
A Language for Board Games

Development of an Embedded Domain-Specific Language
for Describing Board Games

Bachelor’s thesis in Computer science and engineering

Edvin Alestig
Joel Ericson
Erik Eriksson
Lukas Schiavone
Filip Torphage
Joakim Tubring

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2022

Bachelor’s thesis 2022

A Language for Board Games

Development of an Embedded Domain-Specific Language
for Describing Board Games

Edvin Alestig
Joel Ericson

Erik Eriksson
Lukas Schiavone
Filip Torphage
Joakim Tubring

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2022

A Language for Board Games
Development of an Embedded Domain-Specific Language
for Describing Board Games

Edvin Alestig Joel Ericson Erik Eriksson Lukas Schiavone Filip Torphage
Joakim Tubring

© Edvin Alestig, Joel Ericson, Erik Eriksson, Lukas Schiavone, Filip Torphage,
Joakim Tubring 2022.

Supervisor: Robin Adams, Department of Computer Science and Engineering
Examiner: Alex Gerdes, Department of Computer Science and Engineering

Bachelor’s Thesis 2022
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Gothenburg, Sweden 2022

iii

A Language for Board Games
Development of an Embedded Domain-Specific Language
for Describing Board Games

Edvin Alestig, Joel Ericson, Erik Eriksson, Lukas Schiavone,
Filip Torphage, Joakim Tubring

Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
In recent years board games have increasingly found themselves in the digital medium.
One way to enable easier creation of digital board games is to create a domain-
specific language (DSL) for that purpose. This thesis details the process of develop-
ing an embedded DSL for describing board games with Haskell as its host language.
The goal is for users to be able to develop a large number of board games using the
language. How the DSL was created is explained. Also included is a detailed guide
on how to create board games using the DSL as well as a list of all tools available to
the user of the language. Alongside the guide are examples of different board games
written in the language. After the results are presented a description is given on
the inner workings of how a game is run based on its specifications. Thereafter the
results of the project are thoroughly discussed and guidelines are given on how the
DSL could be improved and expanded upon in the future.

Keywords: DSL, domain-specific languages, Haskell, functional programming, board
games, game theory

Ett språk för brädspel
Utveckling av ett inbäddat domänspecifikt språk för att beskriva brädspel

Edvin Alestig, Joel Ericson, Erik Eriksson, Lukas Schiavone,
Filip Torphage, Joakim Tubring

Institutionen för Data- och Informationsteknik
Chalmers Tekniska Högskola och Göteborgs Universitet

Sammandrag
På senare tid har brädspel alltmer befunnit sig i det digitala mediet. Ett sätt att
möjliggöra skapandet av digitala brädspel är att skapa ett domänspecifikt språk
(DSL) för det syftet. Den här avhandlingen beskriver processen för att utveckla
ett DSL i Haskell för att beskriva brädspel samt bakgrundsteori om DSL:er och
spelteori. Målet med språket är att möjliggöra skapandet av ett stort antal brädspel.
Hur DSL:en skapades förklaras. Inkluderat är också en detaljerad guide om hur
man skapar brädspel med hjälp av språket samt en lista över alla verktyg som är
tillgängliga för användaren av språket. Vid sidan av guiden finns exempel på olika
brädspel skrivna i språket. Efter att resultaten presenterats ges en beskrivning av
hur ett brädspel körs internt, baserat på dess specifikationer. Därefter diskuteras
projektets resultat och riktlinjer ges för hur språket kan förbättras och utökas i
framtiden.

Nyckelord: DSL, domänspecifika språk, Haskell, funktionell programmering, bräd-
spel, spelteori

Acknowledgements
We would like to give a big thank you to our supervisor Robin Adams. He has
helped us a lot with the technical aspects of the project as well as with this report.
We would also like to thank our examiner Alex Gerdes for his help with the planning
report.

Edvin Alestig, Joel Ericson, Erik Eriksson, Lukas Schiavone, Filip Torphage,
Joakim Tubring
Gothenburg, May 2022

Contents

List of Figures ix

List of Tables x

Nomenclature xi

1 Introduction 1
1.1 Problem . 2
1.2 Purpose . 2
1.3 Scope . 3
1.4 Source Code . 3

2 Background Theory 4
2.1 Haskell . 4
2.2 Domain-Specific Languages . 5

2.2.1 Embedded and External Domain-Specific Languages 5
2.2.2 Types of embedding . 5

2.3 Game Theory . 7

3 Design 9
3.1 Process . 9

3.1.1 Iterative Development . 9
3.2 Language Description . 10

3.2.1 The Game Data Type . 10
3.2.2 Turns . 12
3.2.3 Updates . 12
3.2.4 Conditions . 12
3.2.5 Rules . 13
3.2.6 Creating a Board Game . 16

3.3 Example Games . 16
3.3.1 Tic-tac-toe . 16
3.3.2 Othello . 17
3.3.3 Chess . 17

3.4 Implementation Details . 18
3.4.1 Run Functions . 20

3.5 Testing . 21

vii

Contents

4 Discussion 22
4.1 Changes from the Planning Phase . 22
4.2 Evaluation . 23

4.2.1 Usability . 24
4.3 Reflections . 25

4.3.1 Type of Embedding . 25
4.3.2 Limitations . 26

4.4 Future Expansions . 27
4.4.1 GUI . 27
4.4.2 DSL Improvements . 27
4.4.3 Uses in Research . 29

4.5 Societal Considerations . 30
4.5.1 Analysing Games . 30
4.5.2 Accessibility . 31

5 Conclusion 33

Bibliography 34

A Example of a DSL using deep and shallow embedding I

B Chess modelled with the DSL III

C Library functions VI
C.1 Boards . VI
C.2 Rules . VI

C.2.1 Rule Utility . VII
C.3 Conditions . VII
C.4 Updates . IX
C.5 Display functions . X

viii

List of Figures

2.1 An example of shallow embedding. 6
2.2 An example of deep embedding. 6
2.3 An example run function for the deep embedded example of standard

logical operators. 7

3.1 The implementation of the Game data type. 11
3.2 The implementation of the Board and Tile data types. 11
3.3 The implementation of the Piece and Player data types. 11
3.4 The implementation of the Turn and Action data types. 12
3.5 The implementation of the Update data type. 12
3.6 The implementation of the Condition data type. 13
3.7 Using All to check that all tiles between two coordinates fulfill a

condition. 13
3.8 Constructing the condition for the moveset of a bishop in chess. . . . 13
3.9 The implementation of the Rule data type. 14
3.10 An example of a conditional rule using if statements and combining

two conditions. 14
3.11 Behaviour of the three operators used for sequencing rules when a

rule fails. 15
3.12 An implementation of tic-tac-toe using the DSL. 17
3.13 An implementation of Othello using the DSL. 18
3.14 The run function for the Game data type. 19
3.15 The playTurn and postPlayTurn functions. 20
3.16 Function that applies a list of Rule to the game. 20

4.1 A potential improvement to the tile data type 28
4.2 An example of how the rules for Othello could be better specified. . . 30

A.1 An example of a deep embedded DSL I
A.2 An example of a shallow embedded DSL II

B.1 An implementation of chess using the DSL III
B.2 How the chessboard for the game chess is defined using the DSL. . . . IV
B.3 How the chess rules are defined using the DSL. V

ix

List of Tables

4.1 Table showing lines of code per game implementation, with and with-
out using the DSL. 24

x

Nomenclature

Cooperative game Games where players are encouraged to work together to
maximise their own gain.

Deep embedded DSL A type of embedding where the syntax is stored in a data
type and is interpreted by a run function.

DSL Domain-Specific Language
eDSL Embedded Domain-Specific Language
GPL General Purpose Language
GUI Graphical User Interface
Imperfect information See perfect information.
IO Input and output
Perfect information A perfect information game is a game in which all players

have the same information of the game. This may include
the knowledge of previous moves, possible future moves
and cards on a player’s hand. Otherwise the game is called
an imperfect game.

Run function A function that interprets a DSL’s semantics to produce a
result.

Shallow embedded DSL A type of embedding where all semantics are created using
functions building a final value.

Simultaneous game A game where players do actions without the knowledge
of the other players’ actions.

Zero-sum game A game where the total gain of the players must be equal
to the total expense of the players in the game.

xi

1
Introduction

One popular form of entertainment and socialisation among groups is board games.
Board games have been played throughout history and have been traced as far back
as ancient Egyptian times. One of the oldest board games ever played is called Senet.
Senet was played by higher-standing members of the ancient Egyptian society and
evidence suggests that it was played as far back as 3100 BC [1]. In our modern day,
board games have needed to adapt to a new medium, the digital one. Fortunately,
board games are well fitted to this medium due to their structure and there are
many digital board games already in existence.

Many board games share a common structure: A game begins in a particular state,
followed by a number of turns. In each turn, a particular number of players make
a particular amount of allowed moves until some condition for winning or a draw is
met, all of which is based on the rules of the game. This common structure can be
taken advantage of when creating digital versions of these games. One way this can
be done is to create a Domain-Specific Language (DSL) for board games. A DSL is
a language focused on helping you solve problems within one particular domain. A
DSL can utilise the commonality of board games to make the creation of them easier,
cutting down on implementation time and code complexity. The goal of this project
is to create such a DSL, together with a set of sample games that are implemented
with the DSL to showcase its capabilities.

A DSL like this has many uses, both for entertainment purposes but also for research
and testing purposes. One could for instance write a program within its’ framework
that analyses a certain state of a game and then outputs the chances of each player
winning. Done right, this would work for all games that can be described with the
language without needing to make it specific to one game. This claim will be justified
in section 4.4.3. Another reason as to why a DSL for describing board games would
be useful is for the creation of brand new games. Using a DSL someone could quickly
create a new game and then test it to see that it plays as intended.

There are multiple instances of computer languages made for creating board games.
Perhaps the largest and most exhaustive one is a project called Ludii. It was created
by a team at Maastricht University and they describe Ludii as a “general game
system” [2], and is a DSL used for creating games (including but not limited to board
games). They state that the game system can describe any traditional strategy game
with over 700 of what is referred to as “concepts”. The DSL created in this project

1

1. Introduction

will have a smaller scope with fewer “concepts”. This can mean that the DSL will
be easier to learn and use but will consequently support a smaller set of games.

1.1 Problem
The problem that the group decided to solve for this project was to create a DSL
that enables the user to easily create board games within the subset of board games
that are supported. This problem can be broken down into sub-problems. To begin
with, an accurate data type representation of a game needed to be made. This choice
of the data type affected how the rest of the code was written, so it was important
to have a solid base. Also, what operations are needed to be performed on the game
in order to change its state according to the turns the players make and the rules
applied.

The game type in itself needed to contain data types representing other components
of the game including the board, rules, pieces, and players. How each of these
components will be modelled and used by the users of the DSL are problems in and
of themselves. The rules of board games vary in complexity and simply providing a
collection of rules to the user does not suffice. Therefore, the DSL must provide the
user with the ability to create complex rules using simple components and features
the DSL provides. This is the only way to support a large number of games without
having specific functionality for each game the DSL supports. For instance, let us
say that a game rule should only be applied if a certain condition is met. Then
there would need to be a way to be able to model conditional rules, similar to if
statements in “ordinary” programming languages.

Additionally, there is a usability aspect to the DSL that needs to be considered. How
is the user going to create a new board game? What must they write or specify to
be able to model a game and run it? The goal is for the users to be able to model
games as expressively and easily as possible. Achieving this was challenging.

1.2 Purpose
The purpose of this project was to develop an embedded DSL (eDSL) in Haskell for
creating board games. The DSL should allow the user to model a large number of
board games with varying complexity in an expressive way. The quality of the DSL
will be measured by how complex the board games the user can implement are, as
well as how easy it is to make them.

To aid in the fulfilment of the purpose, a set of goals were made for incrementally
developing the DSL towards more and more complex games. These goals are as
follows:

1. Create a DSL that can model the game tic-tac-toe. This game is characterised
by players alternating turns placing static game pieces.

2

1. Introduction

2. Develop the DSL further to allow the creation of Othello, which has intricate
rules for what happens after each piece is placed.

3. Finally, model the game Chess using the DSL. This game has complex rules,
specific to individual game pieces, and also has moving game pieces.

Note that these three games are only the “goal games” that are used as a guide
for what kind of features should be worked on and when. More games were taken
into consideration to get a broader view of more ideas, rules, and concepts during
development.

1.3 Scope
Due to the sheer number of board games in existence certain limitations had to be
imposed for this project to be completed in the given time frame. The first and most
important limitation is that only board games where positions can be described by
discrete two-dimensional coordinates on a rectangular board are supported. Other
limitations regarding the structures of board games are the following:

• Rules that change during the course of the game (dynamic rules) are not
supported.

• Only zero-sum games are supported.

• Cooperative games are not supported.

• Only perfect-information games are supported.

• Simultaneous/non-sequential games are not supported.

The terms mentioned above will be explained in section 2.3.

This project will not lay focus on a Graphical User Interface (GUI). The default
user interface that is given to the user is text printing to, and user input from, the
terminal. The time that would be spent on developing a GUI was instead spent on
expanding the DSL to support a larger set of games.

1.4 Source Code
All of the source code can be found on the project’s GitHub page:
https://github.com/edvinalestig/kandidatarbete

3

https://github.com/edvinalestig/kandidatarbete

2
Background Theory

In the following sections, relevant information for understanding this project is pre-
sented. First, the programming language Haskell will be explained and its benefits
for using it for development. Then, domain-specific languages and some of the dif-
ferent types of DSLs that exist are explained. Lastly, relevant game theory terms
necessary to understand the scope will be explained.

2.1 Haskell
Functional programming languages have many unique features that can simplify
the work of creating an eDSL. One well-known functional programming language is
Haskell. It is a pure, statically typed, and lazy functional programming language
that is based on lambda calculus [3].

Haskell offers a compact syntax that can be used to create an eDSL with less code
than other common programming languages [4]. This is mainly because of its pow-
erful type system, higher-order functions, and lazy semantics [5]. The type system
in Haskell is an algebraic data type system, and according to Jeremy Gibbons, this
is crucial for making a deep embedded DSL [6]. The different types of embedding,
including deep embedding, will be explained in more detail in section 2.2. By being
a programming language with lazy semantics Haskell also allows the use of infinite
data types, opening up many options for writing a DSL. Higher-order functions are
also built into the language, providing more options to minimise repetitive functions.
Additionally, Gibbons also says that higher-order functions are more or less required
for building a shallow embedded DSL. Having the features to write both deep and
shallow embedding gives the option of choosing which one fits better.

Another advantage of Haskell is the fact that it is a pure programming language. By
being pure, Haskell guarantees that its functions do not have any side effects without
explicitly specifying them. If there were side effects, you could get unexpected
behaviour by combining functions that change the state in ways that have not been
tested or thought about. Therefore, writing in a language without side effects would
be especially useful for a DSL where the users of it are free to use the language as
they please.

4

2. Background Theory

2.2 Domain-Specific Languages
A domain-specific language is a language that is tailored to a specific domain [7].
Well-known DSLs include HTML for structuring web pages and CSS for stylising
them. However, JavaScript, often used in combination with HTML and CSS, is not
tied to a specific domain and is therefore not a DSL. Instead, it is a General-Purpose
Language (GPL). This is because JavaScript has uses in many different domains,
including web pages, servers, and other applications [8].

When working within a given domain, using a DSL can have many benefits over using
a GPL. This is simply because DSLs are created with a single purpose in mind, as
opposed to GPLs. Consequently, this means that DSLs can be more expressive and
easier to use compared to using GPLs within the same domain [9]. One way this is
achieved is by using abstraction as a way to remove boilerplate code [10], i.e. code
that does not provide any new information to the reader but is still required to
obtain the intended functionality. Their limited scope also means that they are, in
theory, easier to learn and do not require you to necessarily have any knowledge of
any general-purpose programming languages. This means that DSLs can be used
by domain experts without a software development background. Of course, there
are disadvantages to DSLs as well. For instance, having to learn a new language
compared to using a GPL you are familiar with, or the difficulties of integrating
code from multiple domains using different DSLs instead of using a single GPL.

2.2.1 Embedded and External Domain-Specific Languages
There are two kinds of DSLs, embedded (sometimes called internal) and external.
An embedded DSL, or eDSL, is written in a GPL, which is often called the host
GPL [7]. An eDSL can be constructed as a library for the host language. One
advantage of creating an eDSL is that it can use the compiler or interpreter of its
host language [4]. However, this means that the syntax is fixed to what is possible
in the host language. This can create limitations in the expressiveness of the DSL.

External DSLs, on the other hand, use their own compiler or interpreter [11]. Nat-
urally, this gives the creators of the DSL freedom to design the language as they
please. They control the whole pipeline which includes parsing, syntax, as well
as optimising. External DSLs can thus be powerful, but consequently difficult to
create.

2.2.2 Types of embedding
There are different ways to embed a DSL in a host language [12]. The embedding
can be either shallow, deep, or a combination of the two. The decision of whether
to use a deep or shallow embedding depends on the purpose of the DSL. If there
are few interpretations, a combination of the two can be preferable. This allows the
easy addition of new constructs while also allowing multiple interpretations. Below,
the difference between deep and shallow embedding is explained.

5

2. Background Theory

In a shallow embedding, the representation of the semantics of the language is
done directly in the host language. The interpretation is directly described in the
functions used. Figure 2.1 shows an example of a shallow embedding representing the
operators “<” and “>”. Later the same example will be used for a deep embedding.
In this example, Haskell is used since a shallow embedding is directly connected to
the host language used.

type Exp = Int -> Int -> Bool

eLt :: Exp
eLt e1 e2 = e1 < e2

eGt :: Exp
eGt e1 e2 = e1 > e2

Figure 2.1: An example of shallow embedding.

A deep embedded DSL defines a unique structure using a syntax tree where the order
and types of arguments are specified. Then, the host language is used to parse, type
check, and interpret the language. There are usually two major parts in a deep
embedding. The syntax of the language, represented by composite data types, and
the interpreter, also called the run function. Figure 2.2 shows the same example
of the standard logical operators “<” and “>” but defined using deep embedding
instead.

data Exp where
Let :: Int -> Exp
ELt :: Exp -> Exp -> Bool
EGt :: Exp -> Exp -> Bool

Figure 2.2: An example of deep embedding.

Both ELt and EGt are non-associative. The next step is to parse the input. Evalu-
ating the expression 1 < 3 would yield the following parse tree.

ELt (Let 1) (Let 3)

This is where the run function is used, it takes the syntax tree as the argument and
uses the host language to compute the result. Figure 2.3 shows an example of a run
function written in Haskell.

Now the host language can be used to perform the calculation. Another example of
a DSL written both with a shallow and deep embedding can be seen in appendix A.

6

2. Background Theory

run :: Exp -> Bool
run (ELt (Let n1) (Let n2)) = n1 < n2
run (EGt (Let n1) (Let n2)) = n1 > n2

Figure 2.3: An example run function for the deep embedded example of standard
logical operators.

2.3 Game Theory
Game theory is a branch of mathematics for finding mathematical models for pro-
cesses where players are competing. These mathematical models are often divided
into several different categories. Below are summaries of how some of these cate-
gories are defined in [13].

A zero-sum game is a game such that the total gain of the players must be equal to
the total expense of the players in the game. This means that the gains of a set of
players must mean an equal loss for another set of players. For example, in poker,
the winnings a player makes are at the expense of others. A non-zero-sum game is a
game where the total numbers of rewards and penalties may differ at the end of the
game. For example, if the same game is played several times the end result might
differ. It might be that in one game the points received by the players in the game
might be larger than the penalties.

Zero-sum: rewards − penalties = 0
Non-zero-sum: rewards − penalties ̸= 0.

An example of this is the famous Prisoner’s Dilemma where the total score (in this
case, the amount of years imprisoned) can end with total scores that do not add to
zero [14].

Cooperative games are games where players are encouraged to work together to
maximise their own gain. In game theory, this is often framed as several players
being able to form coalitions and, by knowing the outcomes of these coalitions,
argue for a scenario that everyone can agree on that benefits the individual as much
as possible. One common framing of this is games where all the players are a joint
team that either wins or loses as a group. Sometimes this is framed as a zero-sum
game where the players are a team and the game is framed as an opposing entity.
In Mysterium, one player plays as the ghost and tries to instruct the other players
to figure out who has murdered them [15]. This is a cooperative game since all the
players are working towards achieving the same win state. Non-cooperative games
are the opposite of this, where players are tasked to maximise their own gain without
concerning themselves with benefiting others.

Another distinction people make in terms of classifying games is a split between
whether the players have perfect or imperfect information. Games of perfect infor-
mation mean that all players have information on all moves done by every other
player and their inventories as well. In chess, the players know what moves can be

7

2. Background Theory

made at any given board state as well as every move that has been made, making it
a game of perfect information. On the other hand, a game that hides information
from players, such as poker, will be classified as a game of imperfect information.
This includes all games where players have some kind of hidden inventory.

Simultaneous games are characterised by doing an action without the knowledge of
the other players’ actions. This is either achieved by having multiple players play
simultaneously or having the players play sequentially but without knowledge of the
other players’ moves. This is in contrast to sequential games where the latter players
have some knowledge about other players’ earlier actions. This term is, again, well
represented by chess as a sequential game, as players take their turns in order and
get to see the opposing player’s move before making their own, and the prisoner’s
dilemma as a simultaneous game, as both players make their move without the
knowledge of the other player’s decision.

8

3
Design

This chapter will go over everything there is to know about the implementation
and usage of the DSL. First, this chapter will present how the DSL was developed.
Then, a language description containing the information needed for using the DSL
to model games, followed by a showcase of some of the example games created using
the DSL. After that, a somewhat brief look at the implementation details of the DSL
and how it works internally. Finally, a section about how testing was conducted on
the code base to verify certain functionality.

3.1 Process
The language created was chosen to be an eDSL using Haskell as its host language.
Choosing to write an embedded DSL meant that more time could go into developing
the DSL rather than implementing basic functionality for compiling or interpreting
the language. Selecting the host language as Haskell was not only for all the reasons
brought up in section 2.1 but also because the group members were familiar with it.

Before beginning the development of the DSL, a few simple games were chosen for
implementation to find the similarities between them. By studying the similarities
between these games a base for the DSL could be formed based on these similarities.
The four games that were chosen in the beginning were tic-tac-toe, Connect Four,
Othello, and snakes and ladders. After these four games were finished development
began on the DSL using their common structure as an outline.

3.1.1 Iterative Development
The development process was done in iterations. Each one consisted of developing
the DSL to a state such that it supported the creation of a pre-decided game. As
mentioned in section 1.2, these were tic-tac-toe, Othello, and chess. Again, more
games were taken into consideration during the development process to get a larger
variety of ideas, rules, and concepts for the DSL.

For the first iteration, the goal was to have enough functionality to implement
tic-tac-toe, where pieces are static and the rules are simple. During the second
part, there would have to be expansions to the DSL to enable the modelling of
Othello. The original goal for the second iteration was the creation of Ludo. This

9

3. Design

would include the support of moving pieces, multiple pieces on a tile and die rolls.
However, due to changes in scope which excluded functionality necessary for being
able to model Ludo, the second goal was changed from Ludo to Othello. The reasons
for why the plan changed will be explained in more detail in section 4.1. Othello
has similarities with tic-tac-toe, both games consist of two players taking turns
placing pieces onto the game board. What makes Othello different is that the rules
for placing pieces and the effects of placing a piece are much more complex. To
accommodate for this, the rule system had to be reworked to allow for the user
themselves to build up complex rules using smaller building blocks, instead of only
using existing rules that were provided to them.

As the last goal of the project, the plan was to be able to model chess using the
DSL. Chess has a complex set of rules with different pieces having different ways
they move around the board, which includes rules based on whether or not a piece
has been moved previously. A player cannot castle if they have already moved the
king, for instance. The previous games all had static pieces so allowing for the
movement of pieces and accompanying rules had to be implemented. Due to the
work done to generalise and modularise the library during the second phase, not
much effort was required to support the movement of pieces. In the end, however,
not all rules for chess could be implemented. Castling and en passant did not get
implemented, and to win you have to capture the king, meaning that our version of
chess cannot end in a draw.

3.2 Language Description
This section describes everything a user of the DSL needs to know to use the library
for creating board games on their own. First, a look at some important data types
for understanding how to create games and rules, including the fundamental Game
data type, followed by the types of rules as well as how they are defined. Then, the
details of how exactly a game can be created, using the tools the DSL provides.

3.2.1 The Game Data Type
To use the DSL for creating board games the developer should use the game value,
which is of type Game, and override the necessary fields for the particular game
implementation. The game can then be played by passing it as an argument to
the function playGame :: Game -> IO (). Because the DSL is deep embedded,
you, as a developer, can create your own functions for running the game. By doing
so, you will have the freedom of choosing how the games will play. You can, for
instance, do this to hook up a proper UI framework to the game or use it together
with AIs.

The Game data type can be seen in figure 3.1. The fields you should consider over-
riding are board, pieces, players, preTurnRules, rules, endConditions, and
dispFunction. How each of these fields works will be explained below.

The Board data type is defined as a list of lists of tiles, where a Tile is either Empty

10

3. Design

data Game = Game
{

board :: Board,
pieces :: [Piece],
players :: [Player],
preTurnRules :: [Rule],
rules :: [Rule],
endConditions :: [Rule],
winner :: Maybe Player,
gameEnded :: Bool,
dispFunction :: Game -> IO ()

}

Figure 3.1: The implementation of the Game data type.

or contains a single piece, PieceTile. Tiles also contain a Pos, which is just a
simple data type containing two integer values. How these types are defined in the
code base can be seen in figure 3.2.

data Pos = Pos Int Int
deriving (Eq, Show)

type Board = [[Tile]]

data Tile = PieceTile Piece Pos
| Empty Pos

deriving (Eq)

Figure 3.2: The implementation of the Board and Tile data types.

Players are described by a string that should be unique for that player. Pieces
contain the player whose piece it is as well as a string of how it is represented, i.e.
what kind of piece it is. The definition of Piece and Player can be seen in figure
3.3.

data Piece = Piece String Player
deriving (Eq)

newtype Player = Player String
deriving (Eq)

Figure 3.3: The implementation of the Piece and Player data types.

The last field in the Game data type is dispFunction. The default implementation
has the dispFunction set as a “pretty print” function for displaying the game to
the terminal. This function uses the piece identifier string directly at the place it

11

3. Design

is located when displaying it, meaning that all pieces should consist of only one
character for it to display properly.

3.2.2 Turns
A turn is specified to be an action on a single piece. An action is either placing a
piece at a certain position or moving it from one position to another. Exactly how
turns are defined can be seen in figure 3.4.

data Turn = Turn Piece Action
deriving (Show)

data Action = Place Pos | Move Pos Pos
deriving (Show)

Figure 3.4: The implementation of the Turn and Action data types.

3.2.3 Updates
The base type representing a change to the state of the game is called Update. Its
definition can be seen in figure 3.5. For the game state to update, a turn must
be played, hence why Turn is used. The parameter t is whatever type is updated,
which, in the library will either be Game or Turn. You can chain multiple updates
together using COMBINE.

data Update t = Update (Turn -> t -> t)
| (Update t) `COMBINE` (Update t)

Figure 3.5: The implementation of the Update data type.

3.2.4 Conditions
Conditional rules will be used in almost all cases when specifying a board game.
Using a non-conditional rule in a game would lead to it being applied every single
turn, which might be useful in certain niche cases. Since conditional rules are so
important it is equally if not more important to have the ability to construct com-
plicated conditions from simpler conditions. The Condition data type is shown in
figure 3.6 and shows the base Condition as well how more complex conditions can
be constructed.

The first three operations ‘AND‘, ‘OR‘ and NOT are simple boolean operators that
do not need to be explained further. The last two operations, All and Any are a
bit more complicated and work very similarly to each other. To use them one must
specify a condition on the type a as well as a function that produces a list of a’s
given a Turn and Game as inputs. The All condition will return True if all elements
in the list fulfill the condition, Any will return True if at least one element fulfills the

12

3. Design

data Condition a = Condition (a -> Game -> Bool)
| (Condition a) `AND` (Condition a)
| (Condition a) `OR` (Condition a)
| NOT (Condition a)
| All (Condition a) (Turn -> Game -> [a])
| Any (Condition a) (Turn -> Game -> [a])

Figure 3.6: The implementation of the Condition data type.

condition. A use of All is shown in figure 3.7. For the condition tilesBetweenAre
to return true, the condition c applied to the result of tilesBetweenTwoCoords
must all be true.

tilesBetweenAre :: Condition Turn -> Condition Turn
tilesBetweenAre c = All c tilesBetweenTwoCoords

Figure 3.7: Using All to check that all tiles between two coordinates fulfill a
condition.

A good example of a complex condition is the condition for if a move is equal
to the move of a bishop in chess, seen in figure 3.8. Important to note is the
naming convention here. Where a condition relates to will be included in the name,
that is, either its origin or its destination of the move. In this case, it is NOT
allyDestination, which means that the bishop cannot capture a piece of their own
colour.

bishopMove :: Condition Turn
bishopMove = isDiagonalMove `AND` tilesBetweenAre emptyTile

`AND` allyTile `AND` NOT allyDestination

Figure 3.8: Constructing the condition for the moveset of a bishop in chess.

3.2.5 Rules
In the Game data type there are three fields containing lists of rules, each serving a
different purpose. The fields along with their purpose are as follows:

• preTurnConditions: Some games have rules that should be applied before
you are allowed to input your turn. An example of this is if the player’s turn
should be skipped if they have no legal move.

• rules: Rules that determine how a turn should be played, what the player is
allowed to do, and what happens when a turn is played.

• endConditions: Rules that are checked after a turn has been played to see if
the game should end. These rules also determine how the game should end,
i.e. which player won or if it was a draw.

13

3. Design

In order to fully understand rules and how to chain them together to create complex
rule sets it will be helpful to look at how the data type is defined. This can be seen
in figure 3.9. Notice that almost all constructors use a Rule in some way. This
means that you can chain different rules together to get more complex behaviour.
There are ten constructors in total and their purpose will be explained below.

data Rule = Rule (Update Game)
| If (Condition Turn) Rule
| IfElse (Condition Turn) Rule Rule
| Rule `SEQ` Rule
| Rule `THEN` Rule
| Rule `THEN2` Rule
| TurnRule (Update Turn) Rule
| IterateUntil Rule (Condition Turn)
| ForAllDir [Update Turn] (Update Turn -> Rule)
| ForEachDir [Update Turn] (Update Turn -> Rule)

Figure 3.9: The implementation of the Rule data type.

The first constructor is the most basic one, Rule (Update Game). When applying
the rule, the update will simply be applied which will subsequently change the game
state.

The second constructor is an if statement: If (Condition Turn) Rule. The con-
dition takes a turn as its type parameter and uses that together with Game to return
a Bool. If the condition is met the rule will be applied. However, if the condition is
not met the rule will fail, which leaves the game state unchanged. This is important
to know for understanding some of the behaviour of the other rule constructors. The
following constructor, IfElse, is much the same as the previous. The difference is
that it has an extra Rule that is applied if the condition is not met, which means
that an IfElse will never fail to apply. An example of using an if statement and
combining two conditions can be seen in figure 3.10. If the inputted tile is empty
and the tile below it is not empty, a piece is placed. Coincidentally, this is how the
rules for “placing a piece” in the game Connect Four are defined [16].

rules :: [Rule]
rules = [

If (emptyTile `AND` tileBelowIsNotEmpty) placePiece
]

Figure 3.10: An example of a conditional rule using if statements and combining
two conditions.

There are three ways of sequencing rules together, SEQ, THEN, and THEN2. Each
of them has a corresponding operator. How the operators differ in behaviour is
explained in figure 3.11. In the figure, each operator, >>> (THEN), >|> (THEN2), and
>=> (SEQ), is chained between three rules. The second rule fails to apply, which

14

3. Design

is when the operators differ in behaviour. The colour of the circles corresponds to
different states of the game.

Figure 3.11: Behaviour of the three operators used for sequencing rules when a
rule fails.

For >>>, every rule in the chain is attempted to be applied. Note that the game state
rule three takes in is the blue one, i.e. the last successful state. When a chain of
>|> includes a rule that could not be applied, it stops and returns the last successful
game state. Lastly, chaining multiple >=> together means that all of them must
succeed for the rules in the chain to be applied. If any of them fail, like in the figure,
the whole chain of rules will be discarded.

The next two data constructors for rules are TurnRule (Update Turn) Rule and
IterateUntil Rule (Condition Turn). The TurnRule constructor first modifies
the provided turn with a given update, then runs a rule with the newly updated turn.
IterateUntil applies a Rule until a certain Condition is met. The specification
for IterateUntil is as follows:

IterateUntil r c:

1. Check the condition c.

2. If c is true, the rule (IterateUntil) succeeds.

3. If c is false, try to apply r.

4. If r fails, the rule fails.

5. If r succeeds, go to step 1.

Note that r in the example above can be applied multiple times. The constructors
TurnRule and IterateUntil can be combined to apply a rule over an entire row

15

3. Design

of tiles. This is the case for a game like Othello, where these are used to correctly
update the state of tiles in every direction when a piece is placed.

The last two data constructors are ForAllDir [Update Turn] (Update Turn ->
Rule) and ForEachDir [Update Turn] (Update Turn -> Rule). These construc-
tors take a list of Update Turn and apply each of the updates to a TurnRule. This
will return a list of rules that each uses different turns. These rules are then chained
together with sequencing operators. The ForAllDir constructor combines rules with
the >=> operator and will thus only succeed if all the rules succeed. The ForEachDir
constructor instead make use of >>> and will attempt to apply each of the rules.

3.2.6 Creating a Board Game
In most cases, creating a board game in the DSL will consist of overriding four to
six fields in the game value. First, a board needs to be initiated. There are two ways
this can be done in the library, you can use either the rectBoard or initRectBoard
functions. The former makes every tile empty while the latter enables you to ini-
tialise the board with starting pieces.

Then, the pieces and players need to be defined. These should be lists containing
one of every player and one of every piece the players can place in the game. Note
that, for games with movement only, the pieces can remain an empty list (which is
the default) and does not have to be overridden.

The last three fields are the three different kinds of rules described in section 3.2.5.
Without defining rules you cannot play and without endConditions defined, the
game can never end. Note that some rules only make sense as an endCondition.
These are gameDraw, currentPlayerWins, and playerWithMostPiecesWins. These
modify the game state and sets winner and gameEnded accordingly, but should, of
course, be combined with other rules containing conditions. The field
preTurnConditions does not necessarily have to be overridden. See appendix C for
a list of all available rules, conditions, and updates included in the library that you
can use when implementing games.

3.3 Example Games
During the development, a few games were modelled using the DSL to test its
functionality as well as showcase the DSL’s capabilities. Three of the implemented
games are tic-tac-toe, Othello, and chess. This section will briefly go over the source
code for these games.

3.3.1 Tic-tac-toe
How tic-tac-toe has been modelled using the DSL can be seen in figure 3.12. The
first step in modelling tic-tac-toe is by overriding the board field in the game value.
The board is defined as an empty three-by-three grid. Following this, the pieces and
players are listed. Lastly, the rules and end conditions are defined.

16

3. Design

tictactoe :: Game
tictactoe = game {

board = rectBoard 3 3,
pieces = [

Piece "X" (Player "A"),
Piece "O" (Player "B")

],
players = [

Player "A",
Player "B"

],
rules = [

If emptyTile placePiece
],
endConditions = [

If (inARow 3) currentPlayerWins,
If boardIsFull gameDraw

]
}

Figure 3.12: An implementation of tic-tac-toe using the DSL.

Note the order of the endConditions. The way it is specified, if both conditions
happened to be true from the same turn only the first end condition will be applied,
which, in this case, is very important.

3.3.2 Othello
The Othello implementation can be seen in figure 3.13 and starts similar to that
of tic-tac-toe. A difference is how the board is initialised with four pieces in the
middle. Other than that, it is the rules that are defined differently.

Here, preTurnRules is used to enable skipping turns when a player has no move.
To save space and allow more readable code, othelloRule has been defined outside
the game definition. It is the intricate rule that in all directions, flip enemy pieces
to ally pieces if there is an allied piece in a direct line from the placed tile, whilst
there are no empty tiles between.

3.3.3 Chess
Chess is a more advanced game compared to the previous two. The implementation
is therefore a bit larger and cumbersome, but it should still be easy to understand
all parts. It can be found in appendix B. As mentioned previously, this implemented
version has some missing rules such as castling and en passant.

The initialisation of the board requires more lines of code because of the 32 pieces
having to be listed individually. The biggest difference compared to Othello and

17

3. Design

othello :: Game
othello = game {

board = initRectBoard 8 8 [
((4,4), Piece "O" (Player "A")),
((5,5), Piece "O" (Player "A")),
((4,5), Piece "X" (Player "B")),
((5,4), Piece "X" (Player "B"))

],
pieces = [

Piece "O" (Player "A"), Piece "X" (Player "B")
],
players = [

Player "A", Player "B"
],
preTurnRules = [

If (NOT playerCanPlace) skipTurn
],
rules = [

If (emptyTile `AND` changedState othelloRule)
(placePiece >>> othelloRule)

],
endConditions = [

If noPlayerHasMoves playerWithMostPiecesWins
]

}
othelloRule :: Rule
othelloRule = ForEachDir allDirections

(replaceUntil enemyTile allyTile)

Figure 3.13: An implementation of Othello using the DSL.

tic-tac-toe is the pieces have individual movement rules. This is solved by chain-
ing a lot of rules where the type of piece is checked before testing the validity of
the move. For determining the move validity, the destinationIsRelativeTo and
tilesBetweenAre conditions are used extensively. Most of these rules are defined
in the code library (see appendix C) with the notable exception of the pawns. The
pawns behave differently in certain positions and can only move in one direction
which requires a greater set of conditions having to be met.

3.4 Implementation Details
The function that runs a game is the playGame function and can be seen in fig-
ure 3.14. The function is optional and was created to test the DSL and show it
working. It acts as the run function for the type Game and sequentially handles
the inputs and applies the rules accordingly. The function calls itself until the

18

3. Design

game ends by reaching an end condition. Before inputs are received the optional
preTurnRules are checked. If these rules are successfully applied the playGame
function is called again with the new game state. To get inputs from the players the
functions getValidInput and optionally getValidPiece are called. These functions
are not particularly interesting, they simply ensure that the inputs from the players
are in the correct format. The reason why the game has ended is checked twice is
to prevent infinite loops that could occur if the rules of the game were incorrectly
specified, but this could admittedly have been avoided much more cleanly.

playGame :: Game -> IO ()
playGame g = do

dispFunction g g

let g' = postPlayTurn nullTurn g
if gameEnded g' then

case winner g' of
Nothing -> putStrLn "Draw!"
Just p -> putStrLn $ "Player " ++ show p ++ " has won!"

else do
let g'' = applyRules nullTurn g preTurnRules
when (g /= g'') (playGame g'')

let currPlayer = head $ players g
putStrLn $ "Player " ++ show currPlayer ++ "'s turn"

input <- getValidInput g
piece <- getInputPiece g input

let newGame = playTurn (Turn piece input) g
if g == newGame then

putStrLn "Input move does not follow the rules" >>
playGame newGame

else if gameEnded newGame then
dispFunction g newGame >>
case winner newGame of

Nothing -> putStrLn "Draw!"
Just p -> putStrLn $ "Player " ++ show p ++ " has won!"

else
playGame newGame

Figure 3.14: The run function for the Game data type.

The notable function called in playGame is playTurn which can be seen in figure
3.15. It is there that the rules of the game are applied. When calling playTurn there
are two possible options. Either the input is invalid and it simply returns the input
game state, signalling to playGame that it can fetch another input, or the input is
valid and calls postPlayTurn. It can be seen in figure 3.15 as well, and takes as

19

3. Design

input a game state after the current player has made their turn. It applies the end
condition rules and changes the order of the list of players so that the next player
will be the first element in the list, thereby changing the current player.

playTurn :: Turn -> Game -> Game
playTurn t g | not $ isValidInput t g = g

| otherwise = postPlayTurn t newGame
where

newGame = applyRules t g rules

postPlayTurn :: Turn -> Game -> Game
postPlayTurn t g = newGame {

players = cyclePlayers $ players newGame
}

where
newGame = applyRules t g endConditions

Figure 3.15: The playTurn and postPlayTurn functions.

In order to apply rules, playTurn, postPlayTurn, and isValidInput all call the
applyRules function that can be seen in figure 3.16.

applyRules :: Turn -> Game -> (Game -> [Rule]) -> Game
applyRules t g f =

foldl (\g' r -> fromMaybe g' $ runRule r t g') g (f g)

Figure 3.16: Function that applies a list of Rule to the game.

This function iterates over a list of type Rule and applies each of those to the game
through runRule. The result of applying the first rule is sent in as an argument
to applying the next rule, and so on. If applying a rule ever yields Nothing, which
happens when the rule fails to apply, the previous game state is used as an argument
to the next rule instead.

3.4.1 Run Functions
As explained in section 2.2.2, a run function is a function that interprets the parse
tree generated by inputting values into the corresponding data types and computes
the result. There are three run functions tied to the corresponding data types
Update, Rule, and Condition. The function type signatures are listed below, along
with a short description.

runUpdate :: Update t -> Turn -> t -> t
Run function for the update type.

20

3. Design

runRule :: Rule -> Turn -> Game -> Maybe Game
If the rule is applied, meaning that the game state has changed, it returns Just
game, otherwise Nothing is returned.

runCondition :: Condition Turn -> Turn -> Game -> Bool
Evaluates a condition to true or false.

3.5 Testing
Unit tests were created during the process to verify that parts of the library worked
as intended. The Haskell packages QuickCheck and hspec were used to aid the
test creation process. QuickCheck is a well-established framework for automatically
testing functions on random inputs to verify that given properties hold [17], while
hspec is a DSL used for defining tests [18], making them easier to manage.

QuickCheck was not used as much as was first planned, simply because a lot of
the functions turned out to be difficult to test with random inputs. Testing games
with randomised sets of rules could be a good way to get rid of errors tied to the
structure of the code but this was not in the scope of the project. Even if you had a
fixed game with fixed rules, randomising other parameters like turns would still be
difficult. How would you determine the effect of an arbitrary turn so that you could
verify that the output was correct?

Instead, the majority of testing opted towards functionality in complete games with
determined turns, without using QuickCheck. This was done for the games tic-
tac-toe, Othello, and chess. Tests for these games were constructed by devising a
sequence of turns that should put the game state in particular ways. For instance,
when the board is full in tic-tac-toe with neither player having three in a row, the
game should end in a draw. A test function would play turns that should end
in a draw and check that this was the case. Of course, this only verifies that a
particular chosen sequence of turns ends in a draw. However, it still gives at least
some assurance that the draw functionality for tic-tac-toe works as intended. Doing
tests like this does not verify individual functionality on their own, but rather whole
games with many individual parts working together. This, together with the fact
that these tests were very easy to put together, meant that it was these kinds of
tests that gave the most value during development.

21

4
Discussion

This chapter will discuss various parts of the project and DSL. Some evaluation if
the DSL was a success and reflections on that, together with reflections on important
choices made and their consequences. Then, a section discussing how the DSL can
improve in the future. Lastly, the impact that a language for board games can have
on society.

4.1 Changes from the Planning Phase
During the planning phase we wanted the DSL to support the game Ludo. In fact,
Ludo was the second game we had as a goal for the DSL to support instead of
Othello as is described in section 1.2. The reason for the change was mainly based
on time. Quite late in the development phase, we realised that the current rule
system, which was at that point neither shallow nor deep embedded, was simply
not good enough. The DSL could be used to create the specific games we added
support for, but provided little to no ability to create customised games, making it
a terrible DSL. For instance, an implemented function changeSurrLines was used
for the whole logic of flipping pieces correctly for the game Othello to work. But,
as said in the introduction, for it to be a DSL that could support a large number
of board games, there would have to be a way of creating complex rules (such as
changeSurrLines) using simple components and features in the DSL. To achieve
this, we therefore decided to change the rule system completely to a deep embedded
version using new types for Rule, Condition, and Update, with corresponding run
functions.

The changes to the rule system turned out to be a good one, as the resulting DSL
was both easier to use and provided support for a much larger set of games. Othello’s
changeSurrLines could now be implemented using abstract constructs instead of
the game-specific function. After this change, we could draw three conclusions:

1. A lot of time had passed, meaning that we would probably not have time to
implement chess if we had begun working towards games like Ludo.

2. There would still have had to be major changes to the DSL to allow for die
rolls, supporting multiple pieces on the same tile, and allowing for games to
provide a given path pieces should follow.

22

4. Discussion

3. Othello is a game with complex rules, well worthy of being a sub-goal to aid
in the fulfilment of the purpose.

For these reasons, Ludo was changed to Othello as a sub-goal for the DSL devel-
opment process. Instead of the major structural changes that iteration two would
include, they were kept in mind for future expansions, which can be read in sec-
tion 4.4.

4.2 Evaluation
The purpose of the project was fulfilled, at least to a degree. The DSL can be used
to model both simple placement games such as tic-tac-toe as well as more complex
ones like Othello. It is, however, questionable how easy it is for a user to create
games on their own. This will be discussed more extensively in section 4.2.1. As
mentioned previously, not all chess rules could be implemented and the reasons why
this is the case will be discussed in section 4.3.2. But in short, this is because the
library is missing necessary functionality that would need major changes to the DSL
to get working.

Still, there are playable versions of the games tic-tac-toe, Othello, and chess, along
with a few other board games. It should be possible to use the DSL for creating a
large number of other board games, as well. Unfortunately, time ran out before we
could properly evaluate if this is the case.1 The games supported at the moment are
those that can be constructed within our current limitations described later in this
chapter under section 4.3.2. This mainly includes board games with a rectangular
board and actions tied to the current turn. But if memory restrictions are ignored,
the DSL should be able to be used to model an infinite number of (although perhaps
not that varied) board games.

As is shown in table 4.1 the amount of code that needs to be written decreases
significantly with the use of the DSL. The main caveat to the table that should be
noted is that the functions that are used by the rules are not accounted for. The
implementation using the DSL in the figure accounts for the assignment of values
for the game’s starting format, and any rules that are merely combinations of rules
provided in the Lib.hs file included in the library. If the rule functions necessary for
creating a game are already provided, the creation of the game becomes a relatively
quick process as long as the user understands the way the DSL works. And even
when the functions need to be created, the user merely needs to make a function
that creates a certain state change. They do not need to create any types or logic
for running the game, provided they do not want to create a separate game-running
function aside from the included playGame function.

1This could have been evaluated by randomly selecting board games within our scope and seeing
if it is possible to implement without editing the DSL as well as how easy it is. Ideally, this would
be done as a case study to decrease the chances of getting a biased evaluation.

23

4. Discussion

Game DSL Implementation Haskell Implementation
Tic-tac-toe 19 77
Mnk-game 21 108
Connect Four 19 130
Othello 30 152
Chess 64 N/A

Table 4.1: Table showing lines of code per game implementation, with and without
using the DSL.

4.2.1 Usability
The goals for the usability of the language that were set were that it should be
expressive, and the easier it is to make games, the better. Expressiveness is at least
partially a subjective measure. However, what can be said about the DSL is that
it should not be too inexpressive. It uses if statements similar to that of other
languages, but without the need for braces. You can create almost sentence-like
rules as can be seen in figures 3.10, 3.12, and 3.13. Unfortunately, not every rule is
equally expressive. The rules for creating the movement of pawns in chess, which
can be seen in appendix B, are quite verbose. This is because the DSL does not
allow the rule to be modelled in a more generic way than it currently is. A fix for
this can simply be trying to abstract the movement of pieces further. It has to also
be said that the level of expressiveness is tied to that of the host language, Haskell.
Because of Haskell, we are forced to create if statements in certain ways (without
braces), and there are limits to how nesting and chaining rules can be written. Now,
you have to sometimes use the $ operator or surround rules with brackets to get the
correct order of execution.

Another thing that had to be taken into consideration during the whole course of
development was how easy the language is to use. Implementing games with simple
rules and few pieces such as tic-tac-toe or Connect Four requires minimal work from
the user and not much thought. For these games we are content with the way
games are specified. This can be extended to Othello as well. The Othello rules
are significantly more complicated than those of tic-tac-toe but can be specified
in only a few lines of code. When it comes to chess there are certain parts that
can be considered successful and certain parts that could be considered as failures.
The rules of chess can be written in a surprisingly small amount of code, especially
considering how many rules are tied to pawns alone. The problem is that when
looking at the rules it is quite unclear what they do.

The choice of not having a map or similar structure that maps a set of rules to each
piece might be confusing to the user of the language. As it is currently a condition
is used to make a rule specific to a certain piece. This solution probably results in
less code that needs to be written, but also a less intuitive system. The balance
between the amount of code, and the intuitiveness and readability of the code is
important and our language generally trends towards the former.

24

4. Discussion

Defining the board is tedious and takes up many lines of code, most of them only
being copied and slightly changed. Fortunately, solving this problem would not
require too much work. There is a function that was used for simplifying testing
called parseBoard, that, with some small changes, could be useful for initiating
complicated boards like chessboards. It takes a nested list of pieces and creates a
board with the pieces in the same location as they were in the lists. Changing this
function to take in a nested list of strings instead would make it require fewer lines
of code but it would also require the information about which string matches which
piece. To solve this the Game data type could be changed to take a function with
the type signature a -> [Piece] -> Board.

One other thing that had to be considered was how many conditions that should be
generalised. On one hand, generalising a condition to encompass more is most cer-
tainly useful. On the other hand, the generalisation will often lead to the condition
being less comprehensible and requiring more code.

4.3 Reflections
As mentioned, the functionality provided according to the planning phase has had
to be revised due to structural problems in the coding phase. The problem was
mainly the lack of planning before starting the development. Because we selected a
few games and implemented them in Haskell first, before trying to develop a DSL
for them, instead of creating a DSL we more or less created a library that could only
be used for those selected games. We had little to no thought about abstracting and
generalising rules for a long time. When we finally realised what needed to change
to enable the functionality we wanted, a lot of time had passed. This has had the
consequence that less functionality than initially planned has been provided. But,
by introducing more deep embedding into our structure we were able to produce a
DSL with a better level of abstraction when it comes to the rules. The syntax also
became more logical which included similarities to if statements many developers
using the DSL should be familiar with. The first thing we would do differently is to
study more specifically what a DSL “should” look like. That way, we could perhaps
have gotten started with a deep embedded rule system quicker and thereby have
more time to refine it, as the current one has flaws.

4.3.1 Type of Embedding
In this project, we chose to implement a deep embedded DSL. The choice was
primarily made with the end-user in mind. A deep embedded DSL enables the
users to add their own interfaces, possibly even writing their own interpretation of
different rules and pieces. If we had instead used shallow embedding we would limit
the user with our interpretations, giving the user less freedom of the types of game
they can create. This is because of the nature of shallow embedding, that they only
allow one interpretation.

Towards the end of the project, we realised that the number of constructors of the

25

4. Discussion

type Rule was a limiting factor for what games it can model. Adding more would
have been easier to do with a shallow embedding. The drawback would be the fact
that only one interpretation could be used which we did not want to enforce.

The results show the difficulty in choosing the type of embedding. If we choose
to use shallow embedding we are left with data types that are not easily modified.
The changes in the data types here have a large effect on the implementation, and
changing them leads to changing all the functions using a specific data type too.

If we look at the deep embedding chosen for this project we got a more modular
solution but had to spend more time on creating a structure of the functions suitable
for deep embedding. This shows us that this approach leads to a more modular
DSL. It is easy to add new functionality without having to change existing code.
The functions themselves can be written to represent one action, and then chained
together to construct more complex moves.

4.3.2 Limitations
The games supported by our DSL are games based on the following restrictions:

Board The board must be a two-dimensional rectangular board where all tiles are
either empty or occupied by a single game piece.

Movement The movement must be based on calculations using the grid of the
board.

Turn A turn must be one of two actions: either the placement of a single piece or
the movement of a single piece. Turns can be skipped if conditions are met, meaning
that a player can make multiple turns in a row. However, the support for this is
limited. Retrieving input on how the turn will play out can happen once during
each player’s turn before the main rules are applied.

Rules The rules must be based on chained deterministic actions tied to the current
turn and game state. Rules based on previous states of the game and nondetermin-
istic rules are not supported in the DSL.

The restrictions above are based on keeping the DSL simple and having a working
version at the end of the project. If there was time for reducing the limitations
mentioned above, we would have had to create vast changes to how the DSL is
structured or how it works internally.

As stated before, the complete set of chess rules could not be implemented. En
passant and castling are moves that require previous moves to determine if they
are allowed, which is not possible without saving turn history or the ability to save
states in pieces. Also, because of the restrictions on a turn, castling could not be
implemented as that would involve moving more than one piece. Lastly, the whole
rule system does not currently have the right level of abstraction to be able to
model such advanced concepts as stalemate or determining if a move puts your king

26

4. Discussion

in check and thereby not allow it. To do this, you would have to have more control
over what can happen during your opponent’s turn and allow or disallow certain
moves based on that.

4.4 Future Expansions
The DSL is far from perfect. This section will discuss how the DSL can improve,
both by simple additions and bigger, structural changes.

4.4.1 GUI
Terminals limit the way pieces can be represented, and it can be hard to differentiate
between different pieces only from the one character that represents them. This
limits the user experience of games that can be created. Fortunately, it is possible
to connect a GUI with the DSL. By creating your own playGame function you can
use a GUI framework, like Threepenny-GUI [19], to connect the board game to a
proper user interface. This would allow for a better user experience along with all
benefits of using a DSL for creating board games.

4.4.2 DSL Improvements
The simplest and perhaps most important improvement to the library would be to
expand the collection of conditions, rules, and updates available. These are directly
tied to the set of supported games and creating more would lead to more games
being supported. If a condition needed for a particular board game is missing from
the library there are three options for the user — they move on and do not use our
library, they exclude the condition or use one that is similar enough, or they write
their own condition in Haskell code. All options are undesirable, and to avoid these
problems as much as possible there need to be as many conditions, rules (and ways
of creating rules), and updates as possible. Another approach would have been to
provide a more generalised method for building rules and conditions, maybe by using
the same idea we use for combining them, but this could lead to a more complex DSL
which might require large structural changes. A combination of the two parts would
probably be the best solution; providing a set of predefined rules and conditions and
providing the option to construct compound rules using the method above. If time
had allowed, we could have reduced this problem by looking at more board games
within our scope and developing the DSL further if they could not be modelled with
the DSL.

In the DSL itself, there are some limitations. An Update is currently defined to
always take a Turn as an argument, but this should not always have to be the
case. There are, in fact, a few functions in the provided library that creates an
Update without making use of the Turn argument at all. It would instead make
more sense to change the type of the Update constructor to a more generalised
version, something similar to Update (t -> t). This would open up more options
for what the constructor is capable of, like for example making an Update function

27

4. Discussion

that takes the union between two boards. The same can be said about the way we
define a Condition. Currently, a Condition always takes a Game as an argument,
but several functions do not make use of this forced argument. A better solution
would be to remove the Game argument and replace it with a polymorphic type, a
possible solution would then look like Condition (a -> Bool). A fair few changes
would need to be done to support this change, as all the library functions and most
of the run functions are dependent on the current types of Update and Condition.

Another problem with a simple solution is that only rectangular boards can be cre-
ated. Hexagonal boards, boards with holes in them, and other boards other than
rectangular cannot currently be created. To solve this the Tile data type could
be updated according to figure 4.1. Not many changes would be needed to accom-
modate this, but additional pattern matching would be needed and runCondition
would need to be changed to always return false if a selected tile is equal to Void.

data Tile = PieceTile Piece Pos | Empty Pos | Void Pos

Figure 4.1: A potential improvement to the tile data type

Currently, only one piece can be on a tile at a time. An obvious way to change Tile
so that any number of pieces can be on the same tile is for each tile to store a list
of pieces that are on it. This, however, would make it more difficult to distinguish
between games that support multiple pieces on the same tile and those that do
not within the DSL, as the behaviour of turns would differ between them. One
potential solution to this could be to parameterise Game with what kind of tiles it
should consist of — single piece tiles or tiles allowing multiple pieces.

The way input and output, IO, is handled at the moment is not ideal. Currently, all
inputs are handled in the playGame function (figure 3.14) and the output is handled
by a display function defined inside the Game data type (figure 3.1). Extracting
all IO handling from playGame would remove the need for the IO monad which
would simplify the code. This would also make it easier to create new functions
for handling IO operations. By removing the display function (dispFunction) from
Game we simplify the type and make it more focused on the core structure. The
display function is not part of the DSL semantics and should therefore not be in the
Game data type. By moving the display function it can be combined with the input
handling function, making it a function which handles all IO. This would also make
connecting a GUI to the games easier.

If one were to look for larger and more structural changes that would expand the
scope of the games that could be constructed using the DSL there are many options.
Due to how games are implemented and run in our library, many games simply
cannot be modelled. One missing feature that reduces the number of possible games
is die rolls. Randomness is a key concept that is present in many games. Among
these games are classic board games such as Settlers of Catan [20] and Monopoly
[21]. As it stands right now these classics cannot be made and a clear improvement
to the language would be to support die rolls. To support die rolls there would need

28

4. Discussion

to be a way for the user to specify in the rules that a die should be rolled as well as
how the result of the roll should be used. Perhaps the Action data type could be
expanded to encompass more actions other than Place and Move, such as DieRoll,
DrawCard, and PassTurn. If drawing cards or adding items were to be added, each
player would also need to have an inventory where all their items are stored. It
should also be noted that Settlers of Catan is a game of imperfect information
which would still lay outside the current scope of the DSL if the changes above were
to be implemented. If one were to want to support games of imperfect information,
the DSL would ideally have to be played on a server or using peer-to-peer so that
different players can play using their own devices and see the information exclusive
to them, without anyone else seeing it.

One thing that was noticed when chess was made was that only taking inputs from
the user once per turn limited the kind of rules that could be created. In chess,
when a pawn reaches the opposite end of the board the player must replace said
pawn with either a knight, rook, bishop or queen. This means that the player has
to make an additional choice after moving a piece. This cannot be done with our
current DSL so the rule had to be simplified to the pawn always being promoted to
a queen. To allow for the full rule to be modelled, some larger structural changes
would have to be done. Instead of taking the input from the player each turn at a
fixed point in time, there would have to be a way for the user to specify in the rules
when an input should be taken and what kind of input it expects.

These structural changes could also solve another issue with how games are run.
As it functions in the current version of the code, the logic for the preTurnRules
is inside playGame. Ideally, all logic would be removed from the playGame IO-
function (figure 3.14) to be able to create tests for all aspects of a board game as well
pushing users to write their own user interfaces. If a new and more all-encompassing
approach to rules were to be taken, then the rules for Othello could look like what
is shown in figure 4.2. This approach essentially has all preTurnConditions before
the rest of the rules and the function getPlaceInput decides when and what kind
of input is needed for the rest of the rules. Doing it this way would simplify both
the playGame function, extracting the input handling to elsewhere, and the Game
data type, as preTurnConditions could be removed completely. This would be an
overall improvement to the DSL. However, as Haskell is a pure functional language,
getting input inside the rules would probably mean using IO monads in the rules
data type, which could make the code less manageable.

4.4.3 Uses in Research
In the introduction, we claimed that one could write a program that computes the
possibilities of each player winning from a given state of a board game. To do this,
all possible permutations of each player’s turns would need to be computed as well
as the outcome of the game for each permutation. To get all possible permutations
it is necessary to get all possible turns for a player from a certain game state. The
logic for obtaining all locations that a player can place a piece on already exists as
it is necessary for the rules of Othello. Extending this to return a list of all possible

29

4. Discussion

If (NOT playerCanPlace) skipTurn >>> getPlaceInput >>>
If (emptyTile `AND` changedState othelloRule)

(placePiece >>> othelloRule)

...

othelloRule = ForEachDir allDirections
(replaceUntil enemyTile allyTile)

Figure 4.2: An example of how the rules for Othello could be better specified.

turns instead would be simple. The logic for obtaining all possible turns involving
a move would be more complex. There would have to be a function that loops
through all occupied tiles on a board and for each of these tiles, it would have to
loop through all tiles on the board to see if the piece from the first tile can be moved
there. Doing this would be computationally expensive, especially for games with
larger boards and more possible moves. It would be possible nonetheless and most
certainly an interesting use of the DSL.

4.5 Societal Considerations
In the creation of a tool for creating board games, there are not many ethical pitfalls
to look out for. In other words, there are not many concerns about how creating
this DSL would have an overall negative effect on the world. There are, however,
conversations to be had about what utilities digitising board games could bring to
areas like analysis of game theory and accessibility.

4.5.1 Analysing Games
A good example of how bringing board games into a digital space can give way
to a lot of interesting theory is the history of chess AI. Ever since 1997, the best
chess player in the world has been an AI. These AIs have forwarded the chess scene
immensely, allowing the game at a top-level to be understood much more deeply and
played more optimally than before these innovations were made [22]. Having more
board games be digitised gives way for more of these games to be more understood,
and lets us understand how to solve these logic puzzles much quicker through the
use of artificial intelligence.

Creating a DSL for board games might be the first step in making an AI able to play
a large number of different board games, not just specialising in one or a few. In turn,
this could create a sort of race where people must learn the new optimal strategies
to have a chance at competing with AIs, and in consequence, other players. This
would drive up the competition for the best board game players in the world while
also enabling finding the most optimal strategies through playing and analysing the
games.

30

4. Discussion

4.5.2 Accessibility
There are several concerns about accessibility in board games today, both in terms
of accommodating physical disabilities like visual and cognitive impairment, and in
terms of being inclusive towards underrepresented groups of people [23]. Some of
these accessibility issues and how digitising board games can benefit them will be
discussed in this section. For certain concerns about visual impairment digitising
the board games could prove quite useful. An example of this is that several games
symbolise several mechanics, such as player adherence, through colour. This can
be an issue for people with colour blindness. However, with a digital version of the
board game, changing colours to be inclusive of certain versions of colourblindness
can be a quick and easy fix with a basic understanding of the game’s code, as opposed
to a physical game where you might be tasked with painting game objects to adhere
to this inclusion.

For people with more encompassing visual impairment, such as partial or total
blindness or severe issues with differentiating visual information, there are other
issues to be addressed. Certain problems regarding this can be addressed to some
extent through digital versions of these board games. For instance, one way people
with total blindness play board games is to say what moves they want to make and
have someone else move the pieces for them. This can also be the case for people with
certain disabilities regarding motor functions. In a digital setting with a clear input
structure, this is made easier as there is little to no wiggle room for interpretation of
what they mean when expressing the inputs for a turn. Another issue blind people
face with board games is that there is a lot of emphasis in several board games to
know the board state in every instance. Since they cannot see the board state this
has to either be memorised throughout the whole game, or communicated aloud any
time something happens in the game (usually some combination of the two). With
a digital version of these board games a user interface that reads out the board state
quickly to the user, akin to blind accessibility programs for reading text on phones
and computers, could be implemented. This type of interface, and many others,
are possible to implement because of the deep embedding. Thanks to the ability to
have multiple interpretations of the same game, the game can be adapted to meet
all needs.

People with memory impairments are generally accommodated rather well by board
games, as most games can be played from the perspective of the current board state
with no regard for what has happened earlier in the game. There are, however,
games with mechanics that relate to memorising previous moves. Making board
games digital can be helpful in these cases, as it is possible to keep old moves
available to look back upon in the game interface.

Another issue board games face is a lack of representation. This issue is not always
present, as in many cases characters and objects are very abstracted. In many cases
in board games, a player is represented by a text character or a figurine of an object
or something of the like. However, where human characterisations do appear there
is often an overrepresentation of cis white male characters, which could make the
hobby seem aimed at that group, rather than be inclusive to all. The representation

31

4. Discussion

issue would not be solved directly by moving board games to a digital platform. But
akin to how the issue colour blind people face with certain games, creating playable
character pieces would be easier for a digital game than a physical one. Creating a
digital character piece is more intricate than changing the colours of certain game
elements, but the workload is still lessened for diversifying these elements in a digital
setting.

32

5
Conclusion

Board games are entering a new era — the digital era. For thousands of years,
games have been an integral part of human life. This project wanted to simplify the
creation of board games in a digital setting with the help of an embedded domain-
specific language. The eDSL’s goal was the ability to model a large number of board
games while being easy to use.

This thesis detailed the development process of the eDSL and the theory behind it.
Also included is a guide on how to create board games using the eDSL as well as
a list of all tools available to the user of the library. A few games showcasing the
language’s abilities and its inner workings are presented alongside the guide. The
DSL is evaluated as a success, being able to model many board games. Although,
how easy it is to use is a bit unclear. The thesis concludes with a discussion about
choices made, potential improvements and expansions, and the possibilities digitising
board games using a DSL can have. The complexity of what we needed to model
decided the type of embedding since there are no optimal choices to be made as
shown in our project. Some of the potential improvements include updates to the
Game, Update, and Condition data types. Finally, digitising board games can enable
great improvements to the accessibility of board games.

Now it is time for you to continue the work towards a more digital gaming experi-
ence.

33

Bibliography

[1] Meilan Solly. “The Best Board Games of the Ancient World”. In: (2020). url:
https://www.smithsonianmag.com/science-nature/best-board-games-
ancient-world-180974094/.

[2] Ludii. url: https://ludii.games/index.php (visited on 22/04/2022).
[3] Simon Marlow et al. “Haskell 2010 language report”. In: (2010). url: http:

//www.haskell.org/.
[4] Tomaž Kosar Mernik et al. “A preliminary study on various implementation

approaches of domain-specific language”. In: Information and Software Tech-
nology 50.5 (2008), pp. 390–405. issn: 0950-5849. doi: https://doi.org/
10.1016/j.infsof.2007.04.002. url: https://www.sciencedirect.com/
science/article/pii/S0950584907000419.

[5] Andy Gill. “Domain-specific Languages and Code Synthesis Using Haskell:
Looking at embedded DSLs”. In: Queue 12.4 (2014), pp. 30–43. issn: 1542-
7730. doi: 10.1145/2611429.2617811. url: https://doi.org/10.1145/
2611429.2617811.

[6] Jeremy Gibbons. “Functional Programming for Domain-Specific Languages”.
In: Central European Functional Programming School, CEFP 2013. Ed. by V
Zsok, Z Horvath and L Csato. Vol. 8606. Lecture Notes in Computer Science.
Babes-Bolyai Univ, Cluj-Napoca, Romania; Eotvos Lorand Univ, Budapest,
Hungary. 2015, pp. 1–28. isbn: 978-3-319-15940-9; 978-3-319-15939-3. doi:
10.1007/978-3-319-15940-9_1.

[7] Martin Fowler and Rebecca Parsons. Domain Specific Languages. Addison-
Wesley, 2010. isbn: 9780321712943.

[8] David Flanagan. JavaScript: the definitive guide. O’Reilly Media, Inc., 2006.
[9] Marjan Mernik, Jan Heering and Anthony M. Sloane. “When and how to

develop domain-specific languages”. In: 37.4 (2005), pp. 316–344. doi: 10.
1145/1118890.1118892.

[10] Eelco Visser. “WebDSL: A Case Study in Domain-Specific Language Engin-
eering”. In: Advanced Data Mining and Applications. Advanced Data Mining
and Applications, 2008, pp. 291–373. isbn: 0302-9743. doi: 10.1007/978-3-
540-88643-3_7.

[11] Pierluigi Riti. “External DSL”. In: Practical Scala DSLs: Real-World Applica-
tions Using Domain Specific Languages. Apress, 2018, pp. 59–69. isbn: 978-1-
4842-3036-7. doi: 10.1007/978-1-4842-3036-7_4. url: https://doi.org/
10.1007/978-1-4842-3036-7_4.

34

https://www.smithsonianmag.com/science-nature/best-board-games-ancient-world-180974094/
https://www.smithsonianmag.com/science-nature/best-board-games-ancient-world-180974094/
https://ludii.games/index.php
http://www.haskell.org/
http://www.haskell.org/
https://doi.org/https://doi.org/10.1016/j.infsof.2007.04.002
https://doi.org/https://doi.org/10.1016/j.infsof.2007.04.002
https://www.sciencedirect.com/science/article/pii/S0950584907000419
https://www.sciencedirect.com/science/article/pii/S0950584907000419
https://doi.org/10.1145/2611429.2617811
https://doi.org/10.1145/2611429.2617811
https://doi.org/10.1145/2611429.2617811
https://doi.org/10.1007/978-3-319-15940-9_1
https://doi.org/10.1145/1118890.1118892
https://doi.org/10.1145/1118890.1118892
https://doi.org/10.1007/978-3-540-88643-3_7
https://doi.org/10.1007/978-3-540-88643-3_7
https://doi.org/10.1007/978-1-4842-3036-7_4
https://doi.org/10.1007/978-1-4842-3036-7_4
https://doi.org/10.1007/978-1-4842-3036-7_4

Bibliography

[12] Josef Svenningsson and Emil Axelsson. “Combining Deep and Shallow Em-
bedding for EDSL”. In: Advanced Data Mining and Applications. Advanced
Data Mining and Applications, 2013, pp. 21–36. doi: 10.1007/978-3-642-
40447-4_2.

[13] Eb’rahim Durosimi. Game Theory. Electronic Book. 2013. url: https://
ujuzi.pressbooks.com/.

[14] William Poundstone. Prisoner’s dilemma: John von Neumann, game theory,
and the puzzle of the bomb. Doubleday, 1992.

[15] Oleksandr Nevskiy et al. Mysterium. Board Game. 2015.
[16] Howard Wexler and Ned Strongin. Connect Four. Board Game. 1974.
[17] Koen Claessen and John Hughes. “QuickCheck”. In: ACM SIGPLAN Notices

35.9 (2000), pp. 268–279. issn: 0362-1340. doi: 10.1145/357766.351266.
[18] Simon Hengel. Hspec: A Testing Framework for Haskell. 2022. url: https:

//hspec.github.io/ (visited on 22/04/2022).
[19] Heinrich Apfelmus. threepenny-gui: GUI framework that uses the web browser

as a display. 2021. url: https://hackage.haskell.org/package/threepenny-
gui (visited on 11/05/2022).

[20] Klaus Teuber. Settlers of Catan. Board Game. 2015.
[21] Lizzie Magie and Charles Darrow. Monopoly. Board Game. 1935.
[22] Patrick Gebhardt. The history of chess AI. Electronic Article. 2019. url:

https :/ / blog. paessler .com / the- history- of- chess- ai (visited on
03/03/2022).

[23] Michael James Heron et al. “Eighteen Months of Meeple Like Us: An Explor-
ation into the State of Board Game Accessibility”. In: The Computer Games
Journal 7.2 (2018), pp. 75–95. issn: 2052-773X. doi: 10.1007/s40869-018-
0056-9.

[24] Alejandro Russo. Implementation: deep embedding. Requires login. 2022. url:
https://chalmers.instructure.com/courses/17400/pages/implementation-
deep-embedding?module_item_id=241032 (visited on 25/04/2022).

[25] Alejandro Russo. Implementation: shallow embedding-2. Requires login. 2022.
url: https://chalmers.instructure.com/courses/17400/pages/implementation-
shallow-embedding-2?module_item_id=241031 (visited on 25/04/2022).

35

https://doi.org/10.1007/978-3-642-40447-4_2
https://doi.org/10.1007/978-3-642-40447-4_2
https://ujuzi.pressbooks.com/
https://ujuzi.pressbooks.com/
https://doi.org/10.1145/357766.351266
https://hspec.github.io/
https://hspec.github.io/
https://hackage.haskell.org/package/threepenny-gui
https://hackage.haskell.org/package/threepenny-gui
https://blog.paessler.com/the-history-of-chess-ai
https://doi.org/10.1007/s40869-018-0056-9
https://doi.org/10.1007/s40869-018-0056-9
https://chalmers.instructure.com/courses/17400/pages/implementation-deep-embedding?module_item_id=241032
https://chalmers.instructure.com/courses/17400/pages/implementation-deep-embedding?module_item_id=241032
https://chalmers.instructure.com/courses/17400/pages/implementation-shallow-embedding-2?module_item_id=241031
https://chalmers.instructure.com/courses/17400/pages/implementation-shallow-embedding-2?module_item_id=241031

A
Example of a DSL using deep and

shallow embedding

This is an eDSL made in Haskell by Alejandro Russo for the course Advanced
Functional Programming (TDA342) at Chalmers. The data is a signal and the main
purpose is sampling it. It is a good example showcasing the differences between a
deep (figure A.1) and a shallow (figure A.2) embedding. In the deep embedding, all
signal data is stored in a data type and is interpreted by the sample function. The
shallow embedding interprets the data while creating the data type. This makes the
sampling function very simple compared with the one using the deep embedding.

type Time = Double
data Signal a where

ConstS :: a -> Signal a
TimeS :: Signal Time
MapT :: (Time -> Time) -> Signal a -> Signal a
(:$$) :: Signal (a -> b) -> Signal a -> Signal b

constS = ConstS
timeS = TimeS

sample (ConstS x) = const x
sample TimeS = id
sample (f :$$ s) = \t -> sample f t $ sample s t
sample (MapT f s) = sample s . f

Figure A.1: An example of a deep embedded DSL. Used with permission. [24]

I

A. Example of a DSL using deep and shallow embedding

type Time = Double
newtype Signal a = Sig {unSig :: Time -> a}

constS :: a -> Signal a
constS x = Sig (const x)

timeS :: Signal Time
timeS = Sig id

($$) :: Signal (a -> b) -> Signal a -> Signal b
fs $$ xs = Sig (\t -> unSig fs t (unSig xs t))

mapT :: (Time -> Time) -> Signal a -> Signal a
mapT f xs = Sig (unSig xs . f)

sample :: Signal a -> Time -> a
sample = unSig

Figure A.2: An example of a shallow embedded DSL. Used with permission. [25]

II

B
Chess modelled with the DSL

This appendix contains the code of the game chess, figure B.1, modelled with the
DSL. To make everything fit, chessBoard and chessRules are shown in their own
figures, figure B.2 and figure B.3 respectively.

chess :: Game
chess = game {

board = chessBoard,
players = [

Player "White",
Player "Black"

],
rules = chessRules,
endConditions = [

If (pieceNotOnBoard "k" `OR` pieceNotOnBoard "K")
currentPlayerWins

]
}

Figure B.1: An implementation of chess using the DSL. Code for chessBoard can
be found in figure B.2 and chessRules can be found in figure B.3.

III

B. Chess modelled with the DSL

chessBoard = initRectBoard 8 8 [
((1,7), Piece "p" (Player "White")),
((2,7), Piece "p" (Player "White")),
((3,7), Piece "p" (Player "White")),
((4,7), Piece "p" (Player "White")),
((5,7), Piece "p" (Player "White")),
((6,7), Piece "p" (Player "White")),
((7,7), Piece "p" (Player "White")),
((8,7), Piece "p" (Player "White")),
((1,8), Piece "r" (Player "White")),
((2,8), Piece "h" (Player "White")),
((3,8), Piece "b" (Player "White")),
((4,8), Piece "q" (Player "White")),
((5,8), Piece "k" (Player "White")),
((6,8), Piece "b" (Player "White")),
((7,8), Piece "h" (Player "White")),
((8,8), Piece "r" (Player "White")),

((1,2), Piece "P" (Player "Black")),
((2,2), Piece "P" (Player "Black")),
((3,2), Piece "P" (Player "Black")),
((4,2), Piece "P" (Player "Black")),
((5,2), Piece "P" (Player "Black")),
((6,2), Piece "P" (Player "Black")),
((7,2), Piece "P" (Player "Black")),
((8,2), Piece "P" (Player "Black")),
((1,1), Piece "R" (Player "Black")),
((2,1), Piece "H" (Player "Black")),
((3,1), Piece "B" (Player "Black")),
((4,1), Piece "Q" (Player "Black")),
((5,1), Piece "K" (Player "Black")),
((6,1), Piece "B" (Player "Black")),
((7,1), Piece "H" (Player "Black")),
((8,1), Piece "R" (Player "Black"))

]

Figure B.2: How the chessboard for the game chess is defined using the DSL.

IV

B. Chess modelled with the DSL

ch
es

sR
ul

es
=

[
If

(a
ll

yT
il

e
`A

ND
`

NO
T

al
ly

De
st

in
at

io
n)

$
If

El
se

(p
ie

ce
Eq

ua
lT

oE
it

he
r

["
H"

,
"h

"]
`A

ND
`

is
Kn

ig
ht

Mo
ve

)
mo

ve
Pi

ec
e

$
If

El
se

(p
ie

ce
Eq

ua
lT

oE
it

he
r

["
k"

,
"K

"]
`A

ND
`

is
Ki

ng
Mo

ve
)

mo
ve

Pi
ec

e
$

If
El

se
(p

ie
ce

Eq
ua

lT
oE

it
he

r
["

q"
,

"Q
"]

`A
ND

`
is

Qu
ee

nM
ov

e)
mo

ve
Pi

ec
e

$
If

El
se

(p
ie

ce
Eq

ua
lT

oE
it

he
r

["
b"

,
"B

"]
`A

ND
`

is
Bi

sh
op

Mo
ve

)
mo

ve
Pi

ec
e

$
If

El
se

(p
ie

ce
Eq

ua
lT

oE
it

he
r

["
r"

,
"R

"]
`A

ND
`

is
Ro

ok
Mo

ve
)

mo
ve

Pi
ec

e
$

If
El

se
(p

ie
ce

Eq
ua

lT
o

"p
"

`A
ND

`
is

Wh
it

eP
aw

nM
ov

e)
(m

ov
eP

ie
ce

>|
>

If
(p

ie
ce

De
st

in
at

io
nB

el
on

gs
To

Ro
w

1)
(c

on
ve

rt
To

Pi
ec

e
"q

")
)

$
If

(p
ie

ce
Eq

ua
lT

o
"P

"
`A

ND
`

is
Bl

ac
kP

aw
nM

ov
e)

(m
ov

eP
ie

ce
>|

>
If

(p
ie

ce
De

st
in

at
io

nB
el

on
gs

To
Ro

w
8)

(c
on

ve
rt

To
Pi

ec
e

"Q
")

)
] is

Wh
it

eP
aw

nM
ov

e
=

(d
es

ti
na

ti
on

Is
Re

la
ti

ve
To

(0
,-

1)
`A

ND
`

em
pt

yD
es

ti
na

ti
on

)
`O

R`
((

de
st

in
at

io
nI

sR
el

at
iv

eT
o

(1
,-

1)
`O

R`
de

st
in

at
io

nI
sR

el
at

iv
eT

o
(-

1,
-1

))
`A

ND
`

en
em

yD
es

ti
na

ti
on

)
`O

R`
(p

ie
ce

Or
ig

in
Be

lo
ng

sT
oR

ow
7

`A
ND

`
de

st
in

at
io

nI
sR

el
at

iv
eT

o
(0

,-
2)

`A
ND

`
em

pt
yD

es
ti

na
ti

on
`A

ND
`

ti
le

sB
et

we
en

Ar
e

em
pt

yT
il

e)

is
Bl

ac
kP

aw
nM

ov
e

=
(d

es
ti

na
ti

on
Is

Re
la

ti
ve

To
(0

,1
)

`A
ND

`
em

pt
yD

es
ti

na
ti

on
)

`O
R`

((
de

st
in

at
io

nI
sR

el
at

iv
eT

o
(1

,
1)

`O
R`

de
st

in
at

io
nI

sR
el

at
iv

eT
o

(-
1,

1)
)

`A
ND

`
en

em
yD

es
ti

na
ti

on
)

`O
R`

(p
ie

ce
Or

ig
in

Be
lo

ng
sT

oR
ow

2
`A

ND
`

de
st

in
at

io
nI

sR
el

at
iv

eT
o

(0
,2

)
`A

ND
`

em
pt

yD
es

ti
na

ti
on

`A
ND

`
ti

le
sB

et
we

en
Ar

e
em

pt
yT

il
e)

F
ig

ur
e

B
.3

:
H

ow
th

e
ch

es
s

ru
le

s
ar

e
de

fin
ed

us
in

g
th

e
D

SL
.

V

C
Library functions

Below is a list of every rule, condition, and update included in the library, together
with ways of initialising the board and the display function.

C.1 Boards
rectBoard :: Int -> Int -> Board
Creates an empty rectangular board.

initRectBoard :: Int -> Int -> [((Int, Int), Piece)] -> Board
Creates a rectangular board with pieces in certain locations.

C.2 Rules
placePiece :: Rule
Places a piece in a certain position on the board.

movePiece :: Rule
Move a piece to an absolute position on the board.

gameDraw :: Rule
A Rule for a draw.

currentPlayerWins :: Rule
A Rule for the turn player winning.

playerWithMostPiecesWins :: Rule
A Rule for when the player with the most pieces out on the board wins.

skipTurn :: Rule
Passes the turn according to the order described in the game state.

convertToPiece :: String -> Rule
A rule that places a specified piece at a tile specified by the turn input.

VI

C. Library functions

C.2.1 Rule Utility
doUntil :: Rule -> Condition Turn -> Update Turn -> Rule
Iterate a Rule until a Condition is met over an Update Turn.

Example usage:

doUntil (If emptyTile placePiece) enemyTile

The example replaces the next tile, if empty, with an ally tile. If the condition fails
before reaching an enemy tile, the result is ignored.

replaceUntil :: Condition Turn -> Condition Turn -> Update Turn ->
Rule

Replace a tile until another tile in the specified direction.

Example usage:

replaceUntil enemyTile allyTile

The example replaces every enemy tile until the first ally tile in the specified di-
rection. If another tile is reached before the end condition is met, the result is
ignored.

C.3 Conditions
trueCond :: Condition Turn
A condition that is always True.

falseCond :: Condition Turn
A condition that is always False.

pieceIsAtPos :: Pos -> Condition Turn
A condition which is true if a given piece is at a given location.

pieceOriginBelongsToRow :: Int -> Condition Turn
A condition which is true if a piece at the first position of a move turn exists in a
given row.

pieceDestinationBelongsToRow :: Int -> Condition Turn
A condition which is true if a piece at the first position of a move turn exists in a
given row.

boardIsFull :: Condition a
Checks if the board is full.

changedState :: Rule -> Condition Turn
A condition for checking if a Rule would change the state of the board.

emptyTile :: Condition Turn

VII

C. Library functions

A Condition for checking if the current tile is empty.

allyTile :: Condition Turn
A Condition for checking if the piece (on given tile) belongs to the current player.

enemyTile :: Condition Turn
A Condition for checking if the piece (on given tile) doesn’t belong to the current
player.

pieceEqualTo :: String -> Condition Turn
A Condition for checking if a predescribed piece is equal to a given piece on the
board.

pieceEqualToEither :: [String] -> Condition Turn
A Condition for checking if the piece on the tile has any of the identifiers in the
given list.

emptyDestination :: Condition Turn
A Condition for checking if the destination tile is empty.

allyDestination :: Condition Turn
A Condition for checking if the destination belongs to the player.

enemyDestination :: Condition Turn
A Condition for checking if the destination belongs to the enemy.

destinationIsRelativeTo :: (Int, Int) -> Condition Turn
Checks if the destination is x steps left/right and y steps up/down compared to
original position.

isDiagonalMove :: Condition Turn
A Condition for checking if a given move follows a diagonal path.

isStraightMove :: Condition Turn
A Condition for checking if a given move is a straight line.

pieceOnBoard :: String -> Condition Turn
A Condition for checking if the piece is on the board.

pieceNotOnBoard :: String -> Condition Turn
A Condition for checking if the piece is not on the board. Inverse of pieceOnBoard.

noPlayerHasMoves :: Condition Turn
Returns True if no player has any valid moves, False otherwise.

playerCanPlace :: Condition Turn
A Condition for checking if the current player can place a piece anywhere on the
board.

inARow :: Int -> Condition Turn
Checks if the board contains a given number of pieces in a row in any orientation

VIII

C. Library functions

(vertical, horizontal, diagonal).

tileBelowIsNotEmpty :: Condition Turn
A condition for checking if the tile below another tile is empty.

tilesBetweenAre :: Condition Turn -> Condition Turn
A condition for checking if another condition applies to all tiles between the origin
and destination pos.

The following conditions are for different moves in chess. Note that the conditions
are not exclusive to the game chess, but are just descriptive names for the conditions.

isKnightMove :: Condition Turn
A condition for determining if the turn is a knight move in the game chess.

isKingMove :: Condition Turn
A condition for determining if the turn is a king move in the game chess.

isRookMove :: Condition Turn
A condition for determining if the turn is a rook move in the game chess.

isBishopMove :: Condition Turn
A condition for determining if the turn is a bishop move in the game chess.

isQueenMove :: Condition Turn
A condition for determining if the turn is a queen move in the game chess.

C.4 Updates
allDirections :: [Update Turn]
A list containing all directions.

straightDirections :: [Update Turn]
A list containing all straight directions.

diagonalDirections :: [Update Turn]
A list containing all diagonal directions.

The following updates are for updating a turn in specific directions, mainly for use
with IterateUntil. The name of the functions signify the direction.

turnUp :: Update Turn

turnLeft :: Update Turn

turnRight :: Update Turn

turnDown :: Update Turn

IX

C. Library functions

turnUpLeft :: Update Turn

turnUpRight :: Update Turn

turnDownLeft :: Update Turn

turnDownRight :: Update Turn

C.5 Display functions
prettyPrint :: Game -> IO ()
Prints a board in the terminal. It’s pretty.

X

	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Problem
	Purpose
	Scope
	Source Code

	Background Theory
	Haskell
	Domain-Specific Languages
	Embedded and External Domain-Specific Languages
	Types of embedding

	Game Theory

	Design
	Process
	Iterative Development

	Language Description
	The Game Data Type
	Turns
	Updates
	Conditions
	Rules
	Creating a Board Game

	Example Games
	Tic-tac-toe
	Othello
	Chess

	Implementation Details
	Run Functions

	Testing

	Discussion
	Changes from the Planning Phase
	Evaluation
	Usability

	Reflections
	Type of Embedding
	Limitations

	Future Expansions
	GUI
	DSL Improvements
	Uses in Research

	Societal Considerations
	Analysing Games
	Accessibility

	Conclusion
	Bibliography
	Example of a DSL using deep and shallow embedding
	Chess modelled with the DSL
	Library functions
	Boards
	Rules
	Rule Utility

	Conditions
	Updates
	Display functions

