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Abstract
Simulating quantum computers involves high memory usage and often long execu-
tion times. For that reason the purpose of this project was to analyze whether data
compression and GPU acceleration can be used to run simulations with more qubits
than previously allowed. Ultimately this project sheds some light on how GPU ac-
celeration and data compression algorithms, ZFP and FPZIP, impact the amount
of qubits that are able to be simulated. The simulator tested in this project was
a modified version of the Quantum Exact Simulation Toolkit (QuEST). From the
results of this project it was found that data compression shows good potential in
decreasing the total memory usage per qubit size. However, the use of data com-
pression negatively impacted the execution time, but by using GPU acceleration the
impact was reduced.
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Sammandrag
Simulering av kvantdatorer har en hög minnesanvändning och ofta långa exekver-
ingstider. Av den anledningen var syftet med detta projektet att analysera ifall
datakomprimering och GPU-acceleration kan användas för att köra simuleringar
med fler qubits än vad som var tidigare möjligt. Detta projekt belyser hur GPU-
acceleration och komprimeringsalgoritmerna, ZFP och FPZIP, påverkar mängden
qubits som kan simuleras. Simulatorn som testades i projektet var en modifierad
version av Quantum Exact Simulation Toolkit (QuEST). Resultatet av projektet
påvisade att datakomprimering visar en god potential för att minska den totala
minnesanvändningen per qubit. Användningen av datakomprimering påverkade dock
exekveringstiden negativt, men genom att använda GPU-acceleration minskades ef-
fekterna.
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1
Introduction

1.1 Background
Quantum computers as a concept were first mentioned by the mathematician Yuri
Manin and later gained traction when the physicist Richard Feynman furthered the
concept [2]. Feynman argued that as the complexity of the system increases, simula-
tions of quantum systems become infeasible on classical computers. He even stated
during a keynote address at the California Institute of Technology that, "...nature
isn’t classical, ... and if you want to make a simulation of nature, you’d better make
it quantum mechanical, and by golly it’s a wonderful problem, because it doesn’t
look so easy." [3].

The purpose for the development of quantum computers is to solve problems that
are otherwise too difficult to solve on classical computers. Through the utilization of
specially designed algorithms, this purpose can be achieved. One such algorithm is
Shor’s algorithm, which, with a quantum computer, can perform prime factorization
in polynomial time [4]. This is a significant improvement from classical algorithms
that perform prime factorization in non-polynomial time. Quantum computers can,
therefore, have a big impact on cyber security since modern cryptography relies on
the difficulty of prime factorization.

The main difference between a classic and quantum computer, is the size of the
problem space in which they operate. The basic building blocks in classical com-
puters are bits, which can have a value of either 1 or 0. In quantum computers, bits
are instead replaced with quantum bits, or qubits. A qubit can fall into one of three
different states: 1, 0, or a superposition state of 1 and 0. While classical computers
can only represent one specific state at a time, quantum computers are able to rep-
resent all possible states, known as quantum superposition [2]. The reason quantum
computers can operate in a larger problem space is because they can utilize quan-
tum mechanical properties such as superposition and quantum entanglement. To
fully utilize the potential in a quantum computer, specific quantum algorithms are
required. These algorithms take advantage of the quantum mechanical properties
to simultaneously represent all possible states and then collapse the system into a
desired end state.

While, theoretically, quantum computers have a broad range of applications, the
ability to construct these machines is still in early development. IBM only recently
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1. Introduction

revealed their quantum computer with 127 qubits [5]. This is when the role of a
simulator becomes imperative. Simulators are often used to replicate the functional-
ity of quantum algorithms by simulating the qubits on classical hardware [6]. There
are multiple ways of implementing a quantum simulator on a classical computer.
One such way is to represent the quantum states as state vectors. Matrices are used
to represent quantum gates, and show how the state vectors can be manipulated.
Quantum Exact Simulation Toolkit (QuEST) is an example of a simulator that im-
plements pure state-vector representation to simulate a quantum computer [7]. A
drawback with the state-vector based simulators is that resource requirements will
grow by a factor of 2 for each added qubit, e.g. simulating 30 qubits will require a
state-vector of size 230 to represent each possible state [8].

One of the main resource limitations when it comes to simulating quantum com-
puters is the increase in memory requirement for each new qubit [8]. One way to
address this problem is to use data compression [9]. Data compression works by
compressing larger pieces of data into smaller representations. There are two types
of compression techniques, lossless compression and lossy compression. Lossless
compression refers to compression where no data is lost. Although lossless compres-
sion is effective there are practical limits to how much the data can be compressed
[10]. An alternative compression method is lossy compression. Lossy compression
may achieve a higher compression ratio but comes with the risk of data loss. Due
to this risk, lossy compression is not inherently reversible [11].

Another common way to improve performance is through hardware acceleration.
It can be used to offload some of the work that the Central Processing Unit (CPU)
performs and potentially do faster computations. This is because hardware ac-
celerators are typically designed for a specific task and that task only. Graphical
Processing Units (GPUs) are well-suited for this role as they are more able to be
parallelized than a CPU, thereby allowing a higher level of concurrent executions
[12].

1.2 Purpose
When simulating the full state of quantum computer circuits on classical hardware,
one of the key issues is the memory and computation requirements that increase ex-
ponentially with the number of qubits [8]. For example, a quantum circuit consisting
of 25 qubits can be simulated on a laptop, while a 50 qubit circuit will require a
supercomputer. Therefore, the purpose of this project is to analyze if data compres-
sion and GPU acceleration can be used to allow the simulation of larger quantum
circuits at a reasonable speed. Ultimately this project should provide insight into
how different compression algorithms and GPU acceleration can impact the number
of qubits that can be simulated on classical hardware. The task of testing different
compression algorithms included both lossless and lossy techniques. The reason for
trying both categories of compression was to provide further knowledge of how data
loss may impact the performance, size, and correctness of a quantum circuit.
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1. Introduction

1.3 Scope
Certain limitations were set in order to narrow the scope of the project. One such
limitation was to implement optimization techniques for only one quantum com-
puter simulator. Each simulator on the market uses a different simulation method
in order to focus on a different area of research. The choice to study only one
simulator, allowed for a thorough investigation into how compression and hardware
acceleration affect memory usage and execution time for that specific simulator.
Qiskit [13] and CirQ [14] are well-established quantum simulators made by some
of the biggest names in quantum computing today, Google and IBM. Both Google
and IBM are also developers of actual quantum computing hardware, which may
lead to the simulator’s libraries containing fewer details of the actual quantum com-
putational procedure [15]. On the other hand, QuEST was built purely with the
intention to be used for research purposes and as such was better suited for the
needs of this study [15]. The choice to focus on one simulator also resulted in the
limitation of one simulation method. The use of QuEST meant limiting the project
to the state vector method of simulating general quantum circuits. While there are
various methods of simulation, the state vector method is fast and versatile when
memory size is sufficient and the number of qubits is low [16].

Another limitation of the project was the choice to study the effects of the opti-
mization techniques using one quantum algorithm. The algorithm in question was
Grover’s search algorithm which is a well-established quantum algorithm for effi-
ciently finding an element in an unsorted list [17]. The choice to limit the study to
only one algorithm was related to the problem statement and scope. The focus of
this project was not on the quantum algorithm itself, but instead on the algorithm’s
performance and whether that performance can be improved using techniques found
in classical computing. The study was also limited by two compression algorithms,
one lossless and one lossy. While this was partially due to the project’s time con-
straint, the choice to study two different compression algorithms was deliberate.
By implementing two contrasting compression methods, one could easily compare
which was superior in terms of resource requirements.
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2
Theory

This chapter presents the underlying theory necessary to understand the methods
of implementation and testing discussed in the subsequent chapters. The topics
covered in this chapter range from the basics of quantum computer simulators, data
compression, performance metrics, and GPUs.

2.1 Simulating Quantum Circuits
As previously stated, quantum bits differ from classical bits. There exists a way to
represent qubits using classical bits to simulate quantum states on classical hard-
ware. One way to do this is to describe quantum states using state vectors. The
state vector representing a single qubit contains two probabilities for collapsing into
either state 0 or 1. For two qubits, there are four possible states for the system to
collapse into, and as such the state vector contains four entries. The depiction of
these state vectors is shown below.

1 qubit[
a0
a1

] 2 qubits
a00
a01
a10
a11



n qubits

a00...0
a00...1

...

...

...
a11...1


It is common to utilize Dirac notation when representing individual states inside
a state vector. Using Dirac notation simplifies the representation of states with a
higher number of qubits [18]. Below is an example of how Dirac notation works for
a system of 2 qubits.

|00⟩ =


1
0
0
0

 |01⟩ =


0
1
0
0

 |10⟩ =


0
0
1
0

 |11⟩ =


0
0
0
1


In conclusion, to fully define the state of a quantum computer, a state vector of 2n

amplitudes is required (n represents the number of qubits to simulate). This ex-
ponential growth will also lead to an exponential increase in memory requirements
when simulating quantum systems. After a certain number of qubits, it becomes
very resource-intensive to simulate a quantum computer [19]. When using QuEST
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2. Theory

to simulate a circuit on a personal computer, only about 30 qubits can be run as
the memory usage reaches approximately 16GB. This is the limit for most personal
computers today, due to the limited memory on consumer hardware and the state
vector’s exponential growth.

Of course, simply using state vectors to represent qubits does not create a func-
tional simulator, there must also be a way to simulate quantum gates. Classical
gates provide the basic functionality inside conventional computers, in much the
same way as quantum logic gates provide the basic functionality for quantum com-
puters. Quantum gates are represented as matrices, applied to a qubit to perform
basic operations. The most common quantum gates operate on one or two qubits,
meaning that multiple gates are needed to form a quantum circuit, just as conven-
tional circuits are composed of multiple logic gates [20]. Some of the most imperative
single-bit gates are the Pauli gates, X, Y, Z which can be represented as matrices
[21].

X = σx =
[
0 1
1 0

]
Y = σy =

[
0 −i
i 0

]
Z = σz =

[
1 0
0 −1

]

The Pauli-X matrix, as understood from linear algebra, is used to represent the X-
gate. When the X-gate operates on a qubit, the Pauli-X matrix is multiplied by that
qubit’s state vector. An example of how this gate operates on |0⟩ is below. The gate
can also be expressed as a rotation of π radians along the x-axis of the Bloch Sphere.
The Pauli-X operator is analogous to the NOT-gate in classical computing. The
Y- and Z-gates operate similarly, except that they rotate along the y- and z-axes,
respectively [21].

X|0⟩ =
[
0 1
1 0

] [
1
0

]
= |1⟩

|0⟩ =
[
1
0

]
|1⟩ =

[
0
1

]

The Hadamard Gate, H, is also a fundamental operation in quantum computers.
When given a basis state, the Hadamard Gate creates a superposition of the states.
The matrix, shown below, is used to represent the gate. The Hadamard Gate and
the Pauli Gates are both implemented in Grover’s search algorithm [20].

H = 1√
2

[
1 1
1 −1

]

7



2. Theory

2.1.1 Grover’s Search Algorithm
Grover’s search algorithm answers a classic computing problem, namely searching
for an element within a list. Grover’s search algorithm is a clear demonstration
of when the performance of a quantum computer significantly outperforms that of
a classical computer. With classical computation, the time complexity of finding
the correct element in an unsorted list is O(N) [17]. However, when using a quan-
tum computer the time complexity is only O(

√
N). This decrease in complexity is

achieved by utilizing an oracle and a reflection operator. Together, these operations
define a technique known as amplitude amplification. Simply, this technique ampli-
fies the probability of the state collapsing into the winning state, w by reducing the
likelihood of it collapsing into all the other states.

The first operation in the algorithm is the oracle. The oracle works by taking
several inputs and changing the winning state’s sign. The inputs are encoded as the
basis states of a specified number of qubits. For example, for two qubits, the inputs
will be the states 00, 01, 10, and 11. It flips the sign of the winning state to its
negative phase through the use of a unitary matrix. To exemplify the algorithm’s
functionality, let w = 11. When the position of the winning state is still unknown,
the probability of the superposition collapsing to any of the basis states has equal
probability. The state that represents this is known as the superposition state, or s
[22]. The following vectors express the states |w⟩ and |s⟩:

|w⟩ =


0
0
0
1

 = |11⟩ |s⟩ =


1
1
1
1

 1
2

The oracle takes |s⟩ as an input and outputs a state where the sign of the winning
state has flipped, shown from the following vector:

1
1
1

−1


This oracle operation can also be described graphically, as seen in Figure 2.1. The
graph on the left shows the original vectors |w⟩ and |s⟩. It also shows the state
|s′⟩ that is orthogonal to |w⟩. The graph on the right shows the transformation of
|s⟩ after the oracle has been applied. It has been reflected across |s′⟩ to get a new
vector.

8



2. Theory

Figure 2.1: The oracle operation applied to |s⟩

The next step is to apply a reflection operator, defined as 2|s⟨s| − 1, to this new
vector. The result of this operation is the reflection of the vector back across |s′⟩.
From Figure 2.2, one can see the combination of these two transformations has
moved the vector closer to the winning vector, |w⟩. With 2 qubits, it only takes one
application of the amplitude amplification operation for our quantum state to arrive
at the winning state. However, by increasing the number of qubits, the number of
times the amplitude amplification must be applied increases by

√
N [22].

Figure 2.2: The reflection operator

2.1.2 QuEST
QuEST is a simulator for quantum circuits that are built for high performance by
using multi-threading, GPU acceleration, and distributed computation [23]. This
allows QuEST to run efficient simulations on everything ranging from simple laptops
to powerful supercomputers. The QuEST simulator supports both state-vector and
density matrix representations, thereby allowing simulations of quantum circuits
with pure or mixed states. State-vector representation involves having a vector
filled with complex numbers. QuEST solves this by having two separate floating-
point arrays in memory, where one of the arrays stores the real parts of the complex
number and the other holds the imaginary parts. Together, these two arrays define
the complete state of a quantum computer with a fixed number of qubits [7].

2.2 Data Compression
The amount of available data is constantly increasing, although handling it remains
a challenge. One method of tackling this issue is through data compression. Data
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2. Theory

compression is the task of taking a representation of data and determining a smaller
data size that still represents the same data. Today, data compression has many
purposes, most commonly in the storage of images and audio files [24].

Compressing data can be done in one of two ways, either through lossless or lossy
compression. Lossless compression refers to when no data is lost and the quality
remains the same. What makes lossless compression advantageous is that after de-
compression, the data is restored to its original form. This function is essential when
compressing confidential documents or digital images where one wants to maintain
high quality. The alternative is lossy compression which can achieve a higher com-
pression ratio but at the risk of permanent data loss. In this type of compression,
once a file is compressed it cannot be entirely restored to its original form [11].

2.2.1 ZFP
ZFP is a lossy compression algorithm for high compression of multi-dimensional nu-
merical arrays[25]. The algorithm works by splitting the multi-dimensional array,
or d-dimensional, into arrays of 4d values, also known as blocks. These blocks are
compressed and decompressed independently of one another [26]. Once the data has
been partitioned into blocks, the floating-point values contained in each block are
converted to a block-floating-point representation. Block-floating-point is a method
that assigns a single exponent to all the values in the block. Essentially, each of the
floating-point values becomes a signed integer [26]. The blocks undergo a process of
decorrelation using a near orthogonal transform to remove redundant information.
This orthogonal transform resembles the discrete cosine transform used in image
processing [27]. It transforms data from a spatial domain into a frequency domain,
where the higher frequencies are identified as redundant [28].

Next, the signed integer coefficients are reordered in decreasing magnitude resulting
in the grouping of ones together and zeros together in the bit plane [27]. After
which, the standard representation of integers, or the two’s complement signed in-
tegers, are converted to their negabinary-representation. The leftmost one-bit in
this representation encodes the sign and approximates the magnitude of a value.
Negabinary-representation facilitates encoding due to the numbers having many
leading zeros regardless of the sign. Currently, the list of 4d values is sorted by the
magnitude of the coefficient. The next step is to reorder them from most to least
significant bit on the bit plane [26].

Often, coefficients have many leading zeros. Only a single zero-bit is needed to
represent a group consisting only of zeros, which results in less memory usage. As
such, the goal is for groups of zero-bits to be encoded together. Each bit plane is
losslessly compressed using embedded coding. The embedded coder will emit one bit
at a time until it satisfies the criteria for stopping. This stopping criterion is defined
by which mode of ZFP compression is being run, namely fixed-rate, fixed-precision,
or fixed-accuracy [27].
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The three compression modes each determine a different way of compressing data.
Fixed-rate compression stores the compressed floating-point number as a set number
of bits. In other words, it will always compress the data to a defined limit even if
the data has the potential to be represented using a smaller data set. Using fixed-
precision compression, the bit size of the compressed data may vary but will never
become greater than some fixed limit. The difference between these two modes is
that fixed-precision can represent the same amount of data using a smaller com-
pressed data size. Lastly, fixed-accuracy compression limits the compressed data
based on a defined accuracy for the floating-point number, maintained throughout
the execution. If, for example, the tolerance is three decimal points, fixed-accuracy
mode will compress the data to a size that corresponds to three decimal point ac-
curacy [27].

2.2.2 FPZIP
FPZIP is a lossless compression algorithm for two or three-dimensional floating-
point arrays. The algorithm parses through the array and predicts each data point
based on a subset of data available to the decompressor. The data in this subset is
already encoded. Next, the predicted values and the actual floating-point values, are
mapped to their signed integer representation which calculates the prediction residu-
als. If the residuals were to be calculated by subtraction of the original floating-point
values it might cause an irreversible loss of information [29].

Then, the residual values are partitioned into entropy codes and raw bits by an
entropy coder. Using a method known as range coding, the entropy coder encodes
the symbols by taking a range of integers that function as a unique representation
of a string. Each symbol in the string has a probability distribution that divides the
original range into sub-ranges. The size of these intervals will be proportionate to the
probability of the symbol it represents. These portions must be at non-overlapping
intervals. The range is then reduced further to a sub-interval which corresponds to
the next symbol to be encoded. This process then repeats itself for all the remaining
values [29].

2.3 Graphics Processing Unit
Hardware acceleration is the process of running a dedicated set of instructions on
a hardware component that is optimized to perform those specific instructions effi-
ciently. One typical example of hardware acceleration is rendering computer graph-
ics, where the rendering task usually is offloaded to a dedicated Graphics Processing
Unit, or GPU. The GPU is much better suited for handling tasks that allow for a
high level of parallelism, such as calculating the colors of dedicated pixels [30]. GPUs
are different from CPUs in that they can perform many computations simultane-
ously. CPUs, in contrast, typically perform complex instructions that are sequential
in nature. GPUs are built to handle a large number of graphics calculations which
often involve floating-point arithmetic. GPUs also differ from CPUs on an architec-
tural level. GPUs were created to prevent the CPU from becoming overwhelmed
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when performing graphics calculations. Today, GPUs have grown to become sophis-
ticated and powerful multi-core systems that can respond to high computational
demands. Mainly, GPUs are either integrated on the motherboard of the respective
computer or connected via a PCIe port. The latter alternative usually yields better
performance [12].

2.3.1 CUDA
Compute Unified Device Architecture (CUDA) is a programming model created by
Nvidia to provide programming access to their line of GPUs used in consumer soft-
ware. CUDA can improve a program’s performance by carrying-out calculations on
the GPU instead of the CPU. A developer can use CUDA with several programming
languages such as C/C++, OpenCL, Fortran, etc. The CUDA programming model
uses an abstraction hierarchy. This hierarchy consists of warps, grids, threads, and
blocks, of which threads are the fundamental execution units. Multiple threads make
up a block and multiple blocks make up a so-called grid. A warp is a composite
of threads executing in Single-Instruction-Multiple-Thread (SIMT) mode. SIMT is
when the multiple threads in a warp can simultaneously perform the same instruc-
tions. There are two types of functions, those executed on the GPU, referred to as
kernel functions, and those executed on the CPU. However, it is the responsibility
of the CPU to transfer the data between the host (CPU) and the device (GPU).
The CPU is also responsible for the invocation of the said kernel functions and the
setting up of the dimensions for the blocks and grids of the device. Parameters such
as these are to be defined by the programmer [31].

The architecture of a GPU, consisting of thousands of threads compared to the
tens of threads on a CPU, promotes the parallel execution of tasks. While the single
thread speed on a CPU is usually higher than that on a GPU, the throughput of
the GPU is higher as a result of the high parallelism that it offers. Not all Nvidia
GPUs support CUDA, but some that do are the GeForce, TitanX series GPUs as
well as a collection of the Quadro and RTX series [32].

2.4 Measuring Performance
To achieve a formal and measurable quantity of performance, ’performance’ is de-
fined as the absolute execution time of a program per the definition stated by Patter-
son and Hennessy [33]. Equation 2.1 and equation 2.2 both illustrate the underlying
equation. For equation 2.2, I is the number of instructions of a program, CPI is the
average number of cycles per instruction and T is the period of the system clock.

Execution T ime = Instructions

Program
× Clock Cycles

Instruction
× Seconds

Clock Cycle
(2.1)

CPU Time = I × CPI × T (2.2)
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Not only is defining a metric for execution time important so is finding a definition of
memory utilization since it is the core tool for analyzing the efficacy of the compres-
sion algorithms. The metric used for measuring memory usage is compression ratio.
Equation 2.3 below shows the specific formula for calculating the data compression
ratio.

Compression Ratio = Uncompressed Size

Compressed Size
(2.3)

2.5 Fidelity
When information travels, it is vulnerable to changes, both expected and unex-
pected. One way to describe the overall similarity between the sent and received
information is fidelity. In quantum computing, fidelity is the measure of the error
rate produced between the expected output and the actual output.

In Quantum computer simulator when compression is applied data loss can hap-
pened. To determine the data loss, fidelity can be used to represent the similarity
between the original data and the data after decompression. When changes occur
in the state vectors, potential errors can arise in the simulation. State vectors deter-
minate how the qubits will collapse to get the resulting calculation and high fidelity
minimizes the risk of qubits collapsing to the wrong state.

Using Equation 2.4 fidelity can be calculated mathematically by turning into density
matrix and comparing the original state vectors as ρ1 and the state vectors after
using compression as ρ2. This produces a number between 0 and 1 that represent
how similar the two state vectors are.

F (ρ1, ρ2) = {trace[
√√

ρ1ρ2
√

ρ1]}2 (2.4)

Figure 2.3 shows visual representation of how fidelity is calculated. Comparing ρ1
as the original data and ρ2 as the data after compression. Fidelity is represented in
the intersecting area between the two graphs.
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Figure 2.3: Visual representation of fidelity shown as the intersection between two
state vectors ρ0 and ρ1 [1]
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3
Implementation

This chapter details the methods used to integrate data compression into QuEST,
implement GPU acceleration, and test these new techniques. Describing the method-
ology of the study is crucial when contextualizing the final results.

3.1 Adapting QuEST to Compressed Data
As mentioned in Chapter 2, the QuEST simulator used two arrays of floating-point
numbers to represent the current state of the quantum computer. When performing
operations, QuEST directly fetched and modified the floating-point numbers in these
two arrays, thereby changing the underlying state of the quantum system. Given
this approach, a new memory structure was created to support the compression of
the state vector. If the memory structure remained the same, one would run into
the same problem as when no data compression is used. Which is to say, if the entire
state vector were to be decompressed at one time, it would require a memory size as
large as the original state vector, defeating the purpose of using data compression.

3.1.1 Defining a Memory Structure
The new memory structure took advantage of a block-style implementation. The
two state vector arrays were split into multiple blocks where each block contained a
fixed number of floating-point values. Through this approach, only a fixed number of
blocks remained decompressed in memory at one time. This allowed the remaining
blocks to remain compressed in memory and decreased the overall memory usage.
Figure 3.1 illustrates how the memory block structure works. As can be seen, two
decompressed blocks are used to fetch and modify the state vector’s floating-point
values.
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Figure 3.1: The memory block structure 1) saving decompressed state to memory
2) loading compressed state from memory 3) loading compressed block into second
decompressed block

For a specific index in the state vector to be fetched or modified, the QuEST simula-
tor recalculated the index into two separate parts, one block index and one internal
index. As the names imply, the block index determined which block was to be ac-
cessed while the internal index determined the index of the value within the specific
block.

3.1.2 Fetching & Modifying the State Vector
By implementing a new memory block structure, the process of accessing specific
values within the state vector became more complex. More explicitly, the new
memory structure resulted in the handling of three potential scenarios to ensure the
compression and decompression of the correct memory block.

The first of these scenarios was when no compressed block was already decom-
pressed in the memory. In this case, QuEST needed to find the correct block and
decompress it before performing the fetch or modify operation. In the second sce-
nario, the decompressed block in memory had the same block index as the index
currently being accessed. As a result, no further action was necessary as QuEST
had previously accessed the block. In the final scenario, the decompressed block in
memory did not share the same block index as the current index, and thus QuEST
had to perform two actions to access the correct value. Firstly, it had to compress
the existing decompressed block and store it in the correct location in the memory
structure. Secondly, QuEST had to find the correct block corresponding to the cur-
rent index, decompress the block, and store it in memory, thereby allowing access to
the correct value. Figure 3.2 shows the specific code for the handling of these three
scenarios.
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Figure 3.2: Code for handling the loading of compressed memory blocks

3.1.3 Moving Data Across Two Different Blocks
The quantum gates used in QuEST involved moving data from one block of memory
to another. This was done in the modified QuEST simulator by allowing two blocks
to remain decompressed in memory at one time to avoid the need for repeated
compression and decompression operations. The simple logic of the least recently
used (LRU) determined which decompressed block was to be replaced when accessing
a compressed block. In other words, the memory block that was accessed previously
remained decompressed while the other memory block was replaced. Figure 3.3
below shows the underlying code used for finding which of the decompressed blocks
to replace.

Figure 3.3: Code for handling the process of determining which block needs to be
replaced in memory
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3.1.4 Static & Dynamic Memory Allocation
The block memory structure allowed the memory to be allocated in one of two ways,
either statically at the beginning of the program or dynamically when memory was
first accessed. These two types of memory allocation resulted in different optimiza-
tion effects. Static memory allocation had the potential to allow for faster execution
time as there was no temporary storage required during the compression of the orig-
inal state vector. Yet, dynamic memory allocation could result in a more effective
compression since the space allocated at any given moment was only that which was
indispensable for storing the current compressed data block.

During static memory allocation, a fixed amount of space was allocated at com-
pile time, regardless of whether it was fully utilized. However, in dynamic memory
allocation, a temporary storage block was allocated during compile-time and used as
intermediary storage while a data block was being compressed. After compression,
the size of the compressed data was used to allocate memory, and the data was
copied into the correct memory block. Through this method, only the size of the
currently compressed data was allocated for any given memory block. Figure 3.4
below shows the code for handling the dynamic allocation when saving data to a
memory block.

Figure 3.4: Code for handling the dynamic allocation when saving data to a
compressed memory block

Whether to use static or dynamic memory allocation depended on the compression
algorithm itself. In this case, ZFP supported both static and dynamic memory allo-
cation, while FPZIP only worked with dynamic allocation. This limitation is because
FPZIP does not provide a maximum estimate for the final size of the compressed
memory, rendering it impossible to efficiently utilize static memory allocation with-
out allocating the same size as the uncompressed data.
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3.2 Testing of Data Compression
To be able to understand if data compression was a valid alternative for simulating
larger quantum circuits several tests had to be performed. The tests were performed
by simulating an implementation of Grover’s search algorithm on the modified in-
stance of QuEST. Memory usage and execution time were the main factors used
when evaluating the effectiveness of the compression algorithms. Memory usage
showed whether data compression allowed for the simulation of larger quantum cir-
cuits. It could also easily compare the performance of the two algorithms based on
the ability to compress the state vector. The feasibility of integrating compression
into QuEST was measured using execution time. If execution time was too large,
the simulation of higher qubit circuits would be impractical, thereby deeming the
integration of ZIP and FPZIP as infeasible in practice. A test script was created to
collect the memory usage and execution time data. The test script’s purpose was
to ensure the tests were performed in controlled settings and with similar inputs.
For memory usage, the test script used heaptrack to generate an output file. Next,
heaptrack_print could extract the specific information about QuEST’s peak mem-
ory utilization. To collect the data on execution time, the perf_counter_ns function
within Python’s time package was used. This tool calculated the difference between
the start and the end of a test run in nanoseconds. The results collected from the
tests were copied to a file to be parsed by a data processing script.

The new memory block structure also made it relevant to test a new independent
variable, namely block size. The range of block sizes to be tested depends on the
number of qubits used. If a block size was too big, the entire state vector would
remain decompressed in memory, which led to no call to the compression algorithm.
For example, for 15 qubits the maximum block size was 215 − 1 = 32767. Any value
above the maximum size would cause the entire state vector to fit within the de-
compressed block. The effect block size had on memory usage was also considered.
An increase in block size means that the decompressed memory block would also
increase in size and potentially result in higher memory usage. As stated in Chapter
1, one of the main resource limitations when simulating quantum computers was the
increase in memory requirement for each new qubit. For this reason, the number
of qubits used in the quantum circuit was another independent variable tested. In
order to test a higher number of qubits, one also has to test higher block sizes. For
example, 10 different block sizes were tested for a quantum circuit running 16 qubits.
While limiting the number of tests run, it still provided a clear account of how block
size impacts execution time and memory usage. From Table 3.1 and Table 3.2 it
is possible to see the different tests performed, and that for 16 qubits ten different
block sizes were used.

Another aspect when testing the quantum simulator was the modes and compres-
sion sizes of ZFP and FPZIP. For ZFP, the tested modes were fixed-rate (-r), fixed-
precision (-p), and fixed-accuracy (-a). fixed-rate meant that the compression al-
gorithm would compress the original floating-points (64 bits) down to fixed data
size. In this case, 32-bit or 16-bit representation. The fixed-precision parameter
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worked similarly to fixed-rate, the difference being that it would be able to com-
press the data even lower than the set limit. fixed-precision was tested with the same
compression size as used for fixed-rate (32-bit and 16-bit). Lastly, fixed-accuracy
compressed the data down to a representation that guaranteed a fixed level of ac-
curacy. In this case, the tested parameters were four decimal accuracy (1e-4) or six
decimal accuracy (1e-6). Table 3.1 illustrates the different modes and compression
sizes used to test the ZFP implementation. ZFP was tested using both static and
dynamic allocation (-d).

Table 3.1: Test parameters for testing ZFP compression. Here -p refers to precision,
-r to rate and -a to accuracy.

Qubits Block Size Allocation Type Parameters

10 32, 64, 128, 256 static, dynamic
-r 32, -r 16, -p 32, -p 16,

-a 1e-4, -a 1e-6

11 64, 128, 256, 512 static, dynamic
-r 32, -r 16, -p 32, -p 16,

-a 1e-4, -a 1e-6

12 128, 256, 512, 1024 static, dynamic
-r 32, -r 16, -p 32, -p 16,

-a 1e-4, -a 1e-6

13 256, 512, 1024, 2048 static, dynamic
-r 32, -r 16, -p 32, -p 16,

-a 1e-4, -a 1e-6

14 512, 1024, 2048, 4096 static, dynamic
-r 32, -r 16, -p 32, -p 16,

-a 1e-4, -a 1e-6

15 1024, 2048, 4096, 8192 static, dynamic
-r 32, -r 16, -p 32, -p 16,

-a 1e-4, -a 1e-6

16 32, 64, 128, 256, 512, 1024,
2048, 4096, 8192, 16384 static, dynamic

-r 32, -r 16, -p 32, -p 16,
-a 1e-4, -a 1e-6

FPZIP had only one mode to test, namely precision mode (-p). In this case, the
precision was set to 64-bit to ensure that FPZIP remained lossless. Table 3.2 il-
lustrates the modes and settings used for the testing of the FPZIP. The testing of
FPZIP was limited to only dynamic allocation.

Table 3.2: Test parameters for testing FPZIP compression

Qubits Block Size Allocation Type Parameters
10 32, 64, 128, 256 dynamic -p 64
11 64, 128, 256, 512 dynamic -p 64
12 128, 256, 512, 1024 dynamic -p 64
13 256, 512, 1024, 2048 dynamic -p 64
14 512, 1024, 2048, 4096 dynamic -p 64
15 1024, 2048, 4096, 8192 dynamic -p 64

16 32, 64, 128, 256, 512, 1024,
2048, 4096, 8192, 16384 dynamic -p 64

20



3. Implementation

3.3 Determining Error Rate for Compression
Other than memory usage and execution time, one key aspect of evaluating the most
effective compression algorithm was determining the error rate. The error rate refers
to the fidelity between the state vectors resulting from QuEST without compression
and QuEST with compression integration. While lossy compression may lead to
lower memory usage, it may also cause data loss, altering the final results. The
error rate was a tool to depict the severity of this loss. If fidelity was too low,
the benefits of improved memory usage would be irrelevant as the data would be
ineffectual. Calculating the error rate also helped to compare the performance of
the lossless and lossy compression algorithms. The fidelity function took two vectors
and returned a number between 0 and 1. This value indicated the similarity between
the two vectors in percentage form. Fidelity as a measure of error rate allowed one
to determine the similarity between the state vectors of the unmodified QuEST
compared to the modified version.

3.4 GPU Acceleration of the Simulator
Integrating compression logic into the simulator could increase execution time, and
therefore GPU acceleration was a way to mitigate this problem. It involved offload-
ing all of the qubit operations performed by the simulator to the GPU, allowing for
a higher level of parallel executions. In the original implementation of the QuEST
simulator support already existed for GPU acceleration through CUDA. Because
of this the new GPU acceleration code would build on the existing implementation
within QuEST.

When integrating GPU acceleration, the existing code was modified to handle the
new memory structure, and to be able to compress and decompress the data every
time a new memory block needed to be accessed. Due to the new block memory
structure, the maximum number of parallel executions was thereby limited to the
total number of values within a memory block. The reason for this is that the qubit
operations could only be performed on decompressed values of the state vector.

In addition to the qubit operations, compressing and decompressing blocks were also
offloaded to the GPU. This was integrated into QuEST easily, as CUDA already sup-
ported ZFP with an implementation to accelerate compression and decompression.
However, this implementation only supported fixed-rate compression. Due to the
lack of support, fixed-precision mode, fixed-accuracy mode, as well as FPZIP were
not tested using GPU acceleration. While only testing the fixed-rate compression
did not provide the complete picture, it still allowed one to see the impact of GPU
accelerated code on execution time.

To run the GPU accelerated implementation it was only a matter of compiling
the modified QuEST simulator with a specific flag that compiled the CUDA imple-
mentation of the simulator. The CUDA implementation was also limited to only
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using the VRAM of the GPU for storing the state vector. This was because the
existing implementation in QuEST used older version of the CUDA API that did
not utilize unified memory (where data is shared between RAM and VRAM).

3.4.1 Testing GPU Acceleration
Tests allowed one to study the impact of GPU acceleration on execution time. The
tests ran ZFP with a fixed-rate mode of 32- and 16-bit representation. Through the
results, it was possible to determine the speedup that occurred when using GPU
acceleration as compared to using the original fixed-rate mode. Table 3.3 shows
the list of parameters used to test the GPU accelerated ZFP implementation. As
can be seen, the number of qubits tested increased to 18 qubits to show how GPU
acceleration handles larger qubit sizes.

Table 3.3: Test parameters for testing ZFP compression with GPU acceleration

Qubits Block Size Allocation Type Parameters
10 32, 64, 128, 256 static, dynamic -r 32, -r 16
11 64, 128, 256, 512 static, dynamic -r 32, -r 16
12 128, 256, 512, 1024 static, dynamic -r 32, -r 16
13 256, 512, 1024, 2048 static, dynamic -r 32, -r 16
14 512, 1024, 2048, 4096 static, dynamic -r 32, -r 16
15 1024, 2048, 4096, 8192 static, dynamic -r 32, -r 16

16 32, 64, 128, 256, 512, 1024,
2048, 4096, 8192, 16384 static, dynamic -r 32, -r 16

17 4096, 8192, 16384, 32768 static, dynamic -r 32, -r 16
18 8192, 16384, 32768, 65536 static, dynamic -r 32, -r 16

All the tests ran on a dedicated computer, to ensure the same hardware configu-
ration. The computer was a Linux machine running Ubuntu 20.04.04 LTS, on an
AMD Ryzen 5 1600x processor with 16 GB of RAM. The same hardware configura-
tion was used for the GPU accelerated simulator, alongside an Nvidia GTX980 Ti
graphics card.
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Results & Discussion

This chapter will provide the data resulting from tests of QuEST integrated with
data compression algorithms (ZFP and FPZIP) and QuEST with GPU acceleration.
Throughout this chapter, the different compression modes will be explored and
compared to determine the optimal settings with regard to memory utilization,
execution time, and fidelity.

4.1 Original QuEST
In order to fully comprehend the results derived from the integration of the two
compression algorithms as well as GPU acceleration, one must first look at the per-
formance of the original QuEST without any integrated optimization techniques.
Figure 4.1 displays how both the amount of memory utilized and execution time
scales exponentially with the number of simulated qubits. When considering the
results from using data compression and GPU acceleration, this is the benchmark
for determining the effectiveness of the solutions.

(a) (b)

Figure 4.1: Memory usage (a) and execution time (b) of running Grover’s search
algorithm on QuEST with no data compression
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4.2 ZFP
As discussed in Chapter 2, to integrate compression into QuEST, a new block-
structured memory was defined. The new block structure introduced a new inde-
pendent variable, namely block size. Figure 4.2 and Figure 4.3 show the effect block
size has on ZFP compression and ultimately how that influences the performance of
Grover’s search algorithm in terms of execution time and memory usage.

Figure 4.2: Execution time at 16 qubits over the block sizes 32-16384 floating-
points values for ZFP compression modes, fixed rate (-r), fixed precision (-p), fixed
accuracy (-a) and dynamic allocation (-d).

Figure 4.2 illustrates how the execution time changes with respect to the increase in
block size for all ZFP modes at 16 qubits. As shown, the execution time decreases
until around 210, after which it remains almost constant as a result of the increased
overhead from more calls to compress and decompress blocks. For example, at a
block size of 25, there are a total of 4096 blocks (2048 for each part of the complex
state vector), while at a block size of 210, the total number of blocks is only 128.
This difference impacts how many calls to compression and decompression occur
during execution. One can also see from the graph that the pattern for execution
time is the same across all modes of ZFP, further supporting the theory that exe-
cution time is affected by the increased number of blocks resulting from low block
sizes. Another conclusion that can be drawn, is that there is very little difference
in execution time whether one chooses to use dynamic or static memory allocation.
The reason for this is described in more detail when discussing figure 4.7 below.

Other than the effect on execution time, the block size may also impact total mem-
ory usage. Figure 4.3 depicts this relationship and shows that optimal memory usage
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is achieved at a block size of 29. Two factors can explain the U-shaped relationship
between block size and memory usage. While the decompressed memory blocks are
small for block sizes from 25 to 27, the overhead when creating these memory blocks
is significant. For each newly created memory block, 32 bytes of data are allocated,
irrespective of block size. For example, at block size 25 there are 4096 compressed
memory blocks which result in an overhead of 131072 bytes. The overhead grows
considerably when many blocks are needed to represent the compressed data. The
second factor that impacts memory usage is the size of the decompressed memory
block. As the block size increases, so does the memory requirement necessary to
keep a block decompressed in memory. For example, at block size 213, the total
memory required to represent the decompressed data is 262144 bytes (each floating-
point value is 8 bytes), while at a block size of 29, the decompressed data size is
only 16384 bytes. Therefore, the increase in memory block size negatively impacts
the simulator’s total memory requirement.

From analyzing the results, one can see that the optimal block size for 16 qubits is
29 and 210. At both these block sizes, the execution time and memory usages are at
an optimal level for the different modes.

Figure 4.3: Memory used at 16 qubits over the block sizes 32-16384 floating-points
for ZFP compression modes, fixed rate (-r), fixed precision (-p), fixed accuracy (-a)
and dynamic allocation (-d).
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4.2.1 ZFP & Number of Qubits
Figure 4.4 illustrates how the number of qubits affect the memory usage and the
compression ratio for different modes of ZFP. By analysing the compression ratio
in Figure 4.1 (b), one can see that all modes except zfp -a 1e-6 achieve improved
memory usage compared to the original implementation of Grover’s search algo-
rithm. The modes that achieve the best level of compression are zfp -a 1e-4 -d, zfp
-a 1e-6 -d, and zfp -p 16 -d. These modes are able to achieve a compression ratio
above 4 when running 16 qubits, which indicates that it may allow for the simulation
of quantum circuits with 2 more qubits on the same hardware.

(a) (b)

Figure 4.4: Memory usage in KB (a) and compression ratio (b) per qubit when
running Grover’s search algorithm. Fixed rate (-r), fixed precision (-p), fixed accu-
racy (-a) and dynamic allocation (-d)

Figure 4.5 (a) shows how execution time is affected by the number of qubits. Follow-
ing a similar pattern of growth as seen in Figure 4.4 (a), the execution time for all
the ZFP modes increases exponentially. From the graph, one can also see that the
best performing solution is to use zfp -a 1e-4 -d. Figure 4.5 (b) shows the execution
time of the original implementation of Grover’s search algorithm. By comparison,
one can see that the execution time when running with compression is much higher
than the original. In most cases, this difference is quite significant. For example, for
zfp -r 32 -d the execution time increased from around 2200 to 170000 milliseconds
for 16 qubits, which is approximately 77 times greater than the original. This may
indicate that even if compression can decrease memory usage, it may lead to infea-
sible execution times for simulations with a high number of qubits. Infeasible, in
this context, meaning an execution time that takes days or even weeks to complete
a simulation.
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(a) (b)

Figure 4.5: Execution time in ms (a) and original execution time in ms (b) per
qubit when running Grover’s search algorithm. Fixed rate (-r), fixed precision (-p),
fixed accuracy (-a) and dynamic allocation (-d)

4.2.2 Comparing modes of ZFP
As observed, the modes of ZFP are able to achieve varying degrees of good memory
utilization and execution time. In order to choose decide which is the best perform-
ing mode, one must further analyze and compare the various compression methods.
Figure 4.6 shows how the different modes impact the memory usage. The graphs re-
veal that if one wants to use static memory allocation, ZFP fixed-rate mode achieves
the best memory usage. However, if instead dynamic memory allocation is used,
fixed-precision and fixed-accuracy both outperform fixed-rate compression. One ex-
planation is that fixed-rate mode always compresses the data down to a fixed size,
even if it has the potential to be represented using a smaller data size. Contrary to
this, fixed-precision and fixed-accuracy mode are able to dynamically compress the
data to a smaller representation when it is more uniform. An example of uniform
data is when the values are all zeros. Given the improved compression ratio for
dynamic allocation the underlying state vector must provide certain level of unifor-
mity. Because of this uniformity in the data, both fixed-precision and fixed-accuracy
were able to compress the data further than fixed-rate compression. From this, it
can be concluded that it is optimal to use fixed-precision and fixed-accuracy modes
when using dynamic allocation.

Besides the benefit of dynamic allocation, one can also see that different accuracy
levels and compression sizes may also positively impact memory usage. For example,
Figure 4.6 shows that a compression size of 16-bit (zfp -r 16 -d and zfp -p 16 -d)
and an accuracy of 4 decimals (zfp -a 1e-4 -d) are able to achieve a much higher
level of compression compared to using 32-bit compression size or 6 decimals accu-
racy. This is expected, given that a lower compression size and accuracy rate will
also lead to lower memory usage. When simulating 16 qubits, fixed-rate compres-
sion can decrease the compression size from 638KB down to 374KB, fixed-precision
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compression size decreases from 397KB to 264KB, and fixed-accuracy compression
size decreases from 270KB to 220KB. The largest improvement is seen for fixed-rate
mode, 32-bit to 16-bit representation. On the other hand, for fixed-accuracy has no
significant reduction in memory usage when the accuracy is lower. A lower com-
pression size and accuracy may also lead the underlying error rate of the data to
increase. Therefore the best possible solution with regards to memory usage might
be to use zfp -a 1e-6 -d given the effective compression ratio and the potential for
maintaining a higher accuracy.

(a) (b)

(c) (d)

Figure 4.6: Memory in KB per qubit comparing the ZFP modes, fixed-rate, fixed-
precision, and fixed-accuracy compression (a) static and (b) dynamic allocation for
32-bit precision and 6 decimal point accuracy, (c) static and (d) dynamic allocation
for 16-bit precision and 4 decimal point accuracy

Figure 4.7 shows the results of execution time when running the different modes
of ZFP. One can observe that, independently of fixed-rate, fixed-precision, or fixed-
accuracy mode, the execution time when running dynamic and static memory allo-
cation is almost identical. This indicates that the added execution step of copying
data from the temporary storage block into the memory block during dynamic allo-
cation has only a negligible impact on the overall execution time. As such, one can
conclude that dynamic allocation is most appropriate due to its ability to decrease
the overall memory usage without causing a negative impact on the total execution
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time.

(a) (b)

(c) (d)

Figure 4.7: Time in ms per qubit comparing the ZFP’s precision compression to
fixed-rate using dynamic memory allocation for (a) 32 bit, (b) 16 bit floating-point
were (c) and (d) use dynamic memory allocation

Figure 4.7 shows that fixed-accuracy mode performs the most effectively of the three
modes, no matter whether static or dynamic memory allocation is used. Figure
4.7 (a) and (b) reveals that at a compression size of 32-bit and an accuracy of 6
decimals, the difference between the execution time of fixed-accuracy versus fixed-
rate and fixed-precision mode is more significant. For example, when running with
16 qubits, fixed-accuracy mode takes approximately 122 000 milliseconds to execute,
while fixed-rate mode takes about 170 000 milliseconds to finish execution. From
Figure 4.7 (c) and (d), one can also observe that using 16-bit compression size or
an accuracy of 4 decimals leads to a lower execution time. However, all modes of
ZFP compression increase the execution time significantly, seen in Figure 4.5 (a)
and (b). For example, at 16 qubits, the execution time for zfp -r 32 -d is 170 000
milliseconds compared with 2200 milliseconds in the original implementation. This
increase in execution time indicates that running ZFP compression might not be a
feasible solution in practice. At a high number of qubits, the execution time might
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be too large to justify using compression to decrease memory usage.

4.3 FPZIP
The following results describe how the use of lossless compression affects the per-
formance of Grover’s search algorithm in terms of total memory utilization and
execution time. Figure 4.8 (a) shows how memory usage and execution time change
as the block size increases. In the same way as ZFP, the increase in block size has re-
sulted in a kind of U-shaped trend. When the block size is 25, the amount of memory
used is just above 800KB. As the block size increases, memory usage decreases until
about 29, which is the optimal block size, using approximately 650KB of memory.
The decrease in memory usage can be explained using the same logic as described
when discussing how block size affects memory in ZFP. While a small block size
means smaller blocks in the decompressed memory, it also means a greater amount
of blocks are created. The creation of the blocks results in a significant amount of
overhead. From 29, the increasing block size begins to have a negative impact on
memory usage. For example, at block size 214, about 1950KB of data is utilized,
or three times as much as when the block size is 29. FPZIP only uses dynamic
allocation, so the size of the temporary compression block stored in memory is the
same as the block size, meaning that as the block size increases, so does the memory
usage.

(a) (b)

Figure 4.8: Memory usage (a) and execution time (b) of running Grover’s search
algorithm on QuEST with FPZIP compression in range of 2048-16384 floating-points
per block size for 16 quits

Figure 4.8 (b) shows execution time in relation to the increasing block size. The
impact block size has on the execution time for FPZIP does not follow the same
linear pattern as in ZFP. The graph shows that execution time decreases as the
block size increases. One explanation may be that the FPZIP algorithm can opti-
mize the compression of larger quantities of data and is, therefore, more efficient at
compressing the data. In conclusion, the optimal block size for lossless compression
is not as apparent as for ZFP. Simply by looking at how block size affects memory
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usage, one would choose 29 as the most effective size. In terms of execution time,
214 would be the optimal choice, however it has a significant negative impact on
memory utilization.

(a) (b)

Figure 4.9: Memory usage (a) and execution time (b) per qubit running Grover’s
search algorithm on QuEST with FPZIP compression

Another aspect to analyze from the results of FPZIP is how memory usage and ex-
ecution time increases with the number of qubits. Figure 4.9 illustrates the results
for FPZIP and how it performs in comparison with the original QuEST implemen-
tation. Much like ZFP, memory usage and execution time follow an exponential
growth pattern as the number of qubits increases. The graphs show that FPZIP
can effectively compress the data. For example, at 16 qubits, approximately 658KB
of memory is being used, which is a significant decrease compared to the original
QuEST that used 1.13MB. FPZIP can decrease the memory usage by 30%, similar
to that of zfp -r 32. However, the execution time for FPZIP increases at a much
faster rate than the original QuEST implementation. Given the risk of too high
execution times, FPZIP may prove to be infeasible when running a higher number
of qubits.
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(a) (b)

Figure 4.10: Compression ratio (a) and execution time (b) per qubit for all com-
pression algorithms and modes running Grover’s search algorithm on QuEST. Fixed
rate (-r), fixed precision (-p), fixed accuracy (-a) and dynamic allocation (-d)

Figure 4.10 shows how the performance FPZIP compares to that of ZFP. From
Figure 4.10 (a), one can see that FPZIP has around the same compression ratio as
ZFP modes using 32 bit fixed-rate compression, but it falls far behind the other
better performing ZFP modes. Figure 4.10 (b), reveals that FPZIP has the highest
execution time compared to all other modes of ZFP. This, most likely, is due to
FPZIP working will the full 64 bit values during compression compared to the modes
of ZFP that only have to do computations on 32-bits or 16-bits. Based on this fact
alone, one can claim that ZFP is the better option. However, in order to make a
final conclusion, the fidelity of ZFP and FPZIP must also be considered.

4.4 Fidelity of ZFP and FPZIP
This section analyzes how well the compression algorithms perform in terms of the
fidelity of the state vector. Figure 4.11 (a) illustrates the fidelity with respect to the
number of qubits for the different modes of ZFP and FPZIP. From the graphs, one
can see that the fidelity of zfp -r 16 drops significantly for every qubit. In fact, from
the downward trend, one can predict that as the qubits continue to increase, the
error will also increase. The compression provided by zfp -r 16 is made irrelevant
by the fact that the data changes substantially.

Figure 4.11 (b) shows the behavior of the other compression modes more clearly by
excluding the ZFP mode, zfp -r 16. There is no visible change in the fidelity as most
of the parameters remain close to 100%. Only for zfp -p 16 and zfp -a 1e-4 is there a
visible fluctuation. This level of fluctuation indicates that zfp -p 16 and zfp -a 1e-4
may achieve a lower fidelity for higher qubits. However, even by excluding these
three modes, it is possible to see that ZFP can achieve a near similar level of fidelity
as FPZIP. It suggests that some modes of ZFP can provide a higher compression
ratio with an equal level of fidelity as FPZIP. From this, the optimal solution for
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memory usage, execution time, and fidelity would be zfp -a 1e-6 -d.

(a) (b)

Figure 4.11: Illustration of the underlying fidelity for the different algorithms (a)
all results for fidelity and (b) fidelity results without zfp -r 16

4.5 GPU Acceleration
Throughout this chapter, one concerning aspect has been the execution time. As
shown in Figure 4.5, execution time grows more significantly than the original
QuEST implementation. In turn, the risk of unreasonable execution times for run-
ning a high number of qubits increases. One possible solution to address this problem
would be to offload the calculations from the CPU to the GPU.

Firstly, Figure 4.12 shows the correlation between block size and execution time
and how it is impacted by GPU acceleration. The increase in block size leads to a
decrease in the execution time. This trend is due to an increase in block size which
allows for a higher level of parallelism, as more values are decompressed in memory
and thereby can be computed in parallel.
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(a) (b)

Figure 4.12: Execution time on the GPU as function of block size for 16 qubits
(a) complete block range and (b) last 6 block ranges

Figure 4.13 (a) shows how execution time is impacted for ZFP in fixed-rate mode.
The graph describes the trend as the number of qubits increases. The conclusion
drawn from Figure 4.12, is that the largest block size results in the fastest execu-
tion time. Figure 4.13 (a), depicts the qubits using the largest block size. From
the provided speed-up of using GPU acceleration, shown in Figure 4.13 (b), one
can see that execution time has decreased significantly. For mode zfp -r 32 -d us-
ing 16 qubits, execution time has decreased from 170000 to 4500 milliseconds, an
improvement of about 38 times. The same rate of improvement can be seen from
the other modes run on the GPU. Figure 4.13 (a) also shows that execution time
has decreased compared to the original implementation of QuEST. While execution
time was a big dilemma after integrating ZFP and FPZIP, these results indicate
that by using GPU acceleration the compression algorithms could provide a feasible
solution with a reasonable execution time.

(a) (b)

Figure 4.13: Best execution time (a) and speed up for best execution time (b) on
the GPU. Fixed rate (-r), and dynamic allocation (-d)

However, drawing a conclusion purely based on execution time and Figure 4.13 (a)
creates a skewed view of the results. The figure shows the impact at the largest
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possible block size (which, as previously stated, significantly improves execution
time), however, this will have an adverse effect on memory usage. In fact, the
memory usage will be greater than ZFP without GPU acceleration, as seen in Figure
4.4. To gather a complete picture of the results, Figure 4.14 illustrates how execution
time and speed-up are impacted when the block size with the lowest possible memory
usage is used. Here one can see that instead of a reduction in execution time by
around 38 times for 16 qubits, it is decreased to around 5.5 times, which is a much
lower improvement.

(a) (b)

Figure 4.14: Execution time at the best memory usage (a) and speed up of the
execution time (b) on the GPU. Fixed rate (-r), and dynamic allocation (-d)

4.5.1 Limitations of GPU acceleration
Executing the simulator on the GPU has the potential to improve the execution
time but could also limit the possible memory usage. In the current implementation
of the GPU accelerated simulator, the computations and memory operations are
restricted by the size of the GPU’s VRAM. However, GPUs tend to have much
smaller amounts of VRAM when compared to the RAM available in most modern
computers. For example, a modern computer may have a RAM size of 16 GBs,
while the VRAM on the graphics card is around 6 GBs. As such, the current
implementation of GPU accelerated code is limited to only running circuits that
are small enough to fit inside the available VRAM of the GPU. A possible solution
would be to utilize unified memory during the execution of the simulator, where
memory is shared between VRAM and RAM. This would utilize the high level of
parallelism in the GPU while simultaneously avoiding the GPUs memory limit.

4.6 Determining the feasibility of compression
From the results, one can conclude whether data compression is a feasible alterna-
tive for running larger quantum simulations using the same hardware. One must
consider how the memory usage will scale with the number of qubits. Figure 4.10
(a) reveals that all implementations except zfp -a 1e-6 are able to decrease memory
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usage. The best alternative among the implementations are zfp -p 16 -d, zfp -a 1e-4
-d and zfp -a 1e-6 -d which are able to achieve a compression ratio above 4× for 16
qubits. If this ratio were to be maintained for higher qubits, it would theoretically
allow for the simulation of circuits with 2 more qubits using the same hardware
configuration. The results of ZFP and FPZIP also show that ZFP, on average, can
achieve a lower compression size than FPZIP. Thus, it can be concluded that lossy
compression is the best alternative to achieve a lower compression size.

Although it is theoretically possible to simulate larger quantum circuits, in prac-
tice it might not be feasible given the potential for high execution time. Figure 4.10
(b), shows the growth of execution time for the different compression modes. Com-
paring these results with the execution time of the unmodified QuEST, shown in
Figure 4.5 (b), one can see that the increase is significant. Even the best performing
implementation, zfp -a 1e-4 -d, still has an execution time for 16 qubits that is more
than 50 times higher than the original execution time. For larger qubits, this indi-
cates that the execution time may prove infeasible and thereby make it impractical
to utilize data compression.

Due to the impractical nature of running the simulations on the CPU, utilizing
the GPU could improve the performance. Figure 4.13 (a) illustrates the execution
time for the GPU accelerated implementation. The execution time remains higher
than the original implementation, but the difference is significantly less than the
simulation using compression without GPU acceleration. For example, at 16 qubits
the GPU accelerated implementation of zfp -r 16 -d is only 1.5 times slower than the
original. The decrease in execution time shows promise in improving the feasibility
of using compression with the help of GPU acceleration. The GPU works most effi-
ciently when there is a higher level of parallelism, which means it works best when
the block size is large. However, the large block size also leads to an increase in
the compression size. Figure 4.14 (a) shows instead execution time when the best
memory usage is the main priority. Here, the execution time for zfp -r 16 -d has
increased at 16 qubits from 1.5 times to around 10 times slower than the original.
This is still an improvement over the CPU implementation and could potentially
allow for the execution of larger quantum circuits with the help of compression and
GPU acceleration.

Finally, when determining the feasibility of using compression, one must consider
fidelity. The fidelity for each of the implementations is presented in Figure 4.11. The
two graphs show that most of the algorithms maintain a fidelity near 1.0. However,
zfp -r 16, zfp -a 1e-4, and zfp -p 16 diverge from the fidelity of 1.0. The mode zfp
-r 16 even rapidly decreases in fidelity after just 12 qubits. This rapid decrease in
fidelity gives a strong indication that zfp -r 16 is not a feasible alternative given
the potential for inconsistent results at higher qubits. There are also fluctuations in
zfp -a 1e-4 and zfp -p 16, which indicates that the implementations might deviate
from 1.0 and provide a much lower fidelity at higher qubits. This lower level of
fidelity increases the risk that the underlying state vector representation becomes
inconsistent, thereby leading to unreliable results.
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In conclusion, zfp -a 1e-6 -d is the best solution for data compression. It can
provide a memory usage level 4 times smaller than the original memory size at 16
qubits and lead to a better execution time than almost all other ZFP modes. It
also maintains fidelity at around 1.0. By potentially creating a GPU accelerated
implementation of zfp -a 1e-6 -d, it may become a practical solution for using data
compression in quantum computer simulators.

4.7 Ethics
The possibility of powerful and accessible quantum computers is certainly a highly
contentious issue from an ethical standpoint. The benefits of the technology are
obvious, solving tasks that would be much more difficult for a classical computer
such as optimizing machine learning models [34] and simulating protein-folding [35],
providing further insight into vaccine development and Alzheimer’s disease. How-
ever, what could be the results if quantum computers were to be used malevolently?
Today, most personal online data such as messages, passwords, and bank records,
are protected by encryption methods. Most of these algorithms depend on not being
able to do extremely large-scale computations [4]. If quantum computers became
available, the users of these machines would potentially be able to access all of this
previously secure data, clearly an immense safety concern.

No external individuals were directly affected throughout this project. One could
argue, however, that a likely outcome of the project is to accelerate the science of
quantum computers and whether or not the development of quantum computers is
ethical due to their destructive potential. The potential impacts it could have on so-
ciety are indeed almost limitless [34] however, the development of these systems will
happen regardless of the outcomes of this study. Primarily, the goal of optimizing
quantum simulators is to make it more accessible for the everyday programmer to
learn about quantum computing. The goal is not to accelerate the development of
state-of-the-art quantum computers at companies like IBM or Google. With this in
mind, this study did not have any significant impact on society or significant ethical
ramifications.
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This chapter presents some final conclusions regarding the compression and GPU
acceleration. Also presented are some final thoughts regarding error sources and
potential for improvement.

5.1 Project Conclusion
This report presented the results of combining QuEST with the ZFP and FPZIP
compression algorithms to reduce total memory consumption when simulating Grover’s
search algorithm. Furthermore, the use of GPU acceleration was analyzed to de-
termine if it would lead to better execution time. From the data, it is possible to
conclude that using lossy compression with ZFP may be more favorable than using
lossless compression with FPZIP. Among the different ZFP modes, using fixed-
accuracy mode with 6 decimal accuracy (zfp -a 1e-6 -d) has shown the most promis-
ing results in regards to memory usage, execution time, and a high level of fidelity.

To conclude, the results show that the limiting factor of data compression is the high
execution time. The execution time of QuEST using compression was more than
50 times greater than the execution time of the original QuEST implementation.
Using GPU acceleration proved to decrease this difference and could potentially be
an alternative for running the QuEST simulator with data compression. Assum-
ing that feasible execution time can be achieved and that the compression ratio is
maintained, hypothetically it would be possible to run quantum circuits with 2 more
qubits for the same hardware configuration. This is under the assumption that zfp
-a 1e-6 -d is used with a compression ratio of 4.

5.2 Possible Sources of Error
One factor that could affect the testing is the nature of floating-point numbers on
digital computers. Some precise floating-point numbers have decimals that stretch
further than the range that double-precision floating-point numbers do. This means
that the number has to be rounded or cut off, which results in a slight loss of
information. Ultimately, this could perhaps affect the fidelity and error rate tests.
This could be the case in section 4.4 where the graphs show a fidelity that fluctuates
for zfp -p 16 and zfp -a 1e-4. Another source of error is an insufficient number
of tests. Several tests were performed to determine how compression and GPU
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acceleration affect memory usage and execution time. While the goal was to test
as much as possible, one source of error could be that the tests were not exhaustive
enough. For example, running more tests for a higher number of qubits may have
allowed for a more accurate understanding of the growth rate of execution time and
memory usage.

5.3 Future Work
Based on the results, some key aspects to explore in future studies is how the com-
pression algorithm’s performance is affected by an increasing number of qubits. For
example, one could perform tests of up to 25 qubits or more, which would allow
for the creation of projection graphs and determine if using data compression is a
feasible solution for larger qubits. Another aspect to explore further is how utilizing
unified memory between RAM and VRAM might impact the ability to decrease
execution time whilst providing a lower memory utilization. For the current imple-
mentation, only using VRAM limits the size of the simulated circuit to the size of
the VRAM itself. By utilizing unified memory it is possible to avoid this limitation.
Finally, one might also explore how data compression and GPU acceleration im-
pact memory usage and execution time for quantum algorithms other than Grover’s
search algorithm. One might discover that data compression is better suited for
specific algorithms and use cases, with more feasible execution times. It may also
be possible to determine which types of algorithms would work well with data com-
pression and thereby allow dedicated memory optimizations through compression
techniques.
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