UNIVERSITY OF TECHNOLOGY

} CHALMERS | (8§)) UNIVERSITY OF GOTHENBURG

C:Applicative

$fMonadIO1

$fApplicativelO4 C:Functor $fApplicativelO3

/

$fApplicativelO2

$fFunctorlO2

liftM1

$fFunctorlO1

Front-end of a Debugger
for Compiled Programs in Haskell

$fApplicativelO1

Visualising the evaluation of compiled Haskell programs

Bachelor’s thesis in Computer science and engineering

Andreas Olsson
Carl Bergman
Brage Salhus Bunk
Elias Johansson
KreSimir Popovié

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG

Gothenburg, Sweden 2022






BACHELOR’S THESIS 2022

Front-end of a Debugger
for Compiled Programs in Haskell

Visualising the evaluation of compiled Haskell programs

Andreas Olsson
Carl Bergman
Brage Salhus Bunk
Elias Johansson
Kresimir Popovic

UNIVERSITY OF
GOTHENBURG

CHALMERS

UNIVERSITY OF TECHNOLOGY

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2022



Front-end of a Debugger for Compiled Programs in Haskell
Visualising the evaluation of compiled Haskell programs
Andreas Olsson, Carl Bergman, Brage Salhus Bunk, Elias Johansson, Kresimir Popovié¢

© Andreas Olsson, Carl Bergman, Brage Salhus Bunk, Elias Johansson, Kresimir Popovié¢
2022.

Supervisor: Krasimir Angelov, Department of Computer Science and Engineering
Examiner: Alex Gerdes, Department of Computer Science and Engineering

Bachelor’s Thesis 2022

Department of Computer Science and Engineering

Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg

Telephone +46 31 772 1000

Cover: An example heap visualisation generated by the developed program.

Typeset in BTEX
Gothenburg, Sweden 2022

v



Front-end of a Debugger for Compiled Programs in Haskell
Visualising the evaluation of compiled Haskell programs
Andreas Olsson, Carl Bergman, Brage Salhus Bunk, Elias Johansson, KreSimir Popovic¢

Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract

There are debugging tools available for Haskell programs today, but despite provid-
ing help for developers, these tools are not widely used in the Haskell community.
Current debugging tools for Haskell have different kinds of limitations. This thesis
will discuss the implementation of a new debugger with a graphical interface. This
program makes it possible for a user to debug a compiled Haskell program. It offers
features such as step by step evaluation, setting breakpoints, and examining the
heap through visualisation. We will also briefly explain the basic concepts of the
Haskell programming language, parts of the Glasgow Haskell Compiler’s run-time
environment, and more thoroughly discuss the visualisation of the evaluation process
for Haskell programs. The finished program is a user-friendly debugger that works
for compiled Haskell code and can act as a useful tool for learning, profiling, and
debugging purposes for both beginners and experienced Haskell developers.

Keywords: Haskell, debugger, debug, heap, lazy evaluation, functional programming,

GHC



Sammandrag

Det finns tillgdngliga felsokningsverktyg for Haskell-program idag, men trots att de
kan hjalpa utvecklare anvands inte dessa verktyg i stor utstrackning bland Haskel-
lutvecklare. De existerande felsokningsverktygen for Haskell har olika typer av be-
gransningar. Detta examensarbetet kommer att avhandla implementeringen av en
ny debugger med ett grafiskt gréanssnitt. Detta program gor det mojligt for anvan-
daren att felsoka ett kompilerat Haskell program. Programmet inkluderar funktion-
alitet som steg for steg evaluering, sitta brytpunkter och understka heapen genom
att visualisera den. Vi kommer ocksa kortfattat att forklara de grundléggande be-
greppen i Haskellprogrammeringsspraket, delar av Glasgow Haskell Compilerns ex-
ekveringsmiljo, och mer ingaende diskutera visualiseringen av evalueringsprocessen
for Haskell-program. Det fardiga programmet ér en anvandarvéinlig debugger som
kan fungera som ett anvindbart verktyg for inlarning, profilering och felsokning av
kompilerad Haskellkod for bade nyborjare och erfarna Haskellutvecklare.

Nyckelord: Haskell, debugger, felsokningsverktyg, felsokning, heap, lat berdkning,
funktionell programmering, GHC

vi






Acknowledgements

We would like to send a big thanks to our supervisor, Krasimir Angelov, for an-
swering our questions, providing help throughout the development, and creating the
HDB debugging library.

Additionally, we are thankful for Dennis Felsing’s work with ghc-vis, an inspiration
for our own visualisation of Haskell’s evaluation.

Carl Bergman, Brage Salhus Bunk, Elias Johansson, Kresimir Popovi¢,
Andreas Olsson, Gothenburg, June 2022

viil









Contents

Glossary

List of Figures
List of Tables
List of Listings

1 Introduction

1.1 Purpose . . . . . .
1.2 Limitations . . . . . . . . ..
1.3 Challenges . . . . . . . . .
2 Background
2.1 The Haskell Programming Language . . .. . ... ... ... ....
2.2 Lazy Evaluation . . . . . . . .. ... ... ..
2.3 DWARF . . . .
24 HDB . . . .
2.5 GHC Compilation . . . . . . ... ... o
26 The GHCHeap . . . . . . . . . .. ... . ...
2.7 The GHC Stack . . . . . . . . . ...
2.7.1 Stack Objects . . . . . . . . ..
2.8 Previous Work . . . . ..o
281 ghevis . . . .
2.8.2 GHCiDebugger . . . . ... ... oo
283 Hat. .. .. ...
284 Hood . ... ... .
285 GDB . ...
3 Method
3.1 Development Process . . . . . . . . ... ... ... .. ... ...,
3.2 Software Implementation . . . . . . . ... ... 0L
3.3 Personas . . . . ..
3.4 Testing . . . . . .
3.4.1 Usertesting . . . . .. . .. .
3.4.2 Software-testing . . . . . .. ..o

xiii

xiv

xvii

xix

15
15
15
16
16
16
17

el



Contents

4 Results
4.1 Software Architecture . . . . . . . . . .. ...
4.2  Graph Representation . . . . . . .. ... ... L.
4.2.1 The visual representation . . . . . . . ... ...
4.2.2 Example graphs . . . . . . ... Lo
4.2.3 Algorithm . . . . ... ...
424 The graphasan SVG . . . ... .. ... L.
4.3 The Graphical User Interface . . . . . ... ... .. ... ... ...
4.4 User testing . . . . . . . ..
5 Discussion
5.1 Method Discussion . . . . . .. .. ...
5.1.1 Development Process . . . . . . . .. ... ... ... .....
5.1.2 Haskell Library Documentation . . . . . . ... .. ... ...
5.1.3  Other possible GUI approaches . . . . . ... ... ... ...
5.1.4 Testing . . . . . . ..
5.1.5 Usertesting . . . . . . . . ..
5.2 Result Discussion . . . . . . . . . ... L
5.2.1 Debugging . . . . . . ..o
5.2.2  The Graphical User Interface . . . . ... ... .. ... ...
5.2.3 The Visual Representation of the Heap . . . . . . . .. .. ..
5.2.4 Performance . . . . . .. ... L
5.2.5  Stability . . . ...
5.3 The Ethics of Debugging . . . . . . . ... ... ... .. ... ..
54 Future Work . . . . . . ...
6 Conclusion
Bibliography

xii

19
19
20
20
23
28
30
30
34

37
37
37
37
37
38
38
39
39
39
40
41
41
42
42

45

47



Glossary

Binary An executable.

Breakpoint A breakpoint is a specific position in the source code at which a de-
bugged process should temporarily stop.

Bug A bug is a computer science term of an unwanted and unintended consequence
of faulty source code.

Compile To compile a program means to generate an executable from source code.
Compiler A compiler is a program that can generate executables from source code.

Debug To debug something means to analyse the source code or the execution of
a program at an attempt to remove bugs.

Executable An executable file, or just executable, is a file containing a program
which can be loaded and executed by the operating system.

Function A function is a procedure that can use zero or more inputs to generate
an output.

Functional programming A programming paradigm where functions take a cen-
tral role.

Git Git is a version control tool that is used to collaborate on a shared source code
base.

GTK A framework to create GUI applications.

GUI A GUI is a graphical user interface for an application.

Haskell Haskell is a functional programming language.
Heap A heap is a pool of memory used for dynamic memory allocation during a
program’s execution.

Interpreter An “interpreter” is a program capable of executing a program without
compiling the source code to native machine code.

Library A library is a collection of source code that can be utilised in other pro-
grams through a predefined interface.

Profiling A process where the performance of a program, for example speed or
resource usage, is analysed.

Scrum Scrum is a way of structuring the development process that is commonly
used in software development.

xiii



Glossary

Stack For the Glasgow Haskell Compiler the stack is a part of the heap. It stores
the address of the previous function call so that the current can return upon
finished execution.

State A program’s state represents its current execution status.

State variable A variable in a program that changes depending on a program’s
state.

Xiv



1.1

2.1

2.2

4.1
4.2
4.3

4.4

4.5

4.6
4.7
4.8
4.9
4.10

4.11
4.12
4.13

4.14

List of Figures

“In 1947, when technicians building the Mark IT computer at Harvard
discovered a moth in one of the relays, they saved it as the first
actual case of a bug being found” [2]. Image courtesy of Smithsonian
Institution. . . . . . . L

The GHC pipeline, image from figure 5.2 of [12], licensed under CC
BY 3.0. . . .
Image of ghc-vis Fibonacci example. . . . . . . . .. ... ... ...

The software architecture. . . . . . . . . .. ... ... ... ... ..
The function foo points to a boxed integer (I#) as an argument. . . .
An edge case in the graph where all the nodes shown are derived from

the stack trace. . . . . . ...
A graph where the depth is set to 1 and some nodes are truncated.

The currently evaluated node has a depth of 0. . . . . . . . ... ..
Here unflatten has modified the graph by displacing the nodes in

order to decrease the width of the generated image. . . . . . . . . ..
A list of characters. . . . . . . . . . ... ...
The sharing of values in the list [10,10,10,10,10,5,5,5,5,5]. . . . . . . .
A cyclic list comprised of zeroes and ones. . . . . . . ... ... ...
A graph that illustrates a space leak. . . . . . .. . ... ... ....
stg_ap_pp is an object that resides on the stack. If the stack is hidden,

the two thunks in the graph would not be drawn, decreasing the

number of arguments of the currently evaluated node. . . . . . . ..
A clear Entry-point where the user selects an executable file. . . . . .
Primary window, where the core functionality is split into 3 panes. . .
The Menu-bar and the Tool-bar, additionally a breakpoint has been

hit on the evaluation at line 7. . . . . . . . .. ... ... ... ....
A selected breakpoint is highlighted. . . . . . . ... ... ... ...

XV



List of Figures

Xvi



List of Tables

2.1 Some heap objects described in [14]. . . . . .. ..o 11

3.1 User testing tasks. . . . . . .. ..o 17

Xvil



List of Tables

xviii



2.1
2.2
2.3
24
2.5
2.6
2.7
2.8

4.1
4.2
4.3

List of Listings

Function to calculate the n:th Fibonacci number. . . . . . ... ... )
Examples of infinite lists. . . . . . . .. ... ..o 6
A basicclosure. . . . .. .. 6
HDB’s interface, from [4]. . . . .. ... ... .. .o L. 8
HDB'’s startDebugger function and callback. . . . . ... ... ... 8
HDB’s DebuggerAction datatype. . . . . . . . .. .. ... ... ... 9
Pragma example and exporting of functions. . . . . . . . .. ... .. 11
Another function to generate a list of Fibonacci numbers. Function

from [3]. . . .. 14
A function that creates a cyclic list [33]. . . .. ... ... ... ... 26
A function that causes a space leak and a fixed version of it. . . . . . 26
The representation of a node in the graph. . . . . .. ... ... ... 28

Xix



List of Listings

XX



1

Introduction

Ever since programming came into existence there have been “bugs”. Bugs are errors
in programming which change the desired output of a program, sometimes with
serious consequences [1].

/o0 Oarted

K\o\;ﬂn‘? l&ﬁ‘}— (3ine =

1525 CEEad Gk Rdder e ot
z Qz\ L
145 LMDﬂC;?‘\\Y\ L ¢

ﬂ\’s ‘ B“
6F/5o Oackompdd stad)- -( 1

| B W

Figure 1.1: “In 1947, when technicians building the Mark II computer at Harvard
discovered a moth in one of the relays, they saved it as the first actual case of a bug
being found” [2]. Image courtesy of Smithsonian Institution.

We have taken on the project of constructing a graphical interface for a debugging

library that operates on compiled programs in the functional programming language
Haskell.

In Haskell, an expression can be partially evaluated during the execution. This
means that the execution of the program will be harder to follow since a line of code
can be evaluated partially at first and then fully evaluated at a later stage. This
is different from imperative languages where the program operates and evaluates
line by line. Therefore it is important to show the evaluation in a way that a user
would understand and to avoid potential confusion that might arise due to existing
experiences.

We visualise the Glasgow Haskell Compiler’s (GHC) heap and stack as a directed
graph in a similar way to the heap visualisation tool ghc-vis [3]. However, ghc-vis
only supports the GHC interactive environment (GHCi), which means that it does
not support compiled programs.

To debug a compiled program a small debugging library used. This library is called
HDB [4] and forms the complete “backend” of our debugger. HDB can parse files
using the DWARF [5] format, which is a standard for storing debug information, and
return the information in different forms to a user. HDB and DWARF are covered
more in-depth in Chapter 2.



1. Introduction

According to Angelov [6] there are currently no viable alternatives to debug com-
piled Haskell programs that work without changing the source code. Often compiled
programs have higher performance than interpreted programs as they execute native
machine code. When code compiles the compiler may modify the machine code so
that it does not correlate exactly to the source code. For example, when debugging
a performance-related issue, an interpreted version of the program may not reveal
the problem. This project fulfils the niche of a debugger that works for compiled
standard Haskell source code.

The finished program has the following features:
» A visualisation of the objects on the heap and on the stack as a directed graph.
e The depth of the graph can be limited.
o Automatic centring of the currently evaluating node on the screen.

o Functionality to control the graph by using the mouse to zoom and drag the
image.

o Basic debug functionality such as adding and removing breakpoints, and step-
ping through the evaluation.

e A window where the source code files can be displayed and highlighting of
currently evaluating code snippets.

o The ability to display the debugged program’s output.

A help dialog that informs the user about how to use the program.

1.1 Purpose

The purpose of this project is to develop a graphical debugger that uses HDB to
work directly with compiled Haskell programs. In addition, our tool should visualise
the heap and thereby act as a teaching tool as well as a debugger. It should also be
possible to use for profiling. Memory allocation in Haskell can be hard to predict
as it is allocated implicitly for unevaluated expressions. Being able to observe the
evaluation directly makes the allocation visible, which helps the developer to improve
the program.

The project is aimed at those who are familiar with working in the Haskell language
and require a debugger that can debug compiled programs. Although the intention
is to be a teaching tool as well, it requires the user to have knowledge of Haskell
and its evaluation process. Without this knowledge, it will be difficult for a user
to follow along with the graph representation of evaluation. But we believe that
for an audience with some Haskell experience the debugger could be a useful tool
to improve their understanding of Haskell evaluation, and of course, for debugging
compiled programs.



1. Introduction

1.2 Limitations

The debugger is dependent on software that does not support all operating sys-
tems. Specifically, the backend, HDB, is dependent on the library libdw, a part of
elfutils [7], which is not supported on Windows nor macOS. The 1ibdw library
is used to parse DWARF debug information. The software will not support multi-
threaded programs since that is not supported by HDB and it is also deemed out of
scope for this project.

Another limitation is that the application in its current state is only available as a
standalone GUI. There is no way for a user to be able to get the same debugging
experience through, for example, a text editor plugin.

1.3 Challenges

The main challenges of this project are to produce an accurate graph from the heap
and stack data reported from HDB as well as to create a GUI in a purely functional
programming language. GUI applications are studied with object-oriented languages
in several courses at the Department of Computer Science and Engineering and this
is what the group has experience with. This means that working on a functional
programming GUI project is new for the group and this might introduce difficulties
during the development.



1. Introduction




2

Background

2.1 The Haskell Programming Language

Haskell [8] is a general purpose, purely functional programming language. All the
specifics of functional programming and Haskell itself are not necessary to under-
stand the debugger so our explanation will be kept brief. A basic Haskell function
can be seen in Listing 2.1.

Listing 2.1: Function to calculate the n:th Fibonacci number.

1 fib :: Int -> Int

> fib 0 =1
3 fib 1 =1
1+ fib n = fib (n-1) + fib (n-2)

The syntax is as follows; line 1 defines the type of the function fib, it has an
integer (Int) argument and an integer (Int) return value. Lines 2 to 4 define the
functionality of the function. Within this span there are three separate bindings of
the function.

This way of writing a function is called pattern matching and it works so that the
first line, line 2, matches when the first argument has the value of 0 and then returns
1. The second matches an argument of 1 and also returns 1. The last line matches
an argument with any integer value and assigns it to a variable n, and is recursively
defined to return the value of fib (n-1) + fib (n-2).

Recursion is a mathematical concept where a function is defined in terms of itself,
for example £ib n is defined with the help of £ib (n-1) and fib (n-2). As Haskell
is a pure functional language the concept of for-loops and while-loops does not exist,
so code with “loop” functionality has to use recursion instead.

Taking a function as an argument is an important aspect of functional programming.
This concept is called higher-order functions and means that functions are treated
like any other value and can thus be used as an argument and return values among
other things. The argument f for the function appl in Listing 2.3 is an example of
this.

In Haskell it is possible to declare infinite lists. This works because of lazy evaluation
which will be covered in depth in Section 2.2. It is possible to declare infinite lists
in multiple ways and the example in Listing 2.2 shows two.



2. Background

Listing 2.2: Examples of infinite lists.

1 —-— an infinite list of 1's, [1,1,1,1,1,1,...]
> ones = [1,1..]

4+ —— a function which generates an infinite amount
5 —— of Fibonacct numbers
6 fibs n = fib n : fibs (nt+1)

s fibs 0 -—- -> [1,1,2,3,...]

The first is a list declared with .. at the end. This syntax makes the compiler try
to figure out the interval between the elements, for example in ones the interval
is 0. The second example recursively generates a list of Fibonacci numbers from a
specified input.

Later in the thesis “closures” will be referred to. A closure is a way to contain local
variables outside their original scope in programming languages with higher-order
functions. Such a variable is commonly referred to as a “free” variable. An example
can be seen in Listing 2.3.

Listing 2.3: A basic closure.
1 appl :: (Int -> Int -> Int) -> Int -> Int -> Int
> appl f =\ab->fab

4 add :: Int -> Int -> Int
5 add = appl (+)

7 var add 4 5 —— -> 9

To construct a closure you need a function with, or without, arguments that returns
another function that uses the previously mentioned arguments in its computation.
In the example, the function appl has an argument f, which through appl can be
used outside of its scope as can be seen for add in var.

2.2 Lazy Evaluation

Lazy evaluation is a technique of evaluation which does not require the arguments
to evaluate fully before evaluating the rest of a function. By utilising lazy evaluation
it is possible to use infinite data structures, such as lists, in a program as they will
only be evaluated when needed by the program. For example ones and fibs 0 in
2.2.

The opposite of a “lazy” program is an “eager” program. An eager program evaluates
the arguments before continuing with the evaluation of a function. Lazy evaluation
exists in Haskell and is implemented using “thunks”. A thunk is a type of object on
the heap.

6



2. Background

A thunk represents an expression which has not been evaluated yet. When it is
needed the thunk partially evaluates and it is replaced with the result. This result
is later returned on each occasion the thunk would have been called. In Haskell a
function may also reuse a value if it has already been evaluated within that function.
This is often referred to as “sharing”.

An example could be a function which calculates the n:th Fibonacci number by
describing an infinite list of all Fibonacci numbers and then finds the n:th number
in that list. The rest of the list after the highest evaluated number will be represented
by an unevaluated thunk in memory, but when trying to access number n again the
previously evaluated thunk will return its value. This can be seen by evaluating the
fibs function shown in Figure 2.2.

2.3 DWARF

DWAREF [5] is a standard for debug information. It was introduced to standardise
debug information in executable files so that any debugger with DWARF support
could work on an executable with DWARF information. When a program is com-
piled with the instructions to generate DWARF information, debug information is
generated and embedded into the executable file. This data contains everything
needed to debug the program, including functions, types, and variables.

The way this data is added to the executable file is defined by the DWARF standard
and enabled during the compilation process by invoking GHC with the option “-g”.
DWARF can be used with any format of executable but is traditionally used together
with binaries of ELF format [7]. In our case, as we use a GNU/Linux operating
system, the DWARF data is used in the ELF object format.

To find out what data exactly is embedded with DWARF data, or check the integrity
of the data in object files, it is possible to read it through several tools described in
[9], such as: readelf, GDB, dwarfdump, 1lvm-dwarfdump, and objdump.

Because only recent versions of the GHC have made it possible to generate DWARF
information, our debugger is going to be one of the first debuggers for executable
files compiled by GHC.

2.4 HDB

HDB [4] is a debugging library created by our supervisor Krasimir Angelov. The
library provides debugging capabilities for compiled Haskell programs as well as an
interface to interact with the library. HDB provides functionality such as provid-
ing information about a closure that is being evaluated, returning stack and heap
information, and finding information from a file name and a source code location.
The interface of HDB is visible in listing 2.4 where the functions with Debugger
represent the functionality described above.

The interface of operations is utilised in our debugger with the help of findFunction
to get the LinkerName of a breakpoint. The LinkerName represents the name of an

7



2. Background

Listing 2.4: HDB’s interface, from [4].

1 peekClosure ::

2 Debugger ->

3 HeapPtr ->

1 I0 (Maybe (LinkerName,GenClosure HeapPtr)),
5 getStack ::

6 Debugger ->

7 I0 [(LinkerName,GenClosure HeapPtr)],
s getSourceFiles ::

9 Debugger ->

10 I0 [FilePath],

1 findFunction ::

12 Debugger ->

13 FilePath ->

14 (Int,Int,Int,Int) ->

15 I0 [LinkerName],

16 findSource ::

17 Debugger ->

18 LinkerName ->

19 I0 (Maybe SourceSpans)

object generated by the compiler, in this case, a closure generated by GHC. The
function peekClosure takes a HeapPtr, which is an address in memory, and returns
a pair of the name and closure associated with it. This makes it possible to chain
together different closures since many closures have HeapPtrs in them. When the
function getStack is called the different elements on the call stack are returned.

HDB provides the function startDebugger, seen in listing 2.5, which is used to start
the debugger. It takes in a list containing a binary to be executed, and command
line arguments for that program. It also takes in a callback function. This callback
function is where the debugger gets access to the Debugger argument and is called
every time the debugging process is halted by an event.

Listing 2.5: HDB’s startDebugger function and callback.

1 startDebugger ::
2 [String] ->
3 ( Debugger ->

4 LinkerName ->

5 Maybe SourceSpans ->

6 [HeapPtr] ->

7 I0 DebuggerAction ) ->
8 I0 O

The callback handles the event and returns one of the actions defined on Listing 2.6.
Using these actions one can Step, Stop, or Continue the debug process, where the
different operations step to the next evaluation, stop the evaluation, or continues to

8



2. Background

one of the LinkerName:s in the list respectively.

Listing 2.6: HDB’s DebuggerAction datatype.

1 data DebuggerAction

2 = Step
3 | Stop
4 | Continue [LinkerNamel]

HDB uses libdw to extract DWARF debug information and reads line information
which has source code information. This can be used to highlight the relevant part
of the source code. It can also reconstruct the stack state with the help of the
information that GHC stores in the binary for the garbage collector and analyse
type data and read closures in heap and stack with appropriate names and memory
addresses. The returned closures are of the type GenClosure which is defined in the
library ghc-heap [10]. Our debugger uses this to create a graph representation of
objects in heap and stack for every execution step [11].

2.5 GHC Compilation

Compiling is a complex task and it is not necessary to know all the details to
understand this report. An outline of the GHC compilation process is given in Figure
2.1. The image shows that the source code is first parsed and typechecked, then
simplified and translated through three intermediary languages, Core, STG, and
finally Cmm. These intermediate languages transform the code in different ways,
for example all pattern matching is translated to case expressions in core and all
functions are expressed in terms of lambda functions in STG code. The Cmm code
can then be used to generate machine code, LLVM code, or C code [12].

Certain GHC optimisations on generated code can change the program, for example
by inlining functions. For a function to be inlined means that through the compiler’s
optimisation process any call to the function is replaced directly with the definition
of the function. Compiler flags such as -ddump-simpl-stats give useful informa-
tion about optimisations done and -ddump-inlinings about which functions were
inlined. Unwanted inlining can be avoided directly in code with instructions to the
compiler using the pragma NOINLINE [13].

An example of this pragma is shown in Listing 2.7. Even compiling source code
without any optimisation may optimise small functions, another way to circumvent
this is by specifying a function as an exported function from a module, also as seen
in listing 2.7.



2. Background

Parse
HsSyn RdrName ‘
Rename
HsSyn Name ‘
Typecheck
HsSyn Id ‘
Desugar
* The Simplifier
CoreExpr * Rewrite rules
« Strictness analysis
* Let-floating (inwards and
outwards)

Specialise overloaded functions
Constructor specialisation

CoreExpr

CoreExpr
(with tidy names)

Convert to IfaceSyn

CoreExpr
(in A-normal form)
Convert to STG
STG
Code generation
Cmm (C-)
Pretty-print Generate Generate
C code machine code LLVM code

M.hc Ms M.l
(C code) (asm code) (LLVM code)

Figure 2.1: The GHC pipeline, image from figure 5.2 of [12], licensed under CC
BY 3.0.

10



2. Background

Listing 2.7: Pragma example and exporting of functions.

1 module ModuleName (fib, add) where

3 fib = ...
4« {-# NOINLINE fib #-}

¢ add = ...

The module is specified with the name ModuleName and the names within the paren-
thesis separated with comma are the functions which are exported from the module.
This can be useful to know for a user which wants to test our debugger and has
some issue with a minor function in a smaller program.

2.6 The GHC Heap

The GHC heap consist of entities called heap objects. Each of these objects contains
an info pointer which points to an info table. The info table holds the layout infor-
mation of the object as well as the entry code. The entry code consists of the code
that will evaluate the closure, if the closure can be evaluated. The layout informa-
tion describes the type of closure, data for the garbage collector, closure flags and
other fields for profiling, parallel computing, and debugging fields [14]. The heap
object also contains the payload. The payload can consist of both pointers and non-
pointers. The payload of a function closure for instance contains pointers to the free
variables of that function [15].

In order to discuss specific heap objects, it is important to clarify what unboxed and
boxed types are. Boxed objects are represented as their own closures while unboxed
types are stored directly in the data constructor of another heap object [3]. For
example the constructor for an integer (Integer), is denoted I#. It constructs an
integer by having an unboxed integer in its payload. Unboxed objects are preferable
for optimisation reasons since they do not have to be allocated as their own closure.

There are different types of heap objects according to [14]. Pointed, unpointed and
administrative objects. Pointed objects are heap objects that can be evaluated. Ex-
amples of these can be seen in Table 2.1.

Table 2.1: Some heap objects described in [14].

Thunks Closures that are not yet evaluated.

Data constructors | —

Functions —

Associated with the updating of a function valued

Partial applications

thunk.
Indirections Overwrites a thunk when it has been evaluated.
Black holes Overwrites a thunk when it is under evaluation.

Unpointed objects are objects that will never take the form of a thunk since they

11



2. Background

are not evaluated. Examples of these are arrays and MVars [14], a type for shared
state when concurrency is needed.

Lastly, there are administrative objects that are handled by the runtime system. An
example of these are thread state objects, which each represent a thread. [14]

2.7 The GHC Stack

A stack is used to store previous and upcoming closures by the run-time system
(rts). The stack is used with a current evaluation to be able to go back to where it
was called from on finished evaluation.

In GHC the stack is represented by a stack, the data structure, of evaluation calls.
In [16] the GHC stack is produced by using three theoretical stacks; An argument
stack, a return stack, and an update stack. These different stacks contain closure
addresses and primitive values, continuations for case expressions, and update frames
respectively, these will be explained in detail later.

The actual implementation uses two stack-structures in the original runtime system
by [16], but more modern versions of the GHC stack use a single stack-structure [14].
The elements contained in the different theoretical stacks mentioned above will be
described in detail in the next section.

2.7.1 Stack Objects

The data contained in the stack is represented by stack objects. These are generally
referred to as stack frames [17]. Stack objects have a similar structure to heap objects,
but instead of the info pointer they have a return address, which is often referred
to as the info pointer. The info pointer contains an entry code, which is executed
when the program must return from the current closure while the payload contains
everything else [18]. In GHC there are three kinds of stack objects: return addresses,
update frames, and seq frames [17].

Return addresses are used for case alternatives on return from a constructor, and as
all evaluations are performed by case expressions this also includes functions [16].
There are two types of these objects; RET_XXX which are addresses generated by the
machine code compiler, BCO_RET are addresses generated by the byte-code compiler.
Both return address object types contain a payload of the free variables of the case
alternatives. Update frames trigger updates, once entered its payload is overwritten
with the result and returns to the next stack object. Specifically, they contain a
return address, a pointer to the next update frame, and a pointer to a thunk [18].
Seq frames are used for the seq primitive. seq is used to prevent unnecessary laziness
by forcing evaluation of arguments and it is given this special update frame. There
are also stop frames which are at the very bottom of the stack. When a stop frame
is entered the thread is killed.

12



2. Background

2.8 Previous Work

There exists a few debuggers for Haskell. However, none of these debuggers work for
compiled Haskell without making changes to the source code or transforming the
language in other ways according to [6].

2.8.1 ghc-vis

ghc-vis [3] is a tool to visualise Haskell evaluation in GHCi, meaning that it does
not work for compiled Haskell code. It also is not a step by step debugger but it allows
the visualisation of the heap. The graphs generated by ghc-vis, for example Figure
2.2, are an important inspiration for our visualisation of compiled Haskell program
evaluation. The visualisation provided by ghc-vis makes it easier to understand
lazy evaluation, which is also exactly what we want to achieve with our debugger.
A concrete example of this inspiration is the layout of the nodes, with sections in
the node for every outgoing edge, found in both programs.

I# 1] |:
L\
[# (2] |:
N
[# 3] |:
P
/F
Thunk |# |5
Fun

Figure 2.2: Image of ghc-vis Fibonacci example.

The example in Figure 2.2 shows the evaluation of a list of Fibonacci numbers gener-
ated by the function in Listing 2.8 evaluated to its fifth element. In this example you
can see that some elements are used more than once, the first and second element, 1.

13



2. Background

You can also see that the evaluation is not yet completed and the unevaluated part
of the expression is shown as Thunk which points to Fun. Fun represents a func-
tion, in this case fib, which needs more input to evaluate. So when the evaluation
progresses Fun will receive more input and take the evaluation further.

Listing 2.8: Another function to generate a list of Fibonacci numbers. Function
from [3].

1 fib =0 : 1 : zipWith (+) fib (tail fib)

2.8.2 GHCi Debugger

The GHCi debugger [19] is a debugger within the GHC’s interactive environment. It
has basic capabilities like settings break-points on function definitions or expressions,
stepping through execution, and “tracing mode,” which can display the history of
the evaluation from a break-point. However, the GHCi debugger does not support
debugging of compiled Haskell programs and visualising of the heap, which is the
goal of our project.

2.8.3 Hat

The Hat program can generate trace information from a Haskell source code file.
However, Hat only supports Haskell98 language standard together with some
Haskell2010 libraries. This does not represent the current standard so it is not viable
for modern programs.

2.8.4 Hood

Hood [20] is a debugger for Haskell which supports text-visualisation of data struc-
tures. There also exists a GUI for hood, GHood [21]. The tool is currently not under
active development and requires the code to be changed for the data structure ob-
servations to be shown which means that it is not suited for debugging compiled
programs according to [6].

2.8.5 GDB

Haskell code is transformed to native executable code through a multi-stage pipeline.
This process is described in more detail in section 2.5 on GHC compilation. We can
take advantage of DWARF debugging information created with the GHC and debug
the executable using The GNU Project Debugger, GDB [22].

Debugging with GDB is only useful at a very low level and mainly comes down to
analysis of assembler code along with limited symbolic information. As such, it is
most useful for debugging the GHC run-time or for debugging C libraries linked
with the Haskell code.

14



3

Method

3.1 Development Process

The intended way of working during this project was to use ideas from Scrum. The
project did not have a product owner, but had an external stakeholder in the form
of our supervisor. It would also use concepts such as sprints, user stories, and short,
but frequent, meetings. The sprints were decided to be two weeks long at first, but
later in the development it was decided to shorten them to one week. The reasoning
for the usage of Scrum development was that it would ensure that there would be
a prototype of the product at the end of every sprint and thereby ensure steady
development of the product.

The tool Trello [23] was used to act as a scrum board and it was used to organise the
tasks and user stories of the project. The version control system Git [24] was used to
enable every member of the team to work on the codebase. The remote repository
used was GitLab. The main branch hosts the completed parts of the program, and
the goal was that this branch would always be able to compile and run without
errors. Other work was contained in their own branches and was only to be merged
into main if they were functional, and if applicable; tested.

3.2 Software Implementation

The main feature of the debugger is to show the current state of the heap and the call
stack as a directed graph, relative to Haskell source code in a single execution step.
The program ghc-vis was our main source of inspiration when making decisions
concerning software implementation.

Before each step of software fabrication, we discussed components that would add
functionality to the debugger, primarily focusing only on the most essential. Differ-
ent options, their strengths and weaknesses regarding planned functionality require-
ments were further discussed and tasks were assigned to group members through an
agile project management software when implementing them.

Haskell was used for development of the debugger as it provided a natural way
of communicating with HDB, and we, the group members, wanted to improve our
Haskell knowledge. As we prioritised integration with the operating system, we de-
cided to use gtk2hs [25] which is based on the GTK3 GUI framework. An addition to
the mature GTK framework, is also the rapid application development tool Glade,

15



3. Method

a part of GTK that after a short period of testing proved to be a valuable tool to
adapt to our needs which involves frequent changes of the user interface.

For displaying the graphs we chose to use the graph creation software Graphviz [26].
It acts as an interface for Dot [27] that is a language that is used to generate graphs.
This was done for two reasons: Firstly, since ghc-vis uses a Haskell binding for it [28],
there was potential in reusing already written code. Secondly, Graphviz has a tool
that enables further manipulation of the graph called unflatten.

3.3 Personas

At the beginning of the development, a target group for the project was determined.
From this target group, two types of end-users were created and aimed to be designed
for, known as personas. A persona is an abstraction of a user that serves to guide
the development of a program [29]. There are two types of personas, one of them
is called the primary persona and one is called the secondary persona. The primary
persona is the main target for the design of the interface and the secondary persona
is someone that agrees with the primary persona in most parts but with exceptions
of additional needs, which does not upset the primary persona [29].

The project’s primary persona is an individual with Haskell experience. They have
good knowledge of the language itself and the Haskell evaluation process. They
understand concepts such as lazy evaluation and have some knowledge of how the
GHC run-time system works.

The secondary persona chosen for this product is an individual that is fairly new
to Haskell, with basic knowledge of the language itself, such as pattern matching,
recursive functions, higher-order functions, and so on, but lacks a deeper under-
standing. This type of user will require assistance in understanding the graph that
is shown to the user, both in documentation as well as simplifications of the heap
and stack representation.

3.4 Testing

3.4.1 User testing

To develop the application in the best possible way, user-testing was performed in
the later stages of the project with people in our target audience.

To perform the testing we used the method of Usability testing [30]. This method
involves creating tasks that the user walks through. By doing this, it is easier for a
team to identify and fix the parts of the application that are confusing for the user.
The test follows the format of the think-aloud protocol [30], this protocol means
that the user describes what they think and how they feel while doing a given task.
The tasks used in our testing are specified in Table 3.1.

The first task entailed loading the file that was to be debugged into the debugger.
This forced the users to interact with both a file dialog and the decision to either
compile a selected file or chose a pre-existing binary. To clarify the second task; the

16



3. Method

Table 3.1: User testing tasks.

Task 1 | Select the Haskell file named “test.hs” to be debugged.
Set a break-point at the function “foo”. Step to that
Task 2 | break-point and inspect the graph. Explain the different
colouring of the nodes.
Finish the execution of the program. Find the output of
the debugged program.

Task 3

main idea is to force the user to look for “help” within the application. The third
task was to find the program output section of the debugger and to find the output
of the program that was debugged in said section.

After the tasks were completed, some questions were asked to the user. Did you
encounter any challenges during the tasks? If yes, explain what was challenging. On
a scale of 1, which is, not very likely, to 5, which is very likely, how likely would you
be to recommend this program? Was the help section enough to understand how to
use the program? Any other thoughts?

While performing the test with the user, at least one group member participated
and took notes. The results from the user-testing and how the findings improved
the program, can be further read in Chapter 4, Section 4.4.

3.4.2 Software-testing

As development started the intention was to test all appropriate code using the
QuickCheck [31] library. However, as most code written for the debugger is for the
GUI a lot of it has side effects and this makes property-based testing considerably
harder. Therefore, the program was mainly tested by performing a sequence of op-
erations in the GUI, in order to find and fix bugs.

The integration testing was performed on each feature’s completion by the author
and, if possible, by some other group members. Having someone other than the
author test the same feature gives new perspectives and sequences of operations
since they do not necessarily use the software in the exact same way.

17



3. Method

18



4

Results

4.1 Software Architecture

The majority of students at the Department of Computer Science and Engineering
have not encountered the development of more advanced applications using the func-
tional programming paradigm. The applications that are studied and constructed
in the mandatory project-based courses for the Software Engineering and Computer
Science bachelor’s degrees are exclusively based on object-oriented programming
languages unless the students themselves decided to work in some other paradigm.

None of the members of this group had previous experience with functional program-
ming on a larger scale than the development of smaller programs from courses at
the Department. Despite this, there has been an attempt at separating the function-
alities and capabilities as much as possible to allow for reuse. For example, all GTK
parts are excluded from the part which communicates with HDB and generates the
graphs to enable further development.

A basic diagram of the application structure is visible in figure 4.1. In the figure,
GUI, HDB, Graph, and Debug correspond to parts of our application where GUI,
Debug and Graph are parts that we have constructed.

GUI

Create

\/
Start & Use 1 Read
HDB Debug

Use
/
Use Graph Write
L

Figure 4.1: The software architecture.

GUI starts a thread with Debug that starts the debug process in HDB and responds
to data sent to the callback function. The reason why there is a need for concurrency

19



4. Results

is that this process needs to run independently of the GUI. Otherwise, the GUI
thread would halt execution until the debugging done by HDB is done.

Graph generates a graph which is put into an SVG File, which is then read by Debug
for updating GUI so it can be displayed.

The callback function in Debug is executed when HDB steps. When continue is
selected, HDB will not call back until one of the linker names specified in the call
appears as the currently evaluated heap object. The main thread communicates with
this process by using shared thread-safe variables called MVar:s.

An example of such a variable is the one that keeps track of the most recent executed
command, Stop, Step or Continue. Whenever a step is executed, or a breakpoint is
hit, the graph is generated. The graph is then saved as an SVG file when the debug
process executes a callback to the main GUI thread. The graph file needs to be read
when HDB has finished a step but this notification creates a weak dependency. The
reason for this is the use of higher-order functions.

Because GTK must be updated from its main thread it is not feasible to update
it concurrently. To be able to notify the GUI from the Debug thread a function is
passed to Debug which enables running operations in other threads with the GTK
application’s main loop. The type of the function is general enough to be a function
of another graphical framework.

By having this function as an argument, there are no GUI dependencies in the Debug
module. By doing this it becomes dependency-wise independent from the GUI. This
results in the possibility of using the Debug module and graph generating capabilities
with other interfaces in the future.

4.2 Graph Representation

The decision was made to show the heap and stack to the users as a directed graph,
where every edge represents a pointer from one node to another, and every node
represents a closure. The reason for this was that a natural way to visualise pointers
is to view them as edges in a graph between different closures. The ability to view
what is on the stack also gives further information about the current state of the
program by showing upcoming evaluations. In some cases, the information that the
node that is currently evaluated and associated nodes represent will be difficult to
decipher by the user. In those cases, the stack can bring context to the evaluation.

4.2.1 The visual representation

The node representation is heavily inspired by ghc-vis, and the nodes themselves are
divided into sections based on the number of outgoing edges as well as the data that
is held by the node. The reason for this specific layout was that it led to a clearer
separation between the different outgoing edges from a node since every edge comes
from a designated part of a node. This means that arguments will be ordered. It
was also thought to be an intuitive way of displaying the concept of a heap since the
representation is reminiscent of how memory addresses often are shown. The layout

20



4. Results

of the nodes is illustrated in Figure 4.2.
.’IIII=II=
= foo E E
n

# |2

Figure 4.2: The function foo points to a boxed integer (I#) as an argument.

Two nodes can be seen in the image. foo, that holds a pointer to another node that
is a constructor for an integer. The fields to the right of the name can hold a value
directly or house a pointer to another node.

Since the graph can be wide it was important to alert the user’s attention to nodes of
importance. Therefore different colours were used. The node that is currently being
evaluated is differentiated from the rest of the nodes by being coloured green and
by having a striped border, see the node labelled foo in Figure 4.2.

The nodes that are only shown when the stack trace is present in the graph are
coloured yellow. The exception to this is when a closure present in the stack trace is
returned directly by HDB as a part of the current evaluation, in that case it is also
coloured yellow. If an object present in the stack trace is currently being evaluated
it will be coloured green. See Figure 4.3 for an example where every node is derived
from the stack trace and stg_enter is the node that is currently being evaluated.
Since objects from the stack trace can be on the heap it means that some heap
objects will be coloured yellow.

Any node that does not meet the above mentioned criteria are coloured black.

stg_stop_thread

'

stg_ap_v

........l...l..'
= ]
% stgenter = =
- - n n

n
-llllllllllﬁlﬂ
main

Figure 4.3: An edge case in the graph where all the nodes shown are derived from
the stack trace.

There were several decisions made to limit the width of the graph. First of all
the names of the closures were simplified. This was possible due to the fact that
the names of some of the heap objects included information that was not deemed

21



4. Results

important for the end-user to know. The names also need to be decoded with the
help of a library called zenc [32] to improve readability. For example the node name:
base_GHCziBase_zgzg info becomes base GHC.Base_>>_info after zenc is used.
After removing the unnecessary information, the package name base, module name
GHC.Base and the suffix _info it simply becomes >>, which is the function’s name.

Another consequence of the width of the graph was that a form of zooming func-
tionality was necessary to implement.

Since there exists an option to set the desired depth of the graph, there needed
to be a clear indicator of whenever a part of the graph is hidden. To differentiate
the truncated nodes they have similar border colours to the normal nodes, but are
greyed out. The content of a truncated node is “...”. In Figure 4.4, a graph with
limited node depth is shown and truncated nodes are displayed.

N

stg_ap_pp

C:Num

7 *\\\

Figure 4.4: A graph where the depth is set to 1 and some nodes are truncated.
The currently evaluated node has a depth of 0.

Finally, the functionality to limit the graph’s depth was added. This was done in
two ways. First of all it is possible to hide the call stack of the graph altogether with
the exception of stack nodes that are a part of the current evaluation. For example,
an update frame returned by HDB. Secondly, the option exists to set the desired
depth of graph. This was done partially so that the user could determine the size
of the graph but it was also implemented so that no graph would be impossible to
view. In theory, and most probably in practice, a graph could grow big enough to
be impossible to be represented by the SVG viewer.

The graph is also modified by the tool unflatten, which is included in Graphviz.
This tool modifies the graph by modifying its layout and thereby decreasing its
width. A graph modified by unflatten can be seen in Figure 4.5.

By default Graphviz tries to keep all nodes of the same level at the same height,

22



4. Results

5 CMonad = 5 B B
H L] L] L] L]
aunsssnnnnnfnpfapiapin

C:Applicative

$fApplicativelO4 C:Functor $fApplicativelO3 $fApplicativelO2

/

$fFunctorI02 liftM 1

$fFunctorIO1 $fApplicativelOl

Figure 4.5: Here unflatten has modified the graph by displacing the nodes in
order to decrease the width of the generated image.

resulting in an at times very wide graph. As shown in the example the nodes are
no longer on the same level anymore due to the usage of unflatten. The way this
process is done in our debugger is by saving the graph as a Dot file and using that
as a parameter to unflatten. The output is then converted to an SVG file.

4.2.2 Example graphs

Here a few examples of how different Haskell concepts are visualised will be pre-
sented. An example will also be shown of how the program can be used for profiling
purposes.

The first graph, Figure 4.6, shows the string "UTF-8". The currently evaluated node
is the cons operator, the operator that adds an element to the front of a list. The
figure shows how a string is represented by a list of characters, represented by node
name C#, which is a constructor for characters. All strings (String) values in
Haskell are represented in this way.

Sharing, as previously mentioned, is a concept in Haskell where evaluated values
can be reused in the context where they are evaluated. The graph in Figure 4.7
illustrates this concept where the list contains a sequence of two different integers.
The heap objects which represent the integers are reused as elements.

23



4. Results

[l

/\

C#

I

C#

I

C#

"--ﬂl\

i~

C#

C#

Figure 4.6: A list of characters.

24



4. Results

stg_bh_upd_frame

]
]
u
"
2
u

S# | 10

S# | 5

Figure 4.7: The sharing of values in the list [10,10,10,10,10,5,5,5,5,5].

25



4. Results

The debugger is also able to handle cyclic data structures. The code that generates
the example cyclic data structure can be seen in Listing 4.1.

stg_bh_upd_frame

S# | 0

Figure 4.8: A cyclic list comprised of zeroes and ones.

A list is created where the first element, 0 is followed by 1 and then itself again. This
creates an infinite sequence of zeroes and ones. This is visualised in the Figure 4.8.
The first element of the cons operator in the graph is 0. The second element is
another cons operator that points to the number 1 and its parent.

Listing 4.1: A function that creates a cyclic list [33].

1 cyclic = do

2 let x = O:y
3 y = 1:x
4 X

To illustrate how the debugger can be used for profiling purposes the graph found
in Figure 4.9 will act as an example. The graph is generated by the function sum’,
which recursively adds all the elements of a list together, see Listing 4.2.

Listing 4.2: A function that causes a space leak and a fixed version of it.

1 sum' n [] =n
2 sum' n (x:xs) = sum (n+x) xs

1+ sumEager !'n [] =n
5 sumEager !n (x:xs) = sum (nt+x) xs

The first parameter n is the sum which will not be evaluated until the entirety of
the list has been traversed. In Figure 4.9, the sum corresponds to the left part of the
graph starting with Thunk:4065c8 and can be seen as the unevaluated expression
(... (((041)42)+3)...). The value 100 is the last value of the list as the graph is
created by the call sum’ 0 [1..100]. This is a space leak since the unevaluated
expression takes up more memory than needed. This can be avoided by circumvent-
ing Haskell’s lazy evaluation by using the ! declaration, as seen with sumEager in
Listing 4.2.

26



4. Results

- .|.<‘

Thunk:4065c8 Thunk:40b3c8

/ e

Thunk:4065c8 S# | 6

S#

100

Thunk:4065c8 S# |5
J/
Thunk:4065c8 S# | 4
/
Thunk:4065c8 S# | 3
Thunk:4065¢8 S# | 2

J/
/

S#

S# | 1

Figure 4.9: A graph that illustrates a space leak.

27



4. Results

4.2.3 Algorithm

To generate the graph our algorithm uses debug data parsed from an executable by
HDB. Whenever a step action is taken or a breakpoint is hit, HDB returns a closure.
That closure can then be used to both determine the node that is currently being
evaluated and request new closures from HDB.

The algorithm is as follows: when a closure is found by HDB, the name, address,
pointers and arguments, are gathered and converted to a new data type. The info
table and the entry code are not displayed to the user. The conversion is done
in a recursive manner where every pointer of a closure is sent to HDB, by using
peekClosure, so a new closure is returned. This was implemented by defining every
node using a recursive data structure. See Listing 4.3 for the internal representation
of a node and the different node types in our program. Thus every instance of a
node has a list of other nodes in it.

Listing 4.3: The representation of a node in the graph.

1 data NodeType = Root | Stack | Ordinary
2 deriving (Show,Eq)

1+ data Node = NodeClo String String [Node] [String] NodeType
EmptyClo

DuplicateClo String

7 deriving (Show,Eq)

o
— —

The type of node is also added, it is either a Root node, meaning that it is the
currently evaluated node, a Stack node, meaning that it only has parents derived
from the stack trace and it is not the currently evaluated node. An Ordinary node
is derived from a Root node but is added to the graph regardless if the stack trace is
present or not. A node can also be empty, if HDB returns no closure, or be marked
as a duplicate if the node already has been added. As a catch-all, the last case is
used to avoid infinite loops in the recursion due to cyclic data structures.

The reason for modelling the graph in this way was that we thought it would be
easy to implement features related to interactivity. Specifically there were plans to
enable removal of sub-graphs from the representation. It is possible to delete nodes
by clearing the list of the node that holds references to the them. This would remove
all nodes that are not referenced elsewhere in the graph. However, this specific
approach is no longer feasible after cyclic data structures were handled. This is
because a DuplicateClo contains insufficient information to be drawn correctly if
a NodeClo with the same address is removed. Functionality similar to this can be
implemented by storing the addresses of the nodes that should not be drawn, the
difference would be that nodes that are referenced elsewhere in the graph would be
hidden.

The stack is handled in the same way with the exception that the edges between the
different objects of the call stack are added in order to show the ordering of them.
The bottom-most element of the stack points to the next object on the stack until
the top is reached. The top-most element on the stack then directly points to the

28



4. Results

node that is currently being evaluated. The exception to this is when the topmost
element is a return frame. In that case, the frame itself is the node that is currently
being evaluated.

Since it is possible that the topmost element of the stack is the element being
currently evaluated the decision was made to always show the closure returned by
HDB even though the stack trace was hidden. This is to ensure that the currently
evaluated node is always shown. This also means that some stack objects in the
graph will have a different number of arguments depending on if the stack trace
is shown or not, as shown and displayed in Figure 4.10 for an example. This is
because it is only possible to get detailed information about a stack object from
the getStack function. Without using this function the graph will only display the
arguments returned directly from HDB.

stg_catch_frame 0

'

stg_ap_v

'

stg_bh_upd_frame

L] L]
stg_TSO = Stg_ap_pp E E
- Fup i

Thunk:406ce0

Thunk:406c40

$fApplicativelO2

Figure 4.10: stg_ap_pp is an object that resides on the stack. If the stack is
hidden, the two thunks in the graph would not be drawn, decreasing the number of
arguments of the currently evaluated node.

Arguments of a closure are handled the same way as if it was the closure itself that
had a pointer to it. In practice, it was deemed this had no effect on the debugging
potential of the application. The resulting graph is then sent to the Haskell binding
of Graphviz and an SVG is generated.

There are special cases that need to be handled by the algorithm. When a closure
is received it is not always apparent how the data should be handled. For example,
there is no separation between an integer and a character in regards to its repre-
sentation as a value. This means that the only differentiating factor between the
two types is the names of the constructors. Therefore the algorithm was modified to
rectify this. If the closure is a constructor of a character the value is then converted
from an integer to a character, for example in Figure 4.6.

29



4. Results

Closures that are black holes, indirections and aspects of MVars are also hidden
by default as they were deemed to affect the readability of the graph negatively
without simplifying the debugging experience. A problem encountered during the
process of extracting closure data was that for one type of array closure called
ArrWordsClosure, the payload could be very large. The payloads were results of
memory allocation processes and consisted of long strings containing arrays. The
decision was therefore to limit the size of this type of array to 20 elements, and to

“woon

illustrate this to the user, the string “...” was added as a suffix.

4.2.4 The graph as an SVG

There were two reasons why an SVG file was chosen as the preferred output format.
Firstly it would be possible to extract data from it. This was used to centre the
canvas of the graph on the currently evaluated node by extracting the coordinates
of the node. Secondly, SVG files can be scaled without any loss of image quality.
This fact was used to implement the functionality to zoom in to the graph.

4.3 The Graphical User Interface

A substantial amount of work went into crafting a well designed and functional GUI.
The goal was to create a usable product that is intuitive to use and the overall look
of the program was not the most important aspect of it. However, care was spent
on those parts as well when time allowed it since sometimes resources had to be
prioritised to implement new functionality instead of refining the GUI.

At the beginning of the project, research was done and inspiration was gathered from
popular IDEs and text editors with integrated debuggers like VSCode, IntelliJ, and
Eclipse. When creating mockups of the planned GUI it was clear that they resembled
typical debuggers in an IDE. The reasoning for this was that since these debugging
environments are widely used, the users likely would have experience with them,
therefore it would be unwise to deviate completely from these types of graphical
layouts.

The GUI is created in an attempt to satisfy both the primary persona and the
secondary. As the secondary persona would have limited knowledge about the GHC
heap and stack, the application was adapted with this in mind. Most notably this was
the reason why a help section was implemented. The application also has advanced
features that might be utilised by a more experienced user, such as the primary
persona. For example, it is possible to set the maximum node depth, hide the stack
trace, view a history of previously current evaluations in terms of their names, and
by using compile options: showing long arrays completely and displaying the graph
in its entirety since some nodes are hidden by default.

The primary window of our GUI contains necessary functionality for starting a
debug session, performing operations, and analysing the results. In addition to the
primary window, the user is able to view About and Help pages by selecting the
menu items in the menu bar. This menu also includes items for opening a file dialog
for selecting which program to debug, setting of maximum node depth, as well as

30



4. Results

opening a source code file for viewing.

When starting the application, the dialog for selecting an executable is displayed.
The purpose of starting with a dialog is to have a clear entry point for the user, as

seen in Figure 4.11.

File Settings Help

Haskell Debugger v0.1

p Start de
-+ Step
» Contint

H Stop

The debuc
open sour
process st

For more
to select k&
"Help" me

it Home

[ Desktop
[ Documents
J, Downloads
A1 Pictures
vl Videos

@ dbg

4 | haskell kex

Name

[ app

[ dist-newstyle
 test

test  »

-

Size Type Modified
man
2 mar

2,9 MB Program man

Untitled filter »

=1Select Executable

Program Output

Debugger Output

X Close

here

Haskell Debugger v0.1

Figure 4.11: A clear Entry-point where the user selects an executable file.

The decision was made to design the GUI as a multi-paned application. The layout
of the primary window has three panes, which can be viewed at the same time.
These panes are is displayed in Figure 4.12. These panes are resizable within limits,
and all panes are scrollable if necessary.

According to Cooper [29], the advantages of a multi-paned application are that
independent but related information can be viewed at the same time. This reduces
navigation between windows for the user, which suits our application. How to divide
and place the functionality in our panes, was decided through research of existing
debuggers.

In the studied programs like VSCode, IntelliJ, and Eclipse, the debug output is
usually at the bottom and the code view to the right. In order to try to satisfy the
users, the same layout pattern was used. The reason why the code was shown was
so it would be possible to facilitate an easy way to set breakpoints and to notify the
user when a breakpoint is hit. In the left pane, we chose to include the graphical
visualisation of the heap and stack.

As already mentioned, the intention was to simplify the use of the debugger when
navigating and managing windows. Therefore, the complete tool-set of frequently
used operations during the debugging process was placed in our primary window as
well. All these tool buttons are collected in the toolbar at the top, right under the
menu bar. Both the toolbar and the menu bar are highlighted in Figure 4.13).

31



4. Results

- Haskell Debugger v0.1 - O x
File Settings Help
B = 1 Hide stacktrace Add Breakpoint Remove Breakpoint
188 Main.hs  Close
0] 1 module Main(fibs, rep, main) where
Start debug process 2
’ g p < 3 i t Ext fib
-3 Step z import Extra (fib)
» Continue to breakpoint S Fibs :: Tnt -> [Int]
6 {-# NOIMLINE fibs #-}
H Stop 7 fibs n = fib n : fibs (n+1)

The debugger will attempt to
open source files on debug
process startup.

For more information, and how
to select breakpoints, visit the
"Help" menu item.

8
o {-# NOINLINE rep #-}

Qutput

Program Output Debugger Output

Haskell Debugger 0.1

Figure 4.12: Primary window, where the core functionality is split into 3 panes.

J N

Thunk:406a6%  stg_upd_frame
Thunk:s0h18  Thnkca2fsso 5
sty upd_frame

o

Thunk:#6as0 3 £
H

- Haskell Debugger v0.1 I =
File Settings Help
c » (12 -3 |} Hide stacktrace Add Breakpoint Remove Breakpoint
188 Main.hs # Close
. L () 1 module Main(fibs, rep, main) where
2
i upd_frame © 2 import Extra (fib)
4
/ \ 5 fibs :: Int -> [Int]
Thunlk 0810 o {-# NOINLINE fibs #-}

fibs (n+1)

fibs n = fib n :

o

9 {-# NOINLINE rep #-}
Output

Program Output Debugger Qutput

Haskell Debugger v0.1

Figure 4.13: The Menu-bar and the Tool-bar, additionally a breakpoint has been

hit on the evaluation at line 7.

32




4. Results

If possible the design of the tool buttons were made graphical rather than textual.
This was a design choice made to facilitate for the users. Instead of understanding
the buttons through reading, it is faster to recognise them with images [29].

Not all buttons are graphical since we tried to keep the images to default GTK
options. In some cases the functionality is too specific for GTK to be able to provide
images with such a purpose. In those cases there are text together with the image,
or just text. All three types of tool buttons can be seen in Figures 4.12 and 4.13.
Buttons that are related to each other also become easier to spot for the user. For
complementing the visuals the toolbar includes a tool-tip for every button explaining
the button which is helpful to first-time users in the case when it is not immediately
obvious what a button does [29].

Above the toolbar in Figure 4.13, we find the menu bar which is displayed in a
conventional way. Here the user is able to do normal commands such as switching
to the About page or the Help page, opening files, or setting maximum node depth.

To create a breakpoint the user must select a span in the source code which includes
the whole definition of a function, but not necessarily the type declaration, since
HDB needs a source span to return the name of the function. The source spans
required by HDB are fairly exact, it allows for a span to be larger than necessary,
but it does not match with a smaller span. If a span without a function declaration
is chosen a breakpoint will still be created, but the program will not stop at this
breakpoint.

This is done by either selecting a span with the mouse while holding the control
key or by first selecting the span and then pressing the add breakpoint button in
the toolbar. When this is done the selection is highlighted with a grey colour. A
breakpoint is visible in the source code pane with grey background in Figure 4.14.

- Haskell Debugger v0.1 - Oox
File Settings Help
2 ¥ |7ﬁ Hide stacktrace
188 Main.hs Extra.hs ¥ Close
l (& module Extra(fib) where
sig_upd_frame < fib :: Int -> Int
/’ \ {-# NOINLINE fib #-}

fib @ = 1
Thunk:432030 fib1=1
fib n = fib (n-1) + fib (n-1)

Qutput

-
Thunk:431940 III

#fShowlnt] | Thunk:408120 | ‘

/

Program Output Debugger Output

Haskell Debugger v0.1

Figure 4.14: A selected breakpoint is highlighted.

33



4. Results

Similarly, removing a breakpoint is done by selecting the highlighted code in the
source pane, and then pressing the Remove Breakpoint button in the toolbar. This
causes the breakpoint, as well as the highlighting in the source pane, to be removed.

Whenever a function with a source location is evaluated by HDB the source spans
of that function are highlighted red in the GUI. The choice of colour is inspired by
other debuggers which might highlight the current line in red as well.

Since the user must be able to set breakpoints in several different files the program
needed a way to display these files simultaneously. This was done by using a tabbed
pane for displaying the source code, with a different tab for each file. The user can
navigate between the different files by using the tab markers at the top of the pane.
The user can close a specific file by opening the tab associated with it and clicking
the close button.

4.4 User testing

User testing was performed for the GUI with a total of 5 tests performed. These
tests are explained in detail in Section 3.4.1. The results have been used to evaluate
the effectiveness of certain GUI elements and some feedback has been applied to
the GUI itself. An example of this is the selection of breakpoints, the process of
selecting a breakpoint was previously to hold the control key of the keyboard and
make a selection in the source code view. Now it is also possible to make just a
selection and press the Add breakpoint button. This is more intuitive for a new user.

The process of starting, stepping, continuing, and stopping was seen as natural. This
is because the design adheres to the “safe exploration” pattern from [34] which states
that the user should be able to treat an application as they expect from its purpose.
In the case of a debugger, it is designed similarly to other graphical debuggers which
provide an expected workflow to a user with previous debugging experience.

The user testing proved that our application seemed to be successful with its purpose
of displaying the heap and an evaluation process. The testees were overall satisfied
with the program with a mean of 3 out of 5 if they would recommend the program
when asked to score from 1 to 5.

In detail the testees found the GUI to behave as expected with the exception of
breakpoint selection. The help frame was particularly appreciated by the testees
as it provided accurate information about the colouring of the graph, breakpoint
selection, and what the different output panes represent.

The testees thought there was a lack of pliancy for operations. This was denoted
for successful selection of a breakpoint and selecting a binary. The testees could not
know immediately if a breakpoint was selected or if a binary was loaded successfully
into the program.

The graph itself was often not understood by the testees but after an explanation
by the help frame they found it to be intuitive. One testee suggested displaying
text panes as an option to the graph since it could be unintuitive for a new Haskell
programmer. However, the main persona is an experienced Haskell programmer and
would already know the reasoning why it is displayed as a graph so the testee’s

34



4. Results

suggestion was just considered briefly.

As a direct result of user testing a placeholder image with instructions was created
and displayed whenever no debug process is active. This image can be seen in Figure
4.12. It contains basic instructions such as how to start debugging, step, continue,
and stopping the process. Additionally, it informs the user that the debug process
will try to automatically attempt to open files and that there is a help dialog with
more information.

35



4. Results

36



O

Discussion

5.1 Method Discussion

In this section we try to evaluate how the development transpired, if our initial
choices were good and if there are any improvements that could have been made.

5.1.1 Development Process

The development process generally worked well. Scrum worked as intended and we
had a product to show our stakeholder at the end of every sprint. Some changes
had to made during the process regardless, specifically the amount of meetings were
decreased in order to increase efficiency. Another change is that the project started
with a quite open approach to the agile process but it was made more strict towards
the end to ensure focus was kept on development.

5.1.2 Haskell Library Documentation

As previously mentioned our debugger uses the GTK [35] framework, and GTK has
two different major bindings to Haskell. Our application started out with the gtk3
library [25]. At one point in development, it was discovered that it was considerably
more difficult to find documentation for this library as it was not part of the standard
search on Hoogle [36]. The other alternative, haskell-gi [37], had documentation
available on Hoogle. However, at the time of this discovery, development had already
begun and a switch was deemed detrimental to the progress. As these libraries were
based upon GTK then it was also possible to use the original GTK documentation
so this was used instead despite the functions not always being the same.

5.1.3 Other possible GUI approaches

Other approaches were considered regarding the type of debugger that was devel-
oped.

The first alternative approach would be to display the graph through a Javascript
web browser interface. In addition to the GUI, a server would be running, connecting
HDB with the user interface. Our base idea was developing as an actual web page
rather than, for example, an Electron [38] application and this could be deemed
unusual from a user’s point of view.

37



5. Discussion

The second option would be to implement it like a textual user interface (TUI),
structuring the graph through ncurses [39] with a minimalistic TUI. The downside
of this approach is that it was deemed that the program would have been less
accessible to novice users.

The last considered approach was to develop it as a plugin in a text editor like
VSCode. This was not chosen as only a single group member used VSCode and it
was thought we could gain more Haskell knowledge by developing an standalone
application.

The final result, a desktop application using a GTK binding was deemed as a suf-
ficient choice as it provided an easy way to connect with the HDB library. It also
enabled us to learn more about Haskell which was a common goal of the group mem-
bers. GTK is also widely used in the GNU/Linux environment and is extensively
documented. The downside of this approach is that the user has to open a different
application in order to debug their desired program. If the debugger was integrated
into an editor this disruption of the work flow would not be necessary.

5.1.4 Testing

When the complexity of the software grew it became apparent that the lack of
integration testing impeded the speed of development. When some new features
were added, other seemingly unrelated parts of the program stopped working. As
the program used a multitude of shared mutable data these bugs could be hard to
track down. Later in the development, a more systematic approach to integration
testing of the GUI was adapted to rectify this.

Unit and property-based testing was meant to be performed for the parts of the
program that was suitable. However, almost all development was GUI development
and thus not suitable for property based testing. At the moment only one of the
tests of the graph implementation uses QuickCheck. This is a function that generates
random words that is be converted to chars.

5.1.5 User testing

While the user testing of our debugger proved that the GUI turned out functional
the testing itself had potential issues. The tests were performed quite late in the de-
velopment process which meant that the feedback received could be used minimally
during development. Instead, the user testing results were regarded as an evaluation
of our product from an external audience, as seen in Section 4.4.

All tests were performed by a certain group, IT or computer science students that
were beginner Haskell programmers. This group consists of members from our sec-
ondary persona, meaning that no user tests were performed with any from the main
target audience. This can skew the results since it can be difficult to gain infor-
mation about some tasks without adequate Haskell knowledge. For example, if the
program can be used to profile and how accurate the heap visualisation appears to
be to someone outside of the project team.

Another potential issue is that there have been relatively few user tests performed.

38



5. Discussion

The results given by these tests were valuable for evaluating the debugger so we
consider them useful regardless, but a larger sample size consisting of several different
groups could give more accurate feedback.

5.2 Result Discussion

The application will be analysed according to the purpose of the project; if it is
possible to debug compiled Haskell programs, if it can be used as a teaching tool,
and additionally if it is possible to use for profiling.

5.2.1 Debugging

Whilst the debugging process is provided by the backend, HDB, our application
provides a way of displaying it and handling it that is easy to use for an average user.
As described in Section 4.4, we found that a majority of the respondents thought
that the application could be a useful tool to debug Haskell programs. However,
in order to be able to efficiently debug a program, the user must be able to know
exactly what the graph displays and what is of relevance to the problem they have.

Since breakpoints are defined per evaluation the user needs to be aware of what will
be evaluated in a compiled program. If the compiler inlines an evaluation with a
breakpoint there is no way for the user to be able to stop at that breakpoint. The
lack of pliancy when choosing a breakpoint span means that the user is not alerted
whenever an invalid span is chosen. The only way for the user to notice that, is to
run the program to completion and see that the execution does not stop at a selected
breakpoint.

Overall we evaluate the debugging process to be natural and like other debuggers
with the deficit of a need to have knowledge about Haskell evaluation to be able to
fully utilise the debugger.

5.2.2 The Graphical User Interface

As perviously mentioned in Section 4.4, the GUI is constructed according to the
“safe exploration” pattern. To be able to provide an environment where the user
can feel safe and comfortable we have taken inspiration from other debuggers that
the group members have previous experience using.

Parts that we found most debuggers utilised were a source code window on the right
side, a thinner pane with output, stack trace, and other information towards the
bottom, and a large pane with a file tree on the left. Due to the way we visualise
the evaluation process the file tree was replaced by the visualisation.

Other similarities are that when the evaluation moves to another file, this file is
automatically opened and focused in the tabbed source file pane. The source span
for the relevant evaluation is then highlighted in the pane. This is in contrast to
most debuggers for programs in imperative languages, where the line number would
be marked instead of a source span.

39



5. Discussion

Because the GUI uses standard GTK theming the program will look differently
depending on what theme is specified. This can cause issues for users as some themes
may have parts that are more difficult to see. For example the theme used for the
pictures in Chapter 4, Section 4.3 are using a grey theme that, according to user
tests, makes it hard to see whether a tool button is active or not.

As seen in Section 4.4 setting breakpoints is not intuitive for a new user. To select
a span as a breakpoint is a requirement given that you mark a specific evaluation.
However, selecting a span which actually corresponds to an evaluation is hard to
know. To improve this it could be possible to highlight a span differently if there is
a linkername corresponding to this span. Finding a linkername through a span can
be done through HDB’s interface.

There is also a menu item for settings. Currently there is only one option: setting
a maximum node depth. We think having this as a setting in the menu is a good
choice as it does not update the graph instantly, it is required to generate a new
graph with the new node depth. If this option was located by the other tool buttons
a user might think that it does nothing when changed as it is not possible to receive
immediate feedback.

5.2.3 The Visual Representation of the Heap

In the earlier stages of development other more conventional approaches of relaying
information about the program’s state were discussed, for example reconstruction
of data types. This would mean that an object could be constructed from several
closures. An example of this would be a list. On the heap, a list would consists of
several closures but it would be possible to recreate it from the type information
from the closures. This was deemed as an interesting feature but the problem with
this abstraction is that granularity is lost. In general it is difficult to determine
individual users’ needs when it comes to the teaching potential of the program
but the decision was made to prioritise an accurate representation of the GHC-
heap before simplifications. This was done to ensure that every user can utilise the
program, even if it might be more inaccessible to novice users.

At the same time, it is important to mention that the way the heap is modelled
in the program is an abstraction. The decision was made to hide certain aspects of
it from the user. For example, an MVar holds references to other threads that are
waiting to use it. Since the debugger only works for single threaded programs it was
not deemed necessary to show the thread state object that is pointed to. If the user
wants a more accurate representation of the heap, that option exists by setting the
compilation flag SIMPLIFIED to false.

A consequence of lazy evaluation and that all variables are immutable means that
it does not make sense to follow a specific variable during the execution like for an
imperative language. As an alternative to this, our debugger displays the evaluation
in terms of the current state of the heap and stack for the current evaluation.

By utilising a graph with different colours to define the heap, the stack, and the
current evaluation it is possible to trace the evaluation in a way that does not
require knowledge of which order certain lines of code will be executed. The graph

40



5. Discussion

accurately shows the evaluation but it may be difficult for a new Haskell developer
to know what the different terms mean. Sometimes the number of pointers between
the different nodes can also get in the way of another which results in a cluttered
graph that might be hard to read.

When using the debugger and reading the graph we came to realise that it can at
times be difficult to locate the current node when the graph is generated. The cause
of this is that the graph changes width and height so the centre keeps changing. This
was solved by always displaying the currently evaluated node at the centre of the
graph pane. Similarly to reduce the graph’s size there is a menu option to set the
maximum node depth of the graph, thus decreasing or increasing the size depending
on the user’s needs.

The decision to mark all the nodes that are derived from the stack trace as yellow
might also cause some confusion to the user since it might not be intuitive. This
is especially true since the nodes coloured yellow can be shown when the stack is
hidden. It is not apparent to the authors that this solution is worse than any other
solution. Another idea was to colour only the stack objects yellow but this results
in a graph where it might be even harder to discern the nodes that are associated
with the currently evaluated node.

We find the representation to be easy to use and follow, and the way it is displayed
and interacted with to be natural. But as the user tests were lacking in experienced
respondents we cannot confirm whether someone more experienced would appreciate
the graph in the same way.

5.2.4 Performance

While developing the application there were multiple iterations of the program that
had significantly worse performance than others. Most notably there were occasions
where the CPU usage would spike or the RAM usage would eternally increase.

These bugs in particular depended on a GTK callback which looped eternally and
a list of SVG file data that was added to at every debug step. These were solved by
having the callback activate only on a change and by limiting the amount of data
able to be collected at a debug step.

The application itself is built with the GTK framework and there is some lag when
the application window is resized. No source have been located for this issue but the
program does not crash and it does not affect the usage of the application so it is
not deemed as something that needs to be corrected. But it may defer some users
as the application does not always feel “snappy”.

5.2.5 Stability

The integration testers of the program consist of the development team. As the test-
ing has been done at the same time as development, and no member has had the
sole purpose of integration testing, we can not guarantee the stability of the pro-
gram completely. It works for the intended purposes: debugging a compiled Haskell
program, viewing the graph, and interacting with the debug process.

41



5. Discussion

One limitation to the stability is that there is no control over what kind of executable
is loaded into the program. The file dialog from GTK is using Media Types [40] to
filter the selections and currently media types cannot differ between GHC generated
executables compared to executables generated elsewhere. So it is possible to load
a binary that is not accepted by HDB. Doing this may cause the debugger to not
function properly as HDB is not capable of interacting with these in the same way
as GHC generated executables. There is a warning provided if the debugger can not
find any Haskell source files so the user is aware that there might be issues continuing
the debug process.

There is also no confirmation whether a program is multi-threaded or not. As HDB
does not support multi-threaded programs it may impact the debugging experience
in unpredictable ways.

5.3 The Ethics of Debugging

A debugger can be used to reverse engineer compiled programs since the information
that a debugger provides could enable a reconstruction of the original software. To
do this with our debugger the user would need to compile the program without using
tools other than GHC itself, for example with the command: ghc -g Main.hs -o
Main. This would produce an executable Main from a source code file Main.hs.

The creator of a program can hide the heap representation by removing debug
information. This can be done using external tools, or Cabal by enabling the
-enable-library-stripping and -enable-executable-stripping flags [41].

In practice, most programs are built using tools such as Cabal so it would be easy for
a developer to remove debug information if they so desire. Reconstructing a program
without accurate heap information is considerably more difficult than reconstruct-
ing a program with it. Therefore the possibility of reverse engineering a compiled
program with our debugger is not deemed a substantial ethical issue.

5.4 Future Work

If there was additional time available for development we would like to focus on
providing a simplified view of the graph, like the one in ghc-vis [3], and creating an
interactable graph.

Additional valuable information that the GHC would provide during compilation
could be added to the debugger using the —~dump flags for the STG and Cmm output
phases. Although we have not yet used the GHC as a library, it is very likely that it
will help us in future work in implementing new features that would meet the needs of
lower-level debugging. While we were planning future development, we were thinking
about publishing the debugging GUI. If it turns out that there is interest in using
the program, and this could be the case due to the lack of a debugger for compiled
programs in Haskell, it is likely that program development with new developers will
be faster than now.

42



5. Discussion

If we compare our development approach in a small development team’s closed
environment with the cathedral in Eric S. Raymond’s famous “The cathedral and
the Bazaar” [42] then an open bazaar and a permissive license might give new life
to the future development of our debugger.

There are some ideas that we thought of during development but were never able
to act upon. The two most valuable of those ideas would be to parse the DWARF
data of an executable to locate row and column ranges that would correspond to a
breakpoint in the HDB library. It is however possible to use HDB for this, by sending
in the span of an entire file and using the function findFunction it is possible to
get the functions in that file. Then findSource can be used to find files and spans
to mark in the GUI. By using this the GUI would greatly simplify the breakpoint
selection process for the user.

The other idea is to have an interactable graph. For example blacklisting a certain
node type, removing a sub-tree, or displaying the source code which generated a
certain node all within the graph image. There was an attempt at implementing
this but this happened at a phase of the project where it was much more important
to focus on report writing and removing bugs from the product so it was put aside.
Still, the way the code is structured and since SVG-parsing functionally has already
been written, these features would likely be relatively simple to implement.

43



5. Discussion

44



O

Conclusion

There are three main purposes of the project:

1. To create a graphical debugger that uses HDB, a debugging library for com-
piled Haskell programs.

2. To be able to visualise the heap of compiled program execution in a manner
that is easy to understand and simple enough to learn from.

3. And to be able to use the visualisation for profiling, i.e. analysing the program’s
execution in an attempt to optimise it.

A graphical interface has been created and it is structured in a way that there are
no dependencies from the debug process of HDB and our graph displaying function-
ality to the GUI. This is deemed satisfactory since the processes are weakly coupled
together. During user testing of the GUI we discovered that most users were sat-
isfied with it, but there are some non-standard operations that were less intuitive.
Therefore a “help” window is provided with accurate instructions on how to perform
unintuitive tasks.

The heap is visualised as a graph and the internal names of nodes are simplified for
ease of reading. However, if the graph itself was simplified further the representation
would not be as accurate. This might be a trade-off to some users in terms of
the program’s usability as a teaching tool compared to profiling. A more realistic
representation will provide more accurate information for profiling while it may be
too large or cluttered to be used as a teaching tool for new Haskell programmers.
Enabling the stack trace to be hidden or displayed as well as making it possible to
limit maximum node depth is a middle ground that can enable both to some extent.

Overall the project’s purposes have been fulfilled to a satisfactory level but there
are improvements that can be made.

45



6. Conclusion

46



Bibliography

W. E. Wong, V. Debroy, A. Surampudi, H. Kim, and M. F. Siok, Recent
Catastrophic Accidents: Investigating How Software was Responsible. 2010,
pp. 14-22. DOL: 10.1109/SSIRI.2010.38.

P. Kidwell, “Stalking the elusive computer bug,” IEFEE Annals of the History
of Computing, vol. 20, no. 4, p. 1, 1998. DOI: 10.1109/85.728224.

D. Felsing, “Visualization of lazy evaluation and sharing,” Bachelor’s Thesis,
Karlsruhe Institute of Technology, Germany, Sep. 2013.

K. Angelov. “HDB.” (2021), [Online]. Available: https : // github . com/
krangelov/hdb (visited on 2022-02-03).

“The DWARF Debugging Standard,” DWARF Standards Committee. (2021),
[Online]. Available: https://dwarfstd.org/ (visited on 2022-02-06).

K. Angelov. “DATX02-22-03 A Debugger for Haskell.” (2021), [Online]. Avail-
able: https://chalmers.instructure.com/courses/17746/files/1710124
(visited on 2022-01-30).

U. Drepper, R. McGrath, and P. Machata. “ELFUTILS.” (2021), [Online].
Available: https://sourceware.org/elfutils/ (visited on 2022-04-16).

S. Marlow. “Haskell 2010 Language Report.” (2022), [Online|. Available: https:
//www.haskell.org/onlinereport/haskel12010/ (visited on 2022-02-07).
“DWARFFAQ,” DWARF Standards Committee. (2017), [Online]. Available:
http://wiki.dwarfstd.org/index . php?title=DWARF_FAQ (visited on
2022-04-16).

“ghc-heap: Functions for walking GHC’s heap.” (2022), [Online]. Available:
https://hackage.haskell.org/package/ghc-heap (visited on 2022-05-12).
B. Gamari. “DWARF support in GHC.” (2020), [Online|. Available: https:
//www .haskell.org/ghc/blog/20200403-dwarf-1.html (visited on 2022-
04-16).

S. Marlow and S. L. P. Jones. “The glasgow haskell compiler, the architecture
of open source applications, volume 2 draft chapter.” (2012), [Online|. Avail-
able: https://www.aosabook . org/en/ghc.html (visited on 2022-04-25),
licensed under CC BY 3.0.

“Haskell pragmas,” Haskell.org. (2022), [Online]. Available: https://ghc.
gitlab.haskell.org/ghc/doc/users_guide/exts/pragmas.html (visited
on 2022-02-11).

S. Marlow and S. L. P. Jones, “The new GHC/Hugs runtime system,” 1998.
S. Peyton Jones, S. Marlow, and A. Reid, “The STG runtime system (re-
vised),” Jan. 1999.

47


https://doi.org/10.1109/SSIRI.2010.38
https://doi.org/10.1109/85.728224
https://github.com/krangelov/hdb
https://github.com/krangelov/hdb
https://dwarfstd.org/
https://chalmers.instructure.com/courses/17746/files/1710124
https://sourceware.org/elfutils/
https://www.haskell.org/onlinereport/haskell2010/
https://www.haskell.org/onlinereport/haskell2010/
http://wiki.dwarfstd.org/index.php?title=DWARF_FAQ
https://hackage.haskell.org/package/ghc-heap
https://www.haskell.org/ghc/blog/20200403-dwarf-1.html
https://www.haskell.org/ghc/blog/20200403-dwarf-1.html
https://www.aosabook.org/en/ghc.html
https://creativecommons.org/licenses/by/3.0/legalcode
https://ghc.gitlab.haskell.org/ghc/doc/users_guide/exts/pragmas.html
https://ghc.gitlab.haskell.org/ghc/doc/users_guide/exts/pragmas.html

Bibliography

[16]

[17]

[20]

[21]

48

P. Jones, S. L, and S. Peyton Jones, “Implementing lazy functional languages
on stock hardware: The spineless tagless g-machine,” Journal of Functional
Programming, vol. 2, pp. 127-202, Jul. 1992. [Online|. Available: https://
www.microsoft.com/en-us/research/publication/implementing-lazy-
functional-languages-on-stock-hardware-the-spineless-tagless-g-
machine/.

S. Marlow, S. Peyton Jones, and S. Singh, “Runtime support for multicore
haskell,” in Proceedings of the 14th ACM SIGPLAN International Conference
on Functional Programming, ser. ICFP 09, Edinburgh, Scotland: Association
for Computing Machinery, 2009, pp. 65-78, 1SBN: 9781605583327. DOI: 10.
1145/1596550 . 15696563. [Online]. Available: https://doi.org/10.1145/
1596550.1596563.

S. Peyton Jones, “How to make a fast curry: Push/enter vs eval/apply,”
in International Conference on Functional Programming, Sep. 2004, pp. 4—
15. [Online|. Available: https://www.microsoft.com/en-us/research/
publication/make-fast-curry-pushenter-vs-evalapply/.

S. Marlow, J. Iborra, B. Pope, and A. Gill, “A lightweight interactive debugger
for haskell,” in Proceedings of the ACM SIGPLAN Workshop on Haskell Work-
shop, ser. Haskell 07, Freiburg, Germany: Association for Computing Machin-
ery, 2007, pp. 13-24, 1SBN: 9781595936745. DOI: 10.1145/1291201.1291204.
[Online]. Available: https://doi.org/10.1145/1291201.1291204.

A. Gill, “Debugging haskell by observing intermediate data structures,” in
University of Nottingham, Electronic, 2000.

C. Reinke, “Ghood — graphical visualisation and animation of haskell object
observations,” in ACM SIGPLAN Haskell Workshop, Firenze, Italy, R. Hinze,
Ed., ser. Electronic Notes in Theoretical Computer Science, Preliminary Pro-
ceedings have appeared as Technical Report UU-CS-2001-23, Institute of In-
formation and Computing Sciences, Utrecht University. Final proceedings to
appear in ENTCS., vol. 59, Elsevier Science, Sep. 2001. [Online|. Available:
https://kar.kent.ac.uk/13558/.

“GDB: The GNU project debugger,” Free Software Foundation. (2022), [On-
line]. Available: https://www.sourceware.org/gdb/ (visited on 2022-04-24).
“Trello,” Trello Inc. (2022), [Online]. Available: https://trello.com/sv
(visited on 2022-05-08).

“Git,” The Git community. (2022), [Online|. Available: https://git-scm.
com/ (visited on 2022-02-07).

“gtk2hs,” gtk2hs. (2022), [Online]. Available: https://github.com/gtk2hs/
gtk2hs (visited on 2022-04-15).

“Graphviz.” (2021), [Online]. Available: https://graphviz.org/ (visited on
2022-05-12).

“Dot.” (2022), [Online]. Available: https://graphviz.org/doc/info/lang.
html (visited on 2022-05-12).

“graphviz: Bindings to Graphviz for graph visualisation.” (2020), [Online].
Available: https://hackage . haskell . org/package/graphviz (visited on
2022-05-12).


https://www.microsoft.com/en-us/research/publication/implementing-lazy-functional-languages-on-stock-hardware-the-spineless-tagless-g-machine/
https://www.microsoft.com/en-us/research/publication/implementing-lazy-functional-languages-on-stock-hardware-the-spineless-tagless-g-machine/
https://www.microsoft.com/en-us/research/publication/implementing-lazy-functional-languages-on-stock-hardware-the-spineless-tagless-g-machine/
https://www.microsoft.com/en-us/research/publication/implementing-lazy-functional-languages-on-stock-hardware-the-spineless-tagless-g-machine/
https://doi.org/10.1145/1596550.1596563
https://doi.org/10.1145/1596550.1596563
https://doi.org/10.1145/1596550.1596563
https://doi.org/10.1145/1596550.1596563
https://www.microsoft.com/en-us/research/publication/make-fast-curry-pushenter-vs-evalapply/
https://www.microsoft.com/en-us/research/publication/make-fast-curry-pushenter-vs-evalapply/
https://doi.org/10.1145/1291201.1291204
https://doi.org/10.1145/1291201.1291204
https://kar.kent.ac.uk/13558/
https://www.sourceware.org/gdb/
https://trello.com/sv
https://git-scm.com/
https://git-scm.com/
https://github.com/gtk2hs/gtk2hs
https://github.com/gtk2hs/gtk2hs
https://graphviz.org/
https://graphviz.org/doc/info/lang.html
https://graphviz.org/doc/info/lang.html
https://hackage.haskell.org/package/graphviz

Bibliography

[29]

[30]

[31]

A. Cooper, About Face : The Essentials of Interaction Design, 4th ed. Som-
erset, NY, USA: John Wiley & Sons, Incorporated, 2014. pOI: 10 . 5555/
2688796.

B. Martin and B. Hanington, Universal Methods of Design : 100 Ways to
Research Complex Problems, Develop Innovative Ideas, and Design Effective
Solutions. Rockport Publishers, an imprint of The Quarto Group, 2012.

K. Claessen and J. Hughes, “QuickCheck: A Lightweight Tool for Random
Testing of Haskell Programs,” in Proceedings of the Fifth ACM SIGPLAN
International Conference on Functional Programming, ser. ICFP 00, New
York, NY, USA: Association for Computing Machinery, 2000, pp. 268-279,
ISBN: 1581132026. DOT: 10.1145/351240.351266. [Online|. Available: https:
//doi.org/10.1145/351240.351266.

GHC Team and J. Dagit. “zenc: GHC style name Z-encoding and Z-decoding.”
(2021), [Online]. Available: https://hackage.haskell.org/package/zenc-
0.1.2 (visited on 2022-04-27).

“Tyingtheknot,” Haskell.org. (2021), [Online]. Available: https : / / wiki .
haskell.org/Tying the_Knot (visited on 2022-05-11).

J. Tidwell, Design Interfaces: Patters for Effective Interaction Design, 2nd ed.
O’Reilly Media, Inc, 2010.

“GTK,” The GTK Team. (2022), [Online]. Available: https://www.gtk.org/
(visited on 2022-02-07).

“Hoogle,” Haskell.org. (2022), [Online|. Available: https://hoogle.haskell.
org (visited on 2022-04-15).

W. Thompson and I. G. Etxebarria. “haskell-gi.” (2021), [Online]. Available:
https://github.com/haskell-gi/haskell-gi (visited on 2022-04-15).
“Electron,” OpenJS Foundation. (2022), [Online]. Available: https://www.
electronjs.org (visited on 2022-04-17).

T. E. Dickey. “NCURSES — New Curses.” (2022), [Online]. Available: https:
//invisible-island.net/ncurses/ (visited on 2022-04-17).

“Media Types,” Internet Assigned Numbers Authority. (2022), [Online]. Avail-
able: https://www.iana.org/assignments/media-types/media-types.
xhtml (visited on 2022-05-08).

“dwarf,” Haskell.org. (2020), [Online]. Available: https://gitlab.haskell.
org/ghc/ghc/-/wikis/dwarf (visited on 2022-02-18).

E. S. Raymond, “The cathedral and the bazaar,” Knowledge, Technology €&
Policy, vol. 12, no. 3, pp. 23-49, 1999.

49


https://doi.org/10.5555/2688796
https://doi.org/10.5555/2688796
https://doi.org/10.1145/351240.351266
https://doi.org/10.1145/351240.351266
https://doi.org/10.1145/351240.351266
https://hackage.haskell.org/package/zenc-0.1.2
https://hackage.haskell.org/package/zenc-0.1.2
https://wiki.haskell.org/Tying_the_Knot
https://wiki.haskell.org/Tying_the_Knot
https://www.gtk.org/
https://hoogle.haskell.org
https://hoogle.haskell.org
https://github.com/haskell-gi/haskell-gi
https://www.electronjs.org
https://www.electronjs.org
https://invisible-island.net/ncurses/
https://invisible-island.net/ncurses/
https://www.iana.org/assignments/media-types/media-types.xhtml
https://www.iana.org/assignments/media-types/media-types.xhtml
https://gitlab.haskell.org/ghc/ghc/-/wikis/dwarf
https://gitlab.haskell.org/ghc/ghc/-/wikis/dwarf

Bibliography

50



	Glossary
	List of Figures
	List of Tables
	List of Listings
	Introduction
	Purpose
	Limitations
	Challenges

	Background
	The Haskell Programming Language
	Lazy Evaluation
	DWARF
	HDB
	GHC Compilation
	The GHC Heap
	The GHC Stack
	Stack Objects

	Previous Work
	ghc-vis
	GHCi Debugger
	Hat
	Hood
	GDB


	Method
	Development Process
	Software Implementation
	Personas
	Testing
	User testing
	Software-testing


	Results
	Software Architecture
	Graph Representation
	The visual representation
	Example graphs
	Algorithm
	The graph as an SVG

	The Graphical User Interface
	User testing

	Discussion
	Method Discussion
	Development Process
	Haskell Library Documentation
	Other possible GUI approaches
	Testing
	User testing

	Result Discussion
	Debugging
	The Graphical User Interface
	The Visual Representation of the Heap
	Performance
	Stability

	The Ethics of Debugging
	Future Work

	Conclusion
	Bibliography

