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“Two little mice fell into a 
bucket of cream. The first 
mouse quickly gave up and 
drowned.  

The second mouse, wouldn’t 
quit. He struggled so hard 
that eventually he churned 
that cream into butter and 
crawled out. Gentlemen, as of 
this moment, I am that second 
mouse.” 

Frank Abagnale 
Catch Me If You Can (2002) 
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Abstract 
Improved radionuclide therapy of neuroblastoma 

Preclinical evaluation of 177Lu-labeled somatostatin analogs 

Arman Romiani 
Department of Medical Radiation Sciences, Institute of Clinical Sciences 

Sahlgrenska Center for Cancer Research, Sahlgrenska Academy  
at University of Gothenburg, Sweden 

Today, about half of the children diagnosed with high-risk neuroblastoma 
(HR-NB) survive due to considerable treatment improvements during the 
last decades. However, there is still much to be done for the other half who 
are not cured with current treatments. In addition, children with HR-NB 
often have metastatic spread at diagnosis, requiring systemic treatment.  

HR-NBs have some specific biological characteristics that can be targeted 
for treatment systemically. For example, ALK encodes for the anaplastic 
lymphoma kinase receptor found mutated in about 15% of HR-NBs. 
Another example is somatostatin receptors (SSTRs), expressed between 
60-90% in all NBs. These SSTRs can be targeted with 177Lu-labeled 
somatostatin analogs (e.g., 177Lu-octreotate and 177Lu-octreotide). In 
addition, patients with SSTR-overexpressing gastroenteropancreatic 
neuroendocrine tumors (NETs) are treated with 177Lu-octreotate. 
However, the usefulness of 177Lu-labeled somatostatin analogs in HR-NB 
patients has yet to be thoroughly investigated.  

The aim of this work was to evaluate the therapeutic usefulness of 
177Lu-labeled somatostatin analogs from studies on HR-NB cell lines and 
HR-NB xenograft mouse models.  

Experiments performed on two different HR-NB cell lines demonstrated 
high specific binding and internalization of 177Lu-octreotate compared to 
other cell lines of various tumor types. This led to further studies in mouse 
models. NB-bearing BALB/c nude mice were administered different 
amounts of 177Lu-octreotate or 177Lu-octreotide, and the biodistribution 
was studied in various tissues. Biodistribution data analysis 
demonstrated a relatively high tumor uptake in all three investigated HR-
NB mouse models compared with similar studies in other NET mouse 
models, both for 177Lu-octreotate and 177Lu-octreotide. Dosimetric 
estimations showed high absorbed dose to tumor tissue. 
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Subsequent studies included various treatment regimens. In these 
studies, curative amounts of 177Lu-octreotate or 177Lu-octreotide were 
administered as single injections, fractionated, or combined with the ALK-
inhibitor lorlatinib. Therapeutic effects were determined from tumor 
volume measurements. In addition, the transcriptional response of specific 
genes involved in apoptosis was studied using qPCR. Despite high uptake 
and absorbed dose to tumor, treatment with single injections of 177Lu-
octreotate or 177Lu-octreotide led to modest therapeutic effects, where 
177Lu-octreotide caused a more substantial anti-tumor effect. In addition, 
fractionation with 177Lu-octreotate resulted in prolonged survival. 
However, a synergistic effect was observed when combining lorlatinib and 
177Lu-octreotide for the tumor with ALK mutation. The combination 
treatment also led to an elevated apoptotic transcriptional response.  

In summary, this thesis demonstrates that 177Lu-labeled somatostatin 
analogs can be beneficial in the treatment of patients with disseminated 
HR-NBs overexpressing SSTRs. However, since many HR-NBs may have 
specific mutations or amplifications, a combination with other drugs (e.g., 
lorlatinib) might be needed to overcome potential radioresistance and to 
enhance the anti-tumor effects.  

Keywords 

Peptide receptor radionuclide therapy, somatostatin receptors, 
neuroblastoma, internalization, biodistribution, dosimetry, apoptosis, 
gene expression, lorlatinib 
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Populärvetenskaplig 
sammanfattning 

Idag överlever ungefär hälften av de barn som diagnostiserats med hög-
risk neuroblastom (HR-NB). Betydande förbättringar gällande deras 
behandling har skett under de senaste årtiondena. Dock finns det 
fortfarande mycket kvar att göra för den andra hälften av barnen som inte 
botas med de nuvarande behandlingarna. Vid diagnos har oftast 
sjukdomen spridit sig, vilket kräver en systemisk behandling, som ger 
möjligheten att nå tumörceller oberoende av var de befinner sig i kroppen. 
Eftersom HR-NB celler har en stor mängd av somatostatin-receptorer 
(SSTR) på sin yta, så kan dessa celler angripas med hjälp av 
tumörsökande substanser, som binder till SSTR. Om man kopplar på ett 
radioaktivt ämne, exempelvis 177Lu, på den tumörsökande substansen, så 
har man ett radioaktivt läkemedel. Det radioaktiva läkemedlet kan 
injiceras i blodet och kommer kunna söka upp spridda tumörceller i 
kroppen, och bestråla dem på nära avstånd. I detta arbete har två olika 
radioaktiva läkemedel använts, 177Lu-oktreotat och 177Lu-oktreotid, och 
båda binder bra till SSTR. Idag använts 177Lu-oktreotat för behandling av 
patienter med så kallade neuroendokrina tumörer i mag-tarm-kanalen, i 
de fall då tumörerna uttrycker tillräckligt med SSTR.  

Kan dessa radioaktiva läkemedel användas för behandling av barn med 
HR-NB? 

Det är denna frågeställning som lagt grunden för avhandlingen. För att 
kunna svara på den frågan har ett flertal studier genomförts pre-kliniskt, 
vilket innefattar studier utförda på mänskliga HR-NB celler och på möss 
bärandes på mänskligt HR-NB. Det övergripande målet har varit att 
utvärdera möjligheten av denna nya typ av behandling.  

Experimenten utfördes på två olika HR-NB cellinjer för att undersöka om 
det finns ett specifikt upptag av 177Lu-oktreotat. Dessa experiment 
påvisade ett specifikt upptag av 177Lu-oktreotat i de studerade HR-NB 
cellinjerna. Fortsatta experiment genomfördes på tre olika musmodeller. 
I dessa musmodeller injicerades olika mängder av 177Lu-oktreotat eller 
177Lu-oktreotid, för att sedan studera hur det radioaktiva läkemedlet 
spridit sig till olika vävnader. Här kunde relativt höga upptag av de 
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radioaktiva ämnena detekteras i tumörvävnaden i förhållande till de 
andra vävnaderna i musmodellerna. Efterföljande studier inriktade sig 
mer åt terapieffekter med olika behandlingssätt. I dessa studier 
injicerades större mängder 177Lu-oktreotat eller 177Lu-oktreotid som 
enstaka injektioner, eller som ett flertal injektioner (fraktioner) eller i 
kombination med ett annat läkemedel (lorlatinib). Trots det relativt höga 
upptaget i tumörvävnaden, ledde behandlingarna med de enstaka 
injektionerna till blygsamma terapieffekter. Däremot fick mössen som fått 
ett flertal injektioner (fraktioner) en förlängd överlevnad. Det 
behandlingssätt som gav störst terapieffekt var den när 177Lu-oktreotid 
kombinerades med läkemedlet lorlatinib.  

Sammanfattningsvis visar denna avhandling att radioaktiva läkemedel 
som binder till SSTR kan vara fördelaktiga vid behandling av patienter 
med spridd HR-NB som överuttrycker SSTR. Eftersom HR-NB oftast har 
vissa mutationer eller amplifikationer kan det dock behövas en 
kombination med andra läkemedel (t.ex. lorlatinib) för att övervinna dess 
behandlingsresistenta egenskaper för att öka terapieffekterna.   
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Background 

Peptide receptor radionuclide therapy (PRRT) is a systemic treatment 
using radiopharmaceuticals that targets peptide receptors to deliver 
localized treatment. For many neuroendocrine tumors (NETs), PRRT is a 
treatment option due to an elevated expression of somatostatin receptors 
(SSTRs) in many NET types. Through tumor-seeking agents, somatostatin 
analogs (SSTAs), bound radionuclides can be delivered to tumor cells that 
over-express SSTRs. Furthermore, depending on the choice of 
radionuclide, the tumor can be visualized, eradicated, or both. Due to these 
beneficial properties, Radiolabeled SSTAs have been implemented for 
more than 30 years to treat patients with metastatic or inoperable SSTR-
positive NETs [1]. With time, improvements have been made in PRRT 
through the development of radiopharmaceuticals and the 
characterization of biological tumor properties. As the advantages of 
PRRT have become more evident, questions have been raised about its 
usefulness for other malignancies, highlighting the need for a thorough 
analysis of the treatment as a whole and to identify possible optimization 
aspects. 

Neuroblastoma 

Neuroblastoma (NB) represents 7-9% of all tumors detected in children [2, 
3] and is one of the most frequently diagnosed tumor types in infants. NB, 
classified as a NET, is derived from primitive nerve cells in the 
sympathetic nervous system. Approximately two-thirds of the primary 
NBs are localized to the adrenal medulla [3]. In patients with 
disseminated disease, metastases are most commonly located in the 
regional lymph nodes, bone marrow, skeleton, liver, and skin [4]. NB is a 
heterogeneous malignancy with various biological characteristics and, 
thus, diverse clinical outcomes. Therefore, NB patients are divided into 
risk-assessment groups based on the localization of metastases and tumor-
specific features. Patients with high-risk NBs (HR-NB) have an overall 
survival of less than 50%, while survival rates are around 90-100% for low-
risk NB patients [2, 5, 6].  

The MYCN oncogene is amplified in approximately 20% of all NBs and is 
highly associated with aggressive NBs [4, 7, 8]. Another oncogene is the 
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anaplastic lymphoma kinase (ALK) gene, in which mutations are found in 
up to 15% of newly diagnosed HR-NB [7]. Both MYCN and ALK are thus 
useful biomarkers for NB tumor aggressiveness. Furthermore, the child´s 
age, tumor histology, 11q deletion, and DNA ploidy are used for disease 
classification (Table 1). 

An International Neuroblastoma Risk Group (INRG) Staging System was 
developed to form an unanimous approach to pre-treatment risk 
stratification. Monclair et al. introduced and recommended that the 
disease should be categorized based on diagnostic images [9]. The 
emphasis was on so-called image-defined risk factors (IDRFs), illustrating 
the tumor’s relationship to vital structures, i.e., tumors encasing parts of 
the artery, spinal cord, or trachea. In the absence of these IDRFs in 
combination with locoregional disease, a classification was made for the 
first INRG steps, L1 and L2, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

Then, stage M was stated for disseminated disease, followed by stage MS 
for metastasis to specific organs, followed by an age criterion of fewer than 
18 months (Table 1). Further, recommendations were made for a more 
standardized strategy for molecular diagnostic testing of NB tumor tissue. 

Very low risk (5-year event-free survival >85%); low risk (75-85%); intermediate risk (50-
75%); high risk (<50%). GN, ganglioneuroma; GNB, ganglioneuroblastoma; Amp, amplified; 
NA, not amplified. Table adapted from Monclair et al., Cohn et al., and Fransson [9-11]. 
*Risk factors presented in Monclair et al. [9].  

Table 1. International Neuroblastoma Risk Group (INRG) Consensus Pretreatment  

INRG 
Stage 

INRGSS 
Description 

Age 
(months) 

Histologic 
Category 

Grade of Tumor 
differentiation MYCN 11q- 

del. Ploidy  Pretreatment 
Risk Group 

L1/L2   GN maturing; 
GNB intermixed     A Very low 

L1 

Localized tumor 
not involving vital 
structures as 
defined by the list 
of image-defined 
risk factors* and 
confined to one 
body compartment 

 
Any, except 
GN maturing or 
GNB intermixed 

 NA   B Very low 

  Amp   K High 

L2 

Locoregional tumor 
with presence of 
one or more image-
defined risk factors 

<18 
Any, except  

NA 
No  D Low 

GN maturing or 
GNB intermixed  Yes  G Intermediate 

≥18 GNB nodular;  
neuroblastoma 

Differentiating NA No  E Low 
Yes  H Intermediate Poorly/underdiff. NA   

 Amp   N High 

M 
Distant metastatic 
disease (except 
stage MS) 

<18   NA  Hyperpl. F Low 
<12   NA  Diploid I Intermediate 

12-18   NA  Diploid J Intermediate 
<18   Amp   O High 
≥18      P High 

MS 

Metastatic disease 
in children 
younger than 18 
months with 
metastases 
confined to skin, 
liver, and/or bone 
marrow 

<18 

  NA No  C Very low 
  Yes  Q High 

  Amp   R High 
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Surgery alone results in favorable prognoses for patients with resectable 
low-risk NB. However, approximately 50% of children with neuroblastoma 
have metastases when the disease is diagnosed, restricting the surgical 
option [12]. For patients with HR-NB, multimodal therapy, including 
surgery, chemotherapy, external radiation therapy, radionuclide therapy, 
ALK-inhibitors, and autologous peripheral blood stem cell 
transplantation, is included [8]. Despite various treatment options, 
survival rates for HR-NB patients remain low, further emphasizing the 
need for novel treatment options.  

n-Myc 

Most malignancies possess a dysregulated transcription factor within the 
Myc family [13]. An overexpression of n-Myc has been observed in 
astrocytoma, glioblastoma, neuroendocrine prostate cancer, small-cell 
lung cancer, and neuroblastoma [5, 14-17]. Clinical data have 
demonstrated a strong correlation between MYCN amplification and the 
development of HR-NB; hence MYCN has been assessed as a biomarker to 
categorize the disease [18, 19]. MYCN plays a crucial role in many aspects 
required for malignancy to occur and to keep HR-NB cells in a stem-like 
state [5, 20, 21]. More specifically, n-Myc forms a complex with Max (a 
transcription regulator) and binds to the DNA at a specific sequence to 
activate the transcription of genes involved in, e.g., survival, proliferation, 
self-renewal, angiogenesis, and metastasis [5, 22, 23]. n-Myc/Max can also 
suppress genes that promote cell cycle arrest, differentiation, and immune 
response [5, 23]. This aligns with the fact that several studies have shown 
that NB possesses a cell population with stem-cell-like properties [24-28], 
defined as a subpopulation within the tumor that is highly malignant, 
treatment-resistant, and with the ability to self-renewal [29, 30]. In 
addition, n-Myc has also been shown to regulate NB cells towards 
radioresistance [31]. Despite the knowledge of its prominent role, there 
are currently no drugs for clinical use that can restrain or regulate the 
function of n-Myc. As for inhibiting other transcription factors, difficulty 
arises in aiming at specific targets within the nucleus instead of the cell 
membrane or in the cytoplasm [32]. One possible explanation is that 
interactions within the nucleus require cooperation between multiple low-
affinity complexes, creating a challenging path for the drug to reach the 
correct site [32]. Further, the molecular similarities of n-Myc to other Myc 
proteins is an additional challenge, since c-Myc is necessary for cell 
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division in normal tissues, the proposed drug needs to be remarkably 
selective in order to avoid toxicity in normal tissues [32, 33]. 

ALK 

ALK is a member of the insulin receptor tyrosine kinase (RTK) 
superfamily and is involved in developing the neonatal nervous system 
[34, 35]. Amplification, oncogenic mutations, or gene translocations of ALK 
have been linked to various tumor types such as non-small-cell lung cancer 
(NSCLC), anaplastic large-cell lymphoma, and NB [35]. In addition, 
altered ALK structures can lead to constitutive autophosphorylation and 
activation associated with poor clinical outcomes, present in 
approximately 15% of newly diagnosed HR-NBs [7, 36-39]. Most of the 
verified ALK mutations lead to altered ALK structures in the intracellular 
part, specifically within the kinase domain [40, 41]. In neuroblastoma, 
ALK is mainly activated through point mutations, where three hotspots 
represent approximately 85% of all ALK mutations [39]. These gain-of-
function mutations increase the ALK downstream signaling pathways, 
affecting, e.g., proliferation, angiogenesis, cell cycle arrest, and apoptosis 
[35, 41, 42]. ALK mutations correlate with MYCN amplification, and 
preclinical studies have shown their cooperation in the development of NB 
[43-45]. Additionally, ALK can induce transcription of MYCN in NB, 
indicating why NB patients with ALK mutations and MYCN amplification 
have enhanced lethality [43]. Unlike the Myc family, ALK is not as well 
distributed and expressed in normal tissue, making it a suitable target for 
treatment [34, 46, 47]. 

Significant efforts have been made in the past decades to develop ALK-
inhibitors (ALKis). ALKis bind to the ATP binding site in the tyrosine 
kinase domain, thus preventing autophosphorylation and activation of 
ALK. Categorized as the first-generation of ALKis, Crizotinib (PF-
02341066) was FDA-approved in 2011 for patients with metastatic ALK-
positive NSCLC [48]. Most patients responded initially to Crizotinib, and 
it was demonstrated that Crizotinib significantly enhanced progression-
free survival (PFS) from 3.0 to 7.7 months compared with other 
chemotherapies [49]. Unfortunately, patients later began to develop 
resistance to Crizotinib [50]. More specifically, it was demonstrated that 
specific ALK mutations led to the structural alteration within the ATP-
binding site that prevented binding to Crizotinib [50]. Guided by this 
finding, more efficient ALKis were developed, such as Ceritinib (LDK-
378), Alectinib (CH5424802), and Brigatinib (AP26113), all categorized as 
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second-generation ALKis [51-53]. Next-generation ALKis were introduced 
and they would target specific mutations identified from biopsies taken 
from ALKi-resistant patients [54, 55]. Lorlatinib (PF-06463922), 
categorized as the third-generation of ALKi, is highly potent and efficient 
against identified ALKi-resistant mutants in NSCLC and NB [56-59]. 
However, despite the encouraging results, both preclinically and clinically, 
drug resistance still remains a recurring problem. Studies have indicated 
that resistance may also arise from bypassing ALK signaling via the 
activation of other RTKs. Signaling pathways via the epidermal growth 
factor receptor (EGFR), ErbB4, and RAS have been demonstrated as 
bypassing tracks in the development of ALKi resistance [60-62]. Therefore, 
understanding the mechanisms leading to resistance is critical to 
developing better therapeutic options. This can be done by precise 
molecular characterization of ALK mutations before and during treatment 
to follow up on new mutations that may occur during treatment. In 
addition, the information from the molecular characterization can be 
applied during treatment to determine the most potent ALKi. Another 
strategy is to combine ALKis with other drugs that enhance the anti-
tumor effects, eradicating a more significant proportion of the tumor 
population and reducing the risk of relapse. 

Radiopharmaceuticals 

Prior research show that local radiotherapy of HR-NB patients led to 
promising results [63-66]. However, the heterogeneous characteristics of 
NBs make it difficult to draw general conclusions. Nevertheless, HR-NB 
is usually metastasized, thus limiting effectiveness of external beam 
radiotherapy [12]. Therefore, another approach is molecular radiotherapy, 
where radiopharmaceuticals are administered systemically and can target 
multiple sites and irradiate the tumor cells. This is possible since NB cells 
overexpress a variety of molecular targets that radiopharmaceuticals can 
pinpoint for localization and treatment.  

Targeting NATs 

Expression of noradrenaline transporters (NATs) is found in 
approximately 85-90% in all NBs, enabling the role of a molecular target 
[67]. Diagnosis and therapy using the noradrenaline analog 
metaiodobenzylguanidine (mIBG) is an already established 
radiopharmaceutical option for patients with NB. The radionuclides 123I (ɤ 
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emitter), or 131I (β- and ɤ emitter), are bound to mIBG for diagnosis and 
treatment, respectively [68]. Internalization of mIBG into NET cells can 
occur in two different ways: Most predominantly is an active process via 
NATs on the cell surface. In contrast, the other way is non-specific 
diffusion [69, 70]. For most NET cells, the intracellular distribution of 
mIBG looks similar. The mIBG is stored in neurosecretory granules (e.g., 
pheochromocytoma) [71]. However for NB cells, mIBG is also accumulated 
in the mitochondria [70, 72]. Scintigraphy using 123I-mIBG is today an 
established method for tumor localization. For tumor treatment, 131I-
mIBG gave the first successful results in the 1980s [73, 74]. 131I-mIBG 
therapy has response rates of 20-37% in patients with refractory and 
relapsed NB [75, 76]. To prevent side effects after 131I-mIBG therapy and 
intense chemotherapy, such as myelosuppression, patients may undergo 
autologous stem cell transplantation (ASCT) [77]. The need for ASCT 
depends on the intensity of the treatments. Although studies have 
demonstrated variable results for 131I-mIBG therapy versus other 
cytotoxic drugs, 131I-mIBG exists as a treatment option for HR-NB patients 
[68, 78]. 

Targeting SSTRs 

Another molecular target is SSTRs, included in the G-protein coupled 
receptor family, which enables the use of radiolabeled SSTAs. Based on 
various clinical studies where the specific uptake of radiolabeled SSTAs 
was assessed, SSTRs were expressed in approximately 60-90% of all NBs 
[79-81]. All SSTR subtypes (SSTR1-5) have been detected in NB patients. 
However, low SSTRs expression correlates with the most advanced stages 
of HR-NBs [80, 82, 83]. Receptor subtype SSTR2 is among the subtypes 
expressed more frequently and where expression also appears to persist in 
relapsed NB [82, 84]. In addition, most of the clinically available SSTAs 
have the highest affinity towards SSTR2 due to the frequent 
overexpression of this subtype also in other NETs [85, 86]. Octreotide and 
octreotate are two examples of SSTAs commonly used as receptor-binding 
carrier molecules. In comparison, the latter shows a slightly higher 
affinity towards SSTR2 and a lower affinity towards SSTR3 [85]. SSTAs 
are conjugated to a chelator, e.g., DOTA (Dodecane Tetraacetic Acid), to 
various radionuclides depending on a diagnostic or therapeutic purpose. 
For example, for diagnostic purposes, 68Ga-DOTA-octreotate, β+-emitter, 
has been developed for positron emission tomography (PET) in order to 
localize the tumor and eventual metastases. 68Ga-DOTA-octreotate may 
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be used as an adjunct diagnostic radiopharmaceutical for patients with 
NB where tumor localization is not feasible with radiolabeled mIBG [87-
89].  

For treatment, 177Lu (β- and ɤ-emitter) is commonly used due to its suitable 
physical properties [90]. The emitted particles of 177Lu can be implemented 
for diagnostics and treatment, subsequently, 177Lu decays to the stable 
ground state of 177Hf (Figure 1). The range of the emitted beta particles 
corresponds to a maximum of 1.9 mm in water, with a mean range of 0.25 
mm [91]. Thus, the emitted beta particles are well suited to eradicate 
metastatic tumors. Furthermore, the photons emitted may also be used to 
monitor the therapeutic response and for patient dosimetry. 

 

 

 
The emitted photons may be detected with single-photon emission 
computerized tomography (SPECT) (Table 2). Based on assessments of 
SPECT images, the mean absorbed dose can be estimated for the tumor 
and other organs during treatment. Radiolabeled SSTAs are accumulated 
in some organs beside the tumor. The bone marrow and the kidneys are 
the two main dose-limiting organs when planning for PRRT [93, 94]. 
Derived data from external radiotherapy has the tolerance dose of 2 Gy 

Figure 1. Simplified decay scheme of 177Lu [92]. 

Table 2. Decay data for 177Lu. 
Yields > 1% are presented [92]. 
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and 28 Gy for bone marrow and kidneys, respectively [95, 96]. However, 
studies indicate that these dose levels can be exceeded without any toxic 
effects being observed [97, 98]. As the organs at risk (OAR) limit the 
activity levels administered, and affects the treatment scheme and the 
total treatment period, it is of utmost importance that correct toxicity 
assessments are made for OAR. 

177Lu-DOTA-octreotate (Lutathera) received EMA and FDA approval in 
2017 and 2018, respectively, for SSTR-positive small intestine NETs (SI-
NETs) after demonstrating an increased PFS in a comprehensive phase 3 
trial [99]. Lutathera is administered with up to four fixed cycles of 7.4 
GBq, with 6-8 week intervals. Simultaneously, an intravenous amino acid 
solution is administered for renal protection on each occasion. Lutathera 
treatment of patients with SSTR-positive NBs has also been proposed in 
cases with high uptake of 68Ga-DOTA-octreotate, [87, 89, 100]. However, 
the few clinical studies that have been completed demonstrated variable 
results [87, 100, 101]. The hypotheses for the absence of anti-tumor effects 
are proposed to be due to undertreatment of patients and the lengthy time 
interval between the administrations (two months) [101]. This is because 
the phase II study was designed according to the guidelines for Lutathera 
treatment of patients with SI-NETs. However, unlike SI-NET, NB is 
rapidly proliferating, allowing repopulation between administrations. 
However, an ongoing phase II study addresses both of these aspects, 
aiming to personalize Lutathera treatment of patients with SSTR-positive 
NB [102]. This is planned to be achieved by optimizing the activity levels 
administered based on biokinetic data from SPECT/CT images, both 
before and during treatment, and reducing the time interval between 
treatments (2-4 weeks), while keeping the dose levels below 2.4 Gy and 23 
Gy to whole-body and kidney, respectively. 

Mechanisms of SSTRs 

The mechanisms that prevail after radiolabeled SSTA has bound to SSTRs 
are of interest to further improve and optimize treatment. The SSTAs that 
acts as agonists, e.g., octreotide and octreotate, are specifically of interest 
as after binding to SSTRs they can be internalized [103-105] (Figure 2). 
SSTR2, SSTR3, and SSTR5 are internalized via endocytosis to a greater 
extent than SSTR1 and SSTR4 [103]. In addition to a rapid internalization 
(~10 min), SSTR2 also demonstrates relatively fast recycling (~40 min) to 
the cell membrane [105]. Unlike SSTR3 and SSTR5, which undergo 
desensitization and, to some extent, degradation after internalization, 
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Figure 2. Schematic illustration of different molecular targets in a metastatic neuroblastoma 
cell. NAT, noradrenaline transporter; SSTR, somatostatin receptor; ALKi, anaplastic 
lymphoma kinase inhibitor. 

SSTR2 is resensitized upon recycling [106]. Temporarily, the internalized 
radiolabeled SSTA remains in the cell and is suggested to be transported 
into lysosomes (which also express SSTR2) to be degraded [107, 108].  

 

 

 
SSTAs that act as antagonists, e.g., JR11 and LM3, are not internalized 
after binding to SSTRs (primarily designed for SSTR2) [109, 110]. 
Numerous preclinical studies have demonstrated beneficial properties of 
antagonists both for imaging and treatment, and in recent years, clinical 
studies have also shown similar benefits [110-115]. The combination of 
higher affinity towards SSTR2, a larger population of binding sites, and 
the propensity to remain at the cell membrane leads to elevated tumor 
uptake, prolonged retention, increased tumor dose, and improved tumor-
to-organ dose ratios compared to the corresponding agonists [113, 114]. 
The favorable aspects indicate a development for using radiolabeled 
SSTAs with antagonistic properties for SSTR-positive NETs, but to date, 
none has been clinically approved. 
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Cellular responses to irradiation 

The properties of ionizing radiation have been implemented for various 
cancers since the early 1900s, aiming to eradicate cancer cells with 
ionizing radiation while restricting the damage to healthy tissue. The 
treatments have evolved through numerous developments that have 
improved radiation therapy. Consequently, our knowledge of the biological 
effects has also grown, enabling the identification of various cellular 
responses due to irradiation. In general terms, upon radiation-induced 
DNA damage, the following possibilities can occur: DNA repair, 
senescence, cell death, or the cell continues with a chromosomal anomaly 
[116, 117]. In addition, abnormal division of aneuploid cells may lead to 
genetic alterations and, thus, development and advancement of cancer 
[116, 117]. The DNA can be damaged via either direct or indirect ionizing 
radiation. In the direct effect, the ionizing radiation interacts directly with 
DNA and ionizes its polynucleotide chains. In the indirect effect, radiation 
ionizes surrounding molecules, creating reactive species and subsequently 
affecting DNA [118, 119]. There are several types of DNA damage, and the 
two more challenging damages to repair are categorized as single-strand 
breaks (SSBs) and double-strand breaks (DSBs). Irradiations with high 
linear energy transfer (LET), such as alpha particles and heavy ions, 
causes more complex DNA damage, mainly DSBs, and have a higher 
proportion of direct effects on DNA to induce cell death [120]. In contrast, 
irradiation with lower LET cause less extensive DNA damage, mainly 
SSBs, and have a more significant impact of indirect effects to cause cell 
death. These potentially lethal lesions activate DNA damage responses 
(DDRs) that guide the cell to the subsequent outcomes.  
DNA repair 

Generally, there are three repair mechanisms to correct SSBs, DNA 
mismatch repair (MMR), base excision repair (BER), and nucleotide 
excision repair (NER) [121, 122]. MMR proteins recognize and correct 
mismatched base pairs due to substitution or deletion generated during 
DNA replication [121]. Damage to one or a few base pairs is corrected by 
BER, in contrast to NER, which manages more extensive damage, a longer 
sequence than just the damaged base pairs is replaced [123, 124]. 

DSBs are more difficult to repair correctly since no template is left intact, 
in contrast to SSBs, and therefore considered potentially more toxic than 
SSBs [125]. Consequently, inducing DSBs is specifically of interest to 
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achieve enhanced tumor damage. Homologous recombination (HR) and 
non-homologous end-joining (NHEJ) are the two main DSB repair 
pathways [126]. HR uses the sequence information from the sister 
chromatid during replication to recreate the damaged and missing region, 
thus limiting its availability to the S and G2 phases of the cell cycle [126, 
127]. Contrarily, NHEJ is available during all cell cycle phases and 
"patches" the broken ends together, leading to vital information loss and 
often mutations [126, 127]. The complexity of the damage has proven to be 
decisive for the choice of the DSB repair mechanism. Complex DNA lesions 
with clusters of DSBs, created by high LET radiation, are frequently 
repaired via HR, whereas low LET-induced DSBs are not as dependent on 
HR [128].  

Some of the crucial proteins involved during the initial DDRs are the DNA-
dependent protein kinase, the catalytic subunit (DNA-PKcs), the ataxia-
telangiectasia mutated (ATM), the ataxia telangiectasia mutated and 
Rad3 related (ATR), and the poly(ADP-ribose) polymerase (PARP) family 
[129-131]. SSBs lead to activated ATR and PARP, while DSBs mainly 
initiate ATM and DNA-PKcs [129, 132]. Inhibiting DDR-proteins aims to 
enhance the effects of radiation and overcome radioresistance [133, 134]. 

Cell cycle arrest 

The eukaryotic cell cycle consists of four primary phases: growth and 
preparation for synthesis (G1), DNA replication (S), growth and 
preparation for mitosis (G2), and finally, daughter cells are formed after 
mitosis (M) [135]. In addition, a different phase, G0, exists and is 
considered a resting phase before the G1 phase and therefore regarded 
outside the main four cell cycle phases [135]. The cell cycle phase also 
defines a cell's relative radiosensitivity, with the G2-M phase being the 
most radiosensitive, less sensitive in the G1 phase, and least sensitive in 
the later part of the S phase [136]. There are distinct checkpoints that 
control the cell cycle through the different phases. The two primary 
checkpoints are between phases G1/S and G2/M, governed by specific 
proteins categorized as cyclin-dependent kinases (CDKs) [135]. The tumor 
suppressor protein p53 is crucial in regulating the G1/M checkpoint post-
irradiation. Radiation-induced DDR activates the p53 pathway via ATM, 
which initiates its target proteins, i.e., CDKs, subsequently inducing G1/S 
arrest [137, 138]. The G2/M checkpoint can be activated via ATM and ATR, 
independently of the p53 pathway [138]. Most tumor cells have altered or 
lost their p53 functions, resulting in a damaged G1/S checkpoint. 
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Therefore, DNA damage repair depends on the CDKs responsible for the 
G2/M checkpoint [139]. Otherwise, irradiated tumor cells, without correct 
p53-functions, will enter mitosis with unrepaired DNA damage, resulting 
in cell death, specifically mitotic catastrophe [140]. TP53 mutations are 
rare in NBs, and only found in approximately 2% of tumors [141]. 
However, TP53 mutations tend to be more frequent in patients with 
relapse and are associated with drug- and radioresistance [142, 143]. 

Senescence 

Senescence can occur when the telomeres are shortened to the point where 
cells no longer divide, and subsequently cells age [144, 145]. Nevertheless, 
senescence can also occur in normal and tumor cells as the irreversible 
arrest of the cell cycle upon comprehensive cellular stress caused by 
radiation [146-150]. Prior research has demonstrated the role of ATM, 
ATR, p53, and p21 as crucial mediators in senescent-like cells [151-153]. 
Even though the main focus has been on other cellular response 
mechanisms, some studies highlight the role of senescence in 
radioresistance and oncogenesis [154, 155]. For example, a preclinical 
study illustrated increased tumor growth when tumor cells were co-
cultivated with senescence-like fibroblasts [155]. Senescence is arising as 
a therapeutic target relevant to many diseases. Pro-senescent and anti-
senescent treatments display encouraging results in preclinical models, 
and clinical trials are in progress [156-158]. However, relatively little is 
known about the mechanism of the tumor microenvironment concerning 
senescence, and a broader understanding is needed to prevent induced 
radioresistance and improve radiotherapy of cancer. 

Cell death 

Cell death is a natural end-stage for every cell. Hence, one of the hallmarks 
of cancer is the incorrect functioning of relevant mechanisms involved in 
cell death [159]. Therefore, if the treatments cause cell death, to a more 
prominent extent, in tumor cells than in normal cells, there is a possibility 
of eradicating the tumor. Understanding which death mechanisms are 
activated due to radiation is essential to optimize radiotherapy. In 
addition, identifying which specific signaling pathways are activated can 
further enhance the anti-tumor effects of radiation, both alone and in 
combination with other drugs. 
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Radiation-induced cell death can generally transpire through a non-
apoptotic or an apoptotic pathway. Apoptosis is a programmed and highly 
conserved mechanism for cell death in most eukaryote cells [160]. It is 
crucial for tissue development and homeostasis [161]. The proximity of a 
well-functioning p53 is significant for the proper functioning of apoptosis 
mechanisms. Conversely, an absent or altered p53 usually leads to cell 
death via other mechanisms. Various external triggers, i.e. radiation, can 
activate apoptosis via two main pathways, the extrinsic pathway (death-
receptor-mediated) or the intrinsic pathway (mitochondria-mediated). 
Prior research has demonstrated that both apoptotic pathways can be 
activated due to irradiation [116, 162, 163]. 

The extrinsic pathway is often called the death receptor pathway and 
requires ligand-dependent activation of receptors from the tumor necrosis 
factor (TNF) receptor superfamily [160, 161]. After death ligand binding, 
caspase-8, caspase-10, and the adaptor protein Fas-associated death 
domain (FADD) are recruited, forming a death-inducing signaling 
complex. After which, the downstream effectors, caspase-3, caspase-6, and 
caspase-7 are activated via a mitochondria-dependent or a mitochondria-
independent pathway (Figure 3) [116]. Subsequently, the effectors will 
activate specific death substrates in the cytoplasm and nucleus. 
Ultimately, the cell content will be packed into apoptotic bodies and 
prepared for phagocytosis, completing the apoptotic cell death [116, 160]. 
In addition, apoptotic cells express phosphatidylserine on the cell surface, 
which signals their state to neighbor cells [160]. Post irradiation, an 
upregulation of the expression of TNF receptors has been demonstrated 
[164, 165]. 

The mitochondria act as the central regulator of the intrinsic apoptotic 
pathway. Various stimuli can trigger the intrinsic pathway, collectively 
leading to mitochondrial outer membrane permeabilization (MOMP), 
which restricts mitochondrial function. Proteins within the Bcl-2 family 
mediate MOMP. Members of the Bcl-2 family share one or more of the four 
characteristic domains of homology referred to as the Bcl-2 homology (BH) 
domains [166, 167]. Members of the Bcl-2 family are divided into three 
categories based on their BH domains and their roles, pro-, anti-apoptotic, 
and effectors [167, 168]. Pro-apoptotic members, BH3-only proteins, 
include Bad, Bid, Bik, Bim, Bmf, Noxa, Puma, and Hrk [168]. Anti-
apoptotic members include Bcl-2, Bcl2A1, Bcl-B, Bcl-W, Bcl-xL, and Mcl1. 
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Figure 3. The main steps of apoptosis signaling. Simplified and schematic illustration of the 
extrinsic and intrinsic pathway. Adapted from "Extrinsic and Intrinsic Apoptosis" by 
BioRender.com (2023). Retrieved from https//app.biorender.com/biorender-templates. 

 

 

 
The final category, the effectors, includes members Bak, Bax and BOK, 
which contain domains BH1–3 [167, 168]. The initiation of the intrinsic 
pathway depends on Bak and/or Bax activation at the outer mitochondrial 
membrane. Accordingly, activated pro-apoptotic members are necessary to 
form Bak-Bax pores in the mitochondrial outer membrane. Furthermore, 
pro-apoptotic members can either activate Bak or Bax directly, which is 
mainly the case for Bid and Bim, or inhibit anti-apoptotic proteins upon 
binding, which is the case for Bad, Bik, Hrk, Noxa, and Puma [167-169]. 
The balance between these pro- and anti-apoptotic proteins determines 
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the outcome of the apoptotic process. If the process proceeds, MOMP will 
release potentially lethal proteins from the membrane via the Bak-Bax 
pores into the cytoplasm [167, 168, 170]. One example is cytochrome c 
which, after release, associates with APAF-1 and forms so-called 
apoptosomes. The apoptosome, in turn, activates caspase-9, which 
initiates the activation of caspase-3, caspase-6, and caspase-7, which 
follows the same end-route to cell death as for the extrinsic pathway 
(Figure 3) [167, 168, 170]. 

Post irradiation, it has been demonstrated how p53 can activate the 
transcription of pro-apoptotic genes belonging to the Bcl-2 family and 
genes encoding APAF-1 and caspase-6 that are involved in the execution 
of the final phases [171-174].  

In malignancies which possess an altered p53, cell death due to irradiation 
occurs mainly via mitotic catastrophe [175, 176]. Cell death that arises 
during or as a consequence of abnormal mitosis is called a mitotic 
catastrophe, and is categorized as one of the non-apoptotic pathways of 
cell death [177]. Specifically, mitotic catastrophe may occur due to 
extensive DNA damage, problems with the mechanisms of mitosis and 
centrosome hyperamplification, or failure of checkpoints at the various cell 
cycle transitions [177-179]. In the clinic, mitotic catastrophe is considered 
the primary cell death mechanism in solid tumors due to radiotherapy. 
Compared to apoptosis, it is a delayed type of cell death, appearing days 
after treatment, which can explain the slow regression of solid tumors in 
the clinic [116, 180]. 

Another mechanism that can lead to cell death is the bystander effect, 
defined as when unirradiated cells are killed due to irradiated neighboring 
cells [181, 182]. Bystander cell killing has been studied in different types 
of cells, including tumor cells, and at various endpoints. Cells can signal 
to each other via direct cell-cell communication via gap junctions or 
extracellular cytokine signaling [182]. Extracellularly, cytokines can 
signal with specific ligands that activate the extrinsic pathways of 
apoptosis. In addition, the intrinsic pathway can also be activated via 
cytokine-mediated accumulation of, i.e., reactive species within the cell 
[182]. Several studies have observed saturation of bystander effects at 
doses lower than 1 Gy, as opposed to the direct effects, which increase with 
the dose [183, 184]. However, it has also been indicated that there may be 
a dose rate dependency regarding the bystander effects and its saturation 
[185]. 
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Chromosomal abnormality and progression 

Despite extensive DNA damage, some cells, most probably without 
accurate DNA damage checkpoints and altered p53, can progress and gain 
an increased number of aberrant chromosomes after cell division, a trait 
that tumor cells frequently possess [159]. These damages can occur due to 
radiation, where high LET radiation leads to an elevated presence of 
chromosomal abnormality than low LET radiation [186]. When a damaged 
chromosome later replicates, it can lead to, e.g., deletion, rearrangement, 
and amplification of chromosomal parts, subsequently increasing the 
mutability and genetic instability of tumor cells [187]. Subsequently, sub-
clonal and heterogenic characteristics of many human cancers, specifically 
NB, could originate from these replicates [188]. This may also partly 
explain the radioresistance in relapse cases where radiotherapy has 
primarily been successful. 

Molecular biology 

From the previous sections, it has become clear that proteins are involved 
in various mechanisms, and more specifically, their presence and 
involvement are regulated by the effects of radiation. The template for a 
protein is found as genes in the DNA of each cell nucleus. Therefore, the 
cell can initiate specific protein synthesis based on certain stimuli, 
including radiation. Briefly, DNA is transcribed into messenger RNA 
(mRNA), which crosses the nuclear membrane to the cytoplasm. Once the 
mRNA has been transported to the ribosomes, the template can be 
translated, forming amino acids in a specific order, constituting protein 
synthesis. 

The development of various methods and techniques allows one to study 
the biological impact of radiation at the molecular level. In this work, 
quantitative real-time polymerase chain reaction (qPCR) has been 
implemented for analyzing the expression of apoptosis-related genes, and 
immunohistochemical (IHC) staining has been performed to detect the 
presence of specific proteins. 

Gene expression – qPCR 

qPCR depends on fluorescence from hydrolysis probes to measure DNA 
amplification. Different techniques are applied to isolate RNA and 
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validate its purity and quality. Subsequently, RNA is converted into 
cDNA, and thereafter aliquoted to specific well assay plates depending on 
the genes of interest. The amount of a cDNA sequence in the sample is 
measured using fluorescent probes in the assay wells. A dedicated 
machine for temperature control and fluorescence readout is needed, 
combined with an output data analysis tool. Furthermore, since PCR only 
amplifies the DNA regions containing the target sequence, the method can 
be used to analyze samples with small amounts of DNA. Lastly, the 
relative changes in gene expression can be estimated by comparison with 
the gene expression of a reference group. 

Protein markers – IHC staining  

IHC staining involves localizing proteins using antibodies that bind to 
specific antigens. Malignancies usually overexpress certain proteins, 
including SSTR2, which through IHC staining, can be confirmed and lay 
the basis for targeted treatment. The method is widely used in the 
diagnosis of cancer and drug research. Briefly, the process begins with 
tissue fixation, which is crucial for preserving cell morphology and tissue 
architecture. After the sample is fixed, usually in formalin, and embedded 
in paraffin, sections can be sliced within 3-5 µm. The sections then go 
through various dehydration steps using alcohol washes. Subsequently, 
the sections are stained with antibodies that detect specific proteins. One 
of the essential difficulties is specific or non-specific staining. Hence, 
adding positive and negative controls for staining is a practical tool for 
determining specificity. 
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Aims 

The overall aim of this work was to study the treatment potential of 
radiolabeled SSTAs, both as a monotherapy and in combination with an 
ALK-inhibitor, for children with HR-NB. All studies have been conducted 
preclinically, including in vitro (Paper I) and in vivo studies (Papers II-
IV).  
 
The specific aims were: 
 

 to estimate binding and internalization of 177Lu-octreotate in 
human neuroblastoma cell lines and compare data with other 
tumor types (Paper I) 
 

 to develop mouse models of three xenografted HR-NB cell lines, 
CLB-BAR, CLB-GE and IMR-32, and determine the 
biodistribution and biokinetics of 177Lu-octreotate in these models 
(Paper II) 
 

 to compare the biodistribution and biokinetics between 177Lu-
octreotate and 177Lu-octreotide in CLB-BAR bearing mice (Paper 
III) 
 

 to study the anti-tumor effects of 177Lu-octreotate and 177Lu-
octreotide in mice with CLB-BAR tumors (Paper III) 
 

 to examine the therapeutic effects of 177Lu-octreotide treatment in 
combination with an ALK-inhibitor, lorlatinib, in NB mouse 
models (Paper IV) 
 

 to evaluate the expression of apoptosis-related genes after 
treatment with 177Lu-octreotate, 177Lu-octreotide, lorlatinib or 
177Lu-octreotide in combination with lorlatinib in mice bearing NB 
(Papers III-IV) 
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Materials and methods 

NB cell lines (Papers I-IV) 

Three aggressive human NB cell lines were included in this work: CLB-
BAR, CLB-GE, and IMR-32. CLB-BAR was derived from a two-year-old 
girl diagnosed with a stage 4 abdominal NB and is ALK/MYCN amplified, 
with 1p deletion and 17q gain [189-191]. CLB-GE is also ALK/MYCN 
amplified [59]. IMR-32 cell line originates from an abdominal 
neuroblastoma mass obtained during surgery of a 13-month-old boy [192]. 
IMR-32 is ALK/MYCN-amplified with 1p deletion and 17q gain [43, 193]. 

Cultured tumor cells were incubated at 37°C with a medium containing a 
low (2 nM) or a high (10 nM) concentration of 177Lu-octreotate. After 24 or 
48 hours, the medium was removed from the wells and saved for activity 
measurements. Next, the cells were washed and incubated with trypsin 
and centrifuged. Subsequently, the supernatant and cell pellet (surface-
bound and internalized 177Lu, respectively) were separated and saved for 
activity measurements. Finally, cells were co-incubated with excess 
octreotide to study binding specificity. 

Binding and internalization (Paper I) 

Cultured tumor cells were incubated at 37°C with a medium containing a 
low (2 nM) or a high (10 nM) concentration of 177Lu-octreotate. After 24 or 
48 hours, the medium was removed from the wells and saved for activity 
measurements. Next, the cells were washed and incubated with trypsin 
and centrifuged. Subsequently, the supernatant and cell pellet (surface-
bound and internalized 177Lu, respectively) were separated and saved for 
activity measurements. Finally, cells were co-incubated with excess 
octreotide to study binding specificity (Figure 4). 

Animal models and study design (Papers II-IV) 

In our work, four to five weeks old female BALB/c nude mice (Janvier 
Labs, France and Charles River Laboratories, Inc, UK) were injected 
subcutaneously (s.c.) on their flank with 1.5-2x106 CLB-BAR, CLB-GE or 
IMR-32 cells. Approximately three to five weeks after the transplantation, 
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all mice had a tumor on their flank (>200 mm3) and were included a study. 
In Paper II, different activity levels of 177Lu-octreotate were injected 
intravenously (i.v.), and the biodistribution was analyzed. Mice with CLB-
BAR tumor were injected with 0.15, 1.5, or 15 MBq. CLB-GE-bearing mice 
were injected with 0.15 or 15 MBq while IMR-32-bearing mice were 
administered 15 MBq (Figure 4). In Paper III, 1.5 or 15 MBq 177Lu-
octreotide was administered to CLB-BAR-bearing mice, and the 
biodistribution data was compared to Paper II. In the biodistribution 
studies (Papers II, III), mice were euthanized after 1, 24, and 168 hours 
and tissue samples from various organs and the tumor were collected for 
activity measurement (Figure 4).  

In the therapeutic study of Paper III, 15, 30, or 60 MBq of 177Lu-octreotate 
or 177Lu-octreotide was administered to CLB-BAR-bearing mice. Paper III 
also included a fractionated administration where 15 MBq was divided 
into doses of 2x7.5 or 3x5 with two hours or one hour between each 
administration, respectively. In the therapeutic studies (Papers III, IV), 
the tumor volume for each animal was measured twice a week before and 
after treatment with a digital caliper. The volume of the tumor was 
estimated to have the shape of an ellipsoid; hence the mass was calculated 
based on the measured length, width, and height. In Paper III, the mice 
were euthanized when the tumor weight exceeded 10% of the body weight. 
However, in Paper IV, the mice were euthanized at specific time points (2, 
7, 14 days) after the start of the treatment. In addition, tumor samples 
were collected for qPCR and IHC analysis (Papers III, IV). A control group 
was designed for every therapeutic study, in which the mice were 
administered saline i.v. (Figure 4). 

Pharmaceuticals (Papers I-IV)

Both 177Lu-octreotate, [177Lu-DOTA0,Tyr3]-octreotate, (Papers I-III) and 
177Lu-octreotide, [177Lu-DOTA0, Tyr3]-octreotide, (Papers III-IV) have been 
prepared according to the manufacturer’s instructions (Mallinckrodt 
Medical BV, NRG, Petten, Netherlands, and Isotopen Technologien 
München AG, ITM, München, Germany, respectively). The specific 
activity of 177Lu-octreotate and 177Lu-octreotide was 25 and 66 MBq/µg, 
respectively. Radiochemical purity was measured before administration 
and was noted above 98% in all studies, determined by instant thin layer 
chromatography Silica-Gel (ITLC-SG) (chromatography paper 50/PK, 
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Varian, USA), with 0.1 M of sodium citrate as the mobile phase. The 
radiopharmaceuticals were administered i.v. to the mice. 

Lorlatinib (Selleckchem, Houston, USA) was prepared with 2% DMSO, 
30% PEG300, and double-distilled water (Paper IV). The solution was 
formulated for oral gavage as per manufacturer’s instructions. 

Radioactivity measurements (Papers I-IV) 

To precisely determine the activity levels administered to the animal, the 
activity in each syringe was measured in an ionization chamber (CRC-15, 
Capintec, IA, USA) before and after administration. 

The 177Lu activity in tissue samples, Atissue(t), were measured by a Wallac 
1480 NaI(TI) gamma counter (Wizard 3, serial no. 480036) (Papers I-II) or 
a PerkinElmer 2480 automatic gamma counter (Wizard 2, serial no. 
SGZ29160385) (Papers III-IV) using a 20% energy window centered 
around 208 keV. The gamma counter was calibrated against the ionization 
chamber and all measurement results were corrected for dead time and 
background radiation levels. The same equipment was also used in order 
to measure the 177Lu activity in the supernatant and the cell pellet from 
the in-vitro studies (Paper I).  

Biodistribution analyzes (Papers II & III) 

The radioactivity concentration in each tissue sample, Ctissue(t), was 
determined as percent of injected 177Lu activity per mass of tissue (%IA/g). 

𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡) =  𝐴𝐴𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝑡𝑡)
𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑥𝑥 𝐴𝐴injected (𝑡𝑡)

 𝑥𝑥 100 %,

Tumor-to-normal-tissue 177Lu activity concentration ratios (T/N) were 

determined  

𝑇𝑇
𝑁𝑁

(𝑡𝑡) = 𝐶𝐶𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 (𝑡𝑡)
𝐶𝐶𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡𝑛𝑛𝑛𝑛_𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 (𝑡𝑡).
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Figure 4. General study design for each project included in the thesis. Paper III also include a 
fractionated scheme with 177Lu-octreotate described in the study design. Each treated group also had a 
corresponding control group (Papers III & IV). 

 

 

 

 

 

 

 

 

 

 

Dosimetric analyzes (Papers II & III) 

The mean absorbed dose, 𝐷𝐷� for each tissue was calculated according to the 
equations from Medical Internal Radiation Dose (MIRD) Pamphlet No. 21 
[194].  

Cells harvested for activity measurements, 
from which several parameters were obtained: 

• Specificity 
• % Internalized
• % Surface-bound
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𝐷𝐷� =
Ã𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑛𝑛𝑛𝑛ɸ
𝑚𝑚𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

The cumulated activity for each tissue, Ãtissue, was calculated based on the 
exponential function that was fitted for the activity concentrations at the 
various time points. For 177Lu the mean energy emitted per nuclear 
transformation, nE, was set to 147 keV per decay. The absorbed fraction, 
ɸ, was set to 1. 

Immunohistochemistry (Papers I-II, IV) 

Tumor samples were fixed in formalin, embedded in paraffin and cut into 
4 µm sections. The sections were deparaffinized, rehydrated and processed 
according to the manufacturer's instructions. In Papers I-II, the sections 
were stained with hematoxylin and eosin (H&E) and thereafter IHC 
stainings for SSTR1-5 and Ki67 were carried out. For positive control of 
SSTR1-5, tissue from human cerebellum was applied for SSTR1 and 
SSTR3-5, and tissue from human small intestinal NET was applied for 
SSTR2.  In Paper IV, tumor sections were stained with cleaved caspase-3 
(CC3) and evaluated by an experienced pathologist. 

RNA extraction and qPCR (Papers III & IV) 

RNA was isolated from each tumor sample employing a phenol-chloroform 
procedure. Briefly described, a small section (≤100 mg) of the frozen tumor 
tissue was added to a sample tube with Qiazol and thereafter lysed. 
Subsequently, chloroform was added, followed by various centrifugation 
steps, and then the aqueous phase was transferred to a new sample tube 
where an equal amount of 70% ethanol was added. After numerous 
washing steps, the RNA could be isolated. Its purity and quality, were 
determined for all RNA extractions, and if any of these values did not 
match the criteria, the extraction was repeated. The RNA was then 
reversely transcribed into cDNA and aliquoted into predesigned 96-well 
arrays for gene expression analysis. The array contains 84 key genes 
involved in the apoptosis pathway. The remaining 12 wells are used for 
controls and validation.  

Based on the amount of cDNA in each well, a cycle threshold (Ct) value is 
recovered, where a low Ct value corresponds to high gene expression and 
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vice versa. The yielded Ct values from each run were then converted to 
∆Ct values. Subsequently, the mean relative ∆∆Ct was determined for 
each treatment compared with the mean ∆Ct of the control group. By 
implementing the 2–∆∆Ct method, treated vs. control, we obtained a fold 
change (FC) value for each gene [195]. Genes were defined as differentially 
expressed if |FC| > 1.5. 

Statistical analyses (Papers II-IV) 

All calculations and statistical analyses were made with GraphPad Prism 
9.4.1.681 (GraphPad Software, CA, USA) and Excel 2013 for Windows 
(Microsoft Corporation, WA, USA). The relative tumor volume (RTV) was 
determined individually for each mouse and time-point, and the mean 
value and the standard error of the mean (SEM) were calculated for each 
group (Papers I-IV). One-way ANOVA was used to estimate the statistical 
differences regarding biodistribution or tumor volume between all groups 
throughout the treatment period (Papers II-IV). Student t-test was applied 
for comparison between groups (Papers I-IV).   
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Results and Discussion 

Different aspects must be considered when evaluating the usefulness of 
177Lu-labeled SSTAs for treatment of NB patients. This thesis presents 
data on 177Lu-octreotate binding to NB cells and whether the binding is 
specific (Paper I). Then we also studied the internalization and retention 
after binding to the NB cells (Paper I). Promising in vitro results paved 
the way for animal studies, where different NB xenograft models were 
established (Paper II). Here we focused on studying the biodistribution 
and biokinetics of different amounts of 177Lu-octreotate (Paper II). We 
also characterized the SSTR1-5 expression in each animal model, which 
was consistent with the biodistribution data. We then proceeded with 
therapy studies for 177Lu-octreotate and 177Lu-octreotide, focusing on 
responses regarding tumor volume and specific apoptosis-related genes 
(Paper III). However, no evident dose-response-relationship was 
observed, and relatively few genes involved in apoptosis were affected 
after the different treatments. In Paper IV, a combination study was 
conducted with 177Lu-octreotide and lorlatinib, demonstrating a 
synergistic anti-tumor effect on the tumor volume. In addition, we noted 
an elevated effect on the transcriptional response for the combination 
treatment compared to respective monotherapies. Finally, IHC-staining 
demonstrated an increased incidence of apoptosis in the combination 
treatment group. 

Binding and Internalization (Paper I) 

Paper I aimed to evaluate the binding and internalization characteristics 
of 177Lu-octreotate in two human HR-NB cell lines, CLB-BAR and IMR-
32, compared with other types of cancer cell lines. The cells were 
incubated with low (2 nM) or high concentrations (10 nM) of 177Lu-
octreotate, with and without an excess of octreotide (excess factor 1000), 
and harvested after 24 or 48 hours. 

The highest level of total binding (internalized + associated to 
membrane) was observed after 24 hours in IMR-32 (70%, low 
concentration) (Figure 5). Higher concentrations of 177Lu-octreotate 
resulted in reduced total binding for both cell lines. The percentage of 
177Lu-octreotate internalized decreased from 24 hours to 48 hours after 
incubation of IMR-32 cells, while the percentage associated to membrane 
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Figure 5. Percentage of 177Lu-octreotate internalized and associated to the cell membrane of 
CLB-BAR and IMR-32 cells. The cell were incubated with low (2 nM) and high (10 nM) 
amounts of 177Lu-octreotate, with and without an excess of free octreotide (excess factor 
1000), and harvested after 24 or 48 hours. 

increased between these time-points. The opposite trend was observed 
for CLB-BAR cells, indicating that the binding mechanisms that prevail 
differ and that the pharmacokinetics is cell line dependent. The results 
from Paper I demonstrated a high total binding of 177Lu-octreotate to the 
investigated NB cell lines relative to the other cancer types studied: 
breast cancer, NSCLC, paraganglioma and gastrointestinal stromal 
tumor. Additionally, the study also demonstrated that binding was 
specific, since excess octreotide was able to block the available SSTRs of 
both NB cell lines. As previously discussed, binding agonists, such as 
octreotate and octreotide, to SSTRs could lead to internalization followed 
by receptor cycling. The extent to which this occurs depends on SSTR-
expression. As Paper I also illustrates, SSTR-positive cell lines have 
different characteristics that must be considered to be able to optimize 
the treatment. SSTR expression was studied for both NB cell lines and 
compared with positive controls for each SSTR subtype. In line with the 
results regarding the total binding of 177Lu-octreotate, a relatively high 
expression of SSTRs, mainly SSTR2, was observed for the two NB cell 
lines. 

 

 

 

 

 

 

 

 
 
 
 
 
 
One of the limitations regarding the study design in Paper I is that only 
two activity levels of 177Lu-octreotate were included and that only two 
NB cell lines were studied. In addition, the cells were only harvested at 
two different time. Including more cell lines of different NB subtypes 
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Figure 6. T/B and T/K 177Lu activity concentration ratios for: CLB-BAR, CLB-GE, IMR-32, 
GOT1, and GOT2. The data for NB cell lines were compared with corresponding values for 
small intestine neuroendocrine tumor (GOT1) and medullary carcinoma (GOT2) in nude 
mice [196]. In all cases, 15 MBq of 177Lu-octreotate was administered, except for GOT2, 
where 10 MBq was administered. Error bars indicate SEM. 29 

could potentially have revealed differences in the SSTR-expression and 
uptake of 177Lu-octreotate in different classes of NB. An increased dosage 
and further harvest times would have yielded a more dynamic 
illustration of the processes involved. Figure 3 illustrated the saturation 
effects of the SSTRs when a high activity level of 177Lu-octreotate was 
administered relative to a low dose, which lead to a decrease in all 
studied parameters. In addition, a more suitable dosage could have been 
determined if additional activity levels of 177Lu-octreotate were 
examined. However, for this study, the main questions were whether the 
binding is specific and whether these cell lines can be considered suitable 
for treatment with 177Lu-labeled SSTAs, which was answered. With this 
in hand, only studies on tumor cells were performed in Paper I. Since we 
were interested in how the binding and uptake would be in a more 
complex model, the project proceeded with various NB xenograft models 
(Papers II-IV). 

Biodistribution of 177Lu-octreotate (Paper II) 

Paper II aimed to determine the biodistribution of 177Lu-octreotate in 
mice bearing human HR-NB. Three different cell lines were studied, 
CLB-BAR, CLB-GE, and IMR-32. In addition, activity dependence was 
studied in relation to biodistribution and mean absorbed dose. 

High 177Lu concentration levels were observed in all NB tumors, 
resulting in high tumor-to-blood (T/B) and tumor-to-kidney (T/K) 177Lu 
concentration ratios for all three NB animal models compared with 
previously investigated NET animal models, e.g. GOT1 and GOT2 [196] 
(Figure 6).  
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CLB-BAR tumors had the highest uptake value of 59 %IA/g one hour 
post injection (p.i.) after administration of 0.15 MBq 177Lu-octreotate 
(Paper II, Table 1).  

An activity dependence could be demonstrated for CLB-BAR, where a 
lower administered activity (0.15 MBq) resulted in higher uptake and 
mean absorbed dose per injected activity (Gy/MBq) in tumor, likely due 
to a lower saturation of SSTRs (Paper II, Table 4). With the specific 
activity of 25 MBq/µg, 0.15 MBq and 15 MBq corresponds to 0.006 µg and 
0.6 µg peptide, respectively. However, this was not observed for CLB-GE, 
where the mean absorbed dose per injected activity increased from 2.4 to 
3.6 Gy/MBq with a 100-fold increase in injected activity (Paper II, Table 
4). The therapeutic effect of 15 MBq can explain this trend for CLB-GE, 
which led to a drastic volume reduction, thus, resulting in a higher %IA/g 
after 168 hours (Paper II, Table 2). Although tumor volume was not 
measured, the mean weight of the tumors collected one week after 
administration can demonstrate the different responses of the tumor 
models. In addition, the tumors were similar in size and weight at the 
start of each study. The mean weights were 0.12 g, 0.29 g, and 1.9 g for 
the CLB-GE, IMR-32, and CLB-BAR tumors, respectively, one week after 
administering 15 MBq 177Lu-octreotate. These results indicate that the 
therapeutic effect was less prominent in the CLB-BAR model. Ideally, 
therapy effects should be avoided in biodistribution studies aiming to 
compare data between different radiopharmaceuticals, since this will 
affect the results. However, at the same time, it is not in general correct 
to extrapolate biodistribution data from lower to higher activity levels, 
since the biodistribution of many radiopharmaceuticals depends on the 
peptide amount [197, 198]. This is true for tumor tissue, but in many 
cases also for normal tissues [199]. Since OAR are assessed as dose-
limiting factors, knowledge of which injected activity that leads to 
highest T/N ratios is needed. However, PRRT is today usually given as 
fixed amount administrations or, primarily for NB patients, according to 
patient weight, eventually leading to undertreated patients.  

The kidneys, one of the dose-limiting organs for treatment with 177Lu-
octreotate, were also shown in these studies to have a relatively high 
uptake in all xenograft models and for the different activity levels 
administered. Interestingly, tumor type affected the biodistribution in 
the organs, specifically the kidneys, demonstrated by incresed mean 
absorbed dose to kidneys in the studied NB xenograft models compared 
to other NET animal models (Paper II, Table 4). However, the other NET 
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models do not include an early measurement point (1-h p.i.) for 
estimating the mean absorbed dose to the kidneys, which may have 
yielded the differences [196]. Another way to extend the therapeutic 
window is to inhibit kidney uptake, which can be accomplished by co-
administration of positively charged amino acids [200, 201]. The lungs 
and the adrenal glands, were the two other organs that showed relatively 
high uptake. These two organs also showed apparent saturation effects. 
For example, the lungs had a higher mean absorbed dose per injected 
activity than the kidneys and tumor tissue in the CLB-GE xenograft 
model after administration of  0.15 MBq 177Lu-octreotate. Yet, a 100-fold 
increase in administration only led to a 5-fold increase in mean absorbed 
dose per injected activity. The corresponding figure for the CLB-GE 
tumor was a 150-fold increase in the mean absorbed dose per injected 
activity (Paper II, Table 4). However, as previously mentioned, there are 
difficulties in comparing data, since therapeutic effects on CLB-GE 
tumors were obtained after administration of 15 MBq 177Lu-octreotate. 

In order to enhance PRRT, it is necessary to have a good understanding 
of the cellular events induced after SSTR binding of the radiolabeled 
SSTA. If SSTR expression can be selectively increased in the tumor cells, 
the same administered activity can lead to an increased mean absorbed 
dose to the tumor without additional damage to normal tissue. Different 
ways to increase SSTR expression in tumor cells have been studied to 
increase the therapeutic effect. For example, up-regulation of SSTRs at 
the transcriptional level has been demonstrated after irradiation and 
pre-treatment with epigenetic modifiers [202-204]. 

Although all studied cell lines in Paper II were categorized as NBs, the 
results clearly illustrate how the tumor uptake and retention differ, 
highlighting the need to evaluate their tumor-specific features. One 
prerequisite feature for PRRT with SSTAs is the over-expression of 
SSTRs, which was demonstrated in Papers I and II. Similar to Paper I, 
the IHC staining for SSTRs was partly in line with the biodistribution 
data (Paper II, Figure 5). 

 

 

 

 



Improved radionuclide therapy of neuroblastoma – Preclinical evaluation                             s  
 

32 
 

CLB-GE tumors were found to have 
the most specific and intense 
expression of SSTR2 (Figure 7), 
which also correlated with the highest 
tumor uptake and hence the highest 
T/N values. However, contrary to the 
biodistribution data, our IHC-staining 
indicated a relatively higher SSTR2 
expression for CLB-BAR xenografts 
than IMR-32. Similar expression 
patterns were seen for the other 
SSTR subtypes. This demonstrates 
that relying solely on SSTR 
expression to predict uptake may be 
an incorrect assumption. As 
previously mentioned, factors that 
play a role are the behavior of each 
SSTR subtype after binding the 
radiolabeled SSTA and the 
proliferation rate of the tumor cells. 

All NB xenograft models were 
planned to receive activity levels of 
0.15, 1.5, and 15 MBq. However, we 
had to exclude some activity levels for 
CLB-GE and IMR-32. Because we had 
difficulties with the tumor 
development within these two tumor 
models, this. Despite this, Paper II 
clearly demonstrates the high tumor 
uptake for all NB xenograft models 
compared to other established NET 
models, highlighting the potential of 
177Lu-octreotate as a treatment option 
for patients with disseminated 
SSTR2-positive HR-NB. In order to 
evaluate the therapeutic benefits of 
177Lu-labeled SSTAs, we planned for 
studies focusing on the therapeutic 
response in NB-bearing mice (Papers 
III & IV). 
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Figure 7. IHC staining for SSTR2 in 
CLB-BAR, CLB-GE and IMR-32. Tissues 
were stained with H&E prior to staining 
for SSTR2. For positive control, tissue 
from human small intestinal NET was 
applied. Antibody: rabbit anit-SSTR2 
(1:50, ab134152, Abcam, UK). Bar equals 
25 µm. 
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Figure 8. Tumor-to-blood and tumor-to-kidney 177Lu activity concentration ratios for CLB-
BAR bearing mice,  1, 24 and 168 hours post injection with 177Lu-octreotate or 177Lu-
octreotide (1.5 or 15 MBq) [205]. Error bars represent SEM. 

177Lu-octreotate vs. 177Lu-octreotide (Paper III) 

Paper III aimed to compare the differences regarding biodistribution and 
the therapeutic effects of 177Lu-octreotate and 177Lu-octreotide in CLB-
BAR xenografted mice, and to evaluate the expression of apoptosis-
related genes after respective treatment. 

177Lu-octreotide was labeled according to the manufacturer's 
instructions, resulting in a specific activity of 66 MBq/µg, 2.6-fold higher 
than for 177Lu-octreotate. Since the same activity levels were injected, 
different amounts of peptide were administered. The difference in 
peptide amount affects the biodistribution, aggravating the comparison 
of the studied SSTAs. However, comparing the two radiopharmaceuticals 
also includes their current labeling processes, which in our studies 
resulted in a 2.6-fold higher specific activity for 177Lu-octreotide.   

Analyzing the biodistribution data, a higher uptake of 177Lu-octreotate 
was demonstrated in tumor tissue. This is in line with the affinity 
profiles of octreotate and octreotide towards SSTR2, which is the subtype 
that is most elevated in CLB-BAR tumor regarding mRNA- and receptor 
expression [85, 205-207]. However, the uptake was even higher in most 
of the other organs, hence the highest T/N ratios were observed for 177Lu-
octreotide (Paper III, Table 2). With focus on the blood (T/B) and the 
kidneys (T/K), presented in Figure 8. Unfortunately, bone marrow was 
not collected in the study with 177Lu-octreotate. Table 4 illustrates that 
one can underestimate the mean absorbed dose to bone marrow if one 
assumes that a dose estimation to the blood corresponds to bone marrow. 
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Table 4. Mean absorbed dose per amount of injected activity (Gy/MBq) to blood, bone 
marrow, kidneys, and CLB-BAR tumor after injection with 177Lu-octreotate [205] or 177Lu-
octreotide (present study). 

Although T/N ratios were greater for 177Lu-octreotide in some of the 
comparisons, the actual concentration of 177Lu, %IA/g, was, in general, 
higher for 177Lu-octreotate in CLB-BAR tumors. Thus, 177Lu-octreotate 
yielded an elevated mean absorbed dose to the majority of organs 
studied, including the OAR (Table 4). A 10-fold increase in injected 
activity of 177Lu-octreotate increased the mean absorbed dose to the 
tumor from 4.4 to 6.8 Gy. Corresponding figures for 177Lu-octreotide were 
1.1 to 4.5 Gy, illustrating variable saturation effects due to a difference 
in peptide amount, with a more significant impact for 177Lu-octreotate 
than for 177Lu-octreotide. In contrast, after a 10-fold increase in activity 
for 177Lu-octreotide, the kidneys received an 11-fold increase in the mean 
absorbed dose, compared with a 5-fold increase for 177Lu-octreotate 
(Table 4). This highlights the need to consider how an increased specific 
activity affects uptake and retention in normal tissues. 

 

 

The therapy studies with 15, 30, and 60 MBq of 177Lu-octreotate showed 
no statistical differences regarding RTV between each treated group and 
a control group over the total treatment period (Paper III, Figure 2). 
However, decrease in RTV was observed for 177Lu-octreotide with a 
statistically significant difference between the treated mice and control 
(Paper III, Figure 2). However, no difference was observed between the 
treatment groups (15, 30, and 60 MBq). Furthermore, 7-10 days post-
treatment with 177Lu-octreotide, the tumors started regrowth (Paper III, 
Figure 2). All mice were euthanized when the tumor volume exceeded 
10% of the body weight, resulting in mice being euthanized on different 
days after the start of treatment, ranging from seven to 28 days.   

The fractionation scheme with different fractions of a total 15 MBq 177Lu-
octreotate resulted in prolonged survival for the fractionated groups 
(Paper III, Figure 4). Illustrated with the 50% survival fraction of 18, 14, 
and 11 days for 3x5 MBq, 2x7.5 MBq, and 1x15 MBq, respectively (Paper 

Cell line 
Radiopharmaceutical 

CLB-BAR 
177Lu-octreotate (Paper II) 

CLB-BAR 
177Lu-octreotide (present study) 

Injected activity 1.5 MBq 15 MBq 1.5 MBq 15 MBq 
Peptide amount 0.06 µg 0.6 µg 0.023 µg 0.23 µg 
Blood 0.029  0.0061 0.0073 0.0058 
Bone marrow - - 0.17 0.081 
Kidneys 2.7 1.3 0.65 0.72 
Tumor 2.9 0.45 0.74 0.30 
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III, Figure 4). Although there were only 1-2 hours between each fraction, 
an effect could be observed, which can be considered an implement to 
counteract the saturation effects. By giving time and allowing the 
recycling of SSTRs, an increased quantity of tumor cells can be targeted 
again, and the anti-tumor effects can be increased. Studies have 
illustrated SSTR2-internalization within a couple of minutes and 
recycling within 40 minutes, which might make an administration 
interval of one hour efficient [104, 105]. However, a statistical difference 
could not be observed regarding RTV for the different fractionation 
groups compared to single treatment with 15 MBq 177Lu-octreotate 
(Paper III, Figure 3). 

The generally modest therapy response can partly be explained by the 
aggressive nature of the CLB-BAR tumor. CLB-BAR is classified as an 
HR-NB with MYCN/ALK amplification. Unfortunately, HR-NB displays 
therapy-resistant features, with the oncogene MYCN, in particular, 
acting in a central position. MYCN is essential for impairing apoptosis 
and stimulating tumor growth, reducing therapeutic effects [31, 208, 
209]. The lack of therapy response could also be demonstrated by the few 
apoptosis-related genes that were regulated after the treatments (Paper 
III, Figure 5). Only six unique genes related to apoptosis, out of 84 genes 
studied, were noted to be regulated. Four of these were classified as pro-
apoptotic, one as apoptosis-related, and one as anti-apoptotic (Paper III, 
Figure 6). Since mice in this study were euthanized at the earliest after 
seven days and up to 28 days after treatment, we may have missed the 
window where gene regulation regarding apoptosis culminated. Gene 
regulation is a complex and dynamic function that modifies with time. 
Therefore, an additional aspect of the qPCR data is that mice from the 
same group were euthanized at different times, presumably restricting 
the results. 

Another limiting factor is that we only focused on 84 specific genes. 
Studying the entire genome and mapping all signaling pathways would 
have been interesting. However, it would have required significantly 
more time and resources as these predetermined gene arrays are much 
faster and advantageous for studying specific pathways. Otherwise, 
studying genes related to tumor growth would have been specifically 
interesting, as the tumors are in a regrowth phase when collected. 
Furthermore, we have yet to study how the transcriptional response 
corresponds to the protein expression. How genes are regulated does not 
necessarily mean this leads to a changed protein expression. 
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Figure 9. Effects of treatment with lorlatinib, 177Lu-octreotide or their combination in mice 
bearing human CLB-BAR NB tumors on relative tumor volume. Mice were treated with 
lorlatinib (daily gavage, 10 mg/kg), and/or 177Lu-octreotide (30 MBq i.v. on day 1) or i.v. 
injected with saline on day 1 (control) (n=10 mice/group on day 0). A theoretical additive effect 
was calculated using the Bliss independence model [210] and presented as a dashed line. 
Error bars represent SEM, not always visible due to their low values. 

Combining Lorlatinib and 177Lu-octreotide 
(Paper IV) 

Paper IV aimed to examine the therapeutic effects of lorlatinib, an ALK-
inhibitor, with 177Lu-octreotide in CLB-BAR bearing mice and to evaluate 
the response on apoptosis-related genes and proteins. 
 
The combination therapy with lorlatinib and 177Lu-octreotide generated 
the most significant anti-tumor effect with a RTV of 0.39 on day 14 
(Figure 9). 

 
 
 
 
 
 
 
As monotherapies, the corresponding RTV values for lorlatinib and 177Lu-
octreotide were 1.2 and 4.6, respectively. The combination therapy 
demonstrated a more prominent anti-tumor effect than the theoretical 
value of the combined additive effect of both monotherapies. As indicated 
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by the radioactivity sign in Figure 9, 177Lu-octreotide was administered 
on day 1, which initially had an anti-tumor effect on RTV as 
monotherapy, but after day 4 a steady volume increase similar to the 
control group was seen. 
 
Similar to Paper III, 177Lu-octreotide treatment did not have the anti-
tumor effect that was expected based on the biodistribution studies and 
the estimated mean absorbed dose. A dose estimate based on the 
biodistribution data for 1.5 and 15 MBq (which resulted in 0.30 Gy/MBq 
for 15 MBq (Table 4)), estimated the corresponding ratio for 30 MBq 
with a continued saturation and hence decreasing value to 0.25 Gy/MBq, 
which results in approximately 7.5 Gy. However, this is a broad 
estimation of the tumor dose.  With this in mind, the estimated tumor 
dose is relatively high, and the anti-tumor effect is less than in other 
NET models [211, 212], again demonstrating the radioresistant nature of 
this HR-NB tumor model. 

The combination treatment demonstrated an elevated effect on the 
transcriptional response (Paper IV, Figure 4). Of the 40 regulated genes 
for days 2, 7, and 14, 26 belonged to the combination treatment, 10 to 
177Lu-octreotide, and 4 to lorlatinib (Paper IV, Figure 4). Interestingly, 
an elevated increase in the number of genes studied was also observed 
for 177Lu-octreotide (30 MBq) compared to the same activity level in 
Paper III, ten vs. three. This highlights that grouping by the same time 
point results in additional genes detected. Another interesting trend that 
could be distinguished is that 16 of 18 pro-apoptotic genes were up-
regulated on days 2 and 7, while all five pro-apoptotic genes were down-
regulated on day 14 (Paper IV, Figure 4). As the qPCR data suggest, the 
substantial tumor reduction may initially correlate with an upregulation 
of pro-apoptotic genes. On day 14, three of these five down-regulated pro-
apoptotic genes belonged to the 177Lu-octreotide treatment, which aligns 
with the tumor growth on day 14 after treatment with 177Lu-octreotide 
(Figure 7). 
 
Before categorizing the regulated genes, according to their associated 
protein families, an additional statistical requirement was added to their 
∆Ct values (treated vs. control) (Paper IV, Table 1). The distinguished 
protein families were: TNF-superfamily, Caspase family, Bcl-2 family, 
TP53 family, inhibition of apoptosis (IAP) family, and down-regulators of 
CASP2,8 and p53 (Paper IV, Table 1). Two genes that were commonly 
found for the different treatment groups were: CASP8, 14 days post-
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Lorlatinib 177Lu-octreotide Combination Control 
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Figure 10. IHC staining for cleaved caspase-3 (CC3) in CLB-BAR tumors 14 days post 
respective treatment. Antibody cleaved caspase-3 (Asp175) (5A1E) Rabbit (1:100, mAb 
#9664, Cell Signaling Technology, Inc., USA). Bar equals 25 µm. 

treatment-start with lorlatinib and the combination treatment, and 
TNFRSF10A, two days post-treatment-start with 177Lu-octreotide and 
the combination treatment (Paper IV, Table 1).  
 
A pathologist's assessment regarding the intensity and percentage of 
CC3-positive cells allowed the distribution of the Histoscore to be 
estimated (Paper IV, Figure 6). The treated groups demonstrated 
increased CC3-positive cells (Figure 10). However, this type of 
investigation resulted in vast spreads for each treatment, which can be 
reflected by the relatively distinct error bars (Paper IV, Figure 6). 
Ongoing studies with staining of other apoptosis markers such as Bcl-xL, 
Bim, and Hrk expect to provide a deeper understanding of the activated 
apoptosis-signaling pathways.  
 
 
 
 
 
 
 
 
 
 
 
It would have been interesting to follow up the qPCR data with protein 
expression and thus be able to follow the complete path of the protein, 
from transcription to translation. With increased knowledge about the 
transcriptional response and protein expression, the investigated 
treatments can be further optimized by targeting the specific signaling 
pathways that play an essential role in the tumor response. Lorlatinib 
and 177Lu-octreotate are in ongoing clinical phase studies for NB, 
separately [102, 213]. This is promising for their potential combinational 
use for patients with SSTR2-expressing and ALK-positive HR-NB. 
Although not investigated in patients, Paper IV highlights their 
prominent combinational effect in vivo. 
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Conclusions 

This work included in this thesis contains various preclinical studies to 
evaluate the potential use of 177Lu-labeled SSTAs, octreotate and 
octreotide, for treatment of NB. Furthermore, combination treatment with 
177Lu-labeled octreotide and an ALK-inhibitor was studied and shown to 
lead to a synergistic anti-tumor effect.  

Summarized conclusions from each paper: 

 The binding and internalization of 177Lu-octreotate in the human 
NB cell lines, CLB-BAR and IMR-32, were specific and very high 
compared to other tumor cell lines of various types (Paper I) 
 

 Three mouse models were developed with xenografted human HR-
NB cell lines, CLB-BAR, CLB-GE, and IMR-32. The 
biodistribution of 177Lu-octreotate in all three investigated NB 
models demonstrated very high tumor uptake compared to normal 
tissues and also compared to other established NET animal 
models. Consequently, 177Lu-octreotate should be regarded as a 
potential systemic treatment option, especially in HR-NB with 
high expression of SSTRs  (Paper II) 
 

 Distinct differences in biodistribution and biokinetics were found 
when comparing between 177Lu-octreotate and 177Lu-octreotide in 
CLB-BAR-bearing mice. High tumor uptake of 177Lu-octreotate 
was in general observed, resulting in a high mean absorbed dose 
to the tumor. However, the uptake of 177Lu-octreotate was also 
higher in other organs. Therefore, the highest tumor-to-normal-
tissue 177Lu concentration ratios were observed for 177Lu-octreotide 
(Paper III) 
 

 Anti-tumor effects of 177Lu-octreotate and 177Lu-octreotide were 
studied in mice with CLB-BAR tumors. The mice receiving 177Lu-
octreotide displayed a more substantial anti-tumor effect than 
177Lu-octreotate, although the latter resulted in a higher mean 
absorbed dose to tumors based on the biodistribution data. The few 
genes that were found regulated after one to four weeks were 
mainly related to the extrinsic pathway for both treatments 
(Paper III) 
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 The therapeutic effects of 177Lu-octreotide treatment in 

combination with an ALK-inhibitor, lorlatinib, in CLB-BAR-
bearing mice demonstrated a synergistic effect. The combination 
therapy yielded an elevated regulation of apoptosis-related genes 
compared to each monotherapy. Overall, the results suggest that 
inhibiting ALK signaling pathways plays a role in 
radiosensitization of the tumor, implying a potential for clinical 
application of combining ALKis with radiolabeled SSTAs for HR-
NBs overexpressing SSTRs and ALK (Paper IV) 
 

The fact that both lorlatinib and 177Lu-octreotate are in ongoing clinical 
phase studies for NB, separately, is promising for their potential use for 
patients with HR-NB. In addition, this thesis has addressed how each 
monotherapy and combination therapy affects apoptosis-related genes. 
Based on the qPCR data, treatments can be further optimized by targeting 
specific signaling pathways that have been shown to play an essential role 
in the tumor response. 

 

 

 

 

 

 

 

 

  



Arman Romiani Future aspects 

41 

Future aspects 

The overall aim of this thesis was to evaluate the therapeutic potential of 
177Lu labeled SSTAs for treating children with HR-NB. This was done by 
studying different preclinical parameters, including in vitro and in vivo 
studies. Although the project has increased the knowledge about the 
uptake, biodistribution, biokinetics, and biological effects of 177Lu-labeled 
SSTAs in NB cells and NB mouse models, numerous issues remain and 
should be studied further. 

With the upcoming installation of new rodent-adapted SPECT and 
positron emission tomography (PET) systems, future biodistribution 
studies would become more reliable, and the same mouse would be 
monitored at different time points. Also, the ethical aspects regarding 
such animal studies would benefit, since the number of mice needed for 
biodistribution studies would be lower. In addition, it would be 
interesting to follow up and compare the data from Papers II & III with 
data from a rodent-adapted SPECT system. 

Optimization of the peptide amount to counteract saturation effects in vivo 
is something that can enhance the treatment, both to increase anti-tumor 
effects but also to reduce the risk of side effects (mainly the kidneys and 
bone marrow). The kidneys and bone marrow samples from experiments 
presented in Papers III & IV are preserved in formalin and in -80̊ C freezer 
and could be used for future analyzes, especially to study potential effects 
of ALKi. In addition, it would be most valuable to investigate possible side 
effects for the studies in Papers III & IV. Using the optimized peptide 
amount in fractionated treatments and study the effects on the risk organs 
and tumors would be interesting. However, a limiting factor for 
performing fractionation studies is the availability of 177Lu. If the 
treatment is to be given at daily intervals, it quickly becomes a costly 
arrangement. Assuming this is not a problem, an increased number of 
studies with different treatment schedules could help optimizing the 
treatment. In addition, it would be interesting to compare results from 
different administration schedules. Administering subsequent injections 
with either shorter or somewhat longer time intervals than in Paper III 
but still prior to the tumor regrowth phase will probably generate a more 
evident anti-tumor effect. 
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How different treatment regimens affect the transcriptional response in 
the tumor and normal tissues would be interesting to further investigate, 
since our studies only included the transcriptional response after a single 
injection of 177Lu-labeled SSTAs. Furthermore, RNA sequencing and 
proteomic analyses would broaden the picture and contribute with more 
detailed knowledge of value for treatment optimization. 

This research work was only preclinical, and data translation from mice 
to humans is not always straight-forward or reliable. Thus, it is important 
to perform clinical trials using 177Lu-labled SSTAs. The few clinical studies 
performed or ongoing show relatively modest results. One reason is non-
optimal treatment schedule. Another is radioresistance of the tumor, 
which might be overcome by combination treatment with e.g. lorlatinib. 
As previously mentioned, these drugs are already in different clinical 
studies, but not in combination treatment with radiopharmaceuticals. 
Expanding the combination studies and including other existing and 
clinically approved inhibitors to study their effects with radiation is very 
intriguing. More precisely, inhibitors of specific repair mechanisms that 
are involved in DDR for SSBs and DSBs should be tested. Furthermore, 
by locating various molecular targets and having several different 
treatment options, the clinic can be better prepared for patient-specific 
treatment options for patients with HR-NBs with drug-resistant 
properties. Therefore, preclinical combination studies on drug-resistant 
NB cell lines, particularly, are of interest and great importance. 
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