulse as a sum of two dipole pulses (one
electric and one magnetic, both synchronized in time, with
perpendicular axes of symmetry). For example, using this we
can answer one, probably quite practical, question: What ben-
efit can we get from the shortness of a focused Gaussian-like
pulse? Using the theory of dipole pulses, we obtain that the
relative increase of χ is 3 ln 2τ−2

0 /π2, where τ0 is the pulse
duration in cycles, determined according to the full width at
half maximum for the intensity. Practically this means that
the benefit is moderate: Even for a two-cycle pulse it is about
5%, while for common Ti:sapphire pulses (approximately five
cycles) it is less than 1%.

IV. BIDIPOLE WAVE STRUCTURE

We continue by considering the structure of the bidipole
wave and the way to generate it in practice. To within a
constant factor, the electric-field vector in the far-field region
can be given by

E(r → ∞) ∝ r−1(Ee + Eb), (9)

Ee = (ẑ × n) × n, Eb = (x̂ × n), (10)

where n = r/r, whereas Ee and Eb are proportional to the
electric-field vectors of the radiation forming electric and
magnetic dipole waves, respectively. The signs are chosen so
that the constructive summation of the electric and magnetic
components is provided for a charge propagating towards the
negative y direction.

Along each direction the dipole waves are formed by lin-
early polarized, in-phase waves and thus the bidipole wave is
also formed by linearly polarized wave. Let us demonstrate
that the distribution of intensity I of this wave is symmetric
about the y axis. To do so we compute the intensity as a
function of n:

Ee = nxnzx̂ − (
n2

x + n2
y

)
ẑ + nynzŷ, Eb = nyẑ − nzŷ,

I ∝ |Ee + Eb|2 = n2
xn2

z + (
n2

x + n2
y − ny

)2 + n2
z (ny − 1)2.

To demonstrate the axial symmetry of I we introduce a spher-
ical coordinate system (θy, ϕ) so that the unit vector has the
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FIG. 3. Schematic representation of a possible experimental setup. The inset shows the case of circular polarization (deviation angles are
exaggerated).

components

ny = cos θy, nx = sin θy cos ϕ,

nz = sin θy sin ϕ.

Given that ∂ny/∂ϕ = 0, ∂nx/∂φ = −nz, and ∂nz/∂ϕ = nx, we
can compute

∂I

∂ϕ
∝ 2nznx

(
1 − n2

z − n2
y − n2

z

) = 0, (11)

which proves the axial symmetry.
If ϕ = 0 is chosen such that cos(ϕ) = 1 and sin(ϕ) = 0,

then in the expression for I only the middle term remains and

I ∝ (1 − cos θy)2/r2. (12)

As we can see, the radiation arrives predominantly from the
negative y hemisphere.

One possible way to form the bidipole wave is the reflec-
tion of an appropriate laser beam propagating towards the
negative y direction from a parabolic mirror. Let us compute
the polarization and intensity distribution in such a beam. Dur-
ing reflection the electric-field component along the normal N
to the mirror is reversed. Thus, to within a factor the electric
field before reflection is given by Ep = E − 2(E · N)N, where
the normal can be expressed as N = (ŷ − n)/|ŷ − n|. We note
that (E · N) = nz(ny − 1)/|ŷ − n| and compute the x compo-
nent of Ep:

E p
x = nxnz − 2nz(ny − 1)(−nx )

[
n2

x + n2
z + (ny − 1)2

]−1

= nxnz + 2nz(ny − 1)nx
[
n2

x + n2
z + (ny − 1)2

]−1

= 0.

As we can see, the beam to be reflected has linear polarization
exactly along the z axis everywhere. Due to such a fortunate
property, this configuration has been considered by Sheppard
and Larkin [31] as a notably practical option among all mixed
dipole waves that yield the highest electromagnetic-field den-
sity under focusing of a given power. As we demonstrated,
exactly this option also gives the highest value of χ . Using

Eq. (12), we can compute the intensity at the mirror and, using
local N, the intensity distribution in the beam to be reflected,

I p(R) ∝ [(R/2L)2 + 1]−4, (13)

where L is the distance to the mirror and R is the distance
to the z axis in the transverse plane. The resultant scheme of
potential experiments is illustrated in Fig. 3.

The infinite parabolic mirror that forms the bidipole wave
by reflecting an intensity-shaped beam has to be limited in
practice. To facilitate more practical consideration of the
use of bidipole wave in experiments, we consider how the
peak value of χ depends on the parabolic mirror radius
Rmax. The limitation R < Rmax can be expressed via the f-
number equal to L/2Rmax or via the opening angle ζ = π/2 +
arctan (Rmax/4L − L/Rmax) of the cone that encompasses the

opening angle
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FIG. 4. Dependence of χmax on the f-number that characterizes
the radius of the parabolic mirror shown in Fig. 3. The top axis shows
the corresponding values of the opening angle. The shown values
are numerically obtained for P = 1 PW, ε = 1 GeV, and λ = 1 µm,
whereas the values for other cases can be obtained using scaling
χmax ∝ ελ−1P1/2. The axis on the right shows the corresponding
peak values of the electric- or magnetic-field strength that scales
proportionally to λ−1P1/2.
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FIG. 5. Effective cross section σ and signal ratio η computed
numerically for (a) linear and (b) circular polarization.

rays coming to the focus. In Fig. 4 we show numerically
computed peak value χmax as a function of the f-number. We
assume the shape given by Eq. (13) with restriction R < Rmax

and keep the total incoming power P = 1 PW in all cases. We
assume that ε = 1 GeV and λ = 1 µm, whereas the values for
other cases can be obtained using scaling χmax ∝ ελ−1P1/2.
The right axis shows the corresponding peak values of the
electric- or magnetic-field strength that scales proportionally
to λ−1P1/2.

V. NUMERICAL ANALYSIS

Having determined the optimal focusing, we can assess
the concept capabilities, which we characterize by a signal
ratio η = Nsignal/Ntotal and an effective cross section σ . Here
Ntotal is the number of photons detected with α > 0.6amax/γ

and h̄ω > mc2γ /2, whereas among them Nsignal photons are
emitted at χ > χmax/2 and by electrons that had not lost more
than 1% of the initial energy prior to the emission. The cross
section is defined as σ = Nsignal/neτl c, where ne is the density
of streaming electrons and τl is the laser pulse duration. In
Fig. 5 we demonstrate the results of simulations for various
P and ε values that can be relevant to current and upcoming
experimental capabilities. We consider a laser pulse that has a
Gaussian profile with a duration of five cycles (FWHM for
intensity): λ = 0.8 µm. In the case of CP the peak ampli-
tude is aCP

max = amax/
√

2 and we use a modified selection rule
α > 0.7aCP

max/γ .

To exemplify the results, let us estimate the number of
shots needed to reach 3-σ confidence level for detecting a 1%
deviation of the rate at χ > 10. Assuming current progress
on LWFA [32], we consider a 10-GeV electron bunch of
total charge 100 pC (6 × 108 electrons) that is spread over a
spherical volume with 5 µm diameter so that ne ≈ 1019 cm−3.
Using N shots and cumulative Ntotal as a test statistic means
that 3σN � 0.01Nsignal, where the variance of Ntotal is σ 2

N ≈
Ntotal. From Fig. 5 we see that for ε = 10 GeV the value
χmax/2 = 10 is achieved at P ≈ 100 TW with σ ∼ 10−11 cm2

and η ∼ 0.1. Substituting these values, we estimate that we
have approximately 5 × 104 photons per shot, while we need
approximately (3/0.01η)2 ≈ 107 photons and thus N ∼ 200
shots (N ∝ 1/ση2).

Let us compare this to the number of shots required in
the case of using electron energy loss for the test statistic.
Assuming the best case scenario, we consider all the electrons
passing through a five-cycle laser pulse with amax ≈ 200 to
reach χ = 10. At χ ∼ 10 the mean free path is approximately
equal to 15λχ1/3/amax ≈ 0.15λ [7] and electrons need to
propagate about 2λ to reach χ = 10. Thus, only a fraction
η ∼ exp(−2/0.15) ≈ 10−6 of initial electrons can keep high
γ to be affected by the deviation at χ > 10. This means
that we need cumulatively (3/0.01η)2 ≈ 1017 electrons and
having 6 × 108 electrons per shot, this requires approximately
108 shots.

VI. CONCLUSION

We have shown that for laser-electron colliders the en-
ergy and deviation angle of emitted photons can be used
to attain the characteristics of high-χ SFQED rates despite
the background of low-χ emissions. This permits using tight
focusing to boost χ values, for which we determined the limit
given by the so-called bidipole wave. The concept prospects
were characterized by the effective cross section and signal
ratio, indicating that PW–10-GeV–class facilities can study
χ ∼ 10–100, while χ ∼ 103 requires higher energy and/or
power in combination with cascade suppression. The latter
encourages further studies on electron injection [26,33] as
well as on the use of shorter pulses [34] or pulse steepening
[35–39].
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components

ny = cos θy, nx = sin θy cos ϕ,

nz = sin θy sin ϕ.

Given that ∂ny/∂ϕ = 0, ∂nx/∂φ = −nz, and ∂nz/∂ϕ = nx, we
can compute

∂I

∂ϕ
∝ 2nznx

(
1 − n2

z − n2
y − n2

z

) = 0, (11)

which proves the axial symmetry.
If ϕ = 0 is chosen such that cos(ϕ) = 1 and sin(ϕ) = 0,

then in the expression for I only the middle term remains and

I ∝ (1 − cos θy)2/r2. (12)

As we can see, the radiation arrives predominantly from the
negative y hemisphere.

One possible way to form the bidipole wave is the reflec-
tion of an appropriate laser beam propagating towards the
negative y direction from a parabolic mirror. Let us compute
the polarization and intensity distribution in such a beam. Dur-
ing reflection the electric-field component along the normal N
to the mirror is reversed. Thus, to within a factor the electric
field before reflection is given by Ep = E − 2(E · N)N, where
the normal can be expressed as N = (ŷ − n)/|ŷ − n|. We note
that (E · N) = nz(ny − 1)/|ŷ − n| and compute the x compo-
nent of Ep:

E p
x = nxnz − 2nz(ny − 1)(−nx )

[
n2

x + n2
z + (ny − 1)2

]−1

= nxnz + 2nz(ny − 1)nx
[
n2

x + n2
z + (ny − 1)2

]−1

= 0.

As we can see, the beam to be reflected has linear polarization
exactly along the z axis everywhere. Due to such a fortunate
property, this configuration has been considered by Sheppard
and Larkin [31] as a notably practical option among all mixed
dipole waves that yield the highest electromagnetic-field den-
sity under focusing of a given power. As we demonstrated,
exactly this option also gives the highest value of χ . Using

Eq. (12), we can compute the intensity at the mirror and, using
local N, the intensity distribution in the beam to be reflected,

I p(R) ∝ [(R/2L)2 + 1]−4, (13)

where L is the distance to the mirror and R is the distance
to the z axis in the transverse plane. The resultant scheme of
potential experiments is illustrated in Fig. 3.

The infinite parabolic mirror that forms the bidipole wave
by reflecting an intensity-shaped beam has to be limited in
practice. To facilitate more practical consideration of the
use of bidipole wave in experiments, we consider how the
peak value of χ depends on the parabolic mirror radius
Rmax. The limitation R < Rmax can be expressed via the f-
number equal to L/2Rmax or via the opening angle ζ = π/2 +
arctan (Rmax/4L − L/Rmax) of the cone that encompasses the
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FIG. 4. Dependence of χmax on the f-number that characterizes
the radius of the parabolic mirror shown in Fig. 3. The top axis shows
the corresponding values of the opening angle. The shown values
are numerically obtained for P = 1 PW, ε = 1 GeV, and λ = 1 µm,
whereas the values for other cases can be obtained using scaling
χmax ∝ ελ−1P1/2. The axis on the right shows the corresponding
peak values of the electric- or magnetic-field strength that scales
proportionally to λ−1P1/2.
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FIG. 5. Effective cross section σ and signal ratio η computed
numerically for (a) linear and (b) circular polarization.

rays coming to the focus. In Fig. 4 we show numerically
computed peak value χmax as a function of the f-number. We
assume the shape given by Eq. (13) with restriction R < Rmax

and keep the total incoming power P = 1 PW in all cases. We
assume that ε = 1 GeV and λ = 1 µm, whereas the values for
other cases can be obtained using scaling χmax ∝ ελ−1P1/2.
The right axis shows the corresponding peak values of the
electric- or magnetic-field strength that scales proportionally
to λ−1P1/2.

V. NUMERICAL ANALYSIS

Having determined the optimal focusing, we can assess
the concept capabilities, which we characterize by a signal
ratio η = Nsignal/Ntotal and an effective cross section σ . Here
Ntotal is the number of photons detected with α > 0.6amax/γ

and h̄ω > mc2γ /2, whereas among them Nsignal photons are
emitted at χ > χmax/2 and by electrons that had not lost more
than 1% of the initial energy prior to the emission. The cross
section is defined as σ = Nsignal/neτl c, where ne is the density
of streaming electrons and τl is the laser pulse duration. In
Fig. 5 we demonstrate the results of simulations for various
P and ε values that can be relevant to current and upcoming
experimental capabilities. We consider a laser pulse that has a
Gaussian profile with a duration of five cycles (FWHM for
intensity): λ = 0.8 µm. In the case of CP the peak ampli-
tude is aCP

max = amax/
√

2 and we use a modified selection rule
α > 0.7aCP

max/γ .

To exemplify the results, let us estimate the number of
shots needed to reach 3-σ confidence level for detecting a 1%
deviation of the rate at χ > 10. Assuming current progress
on LWFA [32], we consider a 10-GeV electron bunch of
total charge 100 pC (6 × 108 electrons) that is spread over a
spherical volume with 5 µm diameter so that ne ≈ 1019 cm−3.
Using N shots and cumulative Ntotal as a test statistic means
that 3σN � 0.01Nsignal, where the variance of Ntotal is σ 2

N ≈
Ntotal. From Fig. 5 we see that for ε = 10 GeV the value
χmax/2 = 10 is achieved at P ≈ 100 TW with σ ∼ 10−11 cm2

and η ∼ 0.1. Substituting these values, we estimate that we
have approximately 5 × 104 photons per shot, while we need
approximately (3/0.01η)2 ≈ 107 photons and thus N ∼ 200
shots (N ∝ 1/ση2).

Let us compare this to the number of shots required in
the case of using electron energy loss for the test statistic.
Assuming the best case scenario, we consider all the electrons
passing through a five-cycle laser pulse with amax ≈ 200 to
reach χ = 10. At χ ∼ 10 the mean free path is approximately
equal to 15λχ1/3/amax ≈ 0.15λ [7] and electrons need to
propagate about 2λ to reach χ = 10. Thus, only a fraction
η ∼ exp(−2/0.15) ≈ 10−6 of initial electrons can keep high
γ to be affected by the deviation at χ > 10. This means
that we need cumulatively (3/0.01η)2 ≈ 1017 electrons and
having 6 × 108 electrons per shot, this requires approximately
108 shots.

VI. CONCLUSION

We have shown that for laser-electron colliders the en-
ergy and deviation angle of emitted photons can be used
to attain the characteristics of high-χ SFQED rates despite
the background of low-χ emissions. This permits using tight
focusing to boost χ values, for which we determined the limit
given by the so-called bidipole wave. The concept prospects
were characterized by the effective cross section and signal
ratio, indicating that PW–10-GeV–class facilities can study
χ ∼ 10–100, while χ ∼ 103 requires higher energy and/or
power in combination with cascade suppression. The latter
encourages further studies on electron injection [26,33] as
well as on the use of shorter pulses [34] or pulse steepening
[35–39].
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Prospects for statistical tests of strong-field quantum electrodynamics with
high-intensity lasers
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Department of Physics, University of Gothenburg, SE-41296 Gothenburg, Sweden
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Exploiting high-energy electron beams colliding into high-intensity laser pulses brings an op-
portunity to reach high values of the dimensionless rest-frame acceleration χ and thereby invoke
processes described by strong-field quantum electrodynamics (SFQED). Measuring deviations from
the results of perturbative SFQED at high χ can be valuable for testing the existing predictions, as
well as for guiding further theoretical developments. Nevertheless such experimental measurements
are challenging due to the probabilistic nature of the interaction processes, a strong background
produced by low-χ interactions and limited capabilities to control and measure the alignment and
synchronization in such collision experiments. Here we elaborate a methodology of using approx-
imate Bayesian computations (ABC) for retrieving statistically justified inferences based on the
results of many repeated experiments even in case of partially unknown collision parameters that
vary from experiment to experiment. As a proof of principles, we consider the problem of inferring
the effective mass change due to coupling with strong-field environment.

I. INTRODUCTION

Although fundamental principles of quantum electro-
dynamics (QED) are known for their precise experimen-
tal validations, the implications they purport for suffi-
ciently strong electromagnetic fields remain theoretically
intricate and lack experimental data. Colliding acceler-
ated electrons with high-intensity laser pulses can be seen
as a newly emerging pathway to such experimental data
[1–4]. The local interaction is characterized by the di-
mensionless ratio of the electron acceleration in its rest
frame to the acceleration that would be caused by the
Schwinger field Ecrit:

χ =
γe

Ecrit

√(
�E + (�v/c)× �B

)2

−
(
�E · �v/c

)2

(1)

where �v, γe are the velocity and Lorentz factor of the

electron, whereas �E, �B are the electromagnetic field
vectors. Here, Ecrit = m2

ec
3/qe� ≈ 1018 Vm−1 where �

is the reduced Planck constant, c is the speed of light
and me, qe are the mass and charge of the electron
respectively. At χ � 1 the electrons are subject to
classical emission and corresponding radiation reaction.
Emission of photons and corresponding recoils at χ ∼ 1
are described by non-linear Compton scattering and
have been experimentally observed in several experi-
ments [5–8]. Measuring quantitative properties of the
photon emission (e.g. energy, angular or polarization
distribution) at χ ∼ 1 can be perceived as a logical
next step, while results for χ � 1 can potentially
facilitate theoretical developments or even lead to fun-
damental discoveries (see Ref. [9] and references therein).

∗ christoffer.olofsson@physics.gu.se
† arkady.gonoskov@physics.gu.se

A severe obstacle for the outlined efforts is the
interaction complexity. The value of χ for each electron
in the beam varies in time and overall depends on the
electron position relative to the laser pulse location,
which can also vary from experiment to experiment
due to spatio-temporal mismatches. For contemporary
laser pulse durations, many electrons can lose a signif-
icant part of their initial energy prior to reaching the
strong-field region, where they have a chance to emit at
high χ. Additionally, due to the Breit-Wheeler process
the emitted photons can decay into electron-positron
pairs, which can lead to the onset of an electromagnetic
cascade. In combination, this means that the measur-
able post-collision distributions of photons, electrons
and positrons are predominantly determined by low-χ
emissions, giving no direct information about emissions
at high-χ, even if they had been invoked.

One known way of dealing with such difficulties is
Bayesian binary hypothesis testing, which is based
on comparing experimental results with the outcomes
computed on the basis of each of two competing theories.
However, even in the absence of a distinct hypothesis
to be tested, one can use a similar technique to de-
termine parameters that quantify deviations from the
approximate theory (sometimes referred to as parameter
calibration procedure [10–12]), which in our case can be
the theory on non-linear Compton scattering valid for
moderate χ values. One practicality of this approach is
the possibility to gain statistically rigorous knowledge
from many experiments even in case of low repeatability.
For example, the inference about high χ events is feasible
regardless if the alignment of the laser-beam setup varies
uncontrollably between experiments which we cannot
measure.

In this paper we consider the possibility of using the
technique of approximate Bayesian computation (ABC)
in the forthcoming experiments [10, 13, 14]. As a proof-
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of-principle problem we elaborate the use of this method
for measuring the constant that quantifies the effective
mass shift [9, 15–17]. We assess the use of the ABC
technique in the context of possible experimental con-
ditions and analyze main requirements, difficulties and
opportunities for improvements. The paper is arranged
as follows. In Sec. II we motivate the use of likelihood-
free inference and state the ABC algorithm. In Sec. III
we demonstrate a proof-of-principle approach to infer the
effective mass change, assessing the difficulties and limi-
tations. Sec. IV provides the numerical aspects in sim-
ulating the experiment and gives the prospects of the
outlined methodology. We make conclusions in Sec. V.

II. METHODOLOGY

Before turning to the subject-specific analysis, let us
consider the methodology using a general problem for-
mulation. Suppose we study a probabilistic process by
carrying out experiments. Each experiment yields mea-
surement data xobs. We have a model M(θ, z) that gives
predictions x = M(θ, z) for this data for any given value
of a model parameter θ and a latent parameter z. Here
θ is a fundamental parameter that quantifies the process
itself and thus its unique value is of interest, whereas z
denotes an unmeasured parameter that can vary from
experiment to experiment and determines the outcome
x in accordance with model M . We assume that there
exist a value of θ for which the model describes (to some
extent) observations given an appropriate value of z for
each experiment. Our task is to infer the probability
distribution for the value of θ from a series of repeated
experimental measurements. Put differently, the objec-
tive is to infer the most probable range for θ given the
observed data xobs. Bayesian statistics provides a frame-
work for the outlined problem. The probability distribu-
tion to be determined is referred to as a posterior dis-
tribution p(θ|xobs), which explicitly indicates the data
xobs used for making the inference. Let us start from the
case of no latent parameter. The posterior can then be
calculated using Bayes’ theorem

p(θ|xobs) =
p(xobs|θ) · p(θ)

p(xobs)
(2)

where p(θ) quantifies the prior knowledge about possible
values of θ, the likelihood p(xobs|θ) conveys how likely a
measurement yielding xobs is for a given θ and p(xobs) =∫
p(xobs|θ)p(θ)dθ appears as a normalizing factor. To

incorporate the dependence on the latent parameter we
integrate over all its possible values, denoting p(xobs|θ, z)
as the corresponding joint likelihood

p(θ|xobs) =

∫
p(xobs|θ, z)p(z)dz · p(θ)∫∫
p(xobs|θ, z)p(z)p(θ)dzdθ

, (3)

where p(z) specifies prior knowledge related to values of
the latent parameter z. Now we can sequentially account

for all observations, each time using the obtained pos-
terior as the prior for processing the next observation.
Note that we do not update the prior for z because
its value is assumed to be different in all the experiments.

A closed form of the posterior rarely exist and nu-
merical approaches are often used. A common strategy
is to approximate the posterior by collecting a finite
number of samples from it. Methods such as importance
sampling, Markov chain Monte Carlo (MCMC) and
sequential Monte Carlo (SMC) [18–20] are prevalent
choices. However, all of the above will require direct
evaluation of the likelihood which can be computation-
ally prohibitive for highly dimensional datasets [21]. If
the model M is implicitly defined through a computer
simulation, its concomitant likelihood can be intractable
[13]. A remedy is offered by the rapidly developing field
of simulation-based inference [22] in which the direct
calculation of the likelihood is averted. To motivate its
use we adopt and develop the discussion made in Ref.
[21].

Consider the standard rejection sampling algorithm
with the goal of sampling a target density T (θ) provided
some auxiliary sampling density A(θ) with the require-
ment A(θ) > 0 if T (θ) > 0. Then, the algorithm reads

Algorithm 1 Standard rejection sampling algorithm

1: Sample a proposal θ∗ ∼ A(θ).

2: Admit the proposal with a probability of T (θ∗)
CA(θ∗) where

C ≥ argmax[T(θ)
A(θ)

].

3: If θ∗ was not admitted, discard the proposal and repeat
steps (1)-(2) as many times necessary.

After N trials a collection of samples from T (θ) is ob-
tained. The connection to Bayesian statistics is made by
selecting T (θ) = p(θ|xobs) and A(θ) = p(θ). Then, Eq.
(2) implies that the acceptance rate in Alg. 1 becomes

proportional to the likelihood p(θ∗|xobs)
p(θ∗) ∝ p(xobs|θ∗)

which is incalculable by our premise. Still, it is possible
to determine whether to accept proposals or not without
explicit computation of the likelihood. To show this we
first note that the model M(θ, z) is capable of generating
samples of observations x ∼ p(xobs|θ, z) provided values
of θ and z. Now, the probability to produce x = xobs

coincides with p(xobs|θ, z) which calls for modifications
to Alg. 1 so that it reads

Algorithm 2 : Likelihood-free rejection sampling

1: Sample proposals θ∗ ∼ p(θ), z∗ ∼ p(z).
2: Generate data x∗ = M(θ∗, z∗) from the model.
3: If x∗ = xobs the proposal is admitted, if not it is discarded.
4: Repeat (1)-(3) as many time necessary.

While avoiding direct computation of the Likelihood,
step 3 of Alg. 2 introduces a notable impediment. To
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illustrate it, consider the binning of data from an exper-
iment into dim(xobs) = B bins so that

xobs = [c1, c2, c3, ..., cB ] , (4)

x = [c′1, c
′
2, c

′
3, ..., c

′
B ] (5)

where cb, c
′
b ∈ Z denote integer counts belonging to the

b:th bin. Then, denote pb as the probability to coincide
cb = c′b at bin b, assuming that this is independent be-
tween bins. Then, the probability to accept a proposal
θ∗ becomes

p(x = xobs) =
b=B∏
b=1

pb (6)

which approaches zero in the limit of highly dimensional
datasets B → ∞. The acceptance rate in Eq. (6) is
lower or even infeasible for continuous data in which
cb, c

′
b ∈ R are real numbers. Hence, the appeal for a pre-

cise match has to be relieved in making the sampling effi-
ciency practical. Realizing that this rate becomes signif-
icantly higher by admitting samples if x ≈ xobs prompts
us to define a rule when data are sufficiently close

||x− xobs|| ≤ ε (7)

where || · || is a suitable distance metric and ε is a thresh-
old. Accepted samples in accordance with Eq. (7) are in-
evitably drawn from an approximate posterior p̂(θ|xobs)
and its accuracy is solely dictated by ε which also affect
the sampling efficiency. However, consider the aforemen-
tioned example with an Euclidean distance metric so that
Eq. (7) reads

(
b=B∑
b=1

(cb − c′b)
2

)1/2

≤ ε (8)

and examine the favorable case in which cb−c′b ∼ ∆ � 1
varies negligibly between bins. We can then naively state
Eq. (8) as

dim(xobs) ≤ (ε/∆)
2
. (9)

Evidently, Eq. (9) states that the dimension of xobs is
bounded from above by the threshold ε and the error
∆. However, for the quality of inference ε → 0 is desired,
which puts a stringent limit on the dimensionality of xobs.
To mitigate this, one can introduce so-called summary
statistics

S : RB �→ Rβ (10)

being a function that transforms data of potentially
noisy nature into a vector of indicative characteristics

ought to unambiguously characterize the data with
respect to all possible θ. Clearly, the dimensionality β
of the space of such vectors can be much less than the
number of cells B. Moreover, the function of summary
statistics can even be defined in an agnostic way with
respect to the binning choice. As an example, one could
construct a vector containing the sample mean µ and
variance σ2 of xobs: S(xobs) =

(
µ, σ2

)
.

By converting xobs → S(xobs), the third step of Alg. 2
can be reformulated to accept samples if

||S(x)− S(xobs)|| ≤ ε. (11)

Although we now have methodologically accurate and
in some cases practically feasible routine for sampling
the posterior there are two more standard improvements.
First, Eq. (11) implies an acceptance probability of ei-
ther zero or one and thus doesn’t account for how close
the match is. To enhance the contribution of the cases
yielding more accurate agreement relative to the ones giv-
ing a marginal agreement, one can use a so-called kernel
function

Kε : Rβ �→ R = Kε

(
||S(x)− S(xobs)||

ε

)
, (12)

which defines a probability transition from one in case of
a perfect match (Kε(0) = 1) to zero in cases of deviation
by the summary-statistics distance of order ε and greater.

The second improvement concerns the fact that Alg. 1
implies either accepting or rejecting cases, which means
that many accepted cases are needed to mitigate the
noise related to this additional probabilistic element in
the algorithm. Effectively this means that we marginally
benefit from cases of low acceptance probability. To
avoid this, one can instead interpret the acceptance
probability as the weight of samples, thereby accounting
for all the proposals that yield non-zero acceptance
probability.

We can now return back to the inclusion of the la-
tent variable z. In this case, we can generate several
proposals z∗ ∼ p(z) based on our prior knowledge of
it and again accept the cases of good enough matches
based on the outlined procedure. Effectively, we try to
guess z using as many attempts as needed. Finally, we
note that we can sequentially update our posterior using
each xobs in a sequence of measurements. To do so, we
can compute the posterior for each new measurement us-
ing the previous posterior as the prior. The algorithm
for processing the i-th observation (i = 1 denote the
first measurement in the sequence) xi

obs for computing

the posterior p
(
θ | xi

obs, x
i−1
obs , ..., x

1
obs

)
from the previous

p
(
θ | xi−1

obs , ..., x
1
obs

)
then takes the form
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of-principle problem we elaborate the use of this method
for measuring the constant that quantifies the effective
mass shift [9, 15–17]. We assess the use of the ABC
technique in the context of possible experimental con-
ditions and analyze main requirements, difficulties and
opportunities for improvements. The paper is arranged
as follows. In Sec. II we motivate the use of likelihood-
free inference and state the ABC algorithm. In Sec. III
we demonstrate a proof-of-principle approach to infer the
effective mass change, assessing the difficulties and limi-
tations. Sec. IV provides the numerical aspects in sim-
ulating the experiment and gives the prospects of the
outlined methodology. We make conclusions in Sec. V.

II. METHODOLOGY

Before turning to the subject-specific analysis, let us
consider the methodology using a general problem for-
mulation. Suppose we study a probabilistic process by
carrying out experiments. Each experiment yields mea-
surement data xobs. We have a model M(θ, z) that gives
predictions x = M(θ, z) for this data for any given value
of a model parameter θ and a latent parameter z. Here
θ is a fundamental parameter that quantifies the process
itself and thus its unique value is of interest, whereas z
denotes an unmeasured parameter that can vary from
experiment to experiment and determines the outcome
x in accordance with model M . We assume that there
exist a value of θ for which the model describes (to some
extent) observations given an appropriate value of z for
each experiment. Our task is to infer the probability
distribution for the value of θ from a series of repeated
experimental measurements. Put differently, the objec-
tive is to infer the most probable range for θ given the
observed data xobs. Bayesian statistics provides a frame-
work for the outlined problem. The probability distribu-
tion to be determined is referred to as a posterior dis-
tribution p(θ|xobs), which explicitly indicates the data
xobs used for making the inference. Let us start from the
case of no latent parameter. The posterior can then be
calculated using Bayes’ theorem

p(θ|xobs) =
p(xobs|θ) · p(θ)

p(xobs)
(2)

where p(θ) quantifies the prior knowledge about possible
values of θ, the likelihood p(xobs|θ) conveys how likely a
measurement yielding xobs is for a given θ and p(xobs) =∫
p(xobs|θ)p(θ)dθ appears as a normalizing factor. To

incorporate the dependence on the latent parameter we
integrate over all its possible values, denoting p(xobs|θ, z)
as the corresponding joint likelihood

p(θ|xobs) =

∫
p(xobs|θ, z)p(z)dz · p(θ)∫∫
p(xobs|θ, z)p(z)p(θ)dzdθ

, (3)

where p(z) specifies prior knowledge related to values of
the latent parameter z. Now we can sequentially account

for all observations, each time using the obtained pos-
terior as the prior for processing the next observation.
Note that we do not update the prior for z because
its value is assumed to be different in all the experiments.

A closed form of the posterior rarely exist and nu-
merical approaches are often used. A common strategy
is to approximate the posterior by collecting a finite
number of samples from it. Methods such as importance
sampling, Markov chain Monte Carlo (MCMC) and
sequential Monte Carlo (SMC) [18–20] are prevalent
choices. However, all of the above will require direct
evaluation of the likelihood which can be computation-
ally prohibitive for highly dimensional datasets [21]. If
the model M is implicitly defined through a computer
simulation, its concomitant likelihood can be intractable
[13]. A remedy is offered by the rapidly developing field
of simulation-based inference [22] in which the direct
calculation of the likelihood is averted. To motivate its
use we adopt and develop the discussion made in Ref.
[21].

Consider the standard rejection sampling algorithm
with the goal of sampling a target density T (θ) provided
some auxiliary sampling density A(θ) with the require-
ment A(θ) > 0 if T (θ) > 0. Then, the algorithm reads

Algorithm 1 Standard rejection sampling algorithm

1: Sample a proposal θ∗ ∼ A(θ).

2: Admit the proposal with a probability of T (θ∗)
CA(θ∗) where

C ≥ argmax[T(θ)
A(θ)

].

3: If θ∗ was not admitted, discard the proposal and repeat
steps (1)-(2) as many times necessary.

After N trials a collection of samples from T (θ) is ob-
tained. The connection to Bayesian statistics is made by
selecting T (θ) = p(θ|xobs) and A(θ) = p(θ). Then, Eq.
(2) implies that the acceptance rate in Alg. 1 becomes

proportional to the likelihood p(θ∗|xobs)
p(θ∗) ∝ p(xobs|θ∗)

which is incalculable by our premise. Still, it is possible
to determine whether to accept proposals or not without
explicit computation of the likelihood. To show this we
first note that the model M(θ, z) is capable of generating
samples of observations x ∼ p(xobs|θ, z) provided values
of θ and z. Now, the probability to produce x = xobs

coincides with p(xobs|θ, z) which calls for modifications
to Alg. 1 so that it reads

Algorithm 2 : Likelihood-free rejection sampling

1: Sample proposals θ∗ ∼ p(θ), z∗ ∼ p(z).
2: Generate data x∗ = M(θ∗, z∗) from the model.
3: If x∗ = xobs the proposal is admitted, if not it is discarded.
4: Repeat (1)-(3) as many time necessary.

While avoiding direct computation of the Likelihood,
step 3 of Alg. 2 introduces a notable impediment. To
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illustrate it, consider the binning of data from an exper-
iment into dim(xobs) = B bins so that

xobs = [c1, c2, c3, ..., cB ] , (4)

x = [c′1, c
′
2, c

′
3, ..., c

′
B ] (5)

where cb, c
′
b ∈ Z denote integer counts belonging to the

b:th bin. Then, denote pb as the probability to coincide
cb = c′b at bin b, assuming that this is independent be-
tween bins. Then, the probability to accept a proposal
θ∗ becomes

p(x = xobs) =
b=B∏
b=1

pb (6)

which approaches zero in the limit of highly dimensional
datasets B → ∞. The acceptance rate in Eq. (6) is
lower or even infeasible for continuous data in which
cb, c

′
b ∈ R are real numbers. Hence, the appeal for a pre-

cise match has to be relieved in making the sampling effi-
ciency practical. Realizing that this rate becomes signif-
icantly higher by admitting samples if x ≈ xobs prompts
us to define a rule when data are sufficiently close

||x− xobs|| ≤ ε (7)

where || · || is a suitable distance metric and ε is a thresh-
old. Accepted samples in accordance with Eq. (7) are in-
evitably drawn from an approximate posterior p̂(θ|xobs)
and its accuracy is solely dictated by ε which also affect
the sampling efficiency. However, consider the aforemen-
tioned example with an Euclidean distance metric so that
Eq. (7) reads

(
b=B∑
b=1

(cb − c′b)
2

)1/2

≤ ε (8)

and examine the favorable case in which cb−c′b ∼ ∆ � 1
varies negligibly between bins. We can then naively state
Eq. (8) as

dim(xobs) ≤ (ε/∆)
2
. (9)

Evidently, Eq. (9) states that the dimension of xobs is
bounded from above by the threshold ε and the error
∆. However, for the quality of inference ε → 0 is desired,
which puts a stringent limit on the dimensionality of xobs.
To mitigate this, one can introduce so-called summary
statistics

S : RB �→ Rβ (10)

being a function that transforms data of potentially
noisy nature into a vector of indicative characteristics

ought to unambiguously characterize the data with
respect to all possible θ. Clearly, the dimensionality β
of the space of such vectors can be much less than the
number of cells B. Moreover, the function of summary
statistics can even be defined in an agnostic way with
respect to the binning choice. As an example, one could
construct a vector containing the sample mean µ and
variance σ2 of xobs: S(xobs) =

(
µ, σ2

)
.

By converting xobs → S(xobs), the third step of Alg. 2
can be reformulated to accept samples if

||S(x)− S(xobs)|| ≤ ε. (11)

Although we now have methodologically accurate and
in some cases practically feasible routine for sampling
the posterior there are two more standard improvements.
First, Eq. (11) implies an acceptance probability of ei-
ther zero or one and thus doesn’t account for how close
the match is. To enhance the contribution of the cases
yielding more accurate agreement relative to the ones giv-
ing a marginal agreement, one can use a so-called kernel
function

Kε : Rβ �→ R = Kε

(
||S(x)− S(xobs)||

ε

)
, (12)

which defines a probability transition from one in case of
a perfect match (Kε(0) = 1) to zero in cases of deviation
by the summary-statistics distance of order ε and greater.

The second improvement concerns the fact that Alg. 1
implies either accepting or rejecting cases, which means
that many accepted cases are needed to mitigate the
noise related to this additional probabilistic element in
the algorithm. Effectively this means that we marginally
benefit from cases of low acceptance probability. To
avoid this, one can instead interpret the acceptance
probability as the weight of samples, thereby accounting
for all the proposals that yield non-zero acceptance
probability.

We can now return back to the inclusion of the la-
tent variable z. In this case, we can generate several
proposals z∗ ∼ p(z) based on our prior knowledge of
it and again accept the cases of good enough matches
based on the outlined procedure. Effectively, we try to
guess z using as many attempts as needed. Finally, we
note that we can sequentially update our posterior using
each xobs in a sequence of measurements. To do so, we
can compute the posterior for each new measurement us-
ing the previous posterior as the prior. The algorithm
for processing the i-th observation (i = 1 denote the
first measurement in the sequence) xi

obs for computing

the posterior p
(
θ | xi

obs, x
i−1
obs , ..., x

1
obs

)
from the previous

p
(
θ | xi−1

obs , ..., x
1
obs

)
then takes the form
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Algorithm 3 : ABC sampling with latent variable

1: Sample proposals θ∗ ∼ p
(
θ | xi−1

obs , ..., x
1
obs

)
, z∗ ∼ p(z).

2: Perform a simulation and retrieve x∗ = M(θ∗, z∗) and
compute the weight:

w∗ =
Kε

(
‖S(xi

obs)− S(x∗)‖/ε
)

p
(
θ∗ | xi−1

obs , ..., x
1
obs

)
p(z∗)

(13)

3: If w∗ > 0, accept the proposal with the computed weight.
4: Repeat steps (1) – (3) as many times as needed to ap-

proximate the posterior p
(
θ | xi

obs, ..., x
1
obs

)
.

In practice, one central difficulty of the ABC routine is
choosing valid summary statistics, i.e. summary statis-
tics that differentiate all the cases in terms of θ and z.
This means that summary statistics doesn’t yield close
states for any two different pairs of θ and z. Clearly,
if this is not the case the procedure admits the accep-
tance of cases of wrong θ∗ when z∗ provides a compensa-
tion to make S(x∗(θ∗, z∗)) close to S(xobs(θ

true, ztrue)).
This can totally preclude the convergence of the ABC
sampling procedure. Finding robust summary statistics
is known to be a problem-dependent task that requires
analysis of possible cases. In the next section we consider
a proof-of-principle problem that includes a dependency
on the latent variable. In doing so, we determine valid
summary statistics and elaborate possible experimental
strategies relevant to the tests of SFQED based on the
collision of electron beams with focused laser pulses.

III. PROBLEM STATEMENT

As a proof-of-principle case, we consider the problem
of detecting and measuring the extent of effective mass
shift for the electron due to its coupling with the
strong-field environment [9, 15–17]. The task is to infer
the value of the parameter that quantifies this effect
from the measured angular-energy spectra of photons
emitted during the collision of high-energy electron
beams with focused laser pulses. We make several
assumptions to simplify the problem while keeping some
indicative difficulties that show the capabilities of the
methodology in question. In particular, we assume that
the spatio-temporal mismatches between the electron
beam and focused laser field are not measurable and
vary from collision to collision. This leads to fluctuations
of the electromagnetic field amplitude observed by the
electrons. This in turn makes it impossible to relate the
change of electron dynamics in a particular experiment
(collision) to any certain amplitude, which has to be
determined in the case of a straightforward measure-
ment of the effective mass shift. To show how the
ABC methodology resolves this difficulty we model the
aforementioned variations by assuming that the electron
beam propagates through a 1D laser pulse with an un-
known amplitude that varies from collision to collision.
In terms of introduced terminology, we introduce a latent

parameter being a factor < 1 that reduces the laser field
amplitude everywhere in each experiment, but varies
uncontrollably from experiment to experiment. In what
follows, we detail this model of hypothetical experiments.

The presence of a strong background electromagnetic
field is conjectured to drive the expansion parameter of
QED to αfχ

2/3 where αf ≈ 1/137 is the fine-structure

constant [9, 15–17]. For values αfχ
2/3 � 1 the theory is

rendered nonperturbative. In this domain, photons, elec-
trons and positrons can be thought to acquire an effective
mass as a result of radiative corrections. Specifically, one
can show that the effective mass of the electron m̃e can
be estimated to be [15]

m̃2
e = m2

e + δm2
e = m2

e

(
1 + 0.84αfχ

2/3
)

(14)

which implies an effective value of χ (mass enters Eq. (1)
through Ecrit)

χ̃2/3 =
χ2/3

1 + 0.84αfχ2/3
. (15)

To benchmark this effect and measure its extent one can
consider the value of 0.84 as a model parameter θ to be
determined based on experiments:

χ̃2/3 =
χ2/3

1 + θαfχ2/3
. (16)

Replacement of effective quantities m̃e, χ̃ affects the rate
of photon emission and pair formation. As for the former,
we can write the rate as [23, 24]:

∂I

∂ω
(δ, θ) =

√
3m̃eq

2
ecχ̃(1− δ)

2πγe�

(
F1(ζ) +

3

2
δχ̃ζF2(ζ)

)

(17)
where ζ = 2

3χ̃
δ

1−δ , δ = �ω
m̃ec2γe

is the photon energy with

frequency ω normalized to the emitting electron energy
and F1(x), F2(x) denote the first and second Synchrotron
functions defined by

F1(y) = y

∫ ∞

y

K5/3(y)dy, F2(y) = yK2/3(y) (18)

with Kν(y) being the modified Bessel function of the
second kind.

Hence, one measurable property xobs might be the
post-collision spectrum of photons. Indeed, the effect
attributed to θ may be slight and the probabilistic na-
ture of emissions become increasingly difficult to measure
by the onset of electromagnetic cascades and low-energy
emissions when χ � 1. For our proof-of-principle, we
disregard pair formation and center in on the process of
nonlinear Compton scattering to elude this difficulty. Ad-
ditionally, we neglect the energy loss of electrons in their
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propagation direction under the assumption a0/γe � 1

where a0 = qeE0

meωLc is the peak dimensionless amplitude of
the laser having frequency ωL and peak electric field E0.
To define the simulator, we select an elementary geome-
try resembling the interaction between a focused laser
pulse and a counter-propagating electron bunch, both
susceptible to misalignment. We accomplish this by sim-
ulating a single electron of momentum pz = −mecγ to
impinge a plane wave laser pulse with electric field

Ex(z, t) = (1− d)E0 sin (kξ) cos
2

(
πξ

L

)
Π

(
ξ

L

)
(19)

where ξ = z − ct is the moving coordinate, k and
L are the wavenumber and pulse length of the laser
respectively and Π(x) is defined as a function equating
to unity when |x| < 1/2 and zero otherwise. Here we
introduce the latent parameter 0 ≤ d ≤ 1 to express the
misalignment in the experimental scheme, reducing the
laser amplitude experienced by the electrons.

However, the unruliness of d can obstruct ABC sam-
pling. This becomes evident by comparing the spectra
produced by Eq. (17) with θ = 0, d �= 0 and θ �= 0, d = 0.
Writing the order of estimate for Eq. (16) as

χ̃(θ, d) ∼ (1− d)χ0

(
1 + θαf ((1− d)χ0)

2/3
)−3/2

(20)

where χ0 = γe (E0/Ecrit) is the peak value of χ. The
two cases can yield comparable values χ̃(θ �= 0, d = 0) ∼
χ̃(θ = 0, d �= 0) if

d ∼ 1−
(
1 + θαfχ

2/3
0

)−3/2

. (21)

As a result, the value of χ̃ can be similar for several
combinations of θ and d, generating similar energy
spectra. Hence, any summary statistic obtained from
such data can be near-identical, obscuring the effect of
d to that of θ or vice versa. Conclusively, the energy
spectrum is not indicative enough to infer the value of θ.
This can be remedied by including information into xobs

such that the effects of θ and d become disentangled. If
a complementary property of the emission is found such
that the induced deviation of either parameter becomes
uncorrelated, it is possible to disentangle their effects on
xobs.

We now seek such a property to be included into xobs

and the choice of summary statistics to eliminate the
latent variable d. To commence the discussion we re-
mark that electrons conserve their transverse momentum
within the laser field [25]

	p⊥ = qe

∫
	E⊥dt (22)

in which 	p⊥ and 	E⊥ denote the transverse components
of the electron momentum and electric field respectively.
Therefore, at each instance of time, the electron propa-
gates towards the direction that deviates from the initial
direction by an angle α:

α = arctan

(
|	p⊥|
|	pz|

)
, (23)

where we assume that the motion remains highly
relativistic. Evidently, emitted photons retain this angle
and if the pulse is circularly polarized, this becomes
correlated to the value of χ [26]. Note that in the case
of highly relativistic motion with α � 1, the change of
effective mass doesn’t affect the deviation angle because
it cannot change 	pz due to momentum conservation
(the gamma factor changes instead), while 	p⊥ is totally
defined by the vector potential according to Eq. (22).

Accounting for the angular distribution of the emis-
sion leads us to redefine xobs as a fractional energy
distribution per unit frequency ∆ω and unit angle ∆α:
xobs(δ, δ +∆δ, α, α+∆α) as a function of δ and α.
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FIG. 1. Representation of the numerical implementation of
the experiment (deviation angle is exaggerated).

We are now in a position to determine the summary
statistics S(xobs) necessary to eliminate d. Presumably,
there exist several configurations that provide this as
there is no prescribed way of formulating S. To iden-
tify some robust and simple enough option we evaluate
moments of the two-dimensional data xobs to order i and
j:

Mij =

∫ ∫
xobs(δ, δ +∆δ, α, α+∆α)δiαjdδdα. (24)

Now, let us try to select a set of moments such that any
combination (θ, d) maps to a presumably unique value of
this set. Fig. 2 illustrates contours of four distinct mo-
ments Mij in the space of θ and d. The set of moments
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Algorithm 3 : ABC sampling with latent variable

1: Sample proposals θ∗ ∼ p
(
θ | xi−1

obs , ..., x
1
obs

)
, z∗ ∼ p(z).

2: Perform a simulation and retrieve x∗ = M(θ∗, z∗) and
compute the weight:

w∗ =
Kε

(
‖S(xi

obs)− S(x∗)‖/ε
)

p
(
θ∗ | xi−1

obs , ..., x
1
obs

)
p(z∗)

(13)

3: If w∗ > 0, accept the proposal with the computed weight.
4: Repeat steps (1) – (3) as many times as needed to ap-

proximate the posterior p
(
θ | xi

obs, ..., x
1
obs

)
.

In practice, one central difficulty of the ABC routine is
choosing valid summary statistics, i.e. summary statis-
tics that differentiate all the cases in terms of θ and z.
This means that summary statistics doesn’t yield close
states for any two different pairs of θ and z. Clearly,
if this is not the case the procedure admits the accep-
tance of cases of wrong θ∗ when z∗ provides a compensa-
tion to make S(x∗(θ∗, z∗)) close to S(xobs(θ

true, ztrue)).
This can totally preclude the convergence of the ABC
sampling procedure. Finding robust summary statistics
is known to be a problem-dependent task that requires
analysis of possible cases. In the next section we consider
a proof-of-principle problem that includes a dependency
on the latent variable. In doing so, we determine valid
summary statistics and elaborate possible experimental
strategies relevant to the tests of SFQED based on the
collision of electron beams with focused laser pulses.

III. PROBLEM STATEMENT

As a proof-of-principle case, we consider the problem
of detecting and measuring the extent of effective mass
shift for the electron due to its coupling with the
strong-field environment [9, 15–17]. The task is to infer
the value of the parameter that quantifies this effect
from the measured angular-energy spectra of photons
emitted during the collision of high-energy electron
beams with focused laser pulses. We make several
assumptions to simplify the problem while keeping some
indicative difficulties that show the capabilities of the
methodology in question. In particular, we assume that
the spatio-temporal mismatches between the electron
beam and focused laser field are not measurable and
vary from collision to collision. This leads to fluctuations
of the electromagnetic field amplitude observed by the
electrons. This in turn makes it impossible to relate the
change of electron dynamics in a particular experiment
(collision) to any certain amplitude, which has to be
determined in the case of a straightforward measure-
ment of the effective mass shift. To show how the
ABC methodology resolves this difficulty we model the
aforementioned variations by assuming that the electron
beam propagates through a 1D laser pulse with an un-
known amplitude that varies from collision to collision.
In terms of introduced terminology, we introduce a latent

parameter being a factor < 1 that reduces the laser field
amplitude everywhere in each experiment, but varies
uncontrollably from experiment to experiment. In what
follows, we detail this model of hypothetical experiments.

The presence of a strong background electromagnetic
field is conjectured to drive the expansion parameter of
QED to αfχ

2/3 where αf ≈ 1/137 is the fine-structure

constant [9, 15–17]. For values αfχ
2/3 � 1 the theory is

rendered nonperturbative. In this domain, photons, elec-
trons and positrons can be thought to acquire an effective
mass as a result of radiative corrections. Specifically, one
can show that the effective mass of the electron m̃e can
be estimated to be [15]

m̃2
e = m2

e + δm2
e = m2

e

(
1 + 0.84αfχ

2/3
)

(14)

which implies an effective value of χ (mass enters Eq. (1)
through Ecrit)

χ̃2/3 =
χ2/3

1 + 0.84αfχ2/3
. (15)

To benchmark this effect and measure its extent one can
consider the value of 0.84 as a model parameter θ to be
determined based on experiments:

χ̃2/3 =
χ2/3

1 + θαfχ2/3
. (16)

Replacement of effective quantities m̃e, χ̃ affects the rate
of photon emission and pair formation. As for the former,
we can write the rate as [23, 24]:

∂I

∂ω
(δ, θ) =

√
3m̃eq

2
ecχ̃(1− δ)

2πγe�

(
F1(ζ) +

3

2
δχ̃ζF2(ζ)

)

(17)
where ζ = 2

3χ̃
δ

1−δ , δ = �ω
m̃ec2γe

is the photon energy with

frequency ω normalized to the emitting electron energy
and F1(x), F2(x) denote the first and second Synchrotron
functions defined by

F1(y) = y

∫ ∞

y

K5/3(y)dy, F2(y) = yK2/3(y) (18)

with Kν(y) being the modified Bessel function of the
second kind.

Hence, one measurable property xobs might be the
post-collision spectrum of photons. Indeed, the effect
attributed to θ may be slight and the probabilistic na-
ture of emissions become increasingly difficult to measure
by the onset of electromagnetic cascades and low-energy
emissions when χ � 1. For our proof-of-principle, we
disregard pair formation and center in on the process of
nonlinear Compton scattering to elude this difficulty. Ad-
ditionally, we neglect the energy loss of electrons in their

5

propagation direction under the assumption a0/γe � 1

where a0 = qeE0

meωLc is the peak dimensionless amplitude of
the laser having frequency ωL and peak electric field E0.
To define the simulator, we select an elementary geome-
try resembling the interaction between a focused laser
pulse and a counter-propagating electron bunch, both
susceptible to misalignment. We accomplish this by sim-
ulating a single electron of momentum pz = −mecγ to
impinge a plane wave laser pulse with electric field

Ex(z, t) = (1− d)E0 sin (kξ) cos
2

(
πξ

L

)
Π

(
ξ

L

)
(19)

where ξ = z − ct is the moving coordinate, k and
L are the wavenumber and pulse length of the laser
respectively and Π(x) is defined as a function equating
to unity when |x| < 1/2 and zero otherwise. Here we
introduce the latent parameter 0 ≤ d ≤ 1 to express the
misalignment in the experimental scheme, reducing the
laser amplitude experienced by the electrons.

However, the unruliness of d can obstruct ABC sam-
pling. This becomes evident by comparing the spectra
produced by Eq. (17) with θ = 0, d �= 0 and θ �= 0, d = 0.
Writing the order of estimate for Eq. (16) as

χ̃(θ, d) ∼ (1− d)χ0

(
1 + θαf ((1− d)χ0)

2/3
)−3/2

(20)

where χ0 = γe (E0/Ecrit) is the peak value of χ. The
two cases can yield comparable values χ̃(θ �= 0, d = 0) ∼
χ̃(θ = 0, d �= 0) if

d ∼ 1−
(
1 + θαfχ

2/3
0

)−3/2

. (21)

As a result, the value of χ̃ can be similar for several
combinations of θ and d, generating similar energy
spectra. Hence, any summary statistic obtained from
such data can be near-identical, obscuring the effect of
d to that of θ or vice versa. Conclusively, the energy
spectrum is not indicative enough to infer the value of θ.
This can be remedied by including information into xobs

such that the effects of θ and d become disentangled. If
a complementary property of the emission is found such
that the induced deviation of either parameter becomes
uncorrelated, it is possible to disentangle their effects on
xobs.

We now seek such a property to be included into xobs

and the choice of summary statistics to eliminate the
latent variable d. To commence the discussion we re-
mark that electrons conserve their transverse momentum
within the laser field [25]

	p⊥ = qe

∫
	E⊥dt (22)

in which 	p⊥ and 	E⊥ denote the transverse components
of the electron momentum and electric field respectively.
Therefore, at each instance of time, the electron propa-
gates towards the direction that deviates from the initial
direction by an angle α:

α = arctan

(
|	p⊥|
|	pz|

)
, (23)

where we assume that the motion remains highly
relativistic. Evidently, emitted photons retain this angle
and if the pulse is circularly polarized, this becomes
correlated to the value of χ [26]. Note that in the case
of highly relativistic motion with α � 1, the change of
effective mass doesn’t affect the deviation angle because
it cannot change 	pz due to momentum conservation
(the gamma factor changes instead), while 	p⊥ is totally
defined by the vector potential according to Eq. (22).

Accounting for the angular distribution of the emis-
sion leads us to redefine xobs as a fractional energy
distribution per unit frequency ∆ω and unit angle ∆α:
xobs(δ, δ +∆δ, α, α+∆α) as a function of δ and α.
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FIG. 1. Representation of the numerical implementation of
the experiment (deviation angle is exaggerated).

We are now in a position to determine the summary
statistics S(xobs) necessary to eliminate d. Presumably,
there exist several configurations that provide this as
there is no prescribed way of formulating S. To iden-
tify some robust and simple enough option we evaluate
moments of the two-dimensional data xobs to order i and
j:

Mij =

∫ ∫
xobs(δ, δ +∆δ, α, α+∆α)δiαjdδdα. (24)

Now, let us try to select a set of moments such that any
combination (θ, d) maps to a presumably unique value of
this set. Fig. 2 illustrates contours of four distinct mo-
ments Mij in the space of θ and d. The set of moments
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in Fig. 2 (a) is a practical choice as the contours are not
parallel anywhere, suggesting a unique pair for every θ
and d. In contrast, Fig. 2 (b) depicts a scenario when the
contours become parallel at several points in the param-
eter space, meaning that the values of the plotted mo-
ments do not unambiguously indicate a single pair of θ
and d. We conclude that selecting S(xobs) = (M00,M12)
is a valid choice for ABC sampling.

IV. ANALYSIS

In our simulations, the plane wave pulse is designated
by a wavelength of λ = 0.8 µm, pulse length L = 6λ and
peak amplitude a0 = 100 (excluding the factor of (1−d)).
Electrons are assigned an initial energy of 170 GeV (γe ∼
105) situated a distance zs = 5λ from the origin (the
numerical layout can be seen in Fig. 1). Both electron
and pulse are allowed to counter propagate for N time

steps ∆t = (L+zs/2)c
−1

N . Here, x(δ, δ + ∆δ, α, α + ∆α)
is discretized by a 100 × 100 grid of cells x(m∆δ, n∆α)
each with size ∆δ × ∆α and m,n = 0, 1, 2, ..., 99. At
each time step q, Eqs. (22) and (23) are used to estimate
n ≈ α/∆α. Then, for each m we accumulate

xq∆t = x(q−1)∆t +∆α∆ω∆t
∂I

∂ω
(m∆δ, θ) (25)

where we have suppressed the arguments of x for
readability and subscripts denote the time step. For our
proof-of-principle we perform blind tests of x = M(θ, d)
against an ”experiment” xobs = M(θtrue = 0.84, d)
which serves as a ground truth. Here, the θ value is
fixed to θtrue but the latent variable d varies randomly
between experiments.
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FIG. 2. Contours of Mij as a function of θ and d where (a)
compares M00 and M12, (b) compares M01 and M11.

Turning to the prerequisites for ABC sampling, we
adopt the following priors over θ and d

p(θ) = U(0, 150), p(d) = U(0, 0.1) (26)

where U(a, b) denote the uniform distribution with lower
and upper bounds a and b respectively. Though there
is no prior knowledge apart from θ ≥ 0 and 0 ≤ d ≤ 1
we argue that the given simulation parameters yield
χ0 ≈ 100 and so setting θ = 150 would then drive the
value of χ̃ below one, approaching a classical description.
As for d, one could construct a prior from empirical
values obtained in a real experiment. Lacking this
option, we assume that the amplitude can vary at most
by 10%.

During sampling, the following distance is calculated
to discriminate between observations

||S(x)− S(xobs)|| =
√
d200 + d212 (27)

where dij = |1−Msim
ij

Mij
| (not to be confused with the latent

parameter) in which the superscript label moments eval-
uated from simulations x = M(θ, d). A uniform kernel
Kε(·) = Π(·) is chosen with threshold ε = 0.1 derived
from the requirement to accept Nθ = 1600 samples over
the course of ≈ 50 sampling hours. For every 50:th
proposal θ∗ we generate new observed data xobs as to
not bias the result toward the existing value of d∗ ∼ p(d).

In Fig. 3 we present the result of sampling the poste-
rior based on the described ABC routine applied to the
simulated outcome of a single collision experiment with
unknown value of d. The fact that the accepted sam-
ples are distributed around the actually selected value
of θtrue = 0.84 indicates the claimed capability of the
method. To achieve narrower distribution and reduce
the credible interval of the distribution, one can process
a number of experiments through Alg. 3. That is, the
next experiment adapts a prior based on the inference
from the previous one.

1.0 0.5 0.0 0.5 1.0 1.5 2.0

0

2

4

6

8

p
(
|
x

o
b
s

)
[
%
]

FIG. 3. Approximate posterior obtained with 1600 accepted
samples using ABC sampling where the shaded region indi-
cate the 68 % credible interval.
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V. CONCLUSIONS

We have considered prospects for an experiment capa-
ble of inferring a parameter θ that signify deviations from
nonlinear Compton scattering via the notion of effective
mass in the regime χ � 1. The results propel the strate-
gies necessary to incorporate ABC sampling in analogous
experiments, scalable to the inclusion of several param-
eters θ and z accounting for alternative nonperturbative
effects. An improved implementation of the interaction
will be needed for designing future experiments. This can
be done by e.g. simulating a realistically focused laser
pulse, devising more comprehensive description via la-
tent parameters and accounting for electromagnetic cas-
cades. Carrying it out might pose an increased com-
putational load as well as affect the sampling efficiency

of ABC. Nonetheless, its convergence can be accelerated
by further investigating additional summary statistics,
non-uniform kernels and the use of machine learning to
suggest better proposals. Additionally, the use of high-
performance computing to recruit many ABC samplers
in parallel can alleviate both impairments.
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in Fig. 2 (a) is a practical choice as the contours are not
parallel anywhere, suggesting a unique pair for every θ
and d. In contrast, Fig. 2 (b) depicts a scenario when the
contours become parallel at several points in the param-
eter space, meaning that the values of the plotted mo-
ments do not unambiguously indicate a single pair of θ
and d. We conclude that selecting S(xobs) = (M00,M12)
is a valid choice for ABC sampling.

IV. ANALYSIS

In our simulations, the plane wave pulse is designated
by a wavelength of λ = 0.8 µm, pulse length L = 6λ and
peak amplitude a0 = 100 (excluding the factor of (1−d)).
Electrons are assigned an initial energy of 170 GeV (γe ∼
105) situated a distance zs = 5λ from the origin (the
numerical layout can be seen in Fig. 1). Both electron
and pulse are allowed to counter propagate for N time

steps ∆t = (L+zs/2)c
−1

N . Here, x(δ, δ + ∆δ, α, α + ∆α)
is discretized by a 100 × 100 grid of cells x(m∆δ, n∆α)
each with size ∆δ × ∆α and m,n = 0, 1, 2, ..., 99. At
each time step q, Eqs. (22) and (23) are used to estimate
n ≈ α/∆α. Then, for each m we accumulate

xq∆t = x(q−1)∆t +∆α∆ω∆t
∂I

∂ω
(m∆δ, θ) (25)

where we have suppressed the arguments of x for
readability and subscripts denote the time step. For our
proof-of-principle we perform blind tests of x = M(θ, d)
against an ”experiment” xobs = M(θtrue = 0.84, d)
which serves as a ground truth. Here, the θ value is
fixed to θtrue but the latent variable d varies randomly
between experiments.
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FIG. 2. Contours of Mij as a function of θ and d where (a)
compares M00 and M12, (b) compares M01 and M11.

Turning to the prerequisites for ABC sampling, we
adopt the following priors over θ and d

p(θ) = U(0, 150), p(d) = U(0, 0.1) (26)

where U(a, b) denote the uniform distribution with lower
and upper bounds a and b respectively. Though there
is no prior knowledge apart from θ ≥ 0 and 0 ≤ d ≤ 1
we argue that the given simulation parameters yield
χ0 ≈ 100 and so setting θ = 150 would then drive the
value of χ̃ below one, approaching a classical description.
As for d, one could construct a prior from empirical
values obtained in a real experiment. Lacking this
option, we assume that the amplitude can vary at most
by 10%.

During sampling, the following distance is calculated
to discriminate between observations

||S(x)− S(xobs)|| =
√
d200 + d212 (27)

where dij = |1−Msim
ij

Mij
| (not to be confused with the latent

parameter) in which the superscript label moments eval-
uated from simulations x = M(θ, d). A uniform kernel
Kε(·) = Π(·) is chosen with threshold ε = 0.1 derived
from the requirement to accept Nθ = 1600 samples over
the course of ≈ 50 sampling hours. For every 50:th
proposal θ∗ we generate new observed data xobs as to
not bias the result toward the existing value of d∗ ∼ p(d).

In Fig. 3 we present the result of sampling the poste-
rior based on the described ABC routine applied to the
simulated outcome of a single collision experiment with
unknown value of d. The fact that the accepted sam-
ples are distributed around the actually selected value
of θtrue = 0.84 indicates the claimed capability of the
method. To achieve narrower distribution and reduce
the credible interval of the distribution, one can process
a number of experiments through Alg. 3. That is, the
next experiment adapts a prior based on the inference
from the previous one.
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FIG. 3. Approximate posterior obtained with 1600 accepted
samples using ABC sampling where the shaded region indi-
cate the 68 % credible interval.
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V. CONCLUSIONS

We have considered prospects for an experiment capa-
ble of inferring a parameter θ that signify deviations from
nonlinear Compton scattering via the notion of effective
mass in the regime χ � 1. The results propel the strate-
gies necessary to incorporate ABC sampling in analogous
experiments, scalable to the inclusion of several param-
eters θ and z accounting for alternative nonperturbative
effects. An improved implementation of the interaction
will be needed for designing future experiments. This can
be done by e.g. simulating a realistically focused laser
pulse, devising more comprehensive description via la-
tent parameters and accounting for electromagnetic cas-
cades. Carrying it out might pose an increased com-
putational load as well as affect the sampling efficiency

of ABC. Nonetheless, its convergence can be accelerated
by further investigating additional summary statistics,
non-uniform kernels and the use of machine learning to
suggest better proposals. Additionally, the use of high-
performance computing to recruit many ABC samplers
in parallel can alleviate both impairments.
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