
Multilingual Text Robots
for Abstract Wikipedia

Using Grammatical Framework to generate multilingual arti-
cles on Swedish localities

Bachelor’s thesis in Computer science and engineering

Omar Diriye
Filip Folkesson
Erik Nilsson
Felix Nilsson
William Nilsson
Dylan Osolian

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2022

Bachelor’s thesis 2022

Multilingual Text Robots
for Abstract Wikipedia

Using Grammatical Framework to generate multilingual articles on
Swedish localities

Omar Diriye
Filip Folkesson

Erik Nilsson
Felix Nilsson

William Nilsson
Dylan Osolian

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg

Gothenburg, Sweden 2022

iv

Multilingual Text Robots for Abstract Wikipedia
Using Grammatical Framework to generate multilingual articles on Swedish localities
Omar Diriye Filip Folkesson Erik Nilsson Felix Nilsson William Nilsson Dylan
Osolian

© Omar Diriye, Filip Folkesson, Erik Nilsson, Felix Nilsson, William Nilsson,
Dylan Osolian 2022.

Supervisor: Aarne Ranta, Department of Computer Science and Engineering
Examiner: Krasimir Angelov, Department of Computer Science and Engineering

Bachelor’s Thesis 2022
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Gothenburg, Sweden 2022

v

Multilingual Text Robots for Abstract Wikipedia
Using Grammatical Framework to generate multilingual articles on Swedish locali-
ties
Omar Diriye, Filip Folkesson, Erik Nilsson, Felix Nilsson, William Nilsson,
Dylan Osolian

Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
The vast amount of Wikipedia articles and languages has resulted in a high cost of
Wikipedia, i.e. the required time and dedication for making every article available in
every language. This paper describes the development of a multilingual text robot
that will use data from the database Wikidata to generate articles on Swedish local-
ities in various languages and how such a text robot can be beneficial for reducing
the cost of Wikipedia.

The text robot has been developed using the functional programming language
Grammatical Framework, the query language SPARQL, and Python. The topic of
Swedish localities was selected due to the large number of localities in Sweden, the
sparseness of currently existing Wikipedia articles on the topic (excluding Swedish
articles), and the fact that the same structure, with only slight variation, can be
used to describe all of the localities.

The results were articles containing approximately five sentences describing the lo-
cality, a bullet list of events occurring in the locality, and corresponding media, such
as a picture of the locality or a weather forecast for the upcoming week. Based on
the results, one can deduce that the use of a text robot might be a good approach
for reducing the cost of Wikipedia since it produces over a thousand articles in sev-
eral different languages. Another notable fact is that all project group members are
bachelor’s students with no previous knowledge of Grammatical Framework or lin-
guistics, which shows that it is possible to develop a text robot with limited previous
knowledge.

Keywords: Text robot, Natural Language Generation, Grammatical Framework,
Multilingual Natural Language Generation, Abstract Wikipedia, Wikidata

vi

Sammandrag
Den stora mängden wikipedia-artiklar och språk har resulterat i en hög kostnad för
Wikipedia, det vill säga den tid och det engagemang som krävs för att göra varje
artikel tillgänglig på varje språk. Denna artikel beskriver utvecklingen av en fler-
språkig textrobot som kommer att använda data från databasen Wikidata för att
generera artiklar om svenska tätorter på olika språk och hur en sådan textrobot kan
vara till nytta för att minska kostnaderna för Wikipedia.

Textroboten har utvecklats med det funktionella programmeringsspråket Grammat-
ical Framework, query-språket SPARQL samt Python. Ämnet svenska tätorter
valdes med hänsyn till det stora antalet tätorter i Sverige, det nuvarande ringa an-
talet wikipedia-artiklar om ämnet (bortsett från svenska artiklar), och det faktum
att samma strukturkan användas för att beskriv alla orter med endast liten variation.

Resultaten var artiklar innehållande cirka fem meningar som beskriver tätorten,
en punktlista över händelser som inträffat i tätorten och motsvarande media, såsom
en bild på orten eller en väderprognos för den kommande veckan. Baserat på re-
sultatet kan man dra slutsatsen att användningen av en textrobot kan vara ett bra
tillvägagångssätt för att minska kostnaderna för Wikipedia eftersom den producerar
över ett tusen artiklar på flera olika språk. Ett annat anmärkningsvärt faktum är
att alla gruppmedlemmar är kandidatstudenter utan förkunskaper i Grammatical
Framework eller lingvistik, vilket visar på att det är möjligt att utveckla en textrobot
med begränsade förkunskaper.

Acknowledgements
We would like to extend a special thanks to Aarne Ranta, for tremendous help and
guidance thoughout the project. Also we would like to acknowledge the advice from
Inari Listenmaa.

viii

Glossary
NLG - NLG (Natural Language Generation) is a software process that generates
texts that are written in a natural language.

GF - GF (Grammatical Framework) is a functional programming language that is
used for creating grammars for multilingual applications.

RGL - RGL (Resource Grammars Library) is a library for GF which contains the
morphology and syntax for many languages.

Wikidata - Wikidata is a free database containing a lot of different data and is
used for Wikipedia

Syntactical - Relating to syntax, which describes the rules of how words words can
be put together to sentences.

Morphological - Relating to morphology, which is the study of words, how they
are formed and how they behave with other words.

Orthographical - Relating to Orthography, which is a convention for how a lan-
guage is written. This could be for example the use of punctuation and capitaliza-
tion.

SPARQL - A query based language for managing data stored in then RDF format.

Text-robot - A program that can create texts, for example articles.

x

Contents

List of Figures xiii

1 Introduction 1
1.1 Background . 2
1.2 Purpose and Aim . 3
1.3 Benefits of multilingual text robots 3
1.4 Societal and ethical aspects . 3

2 Theory 5
2.1 Tools . 5

2.1.1 SPARQL . 5
2.1.2 Grammatical Framework . 6
2.1.3 Python . 7

2.2 Syntax Trees . 7
2.3 Syntax Trees in Grammatical Framework 9
2.4 Multilinguality . 11
2.5 Massaging syntax trees . 11

3 Methods 13
3.1 Development process . 13
3.2 Using RGL to implement grammars 13
3.3 Virtues of pair programming . 14
3.4 Limitations . 14

4 Results and Discussion 15
4.1 The algorithm behind the text robot 17

4.1.1 Data Fetching . 17
4.1.2 Creating the abstract syntax trees 17
4.1.3 Linearisation of abstract syntax trees 18
4.1.4 Post-processing the article . 18

4.2 Handling names . 18
4.3 The article . 20
4.4 Massaging syntax trees . 21
4.5 Content Planning . 22
4.6 Live data . 23
4.7 Query data . 23
4.8 Post processing . 25

xi

Contents

4.9 Adding new languages . 25
4.10 Using default values . 25
4.11 Difficulties . 26

4.11.1 Fewer results with different languages 26
4.11.2 Query timeouts . 26
4.11.3 Linguistics . 27
4.11.4 Available Material . 27

4.12 Comparison with other existing generated articles 28

5 Conclusion 31
5.1 Localities as a domain . 31
5.2 Expanding the articles . 32
5.3 What can be done to make it easier for programmers to get into GF . 32
5.4 Improving the web application . 33
5.5 The value of the project . 33
5.6 Future of Abstract Wikipedia . 33
5.7 Connecting back to the project’s aim 34
5.8 Reflections on Prerequisite Skills and Suggestions for future work . . 34

6 Bibliography 35

xii

List of Figures

2.1 The results from the SPARQL query. Note that for the Q-value col-
umn, they have an attached wd: indicating that every locality is an
RDF object itself. This was stored as a .CSV file for usage in the code. 6

2.2 The AST for the alice example. Note that every node is a function
which can be found in the abstract Alice code further below, with the
leaf nodes being zero argument functions. As such the only relevance
here is the type definitions, not the behaviour of the functions. 8

2.3 The CST for the alice example. The tree structure here is more
involved and different in the way that nodes are now types instead of
functions, and leaf nodes being strings. 8

4.1 The list where the user can select which locality to generate articles
about . 15

4.2 Articles in Swedish, English and German about the Swedish locality
Stånga . 16

4.3 A closer look at the text in the articles 16
4.4 A visual representation of the algorithm behind the text robot 17
4.5 An example of an article about a town generated by Lsjbot 29
4.6 Articles in Swedish, English and German about the Swedish locality

Stånga . 29

xiii

List of Figures

xiv

1
Introduction

One of the most popular resources for quickly finding information on the internet is
Wikipedia, an "open" encyclopedia that can be edited by the users themselves, with
the prospect that their combined knowledge leads to and expedites the creation of
more detailed articles. In practice, however, only a limited number of languages
have an active userbase, which is something that has a big effect on both the quality
and quantity of articles. The quality is also strongly linked to the engagement of
the users and their ability to communicate with each other [1]. The most popular
language, English, has just above six million articles and one hundred thousand
active users, while languages such as German and French has around two and a half
million articles and twenty thousand active users [2].

A problem that arises is how to populate the less active languages with articles
that are of comparable quality to those of the most active languages. A solution to
the problem could be that the most detailed article on the topic is translated into
a more popular language that can be used as a template for other articles. This is
arguably not a good solution since it requires more initiative from users with more
niche knowledge, depending on the article’s topic. Users are expected to perform
this time-consuming task without compensation and deliver articles that are concise
and explanatory, with citations.

Another solution is using an algorithmic approach to generate articles, where the
articles are produced by retrieving information from a common source and using
software to adapt the text around the information so that the complete article be-
comes coherent. This technology is called Natural Language Generation or NLG.
NLG is the process where software creates natural text that can be read by humans.
Such systems are available in many different forms and can be developed in different
ways all with different advantages and disadvantages. NLG is currently for example
used to generate different kinds of reports, such as weather reports or daily reports
of the stock market. Some of the popular NLG models are based on probabilities,
where the next word in the sentence is decided by how likely it is to appear, following
the previous words. These models and methods of NLG can produce texts that are
so similar to human written texts that they can not be distinguished. However to
produce informative texts these models are not good and the content of the texts
produced are often nonsense. A completely different way to implement NLG is a
rule-based approach where grammars specify how the sentences should be produced.
This method can be used to generate good sentences containing correct information
and could therefore be used to produce Wikipedia articles. When the text gener-

1

1. Introduction

ation is grammar based a lot of similarities between the generation of articles in
different languages can be seen. Therefore, it is possible to extend the concept of
NLG with multilinguality where the same text is generated on multiple languages
simultaneously. This is a perfect answer for the Wikipedia problem where a lot
languages are not populated with articles.

Multilingual NLG for Wikipedia is a concept that has already been explored to
some extent and has seen moderate success. One of the languages that stand out in
the Wikipedia article coverage is Cebuano, a smaller Filipino language that has the
second most articles, after only English, with around 6 000 000 articles even though
it currently only has about 200 authors. This is the result of lsjbot, an article gener-
ating program that is estimated to have created between 80−99% of the articles [3].
Lsjbot has been met with some criticism as the articles, which are mainly about
geographical objects and organisms, only briefly list facts. According to critics, the
articles lack human features, making them less interesting to read [4].

Today, Wikipedia is ranked as the fourth most visited website and is by far the
most visited encyclopedia in the world [5]. In June 2021, approximately 13.6 billion
users visited the website in total, which was more visitors than Twitter, Amazon and
Instagram combined during the same period [5]. Managing the information available
on Wikipedia, as well as expanding it with high-quality, computer-generated articles
so that it benefits even more users, is therefore of academic relevance.

1.1 Background
The expansion of Wikipedia is something that can be done in a cost-efficient way
with the help of Multilingual NLG. Denny Vrandecic explains that to create a
Wikipedia which covers topics in all languages, the cost can be defined as the number
of topics multiplied by the number of languages [6].

Cost = Topics × Languages

Considering that there are huge amounts of topics and also a significant amount
of languages to cover, the multiplication between the two factors lead to the cost
being very high and it makes it unreasonable to think that all topics and languages
will be covered. However, with multilingual NLG it can be possible to turn the
multiplication into addition by making the topics and languages independent of
each other.

Cost = Topics + Languages

If a stable and quick method to generate Wikipedia articles with the topics being
independent from the languages exists, it makes the cost of Wikipedia much lower
and a future where all knowledge could be shared might be possible. This is exactly
what is being explored in the Abstract Wikipedia project. The goal of Abstract
Wikipedia is to let people share knowledge in a language independent way

2

1. Introduction

1.2 Purpose and Aim
The purpose of this project is to explore the use of the programming language GF
(Grammatical Framework) for generating multilingual Wikipedia articles utilising
data from Wikidata. Further, this project aims to investigate the feasibility of people
with a similar education and basic programming skills but no prior knowledge of
GF to produce decent articles using this method. Thus the goal is to develop a text
robot, with the use of NLG and GF,that can generate articles about a specific topic
in a variety of different languages. The selected topic of articles for this project is
Swedish localities.

1.3 Benefits of multilingual text robots
Using NLG to generate articles has several advantages: the articles have a consis-
tent quality across several languages and when the data source is updated with new
information, the articles are also updated at the same time (something that is cur-
rently being looked into with the abstract wikipedia project [7]).

Most common NLG methods are based on probabilities and statistics. These sys-
tems can solve complex problems but unfortunately it is difficult to understand their
inner workings. The developers decide the architecture of the system and which al-
gorithms to use but do not have further control on the values of the parameters in
the model. This makes difficult for the developers to understand the models in order
to inspect and debug them. However, when using GF to generate natural language,
this problem does not appear, since the developer decides exactly how the model
works. Furthermore, GF works great with multilingual NLG since it is designed to
use abstract syntax, which is language independent, and RGL, which has a common
API for many languages.

1.4 Societal and ethical aspects
A societal and ethical aspect that could be of importance for this project is where
the data used to create the articles is retrieved from. In this project the data will
be retrieved from Wikidata, which is assumed to contain mostly high quality data,
but because the database is open for change, anyone could contribute with false
data. Therefore the data from Wikidata is not always reliable, which could lead to
the generated articles spreading inaccurate information. If the robot is meant to
produce thousands of articles, the accuracy of the data has to be compared to the
weight of making the information known to many more people, which is a significant
societal benefit.

This balancing question appears again when you consider how well-written the gen-
erated texts will be. Minor grammatical errors or a wrong choice of words could
lead to misunderstandings, but a slight misunderstanding in a few cases might not
be important if the articles can spread knowledge to the world. Furthermore, the

3

1. Introduction

same reasoning could be applied when generating Wikipedia articles for languages
that only have a very small amount of articles on the internet. The automatically
generated articles could then quickly become the majority of the text in that lan-
guage online. If the articles would then be used in some sort of machine learning
project, it could create a skewed image of the language since the articles most likely
will not represent the language perfectly. But since the articles generated in this
project are meant for Wikipedia, authors can always edit and extend the articles
and therefore minimise the risk of the articles having some kind of negative societal
effect. Generated articles usually have some kind of indication that the text was not
written by a human, which should make sure that the texts are not used in a way
as if they were handwritten.

It is of interest to note that a significant portion of the articles created by Lsjbot
have been removed. This is because the opinion on articles generated by text robots
has shifted towards being more cautious of it [3]. Some of the concerns raised are
that the articles are too technical and may even contain factual errors present in
the database used by Lsjbot [8]. At one point the entire of the cebuano wikipedia
was at risk of removal for this very reason, with community members calling for an
increase in quality control to combat the bot generated articles [9].

4

2
Theory

This chapter covers the concepts and tools used during the project.

2.1 Tools
Several tools have used to carry out the steps defined in section 1.2. These tools
and their implementations will be described in this section.

2.1.1 SPARQL
SPARQL is a "Query language" which is used to select elements from a database. It
is used to manipulate and retrieve data which is stored in RDF format.

RDF, or Resource Description Framework is a machine readable format used to
describe data as triples. It consists of entity nodes and directed edges which contain
the relationship between those entities. Each triple is an RDF statement and a
collection of these statements make up a graph database where it is commonly used.
SPARQL contains all necessary query operations to work with sets of data and has
been used to select data from Wikidata which can be downloaded to different for-
mats and then be used by the text robot. Below is a simple example of how a query
could look:

1 {
2 SELECT ? c i t y ? c i tyLabe lSv ? populat ion ? area
3 WHERE
4 {{
5 ? c i t y wdt : P31 wd : Q12813115 .
6 ? c i t y wdt : P1082 ? populat ion .
7 ? c i t y wdt : P2046 ? area .
8 ? c i t y r d f s : l a b e l ? c i tyLabe lSv .
9 f i l t e r (lang (? c i tyLabe lSv) = ' sv ') .

10 }}
11 }

Listing 2.1: An example of a simple SPARQL query which was an early version of
the query gathering data on localities.

The program begins by setting the columns to list in the table, which is done on
line 2. It sets the columns to be city (the Q-value of the locality, which is a unique

5

2. Theory

identifier on wikidata used later on), citylabelSv (the name in Swedish), population,
and area. After this follows the a number of RDF statements: line 5 states that the
city column will consist of instances of (denoted as wdt:P31) localities in Sweden
(denoted as wd:Q12813115). Line 6 states that the population column will consist
of populations of the localities that was just listed, and line 7 lists the corresponding
areas in a similar fashion. Finally the Swedish labels are listed with the use of a
filter command. The results are shown below:

Figure 2.1: The results from the SPARQL query. Note that for the Q-value
column, they have an attached wd: indicating that every locality is an RDF object
itself. This was stored as a .CSV file for usage in the code.

2.1.2 Grammatical Framework
Grammatical Framework is a functional programming language used to support the
grammars of different languages. It was created in 1998 for the purpose of Multi-
lingual Document Authoring and has since been developed to a tool that is mostly
used in rersearch in computational linguistics but has also been used to create mul-
tilingual applications. GF was specifically developed to write and create grammars
and has an architecture that enables multilingual grammar to be created. This is
done by letting an abstract syntax have multiple concrete syntaxes which make for
correct and fast translations. By using GF, the generated texts should be inflected
in a grammatically correct way. GF is currently the only platform that enables the
development of multilingual applications in an easy and extensible way.

Along with GF comes RGL (Resource Grammar Library) which is a standard li-
brary that includes a collection of grammars for several languages. At the time of
writing, the library library supports 38 languages. By offering ready to use func-
tions, developers using GF can build their application specific grammar relatively
quickly and thus save time. Also, this enables developers to build complex grammars

6

2. Theory

without having expert level knowledge in linguistics.

2.1.3 Python

The text robot has been developed with Python as the host language. The host
language has been used to link the application together by calling SPARQL queries
to collect data and then, with the help of GF, building abstract syntax trees to
generate sentences. Other programming languages can be used as a host language,
but Python was chosen because it is considered one of the simpler languages that
can be easily adopted by people interested in GF and NLG.

2.2 Syntax Trees

A syntax tree is a representation of the structure of a text, where nodes are used to
dictate a formal set of rules or grammar. Specifically, there are two different cases of
syntax trees: Abstract Syntax Trees (AST) and Concrete Syntax Trees (CST), which
are sometimes also known as Parse Trees (Parse tree is the term used in the context
of GF), with the difference between them being that a CST will be one particular
instantiation of an AST (there could be more than one).

Syntax trees have many usages, but are foremost used in compilers to set the struc-
tural rules for programming languages. Relevant to this project however is the type
of syntax trees which make use of Phrase Structure Grammar, which is a special
type grammar that formalises sentence structures into known syntactic units. The
top unit will always be S (Sentence), and it will be the root node in the syntax tree
and can for example be followed by two child nodes NP and VP (noun phrase, verb
phrase). An example of the CST for the sentence “Alice likes pretty syntax trees”
is included below, as well as its associated AST. A notable property of the abstract
syntax tree is its language independence. Therefore, when designing an abstract
syntax tree, one does not have to consider the word order or the morphology.

7

2. Theory

MakeS

Alice MakeVP

Likes MakeNP

Pretty SyntaxTrees

Figure 2.2: The AST for the alice example. Note that every node is a function
which can be found in the abstract Alice code further below, with the leaf nodes
being zero argument functions. As such the only relevance here is the type defini-
tions, not the behaviour of the functions.

S

NP VP

V NP

Adj NP

alice likes pretty syntax trees

Figure 2.3: The CST for the alice example. The tree structure here is more
involved and different in the way that nodes are now types instead of functions, and
leaf nodes being strings.

8

2. Theory

2.3 Syntax Trees in Grammatical Framework
In GF, syntax trees and the process of analysing them are core concepts. In par-
ticular when writing a GF program, it will consist of an abstract syntax and one
or more concrete syntaxes. Below follows an example of a concrete and an abstract
syntax for the sentence “Alice likes pretty syntax trees.”, used before to demonstrate
the syntax tree (note that “–” indicates the start of a comment).

1 ab s t r a c t a l i c e = {
2 f l a g s s t a r t c a t = S ;
3
4 cat S ; NP; VP; V; Adj ;
5
6 fun
7 MakeS : NP −> VP −> S ;
8 MakeVP : V −> NP −> VP;
9 MakeNP : Adj −> NP −> NP;

10
11 Al i c e : NP;
12 Likes : V;
13 Pretty : Adj ;
14 SyntaxTrees : NP;
15
16 }

Listing 2.2: An abstract syntax which states that the start category for parsing
will be S, then defines the categories (types) and then defines a series of functions
using the categories as parameters. Since GF is a functional language, there are no
variables, only functions with zero or more input parameters.

9

2. Theory

1 conc re t e a l i c eEng o f a l i c e = {
2 l i n c a t
3 S , NP, VP, V, Adj= { s : Str } ;
4
5 l i n
6 MakeS np vp = { s = np . s ++ vp . s } ;
7 MakeVP v np = { s = v . s ++ np . s } ;
8 MakeNP adj np = { s = adj . s ++ np . s } ;
9

10 Al i c e = { s = " a l i c e " } ;
11 Likes = { s = " l i k e s " } ;
12 Pretty = { s = " pre t ty " } ;
13 SyntaxTrees = { s = " syntax t r e e s " } ;
14
15 }

Listing 2.3: An accompanying concrete syntax which states which abstract syn-
tax it implements, its linearisation category definitions which defines the categories
contents, and the linerearisation definitions, which defines the behaviour of the func-
tions.

With the code imported into GF, parsing the sentence “Alice likes pretty syntax
trees.” will generate the corresponding AST:

>parse "alice likes pretty syntax trees"
MakeS Alice (MakeVP Likes (MakeNP Pretty SyntaxTrees))

It should be noted that this is not the only valid sentence that can be parsed into an
AST by this syntax. For example, when using the above syntax tree, an NP node
can both have the child node of a string (i.e. a terminal) as well as two child nodes
Adj and NP, so a valid sentence could also be “Alice likes syntax trees”.

Conversely, linearising the AST will generate the parse tree, i.e. the string that
was inputted at the start:

> linearise MakeS Alice (MakeVP Likes (MakeNP Pretty SyntaxTrees))

alice likes pretty syntax trees
Hence, parsing and linerarisation can be viewed as inverse functions of each other.

10

2. Theory

2.4 Multilinguality
Another core feature of GF is the ability to extend syntaxes with new languages.
Continuing with the same example, we add a Swedish concrete syntax and we will
see how this affects parsing and linerisation:

1 −− A concre t e Swedish syntax
2 conc re t e a l i c eSwe o f a l i c e = {
3 l i n c a t
4 S , NP, VP, V, Adj= { s : Str } ;
5
6 l i n
7 MakeS np vp = { s = np . s ++ vp . s } ;
8 MakeVP v np = { s = v . s ++ np . s } ;
9 MakeNP adj np = { s = adj . s ++ np . s } ;

10
11 Al i c e = { s = " a l i c e " } ;
12 Likes = { s = " g i l l a r " } ;
13 Pretty = { s = " f i n a " } ;
14 SyntaxTrees = { s = " syntaxt r äd " } ;
15
16 }

Listing 2.4: Another, Swedish, variant of the concrete syntax

Linearising the same AST as before now yields two results:
>linearise MakeS Alice (MakeVP Likes (MakeNP Pretty SyntaxTrees))

alice likes pretty syntax trees
alice gillar fina syntaxträd

Meanwhile, parsing either of the resulting sentences will generate the same AST as
before.

2.5 Massaging syntax trees
Before linearising the syntax trees there is the possibility of altering or massaging
them based on the language and other features. It can be seen as a first step
of post-processing. It is at this step things can be changed like units (imperical
instead of metrics) and calculations required for these unit changes can also be
done. Massaging works by recursively traversing the tree and checking for nodes to
be edited. This is done right before the linerisation. Our implementation of this can
be seen in section 4.4.

11

2. Theory

12

3
Methods

In this chapter various methods pertaining to and used in the project are presented.

3.1 Development process
During the development process, we have developed the text robot using four steps
each with increasing complexity, also known as a bottom-up development strategy.
We started implementing the text robot for simple facts, for example, "The capital
of Argentina is Buenos Aires" where all facts are described with the same sentence
structure, i.e. “The attribute of object is value”. This was initially done for only two
languages but more languages were added in later stages of the development.

The next step of the process was to use RGL to adapt the grammar for differ-
ent languages. This includes, for example, inflecting nouns for the correct gender
form in various languages. In this step the base of the Python code was also imple-
mented. This refers to the part of the code that is used to interact with GF and
build syntax trees.

The third step of the development is about combining different facts into longer
sentences and thus getting more fluency in the produced text. In this step, we also
started using pronouns when referring to the object in order to avoid only listing
facts.

In the fourth and last step, the text robot is developed to be able to select and
summarise facts that appear to be interesting in the context. This is what is called
content planning and can be used to different extents in text generation. When cre-
ating Wikipedia articles the human judgement is still partly needed to decide what
is relevant to include in an article however there are still possibilities to include
content planning to make the articles more enjoyable to read.

3.2 Using RGL to implement grammars
When designing the grammars used to represent the information fetched from Wiki-
data, we have used the RGL. The library contains language-specific morphological
operators, the language-specific linearisation of various abstract categories and func-
tions, and some language-specific operations. For example, using RGL lets us write
a GF grammar, which describes how to linearise the different ASTs.

13

3. Methods

Listing 3.1: Example of using RGL to design grammars
1 conc re t e ExampleEngRGL of Example = open SyntaxEng ,
2 ParadigmsEng in {
3
4 l i n
5 ExamplePhrase =
6 mkCl (mkNP the_Det (mkN " programmer ") (mkV " programs "))
7 −−The programmer programs .
8 }

Thanks to the RGL, the linerasation of the different functions, i.e. mkNP or mkCl,
is implemented so that we don not have to worry about the different word order or
the different morphologicality between languages for the different phrases.

3.3 Virtues of pair programming
During the development of the text robot, we have opted to develop two and two.
The reasoning behind this is that the number of bugs and errors will be reduced
since they are more likely to be spotted during coding if two coders develop the code
rather than one. Working in pairs also further enables discussing the problem with
each other, which naturally increases the understanding of the problem at hand.
Therefore, pair programming was chosen as our development practice.

3.4 Limitations
The software is judged based on the cohesion and grammatical correctness of the
generated articles. In order for the quality of the texts to be assessed, the project
has to be limited to languages that are understood on a higher level by at least
one group member. The languages deemed to fit this category include but are not
limited to: Swedish, English, Somali, Arabic, German, Spanish and Hungarian.

Different articles can follow very different patterns and because of this, the choice was
made to initially limit the project only to articles with a shared topic/domain, with
recurring properties present for every example. It could, for instance, be countries
where each country has a capital and a population. A small-scale program could be
able to display facts thus "The capital of country is capital and has a population of
number. It can seem trivial to create a text robot executing this template, but some
details such as the countries’ capitals and names having to be in different languages
makes the problem more complex. If the template would be further developed to say
"There are X number of species in/on country" the problem is again more complex
since it is correct for a country such as Iceland or Cyprus to, in Swedish, say "på
Island/Cypern" whereas for a country such as Sweden one would say "i Sverige".
A decision was made to initially limit variation to a reasonable degree in the text
robot for the aforementioned reasons.

14

4
Results and Discussion

A text robot, generating articles about Swedish localities, was created during the
project. The text robot can currently generate articles in three languages Swedish,
English and German. The robot has access to data of about 1200 localities, including
some bigger cities meaning that it can generate three articles for each one of the 1200
localities, for a total of 3600 articles. All of the articles are grammatically correct
and also include an image, a map of where the locality is located, and a weather
forecast for the upcoming week. A simple web application has also been developed
to display the functionality of the text robot. In the web application, the user can
select a locality, and articles in all the available languages will be generated for the
selected locality, as well as relevant media such as images.

Figure 4.1: The list where the user can select which locality to generate articles
about

15

4. Results and Discussion

Figure 4.2: Articles in Swedish, English and German about the Swedish locality
Stånga

The texts give a short presentation about the locality and some related facts. They
contain information about population, area, location and also mention famous peo-
ple from the locality. The articles for a locality in the different languages all contain
the same information, however there are small differences. For example the unit of
the area is changed depending on which language the article is written in.

Figure 4.3: A closer look at the text in the articles

16

4. Results and Discussion

4.1 The algorithm behind the text robot
The program follows an algorithm, consisting of a series of steps, in order to generate
the articles. The steps of the algorithm are defined as follows:

Figure 4.4: A visual representation of the algorithm behind the text robot

4.1.1 Data Fetching
The data needs to be fetched from the database Wikidata. This is done using the
query language SPARQL, which allows for specifying what data is to be fetched.
The data-fetching step is optional during runtime. Because the time it takes to
fetch the data can vary due to outside factors (i.e. if many API calls slow down
the Wikidata API), we have opted to fetch the data before running the program
and storing it locally. However, live data such as the current weather at the given
locality is always fetched at runtime.

To fetch the data, a Python wrapper of SPARQL is used which allows the exe-
cution of the queries remotely. It requires an endpoint URL to retrieve the data
from and the query to execute. Furthermore, it is required to by the developer to
specify the format of the returned data which is either JSON or TSV. After receiving
the data, we save it as TSV files which are used in the later steps of the algorithm.

4.1.2 Creating the abstract syntax trees
To create the abstract syntax trees, we need to create GF constants (functions
without argument) for some of the data, e.g. to be able to inflect the locality’s name.
After the functions have been created, the abstract syntax trees can be created with

17

4. Results and Discussion

help of RGL for the correct grammatical implementation of the sentences where the
aforementioned constants can be used.

4.1.3 Linearisation of abstract syntax trees
After the data has been fetched, the program will now linearise the abstract syntax
trees that have been built. The program will first select what data to show and the
format in which it will be shown. Thereafter, the abstract syntax trees made for
the different sentences and the different languages will be linearised with the data
fetched in step one, and an article will be generated.

4.1.4 Post-processing the article
After the article has been generated, it needs to be processed. Here the article will
be polished by, for example, making sure that there is a dot after each sentence,
capitalising the first word of each sentence and fixing HTML header tags for titles.

4.2 Handling names
The handling of names is something that is important for the text to be correct.
Looking at the chosen domain it is easy to see that a locality can have different
names in different languages. For example the Swedish city Göteborg, is called
Gothenburg in English. The difference might seem small but is important for the
text to be correct. There could also exist cases where the name is not similar at
all in other languages. The situation with names is something that is recurring and
will be part of all text robots that are built. Another important reason to handle
names separately and not just use them as strings when generating the articles is
the possibility to inflect the names. Again this might not seem necessary in some
cases however it is necessary if you want to use a name in the article in multiple
ways. To look at an example the Swedish word for pilot is "pilot" in singular and
would be inflected to "piloter" in plural. Had the name of this job title not been
handled by including it in the grammar, it would not have been possible to inflect it.

To handle multilingual names in GF the names are included in the grammars as an
abstract syntax and then their linearisations in concrete syntaxes. In the developed
text robot this has been done with, for example, locality names and municipality
names. The abstract syntax contains functions for each unique locality, named af-
ter their Q-value from Wikidata. The Q-value from Wikidata is a unique identifier
and is used in the abstract syntax to avoid any issues with duplicated names. In
the concrete syntax the linerisations are taken from Wikidata which has labels for
Swedish localities in multiple languages.

These GF files containing the names of specific things can end up becoming very
long and the code follows a similar pattern. In the case of, for example, locality
names, the file is over 1200 rows long and contains a function for each locality. To
write all these functions manually would be very time consuming, instead they can

18

4. Results and Discussion

be generated with the help of Python. In the project this has been done in a pre-
processing python script,which is meant to be run before compiling the grammar,
and it generates GF code for handling locality names, municipality names and also
work titles in all of the currently implemented languages. Since the functions all
have a similar pattern the generation of them is straight forward. One issue however
that was encountered was that some names contained special characters which led
to compile errors in the GF code. In the project this was solved by simply replacing
the encountered special characters with something suitable, such as replacing a let-
ter with a macron by simply removing the macron. We did however later learn that
another way of doing it would have been to surround name with a pair of citations,
because then GF would allow it. This solves the problem for all special characters
and not just the ones that were encountered for the used data set. The whole pro-
cess of handling names should however be seen as semi automatic since a manual
check of the linearisations of the words is often needed in order to make sure that
the translations in all the languages are correct.

Another point in the project where the handling of names became important was
during the implementation of professions. The goal was to query famous persons
who originated from a specific locality, as well as what their profession was and list
them in the article. To do this, the plan was to query them once in Swedish (which
is the language that should generate the most responses) and then use the ESCO
dictionary to translate the professions in Swedish into any other language[10]. ESCO
or European Skills, Competences, Qualifications and Occupations is an initiative by
the European Comission to create a standardised dictionary for descriptions, titles
and translation of professions and the like. For example this could help an employer
to accurately advertise new opportunities and what qualifications are expected from
an applicant.

There were however several difficulties that were hit upon with the ESCO approach.
The professions and skills were listed in a CSV file such that some of them had
unique codes which made translation easy, while some were considered variants of
other professions which complicated the process. For example a famous person
could be Astrid Lindgren, a children’s fiction author from the locality Vimmerby.
The Swedish query says one of her professions are “barnboksförfattare” and search-
ing for it in the Swedish ESCO file (if it even existed) would name it as a variant of
“författare” (author) which would have a unique code. Using this code in the En-
glish file would now yield the result of author, but finding the translation children’s
fiction author would be impossible.

On top of this there were several other issues. The file had an irregular struc-
ture which made the algorithm extracting the unique codes convoluted. Also the
file sizes differed wildly which worsened the accuracy of the translations; The En-
glish file contained 30 000 lines, while the Swedish one contained around 8 000, and
the German one around 18 000. As a result the solution that was chosen was to
query profession names in a similar way to locality names, where the query directly
states the language to use.

19

4. Results and Discussion

4.3 The article
To implement the text shown in figure 4.3 we had to consider how to design the
sentence structure using the data retrieved. What follows is a description of how
each sentence of the article is built.

The population of [locality] is [population] and its area is [area] square
miles.

This sentence is a conjunction of two separate facts. The first part is a population
fact following the basic structure of The ATTRIBUTE of OBJECT is VALUE. The
second part is of the same type but, since it is joined together with the first part,
the ATTRIBUTE property is changed to its to improve the flow of the sentence.
The area fact also makes use of massaging to present the area using square miles
instead of hectare, since this is a sentence in English and the imperial units are used
in the USA.

[Name] an is an athletic competitor from [locality]

The sentence above is is one of the variations of a famous person fact. The first
variation is produced when the person has one occupation and the other variation is
generated if the person has more than one occupation. If the person has one occupa-
tion, the structure of the sentence is PERSON is OCCUPATION from LOCALITY.
If the person has more than one occupation then the structure is PERSON is OCCU-
PATION, OCCUPATION, ... and OCCUPATION from LOCALITY. Comparing
the two sentences, the difference is that the second sentence has a conjunction of
occupations.

[Locality] lies in [municipality] municipality, which lies in the [south,
middle or north] of Sweden.

Here is an example of using a subordinate clause to make the sentence more nat-
ural. The north is not something that is listed on Wikidata, but rather something
deduced from the coordinates and hard coded somewhat arbitrary values of what
latitudes are considered the north, middle and southern part of Sweden.

The temperature in [locality] is 12.69°

A sentence that differs somewhat from the others is the one describing the current
temperature. This differs in that its data is gathered from a query not to Wikidata,
but instead the weather API openweathermap.org. There were some issues that were
ran into with this however, namely that since every query needs a longitude and a
latitude, the amount of calls will at least be equal to the number of localities. This
coupled with an initially unnecessary second query call per locality quickly made us
exceed the allotted amount from the free API key. Some ways to work around this
were to restructure the code to not call more than once per locality, as well as using

20

4. Results and Discussion

the web interface we created which will only create an article once we select it (that
is, it will not automatically create every article once the website starts).

Events:
• Event1
• Event2
• ...

We end the article by listing a number of events in a bulleted list. As previously
mentioned, Wikidata at points suffers from a lack of data, which in turn has an
effect on the quality of the generated articles. Here this problem appeared once
again in the form of events being generally available in Swedish, but not to an equal
extent in the other languages.

4.4 Massaging syntax trees

As mentioned before a technique called massaging is used to process the syntax
trees. The text robot uses this technique to convert the units of area and perform
the calculations required for these conversions. For example, when generating an
English article, square miles is used instead of hectare. The code block below shows
a simplified implementation of this example. Massaging is also used to change finer
details such as switching a comma sign for a dot when presenting decimals. The
benefits of massaging trees is that the articles can use the same base facts, but still
contain language specific properties, and therefore be grammatically correct.

1 de f massage_tree (t ree , lang) :
2 fun , args = t r e e . unpack ()
3
4 i f fun == " uni tHectare " :
5 va l = args [0] . unpack ()
6
7 i f lang . name == " l o c a l i t i e s E n g " :
8 # Return un i t in miles , with value converted
9 e l i f lang . name == " l o c a l i t i e s G e r " :

10 # Return un i t in square km, with value converted
11 re turn pgf . Expr (" un i tHectare " , a rgs)
12
13 args = [massage_tree (t , lang) f o r t in args]
14 re turn pgf . Expr (fun , args)

Listing 4.1: Code example of using massaging to convert hectare to square miles
and square km depending on the language

21

4. Results and Discussion

4.5 Content Planning

When generating articles a lot of decisions have to be made including the following:
what facts should be included; in what order the facts should be written; and in
what form to present the facts. This is dependant on both what data is available
and its quantity. When listing historic events, for example, Gothenburg will clearly
present more data than Juoksengi, which is why methods to handle both cases are
required. This is solved by having multiple grammars ready for different cases.

Floda lies in Lerums municipality, which lies in the south of Sweden.
The locality lies 28.08 km east of Gothenburg.

Stockholm lies in 8 municipalities, in the south of Sweden.

At this stage it is also possible to do calculations based on the data available and
use this to create new facts. The second fact in the first example above shows how
this is used to calculate a distance to the closest big city, from a list of our choice,
using the coordinates alone. Also noteworthy is that for the Stockholm example, no
such fact appears since there is no need to put Stockholm relative to another big city.

When creating articles the format in which to display information becomes inter-
esting. Some information fits better in different formats, for example some kinds of
information are best expressed in plain text while other kinds might need images
or graphs. A format which is common in Wikipedia articles are bullet lists. Bullet
lists are an easy way to list some kind of data in a clear way without cluttering it
with text. An additional benefit with bullet lists is when list items are linked to
other Wikipedia articles. This makes it very easy for users to navigate Wikipedia
and read more about items in the list which might be interesting.

In the generated articles different events that occurred in Swedish localities have
been listed using bullet lists. The implementation of the HTML lists is done mostly
in GF with the help of the Markup module to create the HTML tags. Some addi-
tional post processing is also done in Python to remove conjunctions that have been
applied in GF. Two categories, HTMLList and ListItem were created in GF which
have been used for functions which can create lists and add list items to this list.
The only thing that sets these functions apart from basic list functionality is that
the list items are wrapped with tags before they are added to the list.
tags are the HTML tags for list items. For the bullet list to be completed it has to
be wrapped with tags, which is done by function wrapWithUl. When doing
this, the list which is of type listNP is converted to an NP by adding a conjunction
between each element, the conjunctions are later removed in python.

22

4. Results and Discussion

4.6 Live data

A benefit of using NLG to generate articles is that the article will always be up-to-
date with the latest data. The created articles in the project contain information
about, for example, the population of different localities, which is data that can
change. In fact a lot of data tends to change over time and therefore it is of rele-
vance to display the latest and correct data. If we put the text robot in the context
of the Abstract Wikipedia project where a Wikipedia article could be generated
when opening the article, it is then possible to always use the latest available data
when creating the article. This is because the relevant data can be queried from
Wikidata when generating the article. To get a good result this assumes that the
data in the database is correct and is updated when there is new data available. The
data doesn’t necessarily have to be some number that has changed but it can also be
that some new data is added. If there is a person that has recently become famous
and information about the person’s birth location is added to Wikidata, this person
would automatically be included in the article about the relevant locality. However
if articles are manually written this addition would have to be done manually.

With this possibility in mind it also creates opportunities to use live data in ar-
ticles. To differentiate from the data described in the paragraph above, live data
is considered to be data that is updated live or very frequently. Although it might
not be the type of data that would usually appear in Wikipedia articles, the gener-
ated articles about localities do contain live information to demonstrate the concept
of using live data. The way it is applied to the text robot is by getting current
weather information at the locality. Meaning that every time the article is gen-
erated, weather information is retrieved and displayed in the article. This feature
demonstrates another upside of using NLG to generate articles instead of the conven-
tional user written approach. This concept could be useful in some specific articles
in the Abstract Wikipedia project however it might be more useful in cases outside
of Wikipedia where live data has to be displayed.

4.7 Query data

Currently there are five queries which fetch a variety of different data. The first and
main query is “query_localities” that gets data about the localities themselves, such
as the locality’s name in multiple languages, ID, population, area and coordinates
along with a picture. The ID is a unique code for each item on Wikidata that starts
with a Q. This is useful since there are multiple localities sharing the same name
and the Q-code can thus be used to differentiate them in the code.

23

4. Results and Discussion

1 SELECT ? c i t y ? c i tyLabe lSv ? cityLabelEn ? c ityLabelDe
2 ? populat ion (max(? area) as ?maxArea) ? coo rd ina t e s
3 (group_concat (d i s t i n c t ? munic ipa l i tyLabe lSv ; s epa ra to r =" , ")
4 as ? muniLabels) (group_concat (d i s t i n c t ? mun i c ipa l i ty ;
5 s epa ra to r =" , ") as ? muniIds) ? image
6 WHERE
7 {
8 ? c i t y wdt : P31 wd : Q12813115 .
9 ? c i t y wdt : P17 wd : Q34 .

10 ? c i t y wdt : P1082 ? populat ion .
11 ? c i t y p : P2046 [pq : P585 ? dateArea ; ps : P2046 ? area] .
12 ? c i t y wdt : P625 ? coo rd ina t e s .
13 ? c i t y wdt : P131 ? mun i c ipa l i ty .
14 ? c i t y wdt : P18 ? image .
15 ? mun i c ipa l i ty r d f s : l a b e l ? munic ipa l i tyLabe lSv .
16 ? c i t y r d f s : l a b e l ? c i tyLabe lSv .
17 ? c i t y r d f s : l a b e l ? c ityLabelEn .
18 ? c i t y r d f s : l a b e l ? c i tyLabelDe .
19 f i l t e r (lang (? munic ipa l i tyLabe lSv) = ' sv ') .
20 f i l t e r (lang (? c i tyLabe lSv) = ' sv ') .
21 f i l t e r (lang (? c ityLabelEn) = ' en ') .
22 f i l t e r (lang (? c ityLabelDe) = ' de ') .
23 FILTER NOT EXISTS {? c i t y p : P2046 [pq : P585 ?dateArea_]
24 FILTER (? dateArea_ > ? dateArea)}
25 } group by ? c i t y ? c i tyLabe lSv ? populat ion ? coo rd ina t e s
26 ? cityLabelEn ? cityLabelDe ? image

Listing 4.2: Example of a query, this is query_localities

The query_persons is, as the name suggests, used to fetch data about different
persons from the localities along with what their occupation/occupations are and
where they are born. Since more famous people are of more interest to be included
in an article the persons-data is thus sorted by the number of sitelinks they have.
Sitelinks area measure on the number of Wikimedia sites that link to a specific
Wikidata item. This data can then be matched with different localities, using the
birthplace information and thus the articles can be made to have text about certain
famous people from the locality in question.

There are a further three queries used in the project: query_events, query_buildings
and query_sport clubs. The event query, as the name suggests, gets data on different
events that have been held in the city such as a festival or sports competitions. The
buildings query is very similar, it returns different notable buildings in the localities
along with their construction dates. Finally the sport clubs query retrieves data on
different sports clubs. These three queries all fetch the Q-code of the specific items:
events, buildings, sport clubs. Additionally the query fetches the names of them as
well as the locality in which they are located.

24

4. Results and Discussion

4.8 Post processing

To clean the articles and remove minor issues, a post processing script has been
written. The issues this script solves are some that we might have not been able to
solve with GF or that were more effective to solve in Python script rather than spend
time finding a solution using GF. The first issue is new lines, a new line identifier
is added in the GF grammar which can then be targeted and replaced with “\n”.
Another minor issue solved is capital letters in the beginning of a sentence.

4.9 Adding new languages

Furthermore, something the project set out to examine during the course of the
development of the text robot is the potential ease of adding an additional language
using GF when the features are already fully implemented for the other languages.
To add a new language one would firstly need to add the Spanish labels for localities
and municipalities to the SPARQL-querys, then the program will create GF con-
stants for the new language. Secondly, one would have to create the GF grammars
for general facts and specific locality facts for the new language.

This is something that was investigated when adding the Spanish language towards
the end of the project. However, Spanish turned out to not be easy to implement.
This is partly due to the fact that the RGL functionality for the Spanish language
is not as extensively implemented compared to Swedish, German and English (what
is lacking specifically is mentioned in section 5.1). Therefore the GF grammars for
general facts and specific locality facts were difficult to implement since the missing
RGL functions would have to be created manually.

4.10 Using default values

Considering that the topic of the articles is Swedish localities, it is not surprising
that the Swedish names of these localities are more common in Wikidata than in
other languages. Currently, the text robot does not default to the Swedish value and
simply omits the locality if its name does not exist in Wikidata for all of the lan-
guages used. Therefore it might have been better to use a Swedish default value for
the names and, in doing so, write articles on more localities. However, other fields,
i.e. occupation titles, would be strange to default to Swedish because the sentence
would make no sense for non-Swedish speakers, for example, "Stellan Skarsgård is
a skådespelare from Gothenburg". Furthermore, since English is considered a much
more international and well-known language, it might be better to default to English
instead of Swedish for occupations. The use of default values is, however, not yet
implemented.

25

4. Results and Discussion

4.11 Difficulties
Various difficulties were encountered during the project some of them are as follows:

4.11.1 Fewer results with different languages
Various problems were encountered when querying data from Wikidata. Since we
are working with several languages, we query the labels of the objects in all those
languages. To achieve this, a filter has to be used in which the languages that the
labels should be in are specified. The consequence of this is that fewer results are
obtained. Objects that do not have labels in all of the specified languages will be
ignored.

This was not such a significant problem when only working with Swedish and En-
glish since the localities’ and other queried items’ labels were available on Wikidata.
However during the implementation of the German language and when simultane-
ously looking into adding the other languages such as Spanish and Arabic, noticeably
fewer items had labels defined in these languages leading to the queries returning
significantly less results since it does not return empty columns when something
isn’t available in that language.

This is obviously a severe hurdle to overcome since adding a language could sig-
nificantly reduce the amount of data available and to help to alleviate this one could
take several routes of action. For example the query could be split up to have a
separate query getting the labels for the languages that have a sparser amount of
data. After this it could be possible to look into translating, either manually or
automatically, using another database to find equivalent labels in the languages or
for languages with a different script looking into transliteration of the native names.
The latter however, although working for things like names of places or people,
would not work for labelling occupations e.g. one could not just transliterate "au-
thor" into the other languages but would rather have to translate it. With time
though this issue would certainly diminish as Wikidata continues to grow and more
data is added to it in all languages.

4.11.2 Query timeouts
Since the query run-time is limited to a mere 60 seconds, larger queries that fetch
or have to filter through large amounts of data time out and thus not returning
any of the wanted data. This happened many a time while developing our queries.
Often this could be solved by optimising them such as limiting the query earlier
or removing useful but non essential data, such as labels for everything in all lan-
guages, leaving more to the preprocessing stage. However sometimes, as when we
were working on a query to fetch all events that occurred in a locality (such as
concerts, accidents or historical events), we were not able to make it conform to
the 60-second time limit because there was such a large amount of data. A way we
found to solve this is to split the query into multiple smaller queries each fetching a

26

4. Results and Discussion

subset of the larger set “event”. This often works since the amount of data retrieved
from the database is smaller and takes less than 60-seconds. Later, the results from
the smaller queries is merged in preprocessing and works as if it were produced from
one large query.

A concrete example of this issue and how it was solved is when the query fetch-
ing famous people was expanded to also retrieve the occupation labels for German
and Spanish, the query timed out. To solve this a separate query, fetching the same
data for people, was written but instead of Swedish and English labels now retriev-
ing German and Spanish ones. Then these results could be merged in preprocessing
where they were matched to the corresponding results from the other query using
the person IDs.

We have seen another issue with Wikidata. We have a query that works on the
Wikidata query site but does not work in python. We simply get a timeout error
and it does not seem to be a way to further debug the issue. To deal with this
issue, one can use the interactive wikidata query service to download the result files.
These files containing the raw data could then be cleaned in preprocessing.

4.11.3 Linguistics
A significant part of the project came down to learning the subject of linguistics,
which no member of the group had any real prior experience with. As a subject we
found that it differed somewhat to our mostly technical background, but we also
found related areas like data structures or formal languages to bridge the gap in
experience. This meant getting familiar with terms and concepts commonly used
and how they were integrated into GF, some of which were: syntax and syntax trees
specifically, morphology as well as orthography. Other than researching linguistics
on our own and experimenting with GF, getting over this initial road bump in
knowledge was done by attending tutorials given by professor Aarne Ranta and Inari
Listenmaa Ph.D who actively maintain the GF programming language. We were
also given the chance to attend a meeting/discussion where all currently conducted
bachelors theses as well as masters theses related to GF presented their work, hosted
by Denny, which gave us some perspective on our project.

4.11.4 Available Material
When learning a new programming language, a common strategy is to look to web-
sites like stackoverflow.com or similar for solutions when you run into errors. For
popular programming languages this tends to work well, since most likely the prob-
lem you run into is common and there is ample information on how you could amend
your code to solve the issue.

As it turns out however, GF is a programming language with a very particular
niche and does not have a large base of developers who ask and answer question
threads like the ones mentioned above. This complicated the development process,

27

4. Results and Discussion

and so we had to look elsewhere for bug fixes. Most often, we ended up asking Aarne
whenever we ran into a bug which we could not solve, but we were also given the
chance to ask questions in a dedicated GF discord channel.

4.12 Comparison with other existing generated
articles

If an article generated by the text robot developed in this project figure 4.2 is com-
pared to an example of an article created by another text robot, Lsjbot figure 4.5,
many similarities and differences can be noted. One difference is in the content
planning of the articles. Lsjbot seems to focus mostly on geographical and climate
data which might be of interest for a certain audience. The robot in this project
however includes data about famous people and events. This is to make the articles
more enjoyable and interesting to read for a wider audience. When representing
examples of notable famous people from the locality our article also provides in-
formation about their occupation. Furthermore the articles generated by our text
robot has a picture taken in the locality included, as a nice decorative feature and
as a way for the reader to get an idea of the locality while reading.

Both articles mention where the place is located geographically, both in text and
map format, as well as including in what municipality it lies. The population is
also mentioned, although in the article created by Lsjbot it is only mentioned as
a statistic on the side and not in the actual body of the article. Some data about
the weather is also included but unlike the article generated by our text robot, the
Lsjbot article only provides historical information about the weather while ours pro-
vides live data as discussed above figure 4.6.

Another thing to note is that Lsjbot is only implemented for generating articles
in Swedish, Cebuano and Waray, where it currently only is active in Cebuano [3].
Our text robot can generate articles in Swedish, English and German currently and
implementing new languages, although being more difficult than initially perceived
by us, is not that difficult and the project has the possibility to be greatly expanded
to cover many languages without much additional labour as compared to when im-
plement.

In conclusion, what separates our bot form Lsjbot is mainly that we have chosen
a narrower topic which has allowed us to be more specific and able to plan ahead.
Where Lsjbot fails is in that it creates articles for many broad topics, which results
in a very short article in general with little interesting information. It would not
be possible to generate millions of articles with our bot as lsjbot has done, without
implementing many additional languages.

28

4. Results and Discussion

Figure 4.5: An example of an article about a town generated by Lsjbot

Figure 4.6: Articles in Swedish, English and German about the Swedish locality
Stånga

29

4. Results and Discussion

30

5
Conclusion

Overall the project can be seen as a success and there are several conclusions and
learning outcomes to discuss. These will be brought up in this chapter.

5.1 Localities as a domain
Before any coding started, there were discussions regarding which topic of articles
the text robot should write. When selecting a topic for the project, it is important
that the different articles share a similar structure since that enables the use of a
"one fits all" approach when designing the layout of the article. Furthermore, the
topics must have known properties that do not vary between the various articles.
For example, all of the Swedish localities have a population, an area, is part of a
municipality and so on. That makes it easier when designing the article. Also, the
currently existing articles about the topic had to be short enough for the text robot
to be able to write better articles than the preexisting ones realistically.

With these factors in mind several topics were considered, but in the end we settled
for Swedish localities (Swedish: orter) as the topic. They have well known, well de-
fined properties like population, area and other neighbouring localities. In general
the existing articles are very sparse for most localities, especially for languages other
than Swedish.

As time and work on the project progressed, some issues with the topic became
apparent however. For example, the low amount of data available for less popular
localities set the ceiling for what articles could be generated, even if more data was
available for more popular localities. Facts like certain famous events could not be
relied upon to exist for every locality.

With more time at our disposal, many new features could have been implemented.
One such thing is adding more languages such as those that we were not able to
implement like Arabic, Hungarian and Somali, but also potentially other languages.
One of the benefits of GF is that adding new languages, after the structure is al-
ready defined for other languages, is relatively easy and the text robot could then be
expanded to include many more. When adding a new language, only the concrete
syntaxes would have to be added for the language while the abstract ones require
little to no changes. Specifically there was an effort to implement Spanish, but due
to a techical problem that did not appear for Swedish, English or German it, we

31

5. Conclusion

chose not to continue. The problem was that in the library SyntaxSpa.gfo the func-
tion CardCNCard was not included, which we used for other languages.

Currently the text robot only creates articles about Swedish localities. Expand-
ing this to include localities in other countries would be of interest, especially if this
project was to be used in the creation of Wikipedia articles meant to be published
officially. It would not be such a hard task since the queries are already defined and
only certain parts would have to be changed. For example, expanding the restriction
on which areas the localities lies in.

5.2 Expanding the articles

At the moment the articles are not that long and in the future one would potentially
want to add more information to them. This would require writing new queries to
retrieve the new information. Additionally, one would have to think more about
content planning and how to present the new information and structure the article
accordingly. Furthermore, since a new query would have to be created, along with
the new data being implemented in the grammar and code, it would thus not be as
simple of a task as for example adding a new language. For the new queries to be
useful the new information that is retrieved in order to be added to the articles has
to be somewhat general and applicable for many localities. This since if the data
that is retrieved is specific for a particular locality or small set of localities, the query
could only be used for those localities. Thus writing such a query and implementing
the sentences to represent the new information in GF would be a laborious task
and would not have as big of a return. However, since Wikidata is continuously
expanding, this issue could be diminished when more data is available.

5.3 What can be done to make it easier for pro-
grammers to get into GF

In order for developers and programmers to more easily learn to use GF a number of
things could be done. For example, expanding the website with more documentation
and concrete examples, and maybe tutorials and videos, would ease the learning
curve of getting into GF. This would also be helpful since GF is still a smaller
programming language and thus does not have as many bug fixes and resources
online, and providing more documentation and resources would thus be a boon for
people looking to get into it.

32

5. Conclusion

5.4 Improving the web application
At this stage, the web application is at its simplest form. It was developed mainly
to easily browse the articles and to prove that generating articles on demand using
GF is a possibilty for future projects. However, there are multiple features missing
right now that could be implemented at a later stage or by other people. One
example is a more Wikipedia-like look and feel. Another way this program could be
implemented could be to make an API out of it and make it available to other sites
such as Wikipedia to integrate it directly.

5.5 The value of the project
Our text robot can currently generate basic articles for hundreds of different Swedish
localities in four languages, many of which do not currently have articles on Wikipedia.
Thus this project could be used to expand the knowledge available to people in their
languages, that was not previously existent. Additionally, the text robot can further
be improved and expanded to include more languages and a bigger set of data, such
as localities in many different countries, and thus the value provided to people with
more information in several languages would increase.

5.6 Future of Abstract Wikipedia
The Abstract Wikipedia project is exciting and has good chances of succeeding in
creating a Wikipedia which is available in many languages. As can be seen from this
project the foundations for Abstract Wikipedia is already laid and the possibility to
create multilingual text robots exist. However to really get the Abstract Wikipedia
project to expand and grow there are some things that would help. As mentioned
earlier the documentation of GF and RGL is something that could be improved,
this would really help new people who are interested in contributing to Abstract
Wikipedia to get started. Using RGL especially was something that limited the de-
velopment of the robot since a lot of effort had to be put into learning the API and
managing to build correct sentences. This is mostly down the lack of knowledge in
linguistics prior to the project. Although for Abstract Wikipedia to really succeed
there can’t be an expectation that all the contributors have knowledge in linguistics.
For that reason an introduction to linguistics and a more thorough tutorial on RGL
is a good idea to make it easier for new contributors to the project.

Another reoccurring problem was the issue where there didn’t exist Wikidata labels
in different languages for a lot of information that was used in the text robot. The
main goal of Abstract Wikipedia is to share knowledge in a language independent
way. To do this the Wikidata data has to be be expanded so that the labels cover
a lot more data in many more languages. Even in this project of limited size, big
gaps of the labels in different languages were found. Having good coverage on the
labels for many languages is something that should be considered important for the

33

5. Conclusion

expansion of Abstract Wikipedia. Since Wikidata relies on voluntary contributors
it is not easy to just translate all the data, however it might be a good idea to
encourage users to contribute. Exactly how this is done is not important but a
simple interface to add labels in new languages might encourage to contribute and
lead to a Wikidata with higher coverage.

5.7 Connecting back to the project’s aim
Looking back at the project aim, the first part of it was to investigate the use of
GF to generate Wikipedia articles using Wikidata as the data source. As our result
shows, we were successful in using GF to generate articles with data retrieved from
Wikidata. By making the articles longer and adding more facts, these could poten-
tially be used in Wikipedia. This proves the value a text robot built with GF could
have in generating large amount of articles all by using the same grammar. Our
result also shows the difficulties that are there when implementing the text robot.
Some of these difficulties, such as query timeouts, are caused by Wikidata.

The second part of the project aim was to evaluate how easy it would be for de-
velopers with no prior knowledge of GF and similar education background to us
to produce relevant Wikipedia articles. The main hurdle here as discussed earlier
sections is the limited amount of available information on GF. Since GF is not as
widespread as some of the popular programming languages, it is difficult to find
information on for example bug fixes. As the GF community grows with time this
may become less of a problem, but real improvement would come from making the
technology more accessible to wikipedia contributors without a background in pro-
gramming. Forms and intuitive GUIs over programming interfaces may allow them
to contribute their human knowledge necessary to generate articles, without having
to go through the process of not only learning to program in general but also learn-
ing to use GF.

5.8 Reflections on Prerequisite Skills and Sugges-
tions for future work

Given that the topic of localities is a relatively simple subject compared to other less
conformative topics, one could assume that given more prerequisites, more difficult
topics could have been selected. Even if the group as a whole had all the relevant
experience in programming and computer science necessary to complete the project,
one large obstacle that kept showing up was the inexperience in linguistics. It
should be noted however that this was partly the point of the project: to test how
well students proficient in the technical details could perform without a background
in linguistics. Given more experience in linguistics more difficult language could be
generated and therefore more advanced article topics.

34

6
Bibliography

[1] A. Kittur and R. E. Kraut, “Harnessing the wisdom of crowds in wikipedia,”
Proceedings of the ACM 2008 conference on Computer supported cooperative
work - CSCW ’08, 2008. doi: 10.1145/1460563.1460572.

[2] C. t. W. projects, List of wikipedias, Apr. 2022. [Online]. Available: https:
//meta.wikimedia.org/wiki/List_of_Wikipedias.

[3] K. Wilson, The world’s second largest wikipedia is written almost entirely by
one bot. [Online]. Available: https://www.vice.com/en/article/4agamm/
the-worlds-second-largest-wikipedia-is-written-almost-entirely-
by-one-bot.

[4] E. E. Jervell, For this author, 10,000 wikipedia articles is a good day’s work,
Jul. 2014. [Online]. Available: https : / / www . wsj . com / articles / for -
this- author- 10- 000- wikipedia- articles- is- a- good- days- work-
1405305001.

[5] J. Clement, Global top websites by monthly visits 2020, Sep. 2021. [Online].
Available: https : / / www . statista . com / statistics / 1201880 / most -
visited-websites-worldwide/.

[6] D. Vrandečić. Wikimedia Foundation, Jul. 2021. [Online]. Available: https:
//www.youtube.com/watch?v=if5TeJ8N2p8&t=648s&ab_channel=
CentreforComputationalLaw%28CCLAW%29%2CSMU.

[7] Abstract wikipedia, Jan. 2022. [Online]. Available: https://meta.wikimedia.
org/wiki/Abstract_Wikipedia.

[8] Bybrunnen/arkiv 2016-11, Sep. 2017. [Online]. Available: https://sv.wikipedia.
org/wiki/Wikipedia:Bybrunnen/Arkiv_2016-11#Robotskapade_artiklar_
en_nackdel?.

[9] Proposals for closing projects/closure of cebuano wikipedia. [Online]. Available:
https://meta.wikimedia.org/wiki/Proposals_for_closing_projects/
Closure_of_Cebuano_Wikipedia.

[10] What is esco? [Online]. Available: https://esco.ec.europa.eu/en/about-
esco/what-esco.

35

https://doi.org/10.1145/1460563.1460572
https://meta.wikimedia.org/wiki/List_of_Wikipedias
https://meta.wikimedia.org/wiki/List_of_Wikipedias
https://www.vice.com/en/article/4agamm/the-worlds-second-largest-wikipedia-is-written-almost-entirely-by-one-bot
https://www.vice.com/en/article/4agamm/the-worlds-second-largest-wikipedia-is-written-almost-entirely-by-one-bot
https://www.vice.com/en/article/4agamm/the-worlds-second-largest-wikipedia-is-written-almost-entirely-by-one-bot
https://www.wsj.com/articles/for-this-author-10-000-wikipedia-articles-is-a-good-days-work-1405305001
https://www.wsj.com/articles/for-this-author-10-000-wikipedia-articles-is-a-good-days-work-1405305001
https://www.wsj.com/articles/for-this-author-10-000-wikipedia-articles-is-a-good-days-work-1405305001
https://www.statista.com/statistics/1201880/most-visited-websites-worldwide/
https://www.statista.com/statistics/1201880/most-visited-websites-worldwide/
https://www.youtube.com/watch?v=if5TeJ8N2p8&t=648s&ab_channel=CentreforComputationalLaw%28CCLAW%29%2CSMU
https://www.youtube.com/watch?v=if5TeJ8N2p8&t=648s&ab_channel=CentreforComputationalLaw%28CCLAW%29%2CSMU
https://www.youtube.com/watch?v=if5TeJ8N2p8&t=648s&ab_channel=CentreforComputationalLaw%28CCLAW%29%2CSMU
https://meta.wikimedia.org/wiki/Abstract_Wikipedia
https://meta.wikimedia.org/wiki/Abstract_Wikipedia
https://sv.wikipedia.org/wiki/Wikipedia:Bybrunnen/Arkiv_2016-11#Robotskapade_artiklar_en_nackdel?
https://sv.wikipedia.org/wiki/Wikipedia:Bybrunnen/Arkiv_2016-11#Robotskapade_artiklar_en_nackdel?
https://sv.wikipedia.org/wiki/Wikipedia:Bybrunnen/Arkiv_2016-11#Robotskapade_artiklar_en_nackdel?
https://meta.wikimedia.org/wiki/Proposals_for_closing_projects/Closure_of_Cebuano_Wikipedia
https://meta.wikimedia.org/wiki/Proposals_for_closing_projects/Closure_of_Cebuano_Wikipedia
https://esco.ec.europa.eu/en/about-esco/what-esco
https://esco.ec.europa.eu/en/about-esco/what-esco

6. Bibliography

36

	List of Figures
	Introduction
	Background
	Purpose and Aim
	Benefits of multilingual text robots
	Societal and ethical aspects

	Theory
	Tools
	SPARQL
	Grammatical Framework
	Python

	Syntax Trees
	Syntax Trees in Grammatical Framework
	Multilinguality
	Massaging syntax trees

	Methods
	Development process
	Using RGL to implement grammars
	Virtues of pair programming
	Limitations

	Results and Discussion
	The algorithm behind the text robot
	Data Fetching
	Creating the abstract syntax trees
	Linearisation of abstract syntax trees
	Post-processing the article

	Handling names
	The article
	Massaging syntax trees
	Content Planning
	Live data
	Query data
	Post processing
	Adding new languages
	Using default values
	Difficulties
	Fewer results with different languages
	Query timeouts
	Linguistics
	Available Material

	Comparison with other existing generated articles

	Conclusion
	Localities as a domain
	Expanding the articles
	What can be done to make it easier for programmers to get into GF
	Improving the web application
	The value of the project
	Future of Abstract Wikipedia
	Connecting back to the project's aim
	Reflections on Prerequisite Skills and Suggestions for future work

	Bibliography

