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ABSTRACT 
Malignant cells persisting during treatment prevent cure in many patients with 
myeloid leukemia. In acute myeloid leukemia (AML), the failure to eradicate the 
leukemic clone during conventional chemotherapy is associated with leukemic 
relapse, mostly with dismal survival outcome. Chronic myeloid leukemia (CML) 
is often successfully treated with targeted tyrosine kinase inhibitors (TKI). 
However, persisting treatment-resistant leukemic stem cells (LSC) put the patients 
at risk for acquired TKI resistance, relapse, or disease progression. This thesis 
encompasses studies ultimately aimed at facilitating the elimination of residual 
malignant cells in myeloid leukemia. AML is a heterogeneous disease in which 
subpopulations of patients may benefit from distinct treatment approaches. In 
papers I and II, we identified younger patients in first complete remission with 
chemotherapy-sensitive, normal karyotype AML (without FLT3 mutation) as a 
new target group that may benefit from relapse-preventive immunotherapy with 
histamine dihydrochloride (HDC) and low-dose interleukin 2 (IL-2). In this group 
of patients, HDC/IL-2 may help prevent the expansion of residual leukemic cells 
and thus improve the chances of long-term relapse-free survival. In paper III, 
we performed an unprecedently detailed multiomic single-cell characterization of 
the CD34+ stem and progenitor cell (SPC) compartment in CML bone marrow 
and compared it to that of healthy bone marrow. Through development of a 
method allowing detection of pathognomonic BCR-ABL1 expression at the 
single-cell level, we identified a group of LSC displaying a TKI-resistance 
phenotype and defined novel expression patterns within this group of cells, 
including expression of von Willebrand factor and TIM3. Additional findings 
carried implications for the understanding of differences between leukemic and 
normal hematopoiesis and the phenotypic definition of CML LSC. Paper IV 
addressed effects of cytoreductive hydroxyurea (HU) treatment on CML SPC. 
The results revealed HU-induced hemoglobin expression in erythrocyte 
progenitors and signs of treatment-induced S phase arrest at all maturation stages 
within the CML SPC compartment. Taken together, the results presented in this 
thesis may have implications for future relapse-preventive treatment decisions in 
AML and studies of the TKI-resistant LSC population in CML, thus contributing 
to the targeting of residual disease in the two primary forms of myeloid leukemia. 

Keywords: acute myeloid leukemia, chronic myeloid leukemia, histamine 
dihydrochloride, hydroxyurea, leukemic stem cells  
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  SAMMANFATTNING PÅ SVENSKA 
Leukemi är ett samlingsnamn för en grupp maligna sjukdomar som kännetecknas 
av onormal expansion av blodceller av varierande mognadsgrad i blod och 
benmärg. Vid myeloisk leukemi liknar den expanderande cellklonen de celler som 
normalt ger upphov till röda blodkroppar, blodplättar eller celltyper inom det 
medfödda immunförsvaret (såsom monocyter och granulocyter). De två 
huvudtyperna av myeloisk leukemi är akut myeloisk leukemi (AML) och kronisk 
myeloisk leukemi (KML). 

AML är en heterogen och allvarlig form av leukemi. Trots att majoriteten av 
patienterna svarar väl på inledande cellgiftsbehandling kommer sjukdomen i 
många fall tillbaka, med dålig prognos för långtidsöverlevnad. De kliniskt 
utmanande återfallen tros härröra från ofullständig eliminering av leukemiceller 
under cellgiftsbehandlingen, och utveckling av metoder för att bli av med de 
kvarvarande cellerna är därför angeläget. En möjlig strategi för att åstadkomma 
detta är genom immunterapi, d.v.s. behandling som syftar till att förbättra 
immunförsvarets möjligheter att känna igen och döda kvarvarande leukemiceller. 
Vid AML har immunterapeutisk behandling med histamindihydroklorid (HDC) 
och interleukin-2 (IL-2) efter avslutad cellgiftsbehandling visat sig ha 
återfallsförebyggande effekt. Det är dock möjligt att vissa AML-patientgrupper 
har större nytta av HDC/IL-2-behandling än andra, och analys av 
behandlingsutfall i patient-subgrupper kan följaktligen leda till att behandlingen 
kommer rätt individer till gagn. Delarbete I och II syftade till att identifiera vilka 
patientgrupper som har störst nytta av HDC/IL-2 behandling vid AML, med 
fokus på skillnader i inledande svar på cellgiftsbehandling (delarbete I) och 
genetiska avvikelser i de leukemiska cellerna (delarbete II). Avhandlingens 
resultat indikerar att återfallsförebyggande behandling med HDC/IL-2 bör ges till 
individer med leukemiceller utan kromosomavvikelser som uppnår remission 
efter en cellgiftsbehandlingscykel. 

Avhandlingens andra del rör en mindre aggressiv släkting till AML, KML. KML-
patienter behandlas ofta framgångsrikt med tyrosinkinashämmare, men 
behandlingen efterlämnar ofta resistenta leukemiska stamceller (LSC), som åter 
kan orsaka sjukdom om behandlingen avslutas, eller i vissa fall ge upphov till 
behandlingsresistens eller sjukdomsprogression. Även vid KML är det således av 
intresse att identifiera behandlingar för att avlägsna kvarvarande leukemiceller. Ett 
viktigt fält inom nutida cancerforskning är målinriktad behandling; att utnyttja 
faktorer som skiljer cancercellerna från deras friska motsvarigheter för att selektivt 
döda de maligna cellerna utan att skada närliggande friska celler. Detta 
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angreppssätt kräver dock ingående förståelse av cancercellerna och deras 
utmärkande attribut.  

För att öka förståelsen för KML-LSC och identifiera möjliga angreppspunkter för 
framtida målinriktad behandling genomfördes i delarbete III och IV detaljerade 
gen- och proteinuttrycksanalyser på encellsnivå där KML-stamceller jämfördes 
mot friska stamceller. Resultaten i delarbete III tydde på skillnader i 
utmognadsmönster mellan friska och leukemiska stamceller. Därutöver fann vi 
att KML-LSC uttryckte högre nivåer av von Willebrands faktor och TIM3 än 
friska stamceller. Dessa markörer har således potential att i framtiden fungera som 
biomarkörer för KML-LSC som skulle kunna användas för riktad analys av KML-
LSC eller för målinriktad behandling. I delarbete IV visades att inledande 
hydroxyureabehandling, som många patienter får i väntan på KML-diagnos, 
påverkar proportionerna av olika omogna celltyper, vilket kan beaktas i framtida 
studier av KML-stamceller. 

Sammanfattningsvis har avhandlingens delarbeten avsett att bidraga till en ökad 
kunskap inom områden av relevans för eliminering av behandlingsresistenta celler 
vid myeloisk leukemi. Avhandlingen har utmynnat i (i) identifikation av en AML-
patientgrupp som sannolikt drar nytta av återfallsförebyggande behandling med 
HDC/IL-2, och (ii) djupare förståelse för den leukemiska stamcellspopulationen 
i KML, som i framtiden skulle kunna ligga till grund för LSC-riktad behandling.  
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PREFACE 
Leukemia is a heterogeneous group of malignancies, collectively characterized by 
abnormal proliferation and accumulation of certain hematopoietic cell types in 
blood and bone marrow. Depending on the developmental lineage of the 
expanding cells and disease severity, leukemias are principally classified as 
lymphoid or myeloid, and chronic or acute. While chronic leukemias tend to 
progress slowly and maintain some degree of normal blood function, acute 
leukemias are characterized by an explosive overgrowth of immature cells unable 
to generate or perform the functions of mature blood cells, thus rapidly creating 
deficiencies in indispensable blood cell functions. 

The treatment of leukemia (and many other cancer types) was revolutionized with 
the introduction of chemotherapy, first reported in the 1940s (1,2). In view of 
cancer at its core being characterized by abnormal rapid cell growth, 
chemotherapeutic agents aim to interfere with cell division. The stress induced in 
dividing cells through the actions of chemotherapy may result in their death, thus 
actively targeting and reducing the number of cancerous cells. Although 
chemotherapy remains a cornerstone in leukemia treatment until this day, it is 
inherently limited in that cell growth is not unique to malignant cells. 
Consequently, there is a fine line between efficient eradication of leukemic cells 
and toxicity to neighboring normal tissues, effectively placing a biological ceiling 
to the achievable dose and duration of chemotherapy. Malignant cells left behind 
at the inevitable treatment cessation are likely to cause leukemic relapse, with poor 
outlook for long-term survival. 

Starting in the 1980s, the field of cancer medicine thus began to shift towards 
targeted therapy - finding vulnerabilities specific to the cancer cells and exploiting 
these for therapeutic targeting with minimal collateral damage to neighboring 
healthy cells. Inevitably, such an approach requires a deep understanding of the 
cancer cell itself. One of the first successful examples, and a striking proof-of-
concept for targeted therapy, was the development of the tyrosine kinase inhibitor 
(TKI) imatinib following the discovery of the disease-causing BCR-ABL1 
oncoprotein in chronic myeloid leukemia (CML) (3,4). Since its introduction, 
imatinib and later generation TKIs have completely transformed CML patient 
care and prognosis (5). However, an increasing body of evidence points to the 
persistence of TKI-resistant leukemic stem cells (LSC) during treatment. Thus, 
significant effort is currently put into finding features of the LSC that may allow 
also their targeted eradication and the ultimate cure of CML. 
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A different angle to targeted therapy is attempts at utilizing the body’s own cancer 
cell recognition and killing machinery – the immune system – to eradicate residual 
leukemic cells (6). In acute myeloid leukemia (AML), this is exemplified by the 
use of histamine dihydrochloride (HDC) and low-dose interleukin-2 (IL-2) for 
relapse-preventive treatment following the completion of chemotherapy (7). 
Since AML, unlike CML, is a genetically and morphologically heterogeneous 
disease, it is conceivable that certain groups of patients carry leukemic clones that 
are more susceptible to HDC/IL-2-induced immune-mediated eradication than 
others. Identifying such patient groups to enable better-informed treatment 
decisions is an important aspect of current cancer therapy. 

This thesis is focused on different aspects of importance for targeting the therapy-
eluding residual malignant cells in myeloid leukemia. In AML (papers I and II), 
we aimed to contribute to the identification of patient groups in which HDC/IL-
2 may allow immune-mediated targeting of residual leukemic cells. In hopes of 
revealing future targeting possibilities, papers III and IV instead focused on 
contributing to the basic understanding of the TKI-resistant LSC in CML. 
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INTRODUCTION 

HEMATOPOIESIS 
Although not visible to the naked eye, blood is a complex liquid connective tissue, 
essential to life in more ways than one. Suspended in a matrix of blood plasma 
are a range of cells and proteins that collaborate to carry out three broad 
functions: (i) transportation of oxygen, carbon dioxide, nutrients, waste and 
hormones to and from body cells, (ii) regulation of pH and body temperature, 
and (iii) protection against excessive blood loss and disease (8). While some of 
these functions mainly depend on the liquid nature of the tissue (i.e. 
nutrient/waste transportation and pH/temperature regulation), others are carried 
out by functionally specialized cells or cell fragments circulating throughout our 
bodies. Among these, erythrocytes (red blood cells) are responsible for gas 
transportation, thrombocytes (platelets) are involved in the process of hemostasis 
upon blood vessel injury, and leukocytes (white blood cells) make up the cellular 
portion of the immune system that provides protection against infection. The 
leukocyte group can be further divided into granulocytes (neutrophils, 
eosinophils, basophils, and mast cells), monocytes and lymphocytes (T cells, B 
cells and natural killer cells). Of relevance to this thesis work, subsets of 
leukocytes – i.e. cytotoxic lymphocytes: CD8+ T cells and natural killer (NK) cells 
– additionally play a role in the surveillance, recognition and elimination of 
abnormal cells. This is e.g. evidenced by increased cancer susceptibility in mice 
lacking T and NK cell effector functions (9,10), improved survival rates for 
patients with tumor infiltration of these cell subsets in various solid cancer types 
(11–14), and reduced cancer risk in individuals with medium to high lymphocyte 
cytotoxic activity at baseline in an 11-year follow-up study (15). 

The majority of the mature blood cells have relatively short life-spans, 
necessitating their continuous renewal (8). This is accomplished through the 
process of hematopoiesis, which, in adults, primarily takes place in the bone 
marrow. In the current consensus view of hematopoiesis, rare multipotent 
hematopoietic stem cells (HSC), able to give rise to all differentiated blood cells, 
reside at the top of a hierarchical structure. The generation of mature blood cells 
from HSC involves gradual changes to the expression of genes involved in 
hematopoietic lineage commitment, meaning that the process of differentiation 
effectively progresses through a set of intermediate cell types of increasing 
maturity, collectively termed hematopoietic progenitors (16). Unlike downstream 



Targeting residual malignant cells in myeloid leukemia 

2 

A different angle to targeted therapy is attempts at utilizing the body’s own cancer 
cell recognition and killing machinery – the immune system – to eradicate residual 
leukemic cells (6). In acute myeloid leukemia (AML), this is exemplified by the 
use of histamine dihydrochloride (HDC) and low-dose interleukin-2 (IL-2) for 
relapse-preventive treatment following the completion of chemotherapy (7). 
Since AML, unlike CML, is a genetically and morphologically heterogeneous 
disease, it is conceivable that certain groups of patients carry leukemic clones that 
are more susceptible to HDC/IL-2-induced immune-mediated eradication than 
others. Identifying such patient groups to enable better-informed treatment 
decisions is an important aspect of current cancer therapy. 

This thesis is focused on different aspects of importance for targeting the therapy-
eluding residual malignant cells in myeloid leukemia. In AML (papers I and II), 
we aimed to contribute to the identification of patient groups in which HDC/IL-
2 may allow immune-mediated targeting of residual leukemic cells. In hopes of 
revealing future targeting possibilities, papers III and IV instead focused on 
contributing to the basic understanding of the TKI-resistant LSC in CML. 

  

Malin Nilsson 

3 

INTRODUCTION 

HEMATOPOIESIS 
Although not visible to the naked eye, blood is a complex liquid connective tissue, 
essential to life in more ways than one. Suspended in a matrix of blood plasma 
are a range of cells and proteins that collaborate to carry out three broad 
functions: (i) transportation of oxygen, carbon dioxide, nutrients, waste and 
hormones to and from body cells, (ii) regulation of pH and body temperature, 
and (iii) protection against excessive blood loss and disease (8). While some of 
these functions mainly depend on the liquid nature of the tissue (i.e. 
nutrient/waste transportation and pH/temperature regulation), others are carried 
out by functionally specialized cells or cell fragments circulating throughout our 
bodies. Among these, erythrocytes (red blood cells) are responsible for gas 
transportation, thrombocytes (platelets) are involved in the process of hemostasis 
upon blood vessel injury, and leukocytes (white blood cells) make up the cellular 
portion of the immune system that provides protection against infection. The 
leukocyte group can be further divided into granulocytes (neutrophils, 
eosinophils, basophils, and mast cells), monocytes and lymphocytes (T cells, B 
cells and natural killer cells). Of relevance to this thesis work, subsets of 
leukocytes – i.e. cytotoxic lymphocytes: CD8+ T cells and natural killer (NK) cells 
– additionally play a role in the surveillance, recognition and elimination of 
abnormal cells. This is e.g. evidenced by increased cancer susceptibility in mice 
lacking T and NK cell effector functions (9,10), improved survival rates for 
patients with tumor infiltration of these cell subsets in various solid cancer types 
(11–14), and reduced cancer risk in individuals with medium to high lymphocyte 
cytotoxic activity at baseline in an 11-year follow-up study (15). 

The majority of the mature blood cells have relatively short life-spans, 
necessitating their continuous renewal (8). This is accomplished through the 
process of hematopoiesis, which, in adults, primarily takes place in the bone 
marrow. In the current consensus view of hematopoiesis, rare multipotent 
hematopoietic stem cells (HSC), able to give rise to all differentiated blood cells, 
reside at the top of a hierarchical structure. The generation of mature blood cells 
from HSC involves gradual changes to the expression of genes involved in 
hematopoietic lineage commitment, meaning that the process of differentiation 
effectively progresses through a set of intermediate cell types of increasing 
maturity, collectively termed hematopoietic progenitors (16). Unlike downstream 



Targeting residual malignant cells in myeloid leukemia 

4 

progenitors, the HSC by definition carry self-renewal capacity, enabling the 
maintenance of the pool of undifferentiated cells throughout life (17).  

Some of the first definitive signs pointing to the existence of a multipotent HSC 
population came from studies were irradiation-induced bone marrow failure in 
mice could be rescued by injection of unirradiated rat bone marrow cells (18,19). 
Building on this finding, HSC are traditionally defined by their capacity to 
reconstitute all major blood cell types in various types of immunocompromised 
mice. A few decades later, the study of hematopoietic stem and progenitor cells 
(HSPC) was advanced with the development of flow cytometry and fluorescence-
activated cell sorting (FACS), enabling the definition and isolation of specific 
hematopoietic stem and progenitor cell populations by surface protein 
expression, and subsequent functional assessment of isolated cells. Seminal work 
demonstrating the viability of positive/negative selection of mouse bone marrow 
HSC based on surface marker expression was reported in 1988 (19).  In the 
following years, experiments employing similar principles to the characterization 
of hematopoietic progenitors (20–23) gave rise to the hematopoiesis model 
depicted in most textbooks to this day (referred to below as “the traditional 
model”). Today, the phenotypic compartment holding human HSC is believed to 
be Lin−CD34+CD38−/lowCD45RA−CD90+CD49f+, as evidenced by single-cell 
transplantation to NOD-scid IL2Rgnull (NSG) mice (24). Similarly, the collection 
of relatively immature HSPC are thought to reside within the CD34+ 
compartment (25). 

THE TRADITIONAL MODEL 
Starting in the flow cytometry-based immunophenotyping era, hematopoiesis has 
been modeled in a stepwise, tree-like structure, where differentiation involves the 
progression through discrete sets of multipotent, oligopotent, bipotent, and 
eventually unipotent, progenitors. By the end of the last century, the top position 
of the hematopoietic tree was held by long-term HSC (LT-HSC), which 
sequentially gave rise to short-term HSC (ST-HSC) and multipotent progenitors 
(MPP), defined by decreasing self-renewal capacity and reduced or non-existent 
long-term engraftment potential in immunodeficient mice (26–28). Below the 
multipotent progenitors, an initial bifurcation between common lymphoid 
progenitors (CLP) and common myeloid progenitors (CMP) resulted in the early 
separation of differentiation trajectories for cells of myeloid and lymphoid cell 
lineages. In the myeloid lineage, subsequent branching steps gave rise to 
erythrocytes, thrombocyte-producing megakaryocytes, granulocytes, and 
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monocytes through megakaryocyte-erythrocyte progenitors (MEP) and 
granulocyte-monocyte progenitors (GMP), while CLP sequentially differentiated 
into B, T and NK cells (Figure 1A). 

 
Figure 1. Immunophenotype-based models of hematopoiesis. (A) The traditional hematopoietic 
model. (B) An adapted model of hematopoiesis. For simplicity, various precursor cells downstream 
of the oligopotent progenitors have been omitted. LT-HSC, long-term hematopoietic stem cell; ST-
HSC, short-term hematopoietic stem cell; MPP, multipotent progenitor; CMP, common myeloid 
progenitor; CLP, common lymphoid progenitor; MEP, megakaryocyte-erythrocyte progenitor; 
GMP, granulocyte-monocyte progenitor; LMPP, lymphoid-primed multipotent progenitor. Created 
with BioRender.com. 

AN ADAPTED MODEL 
Over subsequent decades, functional assessment of novel progenitor cell types 
based on the discovery of new cell surface markers resulted in several alterations 
to the original hematopoietic model. The Jacobsen group reported the existence 
of a lymphoid-primed multipotent progenitor (LMPP) population able to give rise 
to mature cell types downstream of CLP and GMP, but not those stemming from 
MEP, indicating that myeloid and lymphoid cell lineages may stay connected 
longer than previously believed (29). Additional revisions were founded in 
discoveries regarding heterogeneity within the MPP compartment, where three 
MPP subtypes were suggested based on distinct immunophenotypes and lineage 
biases (30). The consequent revisions to the hematopoietic tree (Figure 1B) 
suggested that lineage fate decisions may (i) occur higher in the hierarchy, and (ii) 
not be as binary, as previously thought. 
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THE CONTINUOUS MODEL 
Although the concept of HSC-derived generation of mature blood cells through 
gradual differentiation remains intact, the specific details of hematopoiesis have 
undergone substantial scrutiny in recent years (27,28,31). Just like the introduction 
of immunophenotypic cell sorting once provided the foundation for the 
understanding of the blood cell forming process, the advent of high-throughput 
transcriptome-wide single-cell RNA sequencing (scRNAseq) technologies 
allowing multidimensional assessment of gene expression in thousands of 
individual HSPC is currently transforming hematopoiesis research. In view of 
regulation of gene expression lying at the core of lineage fate decisions and cell 
identity, scRNAseq-derived expressional snapshots of the HSPC compartment 
carry the potential for unprecedentedly detailed analysis of cell type heterogeneity 
as well as inference of differentiation routes among hematopoietic progenitors 
(28).  

A growing body of evidence from scRNAseq studies indicates that the 
traditionally defined hematopoiesis model may be an oversimplification of HSPC 
complexity. The tree-like structures of the models presented in Figure 1 rest on 
functional analyses of immunophenotypically defined cell types, inevitably 
entailing assumptions of functional homogeneity within cell surface marker-
defined populations. This has been challenged in contemporary single-cell studies, 
where traditionally defined progenitor cell types (e.g. LMPP and CMP) were 
found to be strikingly heterogeneous and consist of cells almost exclusively 
unipotent in mature cell output (24,32). A recent scRNAseq study further 
reported the presence of distinct neutrophil-primed and monocyte/dendritic cell 
progenitors within the traditionally defined GMP compartment (33). The 
presence of unipotent progenitors of varying cell fates within 
immunophenotypically defined progenitor populations may thus falsely have 
made them appear oligopotent in bulk analyses. 

Unlike FACS-based studies of hematopoiesis, scRNAseq approaches do not 
inherently require the subjective definition of cell types based on cell surface 
marker expression. Instead, gene expression data from heterogeneous groups of 
cells can be used to create transcriptional maps, positioning each cell near other 
cells with similar expression patterns and further from cells that are 
transcriptionally different. Such an approach applied to the HSPC compartment 
thus allows tracing of hematopoietic differentiation trajectories based on gradual 
changes to the expression profiles of individual progenitor cells (Figure 2A).  
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Figure 2. scRNAseq-based hematopoiesis. (A) A representative example of scRNAseq-based 
organization of HSPC based on gene expression in individual cells. (B) An illustration of the 
continuous model of hematopoiesis. Erythro, erythrocyte progenitors; Meg, 
megakaryocyte/thrombocyte progenitors; Eo/Baso/Mast, eosinophil-basophil-mast cell 
progenitors; Neutro, neutrophil progenitors; Mono/DC, monocyte-dendritic cell progenitors; 
Lymph, lymphocyte progenitors. Created with BioRender.com. 

In recent years, several scRNAseq-based studies assessing transcriptional 
heterogeneity within the HSPC compartment have been reported (33–36). A 
central finding among these is the absence of discrete cell types among immature 
hematopoietic progenitors. Hence, hematopoiesis seemingly occurs through 
continuous, gradual advancement along differentiation lineages, rather than 
through stepwise progression via discrete progenitor cell types as suggested in 
traditional models. In addition, transcriptional priming events associated with 
lineage commitment may occur earlier than previously assumed; already at the 
stage of the most immature HSC there is evidence for lineage-bias and/or lineage-
restriction. Several studies report an early bifurcation of megakaryocytic-erythroid 
and lympho-myeloid differentiation trajectories (33–35), thus additionally 
challenging the myeloid/lymphoid branching of the traditional hematopoietic 
tree. In the scRNAseq-revised model of hematopoiesis (Figure 2B), 
differentiation trajectories towards erythrocyte, megakaryocyte, eosinophil-
basophil-mast cell, monocyte-dendritic cell, neutrophil and lymphoid progenitors 
are starting to emerge (28,33,34). However, the struggle to reconcile data from 
past and present studies is ongoing, and further refinements to the understanding 
of hematopoiesis are thus highly likely. 
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LEUKEMIA 
Throughout life, random mutations accumulate in host genomes due to internal 
and external stress. While some occur through exposure to mutagenic substances 
or radiation, others are the result of occasional DNA replication errors during cell 
division. The first reports demonstrating the link between alterations to normal 
cellular genes and carcinogenesis were published in the 1970s (37,38). Since then, 
an accumulating body of research indicates that transformation from normal to 
cancerous cells involves sequential acquisition of mutations affecting genes with 
roles in cell proliferation, survival and apoptosis (39), ultimately unleashing a cell 
that will keep dividing without regard to the protective regulatory systems telling 
it to stop.  

Cancer-causing mutations come in several different shapes, ranging from single 
base substitutions, segment deletions and insertions to more dramatic changes 
involving large-scale chromosomal rearrangements (deletions, duplications, 
inversions and translocations) (39). Mutational patterns vary greatly between 
cancer types. While some carry high mutational burden (e.g. lung cancer, 
colorectal cancer and melanoma), others are associated with relatively few genetic 
alterations (e.g. leukemia) (39,40). There is usually extensive heterogeneity also 
between patients diagnosed with the same type of malignancy (40). However, 
certain genetic abnormalities tend to recur among patients with the same cancer 
type, sometimes allowing for division of patients into subgroups of prognostic or 
therapeutic relevance.  

By some estimates, the adult hematopoietic system produces 1.5-5 million blood 
cells each second to compensate the removal of aging cells (41,42). Extensive 
control mechanisms are thus in place to avoid catastrophic insufficiencies 
resulting from unbalanced production (41). However, the sheer number of cell 
divisions required to uphold hematopoietic function throughout life inevitably 
renders the hematopoietic stem and progenitor cells sensitive to random 
replication errors. Over time, the accumulation of genetic alterations may result 
in malignant transformation of hematopoietic subpopulations, leading to the 
development of different leukemic subtypes. 

Leukemia, characterized by uncontrolled proliferation and accumulation of 
abnormal hematopoietic progenitor populations in blood and bone marrow, is a 
clear example of the consequences of unbalanced and insufficient blood cell 
production. The buildup of malignant cells typically interferes with normal 
hematopoiesis and the symptoms, e.g. ranging from fatigue and excessive 
bleeding to susceptibility to infection, reflect ensuing deficiencies in blood cells 
with roles in oxygen transportation (erythrocytes), clot formation (thrombocytes) 
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and immune-mediated protection against infection (leukocytes), respectively. As 
mentioned in the preface, leukemias are principally divided into subtypes based 
on the hematopoietic lineage of the transformed cells. Myeloid leukemia involves 
excessive proliferation of erythroid, megakaryocytic, granulocytic and/or 
monocytic progenitors, whereas primitive B and T cell populations are implicated 
in lymphoid leukemias. The latter are outside the scope of this thesis, which 
instead deals with the two main types of myeloid leukemia – acute myeloid 
leukemia (AML) and chronic myeloid leukemia (CML). 

LEUKEMOGENESIS 
In recent decades, multiple models have been proposed to describe how a single 
oncogenic mutation in a healthy cell eventually results in a full-blown malignancy. 
In 1976, Peter Nowell forwarded the clonal evolution theory (43), which proposes 
tumorigenesis as a process rooted in the principles of Darwinian natural selection. 
In this model, an initial non-detrimental oncogenic mutation in a single cell of 
origin creates a pre-malignant clone, which in subsequent generations of daughter 
cells continues to acquire genetic or epigenetic alterations that give rise to 
subclones with varying degrees of fitness. In the competition for space and 
resources in the malignant microenvironment, subclones that have acquired 
growth advantages prevail and may become dominant in subsequent generations, 
progressively enriching for more malignant and invasive properties (44,45). In 
agreement with this model, advances in genotyping capabilities have unveiled 
substantial genetic heterogeneity within the malignant clone of many cancer types 
(45,46), with co-existing subclones ready to expand with the emergence of new 
genetic lesions or changes to the microenvironment that alter the fitness of the 
respective subclones. Additional support in the context of leukemia comes from 
experience with patients with myelodysplastic syndrome (MDS). This malignant 
but less aggressive relative of acute myeloid leukemia may progress to AML 
through clonal selection following the acquisition of additional mutations (47). In 
addition, 10% of healthy individuals above the age of 65 reportedly display clonal 
expansion of cells carrying mutations associated with hematologic malignancy, 
e.g. including lesions in DNMT3A, TET2 and ASXL1 (48). This condition, 
referred to as clonal hematopoiesis of indeterminate potential (CHIP) increases 
the risk of subsequent development of hematologic malignancy approximately 
10-fold, to around 0.5-1% annually (49).  

More recently, findings demonstrating the existence of maturation hierarchies 
within malignant clones sparked the foundation of a new, or complementary, 
theory describing the process of tumorigenesis, commonly referred to as the 
cancer stem cell model (50,51). In this hypothesis, tumorigenesis is driven by a 
subpopulation of malignant cells with extensive self-renewal capacity, referred to 
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as a cancer stem cell (CSC), or in leukemia as a leukemia-initiating cell (L-IC) or 
leukemic stem cell (LSC). In resemblance with normal HSC and hematopoiesis, 
the rare CSC population sits at the top of a hierarchy of malignant progenitors 
and gives rise to cells of diminishing self-renewal capacity through differentiation 
(50). The initial data supporting the CSC model stemmed from transplantation 
experiments in AML, where only the CD34+CD38− leukemic compartment 
comprised cells with unlimited self-renewal and ability to reconstitute the full 
malignant clone upon transplantation to immunocompromised mice (52). In 
agreement with the situation in normal hematopoiesis, the CD38+ counterpart 
contrastingly lacked this capability. Subsequently, the clinical relevance of CSC 
has been demonstrated in several studies, e.g. indicating that aspects of stem cell 
frequency, activity and self-renewal correlate with survival outcomes in leukemia 
and other cancer types (53–55), and that CSC display decreased sensitivity to 
conventional cancer therapeutics compared with the rest of the malignant clone 
(51). Combined, the aforementioned characteristics have implicated CSC as likely 
sources of disease progression and malignant relapse, inciting significant effort 
aimed at their targeted eradication in various cancer types, including leukemia 
(56). 

The clonal evolution and cancer stem cell models described above are not 
mutually exclusive. On the contrary, they are combined in the current, seemingly 
consensual, view of leukemogenesis. In agreement with the CSC model, pre-
malignant and transforming lesions are believed to occur in hematopoietic 
precursor cells that already have, or through mutation acquire, self-renewal 
capacity, giving rise to L-IC/LSC maintaining and propagating the disease (57). 
At disease presentation, the LSC compartment may consist of varying numbers 
of LSC subclones (58), providing a substrate for subsequent Darwinian selection 
in line with the clonal evolution theory. Treatment insult provides a prime 
example of imposed selective pressure that may enrich for more or less prevalent 
pre-existing resistant subpopulations (44). Indeed, comparisons of the genetic 
heterogeneity at diagnosis and leukemic relapse have revealed reemergence of 
major or minor diagnosis subclones at relapse, often following the acquisition of 
additional genetic aberrations that may have conferred survival advantages (in line 
with the clonal evolution model) (59,60). Collectively, the above-mentioned 
findings reconcile the two tumorigenesis models by identifying the rare, self-
renewing LSC population as the principal entity subjected to Darwinian selection 
and clonal evolution during leukemic progression. As such, LSC are currently 
believed to be of central relevance at all stages of disease, supporting the notion 
that their targeted eradication should be a goal of emerging anti-leukemic 
therapeutics.  
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ACUTE MYELOID LEUKEMIA 
Acute myeloid leukemia (AML) is the most common form of acute leukemia, with 
western country annual incidences of around 3-5 cases per 100,000 individuals 
and a slight male predominance (61–64). The incidence increases with age, with a 
median age at onset of around 70 years (64–66). Recent data from the Swedish 
Acute Leukemia registry indicate 5-year survival rates of around 20%, a number 
that has not significantly improved in recent decades (64). However, the prognosis 
is highly age-dependent, with 5-year overall survival of >50% for patients below 
50 years and <10% in patients above 70 (64). In AML, the malignant cells 
overcrowding the blood and bone marrow carry features of myeloid lineage 
progenitors. However, the abnormal leukemic cells, or blasts, are typically 
dysfunctional and halted in differentiation, thus incapable of generating mature 
blood cells (66). In addition, their accumulation disturbs the blood-forming ability 
of non-malignant cells within the hematopoietic system (66), causing the typical 
symptoms of acute leukemias. 

Diagnosis of AML involves the assessment of differential cell counts and bone 
marrow morphology, as well as cytogenetic, mutational and immunophenotypic 
analysis of the leukemic cells (67). Decisive findings include the presence of 
≥20% myeloid blasts among nucleated cells in peripheral blood or bone marrow, 
and/or detection of certain AML-specific cytogenetic abnormalities within the 
leukemic clone (68,69). 

Studies of cellular hierarchies in AML have indicated that the leukemia-initiating 
capacity may lie in the CD34+CD38− HSC compartment (52,70–72). The cell type 
of origin for AML was thus initially believed to be HSC. However, other studies 
have challenged this view, showing LSC capacity and acquisition of self-renewal 
capability in more mature phenotypic compartments (73–77). The cell acquiring 
the initial pre-malignant oncogenic lesions may thus be self-renewing HSC, or 
more mature hematopoietic progenitors that through mutation gain self-renewal 
capacity. Leukemic development in AML has been proposed to occur through 
the so called two-hit model (78), in which two classes of mutations collaborate in 
leukemogenesis. In this model, class I mutations to genes involved in signaling 
pathways confer proliferative and survival capacity, while class II mutations 
targeting myeloid transcription factors impose impaired differentiation (79). 
Together with other, more recently identified mutations (e.g. those involved in 
epigenetic regulation (72,80,81)), these are believed to result in the excessive 
proliferation and accumulation of leukemic cells that characterizes AML. 
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AML is genetically heterogeneous, with a range of karyotypic and mutational 
aberrations affecting disease manifestation and prognosis (67). However, 
compared to many solid tumors the number of genetic abnormalities per 
individual is relatively low, averaging at only 13 mutations out of which 5 are 
recurrently mutated (82). In a comprehensive effort by the Cancer Genome Atlas 
Research Network, the mutational status of 200 AML patients was characterized 
by genomic and transcriptomic sequencing (82). The results revealed the presence 
of recurrent mutations that could be classified as belonging to either of nine 
functional groups (Table 1). The identified recurrent genetic aberrations e.g. 
included gene fusions resulting from chromosomal translocations or inversions, 
gene segment duplications, deletions and single nucleotide substitutions altering 
gene function. Of relevance to paper II, malignant clones that maintain non-
cancerous chromosomal integrity are referred to as carrying normal karyotype. 
Approximately 45% of AML patients carry leukemic clones of this type, where 
recurring mutations e.g. occur in NPM1 (40-50% of patients), FLT3 (30-40%), 
DNMT3A (30%), IDH1/2 (10%) and CEBPA (10%) (83–86). 

Table 1. Genes recurrently mutated in AML. Adapted from (82). 

EPIGENETIC  
REGULATION PROLIFERATION DIFFERENTIATION SPLICING CELL 

DIVISION 

 
 

DNA 
methylation 

Chromatin 
modifiers 

Activated 
signaling 

Tumor 
suppressors 

Myeloid 
transcription 

factors 
Transcription  
factor fusions Spliceosome Cohesin 

complex NPM1 

DNMT3A/B 
DNMT1 
IDH1/2 
TET1/2 

ASXL1 
EZH2 

KDM6A 
KMT2A-fusions 

KMT2A-PTD 
MLL-X fusions 

MLL-PTD 
NUP98-NSD1 

 

FLT3 
KIT 

KRAS 
NRAS 

 

PHF6 
TP53 
WT1 

CEBPA 
RUNX1 

 

CBFB-MYH11 
PICALM-MLLT10 

PML-RARA 
RUNX1-RUNXT1 

 
 

U2AF 
SRSF2 

SMC1/3 
STAG2 
RAD21 

NPM1 

 

Since the 1970s, AML has been divided into subtypes based on morphological 
and/or genetic heterogeneity. The traditional French-American-British (FAB) 
classification system stratified AML into eight subtypes (M0-M7) according to 
morphological appearance of the dominant leukemic clone (87). Subsequent 
recognition of the molecular heterogeneity of AML prompted the development 
of the World Health Organization (WHO) system, which integrates clinical 
characteristics and genetic, immunophenotypic and morphological features for 
disease classification (88). With the increased acceptance of genetically defined 
subgroups having bearing on disease prognosis (89–92), the WHO classification 
system outperforms its FAB counterpart in terms of clinical relevance. 
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The prognosis at AML diagnosis differs significantly between patients. This is 
partly due to differences in aggressiveness of the disease itself, but also to varying 
treatment tolerability among individuals, impacted by factors such as 
comorbidities and age (67). As mentioned, the prognostic importance of certain 
genetic abnormalities within the leukemic clone has been increasingly recognized 
in recent decades, resulting in the development of AML-specific risk classification 
guidelines by the European LeukemiaNet (ELN) (92). An overview of the 2022 
revision of the guidelines is presented in Table 2 (for specific details on which 
abnormalities that take precedence at cooccurrence, the reader is referred to the 
original paper; (92)). As indicated in the table, karyotypic abnormalities are not 
associated with better or worse prognosis per se. Instead, specific gene fusions 
resulting from chromosomal events may herald favorable, intermediate, or 
adverse risk depending on identity. Similarly, different mutational patterns are 
associated with differing risk within the group of cytogenetically normal AML. 
Hence, patients with mutated NPM1 without concurrent FLT3-ITD have 
favorable risk, while patients with FLT3-ITD and wild type NPM1 have inferior 
prognosis. 

Table 2. Genetic risk classification of AML. Adapted from (92). 

RISK CATEGORY   GENETIC ABNORMALITY 

Favorable 

  t(8;21)(q22;q22.1);RUNX1-RUNX1T1  
 inv(16)(p13.1q22) or t(16;16)(p13.1;q22);CBFB-MYH11 
 Mutated NPM1 without FLT3-ITD  
 bZIP in-frame mutated CEBPA  

Intermediate 

  Mutated NPM1 with FLT3-ITD  
 Wild-type NPM1 with FLT3-ITD (without adverse-risk genetic lesions)  
 t(9;11)(p21.3;q23.3);KMT2A-MLLT3  
 Cytogenetic and/or molecular abnormalities not classified as favorable or adverse 

Adverse 

  t(6;9)(p23.3;q34.1);DEK-NUP214  
 t(v;11q23.3);KMT2A-rearranged  
 t(9;22)(q34.1;q11.2);BCR-ABL1  
 t(8;16)(p11.2;p13.3);KAT6A-CREBBP  
 inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2);GATA2-MECOM(EVI1)  
 t(3q26.2;v);MECOM(EVI1)-rearranged  
 −5 or del(5q), −7, −17/abn(17p)  
 Complex karyotype* 
  Monosomal karyotype**  
 Mutated ASXL1, BCOR, EZH2, RUNX1, SF3B1, SRSF2, STAG2, U2AF1, and/or ZRSR2  
 Mutated TP53  

  

  * ≥3 unrelated chromosome abnormalities in the absence of other class-defining recurring genetic  
     abnormalities 
  ** ≥2 distinct monosomies (excluding loss of X or Y) or one single autosomal monosomy in combination with   
     at least one structural chromosome abnormality 
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THERAPEUTIC MANAGEMENT 
Today, genetic mapping, risk stratification and identification of patients with high, 
intermediate and low-risk disease often impact on decisions concerning suitable 
therapeutic approaches (69). For example, a subgroup of AML defined by the 
t(15;17)(q22;q12) translocation and consequent PML-RARA fusion oncogene 
(acute promyelocytic leukemia; APL) receives treatment with all-trans retinoic 
acid (ATRA) and arsenic trioxide (ATO), which has drastically improved survival 
outcomes for this group of patients (93). Conversely, genetic factors associated 
with worse outcome in adverse risk patients may motivate the use of more 
aggressive treatment approaches (69). However, patient-specific performance 
status and comorbidities frequently restrict therapeutic strategies attainable, and 
certain patient groups (especially older individuals) may therefore be limited to 
palliative care. 

Induction and consolidation therapy 
Despite substantial improvements in the understanding of AML over the last 50 
years, treatment has not changed dramatically for the majority of patients (67,69). 
For fit individuals (usually below 75 years of age), AML treatment with curative 
intent begins with intensive cytotoxic chemotherapy, administered in two phases: 
induction and consolidation.  

The initial treatment given at diagnosis, referred to as induction chemotherapy, 
typically comprises 7 days of continuous infusion of cytarabine (in Sweden 5 days) 
along with an anthracycline (often daunorubicin or idarubicin) during the first 3 
days (‘7+3’; (94)). This initial phase of chemotherapy aims to induce complete 
remission (CR), defined as <5% blasts among nucleated bone marrow cells, 
absence of circulating blasts/extramedullary leukemia and normalized neutrophil 
and platelet counts (92). Hence, when blood counts have started to recover 
following the initial acute phase induced by the treatment, a bone marrow biopsy 
is performed and assessed for presence of residual AML (69). Patients that fulfill 
the above criteria have achieved CR, which marks the end of the induction phase 
of chemotherapy. Patients that do not attain CR after the first treatment cycle 
typically go on to receive further induction cycles, which may result in subsequent 
remission. Overall, induction chemotherapy brings about CR for around 60-85% 
of patients aged 60 and below (67). The corresponding numbers for patients 
above 60 are 40-60% (67). The lower degree of chemosensitivity in patients who 
need multiple cycles of induction chemotherapy to achieve CR has incited 
investigation into whether these patients (approximately 20-25%) are more likely 
to relapse or die from their disease. While studies indicated no difference in 
outcome for patients diagnosed in the 1980s and 1990s, clinical data obtained 
more recently imply improved survival outcomes for patients achieving CR after 
one induction cycle (95–97).  
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The next phase of treatment, consolidation, aims to eradicate remaining leukemic 
cells in CR and reduce the risk of relapse after the completion of chemotherapy. 
Consolidation treatment typically involves additional cycles of chemotherapy 
(usually 1-4), alone or followed by allogeneic stem cell transplantation (allo-hSCT) 
(67,69). As previously discussed, one of the main uses for AML risk stratification 
is treatment decisions, e.g. including whether a patient should be considered for 
allo-hSCT following initial chemotherapy. In the current Swedish AML treatment 
guidelines, allo-hSCT is the preferred choice for patients below 70 years with 
adverse or intermediate risk disease (69). During allo-hSCT, patients receive high-
dose chemo/radiotherapy (conditioning) aimed at eradicating the majority of 
hematopoietic cells, followed by donor cell infusion allowing rescue and 
reconstitution of the hematopoietic system (67). The leukemia-targeting effects 
are believed to be two-fold: (i) related to the intensive chemotherapeutic regimen 
of the conditioning phase, and (ii) deriving from donor immune cell targeting of 
residual leukemic cells (known as graft versus leukemia; GvL) (98). However, even 
though allo-hSCT has curative potential, it is also associated with quality-of-life 
concerns and significant risk of serious complications, including development of 
graft-versus-host-disease (GvHD) and treatment-related death. Thus, AML 
patients with low-risk disease, that have relatively good chances of lasting 
remission after conventional chemotherapy, are typically not transplanted. 
However, inefficient removal of leukemic cells in initial rounds of chemotherapy 
carries prognostic significance in this group of patients, and allo-hSCT may thus 
be considered in these cases (i.e. when >2 induction cycles are required to attain 
CR and/or upon detection of residual leukemic cells in CR; referred to as minimal 
residual disease, MRD) (69,99).  

The current chemotherapeutic regimen, at times supplemented with allo-hSCT, 
has remained a cornerstone in AML treatment since the 1970s (94,100).  It is only 
recently that targeted therapies (e.g. including FLT3, IDH1, IDH2 and BCL2 
inhibitors) have been added to the available therapeutic arsenal (57), allowing 
tailored treatment of certain patient groups. In Sweden, the 30% of patients that 
carry FLT3-mutated AML receive treatment with the FLT3 inhibitor midostaurin 
following each cycle of induction and consolidation chemotherapy, and patients 
with ‘core binding factor’ (CBF) AML (t(8;21);RUNX1-RUNX1T1 or 
inv(16);CBFB-MYH11) receive gemtuzumab ozogamicin (GO; an anti-CD33 
drug-conjugated antibody) in the first chemotherapy cycle (69). Other targeted 
therapies may be administered in the context of clinical trials. In patients unfit for 
intensive chemotherapy, prolonged survival may be achieved using frontline 
treatment with the hypomethylating agent azacitidine in combination with the 
BCL2 inhibitor venetoclax. In purely palliative cases, treatment instead usually 
aims at cytoreduction, e.g. comprising hydroxyurea or low-dose cytarabine (69).  
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Maintenance therapy 
A significant reason for the poor survival rates associated with AML is that 50-
70% of patients relapse despite initial successful achievement of complete 
remission (often within 2-3 years) (67,101,102). A hematological relapse is defined 
as the presence of ≥5% blasts in bone marrow, reappearance of circulating blasts, 
or development of extramedullary leukemia (92). Relapse is likely to be the result 
of inefficient eradication and subsequent expansion of residual leukemia, and/or 
clonal evolution of pre-malignant or malignant cells (103,104). Although a 
minority of patients may achieve secondary remissions following reinduction or 
allo-hSCT, long-term survival rates following leukemic relapse are often poor 
(67,105). In recent decades, reduced intensity conditioning schemes have allowed 
a wider indication for potentially curative allo-hSCT than previously achievable 
(106,107). Though this may have reduced relapse rates in a subgroup of patients, 
it has not yet been demonstrated in a randomized study (69). Nevertheless, many 
patients remain ineligible for allo-hSCT due to factors such as age, comorbidities, 
donor availability, and/or genetic risk, and thus mostly receive no further 
treatment post consolidation. Consequently, there is a pressing need for additional 
therapeutic strategies to maintain long-term remission in AML, especially for 
patients not eligible for transplantation. 

Relapse risk reduction may conceivably be achievable through further treatment 
following the completion of conventional chemotherapy, an approach known as 
maintenance therapy (Figure 3). This is a not a new concept, but one that has 
been explored in numerous clinical trials over the years, with approaches e.g. 
involving continued chemotherapy, hypomethylating agents, immunomodulation 
and targeted therapy (104,108,109). However, inconsistent results and failure to 
produce benefit in terms of relapse incidence and/or overall survival have so far 
hampered its wide-spread use (109).  

There is a consensus that the use of maintenance therapy is mainly motivated by 
data showing prolongation of overall survival, since exposure to additional anti-
leukemic therapy may carry toxicities that reduce overall survival in certain patient 
groups (treatment-related mortality, TRM). Despite this belief, there is data 
indicating that leukemia-free survival (LFS) may be a statistically valid surrogate 
for overall survival (OS) in the context of remission maintenance in AML (110), 
and that failure to achieve significance in terms of OS should be distinguished 
from actual lack of impact on OS, which could be associated with TRM. The 
evaluation of OS in the context of AML maintenance therapy involves relatively 
long follow-up times, and may thus be confounded by events such as non-
leukemia-related death or regional differences in relapse management (110). 
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Figure 3. The concept of maintenance therapy in AML. Purple and red cells represent healthy HSC 
and AML LSC, respectively. Beige and turquoise cells represent leukemic blasts of different 
subclone identity. Created with BioRender.com. 

In recent years, maintenance therapy using an oral formulation of azacitidine (CC-
486/Onureg) was approved by American and European medicines agencies in 
view of data suggesting improvements in median leukemia-free and overall 
survival in patients ≥55 years in first complete remission (CR1) ineligible for allo-
hSCT (111). However, the LFS and OS Kaplan-Meier curves for untreated and 
treated patients eventually merged (111), possibly indicating that the treatment 
delayed relapse rather than cured the patients (112). Also, there are concerns 
regarding the heterogeneity of consolidation pre-treatment within the patient 
group (20% had received no consolidation, others received 1-2 courses), which 
may suggest that the benefit of oral azacitidine lies in administration of continued 
chemotherapy to patients not able to receive sufficiently intensive therapy in the 
initial phase of treatment (109). 

Another maintenance approach that recently has shown promise is targeted 
treatment with FLT3 inhibitors for patients carrying FLT3 mutations. In 2017, 
the RATIFY trial indicated significantly improved event-free and overall survival 
for patients receiving midostaurin as maintenance therapy following the 
completion of chemotherapy (113). However, this study additionally involved 
FLT3 inhibition in conjunction with induction and consolidation chemotherapy, 
making it difficult to assess the relative benefit of FLT3 inhibition in the 
maintenance setting.  

Although some other maintenance treatment approaches have shown benefit in 
terms of improved leukemia-free survival in AML (104,114), the only currently 
approved alternative to oral azacitidine and FLT3 inhibition, and the only relapse-
preventive treatment currently recommended for maintenance consideration in 
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the Swedish AML treatment guidelines, is immunotherapy with low-dose 
interleukin-2 (IL-2) in conjunction with histamine dihydrochloride (HDC). 

HDC/IL-2 TREATMENT IN AML 
The results of numerous studies highlight the importance of aspects of immune 
cell function for the control of residual leukemia in the post-consolidation phase 
of AML (6,115). Inter alia, AML cells may reportedly express structures of 
relevance for cytotoxic lymphocyte surveillance (115), and both T and NK cells 
have been implicated in the GvL-related relapse risk reduction associated with 
allo-hSCT (116,117). Significant effort has thus been put into attempts at directing 
and/or supporting cytotoxic lymphocyte recognition and eradication of leukemic 
cells, in particular in CR, where the burden of leukemia is minimal (6). Such 
approaches include, but are not limited to, the use of monoclonal antibodies 
targeting leukemia-associated antigens, adoptive transfer of lymphocyte 
populations, or systemic treatment with immunostimulatory cytokines (6). 

Interleukin-2 (IL-2) is an endogenous T cell-derived cytokine that initially was 
assumed to induce anti-leukemic effects due to its reported roles in T and NK 
cell differentiation, activation, expansion and cytotoxic activity (118). However, 
although monotherapy with IL-2 resulted in improved survival outcomes in a 
fraction of patients with metastatic renal cell carcinoma and melanoma, this 
approach yielded disappointment in terms of post-consolidation relapse 
prevention in several trials in AML (119–125). A possible explanation to the 
disappointingly low efficacy of IL-2 monotherapy as an anti-cancer treatment is 
the cytokine-induced expansion of regulatory T cells (Tregs). Hence, Tregs, that 
suppress cytotoxic effector cells, express high-affinity IL-2 receptors (CD25) and 
thus preferentially expand in response to exogenous IL-2 (126). Additional clues 
to the lack of efficacy of monotherapy with IL-2 in leukemia were provided by 
investigators in the 1980s and 90s (127–132), with data indicating that T and NK 
cells are sensitive to exogenous reactive oxygen species (ROS), and that IL-2-
induced NK cell killing of leukemic cells (including AML blasts) is hampered by 
monocyte-derived production of immunosuppressive ROS. In these studies, the 
addition of histamine was found to rescue IL-2-induced antileukemic effects in 
the presence of ROS-producing monocytes, thus synergizing with IL-2 to 
eradicate leukemic cells. The effect of histamine was shown to occur via agonistic 
binding to histamine type 2 (H2R) receptors on the monocyte cell surface, 
resulting in inhibition of the ROS-producing myeloid NADPH oxidase NOX2. 
Overall, the above-mentioned findings implied that IL-2-induced cytotoxic 
lymphocyte targeting of leukemic cells may be impeded by immunosuppressive 
ROS in the malignant microenvironment, thus warranting investigation into 
whether the addition of histamine may unravel the relapse-preventive effect of 
IL-2 in AML. 
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A subsequent randomized phase III clinical trial (the 0201 trial) evaluated the 
relapse-preventive efficacy of combinatorial treatment with HDC and low-dose 
IL-2 in AML patients in CR not eligible for allo-hSCT (7). HDC/IL-2 therapy 
was given over 18 months in ten three-week treatment cycles with rest periods in-
between. The results indicated significantly improved LFS for treated patients 
(especially for those in CR1 <60 years of age), but did not demonstrate significant 
efficacy in terms of OS (possibly due to the lower power of the OS analysis (110)). 
In contrast to monotherapy with IL-2 (in higher doses), the HDC/IL-2 treatment 
was well-tolerated, with 92% of non-relapsing patients adhering to the regimen 
throughout all ten cycles (7,108). The effects of HDC/IL-2 on LFS, which led to 
its approval for maintenance treatment of adult AML patients in CR1 within the 
European Union in 2008 (133), are shown in Figure 4. 

 

Figure 4. Results of the HDC/IL-2 phase III 0201 clinical trial. CR1, first complete remission. 
Created with Biorender.com. 

Subsequent in vitro experiments and retrospective analysis of the 0201 trial data 
indicated that the effect of HDC/IL-2 was pronounced in AML patients with 
myelomonocytic and monocytic subtypes of leukemia (FAB M4/M5) in which 
the blasts themselves were found to express H2R and NOX2 and produce 
immunosuppressive ROS (134,135). Consequently, certain leukemic clones may 
be directly responsible for the immunosuppressive microenvironment in AML, 
and potentially be directly targeted by HDC. In addition, histamine has recently 
been shown to play a role in the induction of malignant and non-malignant 
myeloid differentiation (136–138), thus providing a supplementary mechanism 
potentially involved in the HDC/IL-2-mediated targeting of residual myeloid 
leukemia. 

The final proof of the immunomodulatory effects of HDC/IL-2 in AML came 
from a single-armed phase IV trial (Re:Mission), in which significant induction 
of NK cells was observed during treatment cycles, and where aspects of 
immunity (e.g. including expression of activating receptors on NK cells and 
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the blasts themselves were found to express H2R and NOX2 and produce 
immunosuppressive ROS (134,135). Consequently, certain leukemic clones may 
be directly responsible for the immunosuppressive microenvironment in AML, 
and potentially be directly targeted by HDC. In addition, histamine has recently 
been shown to play a role in the induction of malignant and non-malignant 
myeloid differentiation (136–138), thus providing a supplementary mechanism 
potentially involved in the HDC/IL-2-mediated targeting of residual myeloid 
leukemia. 

The final proof of the immunomodulatory effects of HDC/IL-2 in AML came 
from a single-armed phase IV trial (Re:Mission), in which significant induction 
of NK cells was observed during treatment cycles, and where aspects of 
immunity (e.g. including expression of activating receptors on NK cells and 
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treatment-induced memory to effector T cell transition) were found to correlate 
with treatment outcome (139–141). Of note, although immunosuppressive 
Tregs were induced during HDC/IL-2 treatment cycles, no association with 
clinical outcome was noted, and the Treg induction seemed blunted in later 
HDC/IL-2 treatment cycles (142). Along with the above-mentioned data, this 
pointed to the feasibility of immunostimulatory maintenance treatment with 
HDC/IL-2 for relapse prevention in AML.  

Malin Nilsson 
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CHRONIC MYELOID LEUKEMIA 
Chronic myeloid leukemia (CML) is a less prevalent form of myeloid leukemia, 
with an incidence of 1-1.5 per 100,000 and a slight male predominance (143–146). 
In contrast to AML, CML is an unusually homogeneous malignancy. Discoveries 
in the 1960s, 70s and 80s (147–150) uncovered that virtually all patients carry 
leukemic clones with a reciprocal chromosomal translocation of chromosomes 9 
and 22 (t(9;22)(q34;q11)), resulting in the molecular juxtapositioning of BCR on 
chromosome 22 and ABL1 on chromosome 9 (Figure 5). The formation of the 
chimeric BCR-ABL1 fusion oncogene generates a deregulated, constitutively 
active tyrosine kinase that drives the proliferation, survival and accumulation of 
myeloid cells at different stages of maturation in blood and bone marrow 
(151,152). Typical features associated with CML are presence of large numbers of 
morphologically and functionally normal granulocytes and granulocyte 
progenitors in blood (145,153), and/or splenomegaly (145,151). The final 
diagnosis of CML is made based on positive identification of the t(9;22) 
translocation by cytogenetic, fluorescence in-situ hybridization (FISH) and/or 
reverse transcription polymerase chain reaction (RT-PCR) analysis of blood or 
BM samples (145). About 95% of patients carry BCR-ABL1 transcripts with 
fusions between BCR exon 13 or 14 and ABL1 exon 2 (e13a2 and e14a2, 
respectively) (154).  

 

Figure 5. The t(9:22)(q34;q11) reciprocal chromosomal translocation giving rise to the BCR-
ABL1 oncogene. Adapted from (155) using BioRender.com. 

Most CML patients (>90%) are diagnosed in the chronic phase (CP) of the disease 
(156,157), at which point approximately 50% are asymptomatic (145,156,157). 
Symptoms that do occur commonly relate to anemia or splenomegaly (e.g. fatigue, 
weight loss, abdominal fullness and/or early satiety), and less frequently to 
thrombocyte dysfunction (thrombosis, bleeding), or leukostasis (dyspnea) (157). 
Although CML is less aggressive at presentation than AML, it is far from benign. 
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Without treatment, the disease will invariably, through acquisition of additional 
mutations and clonal evolution, progress to a fatal blast crisis (BC; typically over 
a 5-year time frame) (151,158–160). The BC phase of CML resembles an acute 
leukemia and is characterized by the loss of maturation and uncontrolled 
proliferation of leukemic blasts, which may bear resemblance to myeloid or, less 
often, lymphoid progenitors (146,157). A BC diagnosis is based on the presence 
of ≥20% immature myeloid blasts among nucleated cells in peripheral blood (PB) 
or bone marrow (BM), extramedullary blast proliferation or increased 
lymphoblasts in PB or BM (88). CML was long considered a triphasic disease, 
where an accelerated phase (AP) often preceded BC. However, in the most recent 
update to the WHO classification of hematolymphoid tumors (88), the AP 
definition was removed and replaced by an emphasis on features associated with 
high risk of progression to BC in chronic phase. 

THERAPEUTIC MANAGEMENT 
Before 2001, CML diagnosis was associated with poor prospects of long-term 
survival (146). In the decades leading up to the new millennium, CP-CML 
treatment typically consisted of periodical chemotherapy with hydroxyurea or 
busulfan (146). However, although these therapies were able to induce 
hematologic responses and somewhat prolong survival, the majority of patients 
progressed after a median time of 3-4 years (161), with dismal prognosis. 
Allogeneic stem cell transplantation (allo-hSCT) became the first potentially 
curative treatment option in CML (162), and was later followed by the 
introduction of interferon alpha (IFN-α) treatment, which induced cytogenetic 
responses and improved outcomes in a subgroup of patients (146).  

Around the turn of the century came the first reports of the development of a 
small-molecule tyrosine kinase inhibitor (TKI); imatinib, that targeted and 
blocked the kinase activity of the BCR-ABL1 protein (3). In the first clinical trial 
of the drug, 53 out of 54 patients treated with a high dose achieved a complete 
hematologic response within weeks (4). Subsequent studies showed that as long 
as the patients stayed on treatment they were often able to maintain remission 
long-term (163,164), providing a striking improvement over the treatment 
options that had thus far been available. In the coming years, the realization that 
some patients were, or eventually became, resistant to imatinib led to the 
development of second (dasatinib, nilotinib, and bosutinib) and third (ponatinib, 
asciminib) generation TKIs, which are often able to overcome resistance by 
higher potency and/or alternate binding mechanisms to the BCR-ABL1 protein 
(153,165,166). While dasatinib, nilotinib and bosutinib are effective against many 
of the commonly occurring BCR-ABL1 kinase-domain resistance mutations, 
ponatinib and asciminib are the only ones able to target the challenging T315I 
mutation (albeit for ponatinib at the cost of a relatively high degree of 
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cardiovascular toxicity) (157,166–169). Both first and second generation TKIs are 
currently approved for frontline treatment of CP-CML patients at diagnosis (165). 
Frontline second generation TKI treatment is associated with faster and deeper 
responses than treatment with imatinib, but also with a higher degree of off-target 
toxicity, seemingly without additional survival benefit (157,170–172). Despite 
this, first line therapy with second-generation TKIs may be practiced for several 
reasons, e.g. including high-risk disease where faster responses may be preferable 
(145,157). 

The response to TKI treatment in terms of leukemic burden is monitored by 
reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) analysis 
of BCR-ABL1 transcript levels in peripheral blood, converted to an international 
scale (IS) (165). At this scale, a 3 log10 reduction of BCR-ABL1 level (i.e. ≤0.1%) 
compared to the international standard is referred to as a major molecular 
response (MMR; MR3) (173). Correspondingly, log reductions of 4 (≤0.01%) and 
4.5 (≤0.0032%) represent deep molecular responses (DMR; MR4 and MR4.5) 
(173). Cytogenetic analysis of BM samples is used to assess early treatment 
responses. Patients that show no signs of residual cells with the t(9;22) 
translocation among at least 20 analyzed bone marrow metaphases are referred to 
as having achieved a complete cytogenetic response (CCyR) (145). Failure to reach 
prognostically important milestones (e.g. BCR-ABL1IS≤10% at 3 months or 
CCyR at 12 months (157,174)) identifies patients at risk of treatment failure, and 
may trigger changes to more potent TKIs aiming to reduce the leukemic clone to 
low enough numbers to minimize the risk of progression (145). 

Of relevance to this thesis, even after the advent of TKIs, hydroxyurea treatment 
remains relevant at CP-CML diagnosis. In patients presenting with high white 
blood cell or platelet counts, cytoreductive hydroxyurea treatment may be used to 
reduce the risk of leukostasis until definitive cytogenetic or molecular diagnosis 
and start of TKI treatment (145,157,165). Its mechanism of action relates to 
inhibition of an enzyme involved in the generation of deoxyribonucleoside 
triphosphates (dNTPs; ribonucleotide reductase). The subsequent reduced 
availability of dNTPs halts cells in the DNA-replicating S phase of the cell cycle 
through activation of the cellular replication checkpoint (175). Depending on 
concentration and time of exposure, the effects of hydroxyurea may be reversible 
or cytotoxic (175). Either way, the drug ultimately slows down cell proliferation, 
effectively reducing the abnormally high cell numbers associated with CML. 

Today, a CML diagnosis is associated with excellent survival outcomes for most 
patients. At five years of TKI treatment, approximately 80% of patients diagnosed 
in the chronic phase are in MMR, a number that increases to 90% at the ten-year 
mark (57). Hence, proper use of the available arsenal of TKIs has resulted in close 
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to normal life spans for most patients (5). However, TKI resistance and 
intolerance are issues of concern in approximately 25% of CP-CML patients (57), 
and although disease progression is much rarer than it once was, a subgroup of 
patients presents with BC or develops BC following insufficient TKI efficacy 
(156,176,177), which still carries poor chances for long-term survival (178). For 
fit patients, BC treatment comprises AML- or acute lymphoblastic leukemia 
(ALL)-specific intensive chemotherapy in combination with later generation 
TKIs in attempts to induce remissions that may allow successful subsequent allo-
hSCT (145,165). To prevent disease progression, allo-hSCT may also be 
considered in CP to patients with suboptimal response to at least two TKIs, or 
patients who do not respond to ponatinib within three months of treatment 
(145,165). 

CML patients were originally believed to need lifelong TKI treatment, owing to 
the persistence of TKI-resistant leukemic stem cells that may expand and cause 
disease relapse upon treatment discontinuation (145,179). However, an increasing 
number of studies have demonstrated the feasibility of TKI discontinuation 
without leukemic relapse in carefully selected groups of CP-CML patients (180–
184). In many of these studies, around 40-50% of patients have been able to 
sustain remission in the absence of TKI treatment after having been in stable 
DMR for >2 years (157). As daily TKI treatment is associated with high costs and 
toxicities in many patients (145,157), treatment discontinuation and the concept 
of treatment-free remission (TFR) has become the new goal of CML therapy 
(165,185). Criteria defining patients eligible for TFR attempts with maximal 
success rate is still an area of intense research. However, both treatment and DMR 
duration have been shown to significantly impact on TFR rates (186). This is 
reflected in the current Swedish TFR attempt guidelines that define eligible 
patients as those that have been on TKI treatment for at least 5 years, and 
maintained DMR (MR4 or MR4.5) for a minimum of two years (145). With these 
criteria, however, TKI discontinuation is only accessible to a minority of patients, 
prompting continued research into ways of eradicating residual leukemia in TKI-
induced remission and improving TFR rates. 

LEUKEMIC STEM CELLS 
The definitive proof of the existence of a rare population of LSC with in vitro and 
in vivo stem cell properties in patients with CML was first published in 1999 (187), 
predating the advent of TKIs. In this study, the LSC population demonstrated a 
reversibly quiescent phenotype, which was suggested to explain why CML could 
not be cured by conventional chemotherapy. Since the introduction of TKIs, 
several studies have indicated that the resistance phenotype of the LSC also 
extends to BCR-ABL1-targeted therapy, thus suggesting that LSC are not 
dependent on BCR-ABL1 kinase activity for survival (188–192). In agreement, 
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LSC persistence during TKI treatment has repeatedly been demonstrated in CP-
CML patients despite successful eradication of the bulk of the leukemic clone 
(193–195). As previously discussed, the residual LSC mostly do not expand unless 
TKI treatment is interrupted (196). However, the sustained presence of a cell type 
able to reconstitute the leukemic clone is a matter of concern in CML, especially 
as these rare cells may acquire additional mutations, potentially leading to disease 
progression (197), or TKI resistance and subsequent disease relapse (57). Previous 
studies have suggested that LSC may persist also in patients in successful 
treatment-free remission post treatment discontinuation, in view of the detection 
of BCR-ABL1 DNA (198) or RNA (199), or LSC by flow cytometric analysis 
using assumed LSC cell surface markers (200). The lack of expansion of the LSC 
clone has then e.g. been proposed to reflect immune-mediated control or 
heterogeneity in terms of leukemia-initiating capacity among BCR-ABL1+ LSC. 
However, these findings were recently partially problematized by the 
demonstration of BCR-ABL1 DNA in the lymphocyte compartment (but never 
in granulocytes) in patients in TFR, pointing to the possibility that the BCR-ABL1 
persistence may derive from a long-lived population of BCR-ABL1+ lymphocytes 
rather than LSC in some cases (201). 

Since the t(9;22) translocation can be found in both myeloid and lymphoid cell 
types in CML patients (202), and BCR-ABL1 expression is unable to induce self-
renewal in murine hematopoietic progenitors (203), the cell of origin for CML, 
i.e. the cell that acquires the initial transforming BCR-ABL1 translocation, has 
long been thought to be the immature, multipotent HSC (204). Although some 
studies have questioned this in view of data showing BCR-ABL1 expression in 
patient endothelial cells (indicating that the BCR-ABL1 translocation may have 
occurred in an HSC precursor; the hemangioblast) (205,206), CML LSC activity 
is currently widely recognized as belonging to the normal CD34+CD38− HSC 
compartment (57,207). In recent years, significant effort has been put into the 
identification of additional cell surface markers that distinguish LSC from their 
healthy counterparts, with a view to use these for targeting approaches with 
minimal collateral damage to healthy cells, or for prospective FACS isolation of 
cell populations enriched for LSC activity for further biomolecular or functional 
characterization. Many LSC markers have thus been reported over the years, with 
expression patterns more or less restricted to the LSC population (208). In this 
context, the three arguably most promising ones to date are CD26 (209), CD25 
(210) and IL-1RAP (211–213).  

CD26 (DPP4) is a serine exopeptidase that is normally expressed on the surface 
of activated T cells (212). In the original paper defining CD26 as an LSC marker, 
only the CD26+ lineage (Lin) negative cells from primary CML samples were able 
to induce BCR-ABL1+ engraftment in immunodeficient NSG mice, while 
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Lin−CD26− cells gave rise to multilineage engraftment of BCR-ABL1- cells (209). 
CD26 expression is reportedly mostly present within the CD34+CD38− CML 
LSC compartment, and largely absent from healthy stem and progenitor cells 
(209,211,214). The peptidase activity of CD26 has been proposed to explain the 
abnormally large numbers of mobilized LSC and HSC in the peripheral blood of 
CP-CML patients at diagnosis (209,215). Hence, CD26-mediated degradation of 
the CXCL12 ligand, that normally contributes to BM sequestering of HSC 
through interaction with the CXCR4 receptor on the stem cell surface, results in 
a lower degree of LSC BM homing (216,217).  

CD25 (IL2RA) normally makes up part of the IL-2 receptor complex on 
lymphocytes (218). However, in the CML LSC context the other IL-2 receptor 
components are seemingly not expressed, effectively rendering the cells 
unresponsive to IL-2 treatment (219). Among CD34+CD38− cells, CD25 
expression has been found to be exclusive to the leukemic cells, without 
corresponding expression on healthy stem cells (209,210). From a functional 
standpoint, CD25 expression seems to reduce LSC proliferative capacity and 
engraftment potential, and the finding that TKI treatment seems to downregulate 
CD25 expression on LSC has sparked interest in trying to induce it once again 
(210).  

The first specific CML LSC surface marker to be reported was IL-1RAP, which 
serves as a co-receptor for the interleukin 1 (IL-1) receptor (213). Within the 
CD34+CD38− compartment, its expression is reportedly restricted to BCR-
ABL1+ cells, and the percentage of IL-1RAP-expressing cells at CP-CML 
diagnosis seemingly correlates with the efficiency of TKI treatment (211). There 
is also data indicating that a higher proportion of cells within the CD34+CD38− 

compartment expresses IL-1RAP compared with CD25, and that there is a higher 
correlation between the percentages of IL-1RAP and BCR-ABL1 positive cells 
(211). However, other studies have shown high levels of IL-1RAP expression also 
within the CD34+CD38+ compartment, possibly making it a less specific 
immature LSC marker than CD25 and CD26 (209,220). 

A variety of immunotherapeutic approaches are conceivable to target LSC based 
on cell surface expression, e.g. including monoclonal antibodies, antibody 
conjugates, bispecific antibodies, or chimeric antigen receptor (CAR) T cells. 
Some support for this approach in CML has stemmed from recent studies, e.g. 
showing the feasibility of utilizing IL-1RAP-directed CAR T cells for specific 
targeting of LSC in vitro and in a xenograft model in vivo (221). A similar approach 
was successfully attempted for targeting CD26-expressing cells, although this 
version was associated with a certain degree of fratricide, entailing toxicity to 
normal activated lymphocytes (222). In another study, a monoclonal antibody 
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against CD26 was coupled to a liposome carrying the BCL2 inhibitor venetoclax 
(214), which was previously shown to target CML stem and progenitor cells (223). 
Treatment with the immunoliposome formulation resulted in specific inhibition 
of cell growth and induction of apoptosis in CD26+ cells in vitro, and decreased 
engraftment in a xenograft model of CML in vivo (214). If coupled with specific 
enough markers, immunotherapeutic strategies may thus allow specific LSC 
targeting with minimal off-target toxicity. 

Another line of research focuses on aspects other than cell surface expression that 
may be essential for LSC and thus potentially targetable. Such approaches e.g. 
emphasize the importance of dysregulated intracellular signaling pathways (such 
as PI3K/AKT, JAK/STAT, WNT/β-catenin) and processes (autophagy, 
metabolism and epigenetics), as well as cell extrinsic factors that may support LSC 
resistance and survival, including the bone marrow microenvironment (BMM) 
(224). The BMM is currently believed to be key to LSC sustenance through 
multiple mechanisms (225). Among them, several studies have supported the 
importance of the CXCL12-CXCR4 axis. Both the bone marrow-produced 
CXCL12 ligand and the stem cell CXCR4 homing receptor are found at 
abnormally low levels in the CML BM. As previously mentioned, the lower 
CXCL12 levels are partially due to LSC expression of CD26, but have also been 
attributed to increased secretion of the CXCL12 antagonist granulocyte colony-
stimulating factor (G-CSF) within the BM (226). In addition, BCR-ABL1 
expression reportedly decreases the expression of CXCR4 on the LSC surface 
(227,228), which together with the lower CXCL12 levels in the BMM, contributes 
to the reduced BM retention of LSC at CP-CML diagnosis. However, TKI 
treatment reportedly enhances LSC CXCR4 expression, favoring their return to 
the BM, where LSC may reside in a quiescent state protected from treatment 
insult (227,229). Studies targeting various aspects of the CXCL12-CXCR4 axis in 
conjunction with TKI treatment have supported a role in LSC treatment escape, 
e.g. showing reduced CML cell growth and tumor burden in vitro and in vivo (229–
231). 

As previously alluded to, single-cell transcriptomic analyses hold promise for the 
characterization of heterogeneity in normal and malignant hematopoiesis that 
cannot be fully captured by traditional bulk approaches. In 2017, two groups 
independently reported results from single-cell transcriptional analyses of the 
Lin−CD34+CD38− compartment in CML (228,232). Both studies found 
significant heterogeneity within the classically defined CD34+CD38− LSC 
compartment and concluded that only a subpopulation consisting of primitive 
and quiescent cells persisted during TKI treatment. In the Warfvinge study, the 
subpopulation that was enriched with TKI treatment was found to belong to the 
Lin−CD34+CD38−/lowCD45RA−cKIT−CD26+ compartment (232), thus 
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Lin−CD26− cells gave rise to multilineage engraftment of BCR-ABL1- cells (209). 
CD26 expression is reportedly mostly present within the CD34+CD38− CML 
LSC compartment, and largely absent from healthy stem and progenitor cells 
(209,211,214). The peptidase activity of CD26 has been proposed to explain the 
abnormally large numbers of mobilized LSC and HSC in the peripheral blood of 
CP-CML patients at diagnosis (209,215). Hence, CD26-mediated degradation of 
the CXCL12 ligand, that normally contributes to BM sequestering of HSC 
through interaction with the CXCR4 receptor on the stem cell surface, results in 
a lower degree of LSC BM homing (216,217).  

CD25 (IL2RA) normally makes up part of the IL-2 receptor complex on 
lymphocytes (218). However, in the CML LSC context the other IL-2 receptor 
components are seemingly not expressed, effectively rendering the cells 
unresponsive to IL-2 treatment (219). Among CD34+CD38− cells, CD25 
expression has been found to be exclusive to the leukemic cells, without 
corresponding expression on healthy stem cells (209,210). From a functional 
standpoint, CD25 expression seems to reduce LSC proliferative capacity and 
engraftment potential, and the finding that TKI treatment seems to downregulate 
CD25 expression on LSC has sparked interest in trying to induce it once again 
(210).  

The first specific CML LSC surface marker to be reported was IL-1RAP, which 
serves as a co-receptor for the interleukin 1 (IL-1) receptor (213). Within the 
CD34+CD38− compartment, its expression is reportedly restricted to BCR-
ABL1+ cells, and the percentage of IL-1RAP-expressing cells at CP-CML 
diagnosis seemingly correlates with the efficiency of TKI treatment (211). There 
is also data indicating that a higher proportion of cells within the CD34+CD38− 

compartment expresses IL-1RAP compared with CD25, and that there is a higher 
correlation between the percentages of IL-1RAP and BCR-ABL1 positive cells 
(211). However, other studies have shown high levels of IL-1RAP expression also 
within the CD34+CD38+ compartment, possibly making it a less specific 
immature LSC marker than CD25 and CD26 (209,220). 

A variety of immunotherapeutic approaches are conceivable to target LSC based 
on cell surface expression, e.g. including monoclonal antibodies, antibody 
conjugates, bispecific antibodies, or chimeric antigen receptor (CAR) T cells. 
Some support for this approach in CML has stemmed from recent studies, e.g. 
showing the feasibility of utilizing IL-1RAP-directed CAR T cells for specific 
targeting of LSC in vitro and in a xenograft model in vivo (221). A similar approach 
was successfully attempted for targeting CD26-expressing cells, although this 
version was associated with a certain degree of fratricide, entailing toxicity to 
normal activated lymphocytes (222). In another study, a monoclonal antibody 

Malin Nilsson 

27 

against CD26 was coupled to a liposome carrying the BCL2 inhibitor venetoclax 
(214), which was previously shown to target CML stem and progenitor cells (223). 
Treatment with the immunoliposome formulation resulted in specific inhibition 
of cell growth and induction of apoptosis in CD26+ cells in vitro, and decreased 
engraftment in a xenograft model of CML in vivo (214). If coupled with specific 
enough markers, immunotherapeutic strategies may thus allow specific LSC 
targeting with minimal off-target toxicity. 

Another line of research focuses on aspects other than cell surface expression that 
may be essential for LSC and thus potentially targetable. Such approaches e.g. 
emphasize the importance of dysregulated intracellular signaling pathways (such 
as PI3K/AKT, JAK/STAT, WNT/β-catenin) and processes (autophagy, 
metabolism and epigenetics), as well as cell extrinsic factors that may support LSC 
resistance and survival, including the bone marrow microenvironment (BMM) 
(224). The BMM is currently believed to be key to LSC sustenance through 
multiple mechanisms (225). Among them, several studies have supported the 
importance of the CXCL12-CXCR4 axis. Both the bone marrow-produced 
CXCL12 ligand and the stem cell CXCR4 homing receptor are found at 
abnormally low levels in the CML BM. As previously mentioned, the lower 
CXCL12 levels are partially due to LSC expression of CD26, but have also been 
attributed to increased secretion of the CXCL12 antagonist granulocyte colony-
stimulating factor (G-CSF) within the BM (226). In addition, BCR-ABL1 
expression reportedly decreases the expression of CXCR4 on the LSC surface 
(227,228), which together with the lower CXCL12 levels in the BMM, contributes 
to the reduced BM retention of LSC at CP-CML diagnosis. However, TKI 
treatment reportedly enhances LSC CXCR4 expression, favoring their return to 
the BM, where LSC may reside in a quiescent state protected from treatment 
insult (227,229). Studies targeting various aspects of the CXCL12-CXCR4 axis in 
conjunction with TKI treatment have supported a role in LSC treatment escape, 
e.g. showing reduced CML cell growth and tumor burden in vitro and in vivo (229–
231). 

As previously alluded to, single-cell transcriptomic analyses hold promise for the 
characterization of heterogeneity in normal and malignant hematopoiesis that 
cannot be fully captured by traditional bulk approaches. In 2017, two groups 
independently reported results from single-cell transcriptional analyses of the 
Lin−CD34+CD38− compartment in CML (228,232). Both studies found 
significant heterogeneity within the classically defined CD34+CD38− LSC 
compartment and concluded that only a subpopulation consisting of primitive 
and quiescent cells persisted during TKI treatment. In the Warfvinge study, the 
subpopulation that was enriched with TKI treatment was found to belong to the 
Lin−CD34+CD38−/lowCD45RA−cKIT−CD26+ compartment (232), thus 



Targeting residual malignant cells in myeloid leukemia 

28 

potentially providing a phenotypical signature better capturing the true LSC. 
However, dating back to the early days of single-cell transcriptomics, both studies 
were limited to relatively low numbers of cells compared to what can be achieved 
using current high-throughput scRNAseq approaches. Hence, the possibilities for 
detailed characterization of the heterogeneity within the CD34+ CML stem and 
progenitor cell (SPC) compartment (e.g. including differentiation hierarchies) 
have immensely improved over the last few years, leaving room for studies 
confirming and elaborating on these initial findings. Recent scRNAseq-based 
methods providing parallel transcriptomic and proteomic data from individual 
cells (multiomic methods) may be even more promising in this context, as they 
would enable straight-forward translation between the transcriptional and 
immunophenotypic profiles of identified LSC populations. 
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AIM 
The overall aim of this thesis was to contribute to an increased understanding of 
(i) patient populations that may benefit from relapse-preventive treatment with 
HDC/IL-2 in AML, and (ii) the TKI-eluding LSC population in CML. Specific 
aims for each of the papers are listed below: 

 

Paper I To assess whether the efficacy of previous induction 
chemotherapy impacts on HDC/IL-2 treatment outcomes in 
AML 

Paper II To determine whether the presence of chromosomal 
aberrations in the leukemic clone has bearing on the efficacy 
of HDC/IL-2 in AML 

Paper III To further characterize the CML SPC and LSC compartments 
by multiomic analysis paired with BCR-ABL1 detection at the 
single-cell level 

Paper IV To investigate whether/how cytoreductive treatment with 
hydroxyurea at chronic phase CML diagnosis affects the SPC 
compartment 
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MATERIALS AND METHODS 
A general introduction to the data, patients and main analysis methods involved 
in papers I-IV is provided below. For further detail, the reader is referred to the 
methods sections of the respective papers. 

CLINICAL TRIALS IN AML 
Data from two clinical trials assessing the efficacy of relapse-preventive HDC/IL-
2 treatment in AML were used for the analyses presented in papers I and II: the 
phase III 0201 and the phase IV Re:Mission trials. Both trials were approved by 
the ethical evaluation committees of the participating institutions, and all patients 
gave written informed consent prior to enrolment. 

PHASE III TRIAL 
The phase III trial (0201; NCT00003991; (7)) enrolled 320 AML patients (age 18-
84; median 57 years) in first (CR1; n=261) or subsequent (CR>1; n=59) complete 
remission (CR) who were not eligible for allogeneic stem cell transplantation. At 
inclusion, patients had <5% blasts in normocellular bone marrow and were within 
three months of receiving chemotherapy or six months of achieving CR. Patients 
from 92 clinical centers around the world (11 countries) were stratified by country 
and CR status (CR1 vs CR>1) and randomized to achieve relapse-preventive 
treatment with HDC/IL-2 or standard of care (no treatment) after the completion 
of regular induction and consolidation chemotherapy. Treatment was 
administered by subcutaneous injection twice daily (0.5mg HDC, 16,400 IU/kg 
IL-2) in ten three-week cycles over a period of 18 months (Figure 6), or until 
unacceptable toxicity, relapse, or death. After the first three treatment cycles, the 
rest period between cycles was extended from three to six weeks. Surviving 
patients were monitored for a minimum of 36 months, with a median follow-up 
time at trial completion of 48 months. 

The primary endpoint of the trial was assessment of the impact of HDC/IL-2 
treatment on leukemia-free survival (LFS), defined as time from random 
assignment to relapse or death from any cause. Secondary endpoints included 
effects on overall survival (OS), LFS or OS in CR status subgroups as well as 
assessments of toxicity, safety, and aspects of quality of life.  
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Figure 6. HDC/IL-2 phase III trial design. Created using BioRender.com. 

Of relevance to the analyses in papers I and II, 203 out of 260 patients in CR1 
(78%) had previously achieved complete remission after one induction 
chemotherapy cycle, whereas 57 patients (22%) had required more than one cycle 
(paper I). Among 225 CR1 patients with known karyotype, 128 (57%) had 
leukemic clones of normal karyotype and 97 (43%) carried chromosomal 
aberrations (paper II).    

PHASE IV TRIAL 
In the follow-up single-armed phase IV trial (Re:Mission, EPC2008-02, 
NCT01347996; (140)), 84 AML patients (age 18-79; median 61 years) in CR1 from 
20 European centers received relapse-preventive treatment with HDC/IL-2 using 
a similar schedule and dosing as that employed in the phase III trial (Figure 6). 
Also in this trial, treatment was initiated within three months of completion of 
consolidation chemotherapy, or six months of CR achievement, in patients not 
eligible for allogeneic stem cell transplantation. Surviving patients were followed 
for a minimum of 24 months from enrolment. 

The primary trial endpoint was assessment of the impact of HDC/IL-2 treatment 
on immune cell populations and minimal residual disease (MRD) monitoring, 
with secondary endpoints comprising LFS, safety and correlations between 
immune responses and MRD levels. 

Of relevance for paper II, 44 out of 80 patients with available baseline karyotype 
data (55%) had normal karyotype. Out of the 36 normal karyotype patients 
genotyped for NPM1 mutation, 18 (50%) were positive. Similarly, four out of 39 
genotyped patients carried FLT3-ITD, out of whom three also had a co-existing 
NPM1 mutation. 
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CELLS AND PATIENT MATERIAL 
Papers III and IV involved the analysis of bone marrow (BM) and/or peripheral 
blood (PB) mononuclear cells (MNC) obtained from 21 chronic phase (CP) CML 
patients (age 25-75; median 53 years) diagnosed and treated at the Sahlgrenska 
University (Gothenburg, Sweden; n=20) and Uddevalla (Uddevalla, Sweden; n=1) 
hospitals. 17 of the 21 patients received cytoreductive hydroxyurea (HU) 
treatment prior to TKI treatment start and were thus included in the analyses 
presented in paper IV. In these analyses, the assayed PB/BM samples were 
obtained from seven treatment-naïve patients and from ten patients following 
initial HU treatment (4-19 days; median 9 days). Three of the HU-treated patients 
additionally had PB samples obtained before HU treatment, which allowed their 
use in paired analyses of HU effects within the same individual. A summary of 
the age and gender of all CML patients included in the two papers along with 
details on HU treatment and which analyses each patient was involved in is 
provided in the Appendix. 

Follow-up BM samples were obtained three months into TKI treatment from ten 
of the 16 patients included in paper III. Two of the patients additionally had 
samples retrieved at seven months, giving a total of 12 follow-up BM samples in 
the study. Paper III also involved the analysis of healthy control BM samples. 
These were obtained from the femur of five patients undergoing hip replacement 
surgery at the Sahlgrenska University Hospital (Mölndal, Sweden). 

To isolate MNC, PB and BM samples were subjected to Lymphoprep density 
gradient centrifugation. MNC samples with significant immature granulocyte 
contamination additionally went through magnetic bead CD15 depletion/CD34 
enrichment or morphological MNC FACS sorting prior to cryopreservation. The 
sample processing procedure is summarized in Figure 7. 

 

Figure 7. Processing of CML/healthy peripheral blood and bone marrow samples. Created with 
BioRender.com, using (233). 
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The studies were approved by the Regional Ethical Review board in Gothenburg, 
and all CML patients and healthy controls gave written informed consent prior to 
BM and/or PB retrieval. 

FLOW CYTOMETRY 
When combined with fluorescently labeled antibodies binding to specific extra- 
or intracellular proteins, flow cytometry enables high-throughput single-cell 
analysis of protein expression, cell size and granularity. Fluorescence-activated cell 
sorting (FACS) is an extension of the technique, where the flow cytometric 
analysis output allows for selection and sorting of cell populations of interest for 
further characterization. 

In paper IV, flow cytometry was used to assess proportions of CD34+ and 
CD34+CD38− cells in PB MNC (PBMC) and BM MNC samples obtained before 
and after HU treatment prior to cryopreservation (Figure 7). In addition, FACS-
based isolation of CD14−CD34+ cells preceded single-cell capture for the 
multiomic analyses in papers III and IV. 

SINGLE-CELL MULTIOMIC ANALYSIS 
As previously mentioned, high-throughput single-cell RNAseq approaches may 
enable unbiased analysis of the inherent heterogeneity within healthy and diseased 
cell samples, and thus improve the detailed understanding of hematopoiesis and 
leukemia. Traditionally employed bulk approaches to gene expression analyses 
inevitably yield averaged expression values, which may skew or conceal 
heterogeneity among cells. 

Multiomic single-cell approaches carry additional benefit in that they provide 
coupled protein expression data. This can be beneficial in several ways. First, 
protein expression is more stable than mRNA expression, which suffers from 
dropouts due to transcriptional bursting and RNA degradation. As illustrated in 
Figure 8, this e.g. means that protein expression data often outperform mRNA 
data in terms of clarity when it comes to assessing phenotypes and annotating cell 
types in transcriptome-based analyses. In addition, multiomic analysis may allow 
the identification of cell surface markers for cell types defined using scRNAseq 
data, enabling prospective isolation and functional characterization. As such, 
multiomic single-cell analysis provides a much-needed bridge between scRNAseq 
and flow cytometry, which additionally may facilitate the interpretation of data 
obtained in the immunophenotypic and scRNAseq-based research eras. 
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Figure 8. RNA vs protein expression of selected markers in single-cell multiomic analysis. Created 
using BioRender.com. 

In papers III and IV, the BD Rhapsody Single-Cell Analysis System was used to 
assess gene and protein expression in single cells obtained from chronic phase 
CML patients and healthy controls. In paper III, we performed multiomic 
analysis of single CD14−CD34+ BM MNCs obtained from 16 CP-CML patients 
prior to TKI treatment start, 10 CP-CML patients three to seven months into 
TKI treatment and five healthy controls. The analyses involved a total of 58,682 
diagnosis cells (out of which 11,247 additionally were CD38−/low), 4,571 TKI 
follow-up cells (2,483 CD38−/low) and 7,161 healthy BM cells (4,090 CD38−/low). 
In paper IV, we additionally generated multiomic data for peripheral blood 
CD14−CD34+ MNCs obtained before and after HU treatment for two CP-CML 
patients.  

BCR-ABL1 DETECTION 
The only unequivocal marker of CML LSC is the expression of the disease-
causing fusion oncogene BCR-ABL1. However, many concurrent high-
throughput RNA sequencing approaches (including that utilized in this thesis) 
rely on 3’ end capture of mRNA molecules through complementary binding to 
the poly-A tail, and only provide sequence information in its proximity. This 
makes reliable identification of BCR-ABL1 transcripts impossible. For paper III, 
we thus set up a method allowing assessment of BCR-ABL1 expression in single 
cells subjected to 3’ end capture-based multiomic expression analysis (further 
described in the results and discussion section).  

SEQUENCING DATA ANALYSIS 
Following the generation of mRNA and protein unique molecular identifier 
(UMI) count matrices by the BD Rhapsody Targeted Analysis Pipeline, the 
multiomic data generated in papers III and IV was analyzed in R using standard 
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obtained in the immunophenotypic and scRNAseq-based research eras. 
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Figure 8. RNA vs protein expression of selected markers in single-cell multiomic analysis. Created 
using BioRender.com. 
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Seurat methodology (v4; (234)). Differences between S and G2/M cell cycle 
phase-related gene expression were regressed out of the data followed by mRNA 
expression-based principal component analysis (PCA), clustering and 
visualization using uniform manifold approximation and projection (UMAP). 
This methodology effectively reduces the dimensionality of the multiomic data 
and enables clustering and two-dimensional visualization of transcriptional 
similarity between cells. 

STATISTICAL METHODS 
In papers I and II, the logrank test was used to assess survival distribution 
differences between patient groups. Multivariable analyses were performed by 
Cox regression on covariates with p values below 0.1 in univariable analyses using 
SPSS Statistics (IBM). Analyses of aspects of induction chemotherapy and 
karyotype in relation to survival outcomes were performed post hoc. 

In papers III and IV, differences in single-cell gene and protein expression were 
assessed by the non-parametric Wilcoxon Rank Sum test, only considering 
genes/proteins expressed in at least 25% of the cells in each group and filtering 
out |log2FC| values below 0.25. In analyses evaluating differential expression of 
the full set of genes/proteins, p values were adjusted for multiple testing using 
the Bonferroni method. The unpaired Mann-Whitney test was employed for 
unpaired comparisons of cell type proportions, and the paired Wilcoxon test for 
corresponding analyses in paired PBMC and BM MNC data (paper IV). 

In paper III, The Pearson correlation coefficient was used to assess correlation 
between expressional patterns in the K562 cell line before and after changing the 
RT procedure to allow for BCR-ABL1 detection. 

In all analyses, two-tailed p values below 0.05 were considered significant. 
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RESULTS AND DISCUSSION 
This thesis comprises data from four papers focusing on aspects of targeting 
residual malignant cells in myeloid leukemia. In the first two papers, retrospective 
analyses of HDC/IL-2 clinical trial data were carried out to identify AML patient 
groups where this treatment may allow the eradication of residual leukemia in the 
post-chemotherapy phase. For the other two papers, with focus on CML, we set 
out to provide a multiomic characterization of the stem and progenitor cell 
compartment that is believed to hold the treatment-resistant leukemic stem cells. 

SUBGROUP EFFICACY OF HDC/IL-2 IN AML 
In recent decades, the increased recognition of disease heterogeneity has birthed 
the concept of precision medicine; that each individual should receive treatment 
tailored to their specific disease risk and/or predicted response (235). In AML, 
disease and patient heterogeneity is present at many levels; from the genetic 
makeup and morphology of the leukemic cells to individual treatment responses 
and factors affecting treatment tolerability, such as age and underlying 
comorbidities. In line with this, several drugs targeted to specific populations of 
AML patients have been released in recent years (236). While the definition of 
target populations is relatively straight-forward for some therapies (e.g. first and 
later generation FLT3 inhibitors for patients carrying FLT3 mutations), patient 
selection for optimal therapeutic benefit is more challenging for others. AML 
maintenance treatment with HDC/IL-2 is an example of the latter. A therapy that 
aims to stimulate immune eradication of the leukemic clone does not have an 
inherent target population per se. Instead, clinical experience may be used to 
identify patient groups of primary interest. In its phase III trial, HDC/IL-2 was 
assessed in a wide group of patients, comprising adults in first or subsequent CR, 
not eligible for allo-hSCT. The trial met the primary endpoint of improved LFS 
across all included patients, with pronounced efficacy for patients in CR1 (the 
current indication) and in patients below the age of 60 (Figure 4; (7)). The best 
responder group was later further refined by post hoc analysis to patients carrying 
leukemic cells of monocytic morphology, i.e. AML FAB M4/M5 (135), which is 
the recommended target group for HDC/IL-2 treatment in the Swedish AML 
treatment guidelines (69). However, with the field gradually turning away from 
the FAB classification system in favor of the more prognostically relevant WHO 
and ELN systems, the identification of additional HDC/IL-2 target populations 
has become increasingly important. 

In this thesis, we aimed to define AML patient groups likely to benefit from 
relapse-preventive HDC/IL-2 treatment using current clinical parameters. To this 
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end, we performed retrospective analysis of the HDC/IL-2 phase III trial data 
under the current treatment indication (i.e. patients in first CR), focusing on 
response to initial chemotherapy (paper I) and genetic stratification relevant in 
the WHO/ELN classification era (paper II). A graphical abstract for this part of 
the thesis, including the main results, is shown in Figure 9. 

 

Figure 9. Graphical abstract of papers I and II. Created with BioRender.com. 

In paper I, we found that HDC/IL-2 treatment primarily benefitted the group 
of patients achieving complete remission after one cycle of induction 
chemotherapy, but not those requiring ≥2 induction courses. Other 
contemporary studies support the importance of fast achievement of CR upon 
initial chemotherapy for AML outcomes (96,97), as well as for the outcome of 
allo-hSCT (237). There is also data supporting that rapid clearance of circulating 
blasts during initial treatment produces superior outcomes (238), collectively 
indicating that the chemosensitivity of the leukemic clone carries prognostic 
importance in AML. It is tempting to derive that efficient initial therapeutic 
reduction of malignant cells may be indicative of the amount of residual leukemia 
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present at the end of chemotherapy, when higher levels (as reflected by detection 
of minimal residual disease, MRD) are known predictors of poor survival 
outcomes (239). Since both HDC/IL-2 treatment and allo-hSCT are believed to 
rely on immune-mediated clearance of leukemic cells, a higher level of residual 
disease at treatment onset may shift the balance in favor of the leukemia, 
overwhelming the immune system and thwarting the treatments’ relapse-
preventive effects.  

In paper II, the analysis revealed pronounced efficacy of HDC/IL-2 in patients 
with normal karyotype AML. As 65% of these patients carry mutations in NPM1 
and/or FLT3-ITD (240), the magnitude of the observed treatment effect spoke 
in favor of efficacy in patients with at least one of these aberrations. Dating back 
to the turn of the century, the phase III trial did not have genotyping data enabling 
correlation between treatment outcome and specific genetic lesions other than 
karyotype. However, using data from the subsequent single-armed phase IV 
Re:Mission trial, we concluded that treatment efficacy likely comprises patients 
with NPM1 mutations, but not those carrying FLT3-ITD (alone or in parallel with 
NPM1 mutation) (Figure 10).  

 

Figure 10. Outcome of HDC/IL-2-treated normal karyotype AML patients with NPM1 mutation 
(NPM1mut) or FLT3-ITD in the single-armed phase IV Re:Mission trial. Created with 
BioRender.com. 

While administration of relapse-preventive treatment with HDC/IL-2 to patients 
with NPM1 mutation without concurrent FLT3-ITD may be more clinically 
relevant today than the previous FAB M4/M5 recommendation, the two may in 
fact be related. Among patients with M4/M5 AML, 77-90% reportedly carry 
NPM1 mutations (241). The observed efficacy in this group of patients may thus, 
as previously discussed, relate to the leukemic phenotype, where direct inhibition 
of immunosuppressive ROS production (135) and maturation effects (138) may 
help explain the relapse-preventive effects of HDC/IL-2. In addition, patients 
with NPM1 mutations are reportedly less likely to require more than one 
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induction chemotherapy cycle to achieve CR (97), possibly providing a bridge 
between the findings in papers I and II. 

In both studies, the relapse-preventive efficacy of HDC/IL-2 was most 
pronounced in patients below 60 years of age. Although the reasons for this are 
not clear, one might speculate that the older patient group, due to tolerability 
concerns, may have received less intensive chemotherapy regimens, which in turn 
may have resulted in higher levels of residual leukemia at HDC/IL-2 treatment 
start. As mutations accumulate throughout life, it is also possible that there are 
differences in the underlying mutational profiles of the leukemic clones, which 
may entail a higher number of known or unknown intermediate or adverse risk 
aberrations in the older patients. Without genotyping data for the phase III trial 
patients this is, however, difficult to assess. Future studies may provide further 
insight into whether there are specific patient groups also above 60 years that may 
benefit from maintenance treatment with HDC/IL-2. 

Taken together, the results from papers I and II support that relapse kinetics, 
e.g. affected by mutations in the leukemic clone and/or residual leukemia at 
treatment start, may impact on the efficacy of HDC/IL-2 in AML. Hence, less 
aggressive disease among normal karyotype patients (e.g. reflected by NPM1 
mutation without concurrent FLT3-ITD, or by a more chemosensitive leukemic 
clone) might give the immune system a better chance to, bolstered by the 
immunostimulatory efficacy of HDC/IL-2, eradicate residual leukemic cells and 
prevent relapse in the post-chemotherapy phase of AML. If so, future 
improvements to frontline AML therapy enabling reduced disease burden post 
consolidation therapy may allow HDC/IL-2 efficacy in a wider, yet distinct, group 
of patients. 
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MULTIOMIC CHARACTERIZATION OF CML SPC 
CML has transformed from being an almost invariably fatal leukemia into a largely 
controllable chronic disease with most patients now approaching a normal life 
expectancy (5). However, TKI resistance, intolerance and blast crisis progression 
remain matters of concern, and due to the persistence of TKI-resistant LSC, only 
a subgroup of patients may discontinue TKI treatment without ensuing leukemic 
relapse. Therefore, an increased understanding of the TKI-eluding LSC 
population may pave the way to the development of targeted treatment options, 
potentially curing CML once and for all. 
 
Since progressive alterations to gene expression in progenitor cells are associated 
with maturation into distinct hematopoietic lineages, single-cell RNAseq 
(scRNAseq) approaches are ideally suited for assessment of heterogeneity as well 
as differentiation patterns within healthy and leukemic bone marrow. As 
illustrated by Warfvinge et al. in 2017 (232), the traditionally defined 
CD34+CD38−/low LSC compartment in CML houses significant heterogeneity in 
terms of cell types, suggesting that a redefinition of the LSC phenotype may be 
needed. However, due to low engraftment rates of primary CML samples in 
immunodeficient mice (57), the golden standard definition of HSC/LSC has been 
problematic, thus complicating the identification of CML LSC cell surface 
markers. For this type of analysis, scRNAseq approaches that involve parallel 
protein expression analysis (multiomics) are promising, as they provide a bridge 
between the transcriptional profile and surface protein expression of individual 
cells. Multiomic analysis of the CD34+ stem and progenitor cell (SPC) 
compartment in CML may thus allow transcriptional back-tracing from more 
mature progenitors to a common ancestor (likely comprising the LSC), which 
through the paired protein expression data could be prospectively isolated and 
functionally characterized by traditional approaches.  
 
This thesis comprises a detailed single-cell multiomic characterization of the 
CD34+ CML SPC compartment at diagnosis, which was compared to those 
present during TKI treatment and in healthy BM in hopes of providing further 
insight that may ultimately help target the LSC population. In paper III, a method 
allowing parallel detection of single-cell BCR-ABL1 expression was developed 
and used together with the multiomic data to characterize the CML BM SPC 
compartment in general, and the LSC in particular. In further studies (paper IV), 
we assessed the impact of cytoreductive hydroxyurea treatment on diagnosis CML 
SPC. The workflow for the multiomic analyses presented in papers III and IV 
is shown in Figure 11. 
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Figure 11. Multiomic analysis workflow. Created with BioRender.com. 

Concurrent high-throughput 3’ end capture-based scRNAseq approaches are 
typically not compatible with detection of BCR-ABL1 expression, as they rely on 
identification of transcripts through sequences relatively close to the mRNA poly-
A tail. For BCR-ABL1 transcripts, this sequence is shared with ABL1 transcripts, 
thus preventing their conclusive identification. In order to distinguish between 
healthy and leukemic cells within the CML BM, we thus adapted a previously 
described method (242) to bring the unique fusion point of the BCR-ABL1 
transcript closer to the poly-A tail and cell label, allowing identification of 
transcripts as well as their cell of origin in subsequent sequencing analysis. As 
illustrated in Figure 12, the adapted method involved a series of PCR reactions 
and PCR product circularizations, ultimately resulting in a shortened BCR-ABL1 
fragment compatible with short-read sequencing of the BCR-ABL1 fusion point. 
In subsequent multiomic data analysis, the identification of BCR-ABL1-positive 
cells successfully distinguished healthy and leukemic stem cell clusters, thus 
providing additional support to our LSC classification. 
 
In the first part of paper III, we assessed the cell type composition of the CD34+ 
BM SPC compartment in 16 CML patients at diagnosis, and observed a distinct 
myeloid bias, with most patients displaying unproportionally high percentages of 
erythroid and relatively immature myeloid-biased progenitors, and lower 
proportions of HSC and lymphoid progenitors, compared with healthy SPC. This 
agrees with previous scRT-qPCR-based findings from the CD34+CD38−/low 
compartment, which indicated relatively high proportions of certain myeloid and 
megakaryocyte/erythroid progenitors, but lower proportions of immature and 
lymphoid cells within the BCR-ABL1+ fraction of the CML BM (232). In our 
analysis, the proportions to a higher degree resembled those of healthy BM after 
three months of TKI treatment, likely reflecting the recovering healthy 
hematopoiesis in well-responding patients.  
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Figure 12. BCR-ABL1 sequencing library preparation. An overview of the method developed for 
detection of BCR-ABL1 expression in cells with paired multiomic data in paper III. Circularization 
reactions relied on ligation of complementary PCR product ends. Sequencing adapters are shown 
in red and orange. UMI: unique molecular identifier. Created with BioRender.com. 

As an add-on, the analysis of the CD34+ compartment at CML diagnosis 
challenged the relatively recent scRNAseq-based model of hematopoiesis 
comprising an early bifurcation of lympho-myeloid and megakaryocytic-erythroid 
(Meg/Er) progenitors (33–35). While we did observe this early divergence in our 
analysis of healthy BM samples, the cell clustering patterns from the CML SPC 
compartment instead implied that differentiation to Meg/Er and other myeloid 
progenitors may occur through an immature common myeloid progenitor (Figure 
13), as described in the original immunophenotype-based hematopoiesis models 
(Figure 1). In view of the current struggle to reconcile the immunophenotypically 
and transcriptionally defined hematopoiesis models, our findings thus point to 
the possibility that both models may have merit, and that specific differentiation 
patterns may depend on the conditions and cell types present within the individual 
bone marrow. 
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Figure 12. BCR-ABL1 sequencing library preparation. An overview of the method developed for 
detection of BCR-ABL1 expression in cells with paired multiomic data in paper III. Circularization 
reactions relied on ligation of complementary PCR product ends. Sequencing adapters are shown 
in red and orange. UMI: unique molecular identifier. Created with BioRender.com. 

As an add-on, the analysis of the CD34+ compartment at CML diagnosis 
challenged the relatively recent scRNAseq-based model of hematopoiesis 
comprising an early bifurcation of lympho-myeloid and megakaryocytic-erythroid 
(Meg/Er) progenitors (33–35). While we did observe this early divergence in our 
analysis of healthy BM samples, the cell clustering patterns from the CML SPC 
compartment instead implied that differentiation to Meg/Er and other myeloid 
progenitors may occur through an immature common myeloid progenitor (Figure 
13), as described in the original immunophenotype-based hematopoiesis models 
(Figure 1). In view of the current struggle to reconcile the immunophenotypically 
and transcriptionally defined hematopoiesis models, our findings thus point to 
the possibility that both models may have merit, and that specific differentiation 
patterns may depend on the conditions and cell types present within the individual 
bone marrow. 
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Figure 13. Healthy vs CML scRNAseq-based differentiation patterns. Hematopoiesis in CML 
seemingly progresses through an immature common myeloid progenitor population, generating 
large numbers of myeloid progenitors but little lymphoid output (as indicated by dashed arrows in 
the figure). Created with BioRender.com. 

To achieve better resolution for analysis of CML LSC, we next turned our 
attention to the traditionally defined CD34+CD38−/low CML LSC compartment 
through multiomic protein expression-based cell gating. In line with a previous 
report (232), we found substantial heterogeneity within the CD34+CD38−/low 
compartment at CML diagnosis, albeit with a similar myeloid bias as that 
previously observed within the CD34+ compartment. Arguably, the heterogeneity 
may have been lower with a stricter gate for CD38-negative cells, as the 
subsequently identified LSC (and HSC) were found to have the lowest CD38 
expression within this compartment. This highlights the problems associated with 
bulk characterization of CD34+CD38−/low CML “LSC”, and the benefit provided 
by multiomic single-cell analysis. Using the multiomic data, we were able to 
identify the most immature subgroups of cells and focus our downstream analysis 
on these despite the generous CD38 gate, which would not have been possible in 
bulk analyses. Compared to the CML CD34+CD38−/low compartment, the healthy 
counterpart was found to be less heterogeneous and contain a higher proportion 
of immature cells, thus skewing bulk data comparisons between CD34+CD38−/low 
“HSC” and “LSC” even further. Hence, our data argue in favor of the use of strict 
gates for CD38 negativity when performing bulk analysis of CML LSC, and 
additionally identifies this as a factor that should be considered in the 
interpretation of previously obtained data. 
 
In combined analysis of CD34+CD38−/low cells from healthy, CML diagnosis and 
TKI follow-up samples, we identified four groups of cells displaying the 
traditional CD45RA−CD90+ HSC phenotype; two of which were found in healthy 
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BM and two that were not. Unlike the two populations of cells found in the 
healthy BM (HSC-I and HSC-II), those exclusive to the CML BM were found to 
express BCR-ABL1 as well as the previously reported LSC markers CD25 and 
CD26, thus rendering it likely that these cell populations comprised the LSC. Out 
of the two LSC populations, one (LSC-I) matched the quiescent and 
CD45RA−cKIT−CD26+ phenotype of cells previously described to persist during 
TKI treatment (232), whereas the other displayed a transcriptional profile 
bioinformatically associated with actively cycling cells (cells in G2, M or S phase 
of the cell cycle). In differential expression analyses between the presumably 
clinically relevant LSC-I population and HSC within healthy or CML BM, we 
identified previously unreported significant upregulations of von Willebrand 
factor (VWF) and the protein TIM3. Our findings additionally supported the 
previously reported downregulation of CXCR4 in CML LSC compared with their 
healthy counterparts (228). However, also HSC within the CML diagnosis BM 
displayed abnormally low CXCR4 expression. Furthermore, the HSC CXCR4 
expression was seemingly not normalized by TKI treatment, potentially indicating 
some lasting, BCR-ABL1 kinase independent effect on healthy cells within the 
CML BM. Figure 14 shows an overview of some of the results from the 
differential expression analyses. 
 

 

Figure 14. Healthy and leukemic stem cell populations and markers identified in the multiomic 
analysis. Dashed lines indicate lower expression level. Created with BioRender.com. 

Previous studies implicate both VWF and TIM3 in myeloid-biased 
differentiation. VWF expression reportedly marks a subset of HSC 
predominantly producing myeloid output upon transplantation to mice (243,244), 
and TIM3 has been identified as a pan-myeloid marker in a recent multiomic 
single-cell analysis of the healthy CD34+ HSPC compartment (35). Although little 
is known regarding these markers in the context of CML LSC, TIM3 has been 
reported to distinguish AML LSC from healthy HSC (245,246).  In AML, TIM3 
is reportedly involved in an autocrine loop supporting LSC self-renewal (247), 
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and has been explored as a therapeutic target for specific killing of AML LSC in 
preclinical and clinical trials (245,248). In a healthy context, TIM3 plays a role in 
immune regulation. Pertaining to this, a recent report by Irani et al. suggested that 
high expression of TIM3 on T cells at TKI cessation was associated with high risk 
of molecular recurrence in CML (249). The authors additionally reported 
upregulation of TIM3 gene expression in the CML LSC population using publicly 
available datasets and concluded that TIM3 targeting may carry dual efficacy in 
improving immune function as well as directly targeting the CML LSC to improve 
TFR rates upon TKI treatment cessation. In confirming consistent TIM3 CML 
LSC expression at the protein level, paper III thus supports and extends the 
aforementioned findings. 

All in all, the results presented in paper III support the view of CML 
hematopoiesis as deriving from a relatively quiescent population of cells that 
carries a CD34+CD38−/lowCD45RA−cKIT−CD26+TIM3+ phenotype, expresses 
VWF, and sits at the top of a differentiation trajectory of myeloid-biased leukemic 
progenitors within the CD34+ and CD34+CD38−/low compartments in the CML 
BM. Together with the previous report from Warfvinge et al. and studies reporting 
CD26 as an LSC marker in CML (200,232,250), our results additionally call to 
question whether the current CD34+CD38−/low immunophenotype of CML LSC 
should be redefined to achieve higher specificity. 

Although hydroxyurea (HU) is no longer indispensable in therapeutic 
management of CML, it is frequently used to reduce abnormally high white blood 
cell or platelet counts and reduce the risk of leukostasis prior to definitive 
diagnosis. Data from the pre-TKI era indicate that HU does not significantly 
affect the course of disease in CML (146,161), arguing against the drug being able 
to target or eradicate LSC. However, a detailed scRNAseq characterization of the 
effects of hydroxyurea on the CML SPC compartment had not been performed 
prior to the studies presented in paper IV. Since only a proportion of patients 
receive HU treatment, and since diagnosis samples for research purposes may be 
obtained prior to or after initial hydroxyurea treatment, potential effects on cell 
type proportions or the LSC phenotype may be of relevance for studies 
addressing heterogeneity within the SPC compartment at CML diagnosis. 

By studying flow cytometric and multiomic data from paired blood samples 
obtained before and after HU treatment, as well as unpaired BM samples from 
HU-treated or -naïve patients (awaiting HU treatment), we found multiple HU-
related effects, largely summarized in Figure 15. While HU treatment tended to 
reduce the proportion of CD34+ cells among MNC in blood and BM, it resulted 
in a significant reduction in the proportion of CD38−/low cells within the CD34+ 
BM compartment, likely reflecting the treatment’s cytostatic effects. In studies of 
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the entire CD34+ compartment, both paired and unpaired multiomic analyses 
indicated enhanced proportions of relatively mature hemoglobin-expressing 
erythroid progenitors, which in line with previous reports may be the result of 
HU-mediated induction of nitric oxide, leading to activation of cyclic guanine 
monophosphate signaling and hemoglobin synthesis in erythroid cells (251).  

 

Figure 15. Effects of hydroxyurea treatment on the CD34+ SPC compartment at CML diagnosis. 
Created with BioRender.com. 

The HU-treated CML SPC compartment was found to contain higher levels of 
cell subsets with proliferative S/G2/M phase-related gene expression than its 
treatment-naïve counterpart, which may seem counterintuitive. However, as a 
major effect of HU treatment is a reduction in the availability of dNTPs (175), 
the increased proportions of cells in S/G2/M phase may be indicative of higher 
numbers of cells arrested in, or progressing slowly through, the DNA-replicating 
S phase of the cell cycle. We observed this effect on all levels of the leukemic 
hierarchy, from more mature erythroid progenitors to relatively immature myeloid 
progenitors, and even within the LSC compartment, where HU treatment was 
found to increase the proportion of the S/G2/M-associated LSC-II population 
and decrease the proportion of LSC-I. These results thus imply that the 
cytoreductive effects of HU in CML involve leukemic cells at all SPC maturation 
levels. 

In paper III, analysis of LSC proportions versus TKI treatment outcome 
indicated that patients who required highly potent ponatinib treatment to achieve 
CCyR had significantly higher proportions of LSC-II in their diagnosis BM 
samples, which we concluded may be indicative of a more proliferative LSC clone. 
However, this was complicated by the above-mentioned findings from paper IV, 
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suggesting that the LSC-II proportions may be increased by hydroxyurea 
treatment prior to sampling. Both of the ponatinib-treated patients had indeed 
received HU prior to BM aspiration, but we did not observe a correlation between 
time on HU treatment and the proportion of LSC-II among HU-treated patients. 
A higher proportion of LSC-II cells may thus still be indicative of a more 
proliferative LSC clone, as an increasing number of dividing cells involves 
increased proportions of cells that may end up progressing slowly through, or 
arrested in, the S phase during HU treatment. 

In a final analysis addressing the LSC-I compartment, we performed differential 
expression analyses between LSC-I from paired blood samples obtained before 
and after HU treatment, as well as from paired blood and BM samples. These 
analyses did not reveal any significant impact on the LSC-I following HU 
treatment or depending on whether they had been obtained from blood or BM. 
In line with the pre-TKI data these results thus suggest that the most primitive, 
presumably mainly un-dividing, LSC-I population is unlikely to be affected by HU 
treatment. In addition, peripheral blood may be a valid alternative to BM for 
transcriptional, proteomic, or functional characterization of the LSC population 
at CML diagnosis. 
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CONCLUDING REMARKS 
This thesis aimed at contributing to the understanding of aspects of importance 
for targeting leukemic cells that are left behind following conventional therapy in 
acute and chronic myeloid leukemia.  

Based on current clinically relevant parameters, papers I and II focused on the 
identification of AML patient groups who might benefit from relapse-preventive 
HDC/IL-2 maintenance treatment for the eradication of leukemic cells escaping 
chemotherapy. Taken together, the results suggest that younger patients (<60 
years) with chemosensitive AML of normal karyotype (without FLT3-ITD) may 
be considered for this therapeutic regimen.  

Importantly, many patients within this new potential indication currently do not 
have other viable options for remission maintenance in the post-chemotherapy 
phase. Younger patients carrying NPM1 mutation without FLT3-ITD in a normal 
karyotype context are e.g. not eligible for FLT3 inhibitor or oral azacitidine 
maintenance treatment due to their mutational profile and age, respectively. In 
addition, they are classified as favorable risk AML in the ELN 2022 risk 
stratification (92), and are as such typically not candidates for upfront allo-hSCT 
based on the risk-to-benefit analysis (in view of allo-hSCT-related morbidity and 
mortality). However, the long-term overall survival among patients with 
cytogenetically normal AML with NPM1 mutations is in the range of 50% (84), 
highlighting the importance of remission maintenance also in patients of 
comparatively favorable risk.  

In a subgroup of patients, HDC/IL-2 thus seems to fulfill an unmet need of 
relapse-prevention in the post-chemotherapy phase. However, the post hoc nature 
of the results presented should be emphasized, and future studies evaluating the 
efficacy of HDC/IL-2 in patient populations indicated in this thesis are 
warranted. Ideally, such studies would include a relevant control group and 
sequential MRD measurement to assess the impact of residual disease levels at 
treatment start and/or whether these cells can be removed by the 
immunotherapy. 

In papers III and IV, we characterized the CML stem and progenitor 
compartment by multiomic analysis paired with BCR-ABL1 expression detection 
at the single-cell level, to provide increased knowledge pertaining to the TKI-
eluding LSC. The results in paper III indicated significant heterogeneity within 
the traditional CML LSC compartment, suggesting that the phenotypical 
definition of LSC as CD34+CD38− cells may need revision. Notably, the method 
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set up for parallel detection of BCR-ABL1 expression allowed distinction between 
leukemic and healthy cell populations within the CML BM, providing important 
support to our LSC identification. In line with a previous report, the LSC were 
found to display a CD34+CD38−/lowCD45RA−cKIT−CD26+ phenotype. 

Within the LSC population, the analysis additionally revealed previously 
unreported upregulations of VWF and TIM3. These have both been associated 
with myeloid cell differentiation and may thus be implicated in the myeloid bias 
observed among SPC as well as in more mature compartments in CML. However, 
whether VWF and TIM3 are driving or passengers in the myeloid-biased 
differentiation remains to be explored. In addition, while the 
CD34+CD38−/lowCD45RA−cKIT−CD26+ LSC phenotype reportedly persists 
during TKI treatment (232), it is currently not known whether VWF or TIM3 
expression is BCR-ABL1-dependent and as such would be affected by TKI 
treatment. Further studies are thus required to confirm and extend these findings. 
However, since TIM3 is a surface receptor, it may be included in FACS-based 
phenotypic identification of CML LSC. 

In paper IV, multiomic characterization of the CML blood and BM SPC 
compartments before and after HU treatment revealed proportional shifts 
involving increased numbers of cells of different maturation levels and lineage 
displaying S/G2/M phase transcriptional patterns, presumably representing cells 
arrested in the S phase of the cell cycle. The observed proportional shifts imply 
that previous HU treatment is a factor that may be considered in the analysis of 
future studies addressing the CML SPC compartment at diagnosis.  

In contrast, the expression pattern of the relatively quiescent LSC-I population 
was seemingly unaffected by HU, which may explain why the treatment does not 
alter the course of disease in CML. Finally, our results did not indicate substantial 
differences between blood and BM CD34+ cell type proportions or LSC 
expression patterns, implying that the two sample sources may be used 
interchangeably in future LSC characterization studies. 
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In paper IV, multiomic characterization of the CML blood and BM SPC 
compartments before and after HU treatment revealed proportional shifts 
involving increased numbers of cells of different maturation levels and lineage 
displaying S/G2/M phase transcriptional patterns, presumably representing cells 
arrested in the S phase of the cell cycle. The observed proportional shifts imply 
that previous HU treatment is a factor that may be considered in the analysis of 
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In contrast, the expression pattern of the relatively quiescent LSC-I population 
was seemingly unaffected by HU, which may explain why the treatment does not 
alter the course of disease in CML. Finally, our results did not indicate substantial 
differences between blood and BM CD34+ cell type proportions or LSC 
expression patterns, implying that the two sample sources may be used 
interchangeably in future LSC characterization studies. 
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