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ABSTRACT 

BBAACCKKGGRROOUUNNDD:: Retinopathy of prematurity (ROP), a preventable, potentially blinding 
eye disease, is primarily diagnosed in extremely preterm infants. Gestational age (GA) and 
birth weight (BW) are the most prominent risk factors. Routine ROP examinations are 
performed to identify the low proportion of infants who progress to needing treatment.  
In Sweden, ~30% of all screened infants are diagnosed with ROP, and 6% require 
treatment. Safe ROP prediction models can improve infant well-being and make screening 
efficient by identifying low- and high-risk infants.     

AAIIMM:: The overall aim of the thesis was to develop and validate prediction models for 
severe ROP requiring treatment and propose a clinical decision support tool for safe and 
effective release of low-risk infants from ROP screening examinations. In addition, the 
natural course of the disease was described, and the prognostic value of the parenteral 
nutrition duration (PND) on ROP was demonstrated.  
 
MMAATTEERRIIAALLSS  AANNDD  MMEETTHHOODDSS:: The model development data originated from the 
Swedish national ROP register (SWEDROP). External validations included data from 
SWEDROP, Germany, and the US. Paper I included 6947 infants in the model 
development and 2122 in the external validation cohort. Corresponding figures for Paper II 
were 6991 and 1241, and for Paper IV, 8814 and 2325, respectively. Paper III included 1082 
infants in its external validation. Extended Poisson models were used to develop 
DIGIROP-Birth requiring GA, BW, and sex in version 1.0, and PND ≥14 days in version 
2.0 as input variables. Logistic regression models were used to develop DIGIROP-Screen, 
including the status and the age at the first ROP diagnosis besides DIGIROP-Birth risk 
estimates. GA-specific cut-offs were identified for the clinical decision support tool.  
 
RREESSUULLTTSS:: The instantaneous risk for ROP peaked around 12 weeks postnatal age, 
irrespective of GA at birth. Longer PND was strongly correlated to ROP severity, and 
faster progression. The risk for ROP differed for boys and girls over GA and PND. 
DIGIROP models released ~50% of infants from all ROP screening examinations and 
additionally ~25% during the screening process, while maintaining 100% sensitivity. 
 
CCOONNCCLLUUSSIIOONN:: DIGIROP models may safely and efficiently release infants from 
unnecessary ROP examinations. The models appear superior to other currently available 
ROP models and are freely available as an online application (www.digirop.com). 

KKEEYYWWOORRDDSS: preterm birth, retinopathy of prematurity, prediction models, screening, 
clinical decision support tool  
ISBN 978-91-8069-191-8 (PRINT)  
ISBN 978-91-8069-192-5 (PDF) 

–

SAMMANFATTNING (SUMMARY IN SWEDISH) 

Enligt de svenska riktlinjerna bör neonatal hjärt-lungräddning övervägas på barn från 22 
gestationsveckors (GV) ålder och rekommenderas att utföras från 23 GV. Stora framgångar 
inom den neonatala intensivvården (NIV) samt >50% överlevnad bland de barn som har 
erbjudits NIV födda före 24 GV har lett till dessa rekommendationer. De förtidigt födda 
barnen riskerar på grund av sin prematuritet att drabbas av flera allvarliga sjukdomar. En 
av dem är prematuritetsretinopati (ROP), en neurovaskulär ögonsjukdom som vid svår 
progression och bristande behandling leder till blindhet. Framför allt drabbas barn födda 
före 28 GV, de extremt prematurfödda barnen. För att upptäcka ROP genomförs idag 
regelbundna rutinundersökningar världen över, i Sverige på alla barn födda före 30 GV. 
Dessa undersökningar kan vara påfrestande och påverka barnens välbefinnande.  

Prediktionsmodeller kan användas som ett verktyg för att optimera screeningsprocessen. 
Syftet med denna avhandling har varit att utveckla och validera enkla och lättillgängliga 
prediktionsmodeller för behandlingskrävande ROP som på ett säkert sätt kan avskriva 
barnen från ”onödiga” rutinundersökningar, och därmed bidra till barnens välbefinnande, 
samt optimera resursanvändningen inom vården. Vidare skulle det naturliga 
sjukdomsförloppet, samt associationen mellan parenteral nutritionsdurationen (PND) och 
ROP beskrivas. Den första utvecklade modellen, DIGIROP-Birth, baseras endast på GV, 
födelsevikt och kön. Den andra utvecklade modellen, DIGIROP-Screen, lägger till 
information om ROP status och ålder vid första ROP diagnosen. Materialet som används 
härrör från det svenska nationella kvalitetsregistret för ROP (SWEDROP), och inkluderar 
~7000 barn i den första utvecklingen av modellerna, Arbete I och Arbete II. I dessa arbeten 
ingår även en extern validering med hjälp av data från SWEDROP, Tyskland och USA. 
Arbete III är en extern validering på en nutida kohort från SWEDROP. Arbete IV 
uppdaterar DIGIROP-Birth med att byta ut standardiserad vikt mot vikt i gram, tillägg av 
≥14 dagar PND som en proxyvariabel för allvarligt medicinskt tillstånd, samt uppdaterar 
parameterskattningar för DIGIROP-Screen baserat på de nya riskestimaten från DIGIROP-
Birth. En extern validering ingår även i detta arbete på en nutida kohort från SWEDROP. 

Den momentana risken för ROP uppvisade ett högsta värde kring 12 veckor postnatal 
ålder, oavsett GV vid födelse. Fler dagar med parenteral nutrition var starkt korrelerat till 
ROP, och snabbare progression av sjukdomen. Risken för ROP skilde sig mellan pojkar 
och flickor vid olika GV och PND. DIGIROP modellerna kunde avskriva ~50% av barnen 
från alla rutinundersökningar, och ytterligare ~25% under screeningsprocessen, samtidigt 
som de behöll hög känslighet. Modellerna verkar vara överlägsna andra, idag högt 
rankade, prediktionsmodeller för ROP.  

DIGIROP modellerna finns fritt tillgängliga i en online applikation (www.digirop.com).
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1 INTRODUCTION 

1.1 FETAL DEVELOPMENT 

The development from an egg to a full-grown fetus lasts ~38 weeks, starting at 
conception. The gestational age (GA) is calculated from the first day of the 
mother’s last menstrual period.1 Normal gestation lasts ~40 weeks. The pregnancy 
is divided into three trimesters, GA 0-12 weeks, GA 13-28, and 29-40 weeks.2 The 
eyes develop early during the first trimester as extensions of the brain. The heart 
begins to rhythmically contract in week 6. By the end of the first trimester, all 
organs and the body structure are formed, nerves and muscles begin to work 
together, the retinal vasculogenesis (formation of new vessels) starts, and the 
embryo develops into a fetus that weighs ~20g and is ~8cm long. At week 16, the 
complete skeleton is built, the intestinal tract develops, and the skin starts to 
form. Retinal angiogenesis (formation of vessels from preexisting ones) starts in 
week 17-18. The fetus can hear and swallow in week 20. By week 22 retinal 
vasculogenesis is complete. In week 24, bone marrow begins to make blood cells, 
the lungs are formed, the fetus starts storing fat and weighs by this week ~700g 
and is ~30cm long. In week 32, the bones are fully formed, the eyes can open and 
close, lungs are not fully developed but start practicing breathing. By the end of 
the third trimester the brain and the neural system have developed, retinal 
angiogenesis is finalized, and the fetus grows.2 3  

Multiple pregnancies and various complications, such as infections and chronic 
conditions, may lead to premature birth, defined as birth before 37 weeks of GA.4 
Birth between 28 and <32 weeks of GA is defined as very preterm and at <28 
weeks of GA as extremely preterm.

FFIIGGUURREE  11.. PREGNANCY AND DEFINITION OF PREMATURITY. w = weeks. 
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1.2 PREMATURITY 

 
EPIDEMIOLOGY 
 
Yearly, one-tenth of all infants born worldwide are born prematurely, an 
increasing number that accounted for 15 million infants in 2010.5 6 More than 
60% of those are born in less developed regions, like in Africa and South Asia. 
About one million prematurely born infants die yearly due to preterm birth 
complications and an additional million due to other causes during the first 
month of postnatal life.7 Twenty percent of preterm births occur very or 
extremely prematurely, at <32 weeks of GA.  

Among ~110,000 infants currently yearly born in Sweden, ~5% are born preterm, 
~1% before 32 weeks of GA, and ~0.3% are born extremely preterm before 28 
weeks of GA, corresponding to ~350 infants.8 9 From 2016, the Swedish 
guidelines recommend that neonatal cardiopulmonary resuscitation should be 
considered from 22 weeks GA and is recommended from 23 weeks GA, based on 
>50% survival during the first year of life in infants born at GA 22-23 weeks 
between 2014-2016 that received neonatal intensive care.10 11 The TINY study, 
including all infants born at <24 weeks of GA 2007-2018 in Sweden, reported 
62% live births, where 48% survived until 40 weeks of postmenstrual age 
(PMA).12 

 
 
CAUSES 

Multiple pregnancies, in vitro fertilization, previous premature birth, infections, 
chronic conditions such as hypertension and diabetes, unhealthy lifestyle, and 
stress are known causes of preterm birth.13 However, many preterm births occur 
without any identified reason. 

 
  
COMPLICATIONS 

Infants born preterm are exposed to an increased risk of short- and long-term 
complications. Those include bleeding in the brain, i.e., intraventricular 
hemorrhage (IVH), hydrocephalus, heart problems such as an opening between 
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two important vessels called patent ductus arteriosus (PDA), respiratory problems 
requiring oxygen supplementation such as respiratory distress syndrome and 
bronchopulmonary dysplasia (BPD), problems with the digestive system such as 
necrotizing enterocolitis (NEC), hypothermia, anemia, 
hypoglycemia/hyperglycemia, sepsis, and other infections, and the eye disease 
retinopathy of prematurity (ROP).12 14-16 In the Swedish TINY cohort including 
infants born before 24 weeks of GA, 51% had IVH, 17% severe IVH, 21% NEC, 
90% had PDA, 18% persistent pulmonary hypertension,  91% had any ROP, 43% 
required ROP treatment, and 86% had BPD.12 16   

Long-term disabilities include abnormal neurodevelopmental outcomes 
including cerebral palsy, epilepsy, cognitive impairment, vision impairment, 
hearing deficits, and impact on the pulmonary, renal, cardiovascular, and 
endocrine organ systems.13 17-19 

 
 
NUTRITION 

The World Health Organization (WHO), the American Academy of Pediatrics (AAP) 
and the Committee of Nutrition of the European Society for Pediatric Gastroenterology, 
Hepatology and Nutrition (ESPGHAN) recommend the mother’s own milk with 
its unique composition to be the first choice of feeding in order to achieve 
optimal growth, development and immunological support for the infant.20-22 
Mothers to very preterm infants may, for different reasons, have lactation 
problems and difficulties providing breast milk to their children.23 The 
alternative nutritional sources for preterm infants are donor human milk and 
preterm formula. Particularly very and extremely preterm infants are at high risk 
of being undernourished due to the sensitive and underdeveloped gastrointestinal 
tract resulting in limited uptake of the nutrients provided.24 25 Therefore, 
parenteral nutrition is provided intravenously together with increasing amounts 
of enteral nutrition (through the gastrointestinal tract) based on the close 
monitoring of the infant’s nutritional uptake and growth.26 27 The duration of 
parenteral nutrition may be considered as a surrogate for the infant’s morbidity 
status, since infants with critical illness require parenteral nutrition for a longer 
time period.28 The optimal timing of initiation of the enteral and parenteral 
feeding, mode of feeding, duration and composition of the parenteral nutrition 
are debated. Positive impact on neurocognitive development was observed in 
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infants that had received recommended energy intake mainly enterally, and 
cautious approaches to aggressive parenteral nutrition intakes have been 
suggested.29 Early start of enteral feeding is recommended as it may promote gut 
maturation, reduce feeding intolerance, accelerate achievement of full enteral 
feeding, decrease risk for growth restrictions, and late onset sepsis without 
increasing the incidence of NEC.30  
 

 
GROWTH 

Following preterm birth and disruption of the intrauterine supply of nutrients, 
very preterm infants lack sufficient levels of the insulin-like growth factor-1 (IGF-
1), which are crucial for normal growth and development.31 32 Hard et al. 
discussed associations of poor postnatal growth with intrauterine growth 
restriction, caused by increased metabolic rate precipitated by the adaptation to 
extrauterine life and further induced by severe diseases. The increased metabolic 
needs are not met. There is insufficient and/or non-optimal postnatal nutrition, 
and low levels of IGF-1.33 Postnatal weight decreases immediately after birth are 
expected for all infants irrespective of GA, but prolonged return to BW is a 
potential risk factor for ROP.34 Severe postnatal conditions, such as BPD, ROP 
and NEC, are associated with low BW and poor postnatal weight gain.35    
 
To enable and improve infant growth monitoring references for weight, length 
and head circumference adjusted for GA and sex have been developed, such as 
Fenton’s reference available from 22 weeks of GA.36 37 The Swedish reference 
developed by Niklasson and Albertsson-Wikland based on 800,000 healthy 
singletons born during 1990-1999 is available from 24 weeks of GA.38      

1.3 RETINOPATHY OF PREMATURITY 

PATHOGENESIS 

Retinopathy of prematurity, ROP, is a bi-phasic eye disease primarily diagnosed 
in extremely preterm infants. The end-stage of ROP was called retrolental 
fibroplasia in the early years when ROP was first time described by Terry in 

–

1942.39 40 The progression of ROP is characterized by cessation of vessel growth 
and vaso-obliteration, in the first phase, and is followed in severe cases by a second 
phase of abnormal vessel growth, vaso-proliferation or neovascularization.3 40  

FFIIGGUURREE  22.. RETINAL VASCULARIZATION IN UTERO AND FOR PRETERM INFANTS DIAGNOSED WITH 

RETINOPATHY OF PREMATURITY. IGF-1 = insulin-like growth factor-1, VEGF = vascular endothelial 
growth factor, LCPUFA = long-chain polyunsaturated fatty acids, ROP = retinopathy of prematurity, AA = 
arachidonic acid, DHA = docosahexaenoic acid, Hb = hemoglobin. Figure adapted from the original figure in 
Hellström et al 2013.32 Created with BioRender.com. 
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The first phase of ROP is initiated following preterm birth and there are likely 
many reasons for the cessation of vessel growth. One major cause is the increase 
in the partial pressure of oxygen (PaO2) compared to that in utero, creating a 
relative hyperoxia that is further aggravated by supplemental oxygen provided to 
infants to keep them alive.3 In this state hypoxia-driven vascular endothelial 
growth factor (VEGF) that promotes vascular growth, is downregulated.41 42 
Beside VEGF, normal angiogenesis requires attainment of certain levels of IGF-1, 
that is nutrient-dependent and suppressed following preterm birth but crucial for 
normal growth and development.32 43 44 Additionally, loss of transfer of certain 
long-chain polyunsaturated fatty acids (LCPUFAs) from the mother to the fetus 
that normally occurs during the third trimester further exacerbates abnormal 
vascularization. The most important LCPUFAs for retinal development are ω-3 
docosahexaenoic acid (DHA), ω-6 arachidonic acid (AA), and the ratio between 
the two.42 In phase 2, the blood vessels grow abnormally initiated by the 
upregulated VEGF induced by the poor vascularization leading to retinal 
hypoxia, and by the increasingly higher IGF-1 levels in the maturing infant.3 32 45         
 
 

EPIDEMIOLOGY 

ROP is a leading cause of potentially preventable childhood blindness. In 2010, 
19 million children were estimated living with ROP-related impaired vision 
worldwide, and 20.000 new cases of ROP-related blindness and/or severe visual 
impairment are reported yearly.46 Three ROP epidemics were described, the first 
one in the 1940-1950s due to unrestricted oxygen support, the second and the 
third in 1960-1970 and 1990-2010 due to advances in neonatal intensive care in 
high- and middle-income countries, respectively, resulting in increased number 
of surviving preterm infants and larger ROP burden. As ROP screening programs 
improved over the years in high-income countries ROP-related childhood 
blindness decreased significantly.47        

In Sweden, a national study including ~7000 routinely screened infants born at 
<31 weeks of GA and their ~40.000 examinations during the years 2008-2017, 
showed that 32% were diagnosed with any ROP.48 Only 6% required treatment, 
decreasing with increased GA from 49% in infants born at <23 weeks of GA, to 
0.3% in infants born at 29 weeks. No infants born at GA 30 weeks required 
treatment. Over the years, more immature infants were born, the incidence of 

–

ROP remained similar, but the need for treatment increased. A population-based 
Swedish study identified 17 infants during years 2004-2017 who had ROP-related 
severe visual disability. Eleven (65%) of those could have been avoided if best 
practices were followed.49   
 
 

CLASSIFICATION 

The severity of ROP is classified by stage describing the appearance of the area 
between the vascular and avascular retina, zone describing the location of the 
disease, extent of the proliferative disease described by clock-hour designations, 
and the presence of preplus/plus disease describing the degrees of dilation and 
tortuosity of the central retinal vessels, as per the International Classification of 
Retinopathy of Prematurity (ICROP).50-52 Stages 1-5 describe the acute phase of the 
disease, stage 1 characterized by a demarcation line between vascular and 
avascular area, stage 2 by a ridge between the two, and stage 3 by extraretinal 
neovascular proliferation or flat neovascularization. Stage 4 and 5 describe partial 
and total retinal detachment. Zone I is circular and the most central zone 
surrounding the optic nerve head. Zone II surrounds zone I and extends to the 
ora serrata nasally, and the area closest to zone I is referred to as posterior zone II. 
Zone III is present only temporally.  Regression, reactivation, and long-term sequelae 
are described post-treatment. Aggressive ROP denotes a fast-progressing disease. 

FFIIGGUURREE  33.. ZONE AND CLOCK HOURS USED TO DESCRIBE LOCATION AND EXTENT OF THE 

RETINOPATHY OF PREMATURITY. Figure adapted from the original figure in Fierson 2018.51  
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In 2019, ROP activity scale was developed and published by the members of the
International Neonatal Consortium aimed to be implemented in clinical trials, 
following a request from the regulatory authorities.53 This activity scale was based 
on severity classification suggested by nine experts in pediatric ophthalmology. 
The validation study, performed on a retrospective cohort, showed that the 
modification of the scale performed better than the conventionally used stage but 
not zone.54 Using the data from a randomized controlled trial, the scale 
performed less well than the study’s primary outcome, severe ROP (stage 3 or 
provided ROP treatment).55  

Recently, a vascular severity score based on deep convolutional neural networks, 
a machine learning method, was proposed for monitoring of ROP post-treatment 
regression and reactivation with promising results.56  
 
 

SCREENING 
 
Based on a worldwide survey study performed by Mora et al. in 2017, 85% of the 
responding 92 countries had ROP screening programs. Non-respondents and 
those without any implemented ROP screening were mainly from Africa and 
former Soviet states.57  

ROP screening guidelines are set country-wise and are dependent on the level of 
the neonatal intensive care and the incidence of complications in a specific 
country. In many high-income countries, like US, UK, Germany, and France, 
infants born at GA <31 weeks, in some also BW <1501 grams, are routinely 
screened for ROP.51 58-60 Others screen infants that were more mature at birth.61 62-

64 Infants are screened as frequently as required based on the status and 
progression of the disease. Most infants’ ROP screening is finalized by 45 weeks 
of PMA. 

Since January 2020, all infants born before 30 weeks of gestation in Sweden are 
routinely screened for ROP.48 65 Infants born at GA ≥30 weeks with severe 
medical conditions are screened at the discretion of their treating neonatologist. 
Between 2012 and 2020 all infants born at <31 weeks of gestation were to be 
screened, and before 2012 all infants with a GA <32 weeks were to be screened for 
ROP.66 67 Repeated examinations are performed every other week to twice weekly 
depending on the ROP outcome. 

–

Relevant data considering infant characteristics and disease status from the ROP 
screening examinations are reported into the Swedish National Register for ROP 
(SWEDROP).68 As part of the Swedish Neonatal Quality Register, SWEDROP was 
initiated in 2007.69 The register showed 97.6% coverage rate during years 2008-
2017.48 Perinatal data (GA, BW, sex, plurality, and comorbidities such as IVH, 
NEC, BPD), screening outcomes (date for first screening and number of 
screening examinations, first date for ROP stage 1-5, plus disease, maximum 
stage, most central zone, and extent (nasal and temporal), for left and right eyes), 
and information about ROP treatment (date and type of treatment provided at 
each treatment session) are registered.   
 
 

DIAGNOSIS 
 
Diagnosis of ROP is made during the screening examinations by trained 
ophthalmologists using ophthalmoscopy, following ICROP.50 Beside traditional 
ophthalmoscopy, objective photo documentation of the retinal fundus with 
techniques like RetCam (Pleasanton, CA, USA) are used, which is a contact 
fundus imaging system that is the most widely used system for tele-screening of 
ROP, showing high sensitivity and specificity.70 Saved images facilitate 
monitoring of the disease over time, and enable obtaining second opinion of the 
diagnosis. 

Owing to the increased utilization of the eye imaging systems, images as input 
data in the machine learning models have led to the development of screening-
assisted diagnostic models in recent years. Deep convolutional neural networks 
and other machine learning models have been used to classify different zones, 
stages, plus disease, and aggressive ROP aimed to improve diagnosis.71-78   
 
 

RISK FACTORS 

The most prominent risk factors for ROP are low GA and low BW. Other 
important risk factors concern oxygen, postnatal growth, nutrition and 
metabolism, comorbidities, infections and inflammations, treatments, maternal 
factors, genetics, and environmental factors.79 
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FFIIGGUURREE  44.. RISK FACTORS OF RETINOPATHY OF PREMATURITY. GA = gestational age, BW = birth 
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respiratory distress syndrome, BPD = bronchopulmonary dysplasia, IVH = intraventricular hemorrhage, NEC 
= necrotizing enterocolitis, PDA = patent ductus arteriosus, RBC = red blood cells, NICU = neonatal intensive 
care unit. Created with BioRender.com. 

 

 
PARENTERAL NUTRITION AND RETINOPATHY OF PREMATURITY 

The impact of parenteral nutrition on ROP as a factor associated with severe 
medical conditions, including infections, unhealthy gastrointestinal tract and 
abnormal microbiome, and as a potential risk factor vis-a-vis its improper 
nutritional composition, time of initiation and duration of treatment is yet to be 
explored in detail. Parenteral nutrition duration (PND) was first published as a 
risk factor for ROP in 1978 by Gunn et al. and was confirmed by Shohat et al. in 
1983 in a cohort of 65 infants.80 81 Vanhaesebrouck et al. studying a cohort of 412 
infants born between 2000-2005 found that infants with ROP had twice the 
median days of PND than those without ROP.82 Associations with ROP severity 

–

and ROP treatment were not assessed in these publications. In a limited cohort of 
118 infants, Niwald et al. showed that PND >10 days was a predictor for severe 
ROP requiring treatment.83 In a cohort of 69 infants, Petrachkova et al. included 
PND >13 days in a prognostic model for type 1 ROP together with staying in the 
NICU >30 days, mechanical ventilation >30 days, RDS of 3rd degree and BPD.84  

A higher total volume of parenteral nutrition has been found to be related to any 
ROP by Bassiouny, and to ROP treatment by Porcelli et al and Ali et al.85 86 87  

 

PREVENTION 

Preventative actions for ROP include control of oxygen exposure and 
fluctuations, optimization of nutrition, supplementation of LCPUFAs AA and 
DHA, provision of mother’s own milk, preservation of fetal hemoglobin, and 
prevention of hyperglycemia, and sepsis.33 79 88  

The Swedish Mega Donna Mega randomized controlled trial showed 50% 
reduction in severe ROP (stage 3 or severe ROP requiring treatment) in infants 
supplemented with AA:DHA up to 40 weeks of PMA compared to un-
supplemented infants.89 In a Norwegian study with a similar design, the AA:DHA 
group had a significantly decreased number of days with respiratory support but 
not severe ROP due to the low number of patients included, although a >50% 
numerical relative decrease was observed.90 A secondary analysis of the Mega 
Donna Mega trial showed that increased circulating DHA for certain levels of AA 
decreased ROP severity, implying that the ratio beside the levels of the two 
LCPUFAs is important.91 
 
 

TREATMENT 
 
Type I ROP, defined as zone I any stage with plus disease, zone I stage 3 no plus 
disease, and zone II stage 2 or 3 with plus disease, should be treated according to 
the Early Treatment for Retinopathy of Prematurity (ETROP) criteria.92 93 Treatment 
of ROP is performed by either laser therapy or anti-VEGF injections. There are 
several anti-VEGF therapies available on the market today, and the most 
commonly used in Europe and in the US are bevacizumab (Avastin), ranibizumab 
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PARENTERAL NUTRITION AND RETINOPATHY OF PREMATURITY 

The impact of parenteral nutrition on ROP as a factor associated with severe 
medical conditions, including infections, unhealthy gastrointestinal tract and 
abnormal microbiome, and as a potential risk factor vis-a-vis its improper 
nutritional composition, time of initiation and duration of treatment is yet to be 
explored in detail. Parenteral nutrition duration (PND) was first published as a 
risk factor for ROP in 1978 by Gunn et al. and was confirmed by Shohat et al. in 
1983 in a cohort of 65 infants.80 81 Vanhaesebrouck et al. studying a cohort of 412 
infants born between 2000-2005 found that infants with ROP had twice the 
median days of PND than those without ROP.82 Associations with ROP severity 

–

and ROP treatment were not assessed in these publications. In a limited cohort of 
118 infants, Niwald et al. showed that PND >10 days was a predictor for severe 
ROP requiring treatment.83 In a cohort of 69 infants, Petrachkova et al. included 
PND >13 days in a prognostic model for type 1 ROP together with staying in the 
NICU >30 days, mechanical ventilation >30 days, RDS of 3rd degree and BPD.84  

A higher total volume of parenteral nutrition has been found to be related to any 
ROP by Bassiouny, and to ROP treatment by Porcelli et al and Ali et al.85 86 87  

 

PREVENTION 

Preventative actions for ROP include control of oxygen exposure and 
fluctuations, optimization of nutrition, supplementation of LCPUFAs AA and 
DHA, provision of mother’s own milk, preservation of fetal hemoglobin, and 
prevention of hyperglycemia, and sepsis.33 79 88  

The Swedish Mega Donna Mega randomized controlled trial showed 50% 
reduction in severe ROP (stage 3 or severe ROP requiring treatment) in infants 
supplemented with AA:DHA up to 40 weeks of PMA compared to un-
supplemented infants.89 In a Norwegian study with a similar design, the AA:DHA 
group had a significantly decreased number of days with respiratory support but 
not severe ROP due to the low number of patients included, although a >50% 
numerical relative decrease was observed.90 A secondary analysis of the Mega 
Donna Mega trial showed that increased circulating DHA for certain levels of AA 
decreased ROP severity, implying that the ratio beside the levels of the two 
LCPUFAs is important.91 
 
 

TREATMENT 
 
Type I ROP, defined as zone I any stage with plus disease, zone I stage 3 no plus 
disease, and zone II stage 2 or 3 with plus disease, should be treated according to 
the Early Treatment for Retinopathy of Prematurity (ETROP) criteria.92 93 Treatment 
of ROP is performed by either laser therapy or anti-VEGF injections. There are 
several anti-VEGF therapies available on the market today, and the most 
commonly used in Europe and in the US are bevacizumab (Avastin), ranibizumab 



(Lucentis), and aflibercept (Eylea). The use of these products raises concerns about 
the increased risk for reactivation of the disease and systemic effects of a single and 
repetitive treatments.94 A meta-analysis shows that a single-treatment success rate 
is 89% with laser, 87% with bevacizumab, 81% with aflibercept and 74% for 
ranibizumab.95   
 

1.4 PREDICTION MODELS 

 
Prediction models are widely used in medicine. They might be used to help 
diagnose a disease by refining the inclusion criteria for routine screening of 
patients, to define the preventive intervention for a patient that has a high risk of 
developing a specific disease, or to inform the patient and the physician of the 
prognostic outcome of a disease. Generally, the answer we retrieve from a 
prediction model is a probability of a studied outcome of interest. By applying 
certain statistical functions on this probability with or without regard to relevant 
medical knowledge, a qualitative answer or clinical decision can be achieved that 
facilitates the application of a prediction model. Consequently, a clinical decision 
support tool is often the output of the model providing a decision 
recommendation.       

Prediction modelling is divided into four parts, development, validation, 
monitoring including update, and implementation. Developing a prediction model 
requires careful consideration of various important factors including study 
design, sample size, selection of outcome of interest, selection of predictors, 
choice of statistical method, study of linear and non-linear relationships and 
interactions, overfitting, missing data, estimation, evaluation of the performance, 
visualization of the results and potential transfer to a clinical decision support 
tool for clinical usefulness. The final product is the model’s public availability.96 
Internal validation and continuous external validations are expected to be 
performed to address the generalizability of the model on different populations 
and settings, and their transportability in time. Evaluation of the model’s 
discrimination, calibration, and clinical usefulness should be performed.97 Likewise, 
a monitoring plan should be put in place to evaluate the applicability of the 
model to future data including potential updates including re-calibration, revision, 
and extension.   

–

1.5 PREDICTION MODELS FOR RETINOPATHY OF 
PREMATURITY 

PUBLISHED MODELS 

TRADITIONAL REGRESSION MODELS 
 
The first published early ROP predicting model (WINROP) developed by 
Löfqvist et al. in Sweden in 2006 was based on GA, BW, and weekly weights, IGF-
1 and IGFBP3 levels.98 The second version of WINROP, published by Hellström 
et al. in 2009, was shown to function well without weekly IGF-1 and IGFBP3 
levels.99 Using its online application, the ROP monitoring tool WINROP2, is 
widely applied and has been evaluated on infants from different countries and 
settings.100 The postnatal growth and retinopathy of prematurity (G-ROP) 
screening criteria was later developed by Binenbaum et al. on a cohort of ~7500 
infants from the US and Canada, using BW, GA, weight gain 10-19, 20-29, and 
30-39 days, and hydrocephalus status.101     
  

TTAABBLLEE  11.. PREDICTION MODELS FOR RETINOPATHY OF PREMATURITY USING TRADITIONAL 

REGRESSION MODELS. GA = gestational age, BW = birth weight, IGF-1 = insulin-like growth factor-1, 
IGFBP3 = insulin-like growth factor binding protein 3, IVH = intraventricular hemorrhage, NICU = neonatal 
intensive care unit, PNA = postnatal age, PMA = postmenstrual age, ROP = retinopathy of prematurity, RW-
ROP = referral-warranted retinopathy of prematurity, SpO2 = peripheral capillary oxygen saturation, FiO2 = 
fraction of inspired oxygen. If more than one outcome was studied, sensitivity and specificity were presented for 
the more severe outcome. 



(Lucentis), and aflibercept (Eylea). The use of these products raises concerns about 
the increased risk for reactivation of the disease and systemic effects of a single and 
repetitive treatments.94 A meta-analysis shows that a single-treatment success rate 
is 89% with laser, 87% with bevacizumab, 81% with aflibercept and 74% for 
ranibizumab.95   
 

1.4 PREDICTION MODELS 

 
Prediction models are widely used in medicine. They might be used to help 
diagnose a disease by refining the inclusion criteria for routine screening of 
patients, to define the preventive intervention for a patient that has a high risk of 
developing a specific disease, or to inform the patient and the physician of the 
prognostic outcome of a disease. Generally, the answer we retrieve from a 
prediction model is a probability of a studied outcome of interest. By applying 
certain statistical functions on this probability with or without regard to relevant 
medical knowledge, a qualitative answer or clinical decision can be achieved that 
facilitates the application of a prediction model. Consequently, a clinical decision 
support tool is often the output of the model providing a decision 
recommendation.       

Prediction modelling is divided into four parts, development, validation, 
monitoring including update, and implementation. Developing a prediction model 
requires careful consideration of various important factors including study 
design, sample size, selection of outcome of interest, selection of predictors, 
choice of statistical method, study of linear and non-linear relationships and 
interactions, overfitting, missing data, estimation, evaluation of the performance, 
visualization of the results and potential transfer to a clinical decision support 
tool for clinical usefulness. The final product is the model’s public availability.96 
Internal validation and continuous external validations are expected to be 
performed to address the generalizability of the model on different populations 
and settings, and their transportability in time. Evaluation of the model’s 
discrimination, calibration, and clinical usefulness should be performed.97 Likewise, 
a monitoring plan should be put in place to evaluate the applicability of the 
model to future data including potential updates including re-calibration, revision, 
and extension.   

–

1.5 PREDICTION MODELS FOR RETINOPATHY OF 
PREMATURITY 

PUBLISHED MODELS 

TRADITIONAL REGRESSION MODELS 
 
The first published early ROP predicting model (WINROP) developed by 
Löfqvist et al. in Sweden in 2006 was based on GA, BW, and weekly weights, IGF-
1 and IGFBP3 levels.98 The second version of WINROP, published by Hellström 
et al. in 2009, was shown to function well without weekly IGF-1 and IGFBP3 
levels.99 Using its online application, the ROP monitoring tool WINROP2, is 
widely applied and has been evaluated on infants from different countries and 
settings.100 The postnatal growth and retinopathy of prematurity (G-ROP) 
screening criteria was later developed by Binenbaum et al. on a cohort of ~7500 
infants from the US and Canada, using BW, GA, weight gain 10-19, 20-29, and 
30-39 days, and hydrocephalus status.101     
  

TTAABBLLEE  11.. PREDICTION MODELS FOR RETINOPATHY OF PREMATURITY USING TRADITIONAL 

REGRESSION MODELS. GA = gestational age, BW = birth weight, IGF-1 = insulin-like growth factor-1, 
IGFBP3 = insulin-like growth factor binding protein 3, IVH = intraventricular hemorrhage, NICU = neonatal 
intensive care unit, PNA = postnatal age, PMA = postmenstrual age, ROP = retinopathy of prematurity, RW-
ROP = referral-warranted retinopathy of prematurity, SpO2 = peripheral capillary oxygen saturation, FiO2 = 
fraction of inspired oxygen. If more than one outcome was studied, sensitivity and specificity were presented for 
the more severe outcome. 



–

 
 
MACHINE-LEARNING MODELS 

Unlike the development of diagnostic models to date, few prognostic ROP 
models have been developed using machine learning techniques. Coyner et al. 
developed in 2021 a model using only GA and one retinal fundus image at PMA 
32-33 weeks with high accuracy.122 Similar results were obtained by Wu et al. 
using longitudinal images and 46 clinical variables.123   

TTAABBLLEE  22.. PREDICTION MODELS FOR RETINOPATHY OF PREMATURITY USING MACHINE-LEARNING 

TECHNIQUES. GA = gestational age, ROP = retinopathy of prematurity, VSS = vascular severity scale.
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1.6 SURVIVAL MODELS 

 
CONCEPT 
 
Time-to-event or survival analysis is often applied in clinical and epidemiological 
studies where time to an event is of importance. The key concepts of time-to-
event analysis are hazard (instantaneous rate) and survival (probability to be free 
from the event) functions, described in detail below based on Harrell F.E. and 
Rodriguez G.124 125 To exemplify, the hazard function of mortality in a general 
population described over ages is high near birth, accounting for an increased 
risk of complications leading to death at birth. After birth, it drastically decreases 
to low hazard. Then, it is stable for younger ages and increases for higher ages. 
The survival function is a probability to remain free from an event up to a specific 
time point. It is a probability with the value of 1.0 at time 0 (100% free from the 
event) which decreases over time. The survival function is called survival function 
also for events other than mortality. 
Following questions may be studied by applying these methods: 
 

• Describe the time course over PNA and PMA of the instantaneous rate 
(hazard function) of severe ROP requiring treatment in ROP-screened 
infants.   

• Assess the difference in the effect of a preventive AA:DHA supplementation 
compared to conventional nutrition up to 40 weeks of postmenstrual age on 
severe ROP in a randomized controlled trial. 

• Study strength and shape of prognostic factors for time to death in 
prematurely born infants in an observational epidemiological study. 

 
 

DATA 
 
The simplest data set structured to perform survival analysis needs to have the 
following variables defined for each participant: the time to event or censoring, 
calculated as the difference between the baseline date and the date of the event or 
the last follow-up date if the event has not occurred, also known as right-censoring 
date, and the status/indicator of event (yes or no). Participants may enter the study 
at different time points and have different duration of the study follow-up. In 
studies where all participants are followed for an equal time, a more simple 
analysis may be utilized, such as logistic regression, unless the hazard function or 

–

survival function of the disease are of specific interest to be described. Likewise, 
in the studies where all participants have reached the studied event during the 
follow-up, regression models may be used studying time-to-event as dependent 
variable. 
 

FFIIGGUURREE  55.. EXAMPLE DATA FOR SURVIVAL ANALYSIS. Time to event or censoring is the length of the 
green line. 

 
Other important nomenclature not further discussed within this thesis, nor 
applied in the project, are interval-censoring, left-truncation, left-censoring, delayed 
entry, and competing risks. 
 
 

PDF, CDF, SURVIVAL, HAZARD, CUMULATIVE HAZARD, LOG-
LIKELIHOOD 

Assume that 𝑇𝑇 is a non-negative continuous random variable representing time 
until a certain event of interest. Its probability density function (pdf) is denoted 
by 𝑓𝑓(𝑡𝑡) and its cumulative distribution function (cdf) 𝐹𝐹(𝑡𝑡) = 𝑃𝑃𝑃𝑃{𝑇𝑇 < 𝑡𝑡}. 𝐹𝐹(𝑡𝑡) is 
the probability that an event has occurred by time 𝑡𝑡 and is related to 𝑓𝑓 by  

𝐹𝐹(𝑡𝑡) = 𝑃𝑃𝑃𝑃{𝑇𝑇 < 𝑡𝑡} = ∫ 𝑓𝑓
t

0
(𝑥𝑥)𝑑𝑑𝑑𝑑 

i.e., derivative of 𝐹𝐹(𝑡𝑡) is 𝑓𝑓(𝑡𝑡) 

𝐹𝐹′(𝑡𝑡) = 𝑓𝑓(𝑡𝑡) 
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The complement of the cdf is the survival function, the probability that an event 
has not occurred during time 𝑡𝑡, expressed by 

𝑆𝑆(𝑡𝑡) = 𝑃𝑃𝑃𝑃{𝑇𝑇 ≥ 𝑡𝑡} = 1 − 𝐹𝐹(𝑡𝑡) 

i.e., the derivative of 𝑆𝑆(𝑡𝑡) is −𝑓𝑓(𝑡𝑡) 

𝑆𝑆′(t) = −𝑓𝑓(𝑡𝑡) 

The hazard function is defined by  

𝜆𝜆(𝑡𝑡) = lim𝑑𝑑𝑑𝑑→0
𝑃𝑃𝑃𝑃{𝑡𝑡 ≤ 𝑇𝑇 < 𝑡𝑡 + 𝑑𝑑𝑑𝑑 ∣ 𝑇𝑇 ≥ 𝑡𝑡}

𝑑𝑑𝑑𝑑  

The numerator represents the conditional probability that an event occurs in the 
interval [𝑡𝑡, 𝑡𝑡 + 𝑑𝑑𝑑𝑑]. The denominator is the width of the interval. By taking the 
ratio and the limit that approaches zero we get the instantaneous rate of the event. 

Using the law of conditional probability, the expression above may be re-written 
as  

𝜆𝜆(𝑡𝑡) = lim𝑑𝑑𝑑𝑑→0
𝑃𝑃𝑃𝑃{𝑡𝑡 ≤ 𝑇𝑇 < 𝑡𝑡 + 𝑑𝑑𝑑𝑑}/𝑑𝑑𝑑𝑑

Pr⁡{𝑇𝑇 ≥ 𝑡𝑡} ⁡ 

⁡⁡⁡⁡⁡⁡⁡⁡= lim𝑑𝑑𝑑𝑑→0
[𝐹𝐹(𝑡𝑡 + 𝑑𝑑𝑑𝑑) − 𝐹𝐹(𝑡𝑡)]/𝑑𝑑𝑑𝑑

𝑆𝑆(𝑡𝑡)  

⁡⁡⁡⁡⁡⁡⁡⁡=
𝑑𝑑
𝑑𝑑𝑑𝑑 𝐹𝐹(𝑡𝑡)
𝑆𝑆(𝑡𝑡)  

= 𝑓𝑓(𝑡𝑡)
𝑆𝑆(𝑡𝑡) 

interpreted as the event rate at duration 𝑡𝑡. 

Applying the derivative of 𝑆𝑆(𝑡𝑡), −𝑓𝑓(𝑡𝑡), and derivation rules of the logarithm of a 
function, the expression may be re-written to 

𝜆𝜆(𝑡𝑡) = ⁡
− 𝑑𝑑
𝑑𝑑𝑑𝑑 𝑆𝑆(𝑡𝑡)
𝑆𝑆(𝑡𝑡) = − 𝑑𝑑

𝑑𝑑𝑑𝑑 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑡𝑡)⁡ 

Integrating from 0 to 𝑡𝑡 on both sides we get following expression for the survival 
function 

–

𝑆𝑆(𝑡𝑡) = 𝑒𝑒𝑒𝑒𝑒𝑒 (−∫ 𝜆𝜆
𝑡𝑡

0
(𝑥𝑥)𝑑𝑑𝑑𝑑) 

The integral in the expression above is called cumulative hazard  

𝛬𝛬(𝑡𝑡) = ∫ 𝜆𝜆
𝑡𝑡

0
(𝑥𝑥)𝑑𝑑𝑑𝑑 

The other functions may be obtained given any of 𝑓𝑓(𝑡𝑡), 𝐹𝐹(𝑡𝑡), 𝑆𝑆(𝑡𝑡), 𝜆𝜆(𝑡𝑡) and 𝛬𝛬(𝑡𝑡). 
Time-to-event data is most commonly studied by modelling 𝜆𝜆(𝑡𝑡), known as 
hazard rate models, such as Cox regression models, further described below.126 
Others, like Royston and Parmar, model log 𝛬𝛬(𝑡𝑡), not discussed further in this 
work.127 

The model parameters are solved through maximizing the likelihood function 𝐿𝐿, 
constructed using each individual’s contribution to the statistical problem, using 
maximum likelihood estimation. For practical reasons log-likelihood 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 is 
maximized rather than likelihood 𝐿𝐿 itslef.  

Assume that we have 𝑛𝑛 individuals included in a study, and that individual 𝑖𝑖 is 
followed up until time 𝑡𝑡𝑖𝑖. If the individual gets event at 𝑡𝑡𝑖𝑖 then the contribution 
to the likelihood function is the density at that duration 

𝐿𝐿𝑖𝑖 = 𝑓𝑓(𝑡𝑡𝑖𝑖) = 𝑆𝑆(𝑡𝑡𝑖𝑖)𝜆𝜆(𝑡𝑡𝑖𝑖) 

If the individual is still free from event at 𝑡𝑡𝑖𝑖, i.e. censored at 𝑡𝑡𝑖𝑖, the contribution 
to the likelihood function is 

𝐿𝐿𝑖𝑖 = 𝑆𝑆(𝑡𝑡𝑖𝑖) 

Considering all 𝑛𝑛 individuals the likelihood may be expressed by 

𝐿𝐿 = ∏𝐿𝐿𝑖𝑖
𝑛𝑛

𝑖𝑖=1
=∏𝜆𝜆

𝑛𝑛

𝑖𝑖=1
(𝑡𝑡𝑖𝑖)𝑑𝑑𝑖𝑖𝑆𝑆(𝑡𝑡𝑖𝑖) 

where 𝑑𝑑𝑖𝑖 is the event indicator. 

The log-likelihood (natural logarithm) is then expressed by 

𝑙𝑙𝑜𝑜𝑔𝑔𝑔𝑔 =∑(𝑑𝑑𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑡𝑡𝑖𝑖) − 𝛬𝛬(𝑡𝑡𝑖𝑖))
𝑛𝑛

𝑖𝑖=1
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Using the law of conditional probability, the expression above may be re-written 
as  

𝜆𝜆(𝑡𝑡) = lim𝑑𝑑𝑑𝑑→0
𝑃𝑃𝑃𝑃{𝑡𝑡 ≤ 𝑇𝑇 < 𝑡𝑡 + 𝑑𝑑𝑑𝑑}/𝑑𝑑𝑑𝑑

Pr⁡{𝑇𝑇 ≥ 𝑡𝑡} ⁡ 

⁡⁡⁡⁡⁡⁡⁡⁡= lim𝑑𝑑𝑑𝑑→0
[𝐹𝐹(𝑡𝑡 + 𝑑𝑑𝑑𝑑) − 𝐹𝐹(𝑡𝑡)]/𝑑𝑑𝑑𝑑

𝑆𝑆(𝑡𝑡)  

⁡⁡⁡⁡⁡⁡⁡⁡=
𝑑𝑑
𝑑𝑑𝑑𝑑 𝐹𝐹(𝑡𝑡)
𝑆𝑆(𝑡𝑡)  

= 𝑓𝑓(𝑡𝑡)
𝑆𝑆(𝑡𝑡) 

interpreted as the event rate at duration 𝑡𝑡. 

Applying the derivative of 𝑆𝑆(𝑡𝑡), −𝑓𝑓(𝑡𝑡), and derivation rules of the logarithm of a 
function, the expression may be re-written to 

𝜆𝜆(𝑡𝑡) = ⁡
− 𝑑𝑑
𝑑𝑑𝑑𝑑 𝑆𝑆(𝑡𝑡)
𝑆𝑆(𝑡𝑡) = − 𝑑𝑑

𝑑𝑑𝑑𝑑 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑡𝑡)⁡ 

Integrating from 0 to 𝑡𝑡 on both sides we get following expression for the survival 
function 

–

𝑆𝑆(𝑡𝑡) = 𝑒𝑒𝑒𝑒𝑒𝑒 (−∫ 𝜆𝜆
𝑡𝑡

0
(𝑥𝑥)𝑑𝑑𝑑𝑑) 

The integral in the expression above is called cumulative hazard  

𝛬𝛬(𝑡𝑡) = ∫ 𝜆𝜆
𝑡𝑡

0
(𝑥𝑥)𝑑𝑑𝑑𝑑 

The other functions may be obtained given any of 𝑓𝑓(𝑡𝑡), 𝐹𝐹(𝑡𝑡), 𝑆𝑆(𝑡𝑡), 𝜆𝜆(𝑡𝑡) and 𝛬𝛬(𝑡𝑡). 
Time-to-event data is most commonly studied by modelling 𝜆𝜆(𝑡𝑡), known as 
hazard rate models, such as Cox regression models, further described below.126 
Others, like Royston and Parmar, model log 𝛬𝛬(𝑡𝑡), not discussed further in this 
work.127 

The model parameters are solved through maximizing the likelihood function 𝐿𝐿, 
constructed using each individual’s contribution to the statistical problem, using 
maximum likelihood estimation. For practical reasons log-likelihood 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 is 
maximized rather than likelihood 𝐿𝐿 itslef.  

Assume that we have 𝑛𝑛 individuals included in a study, and that individual 𝑖𝑖 is 
followed up until time 𝑡𝑡𝑖𝑖. If the individual gets event at 𝑡𝑡𝑖𝑖 then the contribution 
to the likelihood function is the density at that duration 

𝐿𝐿𝑖𝑖 = 𝑓𝑓(𝑡𝑡𝑖𝑖) = 𝑆𝑆(𝑡𝑡𝑖𝑖)𝜆𝜆(𝑡𝑡𝑖𝑖) 

If the individual is still free from event at 𝑡𝑡𝑖𝑖, i.e. censored at 𝑡𝑡𝑖𝑖, the contribution 
to the likelihood function is 

𝐿𝐿𝑖𝑖 = 𝑆𝑆(𝑡𝑡𝑖𝑖) 

Considering all 𝑛𝑛 individuals the likelihood may be expressed by 

𝐿𝐿 = ∏𝐿𝐿𝑖𝑖
𝑛𝑛

𝑖𝑖=1
=∏𝜆𝜆

𝑛𝑛

𝑖𝑖=1
(𝑡𝑡𝑖𝑖)𝑑𝑑𝑖𝑖𝑆𝑆(𝑡𝑡𝑖𝑖) 

where 𝑑𝑑𝑖𝑖 is the event indicator. 

The log-likelihood (natural logarithm) is then expressed by 

𝑙𝑙𝑜𝑜𝑔𝑔𝑔𝑔 =∑(𝑑𝑑𝑖𝑖𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝑡𝑡𝑖𝑖) − 𝛬𝛬(𝑡𝑡𝑖𝑖))
𝑛𝑛

𝑖𝑖=1
 

 



HAZARD RATE MODELS 
 

NON-PARAMETRIC PROPORTIONAL HAZARDS MODEL 

Introducing a vector of explanatory variables or predictors 𝒙𝒙 that are related to 
the survival time 𝑇𝑇, Cox proposed a family of hazards models in 1972, with the 
proportional hazards model being the most simple and most familiar.126  

𝜆𝜆𝑖𝑖(𝑡𝑡|𝑥𝑥𝑖𝑖) = 𝜆𝜆0(𝑡𝑡)𝑒𝑒𝑒𝑒𝑒𝑒(𝜷𝜷𝒙𝒙𝒊𝒊) 

where 𝜆𝜆0(𝑡𝑡) is the baseline hazard function describing the risk for participants 
having 𝑥𝑥𝑖𝑖 = 0, and 𝑒𝑒𝑒𝑒𝑒𝑒(𝜷𝜷𝒙𝒙𝑖𝑖) is additional relative risk defined by the predictors 
𝒙𝒙, where 𝜷𝜷𝒙𝒙𝑖𝑖 = ⁡𝛽𝛽0 +⁡𝛽𝛽1𝑥𝑥1 + ⋯+⁡𝛽𝛽𝑘𝑘𝑥𝑥𝑘𝑘⁡for 𝑘𝑘 predictors, with 𝑒𝑒𝑒𝑒𝑒𝑒(𝛽𝛽𝑘𝑘) being 
known as hazard ratio (HR) for predictor 𝑘𝑘.  

Taking the 𝑙𝑙𝑙𝑙𝑙𝑙 of the hazard function we get an additive model, assuming 
proportional hazard owing to the 𝜆𝜆0(𝑡𝑡) not being dependent on 𝑋𝑋, i.e. the effect 
of 𝑋𝑋 is same for all 𝑡𝑡. 

𝑙𝑙𝑙𝑙𝑙𝑙𝜆𝜆𝑖𝑖(𝑡𝑡|𝑥𝑥𝑖𝑖) = 𝑙𝑙𝑙𝑙𝑙𝑙𝜆𝜆0(𝑡𝑡) + 𝛽𝛽𝑥𝑥𝑖𝑖 

The cumulative hazard function is then 

𝛬𝛬𝑖𝑖(𝑡𝑡|𝑥𝑥𝑖𝑖) = 𝛬𝛬0(𝑡𝑡)𝑒𝑒𝑒𝑒𝑒𝑒(𝛽𝛽𝑥𝑥𝑖𝑖) 

and the survival function 

𝑆𝑆𝑖𝑖(𝑡𝑡|𝑥𝑥𝑖𝑖) = 𝑆𝑆0(𝑡𝑡)𝑒𝑒𝑒𝑒𝑒𝑒(𝛽𝛽𝑥𝑥𝑖𝑖) 

The baseline hazard is in the proposal from Cox left completely unspecified and 
estimated non-parametrically. The model focuses on estimating 𝛽𝛽 coefficients. 

 

PARAMETRIC PROPORTIONAL HAZARDS MODEL 
 
The parametric proportional hazards models have a specific functional form of 
the baseline hazard assumed, e.g. a constant, a piecewise constant, Weibull, 
Gompertz, or extreme value distribution. 
Assuming the simplest case, that the hazard above is constant over time, i.e. not 
dependent on 𝑡𝑡, we get following hazard and survival function 

𝜆𝜆𝑖𝑖(𝑡𝑡|𝑥𝑥𝑖𝑖) = 𝜆𝜆0𝑒𝑒𝑒𝑒𝑒𝑒(𝛽𝛽𝑥𝑥𝑖𝑖) 

–

𝑆𝑆𝑖𝑖(𝑡𝑡|𝑥𝑥𝑖𝑖) = 𝑒𝑒𝑒𝑒𝑒𝑒(−𝜆𝜆0𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡(𝛽𝛽𝑥𝑥𝑖𝑖)) = 𝑒𝑒𝑒𝑒𝑒𝑒(−𝜆𝜆0𝑡𝑡)𝑒𝑒𝑒𝑒𝑒𝑒(𝛽𝛽𝑥𝑥𝑖𝑖) 

Replacing 𝜆𝜆0 with 𝑒𝑒𝑒𝑒𝑒𝑒(𝛽𝛽0) in the hazard function above we get an expression 
that reminds of a transformed linear model, called exponential regression model. 

𝜆𝜆𝑖𝑖(𝑡𝑡|𝑥𝑥𝑖𝑖) = 𝑒𝑒𝑒𝑒𝑒𝑒(𝛽𝛽0 + 𝛽𝛽𝑥𝑥𝑖𝑖) 

 

GENERAL HAZARD RATE MODEL 

We may want to allow predictors 𝑋𝑋 to be time dependent. Examples of time-
dependent predictors could be e.g., blood samples of a specific biomarker taken 
over time, where we are interested in studying the most recent value, the average 
of available values last three months, or variability of values last year, as the 
biomarker’s impact on outcome.  

We may also want to allow 𝛽𝛽 coefficients to be time-dependent, implying that 
proportional hazard is no longer assumed. This enables the possibility to study 
changes in effects on an outcome over time for different variables. E.g., a certain 
treatment effect may be large closer to the initiation of the medication, but this 
effect might decrease after a certain time while the underlying disease is 
progressing. Alternatively, a treatment might need some time to accumulate in 
the body to affect an outcome. In both examples the treatment effect varies with 
time.  

Such a model may be seen as a general hazard rate model and expressed by  

𝜆𝜆𝑖𝑖(𝑡𝑡|𝑥𝑥𝑖𝑖(𝑡𝑡)) = 𝜆𝜆0(𝑡𝑡)𝑒𝑒𝑒𝑒𝑒𝑒(𝛽𝛽(𝑡𝑡)𝑥𝑥𝑖𝑖(𝑡𝑡)) 

Note that both 𝛽𝛽 coefficients (time-dependent effects) and 𝑥𝑥𝑖𝑖 (time-dependent 
predictors) may vary with 𝑡𝑡. 

There are three ways of fitting a general hazard rate model: 

• Using a parametric approach by assuming e.g., exponential distribution 
for the 𝐹𝐹(𝑡𝑡) mentioned earlier. 

• Using a semi-parametric approach, such as dividing time into small 
intervals and assuming that the baseline hazard is constant in each 
interval. This model is called piecewise exponential model, described in 
more detail below. 
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Introducing a vector of explanatory variables or predictors 𝒙𝒙 that are related to 
the survival time 𝑇𝑇, Cox proposed a family of hazards models in 1972, with the 
proportional hazards model being the most simple and most familiar.126  

𝜆𝜆𝑖𝑖(𝑡𝑡|𝑥𝑥𝑖𝑖) = 𝜆𝜆0(𝑡𝑡)𝑒𝑒𝑒𝑒𝑒𝑒(𝜷𝜷𝒙𝒙𝒊𝒊) 

where 𝜆𝜆0(𝑡𝑡) is the baseline hazard function describing the risk for participants 
having 𝑥𝑥𝑖𝑖 = 0, and 𝑒𝑒𝑒𝑒𝑒𝑒(𝜷𝜷𝒙𝒙𝑖𝑖) is additional relative risk defined by the predictors 
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known as hazard ratio (HR) for predictor 𝑘𝑘.  

Taking the 𝑙𝑙𝑙𝑙𝑙𝑙 of the hazard function we get an additive model, assuming 
proportional hazard owing to the 𝜆𝜆0(𝑡𝑡) not being dependent on 𝑋𝑋, i.e. the effect 
of 𝑋𝑋 is same for all 𝑡𝑡. 
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The cumulative hazard function is then 

𝛬𝛬𝑖𝑖(𝑡𝑡|𝑥𝑥𝑖𝑖) = 𝛬𝛬0(𝑡𝑡)𝑒𝑒𝑒𝑒𝑒𝑒(𝛽𝛽𝑥𝑥𝑖𝑖) 
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The baseline hazard is in the proposal from Cox left completely unspecified and 
estimated non-parametrically. The model focuses on estimating 𝛽𝛽 coefficients. 

 

PARAMETRIC PROPORTIONAL HAZARDS MODEL 
 
The parametric proportional hazards models have a specific functional form of 
the baseline hazard assumed, e.g. a constant, a piecewise constant, Weibull, 
Gompertz, or extreme value distribution. 
Assuming the simplest case, that the hazard above is constant over time, i.e. not 
dependent on 𝑡𝑡, we get following hazard and survival function 
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Replacing 𝜆𝜆0 with 𝑒𝑒𝑒𝑒𝑒𝑒(𝛽𝛽0) in the hazard function above we get an expression 
that reminds of a transformed linear model, called exponential regression model. 

𝜆𝜆𝑖𝑖(𝑡𝑡|𝑥𝑥𝑖𝑖) = 𝑒𝑒𝑒𝑒𝑒𝑒(𝛽𝛽0 + 𝛽𝛽𝑥𝑥𝑖𝑖) 

 

GENERAL HAZARD RATE MODEL 

We may want to allow predictors 𝑋𝑋 to be time dependent. Examples of time-
dependent predictors could be e.g., blood samples of a specific biomarker taken 
over time, where we are interested in studying the most recent value, the average 
of available values last three months, or variability of values last year, as the 
biomarker’s impact on outcome.  

We may also want to allow 𝛽𝛽 coefficients to be time-dependent, implying that 
proportional hazard is no longer assumed. This enables the possibility to study 
changes in effects on an outcome over time for different variables. E.g., a certain 
treatment effect may be large closer to the initiation of the medication, but this 
effect might decrease after a certain time while the underlying disease is 
progressing. Alternatively, a treatment might need some time to accumulate in 
the body to affect an outcome. In both examples the treatment effect varies with 
time.  

Such a model may be seen as a general hazard rate model and expressed by  

𝜆𝜆𝑖𝑖(𝑡𝑡|𝑥𝑥𝑖𝑖(𝑡𝑡)) = 𝜆𝜆0(𝑡𝑡)𝑒𝑒𝑒𝑒𝑒𝑒(𝛽𝛽(𝑡𝑡)𝑥𝑥𝑖𝑖(𝑡𝑡)) 

Note that both 𝛽𝛽 coefficients (time-dependent effects) and 𝑥𝑥𝑖𝑖 (time-dependent 
predictors) may vary with 𝑡𝑡. 

There are three ways of fitting a general hazard rate model: 

• Using a parametric approach by assuming e.g., exponential distribution 
for the 𝐹𝐹(𝑡𝑡) mentioned earlier. 

• Using a semi-parametric approach, such as dividing time into small 
intervals and assuming that the baseline hazard is constant in each 
interval. This model is called piecewise exponential model, described in 
more detail below. 



• Using a non-parametric approach that leaves baseline hazard completely 
unspecified, corresponding to the Cox model previously described. This 
model is also equivalent to the piecewise exponential model where time 
is modelled ad absurdum with one parameter per unique event time. 

 

PIECEWISE EXPONENTIAL AND EXTENDED POISSON MODEL 

In this method we partition the time 𝑡𝑡 into 𝐽𝐽 intervals, 0 = 𝜏𝜏0 < 𝜏𝜏1 <. . . < 𝜏𝜏𝐽𝐽 =
∞. The 𝑗𝑗-th interval is defined as [𝜏𝜏𝑗𝑗−1, 𝜏𝜏𝑗𝑗]. Assuming to have baseline hazard 
constant within each interval, i.e., not dependent on time, we get 

𝜆𝜆0(𝑡𝑡) = 𝜆𝜆𝑗𝑗 for each [𝜏𝜏𝑗𝑗−1, 𝜏𝜏𝑗𝑗] 

This implies that the baseline hazard is modelled using 𝜆𝜆1, 𝜆𝜆2, . . . , 𝜆𝜆𝐽𝐽, called 
piecewise constant model or piecewise exponential model. 

Introducing predictors and proportional hazards assumption, we get 

𝜆𝜆𝑖𝑖𝑖𝑖 = 𝜆𝜆𝑗𝑗𝑒𝑒𝑒𝑒𝑒𝑒(𝛽𝛽𝑥𝑥𝑖𝑖) 

Taking logs on both sides, a log-linear additive model is obtained, where 𝛼𝛼𝑗𝑗 =
𝑙𝑙𝑙𝑙𝑙𝑙𝜆𝜆𝑗𝑗 

𝑙𝑙𝑙𝑙𝑙𝑙𝜆𝜆𝑖𝑖𝑖𝑖 = 𝛼𝛼𝑗𝑗𝑒𝑒𝑒𝑒𝑒𝑒(𝛽𝛽𝑥𝑥𝑖𝑖) 

The piecewise exponential model above was proven in 1980-1981 independently 
by Holford, and Laird and Olivier, to be equivalent to a certain Extended Poisson 
model, through its log-likelihood.128-131 Applications using generalized linear 
models were later published by others.132-134 

For each participant partitioned data rows are created. For each interval free of 
event the time 𝑡𝑡𝑖𝑖𝑖𝑖 = 𝜏𝜏𝑗𝑗 − 𝜏𝜏𝑗𝑗−1 and for the interval where the event occurs at 𝑡𝑡𝑖𝑖 the 
𝑡𝑡𝑖𝑖𝑖𝑖 = 𝑡𝑡𝑖𝑖 − 𝜏𝜏𝑗𝑗−1. Beside interval-specific time points the indicator of the event, 𝑑𝑑𝑖𝑖𝑖𝑖 , 
is also created for each interval, being 0 for all intervals except the one in which 
the event occurs, where it is set to 1. Treating the event indicators 𝑑𝑑𝑖𝑖𝑖𝑖  as 
independent Poisson observations a piecewise exponential model is fitted for 
their means 

𝜇𝜇𝑖𝑖𝑖𝑖 = 𝑡𝑡𝑖𝑖𝑖𝑖𝜆𝜆𝑖𝑖𝑖𝑖  

Taking the log on both sides, and expressing 𝛼𝛼𝑗𝑗 = 𝑙𝑙𝑙𝑙𝑙𝑙𝜆𝜆𝑗𝑗, we get 

–

𝑙𝑙𝑙𝑙𝑙𝑙𝜇𝜇𝑖𝑖𝑖𝑖 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡𝑖𝑖𝑖𝑖 + 𝛼𝛼𝑗𝑗 + 𝛽𝛽𝑥𝑥𝑖𝑖 

meaning that this model is equivalent to a Poisson log-linear model for 
partitioned observations with 𝑑𝑑𝑖𝑖𝑖𝑖  as the outcome and 𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡𝑖𝑖𝑖𝑖 as an offset. 

The proof of the two models being equivalent is because the likelihoods for the 
two coincide and therefore solve the same statistical problem and provide the 
same 𝛽𝛽 estimates. 

Both time-dependent predictors and time-dependent effects may be incorporated 
similarly as previously shown, if the interval width is large enough to account for 
the variable and effect changes. If not, smaller partitioning might be performed if 
required to update a variable over time. The limitation of this method is that it 
can be time-consuming for large datasets, particularly time-dependent models. 

This general hazard rate model, allowing study of time-dependent predictors and 
time-dependent effects, Piecewise exponential model, or Extended Poisson model, was 
used to develop DIGIROP-Birth prediction models in Paper I and Paper IV. 



• Using a non-parametric approach that leaves baseline hazard completely 
unspecified, corresponding to the Cox model previously described. This 
model is also equivalent to the piecewise exponential model where time 
is modelled ad absurdum with one parameter per unique event time. 
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This general hazard rate model, allowing study of time-dependent predictors and 
time-dependent effects, Piecewise exponential model, or Extended Poisson model, was 
used to develop DIGIROP-Birth prediction models in Paper I and Paper IV. 



–

2 RATIONALE 

Prediction of risk is frequently studied in medical research. The development and 
validation of ROP prediction models have been ongoing for the past 20 years. 
Following the review of American Academy of Ophthalmology in 2016 of 23 studies, 
Hutchinson et al. concluded that more rigorous efforts must be implemented in 
prognostic ROP research.135 Most often, the prediction models are based on the 
linear relationship between predictors and the outcome. Non-linear associations, 
interactions and time-updated information are seldom considered.  

Advances in medicine and healthcare have, over years, implied an increase in 
survival of preterm infants with decreasing gestational ages. Infants born at GA 
less than 24 weeks are part of today’s national patient registry data, surviving due 
to improved intensive medical care.48 Consequently, an increased number of 
infants need ROP screening examinations. Studies have shown that the infant’s 
discomfort caused by the physical manipulations of the eye globe and procedures 
during examinations leads to significant distress of the infant, including changes 
in blood pressure and oxygen saturation that may impact on their cognitive 
development.136-138 Hence, efforts must be made to learn more about the causes of 
stress for this population and we must find new methods to decrease harm and 
pain during examinations. An effort to decrease the number of unnecessary 
examinations without compromising infant safety, while maximizing utilization 
of the healthcare resources is also critical. The clinical goal of a validated 
prediction tool within this project is to identify infants that do not need 
screening as well as to identify the time point when the ophthalmologist can 
safely stop screening examinations and hence reduce the number of unnecessary 
ROP examinations in this fragile population.  
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3 AIM 
 
This thesis aimed to develop and validate prediction models for severe ROP 
requiring treatment using easy-obtainable variables available for all children 
nationally without compromising their outcome. Additionally, it was to describe 
the hazard function for ROP treatment and demonstrate the prognostic value of 
days on parenteral nutrition on any ROP and ROP requiring treatment. The 
outcome from the models was to be compared to other most cited ROP 
prediction models. Specifically, the aims were: 
 

PPAAPPEERR  II  DDIIGGIIRROOPP--BBiirrtthh  11..00::  To develop, and internally and externally validate 
the DIGIROP-Birth model based solely on birth characteristics, 
including ~7300 infants from SWEDROP (2007-2018), ~1500 infants 
from the US (2005-2010) and ~300 infants from Germany (2011-2017). 
Further, it was to describe the hazard function for ROP treatment for 
infants born at <31 weeks of gestation. The models were to be compared 
to WINROP, CHOP-ROP, OMA-ROP and CO-ROP.  
 PPAAPPEERR  IIII  DDIIGGIIRROOPP--SSccrreeeenn  11..00:: To develop and internally and externally validate 
DIGIROP-Screen models using DIGIROP-Birth risk estimates and data 
from ROP screening for infants born at 24-30 weeks of gestation, based 
on ~7300 infants from SWEDROP (2007-2018), ~600 infants from the 
US (2006-2009 and 2014-2019) and 300 infants from Germany (2011-
2017). Additionally, a clinical decision support tool that achieved 100% 
sensitivity and the highest specificity possible was proposed. The models 
were to be compared to WINROP, CHOP-ROP, OMA-ROP, and CO-
ROP. 
 PPAAPPEERR  IIIIII  EExxtteerrnnaall  vvaalliiddaattiioonn:: To externally validate DIGIROP-Birth, DIGIROP-
Screen, and their clinical decision support tool on a contemporary 
Swedish cohort of ~1000 infants from SWEDROP (2018-2020). 
 PPAAPPEERR  IIVV  DDIIGGIIRROOPP--BBiirrtthh  22..00  aanndd  DDIIGGIIRROOPP--SSccrreeeenn  22..00::  To demonstrate the 
prognostic value of days on parenteral nutrition on any ROP and ROP 
treatment. Additionally, it was to update and validate DIGIROP 
prediction models and their clinical decision support tool, including 
~11,000 ROP-screened infants irrespective of GA from SWEDROP 
(2007-2020) incorporating days on parenteral nutrition, and BW instead 
of BWSDS. The models were to be compared to WINROP and G-ROP. 
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4 ETHICAL APPROVALS 

Ethical permits have been obtained for all studies included in this thesis. All four 
studies are retrospective, register studies, including data retrieved from the 
medical records, considering routine examinations. At the first ROP screening 
examination, the parents are given the possibility to decline the infant’s 
participation in the registry, following information provided orally and in 
writing about SWEDROP.  
 

PPAAPPEERR  II  The ethics committee approved the study at Uppsala University 
(original application Dnr 2010-117, and amendment Dnr 2010-117/2). 
Concerning the international data for validation of the models, ethical 
approvals were available for German and US data from the respective 
ethical committee and institutional review boards from all 
participating centers.  
 PPAAPPEERR  IIII  The ethics committee approved the study at Uppsala University, 
Uppsala, Sweden (original application Dnr 2010-117, and amendment 
Dnr 2010-117/2). Data validation required a review of medical records 
approved by the Swedish Ethical Review Authority (Dnr 2019-02321). 
Concerning the international data for validation of the models, ethical 
approvals were available for German and US data from the respective 
ethical committee and institutional review boards from all 
participating centers. 
 PPAAPPEERR  IIIIII  The Swedish Ethical Review Authority approved this study (Dnr 2019-
02321). Ethical approval was available for extraction of data from 
SWEDROP until 31 December 2019 (original application Dnr 2010-
117, and amendment Dnr 2010-117/2), and separately for the two 
regions during the year 2020 in the amendment (Dnr 2020-06940) to 
the original study application (Dnr 2019-02321). 
 PPAAPPEERR  IIVV  The Swedish Ethical Review Authority approved this study (Dnr 2019-
02321, an amendment to extend the study for years 2007-2025 Dnr 
2022-02656-02). Ethical approval was available for data extraction from 
the SWEDROP until 31 December 2025 (Dnr 2021-05134) based on 
approvals Dnr 2010-117 and Dnr 2010-117/2. 
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5 MATERIALS AND METHODS 

5.1 PAPER I DIGIROP-BIRTH 

The development of the DIGIROP-Birth 1.0 prediction model was based on the 
infants registered in SWEDROP 2007-2017. External validation included infants 
from SWEDROP 2017-2018, the US from 2005-2010, and Germany from 2011-
2017. 

FFIIGGUURREE  66.. THE STUDY POPULATION INCLUDED IN PAPER I. 

 

  
 

 



–

5 MATERIALS AND METHODS 

5.1 PAPER I DIGIROP-BIRTH 

The development of the DIGIROP-Birth 1.0 prediction model was based on the 
infants registered in SWEDROP 2007-2017. External validation included infants 
from SWEDROP 2017-2018, the US from 2005-2010, and Germany from 2011-
2017. 

FFIIGGUURREE  66.. THE STUDY POPULATION INCLUDED IN PAPER I. 

 

  
 

 



5.2 PAPER II DIGIROP-SCREEN 

Development of the DIGIROP-Screen 1.0 prediction model was based on the 
same data extraction from SWEDROP 2007-2017 that was used for DIGIROP-
Birth 1.0. In between the two studies, missing and incomplete data was validated 
based on the medical records. External validation included data from SWEDROP 
2017-2018, two cohorts from the US 2006-2009 and 2014-2019, and one from 
Germany 2011-2017.   

FFIIGGUURREE  77.. THE STUDY POPULATION INCLUDED IN PAPER II. 

5.3 PAPER III EXTERNAL VALIDATION 

External validation of DIGIROP-Birth 1.0, DIGIROP-Screen 1.0 and their clinical 
decision support tool was based on a contemporary extraction of data from 
SWEDROP 2018-2019 and regional data from Västra Götaland region (VGR) and 
Skåne 2020. There were no missing data. 
 
  

–

FFIIGGUURREE  88.. THE STUDY POPULATION INCLUDED IN PAPER III. 
 

5.4 PAPER IV UPDATED DIGIROP MODELS 

Update of DIGIROP-Birth 2.0, DIGIROP-Screen 2.0, and their clinical decision 
support tool was based on data extracted from SWEDROP between 2007 and 
2020. This study included all registered infants without any restrictions on GA.  

FFIIGGUURREE  99.. THE STUDY POPULATION INCLUDED IN PAPER IV. 
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5.5 OUTCOMES 

The prediction models were developed to estimate the risk for severe ROP 
requiring treatment, defined either per the ETROP criteria, or based on the 
assessment of the examining ophthalmologist.92  
In Paper IV, the association between PND and any ROP was assessed besides ROP 
treatment. 
 

5.6 PREDICTORS 

Predictors required for calculations of DIGIROP-Birth and DIGIROP-Screen risk 
estimates are presented in TTaabbllee  33 below. 
Gestational age was ascertained by the fetal ultrasound that in Sweden is 
routinely performed in gestational week 18-20. PNA, PMA and GA were defined 
by applying the policy issued by the AAP.1  
Parenteral nutrition duration considers total number of days on protein and lipid 
parenteral supplementation.  

TTAABBLLEE  33.. PREDICTORS INCLUDED IN DIGIROP-BIRTH AND DIGIROP-SCREEN PREDICTION 

MODELS. ROP = retinopathy of prematurity; SDS = standard deviation score. 

(<14 days, ≥14 days, unknown)

  

–

Additionally, for DIGIROP-Screen 1.0, location (nasal, temporal, nasal and 
temporal) was investigated as a predictor. Given the uncertain reporting of this 
variable, and incomplete data, it was decided to leave this variable out of the final 
model. Time since the first detection of ROP was also evaluated and found 
redundant in the model when age at first ROP diagnosis was included. 
 

5.7 GUIDELINES 

The Transparent Reporting of a multivariable prediction model for Individual 
Prognosis or Diagnosis (TRIPOD) statement was followed in all studies.139 In Paper 
I, the Prognosis Research Strategy (PROGRESS) 3 was followed.140 In Paper III and 
Paper IV, the Prediction model study Risk of Bias Assessment Tool (PROBAST) 
instrument was additionally applied.141 142    
 

5.8 STATISTICS 

 
SAMPLE SIZE 
 
Data available in Sweden for Paper I included ~7000 infants born at GA 24 to 30 
weeks. Among those, ~300 infants reached the endpoint, severe ROP requiring 
treatment. The number of 300 treated infants allows for a lower 95% CI of the 
required 100% sensitivity to be at least 99%, considered necessary by researchers 
in this field.135 143 Of note is that most (21 out of 25) of the up-to-date published 
ROP prediction models are based on data samples of <2000 infants. The most 
extensive data set currently available worldwide is collected by a North American 
research group, including ~11,500 prematurely born infants.144 Compared to 
other studies and available cohorts, it was evaluated that prediction models based 
on ~300 events meet the sample size requirements. In Paper IV, ~11,000 infants 
could be included from SWEDROP owing to more extended inclusion of 
calendar years and extension of the models to include all ROP-screened infants. 
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GENERAL METHODS 
 
Database programming and statistical analyses were performed in SAS software 
version 9.4 (SAS Institute Inc., Cary, NC, USA). Tables and figures for the 
publications and the thesis were created in SAS software. Extended Poisson 
models for Paper IV were run in SAS software and validated in R Statistical 
software version 4.2.0 (R Core Team 2022, Vienna, Austria). The mathematical 
expressions were written in R Markdown. 

Continuous variables were described by mean, standard deviation (SD), and/or 
median and range for descriptive purpose. Counts and percentages described 
categorical variables. 

For comparisons between two groups Fisher’s exact test was used for 
dichotomous variables, the Mantel-Haenszel Chi-square trend test for ordered 
categorical variables, the Chi-square test for non-ordered categorical variables, 
and Mann-Whitney U-test for continuous variables. The Jonckheere-Terpstra test 
was applied when studying the relationship between a continuous and an ordered 
categorical variable. The correlation between two continuous variables was 
described by Spearman correlation, rS. 

All tests were two-sided and a p-value <0.05 was considered statistically 
significant. Missing data were not imputed.  

 

EXTENDED POISSON MODEL 
 

METHODOLOGICAL HISTORY RELATED TO THIS THESIS 

Development of DIGIROP-Birth models was performed applying extended 
Poisson model, i.e., piecewise exponential model, using an in-house built SAS 
macro transcribed and further developed by Artemis Mårtensson (published as 
Anton Mårtensson), MSc, at Statistiska konsultgruppen, Gothenburg, Sweden, 
during years 2010-2012. This macro is owned by Statistiska konsultgruppen and is 
not publicly available. Statistiska konsultgruppen gave permission to use the 
macro for this thesis. The transcription to SAS was based on a BASIC macro 
developed by Prof. Emeritus Anders Odén. The transcription work was 
performed in close cooperation with Prof. Odén and was initiated for a Safety-

–

GH project led by Sr. Prof. Kerstin Albertsson-Wikland.145 Thorough validations 
were performed. Beside applications in other projects, Prof. Odén used the same 
method for the development of a statistical application known as FRAX within 
the field of osteoporosis, in which 10-year probability of fracture is calculated 
based on the hazard functions.146  

During this thesis work, publications by Holford, Laird, and Olivier, on the 
proofs for the equivalence between piecewise exponential models and this 
extended Poisson model were identified.128 129 Whereupon the application of the 
method in SAS software was internally validated by its application in R software 
based on Prof. Bendix Carstensen’s publication Who needs the Cox model 
anyway?.147 Validations were performed for different research questions using 
several cohorts. The updated DIGIROP-Birth 2.0 model in Paper IV was 
developed using SAS macro and validated in R software using the glm function. 
 

DEVELOPMENT 

The development part of the DIGIROP-Birth model was divided into steps 
presented below.  

SSTTEEPP  11 
DIGIROP-Birth 1.0  

Model the hazard function for ROP treatment, first without 
including any predictors. For this purpose, a graphical 
representation of Epanechnikov’s hazard was obtained. The 
hazard was modeled using various breakpoints in PNA. It was 
shown to increase around 8 weeks of PNA, peaked at around 
12 weeks, and then decreased. 

SSTTEEPP  22 
DIGIROP-Birth 1.0 

A check of whether the same hazard shape was valid for GA, 
sex, and BWSDS categories was performed in a similar way as 
above. The hazard shape was concluded to be similar for GA, 
sex, and BWSDS categories. 

SSTTEEPP  33 
DIGIROP-Birth 1.0 

Various breakpoints for follow-up time were tested. Finally, a 
model including break-points at 8 and 12 weeks of PNA was 
chosen to define the shape of the underlying hazard. 

SSTTEEPP  44  
DIGIROP-Birth 1.0  

Similarly, using graphical presentation, a break-point at 27 
weeks of GA and at -1 SDS for BW were selected for the model. 
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SSTTEEPP  55  
DIGIROP-Birth 2.0  

In the updated DIGIROP-Birth 2.0 model BW was tested to be 
included instead of BWSDS. The Akaike’s Information 
Criterion (AIC) showed only slightly better goodness-of-fit for 
BWSDS on infants born at GA 24-30 weeks. The decision was 
taken to use BW instead of BWSDS to include all infants 
registered in SWEDROP. BWSDS reference is not available for 
infants born at <24 weeks of gestation.  
In this updated model, PND categorized into <14 days, ≥14 
days, and unknown (missing data, to not exclude any infants) 
was also included to account for infant morbidity status and 
negative impact of longer PND on ROP.  

SSTTEEPP  66  
DIGIROP-Birth 1.0 
DIGIROP-Birth 2.0  

Contribution to the model by all possible interactions was 
tested, applying forward and backward selection. Those that 
had a p-value <0.05 were included in DIGROP-Birth 1.0. In 
DIGROP-Birth 2.0 the model with the lowest AIC was selected 
that corresponded to that following p<0.05. 

SSTTEEPP  77  
DIGIROP-Birth 1.0 
DIGIROP-Birth 2.0  

Hazard functions, survival functions, and risk accumulated up 
to 20 weeks of PNA are calculated and expressed as model 
results.  

 
In the analysis, the infants were followed until their first ROP treatment or until 
they were censored at 50 weeks of PMA. The method provided parameter 
estimates 𝛽𝛽, standard errors (SE) and p-values. HRs with 95% CI were estimated. 
A receiver operating characteristic (ROC) curve analysis using estimated risks for 
ROP treatment was performed and area under the curve (AUC), also called c-
statistics, was presented. An AUC of 0.7-<0.8 is considered as acceptable, 0.8-<0.9 
excellent, and ≥0.90 outstanding.148  
 
In AAppppeennddiixx  11, DIGIROP-Birth 1.0 and DIGIROP-Birth 2.0 models are presented, 
together with the calculations of the hazard function. Additionally, R code is 
provided for DIGIROP-Birth 2.0 model. 
 
The survival function 𝑆𝑆(𝑡𝑡) was obtained using numerical integration, which was 
then used for calculation of its complement, cumulative distribution function 
𝐹𝐹(𝑡𝑡). The 95% CI for 𝐹𝐹(𝑡𝑡) were obtained through 1000 repeated samples using a 
multivariate normal distribution of the parameter estimates and the covariance 
matrix from the extended Poisson model.  

–

TECHNICAL DETAILS 

To simplify interpretation of the interactions with GA, this variable was centered 
at 28 weeks, i.e., the variable used in the models was the translated GA-28 instead. 
For the same reason, in the updated DIGIROP-Birth 2.0 male was coded as 0 and 
female as 1, while in DIGIROP-Birth 1.0 male was coded as 1 and female as 2. 
Estimates and HR for BW if DIGIROP-Birth 2.0 was expressed by 100 g increase. 
Re-naming and translating variables do not have any impact on the final results, 
i.e. the estimated probabilities. Such features might be introduced for the 
purpose of facilitating the interpretation of the parameter estimates during 
development.   
 
In the published models, piecewise linear functions of time, GA and BWSDS 
were used, rather than splines, to easier express HR per week and per SDS 
increase, respectively, and for the interpretations of the interactions. Continuous 
variables are re-parametrized and divided into several variables depending on the 
number of break points applied, see TTaabbllee  44 below.  

TTAABBLLEE  44.. RE-PARAMETRIZATION OF CONTINUOUS VARIABLES BEFORE BEING INCLUDED IN THE 

MODELS TO ACCOUNT FOR NON-LINEAR ASSOCIATIONS TO THE OUTCOME. VAR = variable; SDS = 
standard deviation score; HR = hazard ratio. 
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Modeling time using splines instead would provide smoother hazard functions. 
This application and its correspondence to the piecewise linear model are shown 
in the Results section.  

 
BINARY LOGISTIC MODEL 

Risk estimates from the DIGIROP-Screen were obtained by applying binary 
logistic regression in nine different models for PNA weeks 6-14. The choice of 
starting the screening model at PNA 6 weeks was due to the infants being 
screened at the earliest this time. About 70% of the infants in SWEDROP that 
needed ROP treatment were treated before PNA 14 weeks. Due to this and the 
fact that infants requiring such extended screening follow-ups are not a subject 
for an early discharge from the screening, the models were not further updated 
after this time. Each PNA week model excluded infants that have already received 
their first ROP treatment, e.g., in the PNA 8 weeks model infants that were 
treated before 8 weeks were excluded. In this way, the parameter estimates were 
re-estimated over time reflecting an interaction effect between the time and time-
updated variables. Originally, efforts were made to develop this model by using 
extended Poisson regression including time-updated variables and effects. 
However, it was difficult to obtain a stable model producing reliable results, 
mostly owing to the limited number of events and different interacting effects for 
the problem. This is why binary logistic regression for several models was chosen 
instead. 
 
DIGIROP-Screen 1.0 and DIGIROP-Screen 2.0 models are presented in the 
appendix of Paper II and Paper IV. Estimated probabilities were automatically 
extracted from the SAS software, calculated as following  

𝑃𝑃(𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = 1) = 1
1 + 𝑒𝑒𝑒𝑒𝑒𝑒(−𝐿𝐿𝐿𝐿) 

where 𝐿𝐿𝐿𝐿 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥1+. . . +𝛽𝛽𝑘𝑘𝑥𝑥𝑘𝑘 for 𝑘𝑘 different predictors in the model. 

Logistic regression operates in the logit scale, which is why the DIGIROP-Birth 
risk estimates (probabilities) were transferred back into this scale before being 
added to the model.  

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙⁡𝑝𝑝 = 𝑙𝑙𝑙𝑙 𝑝𝑝
1 − 𝑝𝑝 

–

Unadjusted and adjusted binary logistic regression models were also used to 
evaluate the association between PND and ROP, any and treated. ROC curve 
analysis was performed to decide on the PND cut-off for DIGIROP-Birth 2.0 
model. The cut-off at 14 weeks was found to have the highest AUC, which was 
0.73.  

Hosmer-Lemeshow test was performed for goodness-of-fit test of the models. 
From the logistic regression odds-ratios (OR), 95% CI and p-values were 
presented together with the AUC.  

 

CLINICAL DECISION SUPPORT TOOL 

The clinical decision support tool was based on the DIGIROP-Birth and 
DIGIROP-Screen risk estimates. In the DIGIROP-Screen 2.0 lower 95% CI for the 
risk was used to increase the safety of the models further. Based on the 
development cohort, GA-specific cut-offs were identified to achieve 100% 
sensitivity, which was then used to calculate specificity and validate both 
sensitivity and specificity on the external validation cohort. The usual practice is 
to select only one cut-off. However, from the graphical representation of the risk 
estimates for the ROP-treated and non-treated infants, a decrease in risks by 
increased GA week was observed, as well as visible discrimination of treated and 
non-treated infants per GA week. Due to the large dataset available, GA-specific 
cut-offs that favored the specificity obtained from the models could be chosen. 
The cut-offs were identified for GA <24 weeks handled together, 24+0 to 24+6 as 
24 weeks, 25+0 to 25+6 as 25 weeks, 26+0 to 26+6 as 26 weeks, 27+0 to 27+6 as 27 
weeks, 28+0 to 28+6 as 28 weeks, 29+0 to 30+6 handled together, and infants born 
at GA ≥31 weeks handled together. The maximum allowable cut-off was 0.05, i.e., 
5% risk for ROP treatment. 

For the clinical decision support tool 1.0, for infants born 24 to 30 weeks of GA 
in Paper II, three outlying infants were identified when defining the cut-offs for 
DIGIROP-Birth 1.0. These infants were treated despite not fulfilling the 
treatment criteria for Type 1 ROP. The decision was taken to exclude these 
infants from the development of the models and further evaluations. In Paper IV, 
where BW replaced BWSDS, and all infants were included irrespective of GA, 
this problem was not envisaged. Hence, no exclusions were made in Paper IV for 
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the updated DIGIROP-Birth 2.0, DIGIROP-Screen 2.0, and their clinical decision 
support tool.  

 

VALIDATION
 

INTERNAL VALIDATION 

DIGIROP models were internally validated using a 10-fold cross-validation, 
where the development cohort was randomly sub-divided into 10 equally large 
sub-cohorts. For each sub-cohort, the model was trained on each combination of 
nine sub-cohorts and the validation on the remaining sub-cohort, resulting in 
each observation being used only once for validation and nine times for training. 
Sensitivity and specificity were obtained from the validated data. For DIGIROP-
Screen 1.0 and 2.0 cumulative specificity was the main specificity measure 
presented. It considers an infant discharged from the screening with a current 
PNA model if the infant was discharged from the screening with any previous 
PNA models or with DIGIROP-Birth, reflecting the intended clinical process. 

Calibration plots show observed proportion and 95% CI of infants with ROP 
treatment on the y-axis and the mean estimated probabilities from the DIGIROP 
models on the x-axis. This was performed for the model development cohort, the 
validated cohort from the cross-validation, and the external validation cohort. 
Additionally, ROC curves for the models were obtained. 

EXTERNAL VALIDATION 

The models’ and the clinical decision support tool’s transportability in time and 
geographically were made by external validations on the temporarily different 
SWEDROP data, and other US and German data, respectively; see section 5.1-5.4 
for description of external validation cohorts. Sensitivity, specificity, positive 
predictive value (PPV), negative predictive value (NPV), accuracy, and AUC were 
presented, as well as calibration plots and ROC curves. 

  

–

COMPARISON TO OTHER ROP MODELS  

DIGIROP models were compared to other ROP models/criteria. WINROP, 
CHOP-ROP, OMA-ROP, CO-ROP in Paper I and Paper II, and WINROP and G-
ROP in Paper IV.99 101 107 110 114 116 144 These models/criteria are based on GA, BW, 
and some functions of the longitudinal weights. Information about 
hydrocephalus was required for the G-ROP screening criteria. No hydrocephalus 
cases were observed in the validation cohort for Paper IV.  
In Paper I, sensitivity for the comparison model was obtained based on each 
respective model’s published cut-offs. Applying the same sensitivity, the cut-offs 
were set for DIGIROP-Birth 1.0. Then, the specificities were calculated. 
Predictors and technical details are listed below per model/criteria. 

    
WWIINNRROOPP  
GA, BW, weekly 
weight gain (weekly 
≤36 weeks of PMA) 

WINROP alarms are based on the Shiryaev-Roberts approach to 
detect significant deviation from the expected weight gain. Risk 
scores for Paper I and Paper II were already available in the 
WINROP validation data set used in the publication by Wu et 
al.149 For the US validation cohort 2014-2019 and the 
SWEDROP validation cohort in Paper IV, the online application 
was applied.100 
The cut-off 2+3 (screen) vs. 0+1 (do not screen) for the alarms 
was used for comparison to DIGIROP. In Paper IV, observations 
with missing weekly weights (13.3%), crucial for calculating the 
alarms, were evaluated needing screening. 

CCHHOOPP--RROOPP  
GA, BW, weight gain 
(latest and 
penultimate weekly 
weight) 

The probability was calculated as 1/(1+exp(-Risk score)), where 
Risk score = (-1.50) + (4.24 if GA=23) + (3.49 if GA=24) + (3.60 if 
GA=25) + (2.33 if GA=26) + (2.48 if GA=27) + (-0.0037) × (BW) + 
(-0.0186) × (weight gain rate). 
Weight gain rate was calculated as (mean of daily weights of the 
preceding week – mean of daily weights of the penultimate 
week)/7. 
Probability cut-offs 0.0034 and 0.0140 from the original and 
validation study were used for comparison to DIGIROP. 
 

OOMMAA--RROOPP  
GA, BW, weight gain 
rate (latest ≤36 weeks 
of PMA) 

Risk score = (weight - BW)/(date for latest 
weight – date of birth+1), where 
weight at week 36 was used or the latest before ROP treatment. 
A cut-off of 23 g/day was used for comparison to DIGIROP. 
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CHOP-ROP, OMA-ROP, CO-ROP in Paper I and Paper II, and WINROP and G-
ROP in Paper IV.99 101 107 110 114 116 144 These models/criteria are based on GA, BW, 
and some functions of the longitudinal weights. Information about 
hydrocephalus was required for the G-ROP screening criteria. No hydrocephalus 
cases were observed in the validation cohort for Paper IV.  
In Paper I, sensitivity for the comparison model was obtained based on each 
respective model’s published cut-offs. Applying the same sensitivity, the cut-offs 
were set for DIGIROP-Birth 1.0. Then, the specificities were calculated. 
Predictors and technical details are listed below per model/criteria. 

    
WWIINNRROOPP  
GA, BW, weekly 
weight gain (weekly 
≤36 weeks of PMA) 

WINROP alarms are based on the Shiryaev-Roberts approach to 
detect significant deviation from the expected weight gain. Risk 
scores for Paper I and Paper II were already available in the 
WINROP validation data set used in the publication by Wu et 
al.149 For the US validation cohort 2014-2019 and the 
SWEDROP validation cohort in Paper IV, the online application 
was applied.100 
The cut-off 2+3 (screen) vs. 0+1 (do not screen) for the alarms 
was used for comparison to DIGIROP. In Paper IV, observations 
with missing weekly weights (13.3%), crucial for calculating the 
alarms, were evaluated needing screening. 

CCHHOOPP--RROOPP  
GA, BW, weight gain 
(latest and 
penultimate weekly 
weight) 

The probability was calculated as 1/(1+exp(-Risk score)), where 
Risk score = (-1.50) + (4.24 if GA=23) + (3.49 if GA=24) + (3.60 if 
GA=25) + (2.33 if GA=26) + (2.48 if GA=27) + (-0.0037) × (BW) + 
(-0.0186) × (weight gain rate). 
Weight gain rate was calculated as (mean of daily weights of the 
preceding week – mean of daily weights of the penultimate 
week)/7. 
Probability cut-offs 0.0034 and 0.0140 from the original and 
validation study were used for comparison to DIGIROP. 
 

OOMMAA--RROOPP  
GA, BW, weight gain 
rate (latest ≤36 weeks 
of PMA) 

Risk score = (weight - BW)/(date for latest 
weight – date of birth+1), where 
weight at week 36 was used or the latest before ROP treatment. 
A cut-off of 23 g/day was used for comparison to DIGIROP. 



CCOO--RROOPP  
GA, BW, weight gain 
up to 4 weeks of 
PNA 

CO-ROP alarm was set to 1 if GA<31 weeks, BW ≤1500 g and 
weight gain from birth to postnatal week 4 ≤650 g. If all three 
parameters were non-missing the alarm was equal to 0. 
Alarm cut-off 1 (screen) vs. 0 (do not screen) was used for 
comparison to DIGIROP. 

GG--RROOPP  
GA, BW, daily 
weight gain 10-19, 
20-29, 30-39 days, 
hydrocephalus 

The G-ROP screening criteria deems infants needing screening if 
any of the requirements are fulfilled: GA<28 weeks, BW <1051 g, 
weight gain between 10-19 days <120 g, weight gain between 20-
29 days <180 g, weight gain between 30-39 days <170 g, or if the 
infant has hydrocephalus. An update of the criteria requires 
screening if weight gain <180 g for any of the three age intervals. 
To obtain weights for postnatal days 10, 19, 20, 29, 30, and 39, 
linear interpolation was applied, when values were not available 
precisely on these days. The observations with missing weights 
(9.2%) were evaluated as needing screening. 
Need for screening vs. no need for screening as per above 
according to the originally published and the updated criteria 
were used for comparison to DIGIROP. 
In the thesis, G-ROP was compared to DIGIROP also for 
cohorts from Paper I and Paper II, using linear interpolation to 
obtain missing weights at 10, 19, 20, 29, 30, and 39 days of PNA.   
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6 RESULTS 

6.1 PAPER I DIGIROP-BIRTH 

POPULATION 

A total of 7609 infants from SWEDROP were included in Paper I; 55% were boys, 
the mean GA (SD) was 28.1 (2.1) weeks, and the mean (SD) BW was 1119 (353) g. 
Any ROP was developed in 32% and ROP treatment was provided to 442 infants 
(6%), 142 (40%) among those born at <24 weeks of GA, and 300 (4%) among 
those born 24-30 weeks of GA. In the external validation, 125 (8%) had ROP 
treatment in the US cohort, and 17 (5%) were treated for ROP in the German 
cohort. FFiigguurree  1100 below shows the GA-related incidence of ROP treatment among 
7609 SWEDROP infants. 

FFIIGGUURREE  1100.. NUMBER AND PERCENTAGE OF INFANTS WITH ROP TREATMENT AMONG THOSE 

INCLUDED FROM SWEDROP 2007-2018 (N=7609). ROP = retinopathy of prematurity. 

  
 

HAZARD FUNCTION FOR TREATED SEVERE ROP 

In a simple extended Poisson model using time in study (PNA) adjusted for GA, 
the risk for ROP treatment increased by 54%, HR 1.54 (95% CI 1.39 to 1.70) per 
week from postnatal week 8 to 12, whereafter it decreased by 30%, HR 0.70 (95% 
CI 0.67 to 0.74). Below, the corresponding hazard function is presented using 
piecewise linear model and splines to illustrate correspondence. 
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FFIIGGUURREE  1111.. HAZARD FUNCTION FOR ROP TREATMENT BY GESTATIONAL AGE ESTIMATED BY A) 

EPANECHNIKOV’S KERNEL SMOOTHING FOR GA STRATA, B) SPLINE (SOLID LINE) AND PIECEWISE 

LINEAR (SHORT-DASHED LINE) EXTENDED POISSON MODEL FOR MEAN GA WITHIN EACH GA 

STRATA. GA = gestational age; PNA = postnatal age; ROP = retinopathy of prematurity. 

 
 
 
DIGIROP-BIRTH 1.0 FOR GA 24-30 WEEKS 

DIGIROP-Birth 1.0 requires data about GA, BW, and sex to estimate the risk for 
ROP treatment. It is developed for infants born at GA 24-30 weeks. As expected, 
lower GA and lower BWSDS showed a higher risk for ROP treatment. 
Interaction sex×GA was significant in the models indicating a greater decreasing 
risk for girls than for boys for increasing GA, HR at 25 weeks 0.83 (95% CI 0.64 
to 1.07) and HR at 27 weeks 0.50 (95% CI 0.33 to 0.76), p for interaction 0.02. 
Other significant interactions were PNA×GA, and PNA×BWSDS. The internal 
and external validations showed AUC ranging between 0.87 and 0.94, with the 
observed vs. estimated probabilities for ROP treatment being well-distributed 
around the diagonal in the calibration plots.  

The final model is presented in AAppppeennddiixx  11 together with the hazard calculations. 
 
  

–

DIGIROP-BIRTH 1.0 AND OTHER MODELS 

FFiigguurree  1122 below presents a comparison between DIGIROP-Birth 1.0 and selected 
ROP prediction models. Cut-offs for DIGIROP-Birth were not published in Paper 
I. Specificity for DIGIROP-Birth was based by identifying a cut-off for the same 
specificity as that obtained for other ROP models using their own published cut-
offs. Therefore, for each ROP prediction model an own DIGIROP-Birth 
comparison was relevant. G-ROP criteria was added in the thesis. Weight at 10, 
19, 20, 29, 30, and 39 days were obtained using linear interpolation of available 
data. 

FFIIGGUURREE  1122.. SENSITIVITY AND SPECIFICITY FOR DIGIROP-BIRTH 1.0 COMPARED TO OTHER 

ROP PREDICTION MODELS. CHOP-ROP1 and G-ROP1 used the cut-offs published in their original 
publications, respectively, CHOP-ROP2 and G-ROP2 used the cut-offs published in their validation studies. 
Different numbers of infants were included in different comparisons.    
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6.2 PAPER II DIGIROP-SCREEN 

POPULATION 

Of the 6991 infants from SWEDROP included in Paper II model development 
cohort, 55% were boys, the mean GA (SD) was 28.3 (1.9) weeks, and the mean 
BW (SD) was 1146 (339) g. Any ROP was developed in 29% in the development, 
and 41% in the validation cohort (n=1241). ROP treatment was performed in 287 
infants (4%) in the model development cohort and in 49 (4%) infants in the 
validation cohort. The validation cohort had fewer boys, lower GA, lower BW, 
and more infants experienced any ROP than in the model development cohort. 
 

DIGIROP-SCREEN 1.0 FOR GA 24-30 WEEKS 

DIGIROP-Screen 1.0 requires data about DIGIROP-Birth 1.0 risk estimate, status 
about first ROP diagnosis (yes/no) and PNA at first diagnosis of ROP to estimate 
the risk for ROP treatment. Nine different models over PNA 6 to 14 weeks allow 
for the models to update the parameter estimates used to estimate the risks for 
ROP treatment. By incorporating two-way and three-way interactions, models for 
infants with and without any diagnosis of ROP could be modeled together. For 
infants without an ROP diagnosis up to a certain PNA the intercept and 
DIGIROP-Birth estimates are the contributors for the risk. For those that do have 
an ROP diagnosis, age at the first diagnosis and interaction between this age and 
DIGIROP-Birth estimate are defining the DIGIROP-Screen risk estimate. The 
AUC for the models in the development cohort, internal cross-validation and 
external validation cohorts ranged between 0.88 and 0.94. Calibration plots 
showed well-calibrated models.  
 

DIGIROP DECISION SUPPORT TOOL 1.0 FOR GA 24-30 WEEKS 

For the required 100% sensitivity in the development cohort, the specificity for 
DIGIROP-Birth was 53%, and cumulative specificity over PNA weeks 6 to 14 
increased from 53% to 81%. The respective figures for the external validation 
cohort were 46% at birth, and 46% to 75% during the screening. For all PNA 
models the sensitivity was 100% in the external validation except for one infant 
with a syndrome incorrectly deemed not needing screening at birth, and at PNA 
weeks 6 and 7.  

–

FFIIGGUURREE  1133.. CUMULATIVE SPECIFICITY FOR DIGIROP DECISION SUPPORT TOOL 1.0. 

 
 
 
DIGIROP-SCREEN 1.0 AND OTHER MODELS 

FFiigguurree  1144 below presents a comparison of DIGIROP-Birth and DIGIROP-Screen 
1.0 with selected ROP prediction models.  

FFIIGGUURREE  1144.. SENSITIVITY AND SPECIFICITY FOR DIGIROP-BIRTH 1.0 AND DIGIROP-SCREEN 

1.0 COMPARED TO OTHER ROP MODELS. Comparisons: CHOP-ROP1 and DIGIROP-Screen PNA 8w, 
CHOP-ROP2 and DIGIROP-Screen PNA 12w, OMA-ROP and DIGIROP-Screen up to 36 weeks PMA, CO-
ROP and DIGIROP-Birth, WINROP and DIGIROP-Screen up to risk flag or last measurement, G-ROP1 
original criteria and DIGIROP-Birth, and G-ROP2 validated criteria and DIGIROP-Screen PNA 8w.   
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6.3 PAPER III EXTERNAL VALIDATION 

POPULATION 

Of the 1082 infants from the contemporary extraction of SWEDROP infants 
(2018-2020) included in Paper III, 55% were boys, the mean GA (SD) was 28.2 
(1.9) weeks, and the mean (SD) BW was 1117 (340) g. Any ROP was diagnosed in 
31%. ROP treatment was performed in 57 infants (5%).  
 

VALIDATION OF DIGIROP-BIRTH 1.0 and DIGIROP-SCREEN 1.0 
FOR GA 24-30 WEEKS 

The AUC for the DIGIROP models ranged between 0.93 and 0.97. The sensitivity 
for DIGIROP-Birth 1.0 was 96%, and the specificity was 50%. For DIGIROP-
Screen 1.0 the sensitivity ranged between 93% and 100%, and cumulative 
specificity between 50% and 79%.  

In total, 4 out of 57 infants were incorrectly classified as not needing screening. 
All four infants had severe comorbidities and/or had missed timely screening 
examinations. DIGIROP decision support tool was recommended not to be used 
for infants diagnosed with severe congenital malformations/syndromes, 
hydrocephalus, and those with performed intestinal surgery.      

FFIIGGUURREE  1155.. CUMULATIVE SPECIFICITY FOR DIGIROP-BIRTH 1.0 AND DIGIROP-SCREEN 1.0 

IN THE CONTEMPORARY SWEDROP COHORT. 

 

–

6.4 PAPER IV UPDATED DIGIROP MODELS 

In Paper IV, the association between PND and ROP was studied. Further, 
DIGIROP models and the decision support tool were updated into 2.0 version, by 
including all ROP-screened infants registered in SWEDROP and adding PND as 
a predictor. Validations on external data and comparisons to other models were 
made. To avoid publication before manuscript acceptance, results for Paper IV are 
excluded from the thesis frame. All important information may be found in the 
Paper IV attached revised manuscript.     

 

6.5 SIMPLIFIED MODELS FOR DIGIROP-BIRTH 

Based on the data from Paper IV two simplified prediction models using linear 
relation of GA, BW, sex with and without days on parenteral nutrition (PND) 
excluding all interactions were developed and validated to visualize the 
differences vs. DIGIROP-Birth 2.0.  

TTAABBLLEE  55..  SIMPLE PREDICTION USING GA, BW, SEX, WITH AND WITHOUT PND ON THE MODEL 

DEVELOPMENT COHORT. GA = gestational age; BW = birth weight; PND = parenteral nutrition duration; 
HR = hazard ratio. 

≥14 days 
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Decision support tools using the same methodology as in the original models 
were developed for these two new models. For the simple model without PND, 
specificity in the model development cohort was 50% for the required 100% 
sensitivity. In the external validation cohort, a specificity of 41% was obtained, 
and 2 out of 152 infants with ROP treatment were incorrectly flagged not 
needing screening. The simple model including PND had a specificity of 49% in 
the model development cohort and 40% in the external validation cohort. All 152 
infants with ROP treatment were correctly identified needing ROP screening. 
Similar results were obtained for the DIGIROP-Birth 2.0 including PND and 
significant interactions. This means that concerning only sensitivity and 
specificity the simple model including PND without interactions performs 
similarly to the more complicated model.  

The calibration plots, showing how well probability estimates correspond to the 
observed ones in different regions, are given in FFiigguurree  1166 below. The simple 
model without PND performed less well for high-risk girls. For boys on the other 
hand the simple model with PND performed less well. In some regions the 
probabilities were underestimated and in others overestimated. Hence, including 
important predictors such as PND and interactions has been shown to improve 
the reliability and accuracy of the model. 

FFIIGGUURREE  1166..  CALIBRATION PLOTS FOR DIGIROP-BIRTH 2.0, SIMPLE MODEL WITHOUT PND, 
AND SIMPLE MODEL WITH PND BY SEX, PERFORMED ON EXTERNAL VALIDATION COHORT FROM 

SWEDROP 2017-2020. PND = parenteral nutrition duration; ROP = retinopathy of prematurity; w = 
with; wo = without. 

–

In FFiigguurree  1177..AA the estimated probabilities for DIGIROP-Birth 2.0 and the simple 
model with PND are presented against each other. The underestimation for low-
risk boys and overestimation for those with high risk for ROP treatment is 
observable, while the probabilities for girls are better distributed around the 
diagonal. FFiigguurree  1177..BB shows the corresponding probabilities for DIGIROP-Birth 
2.0 vs. the simple model without PND. The importance of PND in the model is 
visible for both sexes but has greater impact on the probabilities for girls than for 
boys.  

FFIIGGUURREE  1177..  PROBABILITY ESTIMATES FOR A) DIGIROP-BIRTH 2.0 VS. SIMPLE MODEL WITH 

PND, B) DIGIROP-BIRTH 2.0 MODEL VS. SIMPLE MODEL WITHOUT PND, PERFORMED ON DATA 

FROM SWEDROP 2007-2020. PND = parenteral nutrition duration. 
   

Given these results, we may conclude that both PND and the interactions (sex × 
PND shown above), are important to be included in the optimized model.
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risk boys and overestimation for those with high risk for ROP treatment is 
observable, while the probabilities for girls are better distributed around the 
diagonal. FFiigguurree  1177..BB shows the corresponding probabilities for DIGIROP-Birth 
2.0 vs. the simple model without PND. The importance of PND in the model is 
visible for both sexes but has greater impact on the probabilities for girls than for 
boys.  

FFIIGGUURREE  1177..  PROBABILITY ESTIMATES FOR A) DIGIROP-BIRTH 2.0 VS. SIMPLE MODEL WITH 

PND, B) DIGIROP-BIRTH 2.0 MODEL VS. SIMPLE MODEL WITHOUT PND, PERFORMED ON DATA 

FROM SWEDROP 2007-2020. PND = parenteral nutrition duration. 
   

Given these results, we may conclude that both PND and the interactions (sex × 
PND shown above), are important to be included in the optimized model.
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7 ONLINE APPLICATION 
 
DIGIROP models are available free-of-charge in an online application at 
www.digirop.com.150 The application was developed by the company Fooheads 
in cooperation with our research group, based on the provided risk estimations 
with 95% CI for DIGIROP-Birth, parameter estimates, covariance matrices and 
algorithms for DIGIROP-Screen, and figures based on the SWEDROP data. 

FFIIGGUURREE  1188..  DIGIROP-BIRTH 1.0 ONLINE APPLICATION. 
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FFIIGGUURREE  1199..  DIGIROP-SCREEN 1.0 ONLINE APPLICATION WITH ROP DIAGNOSIS BEFORE 

POSTNATAL WEEK 9.
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FFIIGGUURREE  2200..  DIGIROP-SCREEN 1.0 ONLINE APPLICATION WITHOUT ROP DIAGNOSIS BEFORE 

POSTNATAL WEEK 9.

In AAppppeennddiixx  22, information provided to researchers, requesting to use DIGIROP 
models, is presented.
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8 DISCUSSION 

DIGIROP models are developed to early identify low-risk infants that can be 
safely released for all or some unnecessary ROP screening examinations. Below, 
clinical implications, including the infant’s well-being, economic benefits, 
selected statistical issues, selected results, and ethical considerations are discussed.  
 

8.1 CLINICAL IMPLICATIONS 

The estimated risk predictions from the DIGIROP models can be implemented 
in the clinic as one among other tools available to guide clinical 
recommendations and facilitate decisions. Nevertheless, it is critical that each 
infant’s entire disease status is considered and that actions are taken based on the 
physician’s complete medical assessment. 

INFANT WELL-BEING 

ROP screening with ophthalmoscopy is technically challenging and must be 
performed by a specialized and experienced ophthalmologist. Screening using 
objective imaging also requires a skilled person to take the images and an 
experienced ophthalmologist to interpret them. Before the examination, the 
infant’s pupils are routinely dilated with mydriatic eye drops, and if images are 
taken, anesthetic drops are also given. Studies have shown that mydriatic drugs 
applied as eye drop have systemic effects, including the gastrointestinal side 
effects, apnea, bradycardia, and oxygen desaturation.137 151 152 In addition, physical 
manipulation of the eye during ROP screening examinations is painful in 
neonates, and is associated with oxygen desaturation, increased heart rate, and 
infant distress.136 137 153 154 Exposures to painful and stressful neonatal procedures 
may affect an infant’s brain development.138 Therefore, limiting the duration of 
examinations and using prediction models to reduce the number of unnecessary 
ROP examinations may contribute to improved well-being of infants. 
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PHYSICIAN WORKFLOW 

The ophthalmologist’s decision regarding the scheduling of ROP screening 
examinations is based on the recommendations given in the national guidelines 
for ROP screening.65 There are various barriers to changing physician workflow, 
as were described in a study of the implementation of a prediction model in the 
clinic.155 The important facilitators for the successful implementation of a 
prediction tool are automatic calculations of the risks, a directive approach to 
recommendations, prediction of relevant outcomes, and smooth integration of 
the prediction models in the existing clinical workflow. DIGIROP models are 
freely available, provide automatic calculations and propose decisions based on 
estimated risks, hence directing the ophthalmologist rather than assisting. The 
studied outcome considers the severity of ROP and is highly relevant to screening 
ophthalmologists. In implementing a prediction tool, it is preferable to minimize 
the number of additional working steps, and to integrate the models into the 
currently used systems for entering medical data. This action might be more or 
less difficult depending on the data safety and monitoring of the systems used for 
each health care provider. To assure the long-term safety of a preterm infant who 
is released from ROP examinations by the screening tool, clear measures for 
future communication between parents/guardians and the neonatology 
department with regard to the follow-up of the infant’s development and changes 
in their well-being should be established. An application installation may 
facilitate this communication.          
 

PARENT/GUARDIAN PERCEPTION 

Not all individuals are expected to react in the same way when they find 
themselves in a crisis situation, such as the birth of a child born preterm. 
Suffering from prolonged stress can impair parent/guardian mental health156 In 
addition, parent/guardian well-being and home environment have a significant 
impact on infant development.157 Clear and consistent communication between 
healthcare providers and parents/guardians plays an important role in their 
management because of the increased stress levels.158 Therefore,  
ophthalmologists must be sensitive to the wishes of parents/guardians and respect 
their decisions even when it concerns the receipt of the risk estimates obtained 
from the models. Their perception of the information provided by the models 
and the usefulness of such a tool may vary.     

–

8.2 HEALTH ECONOMY 

DIGIROP-Birth 2.0 achieved a specificity of 47% in the complete cohort of 
>11,000 infants for the required 100% sensitivity in the model development 
cohort. This corresponds to 44% of infants being released from all of the ~16,000 
ROP examinations among those screened in the cohort in Sweden between the 
years 2007 and 2020. A total of ~10,000 ROP examinations were performed 
among 5% of infants that required ROP treatment, and ~55,000 examinations 
among the 95% that did not progress to treatment-requiring ROP. Approximately 
one-third of these 55,000 examinations could have been eliminated safely by 
applying DIGIROP models, which corresponds to the saved costs of up to 4 
million US$ based on the estimated costs per one ROP screening examination in 
high-income economy countries. This is summarized in a review by Gyllensten et 
al.159 Additionally, DIGIROP-Screen releases infants during the screening process 
that further increases this figure. However, the exact benefit in terms of health 
economics may only be obtained after the implementation of the tool in the 
clinics and evaluation of cost-effectiveness in two comparative groups with and 
without application of the clinical decision support tool.          
 

8.3 STATISTICAL CONSIDERATIONS 

Developing prediction models for a rare disease occurring in a rare population, 
requiring 100% sensitivity to avoid devastating outcomes, with the goal of 
optimizing specificity, is accompanied by some statistical challenges and unique 
features as discussed below.  
 

THEORETICAL VS. REAL-LIFE SENSITIVITY AND SPECIFICITY 

Validated on Swedish data, DIGIROP 1.0 models incorrectly classified four 
infants in Paper III. In practice, these infants would not have been released from 
screening as the clinical indication for ROP screening based on their severe 
medical conditions was fulfilled. DIGIROP 2.0 which added duration of 
parenteral nutrition, did correctly identify all high-risk infants requiring ROP 
treatment. Provided that no morbidity status, other than the proxy-variable 
prolonged duration of parenteral nutrition, is included in the DIGIROP risk 
estimations, physicians must be cautious regarding infants’ medical status when 
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implementing this prediction tool in the clinics. In Paper III, we recommended 
that for infants diagnosed with severe congenital malformations/syndromes, 
hydrocephalus, and for those that have had intestinal surgery such as for NEC, 
routine ROP screening should apply. Therefore, in populations with similar 
levels of neonatal health care as is found in Sweden, DIGIROP 2.0 theoretical and 
real-life sensitivity are expected to reach 100%.      

Statistically obtained specificity of 47% in the complete ROP-screened Swedish 
cohort during the years 2007-2020 presented in Paper IV may be considered as the 
theoretical upper limit for the specificity. In real life, following the 
implementation of the tool in the clinics, the specificity is expected to be lower. 
There are at least two reasons for that. The first is that the recommendations to 
apply routine screening for all infants meeting screening criteria based on their 
medical conditions are not considered in the models. The second reason is that 
clinicians are likely to initially have reservations concerning the use of the tool’s 
clinical decision making, although these reservations will decrease over time with 
gained experience.    
 

REQUIREMENT OF 100% SENSITIVITY  
 
Although demanding 100% sensitivity is uncommon in prediction modelling 
research, it is necessary in the models developed for severe ROP needing 
treatment. Additionally, as recommended for ROP prediction models, the lower 
limit for the sensitivity should not be lower than 99%, corresponding to ~300 
events, and ~6000 infants included in the development and validation 
considering a prevalence of 5%.135 143 Such demands are difficult to meet, 
especially since the population of interest is a rare population. To date, only three 
ROP prediction models worldwide have included this number of infants in their 
development. These are the Denmark study, the G-ROP screening criteria, and 
DIGIROP models discussed here.101 111 160-162   

We are strongly convinced that DIGIROP models and any models requiring 
100% sensitivity will not always meet this demand in future validation studies, as 
opposed to real-life situations where infants’ medical conditions are considered 
besides the tool’s recommendation for clinical decision. The explanation is rather 
simple. The defined cut-offs are based on one certain infant or a few infants in the 
case of category-specific cut-offs. Given the fact that our outcome of interest is a 

–

rare outcome, large validation cohorts are required in order to include an 
appropriate number of studied events, preferably ~100 events as recommended by 
the PROBAST instrument.141 Validation studies performed on larger cohorts are 
disposed to more extreme or outlying infants than those performed on smaller 
cohorts, be it for the reason of specific cases of the disease, substandard medical 
judgments, or poorly entered data. Hence, although DIGIROP models are based 
on a complete Swedish population screened for ROP in the last 14 years, we 
cannot reject the possibility that even more extreme data will be observed 
sometime in the future. Additionally, larger development studies risk, due to the 
same reasons for including infants with outlying data, to have lower specificity if 
a high sensitivity of 100% or close to 100% is required. FFiigguurree  2211 below presents 
the relation between specificity and N (logarithm, to easier perceive the trend for 
N<1000) for ROP models with 100% sensitivity presented in TTaabbllee  11. The 
negative relation between the two variables is clearly visible.  

FFIIGGUURREE  2211..  RELATION BETWEEN SPECIFICITY AND NUMBER OF INFANTS INCLUDED IN THE 

DEVELOPMENT COHORT FOR REQUIRED HIGH SENSITIVITY.
 

 
 
One of the predictive ability measures for a model is the AUC, i.e., area under the 
ROC curve, that represents the predictive ability of the model over the complete 
ROC curve. DIGIROP models achieved AUC of >0.90, interpreted as an 
outstanding performance. For models requiring 100% sensitivity, achieving even 
higher AUC is of less importance. If the optimization of the specificity is of 
interest, as it is in our case, the most important feature of the curve is how fast it 
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increases up to 100% sensitivity, and this is dependent on the model’s 
performance on certain outlying infants.    

Positive and negative predictive value, PPV and NPV, are often considered more 
useful measures than sensitivity and specificity in daily clinical work. These 
measures are, however, dependent on the prevalence of the studied outcome as 
opposed to sensitivity and specificity. Models with rare events required to reach 
high sensitivity have very high NPV and very low PPV. If the model classifies an 
infant to be released from the screening, with the requirement of 100% 
sensitivity, we would be assured that NPV, the probability for this infant to truly 
not progress to severe ROP requiring treatment, would be 100% too. If the 
model, on the other hand, classified the infant to be screened, the PPV, 
expressing the probability for this infant to truly progress to severe ROP 
requiring treatment, would, in the case of rare diseases with 100% required 
sensitivity, be low. In our cohort of >11,000, an infant identified to be at high risk 
by DIGIROP-Birth 2.0 would have a ~10% risk of truly being a high-risk infant 
requiring treatment. The PPV of 10% applying the model may be compared to 
the PPV of 5%, that is, the prevalence, by not applying the model. In a clinical 
situation where the interventional act, here the ROP screening examination, is 
not directly hazardous for all infants undergoing these examinations and the 
price of blindness is much higher than the potential harm these examinations 
introduce, the low PPV is not a problem.      
 

NON-LINEAR AND INTERACTING ASSOCIATIONS  

The decision to include or not to include non-linear and interacting associations 
in a prediction model is dependent on the sample size available for the model 
development. Prediction models developed on small data sets requiring many 
parameters to be estimated imply optimism and an over-parametrized model, that, 
in external validation, risks performing much less well (all models are expected to 
perform less well in the external validation) than in the development cohort; bias 
risks to be introduced. In contrast, developing a too simple model on a large data 
set risks large variance for the estimates when important predictive variables are 
excluded. This so-called bias-variance trade-off needs to be taken into account 
during the development part. The additionally developed simple DIGIROP 
models, excluding non-linear and interacting associations presented in Section 
6.5, showed that the model’s reliability through calibration performance was 

–

sacrificed compared to the more complex final model. According to the 
PROBAST instrument, the recommended number of events per variable (EPV) 
should exceed 20 to avoid introducing bias through over-parametrization.141 For 
DIGIROP-Birth 1.0, EPV was 20.6 (289/14), and for DIGIROP-Birth 2.0, it was 
31.9 (447/14).     
 

8.4 SELECTED RESULTS  

TIME COURSE OF THE DISEASE  

In Paper I the time course of progression to severe ROP needing treatment, 
defining the instantaneous risk of this advanced stage of the disease, was 
described for the first time per GA at birth. The risk peaked at around 12 weeks’ 
PNA irrespective of GA. This was confirmed by Holmström et al. 2019 using the 
same SWEDROP cohort for their publication that led to modification of the 
screening criteria in Sweden, showing the significant relation between GA at 
birth and PMA at ROP treatment, but not with PNA at ROP treatment.48 Lack of 
correlation in this analysis means that the infant’s age at ROP treatment is not 
differing for different GAs. Previously, landmark studies, and the clinical work, 
were not giving much attention to PNA, only PMA. The ETROP study described 
that the PMA was associated with the progression of pre-threshold ROP, as did 
the Cryotherapy for ROP (CRYO-ROP) study before that, meaning that the 
incidence of pre-threshold ROP differs with PMA.163 164 However, these studies 
have not evaluated the relationship with PNA, or the instantaneous risk of the 
disease. 

In 1992, Quinn et. al., published a paper studying onset of ROP in relation to 
PNA and PMA.165 This study showed that both PNA and PMA at the onset of 
ROP were associated with GA, indicating that both PNA and PMA are important 
to consider for the initiation and scheduling of ROP screening examinations. 
Using the cohort from Paper IV, we could replicate these results, as shown in 
FFiigguurree  2222..AA and FFiigguurree  2222..BB. Infants with lower GA at birth develop ROP at earlier 
PMA but at later PNA than those born with higher GA. However, what was not 
studied by Quinn et al., was PNA and PMA at ROP treatment in relation to GA. 
Interestingly, as shown in Paper I, PNA at ROP treatment did not correlate with 
GA, but PMA at ROP treatment did. The results were confirmed using the 
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complete cohort from 2007-2020 including all ROP-screened infants reported in 
SWEDROP, FFiigguurree  2222..CC and FFiigguurree  2222..DD. This suggests that the severe stages of 
ROP are highly dependent on the event of premature birth itself. Since this 
observation is independent of GA, a type of programming of disease progression 
from birth is insinuated.     

FFIIGGUURREE  2222..  RELATION BETWEEN A) POSTNATAL AGE AT THE ONSET OF RETINOPATHY OF 

PREMATURITY AND GESTATIONAL AGE, B) POSTMENSTRUAL AGE AT THE ONSET OF RETINOPATHY 

OF PREMATURITY AND GESTATIONAL AGE, C) POSTNATAL AGE AT THE FIRST RETINOPATHY OF 

PREMATURITY TREATMENT AND GESTATIONAL AGE, B) POSTMENSTRUAL AGE AT THE FIRST 

RETINOPATHY OF PREMATURITY TREATMENT AND GESTATIONAL AGE. PNA = postnatal age, PMA = 
postmenstrual age, ROP = retinopathy of prematurity. 

 
Another interesting finding regarding the progression of ROP was that infants 
that received parenteral nutrition for ≥14 days showed to have faster progression 
to ROP treatment, also following adjustment for GA at birth. This suggests that 
the mechanisms behind the severe medical conditions requiring longer 
parenteral nutrition further impair eye development, or that longer parenteral 
nutrition per se including its micro-nutrient mixture, and potential undersupply 
of enteral feeding, are the driving factors.   

–

GENDER-SPECIFIC RISK  

Studying sex as risk factor for ROP has come with conflicting results. Some 
studies have reported that male sex is a significant risk factor while others have 
reported no differences between the sexes.79   

In DIGIROP-Birth 1.0 and 2.0, interaction between sex and GA, and sex and 
PND were significant, meaning that differences between sexes with respect to 
incidence of ROP treatment differ for different GA and different PND. Following 
the review of the incidences of ROP treatment per GA, lower risk was observed 
for girls, but only for higher GA at birth, as shown in FFiigguurree  2233 below. This 
suggests that different mechanisms are present and that the type of neonatal care 
in preventing ROP should consider the infants’ sex. Girls with higher GA not 
requiring prolonged parenteral duration appear to be even more protected 
against severe ROP. This sex effect is completely diluted among the subgroup of 
infants with low GA and prolonged parenteral nutrition. 

FFIIGGUURREE  2233..  RELATION BETWEEN SEX AND SEVERE RETINOPATHY OF PREMATURITY REQUIRING 

TREATMENT, ADJUSTED FOR GESTATIONAL AGE. OR = odds-ratio, CI = confidence interval, GA = 
gestational age, PND = parenteral nutrition duration. OR < 1 means that girls are more protected against 
severe ROP than boys. 
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8.5 ETHICAL CONSIDERATIONS 

In studies included in this thesis project no interventions were performed on the 
infants. An ethical issue to consider is therefore the potential harm to infants by 
not using DIGIROP prediction models to avoid screening, given the confirmed 
100% safety and efficacy of ~50% of the prediction tool on Swedish data. This 
ethical issue becomes even more sensitive as it involves an increasing and more 
fragile population, that with time will require a more complex network between 
different professions at the NICUs. As previously described, ROP screening 
examinations are on the list of painful neonatal procedures, and the administered 
dilating eye drops contribute additionally to the impaired well-being of the 
infant. The true risks and benefits of the models and the reduced number of visits 
need to be studied in a randomized controlled trial, including long-term follow-
up, to confirm or refute the reported benefits of the tool and harms of the ROP 
screening examinations.  

The second ethical issue concerns a situation of a potential failure of the models, 
which in the worst case could lead to an infant becoming blind. To prevent such 
situations, it is of critical importance to continue validating the models on 
temporally different populations and other clinical settings if the models are 
implemented outside Sweden. In addition, the implementation of the models 
should be performed in a step-by-step manner, first by sparse examinations, and 
later by including safety screening examinations at strategically selected time 
points for the infants discharged by the tool.     
 
  

–
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9 STRENGTHS AND LIMITATIONS 

The main strength of the DIGIROP studies is that they are based on a uniquely 
large cohort worldwide including a complete population of ROP-screened infants 
in Sweden, at least between years 2008-2020. The input variables are easily 
obtained by the ophthalmologists from medical records. The DIGIROP models 
and their decision support tool are available as an online free-of-charge 
application.  

Although registry studies included in this Ph.D. project have the advantage of 
containing a complete national cohort of ROP-screened infants in Sweden, a 
limitation is its retrospective design. However, the data were collected using 
standardized protocols, and extensive efforts were made to validate questioned 
and missing data points against medical records. Another limitation is the 
relatively homogenous Swedish population on whom the tool is developed. 
Although the external validation cohorts originate from two continents, 
including data from Germany and the US, these cohorts were small and did not 
represent contemporary data. Further, information about each infant’s 
concurrent medical status covering important risk factors was unavailable. 
DIGIROP 1.0 is not applicable for infants born at GA<24 weeks due to the lack of 
Swedish BWSDS reference for these GA.38 Even though infants with low GA are 
at high risk for developing ROP and thereby in less need for tools predicting the 
end of the screening process, DIGIROP 2.0 could include all infants owing to 
using BW instead of BWSDS. No external validation was performed on the 
populations from low-income countries with less developed neonatal care and 
unmonitored oxygen exposure. In these countries the proportion of infants 
requiring ROP treatment is generally higher. Only limited data on different 
ethnicities was available for external validation. Continued validation is 
recommended for different populations and different clinical settings to study 
further the generalizability and limitations of the developed clinical decision 
support tool.  
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10 CONCLUSIONS 

PPAAPPEERR  II  This study showed that PNA, rather than PMA, was a better predictive 
variable for severe ROP requiring treatment. The hazard function 
peaked around 12 weeks of PNA and had similar shape for different GA. 
DIGIROP-Birth 1.0, an individual prediction model for early risk 
estimation of severe ROP requiring treatment, developed for infants 
born at GA 24-30 weeks, includes only variables that are easy-obtainable 
to ophthalmologists and is accessible online. The model appears to be 
generalizable to temporally different Swedish, German and US data and 
has shown to have at least as good test or better statistics as other known 
ROP models.   

PPAAPPEERR  IIII  This study developed an individual prediction model, DIGIROP-Screen 
1.0, including DIGIROP-Birth 1.0 risk estimates and the status and 
timing of the first ROP diagnosis, aimed for use during the screening on 
infants born at GA 24-30 weeks. The model was successfully validated in 
temporarily and geographically different cohorts. The decision support 
tool may safely release, at an early stage ~50% of infants that do not need 
ROP screening, and it has equal or higher sensitivity and specificity than 
other known ROP models. 

PPAAPPEERR  IIIIII  DIGIROP-Birth 1.0, DIGIROP-Screen 1.0 and their clinical decision 
support tool show a high predictive ability in a contemporary Swedish 
cohort. About 50% of infants may be discharged from all ROP screening 
examinations. All infants, routinely screened, excluding those with 
clinical indications outside screening criteria were correctly identified as 
needing ROP screening. Infants with congenital 
malformation/syndromes, hydrocephalus, and intestinal surgeries 
should not be discharged from screening by any prediction model.     

PPAAPPEERR  IIVV  This study demonstrated that days on parenteral nutrition is a strong 
predictor of any ROP and severe ROP requiring treatment. Updated 
DIGIROP-Birth 2.0, DIGIROP-Screen 2.0, and their decision support 
tool are developed to include all ROP-screened infants. The models and 
the tool were successfully validated on a temporarily different Swedish 
cohort. The decision support tool may safely identify low-risk infants 
that can be released from ROP screening, either early or during the 
screening. Superiority to other known ROP models is shown.  
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11 FUTURE PERSPECTIVES 

11.1 ADAPTATION TO OTHER COUNTRIES 

DIGIROP models can be easily adapted to other countries provided that no other 
important predictors of ROP treatment are superior to GA, weight, sex, and 
prolonged parenteral nutrition in that setting. On a German data set including 
322 infants, DIGIROP models 1.0 achieved 100% sensitivity and 43%-79% 
specificity at birth and during the screening. Corresponding figures for the US 
external validation data set, including 366 infants, were 96% sensitivity, 
incorrectly flagging one infant with a syndrome, and specificity ranging between 
41% and 69%. Following the validation of the tool on external data, calibration, 
and discrimination performance will reveal whether the existing estimates fit the 
new setting or require re-calibration. 155 To adapt the model to other countries it 
may be sufficient to update the baseline hazard for the studied outcome, ROP 
treatment, provided associations between predictors and outcome hold. If 
necessary, parameter estimates can also be re-estimated. Otherwise, if the 
discriminative ability and calibration are not satisfied, and a large enough sample 
is available, a new prediction model can be developed following the same 
methodology, with or without adding new important predictors.  
 

11.2 IMAGES AND ARTIFICIAL NEURAL NETWORKS 

Disagreement between ophthalmological experts the classification of ROP is 
known.166 167 Such variabilities introduce errors in the data used for prediction 
modelling. With the increased use of RetCam (Pleasanton, CA, USA) and storing 
of wide-field fundus images over the years, several diagnostic tools have been 
developed for various stages of ROP severity as described in Section 1.3, but also 
machine learning approaches specifically focusing on reducing the interobserver 
disagreement error.168 These tools increase infant safety by considering the timely 
and correct classification of the disease and improve the input data used for 
prediction modelling.  

Artificial neural network models, a subset of machine learning methodology, are 
data-driven methods trained to classify and cluster data optimally in multiple 
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hidden layers against an outcome before an output is provided.169 The models 
obtained by these methods cannot evaluate whether knowledge about known risk 
factors is confirmed. Hence, they are often referred to as the black box models. 
However, if our goal is to obtain an optimal prediction without explaining in 
what way and how much different variables contribute, these methods are very 
well suited to solve our problem.  

A potential add-on to the DIGIROP models in the future could be to include an 
early prediction of severe ROP through analysis of vessel morphology 
characteristics like thickness, tortuosity and growth features using longitudinal 
fundus images and neural network methodology. A project in cooperation with 
Dr. Carina Slidsborg and the University of Copenhagen has been initiated for this 
purpose. 
   

11.3 IMPACT ASSESSMENT AND IMPLEMENTATION SCIENCE 

Before DIGIROP clinical decision support tool is implemented in the clinic, an 
actual impact assessment study should be performed, where the tool’s actual effect 
on decision-making, patient outcomes, and healthcare costs are evaluated.170 
Randomized controlled trials, and potentially cluster randomized trials can be 
planned for this purpose, randomizing some sites to use the prediction tool and 
others to use usual care. Between-group comparisons assessing clinical usefulness, 
infant safety, tool’s effectiveness, including stress reduction, health economy, and 
within-group comparisons with respect to pre-trial data, are relevant. Both 
qualitative and quantitative analyses should be considered.  

Implementation science is “the scientific study of methods to promote the systematic 
update of research findings and other evidence-based practice into routine practice and, 
hence, to improve the quality and effectiveness of health services”, meaning that factors 
defining the uptake of the tool into clinical routine are investigated rather than 
the health impact of the tool described above in the impact assessment studies.171 
Close discussions with healthcare leaders and healthcare professionals are part of 
such evaluations. 

–

11.4 PRECISION MEDICINE AND PRECISION HEALTH 

The specific focus of this thesis is on individual risk prediction. Modern medicine 
is developing towards personalized and precision medicine, which is strongly 
associated with individual risk predictions. Precision medicine focuses on the 
individual and the individual’s optimal treatment and prevention of diseases. 
Focusing on not one but many individuals, improving public health may be 
achieved, which opens the door to precision health. The main goals of precision 
health are to predict, prevent and cure precisely. It is to always be a step ahead and 
be proactive, with the final goal not just to efficiently treat a disease by early 
detection, but to completely prevent it, and improve life in the general public.172 

Placing the fragile population of preterm infants in this context, we should work 
on prediction models that optimize the treatment of ROP and other severe short- 
and long-term conditions this population suffers from. We should also work on 
more personalized preventative treatments to avoid the occurrence of these severe 
conditions. Why not prevent an infant from being born prematurely and erase 
the complications that prematurity causes? Ultimately, the key lies in the 
mother’s health, her lifestyle, and the social and physical environment that 
surrounds her.   
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APPENDIX 1 HAZARD FUNCTIONS FROM DIGIROP-BIRTH 

DIGIROP-BIRTH 1.0 PREDICTION MODEL 

The parameter estimates obtained for the final DIGIROP-Birth 1.0 by using in-
house developed SAS-macro for the extended Poisson regression. 

TTAABBLLEE  66..  DIGIROP-BIRTH 1.0 PREDICTION MODEL. SE = standard error; BW = birth weight; PND = 
parenteral nutrition duration; PNA = postnatal age; w = weeks; GA = gestational age; BWSDS = birth weight 
standard deviation score; SDS = standard deviation score; INT = interaction. 
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DIGIROP-BIRTH 1.0 HAZARD CALCULATION 

The hazard function for a given individual 𝑖𝑖 is calculated as 

𝜆𝜆𝑖𝑖 = 𝑒𝑒𝑒𝑒𝑒𝑒(𝛽𝛽0 + 𝛽𝛽1𝑋𝑋1𝑖𝑖 + 𝛽𝛽2𝑋𝑋2𝑖𝑖 + 𝛽𝛽3𝑋𝑋3𝑖𝑖 + 𝛽𝛽4𝑋𝑋4𝑖𝑖 + 𝛽𝛽5𝑋𝑋5𝑖𝑖 + 𝛽𝛽6𝑋𝑋6𝑖𝑖 + 𝛽𝛽7𝑋𝑋7𝑖𝑖 + 𝛽𝛽8𝑋𝑋8𝑖𝑖
+ 𝛽𝛽9𝑋𝑋9𝑖𝑖 + 𝛽𝛽10𝑋𝑋10𝑖𝑖 + 𝛽𝛽11𝑋𝑋11𝑖𝑖 + 𝛽𝛽12𝑋𝑋12𝑖𝑖 + 𝛽𝛽13𝑋𝑋13𝑖𝑖)

where 𝛽𝛽0⁡to⁡𝛽𝛽13 are the parameter estimates from TTaabbllee  66 above, and 𝑋𝑋 as per 
below   

𝑋𝑋0 = 1 

𝑋𝑋1 = 𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡, 8) 

𝑋𝑋2 = 𝑚𝑚𝑚𝑚𝑚𝑚(𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡, 8), 12 − 8)

𝑋𝑋3 = 𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥 − 12,0)

𝑋𝑋4 = 𝑚𝑚𝑚𝑚𝑚𝑚(𝐺𝐺𝐺𝐺𝐺𝐺,−1)

𝑋𝑋5 = 𝑚𝑚𝑚𝑚𝑚𝑚(𝐺𝐺𝐺𝐺𝐺𝐺 − (−1), 0)

𝑋𝑋6 = 𝑆𝑆𝑆𝑆𝑆𝑆

𝑋𝑋7 = 𝑚𝑚𝑚𝑚𝑚𝑚(𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵,−1)

𝑋𝑋8 = 𝑚𝑚𝑚𝑚𝑚𝑚(𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 − (−1), 0)

𝑋𝑋9 = 𝑡𝑡⁡𝑥𝑥⁡𝑚𝑚𝑚𝑚𝑚𝑚(𝐺𝐺𝐺𝐺𝐺𝐺,−1)

𝑋𝑋10 = 𝑡𝑡⁡𝑥𝑥⁡𝑚𝑚𝑚𝑚𝑚𝑚(𝐺𝐺𝐺𝐺𝐺𝐺 − (−1), 0)

𝑋𝑋11 = 𝑆𝑆𝑆𝑆𝑆𝑆⁡𝑥𝑥⁡𝐺𝐺𝐺𝐺𝐺𝐺

𝑋𝑋12 = 𝑡𝑡⁡𝑥𝑥⁡𝑚𝑚𝑚𝑚𝑚𝑚(𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵,−1)

𝑋𝑋13 = 𝑡𝑡⁡𝑥𝑥⁡𝑚𝑚𝑚𝑚𝑚𝑚(𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 − (−1), 0)

𝑆𝑆𝑆𝑆𝑆𝑆 = 1 𝑆𝑆𝑆𝑆𝑆𝑆 = 2 𝐺𝐺𝐺𝐺𝐺𝐺 = 𝐺𝐺𝐺𝐺 − 28  

Calculating the hazard function per small intervals for 𝑡𝑡 = [0,20] and applying 
those in the numerical integration, the survival function 𝑆𝑆(𝑡𝑡) and the cumulative 
distribution function 𝐹𝐹(𝑡𝑡) are obtained. 𝐹𝐹(𝑡𝑡) is providing the risk estimates for 
ROP treatment that is of interest for the project. 

𝐹𝐹(𝑡𝑡) = 1 − 𝑆𝑆(𝑡𝑡) = 1 − 𝑒𝑒𝑒𝑒𝑒𝑒 (−∫ 𝜆𝜆
20
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DIGIROP-BIRTH 2.0 PREDICTION MODEL 

The parameter estimates obtained for the final DIGIROP-Birth 2.0 by using in-
house developed SAS-macro for the extended Poisson regression. 

TTAABBLLEE  77..  DIGIROP-BIRTH 2.0 PREDICTION MODEL. SE = standard error; BW = birth weight; PND = 
parenteral nutrition duration; PNA = postnatal age; w = weeks; GA = gestational age; BW = birth weight; 
PND = parenteral nutrition duration INT = interaction. 

β
β 2.8183

β 0.3523

β 0.0483

β 0.0234

β 0.1245

β 0.5803

β .2767

β 0.0538

PN ≥14d β 0.1509

β 0.1662

β 0.0505

INT: Sex × PN ≥14d β 0.2120

β 0.0184

β 0.0740

 
  



DIGIROP-BIRTH 1.0 HAZARD CALCULATION 

The hazard function for a given individual 𝑖𝑖 is calculated as 

𝜆𝜆𝑖𝑖 = 𝑒𝑒𝑒𝑒𝑒𝑒(𝛽𝛽0 + 𝛽𝛽1𝑋𝑋1𝑖𝑖 + 𝛽𝛽2𝑋𝑋2𝑖𝑖 + 𝛽𝛽3𝑋𝑋3𝑖𝑖 + 𝛽𝛽4𝑋𝑋4𝑖𝑖 + 𝛽𝛽5𝑋𝑋5𝑖𝑖 + 𝛽𝛽6𝑋𝑋6𝑖𝑖 + 𝛽𝛽7𝑋𝑋7𝑖𝑖 + 𝛽𝛽8𝑋𝑋8𝑖𝑖
+ 𝛽𝛽9𝑋𝑋9𝑖𝑖 + 𝛽𝛽10𝑋𝑋10𝑖𝑖 + 𝛽𝛽11𝑋𝑋11𝑖𝑖 + 𝛽𝛽12𝑋𝑋12𝑖𝑖 + 𝛽𝛽13𝑋𝑋13𝑖𝑖)

where 𝛽𝛽0⁡to⁡𝛽𝛽13 are the parameter estimates from TTaabbllee  66 above, and 𝑋𝑋 as per 
below   

𝑋𝑋0 = 1 

𝑋𝑋1 = 𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡, 8) 

𝑋𝑋2 = 𝑚𝑚𝑚𝑚𝑚𝑚(𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡, 8), 12 − 8)

𝑋𝑋3 = 𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥 − 12,0)

𝑋𝑋4 = 𝑚𝑚𝑚𝑚𝑚𝑚(𝐺𝐺𝐺𝐺𝐺𝐺,−1)

𝑋𝑋5 = 𝑚𝑚𝑚𝑚𝑚𝑚(𝐺𝐺𝐺𝐺𝐺𝐺 − (−1), 0)

𝑋𝑋6 = 𝑆𝑆𝑆𝑆𝑆𝑆

𝑋𝑋7 = 𝑚𝑚𝑚𝑚𝑚𝑚(𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵,−1)

𝑋𝑋8 = 𝑚𝑚𝑚𝑚𝑚𝑚(𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 − (−1), 0)

𝑋𝑋9 = 𝑡𝑡⁡𝑥𝑥⁡𝑚𝑚𝑚𝑚𝑚𝑚(𝐺𝐺𝐺𝐺𝐺𝐺,−1)

𝑋𝑋10 = 𝑡𝑡⁡𝑥𝑥⁡𝑚𝑚𝑚𝑚𝑚𝑚(𝐺𝐺𝐺𝐺𝐺𝐺 − (−1), 0)

𝑋𝑋11 = 𝑆𝑆𝑆𝑆𝑆𝑆⁡𝑥𝑥⁡𝐺𝐺𝐺𝐺𝐺𝐺

𝑋𝑋12 = 𝑡𝑡⁡𝑥𝑥⁡𝑚𝑚𝑚𝑚𝑚𝑚(𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵,−1)

𝑋𝑋13 = 𝑡𝑡⁡𝑥𝑥⁡𝑚𝑚𝑚𝑚𝑚𝑚(𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 − (−1), 0)

𝑆𝑆𝑆𝑆𝑆𝑆 = 1 𝑆𝑆𝑆𝑆𝑆𝑆 = 2 𝐺𝐺𝐺𝐺𝐺𝐺 = 𝐺𝐺𝐺𝐺 − 28  

Calculating the hazard function per small intervals for 𝑡𝑡 = [0,20] and applying 
those in the numerical integration, the survival function 𝑆𝑆(𝑡𝑡) and the cumulative 
distribution function 𝐹𝐹(𝑡𝑡) are obtained. 𝐹𝐹(𝑡𝑡) is providing the risk estimates for 
ROP treatment that is of interest for the project. 

𝐹𝐹(𝑡𝑡) = 1 − 𝑆𝑆(𝑡𝑡) = 1 − 𝑒𝑒𝑒𝑒𝑒𝑒 (−∫ 𝜆𝜆
20

0
(𝑥𝑥)𝑑𝑑𝑑𝑑) 

–

DIGIROP-BIRTH 2.0 PREDICTION MODEL 

The parameter estimates obtained for the final DIGIROP-Birth 2.0 by using in-
house developed SAS-macro for the extended Poisson regression. 

TTAABBLLEE  77..  DIGIROP-BIRTH 2.0 PREDICTION MODEL. SE = standard error; BW = birth weight; PND = 
parenteral nutrition duration; PNA = postnatal age; w = weeks; GA = gestational age; BW = birth weight; 
PND = parenteral nutrition duration INT = interaction. 
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DIGIROP-BIRTH 2.0 HAZARD CALCULATION 

The hazard function for a given individual 𝑖𝑖 is calculated as 

𝜆𝜆𝑖𝑖 = 𝑒𝑒𝑒𝑒𝑒𝑒(𝛽𝛽0 + 𝛽𝛽1𝑋𝑋1𝑖𝑖 + 𝛽𝛽2𝑋𝑋2𝑖𝑖 + 𝛽𝛽3𝑋𝑋3𝑖𝑖 + 𝛽𝛽4𝑋𝑋4𝑖𝑖 + 𝛽𝛽5𝑋𝑋5𝑖𝑖 + 𝛽𝛽6𝑋𝑋6𝑖𝑖 + 𝛽𝛽7𝑋𝑋7𝑖𝑖 + 𝛽𝛽8𝑋𝑋8𝑖𝑖
+ 𝛽𝛽9𝑋𝑋9𝑖𝑖 + 𝛽𝛽10𝑋𝑋10𝑖𝑖 + 𝛽𝛽11𝑋𝑋11𝑖𝑖 + 𝛽𝛽12𝑋𝑋12𝑖𝑖 + 𝛽𝛽13𝑋𝑋13𝑖𝑖)

where 𝛽𝛽0⁡to⁡𝛽𝛽13 are the parameter estimates from TTaabbllee  77 above, and 𝑋𝑋 as per 
below   

𝑋𝑋0 = 1 

𝑋𝑋1 = 𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡, 8) 

𝑋𝑋2 = 𝑚𝑚𝑚𝑚𝑚𝑚(𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡, 8), 12 − 8)

𝑋𝑋3 = 𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥 − 12,0)

𝑋𝑋4 = 𝑚𝑚𝑚𝑚𝑚𝑚(𝐺𝐺𝐺𝐺𝐺𝐺,−1)

𝑋𝑋5 = 𝑚𝑚𝑚𝑚𝑚𝑚(𝐺𝐺𝐺𝐺𝐺𝐺 − (−1), 0)

𝑋𝑋6 = 𝑆𝑆𝑆𝑆𝑆𝑆

𝑋𝑋7 = 𝐵𝐵𝐵𝐵100

𝑋𝑋8 = 𝑃𝑃𝑃𝑃𝑃𝑃1

𝑋𝑋9 = 𝑃𝑃𝑃𝑃𝑃𝑃2

𝑋𝑋10 = 𝑡𝑡⁡𝑥𝑥⁡𝑚𝑚𝑚𝑚𝑚𝑚(𝐺𝐺𝐺𝐺𝐺𝐺 − (−1), 0)

𝑋𝑋11 = 𝑆𝑆𝑆𝑆𝑆𝑆⁡𝑥𝑥⁡𝑃𝑃𝑃𝑃𝑃𝑃1

𝑋𝑋12 = BW100⁡𝑥𝑥⁡𝐺𝐺𝐺𝐺

𝑋𝑋13 = 𝑆𝑆𝑆𝑆𝑆𝑆⁡𝑥𝑥⁡𝑚𝑚𝑚𝑚𝑚𝑚(𝐺𝐺𝐺𝐺𝐺𝐺,−1)

where 𝑆𝑆𝑆𝑆𝑆𝑆 = 0 for boys, 𝑆𝑆𝑆𝑆𝑆𝑆 = 1 for girls, 𝐺𝐺𝐺𝐺𝐺𝐺 = 𝐺𝐺𝐺𝐺 − 28, 𝑃𝑃𝑃𝑃𝑃𝑃1 = 1 for ≥14 
days, 𝑃𝑃𝑃𝑃𝑃𝑃1 = 0 otherwise, 𝑃𝑃𝑃𝑃𝑃𝑃2 = 1 for unknown, 𝑃𝑃𝑃𝑃𝑃𝑃2 = 0 otherwise, 
𝐵𝐵𝐵𝐵100 = 𝐵𝐵𝐵𝐵/100  

The survival function 𝑆𝑆(𝑡𝑡) and the cumulative distribution function 𝐹𝐹(𝑡𝑡) are 
obtained in the same way as for DIGIROP-Birth 1.0.  
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The parameter estimates obtained for the DIGIROP-Birth 2.0 by using the glm 
function in R for the extended Poisson regression. Small differences in parameter 
estimates are expected for the reasons of estimation procedures applied and 
convergence limits used. For 11139 included infants in Paper IV, the difference in 
risk estimates for R–SAS method, given the respective parameter estimates, was 
mean 0.0015, median 0.000045, 5th percentile -0.000039, and 95th percentile 
0.0045.

 

–
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