
Modelling the logical mind

Modelling the logical mind
Using the cognitive architecture ACT-R to model
human symbolic reasoning in the description logic 𝒜ℒℰ

Jelle Tjeerd Fokkens

Thesis submitted for the Degree of Licentiate in Logic
Department of Philosophy, Linguistics and Theory of Science
University of Gothenburg

© JELLE TJEERD FOKKENS, 2023

The publication is also available in fulltext at:
https://hdl.handle.net/2077/74797

Typeset in Adobe Garamond Pro, Arial, Garamond-Math, and
Linux Libertine Mono O using XƎLATEX and KOMA-Script

Cover:
Reminding of a coastwards train ride after a long day full of new experiences.
© Jelle Tjeerd Fokkens, 2023

https://hdl.handle.net/2077/74797

Abstract

Title: Modelling the logical mind –
Using the cognitive architecture ACT-R to model
human symbolic reasoning in the description logic 𝒜ℒℰ

Author: Jelle Tjeerd Fokkens
Language: English (with a summary in Swedish)
Department: Philosophy, Linguistics and Theory of Science
Keywords: Cognitive Modelling, Description Logic

The problem of optimising automated explanations for entailments in know-
ledge bases is tackled by modelling deductive reasoning processes using the cog-
nitive architecture ACT-R. This results in the model SHARP which simulates
the algorithm for deciding inconsistency of an ABox in the description logic
𝒜ℒℰ as executed by a human. More precisely, SHARP enables predicting the
inference time of this task, which is assumed to reflect cognitive load of a human
agent. With the inference time, two complexity measures on ABoxes are defined
that should correlate with cognitive load by design.

Acknowledgements
Most theses are works of team effort and this thesis is no exception: it bears
my name, but I had help and support from many wonderful people. That is
why I would like to thank Fredrik Engström for his excellent supervision and
mentoring, the many inspiring conversations and wonderful support, both aca-
demic and beyond. Thanks also to Graham Leigh, my secondary supervisor,
for the many stimulating discussions and the very valuable contributions to this
work, without which it would not be of the same quality. I would like to thank
Rasmus Blanck for his Latex wizardry. I want to thank Bahareh Afshari and
Martin Kaså for being wonderful and inspiring teachers. Many thanks also to
Mattias Granberg Olsson and Dominik Wehr, my fellow PhD students who are
always very supportive, clever and constructive, and many thanks to Giacomo
Barlucchi, my office mate, who preceded me in achieving the licentiate degree
and who helped me greatly with logic, life and a bit of the Italian language. I
would like to thank all my other colleagues as well for creating a supporting, cre-
ative and high-standard working atmosphere. Many thanks to Johanna Wolff for
her incredibly precise proof reading, which greatly improved this text. Lastly, I
would like to thank my parents, who might not understand this text, but who
supported me greatly in making it.

Contents

CHApTER 1 INTRODucTION ..1
Proofs as explanations..1
Proofs and cognition..2
Artificial intelligence and explainability ..3
Goals .. 4

CHApTER 2 KNOwLEDgE REpRESENTATION .. 5
Description Logics...6

The description logic 𝒜ℒ and its relatives ...7
Relations to first-order logic..12
Reasoning tasks ..14
Reasoning algorithms..16

Justifications..18
Finding all justifications..19
Finding one justification ...20
Improving justifications ..20
Cognitive aspects..22

CHApTER 3 LOgIc AND cOgNITION ..25
Mental Logic...26
Mental Models ..28
Comparison ..30
Other Schools ... 30
Interpretations...31
Cognitive Architectures ... 32
ACT-R..33

Knowledge representation...34
The Goal and Imaginal modules..34
The Declarative module ..35
The Procedural module...35
The Motor module ...35
The Vision module ...35

Base-level learning ..36

CHApTER 4 𝒜ℒℰ ABOx INcONSISTENcy .. 41
The 𝒜ℒℰ ABox inconsistency problem..41

NP-solvability .. 42
NP-hardness...46

A tableau algorithm for 𝒜ℒℰ ABox inconsistency..................................48

CHApTER 5 THE MODEL SHARP ..55
Obstacles in designing SHARP..55

The issue of parsing...55
The issue of discarding..56
The issue of the universal restrictions...56
The issue of finding new elements ...57
The issue of the buffers..57
The issue of the production rules...58

SHARP’s design ..58
A note on nondeterminism ...58
SHARP’s chunk types...58
Overview..59
Module 1: find a clash ..59
Module 2: find next complex formula...60
Module 3: infer from conjunction...61
Module 4: infer from existential restriction..62
Module 5: infer from universal restriction ...63
Justification ..64

Analysis of performance...65
Exponential scaling...65
Polynomial scaling..65
Linear scaling ...68
Future extensions..68

CHApTER 6 PREDIcTINg INfERENcE TIMES wITH SHARP........................71
Predicted effects...71

Statistical significance ... 72

Name dependence ..73
Order insensitivity..75
Insensitivity to negations...77
Nesting sensitivity...78
Time scaling with input size..81
Spreading ...83
∃ before ∀...84
The role of decay .. 85

Complexity measures...87
Naive measures...88
Measures based on formal proof..88
Least-time ..88
Average-time .. 89
Linear Combination...89
Average Inference Step time (AIS)...90
SHARP simplified..91
Comparing different measures...92

CHApTER 7 CONcLuSION..97

REfERENcES .. 103

SAMMANfATTNINg på SvENSkA ..111

List of figures
Figure 1 Exponential scaling of simulation time with input size in case

of AND-branching...66
Figure 2 The less complex scenarios show polynomial scaling of the sim-

ulation time with the input size...67
Figure 3 In some easy cases, there is a linear dependence of simulation

time on the size of the input. ..69
Figure 4 Changing element names does not affect inference times.73
Figure 5 Changing concept names does not affect inference times.74
Figure 6 Changing role names does affect inference times non-trivially.76
Figure 7 The order of presenting the formulas does not affect the infer-

ence time. ..77
Figure 8 Conjunction order does not affect inference time.78
Figure 9 Whether atomic concepts are negated or not does not affect

inference times...79
Figure 10 Nesting affects the inference times. ...80
Figure 11 The inference time roughly scales exponentially with the input

size in the case of AND-branching, showing a similar scaling
as the simulation time in Figure 1...82

Figure 12 The nesting of clashing concepts affects the spread of inference
times..83

Figure 13 Making inferences on existential restrictions before universal
restrictions is faster. ..84

Figure 14 The number of switches only slightly affects inference time,
but it affects the likelihood of the runs quite profoundly (not
displayed in graph)...86

List of tables
Table 1 The entailment-complexity measures..95
Table 2 The proof-complexity measures..96

1 Introduction

Many a teacher knows that an explanation may satisfy one student while it con-
fuses another. This sometimes raises practical problems in the classroom, and on
a more philosophical level sparks interesting debates centered around the ques-
tion: what counts as an explanation?

1.1 Proofs as explanations
With regards to this question, mathematical proofs form interesting objects of
study; they have since the fifth century been seen as explanations for why the-
orems hold (Harari, 2008) in addition to them being seen as mere witnesses of
the theorems’ truth. There are at least two different ways in which proofs can ex-
plain (Mancosu, 2018): the reductive/local way (as advocated in (Steiner, 1978))
and the unificative/holistic way (as advocated in (Kitcher, 1989)). A reductively
explanatory proof is one in which often a certain construction is detailed that
proves the theorem, whereas a unificatively explanatory proof proves the theorem
more abstractly by showing that the theorem is a special case of a more general
idea.

To contrast these two notions, (Colyvan and McQueen, 2018) gives two dif-
ferent proofs of the Free Group Theorem such that the two ways of proving can
be compared. Because of their different nature, however, it is difficult to say
which of the two proofs is the most explanatory. Moreover, proofs may gen-
eralise in different directions (Wagon, 1987), making their explanatory values
difficult to compare among each other. In (Paseau, 2010), however, the author
critiques the unification as explanation stance and highlights the virtues of the
reductive case by giving and comparing five different proofs of the compactness
theorem: Henkin’s proof, a topological proof, a proof based on completeness,
a combinatorial proof and a proof based on ultraproducts. One may doubt
whether the above perspectives are the most fruitful tools to judge a proof ’s ex-
planatory value. Indeed, in (Paseau, 2010)’s conclusion the author mentions
that the explanatory value of a proof depends on its assumptions and on whether
the person reading the proof is familiar with those assumptions, making the ex-
planatory value of a proof thus a notion relative to the understander. It can

2 • MODELLINg THE LOgIcAL MIND

therefore be understood that multiple different proofs are often desirable:

Any good theorem should have several proofs, the more the better. For two
reasons: usually, different proofs have different strengths and weaknesses, and
they generalize in different directions – they are not just repetitions of each
other. (Raussen and Skau, 2004)

Though in the above quote it is not explicit which strengths and weaknesses
are meant, explainability may well be considered one of them. The above men-
tioned psychological aspects of explanation in proofs are discussed relatively little
in the literature. We consider these aspects to be very important, however, as it is
easy to imagine a scenario in which two understanders, one highly familiar with
ultraproducts and the other not, judge the explanatory value of the ultraproduct-
based proof of the compactness theorem rather differently. The understander
who is more acquainted with ultraproducts may experience the proof as relatively
easy, whereas the understander who is less familiar with ultraproducts would ex-
perience the proof as relatively hard. From this scenario, we conclude that the
cause of the difference in understandability is a psychological one: the proof
posed a lower cognitive load on one understander than on the other.

1.2 Proofs and cognition
In (Alrabbaa et al., 2022) some psychological aspects of proofs are studied. They
showed different presentations of a proof to users to see which presentation is
optimal (as well as how this correlated with people’s experience in logic and
there scores on an IQ-like test). They concluded that shorter proofs are gener-
ally considered easiest, because the understander is then not distracted by trivial
inferences. Also tree-representations of the proof are sometimes preferred over
proofs written in text. These preferences were subjective and estimated by asking
the participants to rate their experienced comprehensibility on a scale from 1 to
5. The paper also measured the comprehensibility of proofs more objectively by
asking the subjects questions such as “Which of the following would be a correct
replacement for the deduction ‘XYZ’ in the proof?” after giving a set of possible
alternatives. This method to objectively determining proof comprehensibility
turned out to be ineffective because the questions were too difficult: all scores
were very low and therefore unable to be distinguished statistically.

This last point indicates that perhaps a different method is needed to measure
the comprehensibility of a proof. In an attempt to construct such a method,
we suggest a measure on logical entailments based on cognitive load alone, as

INTRODucTION • 3

opposed to performance on related tasks. A proof is then most explanatory if it
can be understood with the least cognitive effort by the understander. There are
various ways of measuring the cognitive load of a certain task, so the above idea
does not give a unique measure, but it captures the fundamental perspective of
this thesis.

1.3 Artificial intelligence and explainability
In the context of AI, explanation is also becoming increasingly relevant as a re-
action to the recent increase in opaqueness of AI systems. AI systems that exhibit
machine learning can be (and become more) opaque because the system’s beha-
viour is not explicitly programmed and can in some cases change over time based
on its input. It sometimes happens that the algorithm recognises certain patterns
that the programmer is not aware of (Ribeiro et al., 2016). The output of such
systems is then hard to predict and even harder to understand, sometimes up
to the point where the programmer is unable to give an account of the system’s
output. This can be especially harmful if the input data is biased and is used to
make decisions that impact humans directly; e.g. ethnically biased police data.

Not only machine learning systems, but also non-learning intelligent systems
may exhibit opaqueness. In the context of knowledge bases for example, it can
be unclear how a certain inference is made. Knowledge bases are data bases that
contain, besides factual data, a terminology (also called ontology) which contains
domain knowledge in the form of hierarchically structured concepts. It is used
to make inferences on the relevant concepts that a certain element satisfies. This
query answering procedure is fully symbolic (based on logic or other formal meth-
ods (Ilkou and Koutraki, 2020) as opposed to subsymbolic (based on statistics or
numerical calculations).

Contrary to common misconception, these systems satisy the garbage-in-
garbage-out rule, because unwanted consequences may appear if input data was
poorly stated. This makes it, even for these systems, sometimes hard to under-
stand which of the axioms in the data base has given rise to the conclusion and
in case of an unwanted conclusion debugging is difficult.

Therefore, these types of systems demand explainability, a trend that seemed
to have been around since the early nineties (Swartout et al., 1991), but is still,
and perhaps more, relevant today (Whittaker et al., 2018a). The latter source
illustrates the need for explanation by mentioning a variety of examples: lethal
accidents involving autonomous vehicles, a voice recognition system unright-
fully cancelling visas and unsafe automatised cancer treatment recommendations.

4 • MODELLINg THE LOgIcAL MIND

This trend has culminated in the concept of algorithmic accountability reporting,
where AI decisions are accounted for by certain mechanisms, although some au-
thors opine that this may be too much to ask for, especially in the light of humans
often being unable to account for their choices (Zerilli et al., 2019). Moreover,
when it comes to building trust in AI systems, explainability is considered an
essential ingredient (Lockey et al., 2021). An important development is the
Regulation (EU) 2016/679 (EU, 2016) better known as GDPR, which states
the right to explanation for certain automated decision processes. Another ad-
vantage of explainability is that it facilitates debugging and optimisation (Kulesza
et al., 2015), on which, interestingly enough, not much research seems to have
been done (Petrillo et al., 2016). This last thread of research is another motiva-
tion of this thesis.

1.4 Goals
By understanding explanations in the way stated before, we aim to:

optimise automatic explanations for entailments in knowledge bases.

The first step in this direction is modelling the cognitive process of deductive
reasoning. The scope is limited to the description logic 𝒜ℒℰ, with the associated
reasoning task of finding out whether a given ABox is inconsistent, i.e. contain-
ing an element satisfying clashing concepts. The cognitive architecture ACT-R
(Adaptive Control of Thought - Rational) is used for the modelling. ACT-R
works largely symbolically, making it a priori well-suitable for modelling de-
ductive reasoning; it also has subsymbolic parameters allowing more flexible and
fine-grained modelling. The model thus constructed is called SHARP and can
be seen as the main contribution of this thesis. The predictions using SHARP
are used to define two complexity measures on the logical task of 𝒜ℒℰ ABox
inconsistency.

Later work will focus on validating the predictions made with the model and
the associated complexity measures, as well as certain computational optimisa-
tions and functional extensions, after which optimised explanations of logical
entailments can be made.

2 Knowledge Representation

It is unclear when the research on artificial intelligence started, but Alan Newell’s
report on his General Problem Solver gpS-I (Newell et al., 1959) is considered
to be one of the first publications in the field as it is currently understood. The
report describes a computer program based on logic that would be able to per-
form general problem solving (propositional logical deductions, solving algebraic
equations etc.). The program consisted of problem-specific knowledge encoded
in Horn clauses (logical formulas of a specific form) as well as deduction rules to
transform certain expressions into others and was the first system that had a clear
separation between the two. The generality of this problem solver was rather lim-
ited, as only simple-to-formalise problems could be solved; moreover, the pro-
gram was unable to tackle the vast search space effectively. gpS-I developed into
the Soar cognitive architecture (which will be discussed in later sections), but
it also moved in another direction: expert systems (Hayes-Roth and Waterman,
1983).

An example of an expert system is MycIN (Shortliffe and Buchanan, 1975).
This expert system is designed to reason about medical diagnoses related to bac-
terial infections and the corresponding antibiotic treatments and allows for ‘in-
exact’ reasoning in case of probabilistic data. It computed certainty factors for
the relevant propositions and asked the user for more information on the patient
under consideration. The system later spawned research on Bayesian networks;
it was never commercially used itself, because the process of entering the data
was too cumbersome.

The problem of how to most effectively represent knowledge remained and
was adressed in (Minsky, 1974). Minsky proposed a frame language with the
aim of designing systems that could reason with ‘common-sense thought’ as op-
posed to reason only about specific facts. In 1977 one of the first such frame-
based knowledge representation system was published: KL-ONE. It had logical
machinery to reason about classes and relations and it could make assertions
about individuals (Brachman and Schmolze, 1985). The distinction between
knowledge of concepts (often called ontology or terminology) and knowledge of
individuals proved very powerful and is still relevant today. KL-ONE formed
the basis of research on description logics when in the paper (Brachman and

6 • MODELLINg THE LOgIcAL MIND

Levesque, 1984) the trade-off was discussed between expressiveness on the one
hand and tractability of reasoning on the other. The term Description Logics
only became popular later after research focus has shifted from constructors with
which to form concepts to the logical properties of knowledge representation sys-
tems (Baader et al., 2003).

The transition from a database to a knowledge base is a non-trivial one regard-
ing the closed world versus open world assumption, CWA and OWA respect-
ively. Most databases usually use the CWA, meaning that if something is not in
the data base, it is assumed to be false. Logic, on the other hand, uses the OWA
so that if something does not follow from a set of axioms, it cannot generally
be assumed to be false. Extending a data base to a knowledge base with concep-
tual knowledge and logical reasoning, therefore, means that the usual CWA is
dropped. For that reason, a knowledge base admits many more models than a
data base. For example, if an element 𝑎 is not assumed to satisfy the concept
𝐶, then in most data bases under the CWA it satisfies the concept ¬𝐶, i.e. the
complement of the concept 𝐶. Knowledge bases, using the OWA, remain indif-
ferent as to 𝑎 satisfying 𝐶 or ¬𝐶, meaning that they admit at least two models,
one in which 𝑎 satisfies 𝐶 and one in which it satisfies the complement ¬𝐶. A
discussion of this can be found in (Baader et al., 2003, p.68).

Knowledge representation systems are still being developed today and form
a rich area of research (Sowa, 2000). They have many applications, including
SNOMED cT, a systematic medical terminology that has been being developed for
over 50 years (Cornet and de Keizer, 2008) (although its practical usefulness is
unclear). Another direction of development is extending the World Wide Web
to the Semantic Web, with the aim of making the internet machine-readable,
and therefore requiring the knowledge of the web to be structured (Horrocks
et al., 2023). A language developed for this purpose is OWL, which is widely
used to construct ontologies (Wang et al., 2006). OWL officially stands for Web
Ontology Language; the reason for permuting the acronym’s letters is unknown
(Herman, 2010). Constructing ontologies is a difficult task, because the causes
of bugs are difficult to trace. Many editor tools are available for constructing
ontologies, e.g. Protégé. We return to facilitating of ontology debugging at the
end of this chapter after a discussion on description logics.

2.1 Description Logics
Description logics lie at the foundation of ontologies and form a big family of
different logics where each one has specific properties tailored to the desired

kNOwLEDgE REpRESENTATION • 7

purpose. A good introduction is (Baader et al., 2017) and more detailed info
can be found in (Baader et al., 2003). Much of the following is derived from the
latter source.

As mentioned above, description logics are used to represent and reason about
knowledge. In principle, first-order logic could be used for this purpose, but
there are several reasons why this is not done. The first reason is a historical
one, as description logic originated outside of logic and connections with logic
were discovered later. The second one is that it is easier to read, which will
become clearer later. The third reason is that computational properties such as
the complexity of certain reasoning tasks are more closely tied to the syntax of the
language, making it easier to see why such properties are ensured. Lastly, some
description logics go beyond first-order logic in that they can express transitive
closure of roles.

2.1.1 The description logic 𝒜ℒ and its relatives

The description logic that is considered most fundamental to the family is 𝒜ℒ,
which stands for Attributive Language. This section is devoted to the description
logic 𝒜ℒ and its closest relatives, but two other important branches of the family
are the ℰℒ (Existential Language) family and the ℱℒ (Frame based Language)
family, which are both weaker than the first.

Definition 2.1.1. The triplet S = (A𝐶,A𝑅,A𝛦), where A𝐶 is a set of atomic
concept symbols, A𝑅 is a set of atomic role symbols and A𝛦 is a set of element
symbols, is called a signature.

The signature contains all the primitive concept, role and element symbols
in the language. If 𝛢 ∈ A𝐶, we can write 𝛢 ∈ S if it is clear from the context
that 𝛢 is a concept symbol.

Definition 2.1.2. Let S be a signature. A concept description in 𝒜ℒ is made
according to the following syntax in Backus-Naur Form (BNF), where 𝛢 ∈ S.

𝐶 ∶∶= 𝛢 ∣ ⊤ ∣ ⊥ ∣ ¬𝛢 ∣ 𝐶 ⊓ 𝐶 ∣ ∀𝑟.𝐶 ∣ ∃𝑟.⊤.
The expressions respectively stand for: atomic concepts, the universal concept,

the bottom concept, complement of atomic concept, concept intersection, uni-
versal restriction and limited existential restriction.

Complementation (negation) is only applied to atomic concepts and existen-
tial restriction is limited in the sense that it only uses the ⊤ concept to restrict to,

8 • MODELLINg THE LOgIcAL MIND

instead of an arbitrary concept 𝐶. The logic ℰℒ allows only concept intersection
and existential restriction. The logic ℱℒ allows, apart from the above, also role
restrictions, but does not allow negations. Much of the following is stated as
generally as possible, making it apply to ℰℒ and ℱℒ as well as 𝒜ℒ; if it only
applies to 𝒜ℒ this will be mentioned.

Definition 2.1.3. Let S be a signature and ℒ some description logic. A TBox 𝒯
in signature S for the logic ℒ is a set of formulas 𝜙, where each 𝜙 has the form:

𝐶 ⊑ 𝐷 or 𝐶 ≡ 𝐷, (2.1)

where 𝐶 and 𝐷 are concept descriptions in the signature S and the logic ℒ.

Definition 2.1.4. Let S be a signature and ℒ some description logic. An ABox
𝒜 in signature S for the logic ℒ is a set of formulas 𝜙, where each 𝜙 has the form:

𝑎 ∶ 𝐶 or (𝑎, 𝑏) ∶ 𝑟, (2.2)

where 𝐶 is any concept and 𝑟 and role, both of which are in the signature S and
the logic ℒ.

The T in TBox stands for terminological, as TBoxes contain all the termin-
ological knowledge of the system, i.e. the knowledge of how concepts relate to
other concepts. Information about specific individuals is encoded in ABoxes,
where A stands for assertional.

Formulas of the second form in the above definition are in some texts ex-
cluded from ABoxes. Such formulas are then included in RBoxes, where R
stands for relational. This distinction is not used in this text and the above defin-
ition applies in the following.

Definition 2.1.5. Let S be a signature and ℒ some description logic. A know-
ledge base 𝒦 in signature S for the logic ℒ is a pair 𝒦 = (𝒯, 𝒜) where 𝒯 is a
TBox and 𝒜 is an ABox, both of which are in signature S for the logic ℒ.

Semantically, we have the following.

Definition 2.1.6. (Baader et al., 2003, p.48). Let S be a signature. An interpret-
ation in signature S and logic 𝒜ℒ is a pair (Δℐ, ⋅ℐ), where Δℐ is a non-empty set
and ℐ is an interpretation function mapping concept names 𝛢 ∈ S𝐶 into ℘(Δℐ),
the powerset of the domain, mapping role names 𝑟 ∈ S𝑅 into ℘(Δℐ × Δℐ), and
mapping element names 𝑎 ∈ S𝛦 into Δℐ, such that the following conditions are

kNOwLEDgE REpRESENTATION • 9

satisfied:

⊤ℐ = Δℐ

⊥ℐ = ∅
(¬𝛢)ℐ = Δℐ ⧵ 𝛢ℐ

(𝐶 ⊓ 𝐷)ℐ = 𝐶ℐ ∩ 𝐷ℐ

(∀𝑟.𝐶)ℐ = {𝑎 ∈ Δℐ ∣ ∀𝑏.(𝑎, 𝑏) ∈ 𝑟ℐ → 𝑏 ∈ 𝐶ℐ}
(∃𝑟.⊤)ℐ = {𝑎 ∈ Δℐ ∣ ∃𝑏.(𝑎, 𝑏) ∈ 𝑟ℐ}

With the interpretations defined we can define the satisfaction conditions for
a knowledge base 𝒦 = (𝒯, 𝒜).

For TBox axioms, we have ℐ ⊧ 𝐶 ⊑ 𝐷 if and only if 𝐶ℐ ⊆ 𝐷ℐ. We say that
𝐶 ⊑ 𝐷 is true for interpretation ℐ. Moreover, ℐ ⊧ 𝐶 ≡ 𝐷 if and only if 𝐶ℐ = 𝐷ℐ;
where we say that 𝐶 ≡ 𝐷 is true for interpretation ℐ. For a TBox 𝒯, we have
ℐ ⊧ 𝒯 if and only if for all formulas 𝜙 ∈ 𝒯, ℐ ⊧ 𝜙.

For ABox axioms we have ℐ ⊧ 𝑎 ∶ 𝐶 if and only if 𝑎ℐ ∈ 𝐶ℐ. We say that 𝑎 ∶ 𝐶
is true for interpretation ℐ. Moreover, ℐ ⊧ (𝑎, 𝑏) ∶ 𝑟 if and only if (𝑎ℐ, 𝑏ℐ) ∈ 𝑟ℐ,
where we say that (𝑎, 𝑏) ∶ 𝑟 is true for interpretation ℐ. We call 𝑏ℐ the 𝑟-successor
of 𝑎ℐ and 𝑎ℐ the 𝑟-predecessor of 𝑏ℐ. For an ABox 𝒜, we have that ℐ ⊧ 𝒜 if
and only if for all formulas 𝜙 ∈ 𝒜, ℐ ⊧ 𝜙.

For a knowledge base 𝒦 = (𝒯, 𝒜), we have ℐ ⊧ 𝒦 if and only if ℐ ⊧ 𝒯 and
ℐ ⊧ 𝒜. We then call ℐ a model for 𝒦. For any ABox or TBox sentence 𝜙, we
have ⊧ 𝜙 if and only if ℐ ⊧ 𝜙 for all interpretations ℐ.

The logic 𝒜ℒ can be expanded with various concept constructors, some of
which are described below. Most of the following constructors are associated
with a script letter, the naming conventions of which will be explained later.

Union

The logic 𝒜ℒ can be extended with unions of concepts. Concept descriptions
then allow for formulas of the form 𝐶 ⊔ 𝐷, where 𝐶, 𝐷 ∈ A𝐶. Expressions like
this are then interpreted by an interpretation ℐ as:

(𝐶 ⊔ 𝐷)ℐ = 𝐶ℐ ∪ 𝐷ℐ.

This construction is indicated with the letter 𝒰.

10 • MODELLINg THE LOgIcAL MIND

Existential restriction

Full existential restriction (also: quantification) allows concept descriptions of
the form ∃𝑟.𝐶. Note that 𝐶 can be any concept description, so it does not need
to be ⊤ as in the logic 𝒜ℒ. For an interpetation ℐ, we have:

(∃𝑟.𝐶)ℐ = {𝑎 ∈ Δℐ ∣ ∃𝑏.(𝑎, 𝑏) ∈ 𝑟ℐ ∧ 𝑏 ∈ 𝐶ℐ}.

So, compared to limited existential restriction, elements that are claimed to
exist can be claimed to satisfy any concept description. This concept construc-
tion is indicated by ℰ.

Number restrictions

There are two different kinds of number restrictions: ⩽ 𝑛𝑟 and ⩾ 𝑛𝑟, for at-most
and at-least restriction respectively, 𝑛 being a natural number. For an interpret-
ation ℐ, the concepts are interpreted as:

(⩽ 𝑛𝑟)ℐ = {𝑎 ∈ Δℐ ∣ |{𝑏 ∣ (𝑎, 𝑏) ∈ 𝑟ℐ}| ≤ 𝑛} ,

and

(⩾ 𝑛𝑟)ℐ = {𝑎 ∈ Δℐ ∣ |{𝑏 ∣ (𝑎, 𝑏) ∈ 𝑟ℐ}| ≥ 𝑛} .

Conjunctions of the two concepts allow for number restrictions that express
that there are exactly that many 𝑟-successors. Logics that allow concept con-
structors like these are labelled by 𝒩.

Negation

As mentioned above, complements in 𝒜ℒ can only be applied to atomic con-
cepts and not to compound concepts. We can therefore extend the logic by
allowing the negation to be applied to any concept: ¬𝐶. An interpretation ℐ
needs to satisfy:

(¬𝐶)ℐ = Δℐ ⧵ 𝐶ℐ.

Logics with this concept constructor are labelled by 𝒞.

kNOwLEDgE REpRESENTATION • 11

Boolean role constructors

Boolean operations that apply to concepts can also be applied to roles. For roles
𝑟, 𝑠, their intersection is for example straightforwardly written as 𝑟 ⊓ 𝑠. It is
interpreted as:

(𝑟 ⊓ 𝑠)ℐ = 𝑟ℐ ∩ 𝑠ℐ.
Likewise we can have role union (𝑟 ⊔ 𝑠), interpreted as:

(𝑟 ⊔ 𝑠)ℐ = 𝑟ℐ ∪ 𝑠ℐ.
And we also have role complement ¬𝑟:

(¬𝑟)ℐ = Δℐ × Δℐ ⧵ 𝑟ℐ.
There seems to be no notational concensus on which of the above construct-

ors are present in the logic; sometimes the corresponding symbol is written in
superscript, e.g. 𝒜ℒ𝒞𝒩⊓, in other cases it is explicitly mentioned.

Role composition

Roles may be composed with each other. For two roles 𝑟 and 𝑠, we write 𝑟 ∘ 𝑠,
which is intepreted as:

(𝑟 ∘ 𝑠)ℐ = {(𝑎, 𝑐) ∈ Δℐ × Δℐ ∣ ∃𝑏.(𝑎, 𝑏) ∈ 𝑟ℐ ∧ (𝑏, 𝑐) ∈ 𝑠ℐ} .
There again seems to be no standardised notation to indicate the presence of

role composition in a description logic.

Transitive closure of roles

Elements may be ‘connected’ by arbitrarily long chains of role compositions.
This is called the transitive closure and is notated as 𝑟+. It has the formal inter-
pretation:

(𝑟+)ℐ = ⋃
𝑖≥1

(𝑟ℐ)𝑖.

Here, 𝑟1 = 𝑟 and 𝑟𝑖+1 = 𝑟 ∘ 𝑟𝑖. Usually it seems that transitive closure of roles
is indicated by subscript ‘trans’, e.g. 𝒜ℒ𝒞𝑡𝑟𝑎𝑛𝑠.

12 • MODELLINg THE LOgIcAL MIND

Role inverses

One may be interested in inverse roles, i.e. a 𝑏 related to an 𝑎 if 𝑎 relates to 𝑏.
This is written as 𝑟−. Semantically we have:

(𝑟−)ℐ = {(𝑏, 𝑎) ∈ Δℐ × Δℐ ∣ (𝑎, 𝑏) ∈ 𝑟ℐ} .
If a description logic admits role inverses, this seems usually explicitly men-

tioned.

The family

We get different logics by taking different combinations of the concept construct-
ors discussed above. These logics are named by the convention:

𝒜ℒ[𝒰][ℰ][𝒩][𝒞], (2.3)

where square brackets indicate optional inclusion and each letter indicates the
presence of the corresponding concept constructor. The logic 𝒜ℒ𝒞 with trans-
itive roles is abbreviated as 𝒮.

The above logics are not all distinct in expressivity, because for logics with
negation and disjunction: ⊧ 𝐶 ⊔ 𝐷 ≡ ¬(¬𝐶 ⊓ ¬𝐷), so some concept constructors
can be used to define others. In fact, it is possible to use only the symbols 𝒰,
ℰ and 𝒩 to distinguish all the semantically distinct logics that can be made
with the above constructors. 𝒰ℰ is replaced by 𝒞, because of such semantic
equivalence (Baader et al., 2003, pp. 49 - 50).

2.1.2 Relations to first-order logic

Most formulas of the description logics above can be translated into first-order
logic (FOL); the exception being the transitive closure of roles because of the
compactness theorem: finiteness cannot be expressed in FOL. Concepts and
roles are translated as unary and binary predicates in FOL. In doing so, every
complex concept 𝐶 can be translated into a formula 𝜙𝐶(𝑥) with one free variable
𝑥 which ranges over the domain Δℐ such that 𝑎 satisfies 𝜙𝐶(𝑥) if and only if
𝑎 ∈ 𝐶ℐ. The variables that appear in the translated formula are not present in the
description logic formulas, so the translation is parametrised by those variables.

Definition 2.1.7. The translations 𝜏𝑥, 𝜎𝑥𝑦 and Φ from description logic (DL)
concepts and roles to first-order logic (FOL) formulas are defined recursively as
follows:

kNOwLEDgE REpRESENTATION • 13

𝜏𝑥(𝛢) = 𝛢(𝑥)
𝜎𝑥𝑦(𝑟) = 𝑅(𝑥, 𝑦)

𝜏𝑥(𝐶 ⊓ 𝐷) = 𝜏𝑥(𝐶) ∧ 𝜏𝑥(𝐷)
𝜏𝑥(𝐶 ⊔ 𝐷) = 𝜏𝑥(𝐶) ∨ 𝜏𝑥(𝐷)

𝜏𝑥(¬𝐶) = ¬𝜏𝑥(𝐶)
𝜏𝑥(∃𝑟. 𝐶) = ∃�̄�. 𝜎𝑥�̄�(𝑟) ∧ 𝜏�̄�(𝐶)
𝜏𝑥(∀𝑟. 𝐶) = ∀�̄�. 𝜎𝑥�̄�(𝑟) → 𝜏�̄�(𝐶)
𝜏𝑥(⩾ 𝑛𝑟) = ∃𝑦1...𝑦𝑛. 𝜎𝑥𝑦1

(𝑟) ∧ ... ∧ 𝜎𝑥𝑦𝑛
(𝑟) ∧ ⋀

𝑖<𝑗
𝑦𝑖 ≠ 𝑦𝑗

𝜏𝑥(⩽ 𝑛𝑟) = ∀𝑦1...𝑦𝑛+1. 𝜎𝑥𝑦1
(𝑟) ∧ ... ∧ 𝜎𝑥𝑦𝑛+1

(𝑟) → ⋁
𝑖<𝑗

𝑦𝑖 = 𝑦𝑗

𝜎𝑥𝑦(𝑟 ⊓ 𝑠) = 𝜎𝑥𝑦(𝑟) ∧ 𝜎𝑥𝑦(𝑠)
𝜎𝑥𝑦(𝑟 ⊔ 𝑠) = 𝜎𝑥𝑦(𝑟) ∨ 𝜎𝑥𝑦(𝑠)

𝜎𝑥𝑦(¬𝑟) = ¬𝜎𝑥𝑦(𝑟)
𝜎𝑥𝑦(𝑟 ∘ 𝑠) = ∃𝑧. 𝜎𝑥𝑧(𝑟) ∧ 𝜎𝑧𝑦(𝑠)

𝜎𝑥𝑦(𝑟−) = 𝜎𝑦𝑥(𝑟),

where 𝛢 is a unique unary predicate symbol in FOL corresponding to the atomic
concept 𝛢 in the description logic and 𝑅 is a unique binary predicate symbol in
FOL corresponding to the primitive role symbol 𝑟 in the description logic. Fur-
thermore, �̄� = 𝑦 and �̄� = 𝑥. Using the above translations, we can define the trans-
lation Φ from concept/role inclusions/equivalences and assertional statements in
description logic to first-order logic sentences:

Φ(𝐶 ⊑ 𝐷) = ∀𝑥. 𝜏𝑥(𝐶) → 𝜏𝑥(𝐷)
Φ(𝐶 ≡ 𝐷) = ∀𝑥. 𝜏𝑥(𝐶) ↔ 𝜏𝑥(𝐷)
Φ(𝑅 ⊑ 𝑆) = ∀𝑥𝑦. 𝜎𝑥𝑦(𝑅) → 𝜎𝑥𝑦(𝑆)
Φ(𝑅 ≡ 𝑆) = ∀𝑥𝑦. 𝜎𝑥𝑦(𝑅) ↔ 𝜎𝑥𝑦(𝑆)

Φ(𝑎 ∶ 𝐶) = 𝜏𝑥(𝐶)[𝑎/𝑥]
Φ((𝑎, 𝑏) ∶ 𝑟) = 𝜎𝑥𝑦(𝑟)[𝑎/𝑥, 𝑏/𝑦],

where for every element name 𝑐 in DL, there is a unique corresponding constant
𝑐 in FOL. The last two lines are cases of substitution for the free variables in the

14 • MODELLINg THE LOgIcAL MIND

respective FOL formulas.

With the above translation, most description logic formulas can be translated
into the two-variable fragment ℒ2 of FOL with only unary and binary predicates,
the exception being role composition and the number restrictions. Note that
the existential and universal restrictions make use of the function ⋅̄, the iterated
application of which alternates between the two variables 𝑥 and 𝑦. This ensures
that the translation step involving an existential or universal formula does not
create an expression with more than two variables (though expressions exceeding
this limit may be created if role composition or number restrictions are present).

Translations can also be made to modal logics. For example 𝒜ℒ𝒞 is equi-
valent to the multi-modal logic K𝑚 (Schild, 1991) and the description logic
𝒜ℒ𝒞𝑟𝑒𝑔 (with role union, role composition and transitive closure on roles) is
equivalent to Propositional Dynamic Logic (pDL) (de Giacomo and Lenzerini,
1994).

2.1.3 Reasoning tasks

Before we can discuss the various reasoning algorithms that are available for the
different description logics, a few notions need to be explicated.

Definition 2.1.8. (Baader et al., 2003, p.51). A definition is a TBox axiom of
the form 𝛢 ≡ 𝐷 where 𝛢 is an atomic concept.

In the following we will focus on TBoxes with only definitions and ignore
cases in which the left-hand side is a compound concept.

A base symbol of a TBox 𝒯 is an atomic concept symbol that occurs only in
the right-hand side of a definition in 𝒯. The rest of the atomic concept symbols,
i.e. the ones that occur in some left hand side of a definition are called the name
symbols. A base interpretation of 𝒯 is an interpretation ℐ that interprets only the
base symbols in 𝒯.

For the following, we focus exclusively on definitions, as concept inclusions
can be replaced by them while preserving the satisfaction relation. For example,
a concept inclusion 𝛢 ⊑ 𝐶 in which 𝛢𝐶 does not occur can be replaced by
𝛢 ≡ 𝛢𝐶 ⊓ 𝐶. Any interpretation ℐ that satisfies 𝛢 ⊑ 𝐶 can be extended to an
interpretation ℐ′ that satisfies 𝛢 ≡ 𝛢𝐶 ⊓ 𝐶 by setting 𝛢ℐ′

𝐶 = 𝛢ℐ (Baader et al.,
2017, p.23).

Definition 2.1.9. (Baader et al., 2003, p.52). For atomic concepts 𝐶 and 𝐷
occuring in a TBox 𝒯, we say that 𝐶 directly uses 𝐷 if the latter appears on the

kNOwLEDgE REpRESENTATION • 15

right-hand side of a definition of the former. Now uses is the transitive closure
of the relation directly uses.

Definition 2.1.10. (Baader et al., 2003, p.52). A TBox 𝒯 contains a cycle if
and only if an atomic concept 𝐶 in 𝒯 uses itself. 𝒯 is then said to be cyclic. If 𝒯
does not contain any cycle, it is acyclic.

In the following we only focus on acyclic TBoxes. An acyclic TBox 𝒯 has
the property of being definitorial, meaning that every base interpretation ℐ has
a unique extension 𝒥 that is a model of 𝒯, i.e. the interpretation of the name
symbols is determined by the interpretation of the base symbols.

The following definition describes a process with which the information from
the TBox can be incorporated in the ABox.

Definition 2.1.11. (Baader et al., 2017, p.25). Let a knowledge base 𝒦 =
(𝒯, 𝒜) be given, such that 𝒯 is acyclic and of the form 𝒯 = {𝛢𝑖 ≡ 𝐶𝑖 ∣ 1 ≤ 𝑖 ≤ 𝑚},
where 𝛢𝑖 is atomic. Let 𝒜0 = 𝒜 and let 𝒜𝑗+1 be constructed by:

1. find some formula 𝑎 ∶ 𝐷 ∈ 𝒜𝑗 that has some 𝛢𝑖 occuring in 𝐷 for some
1 ≤ 𝑖 ≤ 𝑚;

2. replace all occurences of 𝛢𝑖 in 𝐷 with 𝐶𝑖, the definition of 𝛢𝑖.
Let 𝑘 be the number of steps after which no more such replacements are possible.
𝒜𝑘 is the result of unfolding 𝒯 into 𝒜.

It can be proved that the result of unfolding an acyclic TBox exists (Baader
et al., 2017). Moreover, for a given knowledge base 𝒦 = (𝒯, 𝒜) a model ℳ
of the result 𝒜𝑘 of unfolding the TBox 𝒯 has a unique extension to a model
ℳ′ of 𝒦. This follows from the facts that 𝒯 is definitorial and 𝒜𝑘 is base
interpretation (the concept names that are not base concepts have been removed
by the unfolding procedure).

The algorithm from definition 2.1.11 is eager and its duration may scale expo-
nentially with the size of the knowledge base (Baader et al., 2017, p.27). There
exists also a lazy algorithm which limits the times of unfolding to only a selection
of cases. For now it suffices to understand that acyclic knowledge bases can in
principle be reduced to just ABoxes so that knowledge base reasoning tasks can
be reduced to ABox reasoning tasks.

Reduction

An ABox is inconsistent if it entails a clash, i.e. two expressions of the form 𝑎 ∶ 𝐶
and 𝑎 ∶ ¬𝐶. Many reasoning tasks that one may be interested in can be reduced to

16 • MODELLINg THE LOgIcAL MIND

the task of checking inconsistency. For example, checking whether 𝒦 ⊧ 𝐶 ⊑ 𝐷
is equivalent to checking whether 𝒦 ∪ {𝑎 ∶ 𝐶 ⊓ ¬𝐷} is inconsistent for 𝑎 new in
𝒦. Checking whether 𝒦 ⊧ 𝐶 ≡ 𝐷, amounts to checking the inconsistency of
both 𝒦∪{𝑎 ∶ 𝐶⊓¬𝐷} and 𝒦∪{𝑎 ∶ 𝐷⊓¬𝐶}, with 𝑎 new in 𝒦. Checking whether
𝐶 and 𝐷 are disjoint in 𝒦 is equivalent to checking whether 𝒦 ∪ {𝑎 ∶ 𝐶 ⊓ 𝐷},
with 𝑎 new in 𝒦, is inconsistent. Checking whether 𝒦 ⊧ 𝑎 ∶ 𝐶 is equivalent to
checking whether 𝒦 ∪ {𝑎 ∶ ¬𝐶} is inconsistent. Checking whether a concept 𝐶 is
satisfiable in 𝒦 is equivalent to checking whether 𝒦 ∪ {𝑎 ∶ 𝐶} with a new 𝑎 is not
inconsistent. A more elaborate reasoning task is finding all elements that satisfy
a given concept 𝐶; this can also be reduced to checking ABox inconsistency by
iterating over all elements 𝑎𝑖 appearing in 𝒦 and checking whether 𝒦 ⊧ 𝑎𝑖 ∶ 𝐶,
a task previously reduced to ABox inconsistency.

It should be noted that not all of the above reductions are available for all
description logics, as some reductions require the description logic to have full
negation.

2.1.4 Reasoning algorithms

For logics without full negation, the subsumption task (finding out whether
𝐶 ⊑ 𝐷 holds for concepts 𝐶 and 𝐷) is solved by so-called structural subsumption
algorithms, because no reduction to ABox inconsistency can be made. For de-
scription logics with full negation and disjunction, these structural subsumption
algorithms are incomplete. Hence, for those logics, tableau-based algorithms are
used (Baader et al., 2003, p.74).

Structural subsumption

The structural subsumption algorithms are only applicable to weak logics. This
section illustrates the workings of these algorithms by showing one for the de-
scription logic ℱℒ0. This logic is a sublogic of 𝒜ℒ and has only concept con-
junction 𝐶 ⊓ 𝐷 and universal restriction ∀𝑟.𝐶. ABoxes in this logic are always
consistent, because it is not possible to express a contradiction in this language.
The algorithm calculates the subsumption relation by first transforming the con-
cepts into a normal form and then checking the normal forms against each other.
In this logic a concept description is in normal form if and only if it has the form:

𝛢1 ⊓ ... ⊓ 𝛢𝑚 ⊓ ∀𝑟1.𝐶1 ⊓ ... ⊓ ∀𝑟𝑛.𝐶𝑛,
where 𝛢𝑖 are atomic concepts and 𝐶𝑗 are concepts in normal form. All concepts
can be easily transformed into normal form by utilising the properties of ⊓ and

kNOwLEDgE REpRESENTATION • 17

the equivalence between ∀𝑟.(𝐶 ⊓ 𝐷) and (∀𝑟.𝐶) ⊓ (∀𝑟.𝐷).
The subsumption is then tested for, by making use of the following theorem.

Theorem 2.1.1. (Baader et al., 2003, p.76). Let

𝐶 = 𝛢1 ⊓ ... ⊓ 𝛢𝑚 ⊓ ∀𝑟1.𝐶1 ⊓ ... ⊓ ∀𝑟𝑛.𝐶𝑛, and
𝐷 = 𝛣1 ⊓ ... ⊓ 𝛣𝑘 ⊓ ∀𝑠1.𝐷1 ⊓ ... ⊓ ∀𝑠𝑙.𝐷𝑙,

(2.4)

be two concepts in normal form. Then 𝐶 ⊑ 𝐷 if and only if the following two
conditions hold:

• for all 1 ≤ 𝑖 ≤ 𝑘, there exists a 1 ≤ 𝑗 ≤ 𝑚 such that 𝛣𝑖 = 𝛢𝑗.
• for all 1 ≤ 𝑖 ≤ 𝑙, there exists a 1 ≤ 𝑗 ≤ 𝑛 such that 𝑆𝑖 = 𝑅𝑗 and 𝐶𝑗 ⊑ 𝐷𝑖.

This property can then be used to check the subsumption relation between
two concept descriptions in polynomial time (Baader et al., 2003, p.77).

The algorithm can be extended to logics stronger than ℱℒ0 which for ex-
ample allow for the bottom concept (⊥), atomic negation (¬𝛢) and number
restrictions (⩽ 𝑛𝑟 and ⩾ 𝑛𝑟). For many stronger logics, however – e.g. logics
including full negation (¬𝐶) or concept union (𝐶 ⊔ 𝐷) – this type of algorithm
is incomplete and tableau based methods are necessary.

Tableau algorithms

For logics with full negation tableau-based algorithms are used. They operate in
three steps, an illustration of which is given in this section (Baader et al., 2003,
p.78). As a first step, when the algorithm checks whether (∃𝑟.𝛢) ⊓ (∃𝑟.𝛣) is
subsumed by ∃𝑟.(𝛢 ⊓ 𝛣), it checks whether the concept

𝐶 = (∃𝑟.𝛢) ⊓ (∃𝑟.𝛣) ⊓ ¬∃𝑟.(𝛢 ⊓ 𝛣)
is unsatisfiable. Note that it has the negation of the concept which is supposed
to subsume the other. This is an instance of the equivalence between 𝐶 ⊑ 𝐷 and
unsatisfiability of 𝐶 ⊓ ¬𝐷, which is only possible if the logic has full negation
available.

In the second step, the concept is transformed to the normal form

𝐶0 = (∃𝑟.𝛢) ⊓ (∃𝑟.𝛣) ⊓ ∀𝑟.(¬𝛢 ⊔ ¬𝛣),
where negations occur only in front of atomic concepts. Here we use a disjunc-
tion to make use of DeMorgan’s laws, the logic should of course allow for this.

18 • MODELLINg THE LOgIcAL MIND

The last step is an ABox inconsistency algorithm, where an attempt is made
to construct an interpretation for 𝐶0. One specific such algorithm will be dis-
cussed in more detail later. Generally, the algorithm starts by generating an
individual that is supposed to satisfy the concept, for example: 𝑎 ∶ 𝐶0. From this,
certain deductions are made, in this example: 𝑎 ∈ (∃𝑟.𝛢)ℐ, 𝑎 ∈ (∃𝑟.𝛣)ℐ, and
𝑎 ∈ (∀𝑟.(¬𝛢 ⊔ ¬𝛣))ℐ.

These facts in turn give rise to new deductions, namely the first fact claims
the existence of an element (for example 𝑏) such that: (𝑎, 𝑏) ∈ 𝑟ℐ and 𝑏 ∈ 𝛢ℐ.
Analogously, there must be an element (for example 𝑐) such that both (𝑎, 𝑐) ∈ 𝑟ℐ

and 𝑐 ∈ 𝛣ℐ. The algorithm treats 𝑏 and 𝑐 as distinct. From the third fact we can
deduce that 𝑏 ∈ (¬𝛢⊓¬𝛣)ℐ so that 𝑏 ∈ (¬𝛢)ℐ or 𝑏 ∈ (¬𝛣)ℐ. The first possibility
would clash with the earlier derived fact that 𝑏 ∈ 𝛢ℐ, but the second possibility
is viable. Similarly, we deduce that 𝑐 ∈ (¬𝛢)ℐ. Now the algorithm is done and
an explicit model has been made for 𝐶0. This model violates the subsumption
we checked and we conclude that the subsumption does not hold.

Similar algorithms can be constructed for more complex logics, but the basic
idea is the same: a reduction is made to the ABox inconsistency algorithm by
inferring simpler facts from the given axioms. In chapter 4 we will return to the
ABox inconsistency algorithm for the description logic 𝒜ℒℰ.

2.2 Justifications
It was mentioned before that it is often difficult to find the cause of a certain
unwanted conclusion 𝜙 (a clash or a false statement) from a knowledge base, es-
pecially if the latter is very large. A famous example is SNOMED cT, a medical
ontology, in which a bug caused the concept ‘amputation of the upper limb’ to
be subsumed by the concept ‘amputation of the finger’ (Baader and Suntisrivara-
porn, 2008).

Axiom pinpointing is a method to find justifications, also known as MinAs
(minimal axiom sets) that may help find the cause of the unwanted conclusion.
A good introduction to axiom pinpointing can be found in (Peñaloza, 2019) and
an application to the medical terminology DIcE can be found in (Schlobach and
Cornet, 2003). A justification is defined as a subset 𝒪 ⊆ 𝒦 of the knowledge
base such that both 𝒪 ⊧ 𝜙, where 𝜙 is the unwanted conclusion and for all
its proper subsets 𝒪′ ⊊ 𝒪, we have 𝒪′ ⊭ 𝜙. This subontology 𝒪 is generally
not unique; in fact, the number of justifications can grow exponentially with
the number of axioms. It is argued that justifications are better than proofs in
explaning why a certain conclusion follows, as their structures are simpler and no

kNOwLEDgE REpRESENTATION • 19

proof system needs to be understood by the user; besides that, they are practical
to find automatically (Horridge, 2011, p.221), making them a popular form of
explanation. Depending on the user’s goals one may be interested in finding all,
several or some of the justifications.

2.2.1 Finding all justifications

To find all justifications to a given conclusion, one method has been developed
based on a tableaux algorithm, an example of which we saw earlier. The tech-
nique is called tracing and its idea is to label each axiom in the knowledge base
by an individual propositional variable after which derived formulas are labelled
using these propositional variables.

More precisely, a formula 𝜓, derived from 𝜙1 and 𝜙2 that have labels 𝑝1 and
𝑝2 respectively, is labelled with the conjunction 𝑝1 ∧ 𝑝2, except if 𝜓 already has
a label 𝑙; it then gets labelled by the disjunction 𝑙 ∨ (𝑝1 ∧ 𝑝2). If a formula 𝜓 is
derived from 𝜙1 and 𝜙2 that have labels 𝛲 ∨ 𝑄1 ∨ ... ∨ 𝑄𝑛 and 𝛲 ∧ 𝑅 respectively,
it gets the label (𝛲 ∧ 𝑅) ∨ (𝑄1 ∧ 𝑅) ∨ ... ∨ (𝑄𝑛 ∧ 𝑅), so that the disjuncts are
‘distributed’ over the conjuncts, forming a disjunction. In such a way, each clash
gets associated with a propositional formula that expresses all combinations of
axioms that it follows from (Baader et al., 2007). We illustrate the method with
an example.

Let 𝒦 = {𝑏 ∶ ¬𝐶, 𝑏 ∶ (𝐶 ⊓ 𝐷), (𝑎, 𝑏) ∶ 𝑟, 𝑎 ∶ ∀𝑟.𝐶}. And let’s label the axioms
by 𝑝1, 𝑝2, 𝑝3, 𝑝4 from left to right. The formula 𝑏 ∶ 𝐶 can be derived from 𝑝2 and
gets labelled as such. The clash 𝑏 ∶ ¬𝐶 and 𝑏 ∶ 𝐶 is labelled with the conjunction
of both labels, namely 𝑝1 ∧ 𝑝2. The formula 𝑏 ∶ 𝐶 can also be derived from 𝑝3
and 𝑝4, which means that it gets the label 𝑝3 ∧ 𝑝4. The clash’s final label becomes
the disjunction of the two (𝑝1 ∧ 𝑝2) ∨ (𝑝1 ∧ 𝑝3 ∧ 𝑝4), where each of the disjuncts
represents a justification.

Another approach was developed based on automata. It has the advantage
that termination is always guaranteed, although the practicality is limited due
to the fact that its best-case complexity is similar to the worst-case complexity.
Both methods, however, suffer from complexity issues that makes practical ap-
plications difficult. Even for expressively weak description logics, the number of
justifications grows exponentially with the size of the knowledge base. Examples
are the TBoxes 𝒯𝑛 = {𝛣𝑖−1 ⊑ 𝛲𝑖 ⊓ 𝑄𝑖, 𝛲𝑖 ⊑ 𝛣𝑖, 𝑄𝑖 ⊑ 𝛣𝑖 ∣ 1 ≤ 𝑖 ≤ 𝑛}, which grow
linearly with 𝑛, but the conclusion 𝛣0 ⊑ 𝛣𝑛 has 2𝑛 many justifications as for each
𝑖 only one of the axioms 𝛲𝑖 ⊑ 𝛣𝑖 and 𝑄𝑖 ⊑ 𝛣𝑖 is needed for the proof. Therefore,
there is a demand for finding only one justification instead of all of them.

20 • MODELLINg THE LOgIcAL MIND

2.2.2 Finding one justification

In the so-called black box approach for finding one justification, one axiom is
deleted from the knowledge base, after which it is checked if the given conclusion
is still entailed by it. If the conclusion still follows, the axiom is permanently
removed, but otherwise it is put back. This is procedure iterates over all the
axioms and what is left is a justification. In the above example, removing the first
axiom (𝑏 ∶ ¬𝐶) from 𝒦 makes the clash (𝑏 ∶ ¬𝐶 and 𝑏 ∶ 𝐶) no longer derivable, so
it is put back in. Then, removing the second axiom (𝑏 ∶ 𝐶 ⊓ 𝐷) makes the clash
still derivable, so it is permanently removed. Then removing either one of the
last two axioms makes it impossible to derive the clash again, so they cannot be
removed. The justification thus found is: 𝒪 = {𝑏 ∶ ¬𝐶, (𝑎, 𝑏) ∶ 𝑟, 𝑎 ∶ ∀𝑟.𝐶}.

Glass box approaches are again based on the tableaux algorithms extended
with the tracing technique discussed above. Because of the fact that only one
justification needs to be found, such algorithms are much simpler and do not
suffer from the issues like before; among other things, termination is now guar-
anteed. One can for example label the axioms and label every derived formula
with the labels of the formulas it is derived from. The clash is then labelled with
a list of the axioms used to derive it. In our running example, we could infer
𝑏 ∶ 𝐶 from the second axiom 𝑏 ∶ (𝐶 ⊓ 𝐷) and we readily have a clash with the first
axiom. The conjunction 𝑝1 ∧ 𝑝2 now represents a justification.

A grey box approach is a combination of both approaches above, in that the
glass box algorithm finds an approximate justification with possibly a few super-
fluous axioms, after which the black-box axiom minimises the axiom set to form
a proper justification.

2.2.3 Improving justifications

As opposed to justifications – which lack any internal structure – there are proofs,
which have a tree-like structure that shows the interrelations between the ax-
ioms and the relevant derived formulas. The approaches of e.g. (Alrabbaa et al.,
2020b) and (McGuinness, 1996) stand in the latter tradition of generating auto-
mated explanations. Justifications, however, seem the dominant form of auto-
mated explanations because they are easy to compute, and there is no need for
users to understand a proof system. Recently, in-between approaches are emer-
ging, where some structure is added to a justification without turning it into full
proofs, although there are also other techniques to improve justifications them-
selves. A cognitively adequate measure on proof complexity can be useful in
creating these optimised versions of justifications and proofs.

kNOwLEDgE REpRESENTATION • 21

The paper (Peñaloza, 2019) mentions several extensions of the above tech-
niques. One extension takes into account the granularity of the axioms: instead
of considering axioms as indivisible units, the superfluous parts that are not relev-
ant to the derivation of interest are ignored. For example the set {𝑎 ∶ 𝛢 ⊓ 𝛣 ⊓ 𝐶, 𝛢 ≡ 𝐷}
is a justification for {𝑎 ∶ 𝐷}, but the part ⊓𝛣 ⊓ 𝐶 in the first axiom is not relev-
ant for this deduction. Moreover, the axiom 𝛢 ≡ 𝐷 is superfluous in the sense
that only 𝛢 ⊑ 𝐷 is needed to derive the conclusion. These superfluous parts
are logically irrelevant to derive the conclusion, but they could distract the user.
Ignoring them seems beneficial from a debugging/understanding point of view,
so that {𝑎 ∶ 𝛢, 𝛢 ⊑ 𝐷} might be a more effective justification to present to the
user.

Apart from superfluity in axioms, justifications can result in masking. This
effect takes place when a justification allows for multiple different reasons for the
conclusion.

For example, the set 𝒥 = {𝛢 ⊑ 𝛣 ⊓ C, 𝛢 ⊑ C ⊓ 𝐷, 𝛦 ≡ 𝛣 ⊓ 𝐶 ⊓ 𝐷}
is a justification for the conclusion 𝛢 ⊑ 𝛦, but the concept in bold indicates
that there are two different reasons for the conclusion, even though they are
both necessary to derive the conclusion; (Horridge, 2011) defines this as internal
masking. There is also external masking, where some axiom that is not necessary
for deriving the conclusion – but still relevant in some sense – is being excluded
from the justification.

For example, the ontology 𝒪 = {𝛢 ⊑ ∃𝑟.𝛣, 𝛢 ⊑ ∀𝑟.𝛣, 𝛣 ⊑ 𝐶, 𝐷 ≡ ∃𝑟.𝐶} en-
tails the statement 𝛢 ⊑ 𝐷. It has one justification: 𝒥 = {𝛢 ⊑ ∃𝑟.𝛣, 𝛣 ⊑ 𝐶, 𝐷 ≡ ∃𝑟.𝐶},
where the second axiom is left out. Changing the ontology 𝒪 to 𝒪′, where the
first axiom is replaced by 𝛢 ⊑ ∃𝑟.⊤, i.e. the full existential qualification is re-
placed by a limited one, changes the (only) justification to 𝒪′ itself, as now the
second axiom is necessary to derive the conclusion. Both internal and external
masking likely make understanding and repairing ontologies more difficult.

Another issue is how to specify a repair. Given an ontology 𝒪 and a conclu-
sion 𝜙, a repair is a set of axioms ℛ that intersects all justifications 𝒥𝑖 for 𝜙, such
that 𝒪′ = 𝒪 ⧵ ℛ does not entail 𝜙. Ideally, these repairs are ‘minimal’ so that the
repaired ontology 𝒪′ deviates as little as possible from 𝒪. This minimality con-
dition can be explicated in at least three different ways: justification minimality,
cardinality minimality and semantic minimality (Horridge, 2011).

To develop techniques to deal with the above issues, the concepts of precise
and laconic justifications are defined in (Horridge, 2011). Loosely speaking, lac-
onic justifications are justifications that do not have superfluidity and precise

22 • MODELLINg THE LOgIcAL MIND

justifications are justifications designed to produce repairs.
Another way that is suggested to improve justifications is by introducing

lemmas. Instead of ignoring irrelevant parts of certain axioms, multiple ax-
ioms get merged into simple expressions entailed by them. Informally, a set
of lemmas Λ for a justification 𝒥 for conclusion 𝜙 is a set of formulas, each
entailed by 𝒥, such that it can be used to replace a set 𝒮 ⊆ 𝒥, i.e. 𝒥′ =
𝒥 ⧵ 𝒮 ∪ Λ (called a lemmatisation of 𝒥) is a justification for 𝜙 that is easier
to understand than the original 𝒥, according to some complexity measure (Hor-
ridge, 2011), (Horridge et al., 2009) and (Horridge et al., 2010). Formally
defining lemmata is non-trivial, because certain boundary conditions need to
be met. Without those boundary conditions the lemmatisations might bear
only little relation to the original justification. For example, the justification
𝒥 = {𝛢 ⊑ ∃𝑟.𝛣, 𝛣 ⊑ 𝛦 ⊓ ∃𝑠.𝐶, 𝛣 ⊑ 𝐷 ⊓ ∀𝑠.¬𝐶} for 𝛢 ⊆ ⊥ could yield the lem-
matisation 𝒥′ = {𝛢 ⊆ 𝛦, 𝛢 ⊆ ¬𝛦}, because the concept 𝛢 is unsatisfiable. But
this justification might be not so useful in understanding why 𝛢 ⊆ ⊥ follows
(Horridge et al., 2009).

This lemmatisation procedure forms the basis of justification oriented proofs
(Horridge et al., 2010), where a proof can be build up from justifications by
repeated lemmatisation. A related approach is finding optimal interpolations
(Schlobach, 2004), where the simplest concept 𝐷 is found to explain a given
subsumption 𝐶 ⊑ 𝛦, such that both 𝐶 ⊑ 𝐷 and 𝐷 ⊑ 𝛦.

It is argued that these types of proofs strike a good balance between justifica-
tions on the one hand (which are easy to interpret, but from which the connec-
tion with the conclusion might be obscure) and proofs on the other hand (for
which a proof system needs to be understood, but which allows for a more trans-
parent presentation of the connection between the axioms and the conclusion).

2.2.4 Cognitive aspects

Making justifications more understandable by lemmatisation should incorporate
some cognitive aspects of deductive reasoning. The measure that (Horridge et al.,
2009) and (Horridge, 2011) use to compare the complexity of justifications is a
certain weighted score of several syntactic and semantic aspects of the justifica-
tion. It is somewhat ad hoc because it seems largely inspired by the researchers’
intuition and not based on theories of human cognition, but the measure does
agree quite well with the data. In (Horridge et al., 2010), however, it is pointed
out that the proof-generating framework is agnostic with regards to the (cognit-
ive) complexity measure, meaning that any complexity measure (possibly more

kNOwLEDgE REpRESENTATION • 23

cognitively accurate) can be used. In (Horridge et al., 2013) several experiments
are performed to test the cognitive complexity of reasoning about description
logic subsumptions.

Empirical work in this direction is summarised in (Horridge, 2011). Some
conclusions are:

1. there are naturally occurring justifications that are very difficult to under-
stand, even for people who have experience with ontologies,

2. certain proof steps are not obvious and difficult to understand, e.g. trivial
satisfaction of universal restrictions,

3. other patterns of reasoning are easy, e.g. chains of concept inclusions:
from 𝛢 ⊑ 𝛣, 𝛣 ⊑ 𝐶, 𝐶 ⊑ 𝐷, 𝐷 ⊑ 𝛦, conclude 𝛢 ⊑ 𝛦,

4. superfluity non-trivially affects understanding, but needs to be investig-
ated further.

A different focus is given in (Alrabbaa et al., 2022), which investigates differ-
ent ways of presenting a given proof (as opposed to finding a different proof or
transforming a proof to a new one).

1. short proofs are experienced as easier to understand than long proofs,
2. the way the proof is presented (proof tree vs. text) does not seem to af-

fect objective understandability, though in some cases it affects subjective
understandability,

3. experience in logic seems to affect proof understandability non-trivially
and more research is needed.

In the literature, connections to cognitive theory seem rather unsystematic.
A more systematic connection to cognitive psychological theory is made in (War-
ren, 2017), where three theoretical paradigms are used to explain various patterns
occurring in description logic reasoning. These different theories, however, have
their inherent problems and their usefulness as theoretical underpinnings for
applied research seems limited.

We can conclude that there is a strong desire for proofs or justifications for
description logic entailments that are optimised for ease of understanding for
humans. Some empirical work has been done in this respect and some inter-
esting conclusions have been established, but a coherent cognitive theoretical
foundation seems lacking. Later in this thesis, the idea of cognitive architectures
is proposed as a possibly more fruitful direction to apply cognitive theory to
facilitating understanding of justifications and proofs.

3 Logic and cognition

(Marr, 1982, p.25), identifies at least three levels at which human reasoning can
be studied:

1. the input-output level,
2. the level of the algorithm which causes this input-output behaviour,
3. the level of the neural implementation of this algorithm.
The first level is studied by performing experiments and leaves little room

for disagreement or discussion. The second and third levels, however, are less
easily studied and, not surprisingly, cause more disagreement and speculation.
That these last two levels are interesting can be seen by observing the following
experiment, taken from (Stenning and van Lambalgen, 2008) in which adult
subjects are presented with the premises:

If Julie has an essay, she studies late in the library.
Julie does not study late in the library.

and they are asked what, if anything, can be derived from this.
Logic tells us that the statement

Julie does not have an essay.

can be concluded by a rule that is referred to as modus tollens. Surprisingly,
though, half of the subjects claim that nothing logically follows from the premises.

One might say that humans are just generally bad at deductive reasoning, but
the picture becomes more interesting when the same subjects are asked the same
question about the premises:

If Julie has an essay, she studies late in the library.
Julie has an essay.

In this case 95% of the subjects correctly conclude (by applying a rule called
modus ponens):

Julie studies late in the library.

This shows that humans are not always bad at deductive reasoning. This asym-
metry in performance, which can be consistently experimentally confirmed, begs

26 • MODELLINg THE LOgIcAL MIND

the need to study deductive reasoning on levels deeper than the input-output
level.

There are different ‘schools’ that study deductive reasoning at this algorithmic
level with the aim of explanaining the phenomena at the input-output level. The
two most important ones are the Mental Logic school and the Mental Models
school.

3.1 Mental Logic
The Mental Logic or Mental Rules school is proposed and defended in (Rips,
1994). This school explains the asymmetry in deductive reasoning performance
by claiming that deductions are performed by mentally applying rules of infer-
ence and that different inference rules have different probabilities to ‘fire’, i.e. to
be applied during a reasoning process. Some deductions rely on applications of
modus ponens and are easy because this rule has a high associated probability of
firing. Other deductions rely on modus tollens and are more difficult because
this rule either has a lower associated probability to fire, or needs to be itself
derived in terms of other rules.

Because deductive reasoning bears many similarities to language processing,
the school also makes claims about the level of neuro-anatomical implementa-
tions:

... deductive reasoning is a rule governed syntactic process where internal
representations preserve structural properties of linguistic strings in which
the premisses are stated. This linguistic hypothesis predicts that the neuro-
anatomical mechanisms of language (syntactic) processes underwrite human
reasoning processes... (Goel et al., 2000, p.504)

In (Rips, 1994) pSycOp is set forth, which can be seen as a method to cre-
ate models for human deductive reasoning. For propositional reasoning, for
example, Rips includes 24 inference rules in the model, which, besides the regu-
lar natural deduction style rules, also involve more complex rules like DeMorgan
rules. The rules come in pairs where one is a forward and the other a backward
version of the deduction rule; the reason for this is that a subject can reason
forwards by combining certain known statements and deriving others, or it can
reason backwards by determining goals on what to derive next based on a putat-
ive conclusion. The set of rules incorporated in the system does not have to be
minimal: some rules may be derivable from others. Each rule is assumed to have
an associated probability of firing, i.e. the probability that the human actually
uses the rule to produce conclusions in their mind.

LOgIc AND cOgNITION • 27

To determine the firing probability of the inference rules, students (with no
familiarity with formal logic) where given arguments like:

If the light goes on or the piston expands, then the wheel turns.
If the light goes on or the wheel turns, then the wheel turns.

and were asked whether this is a piece of valid reasoning. Some students correctly
judged the argument valid, while others claimed it was invalid; this yielded an
error rate for each argument. Using the probabilities of each inference rule, this
and similar error rates can be estimated as follows.

...the model will prove [the argument above] using a combination of IF in-
troduction, OR elimination and Disjunctive Modus Ponens. If these rules
are available with probabilities 𝑝1, 𝑝2, and 𝑝3, respectively, then (assuming in-
dependence) the probability of a correct ‘necessarily true’ response might be
[...]:

𝛲 = 𝑝1𝑝2𝑝3 + 0.5𝑝𝑔(1 − 𝑝1𝑝2𝑝3)

Here 𝑝𝑔 is the probability that the subject makes a guess. The above expression
is not completely correct, because the same argument could also be proved with
other inference rules, namely IF elimination and OR introduction. If these rules
fire with probabilities 𝑝4 and 𝑝5 respectively, the expression becomes:

𝛲 = 𝑝1𝑝2𝑝3 + (1 − 𝑝3)𝑝1𝑝2𝑝4𝑝5 + 0.5𝑝𝑔(1 − 𝑝1𝑝2𝑝3 − (1 − 𝑝3)𝑝1𝑝2𝑝4𝑝5),

where the first term is interpreted as the probability of finding a proof by
using the three first rules, the second term is the probability of finding the proof
using the other two rules and the third term is the probability of a correct guess.
A limitation to the experiment is that no superfluous inference steps can be per-
formed: all inference steps are necessary to reach the conclusion. It might be
interesting to test pSycOp in situations where some inference steps can be made
which do not contribute to the conclusion and see how this affects the model’s
predictions.

The probabilities 𝑝𝑖 for each inference rule are found by fitting expressions like
the one above to the experimentally found error rates. The fit is a non-linear one
without a clear linearization transformation available and is therefore probably
executed numerically; not much info about the fit can be found in the source.
The estimated error rates of pSycOp for propositional logic correlate well with
the empirical data, with a correlation of 93%. For pSycOp applied to first-order
logic, the correlation between the estimated and empirical values is 83%.

28 • MODELLINg THE LOgIcAL MIND

The resulting probabilities agree with intuitions, apart from a few exceptions:
the NOT introduction rule has a rather low probability, OR Elimination and
IF introduction have a relatively high probability. These might not be expected
from the apparent level of difficulty of the rules.

Models thus made depend on which rules of the logic are used and with many
rules, the number of parameters to fit the model to the data is large. This num-
ber is reduced somewhat by equating the probabilities of forward and backward
inference rules, as well as by estimating the guess probability by taking it to be
twice the error rate of the rate of ‘necessarily true’ guesses for the invalid argu-
ments. This results in 10 parameters. These parameters are further restricted by
the logical structure of the arguments, but it is a priori difficult to quantify how
much this restriction prevents overfitting. A method to quantify the amount
of overfitting would be to use a test set of data that is not in the training data,
i.e. the data used in making the fit. The model, with the parameter settings it
learned from the fit, is then used to predict the values in the test set, after which
it can be determined how good this fit is. This procedure seems unfortunately
not carried out in (Rips, 1994).

3.2 Mental Models
Another school of thought, advocated by Philip Johnson-Laird, is called the men-
tal models school. This school claims that instead of applying syntactic rules
to certain expression, the premises are used to construct a model in the mind.
A conclusion is then a statement that ‘fits’ the model thus constructed. The
school argues that many deviations from logic in human deductive reasoning
seem caused by semantic effects; abstract rules, being devoid of any semantic
content, seem unable to explain these effects. One example is (Johnson-Laird,
2010):

All of the Frenchmen in the restaurant are gourmets.
Some of the gourmets in the restaurant are wine-drinkers.
What, if anything, follows?

From which most people infer that some of the Frenchmen in the restaurant
are wine-drinkers. This, in fact, does not follow from the premises.

People tend to be more careful drawing conclusions when they are presented:

All of the Frenchmen in the restaurant are gourmets.
Some of the gourmets in the restaurant are Italians.
What, if anything, follows?

LOgIc AND cOgNITION • 29

which has the exact same logical structure as the argument above. Now, how-
ever, only a small number of people concludes that some of the Frenchmen are
Italians.

Because the logical structure of the argument is exactly the same, the differ-
ence is caused by the semantic content of the statements. Effects like these can-
not be explained by the Mental Logic school of human deductive reasoning, so it
is argued. The Mental Models school argues that, based on people’s background
experiences, it is easy to make a model in which Frenchmen are wine-drinkers,
but it is much harder to imagine Frenchmen who are also Italians, making the
second inference less likely to be accepted.

Another prediction that the Mental Models school makes is that the more
models are necessary in an inference, the more difficult the inference becomes.

For example, if human subjects are presented:

Raphael is in Tacoma or else Julia is in Atlanta, bot not both.
Julia is in Atlanta, or Paul is in Philadalphia, but not both.
What follows?

it is generally hard to deduce that either Raphael is in Tacoma and Paul is in
Philadelphia, or else Julia is in Atlanta. This is explained because the premises
allow for two mental models each, which is considered a lot. It becomes even
more difficult when the exclusive disjunctions from this example are replaced
by inclusive disjunctions. The premises then allow three different models each,
and the premises together allow for five models, thereby putting an even higher
cognitive load on the subject’s working memory. The percentage of accurate
conclusions then drops from 20% to less then 5% for people from the general
public (for students both percentages are higher: 75% and 30% respectively).

Although the Mental Models school gives excellent explanations for certain
effects, its quantitative predictions are sometimes easy to refute. For example,
the paper (Newstead et al., 1999a) reports on experiments that suggest people
do not consider more than one model. In Bonatti (1994) further discrepancies
are discussed between the mental model theory’s predictions and empirical data.

Moreover, the mental model theory is claimed to be formally ill-defined.
Hodges (1993) claims that the formal notation is unclear and that the men-
tal models bear little relation to an actual deduction in case of modus ponens.
Cohen (1993) states that the mental models theory fails to find easy counter-
examples. Garnham (1993) mentions that there are syllogisms the number of
associated models of which are not accounted for by the mental models theory.

30 • MODELLINg THE LOgIcAL MIND

3.3 Comparison
The structure of both theories seems to make the mental models theory better at
explaining the experimental data on human deduction, but worse at predicting
and for the mental logic theory the contrary holds. (O’Brien et al., 1994) seems
to clearly favour the mental logic theory over the mental models, but the differ-
ences between the two schools might not be so great or might be at least vague,
as some authors argued.

(Andrews, 1993) makes a comparison between the mental models theory and
the tableau proof method and argues that the two can be conceptually difficult
to distinguish. In (Braine, 1993) it is argued that mental models theory impli-
citly incorporates some mental logic theory and (Bundy, 1993) argues that the
difference between the two might be a gradual one instead of a difference in kind.
The examples in the latter are taken from the field of automated theorem prov-
ing and claim that resolution can be seen both as a rule-based proof method and
as a model-based mechanism and that a theorem prover called SuMS displayed a
gradual transition from a model- to a rule-based system.

It can be concluded from the above that both theories are sometimes difficult
to distinguish, that they are in some aspects ill-defined and that it is difficult to
derive falsifiable predictions from the theories.

3.4 Other Schools
There are also other schools that explain human deductive reasoning on the al-
gorithmic level of abstraction. For example, there is the school referred to as ‘Dar-
winian Algorithms’ (Stenning and van Lambalgen, 2008, p.120). The school
stands in the tradition of evolutionary psychology which claims that human in-
telligence consists of different modules that are designed by the process of natural
selection. This school’s predictions regarding the famous Wason selection task
(Wason, 1968) are worth mentioning.

In the Wason selection task, people are presented four cards showing an ‘A’,
a ‘B’, a ‘2’ and a ‘3’ respectively together with the rule ‘If a card has an A on one
side, then it has a 3 on the other side’ (Cox and Griggs, 1982) It is also mentioned
that every card has a number on one side and a letter on the other. The subjects
were then asked to turn those and only those cards that are necessary to check if
the given rule holds for the given cards. The correct answer is that one should
check the card with the ‘A’ and the card with the ‘2’. Many people succeed in
turning the card with the ‘A’, but fail to turn the card with the ‘2’ and turn the

LOgIc AND cOgNITION • 31

card with the ‘3’ instead. One explanation of the Darwinian Algorithms school
is that human performance on the Wason selection task is so low because it does
not resemble typical situation.

The task can, however, be modified to one which is more realistic. The rule
becomes ‘If a person is drinking beer, then the person must be over 19’ and the
cards become people satisfying ‘drinking a beer’, ‘drinking a coke’, ‘16 years of
age’, and ‘22 years of age’ respectively. In this version of the Wason selection task
the performance is dramatically increased. The Darwinian Algorithms school
explains this by regarding the given rule as a social contract, for which humans
are evolved to perform well by natural selection, because social contracts were of
essential importance in prehistoric tribal communities.

Another paradigm is the relational complexity is developed in (Andrews and
Halford, 2002). The perspective the authors take is from cognitive development
in children. As children develop they become capable of reasoning about increas-
ingly complex relations between objects. The ‘taller than’ relation is a binary one
which children can reason with from a young age. Later, more complex relations
like ‘2 and 3 equals 5’ become accessible to reason with. A connection with work-
ing memory is that the latter bounds the number of objects within a relation that
a person can reason with. This relational complexity framework can be used to
estimate the complexity of syllogistic reasoning problems. In (Zielinski et al.,
2010), however, it is shown that the relational complexity paradigm does not
make more accurate predictions about experimental data on human perform-
ance on syllogisms than the mental model theory does. In this article it is also
mentioned that ‘[r]elational complexity theory is essentially a theory of mental
models [...], but it conceptualises models in a different way than have previous
mental model theories of reasoning.’(Zielinski et al., 2010, p.418), suggesting
that also the conceptual difference between these two schools is small.

3.5 Interpretations
The Wason selection task and its variations illustrate how human performance
on deductive reasoning is affected by non-logical content. Problems like this
are perhaps deeper than one would expect. Not only may non-logical content
improve or decrease performance on a deductive reasoning task, but also the
meanings of the logical constants themselves are affected, an effect that is called
modulation. A very thorough discussion of this can be found in chapter three
of (Stenning and van Lambalgen, 2008). By means of interviews the researcher
investigated how the implication connective of the rule in the Wason selection

32 • MODELLINg THE LOgIcAL MIND

task was understood in different scenarios and for different people. The classical
interpretation of the conditional was often not used. Besides it being interpreted
as the deontic implication (as above in the drinking age example) it was inter-
preted as having existential import and it was even interpreted as a conjunction.

Content-effects are considered outside of the scope of this thesis. In the fol-
lowing, therefore, there is a focus on symbolic reasoning, i.e. reasoning with
syntactic expressions that follows abstract rules of inference.

3.6 Cognitive Architectures

Besides the various schools of deductive reasoning, a relevant area of research is
the rise of cognitive architectures, which are integrative frameworks for model-
ling general human cognitive behaviour. To start, it is not completely clear what
a cognitive architecture is (Kotseruba and Tsotsos, 2020). Many theories and
softwares exist that can be considered cognitive architectures and among them
they vary greatly in their research goals, structures, operations and applications,
making them difficult to compare. Most cognitive architectures are inspired
by Alan Newell’s idea of an integrated theory of human cognitive behaviour
(Newell, 1992). In an attempt to study the different cognitive architectures
more coherently, Sun stated a number of desiderata for cognitive architectures
in (Sun, 2004). The paper states that

a cognitive architecture is the overall, essential structure and process of a domain-
generic computational cognitive model, used for a broad, multiple-level, multiple-
domain analysis of cognition and behavior.

This should broadly capture the intended intuitive idea. Even so, there are
of course boundary cases that some researchers do and some do not consider to
be cognitive architectures. For example Laird explicitly excludes gOMS and BDI
from his list of cognitive architectures, although they are included by a survey
by Samsonovich (Kotseruba and Tsotsos, 2020).

One of the first cognitive architectures is called ACT-R and is currently still
being developed. It is also one of the most popular cognitive architectures in
the literature (others being cLARION, Soar, EpIc and LIDA) and many models
for various purposes are made with it (ACT, 2023a). It is this framework that is
used for the rest of this thesis.

LOgIc AND cOgNITION • 33

3.7 ACT-R
ACT-R started in the late seventies with the aim of being an intergrated theory of
cognitive behaviour. The intention was to create not only a framework for mod-
els, but at the same time an explanative theory of human cognitive behaviour, for
which both psychological and neurological research were used in building ACT-
R. Good introductions can be found in (Anderson, 2007), (Whitehill, 2013)
and (Anderson and Byrne, 2004).

The basic idea of the framework is that the brain has regions which are highly
specialised in certain tasks and can perform these tasks in massively parallel fash-
ion. In the theory of ACT-R, these regions are represented by modules, each of
which has a buffer connecting the module to the procedural memory. The lat-
ter corresponds to the basal ganglia structure of the human brain. The buffers
act as communication bottlenecks and can contain only a limited amount of
information.

ACT-R has been applied in widely varying areas of cognition, such as:

• the Stroop task, where a certain response delay can be measured to in-
congruent stimuli, compared to congruent stimuli (Juvina and Taatgen,
2009),

• syntactic parsing of natural language (Brasoveanu and Dotlačil, 2020),
• complex cognitive tasks such as solving algebraic equations (Anderson,

2005),
• explaining brain region activity during certain cognitive tasks (Anderson

et al., 2008),
• intelligent cognitive tutors that optimise retention of learning material

(Lewis et al., 1987)

The third application above is relevant for this thesis, as later sections discuss
an ACT-R model that simulates symbolic reasoning. The two tasks seem similar
in the sense that both processes are instances of symbol manipulation.

Creating a model within this framework requires a few steps. Firstly, the
procedural knowledge (knowledge that cannot be put into words, i.e. skills) that
the model is assumed to have, needs to be codified into production rules for the
procedural memory. Secondly, the declarative knowledge (knowledge that can
be put into words, i.e facts) that the model is assumed to know, needs to be
codified into chunks that are stored in ACT-R’s declarative module. Lastly, the
subsymbolic parameters are given specific values to make the behaviour of the
model correspond to empirical data. What follows is not a complete overview of

34 • MODELLINg THE LOgIcAL MIND

the theory of ACT-R, but rather a selection of the topics that are most relevant to
understand the rest of the thesis. Most of the following is based on the ACT-R
tutorial (ACT, 2023b).

3.7.1 Knowledge representation

Knowledge in ACT-R is encoded in chunks and productions. A chunk is a collec-
tion of attribute-value pairs which represents factual knowledge that a person is
expected to know when solving a particular problem. The attributes are called
slots, each of which can contain at most one value. Each chunk also has a name
making it easier to refer to it, but this has no other function from a modelling
perspective. An example of a chunk is:

Fact 3+4

addend1 three

addend2 four

sum seven

The production rules encode procedural knowledge. They are condition-
action rules and are stored in the procedural module. An example is:

Rule Add

IF the goal is to add two digits d1 and d2

and d1 + d2 = d3

THEN create a goal to write d3

3.7.2 The Goal and Imaginal modules

The goal and imaginal modules are simple modules that put a chunk in their as-
sociated buffer upon request. The purpose for the goal module is to keep track of
the control information of the task at hand; it is used to plan the next step of the
problem solving process. With brain scanning techniques such as fMRI meas-
urements, this module can be associated to the brain region called the Anterior
Cingulate Cortex (Anderson et al., 2008). The imaginal module has two asso-
ciated buffers: the imaginal and the imaginal-action buffer. They are designed
to store context-relevant information. Contrary to the goal buffer, processes
in these buffers take time. The time is given by the imaginal-delay parameter,
which can be set, but defaults at 0.2s; it may also have a randomised component.
This module can be associated to the Posterior Parietal region (Anderson et al.,
2008).

LOgIc AND cOgNITION • 35

3.7.3 The Declarative module

The declarative module contains all the factual information of the system, though
not all this information might be relevant for solving the problem. It can be
related to the Lateral Inferior Prefrontal region in the brain (Anderson et al.,
2008). The declarative memory (as the module is also called) contains all chunks
the modeller placed there at the beginning of a simulation, as well as all chunks
created during a simulation (in any buffer). It has one buffer, named the retrieval
buffer which can store one chunk. The module responds to a retrieval request
by searching through all chunks stored in the declarative memory for a match
and places the matching chunk in the buffer. By default this process takes 50
milliseconds. In case no chunk is found, the buffer assumes the error state. The
declarative module also allows for retrieving chunks which partially match the
retireval request, but in the following we ignore and disable this mechanism.

3.7.4 The Procedural module

The procedural module does not have a buffer. It contains all the model’s produc-
tion rules and is continuously monitoring all the buffers’ contents for matching
the conditions of any production rule. In case of a match, the rule is fired, which
means that the action of the rule is performed. Only one production can fire at
a time and this takes 50 milliseconds. It can be related to the Caudate Nucleus
in the brain (Anderson et al., 2008).

3.7.5 The Motor module

The motor module controls the movement of the hands and fingers, more spe-
cifically, finger presses on a keyboard. The module is designed to simulate typ-
ing behaviour of someone who can type 40 words per minute without looking,
which is considered average. Any action in this module goes in stages where
firstly the buffer makes a request to the module, then the module prepares the
movement, executes it and returns to the initial state. During this last stage, the
module is still busy, meaning that no new movement request can be made.

3.7.6 The Vision module

Te vision module will only be quickly mentioned, as it is not used in the following.
The module has two buffers that store the location of visual stimuli and the
information of that visual stimulus respectively. The module takes into account
the distance between two points that the eyes consecutively focus on, where the

36 • MODELLINg THE LOgIcAL MIND

angle determines the duration of the refocussing process.

3.7.7 Base-level learning

Instead of the default retrieval time of 50 milliseconds, a more realistic approx-
imation takes into account learning and forgetting effects. This process, in sum,
is called base-level learning. Each chunk has a certain activation, a number that is
determined by: the number of presentations, the time passed since each presenta-
tion, the decay parameter, which is usually set to 0.5 and a random component.
A presentation of a chunk is the moment when the chunk is cleared from a buf-
fer, or when it is stored in the declarative memory. With these ingredients, the
formula to calculate a chunk’s activation is:

𝛢 = ln (
𝑛

∑
𝑗=1

𝑡−𝑑
𝑗) + 𝜖

The noise 𝜖 is a random number drawn from a logistic distribution with mean
0 and standard deviation 𝜎2 = 𝜋2

3 𝑠2, where 𝑠 is the noise value which can be set
by the modeller. In ACT-R there is a distinction between the permanent and the
instantaneous noise, but in the following we disregard the former. To decrease
the computational complexity of a model, optimized learning can be used as
an easy to compute approximation to base-level learning. The exact time of
each chunks’ presentation is then ignored and only the number of presentations
matters to calculate the chunk’s activation with the formula:

𝛢 = ln (𝑛
1 − 𝑑) − 𝑑 ⋅ ln (𝐿) + 𝜖,

Activations also depend on contexts (chunks which are similar), but in the fol-
lowing we disregard this mechanism.

Probability of recall

The activation allows ACT-R to calculate the retrieval probability of a chunk.
This probability is zero if a chunk’s activation drops below the retrieval threshold
𝜏; the chunk is then not accessible anymore unless new presentations of the
chunk occur (which increases its activation). The probability of recall is given by
the formula:

𝛲 = 1
1 + exp (𝜏−𝛢

𝑠)

LOgIc AND cOgNITION • 37

The formula shows that higher activation entails a higher probability of recall.
Likewise, higher values of 𝜏 lower the probability of recall. The parameter 𝑠
models the sensitivity with which the probability changes from 0 to 1: large
values of 𝑠 make the change gradual while small values of 𝑠 make the change
more abrupt. We also see that if the decay parameter 𝑑 has a large value, all
chunks’ activation drops very rapidly and the chunks can very quickly not be
derived anymore.

Retrieval latency

The ACT-R theory assumes that memories that are more recently or more fre-
quently stored in memory can be retrieved more quickly. Again this retrieval
latency is based on the chunks’ activation and is calculated by the formula:

𝛵𝑖 = 𝐹𝑒−𝛢𝑖 .
Here, 𝐹 is the latency factor, which can be used to fit data; its default value is

1. Higher activations allow chunks to be retrieved more quickly. Note that this
formula only applies when a chunk is actually retrieved; in case the activation
drops below the retrieval threshold the chunk is not retrieved but this still takes
time. The time this takes, is given by:

𝛵𝑖 = 𝐹𝑒−𝜏,
where again 𝜏 is the retrieval threshold.

Utilities

ACT-R’s production rules have associated utilities that model the probability of
selecting a rule in case more than one could fire. Each rule’s utility can be set
individually, after which it (in this case for production rule 𝑖) can be updated by
the formula:

𝑈𝑖(𝑛) = 𝑈𝑖(𝑛 − 1) + 𝛼(𝑅𝑖(𝑛) − 𝑈𝑖(𝑛 − 1)),
where 𝑈𝑖(𝑛−1) is the previous value of the rule’s utility, 𝛼 is the learning rate, typ-
ically set to 0.2 and 𝑅𝑖(𝑛) is a reward that the rule receives for its 𝑛-th application.
The reward is interpreted as the time interval that the model is expected to save
by applying the rule and the time between applying the rule and receiving the re-
ward is subtracted from the reward. For example, if rule 𝑖 fires for the 𝑛-th time
at time 𝑡0 and at time 𝑡1 the model receives a reward 𝑅, then 𝑅𝑖(𝑛) = 𝑅 − (𝑡1 − 𝑡0).

38 • MODELLINg THE LOgIcAL MIND

The utilities also have a random noise component, similarly calculated as for
the activations by a logistic distribution with mean 0 and standard deviation
𝜎2 = 𝜋2

3 𝑠2.
With the utilities thus defined, the probability of firing production rule 𝑖

could be calculated as:

𝛲(𝑖) =
exp (𝑈𝑖

√2𝑠)
Σ𝑗 exp (𝑈𝑖

√2𝑠)

This calculation is not performed by the system during simulations; only the
production rule with the highest utility fires.

Compilation

Production rules also allow for learning at the symbolic level. Two mechanisms
in this respect can be distinguished. Firstly, there is proceduralization, where a
specific instance of a production rule is memorised. Secondly, there is produc-
tion rule composition where two rules combine to make one rule with the same
effect as the two separate rules.

As an example of proceduralization, if we have the production rule:

Rule i

IF

goal add

buffer1 x

buffer2 5

THEN

write x + 5.

and in buffer1 the chunk:

Chunk j

number 6.

is stored, then a new rule, namely:

Rule i

IF

LOgIc AND cOgNITION • 39

goal add

buffer1 6

buffer2 5

THEN

write 11

is stored in the procedural memory. By having one rule that directly gives the
model the desired answer, the model is able to perform the task directly (and
hence more quickly) the next time.

As an example of production rule composition, if the two rules:

Rule i

IF

goal1 add

buffer1 x

buffer2 5

THEN

goal2 add

buffer1 x + 5

and

Rule j

IF

goal2 add

buffer1 y

buffer2 2

THEN

goal3 add

write y + 2

fire after one another, ACT-R will (if production composition is enabled) store
the rule:

Rule j

IF

goal1 add

buffer1 x

40 • MODELLINg THE LOgIcAL MIND

buffer2 5

THEN

goal3 add

write x + 7

in its procedural memory. This rule is a composition of the previous two rules:
it has the conditions of the first and the actions of the second. Possible actions
of the first rule that are not negated by the second rule will also be put in the
newly created rule, although the above is not an example of that. By having one
rule instead of two, the model is again able to perform the task more quickly.

4 𝒜ℒℰ ABox inconsistency

This chapter discusses first the complexity of the 𝒜ℒℰ ABox inconsistency prob-
lem. Then an abstract tableau style algorithm of this problem is described and its
complexity is determined. In the next chapter, this algorithm’s implementation
(SHARP) into the cognitive architecture ACT-R is described.

4.1 The 𝒜ℒℰ ABox inconsistency problem
To appreciate the effectiveness of the tableau algorithm and its implementation
in the following two sections, it is important to first determine the complexity
of the 𝒜ℒℰ ABox inconsistency problem. The complexity of this problem was
exactly determined in 1991, with (Schmidt-Schauß and Smolka, 1991) proving
that the problem is solvable in NP by looking at so-called traces, then later in
(Donini et al., 1991) it was proved that the problem is actually NP-complete by
reducing it to the set-traversal problem. In (Donini et al., 1994) an overview is
given of similar results for logics closely related to 𝒜ℒℰ.

First, we will present the proof that the problem is in NP taken from (Baader
et al., 2017) and then we present the proof that it is NP-hard based on (Donini
et al., 1991), establishing that it is NP-complete. To describe what follows ef-
fectively, we need the following definitions, most of them taken from (Baader
et al., 2017).

Definition 4.1.1. (Baader et al., 2017, p.58). Given an 𝒜ℒℰ concept 𝐶, its size
size(𝐶) and set of subconcepts sub(𝐶) are defined by recursion on the structure
of 𝐶:

• If 𝐶 is a concept name, then size(𝐶) = 1 and sub(𝐶) = {𝐶},
• If 𝐶 = 𝐶1 ⊓ 𝐶2, then size(𝐶) = 1 + size(𝐶1) + size(𝐶2) and sub(𝐶) =

{𝐶} ∪ sub(𝐶1) ∪ sub(𝐶2),
• If 𝐶 = ¬𝐷 or 𝐶 = ∃𝑟.𝐷 or 𝐶 = ∀𝑟.𝐷, then size(𝐶) = 1 + size(𝐷) and
sub(𝐶) = {𝐶} ∪ sub(𝐷).

These definitions extend to an ABox 𝒜 as follows: sub(𝒜) = ⋃𝑎 ∶ 𝐶∈𝒜 sub(𝐶)
and size(𝒜) = ∑𝑎 ∶ 𝐶∈𝒜 size(𝐶) + 𝑅𝒜. 𝑅𝒜 is the number of role formulas (i.e.
formulas of the form (𝑎, 𝑏) ∶ 𝑟) in 𝒜. In this text RBox formulas are included in
ABoxes.

42 • MODELLINg THE LOgIcAL MIND

From the above we can readily deduce the following lemmas.

Lemma 4.1.1. (Baader et al., 2017, p.58). For any 𝒜ℒℰ concept 𝐶

|sub(𝐶)| ≤ size(𝐶).

Lemma 4.1.2. (Baader et al., 2017, p.58). For each 𝒜ℒℰ ABox 𝒜,

|sub(𝒜)| ≤ size(𝒜).

Other useful definitions are:

Definition 4.1.2. (Baader et al., 2017, p.58). Given an 𝒜ℒℰ ABox 𝒜 and an
element name 𝑎. The set of concepts of 𝑎 is defined by:

cpt𝒜(𝑎) = {𝐶 ∣ 𝑎 ∶ 𝐶 ∈ 𝒜}.

Which gives rise to:

Lemma 4.1.3. (Baader et al., 2017, p.58). For any 𝒜ℒℰ ABox 𝒜 and element
name 𝑎:

|cpt𝒜(𝑎)| ≤ size(𝒜).

Definition 4.1.3. (Baader et al., 2017, p.77). For any 𝒜ℒℰ-formula (𝑎, 𝑏) ∶ 𝑟
in an ABox 𝒜, we say that 𝑏 is an 𝑟-successor of 𝑎 in 𝒜 and 𝑎 is an 𝑟-predecessor
of 𝑏 in 𝒜. A successor is an 𝑟-successor in 𝒜 for some 𝑟. Likewise, a predecessor
is an 𝑟-predecessor in 𝒜 for some 𝑟.

Definition 4.1.4. A finite sequence of individual names 𝑎0, … , 𝑎𝑛 is a chain in
𝒜 if every 𝑎𝑖 ∈ 𝒜 with 1 ≤ 𝑖 ≤ 𝑛 is a successor of 𝑎𝑖−1 ∈ 𝒜. The number 𝑛 + 1
is the length of the chain.

4.1.1 NP-solvability

The following is based on (Schmidt-Schauß and Smolka, 1991) and (Baader
et al., 2017). To decide if a given 𝒜ℒℰ ABox is inconsistent, it is enough to
look at traces. These can be computed and checked in polynomial time by the
following trace-completion rules:

𝒜ℒℰ ABOx INcONSISTENcy • 43

⊓-trace-rule: if 𝑎 ∶ 𝐶 ⊓ 𝐷 ∈ 𝒜 and
{𝑎 ∶ 𝐶, 𝑎 ∶ 𝐷} ⊈ 𝒜,
then 𝒜 → 𝒜 ∪ {𝑎 ∶ 𝐶, 𝑎 ∶ 𝐷}.

∃-trace-rule: if 𝑎 ∶ ∃𝑟.𝐶 ∈ 𝒜 and
there is no 𝑏 such that {(𝑎, 𝑏) ∶ 𝑟′} ⊆ 𝒜 for any 𝑟′,
then 𝒜 → 𝒜 ∪ {(𝑎, 𝑑) ∶ 𝑟, 𝑑 ∶ 𝐶}, where 𝑑 is new in 𝒜.

∀-trace-rule: if {𝑎 ∶ ∀𝑟.𝐶, (𝑎, 𝑏) ∶ 𝑟} ⊆ 𝒜 and
𝑏 ∶ 𝐶 ∉ 𝒜,
then 𝒜 → 𝒜 ∪ {𝑏 ∶ 𝐶}.

The trace-completion rules for 𝒜ℒℰ ABox inconsistency. After: (Schmidt-
Schauß and Smolka, 1991). Note that in the condition for the ∃-trace-rule
𝑎 does not have any successor.

Applying a trace-completion rule to an ABox 𝒜𝑖 yields a new ABox 𝒜𝑖+1.
Repeatedly applying trace-completion rules to an ABox 𝒜 creates a completion
sequence (𝒜𝑖), where every 𝒜𝑖+1 is created by applying some trace-completion
rule to 𝒜𝑖. Each ABox in a completion sequence (𝒜𝑖) is said to correspond to
𝒜0. We call an ABox a trace when no trace-completion rules can be applied to
it. A completion sequence that contains a trace is called a perfect sequence.

In the next section, we introduce the syntax expansion rules, which are very
similar to the trace-completion rules, except that the condition in the ∃-rule
(which is the analog of the ∃-trace-rule) is weaker.

We now establish that a completion sequence can always be extended to a
perfect sequence so that it contains a trace; moreover, this can be done in poly-
nomial time.

Lemma 4.1.4. (Schmidt-Schauß and Smolka, 1991). Let 𝒜 be an 𝒜ℒℰ ABox
and let (𝒜𝑖) be a corresponding perfect sequence. The length of (𝒜𝑖) is poly-
nomially bounded by size(𝒜) and the last element of the completion sequence
is a trace.

Proof. We will show that the length of the sequence (𝒜𝑖) is polynomially bounded
by 𝑚 = size(𝒜). First we note that the role formulas in 𝒜 define a labelled dir-
ected graph. The vertices of this graph are formed by the elements and the edges
are defined by the role formulas with the role name labelling the edge. By ap-
plying the trace-rules, we construct a model that consists of trees, the roots of
which form the labelled directed graph. The ∃-trace-rule is the only rule that

44 • MODELLINg THE LOgIcAL MIND

can add new elements to the model, and it adds precisely one element for every
individual name it is applied to, therefore every tree consists of one branch only.

The depth of these branches is bounded by 𝑚, for let 𝑥 be an individual that
is introduced by the ∃-trace-rule with 𝑎 as its predecessor. Now sub(cpt𝒜𝑖

(𝑥)) ⊊
sub(cpt𝒜𝑖

(𝑎)) for any 𝑖, so the length of the branches is linearly bounded by 𝑚.
None of the expansion rules remove a formula from the ABox, but they do

add a formula 𝑎 ∶ 𝐶 for some element name 𝑎 and concept expression 𝐶 ∈ sub(𝒜).
We know by Lemma 4.1.3 that sub(𝒜) ≤ 𝑚, so for any individual 𝑥, we have
cpt𝒜𝑖

(𝑥) ≤ 𝑚 for any 𝑖.
So with the number of individual names bounded by 𝑚, and the number of

elements in each branch bounded by 𝑚 and the number of concepts that each
element satisfies bounded by 𝑚, we see that the number of trace-rule applications
is bounded by 𝑚3.

When no more applications of the trace-rules can be made, the ABox under
consideration is the last element of the completion sequence and is a trace by
definition.

Lemma 4.1.5. (Schmidt-Schauß and Smolka, 1991). Let 𝒜 be an 𝒜ℒℰ ABox.
If there is a trace 𝒜′ corresponding to 𝒜 that contains a clash, 𝒜 is inconsistent.

Proof. The trace-completion rules preserve consistency, for let ℐ be an interpret-
ation of ABox 𝒜𝑖, now:

• The ⊓-trace-rule. If 𝑎 ∶ 𝐶 ⊓ 𝐷 ∈ 𝒜𝑖, then 𝑎ℐ ∈ (𝐶 ⊓ 𝐷)ℐ. So we have both
𝑎ℐ ∈ 𝐶ℐ and 𝑎ℐ ∈ 𝐷ℐ. So ℐ is also a model of 𝒜𝑖+1 = 𝒜𝑖 ∪ {𝑎 ∶ 𝐶, 𝑎 ∶ 𝐷}.

• The ∃-trace-rule. If 𝑎 ∶ ∃𝑟.𝐶 ∈ 𝒜𝑖, then 𝑎ℐ ∈ (∃𝑟.𝐶)ℐ. By definition,
there exists a 𝑏 ∈ Δℐ with both (𝑎ℐ, 𝑏) ∈ 𝑟ℐ and 𝑏 ∈ 𝐶ℐ. Hence, for a new
individual name 𝑥, ℐ is also a model of 𝒜𝑖+1 = 𝒜𝑖 ∪ {(𝑎, 𝑥) ∶ 𝑟, 𝑥 ∶ 𝐶}, by
choosing 𝑥ℐ = 𝑏.

• The ∀-trace-rule. If {𝑎 ∶ ∀𝑟.𝐶, (𝑎, 𝑏) ∶ 𝑟} ⊆ 𝒜𝑖, then 𝑎ℐ ∈ (∀𝑟.𝐶)ℐ,
(𝑎ℐ, 𝑏ℐ) ∈ 𝑟ℐ and 𝑏ℐ ∈ 𝐶ℐ. This means that ℐ is also a model of 𝒜𝑖+1 = 𝒜𝑖 ∪ {𝑏 ∶ 𝐶}.

Hence, consistency is preserved, so if a trace 𝒜′ corresponding to 𝒜 contains
a clash, 𝒜 is inconsistent.

Lemma 4.1.6. (Schmidt-Schauß and Smolka, 1991). Let 𝒜 be an 𝒜ℒℰ ABox.
If 𝒜 is inconsistent, there is a corresponding trace 𝒜′ which has a clash.

Proof. From a clash-free trace 𝒜′, we can now construct a model ℐ for 𝒜. We

𝒜ℒℰ ABOx INcONSISTENcy • 45

first define:

Δℐ = {𝑎 ∣ 𝑎 ∶ 𝐶 ∈ 𝒜′ or (𝑎, 𝑏) ∶ 𝑟 ∈ 𝒜′ or (𝑏, 𝑎) ∶ 𝑟 ∈ 𝒜′},
𝑎ℐ = 𝑎 for each individual name 𝑎 occurring in 𝒜′,

𝛢ℐ = {𝑎 ∣ 𝑎 ∶ 𝛢 ∈ 𝒜′} for each concept name 𝛢 occurring in 𝒜′,
𝑟ℐ = {(𝑎, 𝑏) ∣ (𝑎, 𝑏) ∶ 𝑟 ∈ 𝒜′} for each role name 𝑟 occurring in 𝒜′.

By construction, ℐ is an interpretation. We now need to prove the following
statement:

if 𝑎 ∶ 𝐶 ∈ 𝒜′, then 𝑎ℐ ∈ 𝐶ℐ.

The proof proceeds by induction on the structure of concepts. As for the in-
duction basis: if 𝐶 is a concept name and 𝑎 ∶ 𝐶 ∈ 𝒜′, then 𝑎ℐ ∈ 𝐶ℐ by definition
of ℐ.

The induction step consists of the following cases:
• 𝐶 = ¬𝐷. Because 𝒜′ has no clash, 𝑎 ∶ ¬𝐷 ∈ 𝒜′ implies that 𝑎 ∶ 𝐷 ∉ 𝒜′,

where 𝐷 is atomic. So 𝑎ℐ ∉ 𝐷ℐ and hence 𝑎ℐ ∈ Δℐ ⧵ 𝐷ℐ = 𝐶ℐ.
• 𝐶 = 𝐷 ⊓ 𝛦. For every formula 𝑎 ∶ 𝐷 ⊓ 𝛦 ∈ 𝒜′, because 𝒜′ is a trace, we

must have both 𝑎 ∶ 𝐷 ∈ 𝒜′ and 𝑎 ∶ 𝛦 ∈ 𝒜′. So, by definition of ℐ, we have
both 𝑎ℐ ∈ 𝐷ℐ and 𝑎ℐ ∈ 𝛦ℐ. Hence we conclude 𝑎ℐ ∈ 𝐷ℐ ∩𝛦ℐ = (𝐷⊓𝛦)ℐ,
as desired.

• 𝐶 = ∀𝑟.𝐷. Let 𝑎 ∶ ∀𝑟.𝐷 ∈ 𝒜′ and (𝑎ℐ, 𝑏ℐ) ∈ 𝑟ℐ. By the latter and how
ℐ is defined, we know that (𝑎, 𝑏) ∶ 𝑟 ∈ 𝒜′. We must have 𝑏 ∶ 𝐷 ∈ 𝒜′,
because 𝒜′ is a trace. 𝐷 is of lower complexity than ∀𝑟.𝐷, so we may
use the induction hypothesis to deduce that 𝑏ℐ ∈ 𝐷ℐ. This holds for all 𝑏
such that (𝑎ℐ, 𝑏ℐ) ∈ 𝑟ℐ, so 𝑎ℐ ∈ (∀𝑟.𝐷)ℐ.

• 𝐶 = ∃𝑟.𝐷. Let 𝑎 ∶ ∃𝑟.𝐷 ∈ 𝒜′. We have both (𝑎, 𝑏) ∶ 𝑟 ∈ 𝒜′ and 𝑏 ∶ 𝐷 ∈ 𝒜′

for some individual name 𝑏, because 𝒜′ is a trace. The first expression
guarantees that (𝑎ℐ, 𝑏ℐ) ∈ 𝑟ℐ by construction of ℐ. For the other, we
can use the induction hypothesis (𝐷 has lower complexity than ∃𝑟.𝐷) to
conclude that 𝑏ℐ ∈ 𝐷ℐ. Hence, 𝑎ℐ ∈ (∃𝑟.𝐷)ℐ.

This proves that all concept assertions are satisfied by the interpretation, so ℐ
is a model for 𝒜′. So ℐ is also a model of 𝒜, because 𝒜 ⊆ 𝒜′.

Theorem 4.1.7. The problem of ABox inconsistency is inNP, (Schmidt-Schauß
and Smolka, 1991).

46 • MODELLINg THE LOgIcAL MIND

Proof. To determine the inconsistency of an 𝒜ℒℰ ABox 𝒜, we only need to
look at the traces, because 𝒜 is inconsistent if and only if there is a trace 𝒜′

corresponding to 𝒜 which has a clash. The traces individually are checked in
polynomial time relating to the size of the ABox size(𝒜), by using the trace-
rules. If the ∃-trace-rule can be applied to a formula in {𝑎 ∶ ∃𝑟1.𝐶1, ..., 𝑎 ∶ ∃𝑟𝑛.𝐶𝑛},
it selects one nondeterministically and in doing so, disallows the ∃-trace-rule to
be applied to any of the other formulas. Applying the ∃-trace-rule to a differ-
ent formula therefore creates a different trace. In short, the nondeterministic
selection yields a unique trace, one such trace is enough to prove inconsistency
and every trace is computed in polynomial time, therefore the problem of ABox
inconsistency is in NP.

4.1.2 NP-hardness

In this section we make a reduction from the set traversal problem (which is
proved to beNP-complete) to the problem of 𝒜ℒℰ ABox inconsistency, thereby
proving that 𝒜ℒℰ ABox inconsistency is NP-hard. The following proof is taken
from (Donini et al., 1991).

A positive clause is a finite set of positive integers. Let ℳ = {𝛭1, … , 𝛭𝑚}
be a set of positive clauses. A traversal of ℳ is a finite set 𝛮 of positive integers
such that for all 𝑖 ∈ {1, … , 𝑚}, 𝛮 ∩ 𝛭𝑖 is a singleton. The set traversal problem
is deciding whether a given finite set of positive clauses has a traversal. This
problem is known to be NP-complete (Donini et al., 1991).

Now we define a polynomial reduction from the set traversal problem to
𝒜ℒℰ ABox inconsistency. The idea is to construct a concept 𝐶ℳ from each set of
positive clauses ℳ such that ℳ has a traversal if and only if 𝐶ℳ is inconsistent.
Let 𝑛 = max(⋃ ℳ) and let 𝑚 = |ℳ| be the number of positive clauses in ℳ.

We first define 𝐶𝑗
2𝑚+1 = ⊤ and 𝐷2𝑚+1 = ⊥ and the strings 𝐶𝑗

𝑘 = 𝑄𝑗
𝑘𝑟. ⋯ 𝑄𝑗

2𝑚𝑟.𝐶𝑗
2𝑚+1

and 𝐷𝑗
1 = (∀𝑟.)2𝑚𝛵, where the last expression is a concatenation of 2𝑚 many

universal restrictions. The 𝑄s are defined as:

𝑄𝑗
𝑙 = {∃ if 𝑗 ∈ 𝛭𝑙 or 𝑗 ∈ 𝛭𝑙−𝑚

∀ if 𝑗 ∉ 𝛭𝑙 or 𝑗 ∉ 𝛭𝑙−𝑚

For example, if ℳ = {{1, 3, 5}, {2, 4}, {4, 5}}, then 𝐶1
1 = ∃𝑟.∀𝑟.∀𝑟.∃𝑟.∀𝑟.∀𝑟.⊤.

Note that, in a sense, the index 𝑙 passes over the clauses in ℳ twice; this con-
struction is later used to prove that the intersection of the traversal set with any of
the clauses has only one element. ℳ is translated to the concept: 𝐶ℳ = 𝐶1

1 ⊓ … ⊓ 𝐶𝑛
1 ⊓ 𝐷1.

𝒜ℒℰ ABOx INcONSISTENcy • 47

Following (Donini et al., 1991), we define a concept 𝐶 to be active in a trace
𝛵 if and only if it is of the form ∃𝑟.𝐷 and there are variables 𝑦, 𝑧 such that 𝛵
contains the formulas 𝑦 ∶ 𝐶, (𝑦, 𝑧) ∶ 𝑟 and 𝑧 ∶ 𝐷. In other words, a concept ∃𝑟.𝐷
is active if the ∃-trace-rule has been applied to a formula of the form 𝑦 ∶ ∃𝑟.𝐷.

Lemma 4.1.8. (Donini et al., 1991). Let 𝛵 be a trace of {𝑥 ∶ 𝐶ℳ}.
1. Suppose 𝐶𝑗

𝑘 is active in 𝛵. Then for all 𝑙 ∈ {1, … , 𝑘} the concept 𝐶𝑗
𝑙 is

active in 𝛵 if it is of the form ∃𝑟.𝐶𝑗
𝑙+1.

2. If 𝛵 contains a clash, then for every 𝑙 ∈ {1, … , 2𝑚} there exists exactly
one 𝑗 such that 𝐶𝑗

𝑙 is active in 𝛵.

Proof. We are proving 1. by induction on 𝑘. For 𝑘 = 1 the statement trivially
holds. Suppose the statement holds for a certain 𝑘, we want to prove that the
statement holds for 𝑘 + 1. We assume that 𝑦𝑘+1 ∶ 𝐶𝑗

𝑘+1 ∈ 𝛵. If 𝐶𝑗
𝑘 = ∃𝑟.𝐶𝑗

𝑘+1, then
the expression 𝑦𝑘+1 ∶ 𝐶𝑗

𝑘+1 was introduced by the ∃-trace-rule. This means that
both 𝑦𝑘 ∶ 𝐶𝑗

𝑘 ∈ 𝛵 and (𝑦𝑘, 𝑦𝑘+1) ∶ 𝑟 ∈ 𝛵 for some variable 𝑦𝑘. Using the induction
hypothesis, we know that 𝑦𝑙 ∶ 𝐶𝑗

𝑙 ∈ 𝛵 and (𝑦𝑙, 𝑦𝑙+1) ∶ 𝑟 ∈ 𝛵 for all 𝑙 ∈ {1, … , 𝑘 − 1}
as well. So we conclude that 𝑦𝑙 ∶ 𝐶𝑗

𝑙 ∈ 𝛵 and (𝑦𝑙, 𝑦𝑙+1) ∶ 𝑟 ∈ 𝛵 for all 𝑙 ∈ {1, … , 𝑘}.
For 2. we first note, that because the ∃-trace-rule applies to only one expres-

sion of the form 𝑦 ∶ ∃𝑟.𝐶, there can be at most one 𝑗 such that 𝐶𝑗
𝑙 is active in 𝛵

for a given 𝑙. We thus need to show that there is at least one such 𝑗. Assume
on the contrary that for some 𝑙 ∈ {1, … , 2𝑚} there is no 𝑗 with 𝐶𝑗

𝑙 active in 𝛵.
Then for every 𝑘 ∈ {𝑙 + 1, … , 2𝑚 + 1} there is no constraint in 𝛵 of the form
𝑦 ∶ 𝐶𝑖

𝑘 or 𝑦 ∶ 𝐷𝑘. Therefore the only possible clash 𝑦 ∶ 𝐷2𝑚+1 ∉ 𝛵, contradicting our
assumption.

Theorem 4.1.9. (Donini et al., 1991). A set ℳ of positive clauses has a traversal
if and only if 𝐶ℳ is inconsistent.

Proof. Suppose ℳ = {𝛭1, … , 𝛭𝑚} and 𝐶ℳ = 𝐶1
1 ⊓…⊓𝐶𝑛

1 ⊓𝐷1 is its translation.
For the ‘only if ’ direction, let 𝛮 be a traversal of ℳ. We will show that the

ABox {𝑥1 ∶ 𝐶ℳ} has a corresponding trace 𝛵 that contains a clash by constructing
a completion sequence with a slightly modified ∃-trace-rule.

Since 𝛮 is a traversal, there is a function 𝑓𝛮 ∶ {1, … , 2𝑚} → {1, … , 𝑛}, 𝑙 ↦ 𝑘
such that 𝐶𝑘

𝑙 = ∃𝑟.𝐶𝑘
𝑙+1. Note that for all 𝑗 ∈ 𝛮 ⧵ {𝑘}, 𝐶𝑗

𝑙 = ∀𝑟.𝐶𝑗
𝑙+1. The

modified ∃-trace-rule is now:

• if 𝑥𝑖 ∶ ∃𝑟.𝐶𝑓𝛮(𝑙)
𝑙 ∈ 𝒜 and there is no 𝑏 such that {(𝑎, 𝑏) ∶ 𝑟′} ⊆ 𝒜 for some

𝑟′, then 𝒜 → 𝒜 ∪ {(𝑥𝑖, 𝑥𝑖+1) ∶ 𝑟, 𝑥𝑖+1 ∶ 𝐶𝑓𝛮(𝑙)
𝑙 }, where 𝑥𝑖+1 is new in 𝒜.

48 • MODELLINg THE LOgIcAL MIND

This modified rule is a restriction on the regular ∃-trace-rule in that it selects
the formula 𝑎 ∶ ∃𝑟.𝐶𝑓𝛮(𝑙)

𝑙 ∈ 𝒜 by using the traversal, as opposed to selecting one
nondeterministically.

Let 𝛵 be the trace resulting from {𝑥1 ∶ 𝐶ℳ} after applying the modified trace
rules. Now 𝑥2𝑚+1 ∶ 𝐷2𝑚+1 ∈ 𝛵 and because 𝐷2𝑚+1 = ⊥, 𝛵 contains a clash.

For the converse, if 𝐶ℳ is inconsistent, then there exists a trace 𝛵 corres-
ponding to {𝑥 ∶ 𝐶ℳ} that contains a clash and for every 𝑙 ∈ 1, … , 2𝑚 there exists
precisely one 𝑗 such that 𝐶𝑗

𝑙 is active in 𝛵. We now construct a traversal 𝛮 from
the trace 𝛵, by defining: 𝛮 = {𝑗 ∣ 𝐶𝑗

𝑚+𝑙 is active in 𝛵 for some 𝑙 ∈ {1, … , 𝑚}}.
To prove 𝛮 is a traversal, let 𝛭𝑙 be a positive clause in ℳ. For every

𝑙 ∈ {1, … , 𝑚} there exists a 𝑗 such that 𝐶𝑗
𝑚+𝑙 is active in 𝛵, so 𝑗 ∈ 𝛮. Moreover,

𝐶𝑗
𝑚+𝑙 = ∃𝑟.𝐶𝑗

𝑚+𝑙+1 because the concept is active. That means that 𝑗 ∈ 𝛭𝑙, because
that is how 𝐶ℳ is defined. So 𝑗 ∈ 𝛮 ∩ 𝛭𝑙. Now we need to prove uniqueness, so
let 𝑖, 𝑗 ∈ 𝛮 ∩ 𝛭𝑙. By definition of 𝛮 there are ℎ, 𝑘 such that 𝐶𝑖

𝑚+ℎ and 𝐶𝑗
𝑚+𝑘 are

active in 𝛵. Furthermore, 𝐶𝑖
𝑙 = ∃𝑟.𝐶𝑖

𝑙+1 and 𝐶𝑗
𝑙 = ∃𝑟.𝐶𝑗

𝑙+1, because 𝑖, 𝑗 ∈ 𝛭𝑙. By
1. in the previous lemma, we know that both 𝐶𝑖

𝑙 and 𝐶𝑗
𝑙 are active in 𝛵, because

𝐶𝑖
𝑚+ℎ and 𝐶𝑗

𝑚+𝑘 are active in 𝛵. So by 2. of the previous lemma: 𝑖 = 𝑗.

Theorem4.1.10. (Donini et al., 1991). 𝒜ℒℰ ABox inconsistency isNP-complete.

Proof. We saw earlier that there is an NP-algorithm for the problem.
The previous theorem stated that a set of positive clauses ℳ can be translated

into an 𝒜ℒℰ concept 𝐶ℳ in polynomial time such that ℳ has a traversal if
and only if 𝐶ℳ is inconsistent. This polynomial time reduction from the set
traversal problem to the problem of 𝒜ℒℰ ABox inconsistency and the fact that
the set traversal problem is proved to be NP-complete, proves that 𝒜ℒℰ ABox
inconsistency is NP-hard. Therefore, 𝒜ℒℰ ABox inconsistency is NP-complete.

4.2 A tableau algorithm for 𝒜ℒℰ ABox inconsistency
The following tableau algorithm is based on (Baader et al., 2017, pp. 71 - 82),
with the difference that the ⊔-rule is absent, because 𝒜ℒℰ lacks the concept
unions from 𝒜ℒ𝒞.

𝒜ℒℰ ABOx INcONSISTENcy • 49

⊓-rule: if 𝑎 ∶ 𝐶 ⊓ 𝐷 ∈ 𝒜 and
{𝑎 ∶ 𝐶, 𝑎 ∶ 𝐷} ⊈ 𝒜,
then 𝒜 → 𝒜 ∪ {𝑎 ∶ 𝐶, 𝑎 ∶ 𝐷}.

∃-rule: if 𝑎 ∶ ∃𝑟.𝐶 ∈ 𝒜 and
there is no 𝑏 such that {(𝑎, 𝑏) ∶ 𝑟, 𝑏 ∶ 𝐶} ⊆ 𝒜,
then 𝒜 → 𝒜 ∪ {(𝑎, 𝑑) ∶ 𝑟, 𝑑 ∶ 𝐶}, where 𝑑 is new in 𝒜.

∀-rule: if {𝑎 ∶ ∀𝑟.𝐶, (𝑎, 𝑏) ∶ 𝑟} ⊆ 𝒜 and
𝑏 ∶ 𝐶 ∉ 𝒜,
then 𝒜 → 𝒜 ∪ {𝑏 ∶ 𝐶}.

The syntax expansion rules for 𝒜ℒℰ ABox inconsistency. After: (Baader
et al., 2017). Note that in the condition for the ∃-trace-rule, 𝑎 does not
have an 𝑟-successor (although it might have an 𝑟′-successor for 𝑟′ ≠ 𝑟).

Above we see the syntax expansion rules for 𝒜ℒℰ ABox inconsistency. They
are very similar to the trace-completion rules from the previous section, only
the ∃-rule differs from the ∃-trace-rule in that it has a weaker condition on the
element name 𝑎: the ∃-rule requires that it has no 𝑟-successor, whereas the ∃-
trace-rule requires that it has no successor at all, i.e. not for any 𝑟′. This means
that the algorithm using the syntax expansion rules computes the union of all
traces instead of just one trace.

The algorithm works by applying these rules to an ABox 𝒜 until it is com-
plete. Completeness here means that either no expansion rule can be applied, or
that 𝒜 contains a clash, i.e. for some individual name 𝑎 and concept name 𝐶,
{𝑎 ∶ 𝐶, 𝑎 ∶ ¬𝐶} ⊆ 𝒜. Note that we allow role formulas in our ABox, contrary to
the convention that role formulas form an RBox instead.

To describe the algorithm, we define a function exp(𝒜, 𝑅, 𝛼) which takes
an ABox, an expansion rule and either one or two formulas and returns the ABox
which is the result of applying the rule to the formula(s). An example:

exp({𝑏 ∶ ¬𝐷, 𝑎 ∶ ∀𝑟.𝐷, (𝑎, 𝑏) ∶ 𝑟}, ∀-rule, (𝑎 ∶ ∀𝑟.𝐷, (𝑎, 𝑏) ∶ 𝑟)) =
{𝑏 ∶ ¬𝐷, 𝑎 ∶ ∀𝑟.𝐷, (𝑎, 𝑏) ∶ 𝑟, 𝑏 ∶ 𝐷}

50 • MODELLINg THE LOgIcAL MIND

Algorithm inconsistent()
Input: an 𝒜ℒℰ ABox 𝒜.
repeat

if 𝒜 contains a clash then
return “inconsistent”

end if
select a rule 𝑅 that is applicable to 𝒜, and a (pair of) formula(s)

𝛼 ∈ 𝒜 to which 𝑅 is applicable
set 𝒜 → exp(𝒜, 𝑅, 𝛼)

until 𝒜 is complete
if 𝒜 contains a clash then

return “inconsistent”
else

return 𝒜
end if

The tableau algorithm inconsistent for 𝒜ℒℰ ABox inconsistency. After:
(Baader et al., 2017, p.75).

inconsistent() is a decision procedure for 𝒜ℒℰ ABox inconsistency, which
we shall prove below. It returns either a complete ABox (in case it contains no
clash) or “inconsistent” (in case it finds a clash at some point in the process).
Note that the algorithm does not specify which rule to select; any applicable
rule might be selected. Also to be noted is that it looks once more for a clash
when 𝒜 is complete, as the last expansion rule application might have created
one.

The following lemmas are analogous to (Baader et al., 2017) and to the pre-
vious section.

Lemma 4.2.1. (Baader et al., 2017, p.78). For each nonempty 𝒜ℒℰ ABox 𝒜,
inconsistent(𝒜) terminates.

Proof. Let 𝑚 = size(𝒜) and let 𝒜′ be an ABox obtained by applying some
expansion rules some number of times to 𝒜. We have the following three prop-
erties:

1. The expansion rules never remove a formula from 𝒜 but add a new for-
mula 𝑎 ∶ 𝐶 for some element name 𝑎 and concept 𝐶 ∈ sub(𝒜). We
know by Lemma 4.1.3 that the cardinality of sub(𝒜) is bounded by
size(𝒜) = 𝑚. So for any individual name 𝑎 we have |cpt𝒜′(𝑎)| ≤ 𝑚.

𝒜ℒℰ ABOx INcONSISTENcy • 51

2. For a given individual name 𝑎 and formula 𝑎 ∶ ∃𝑟.𝐶, the ∃-rule adds one
and only one new element to 𝒜′. The number of formulas that are exist-
ential restrictions is bounded by 𝑚, so there are at most 𝑚 successors in
𝒜′ for a given individual name 𝑎.

3. If 𝑏 is a new individual name which is added by an application of an ∃-
rule and has 𝑎 as its predecessor, we have sub(cpt𝒜′(𝑏)) ⊊ sub(cpt𝒜′(𝑎)).
Moreover, the number of formulas of the form (𝑎, 𝑏) ∶ 𝑟 ∈ 𝒜 is bounded
by 𝑚. So from both cases we see that the length of a chain in 𝒜 is bounded
by 2𝑚.

The above properties guarantee the following. The element names form a
tree under the successor relation which has branching bounded by 𝑚 and depth
bounded by 2𝑚. This tree therefore has at most 𝑚2𝑚 elements. For each element,
the number of concept assertions to add is bounded by 𝑚, so the algorithm
terminates after at most 𝑚𝑚2𝑚

steps.

Lemma 4.2.2. (Baader et al., 2017, p.79). If 𝒜 is inconsistent, then inconsistent(𝒜)
returns “inconsistent”.

Proof. Proof by contraposition, so let’s assume inconsistent(𝒜) returns 𝒜′.
Then 𝒜′ is a complete ABox that does not contain a clash. We can now eas-
ily construct a model for 𝒜′ and hence for 𝒜. We define:

Δℐ = {𝑎 ∣ 𝑎 ∶ 𝐶 ∈ 𝒜′ or (𝑎, 𝑏) ∶ 𝑟 ∈ 𝒜′ or (𝑏, 𝑎) ∶ 𝑟 ∈ 𝒜′},
𝑎ℐ = 𝑎 for each individual name 𝑎 occurring in 𝒜′,

𝛢ℐ = {𝑎 ∣ 𝑎 ∶ 𝛢 ∈ 𝒜′} for each concept name 𝛢 ∈ 𝒜,
𝑟ℐ = {(𝑎, 𝑏) ∣ (𝑎, 𝑏) ∶ 𝑟 ∈ 𝒜′} for role 𝑟 occurring in 𝒜′.

We can easily see that ℐ is an interpretation. We now need to prove the
following statement:

if 𝑎 ∶ 𝐶 ∈ 𝒜′, then 𝑎ℐ ∈ 𝐶ℐ.
The proof proceeds by induction on the structure of concepts. As for the in-

duction basis: if 𝐶 is a concept name and 𝑎 ∶ 𝐶 ∈ 𝒜′, then 𝑎ℐ ∈ 𝐶ℐ by definition
of ℐ.

The induction step consists of the following cases:
• 𝐶 = ¬𝐷. Because 𝒜′ has no clash, 𝑎 ∶ ¬𝐷 ∈ 𝒜′ implies that 𝐷 is atomic

and 𝑎 ∶ 𝐷 ∉ 𝒜′. So 𝑎ℐ ∉ 𝐷ℐ and hence 𝑎ℐ ∈ Δℐ ⧵ 𝐷ℐ = 𝐶ℐ.

52 • MODELLINg THE LOgIcAL MIND

• 𝐶 = 𝐷 ⊓ 𝛦. For every formula 𝑎 ∶ 𝐷 ⊓ 𝛦 ∈ 𝒜′, by completeness of 𝒜′, we
must have both 𝑎 ∶ 𝐷 ∈ 𝒜′ and 𝑎 ∶ 𝛦 ∈ 𝒜′. So, by definition of ℐ, we have
both 𝑎ℐ ∈ 𝐷ℐ and 𝑎ℐ ∈ 𝛦ℐ. Hence we conclude 𝑎ℐ ∈ 𝐷ℐ ∩𝛦ℐ = (𝐷⊓𝛦)ℐ,
as desired.

• 𝐶 = ∀𝑟.𝐷. Let 𝑎 ∶ ∀𝑟.𝐷 ∈ 𝒜′ and (𝑎ℐ, 𝑏ℐ) ∈ 𝑟ℐ. By the latter and how
ℐ is defined, we know that (𝑎, 𝑏) ∶ 𝑟 ∈ 𝒜′. By completeness of 𝒜′, we
must have 𝑏 ∶ 𝐷 ∈ 𝒜′ too. 𝐷 is of lower complexity than ∀𝑟.𝐷, so we
may use the induction hypothesis to deduce that 𝑏ℐ ∈ 𝐷ℐ. This holds for
all 𝑏 such that (𝑎ℐ, 𝑏ℐ) ∈ 𝑟ℐ, so 𝑎ℐ ∈ (∀𝑟.𝐷)ℐ.

• 𝐶 = ∃𝑟.𝐷. Let 𝑎 ∶ ∃𝑟.𝐷 ∈ 𝒜′. By the completeness of 𝒜′, we have
both (𝑎, 𝑏) ∶ 𝑟 ∈ 𝒜′ and 𝑏 ∶ 𝐷 ∈ 𝒜′ for some individual name 𝑏. The
first formula of these guarantees that (𝑎ℐ, 𝑏ℐ) ∈ 𝑟ℐ by construction of ℐ.
For the other formula, we can use the induction hypothesis (𝐷 has lower
complexity than ∃𝑟.𝐷) to conclude that 𝑏ℐ ∈ 𝐷ℐ. Hence, 𝑎ℐ ∈ (∃𝑟.𝐷)ℐ.

This proves that all concept assertions are satisfied by the interpretation, so ℐ
is a model for 𝒜′. This means that 𝒜′ is consistent and thus that 𝒜 is consistent
too, proving the theorem.

Lemma 4.2.3. (Baader et al., 2017, p.80). If inconsistent(𝒜) returns “incon-
sistent”, then 𝒜 is inconsistent.

Proof. Proof by contraposition. Let’s assume 𝒜 to be consistent and let ℐ = (Δℐ, ⋅ℐ)
be a model of 𝒜. If 𝒜 is already complete, there is nothing to check, as
expand(𝒜) = 𝒜 and inconsistent returns “consistent”. For incomplete 𝒜,
expand applies expansion rules until completeness. These expansion rules pre-
serve consistency.

• The ⊓-rule. If 𝑎 ∶ 𝐶 ⊓ 𝐷 ∈ 𝒜, then 𝑎ℐ ∈ (𝐶 ⊓ 𝐷)ℐ. So by definition we
have both 𝑎ℐ ∈ 𝐶ℐ and 𝑎ℐ ∈ 𝐷ℐ. So ℐ is also a model of 𝒜∪{𝑎 ∶ 𝐶, 𝑎 ∶ 𝐷}.
Therefore 𝒜 remains consistent after applying the rule.

• The ∃-rule. If 𝑎 ∶ ∃𝑟.𝐶 ∈ 𝒜, then 𝑎ℐ ∈ (∃𝑟.𝐶)𝒜. By definition, there exists
a 𝑏 ∈ Δℐ with both (𝑎ℐ, 𝑏) ∈ 𝑟ℐ and 𝑏 ∈ 𝐶ℐ. Hence, for a new individual
name 𝑥, ℐ is also a model of 𝒜 ∪ {(𝑎, 𝑥) ∶ 𝑟, 𝑥 ∶ 𝐶}, by choosing 𝑥ℐ = 𝑏.
This means that 𝒜 is still consistent after applying the rule.

• The ∀-rule. If {𝑎 ∶ ∀𝑟.𝐶, (𝑎, 𝑏) ∶ 𝑟} ⊆ 𝒜, then 𝑎ℐ ∈ (∀𝑟.𝐶)ℐ, (𝑎ℐ, 𝑏ℐ) ∈ 𝑟ℐ

and 𝑏ℐ ∈ 𝐶ℐ. This means that ℐ is also a model of 𝒜 ∪ {𝑏 ∶ 𝐶}, so 𝒜 is
still consistent after applying the rule.

𝒜ℒℰ ABOx INcONSISTENcy • 53

Theorem 4.2.4. (Baader et al., 2017, p.81). The tableau algorithm formed
by expand and inconsistent is a decision procedure for the inconsistency of
nonempty 𝒜ℒℰ ABoxes.

Proof. From the above lemmas, it follows that the algorithm terminates and
outputs “inconsistent” if and only if the input is inconsistent.

This algorithm is not the most efficient. It solves the 𝒜ℒℰ ABox inconsist-
ency problem by using exponentially much space compared to the input, because
it may store a union of the set of all traces in its memory and there can be expo-
nentially many traces. This is caused by AND-branching (Baader et al., 2003,
p.83), and an example can be defined by:

𝐶1 = ∃𝑟.𝛢 ⊓ ∃𝑟.𝛣
𝐶𝑛+1 = (∃𝑟.𝛢 ⊓ ∃𝑟.𝛣) ⊓ ∀𝑟.𝐶𝑛

The size of the ABox 𝒜 = {𝑎𝑖 ∶ 𝐶𝑖 ∣ 𝑖 < 𝑛} grows linearly with 𝑛, but the
fully expanded ABox 𝒜′ models a binary tree of depth 𝑛 and therefore grows
exponentially with 𝑛. The tableau algorithm has the advantage of being easy
to define and implement, whereas an NP-complete algorithm is more difficult
to define and implement because it needs to keep track of which traces it has
already looked at. In the next chapter we implement this tableau-based 𝒜ℒℰ
ABox inconsistency algorithm in ACT-R.

5 The model SHARP

A human deciding the inconsistency of an 𝒜ℒℰ ABox can be assumed to men-
tally execute the inconsistent() algorithm, or something very similar. This as-
sumption motivates simulating the inconsistent() algorithm in ACT-R. The res-
ult is SHARP, which stands for SimulatingHumanABoxReasoning Performance.
SHARP is a piece of original work and is the main contribution of this thesis.

SHARP has a more extensive output than the algorithm because of its sim-
ulation purpose. After taking 𝒜ℒℰ ABox 𝒜 as input, it outputs ‘C’ when 𝒜
is consistent and ‘I’ when 𝒜 is inconsistent, but it also outputs a run (𝜙0, ..., 𝜙𝑛)
(i.e. the order of formulas that were inspected) and the inference time IT (i.e. the
time it thinks the thought process will take). Note that the latter is generally
different from the simulation time (i.e. the time a computer needs to complete
the simulation).

In designing SHARP several obstacles had to be overcome. These obstacles,
together with how we avoided them, are discussed first, because they motivated
many design choices. After this, a more detailed picture of SHARP’s structure
is given.

5.1 Obstacles in designing SHARP
It is important to mention that due to certain technicalities that will be discussed
below, SHARP deviates from inconsistent() in some respects. Note moreover
that we abstracted away from visual processes (i.e. we are not using the visual
module in ACT-R) such that only the logical processes are modelled.

5.1.1 The issue of parsing

ACT-R uses chunks as its data structure. Values in a certain chunk’s slots are
strings and are treated as indivisible units; hence, they cannot be parsed by ACT-
R during simulation. For example, if a string in a chunk’s slot represents the
description logic formula 𝑎 ∶ 𝛢 ⊓ 𝛣, the strings representing the formulas 𝑎 ∶ 𝛢
and 𝑎 ∶ 𝛣, which are derivable from it in 𝒜ℒℰ, cannot be constructed by an
ACT-R model. Each formula therefore needs to be represented by a chunk that
has specific slots dedicated to the formulas that can be inferred from it, as well as

56 • MODELLINg THE LOgIcAL MIND

other relevant strings. So the chunk representing the formula 𝑎 ∶ 𝛢 ⊓ 𝛣 has one
slot containing the string 𝑎 ∶ 𝛢 and another containing the string 𝑎 ∶ 𝛣.

Before the simulation, the declarative memory is loaded with chunks that rep-
resent each formula in the given ABox, as well as chunks representing each for-
mula that can possibly be derived. Performing an inference step, now, amounts
roughly to:

1. retrieving the desired formula chunk from the declarative memory,
2. labelling it by changing the contents of its ‘derived’-slot,
3. storing it back in the declarative memory.
In our example, when inspecting the 𝑎 ∶ 𝛢 ⊓ 𝛣-chunk, SHARP uses the string

𝑎 ∶ 𝛢 that is stored in one of its slots to retrieve the (unlabelled) chunk represent-
ing 𝑎 ∶ 𝛢 which has been stored in its declarative memory from the beginning of
the simulation. It then creates a labelled copy of the 𝑎 ∶ 𝛢-chunk and stores it
in the declarative memory; SHARP can, from then on, make further inferences
using this labelled chunk.

5.1.2 The issue of discarding

We want to prevent SHARP from making the same inference twice. For example,
after having inferred the formulas 𝑎 ∶ 𝛢 and 𝑎 ∶ 𝛣 from the formula 𝑎 ∶ 𝛢 ⊓ 𝛣, we
do not want SHARP to select 𝑎 ∶ 𝛢 ⊓ 𝛣 again to make an inference from. That
is, we want some method to discard the formula 𝑎 ∶ 𝛢 ⊓ 𝛣 thereby preventing it
from being retrieved from the declarative memory.

In ACT-R, however, the declarative memory stores all chunks that it has
used earlier and a retrieval request may retrieve any chunk satisfying the request’s
criteria. One solution is to inspect the formulas in a fixed order, but we wanted
the flexibility of having no fixed order of inspection. The solution to the problem
of discarding is therefore that SHARP keeps a list of formulas on which it has
already made an inference. Using this list, SHARP formulates retrieval requests
that exclude the possibility of retrieving a formula that we would discard. The list
of ‘used’ formulas is, however, of finite length due to the way ACT-R is designed:
a given production rule can modify only a fixed number of slots in each buffer.

5.1.3 The issue of the universal restrictions

Universal restrictions like 𝑎 ∶ ∀𝑟.𝛢 should never be discarded, as formulas such as
(𝑎, 𝑥) ∶ 𝑟 might be derived at any point in time and when this happens, SHARP
needs the formula 𝑎 ∶ ∀𝑟.𝛢 again to be able to infer 𝑥 ∶ 𝛢. Therefore, the discard-

THE MODEL SHARp • 57

ing mechanism from the previous paragraph does not work for universal restric-
tions. Instead, the chunks representing universal restrictions like 𝑎 ∶ ∀𝑟.𝛢 have
designated slots forming its role-list that may contain role formulas like (𝑎, 𝑥) ∶ 𝑟.
After inferring 𝑥 ∶ 𝛢 from the above two formulas, SHARP creates a copy of the
𝑎 ∶ ∀𝑟.𝛢-chunk with the string (𝑎, 𝑥) ∶ 𝑟 in its role-list. Then it stores the chunk
in the declarative memory. In selecting the next role-formula, SHARP then uses
the chunk’s role-list to retrieve a role formula that is not in its role-list.

One potential problem with the above is that if the formula 𝑎 ∶ ∀𝑟.𝛢 is se-
lected to make an inference from, we want to retrieve the chunk representing
it that has the most recently updated role-list. This is not something we can
directly specify in a retrieval request, so we use so-called count-order-chunks.
The chunks in the goal buffer contain a designated slot for counting. Each time
when SHARP inspects a universal restriction, it is labelled with the current count.
After inspecting all universal restrictions, the count in the goal buffer is increased
by one, using the count-order-chunks. From all the chunks in the declarative
memory that represent a certain universal restriction 𝑎 ∶ ∀𝑟.𝛢, only the ones with
the most recent count are retrieved, making sure that the corresponding role-list
is up to date. Note that it is necessary to inspect all universal restrictions after an-
other; otherwise, one chunk’s most recent count may be different from another
chunk’s most recent count.

5.1.4 The issue of finding new elements

When SHARP infers (𝑎, 𝑥) ∶ 𝑟 and 𝑥 ∶ 𝛢 from an existential restriction 𝑎 ∶ ∃𝑟.𝛢,
it is important that this 𝑥 is a new element, i.e. not appearing in any formula
that has already been derived. SHARP therefore needs to keep a used-list. An
alternative would be to designate slots for the same purpose in the goal chunks,
but it is good practice to keep the number of slots as low as possible. Each time
after making an inference like the above, the element 𝑥 is stored in the used-list.
If, at a later point, SHARP makes an inference from a 𝑎 ∶ ∃𝑟.𝛣 (with 𝛣 ≠ 𝛢), the
new element is selected to be not in the list, so that 𝑥 cannot be chosen.

5.1.5 The issue of the buffers

ACT-R models have only a limited number of buffers. SHARP uses the fol-
lowing five: goal, imaginal, imaginal-action, retrieval and manual. Using more
buffers is for the purposes of SHARP not recommended. So at any point in time,
SHARP only has direct access to up to 5 chunks. When for a certain inference,
two new chunks need to be retrieved, these chunks are retrieved in succession (as

58 • MODELLINg THE LOgIcAL MIND

only the retrieval buffer is capable of retrieving chunks from declarative memory,
and it can only store one chunk). That is, after the first one appears in the re-
trieval buffer, it is moved to another buffer to clear the retrieval buffer for the
second chunk.

5.1.6 The issue of the production rules

ACT-R’s production rules are chunk-type unspecific. SHARP has two chunk
types for formulas: one for the universal restriction formulas and one for the
other formulas. This is due to the facts that chunks representing universal restric-
tions need to keep a role-list and they cannot be discarded, as discussed above.
The different functions that these two types of chunk fulfil, demand production
rules that are chunk-type specific; this was done by adding an extra slot for the
chunk’s type. This chunk-type dependency is the reason that SHARP’s produc-
tion rules sometimes come in two versions that each fulfil the same function
from a logical perspective and only differ in the chunk types.

5.2 SHARP’s design
5.2.1 A note on nondeterminism

SHARP often makes random selections among several possibilities, i.e. when
deciding which formula to inspect next. These selections are nondeterministic in
the sense that they affect SHARP’s output run and inference time. They do not,
however, affect the judgement: a consistent ABox will always be judged as such.

5.2.2 SHARP’s chunk types

SHARP uses the following chunk types.

• goal: chunks of this type keep track of which sub-task SHARP needs to
perform. They store important values to retrieve the most recent chunks.

• proposition: chunks of this type represent formulas that are not universal
restrictions. They have slots for the relevant sub-formulas and labels.

• uproposition: the counterpart of the above. Additionally there are slots
for the role-list.

• clash-list: the list that temporarily stores atomic formulas to derive a
clash.

• store-list: the list of used formulas that are never to be inspected again.
Contains only non-universal formulas.

THE MODEL SHARp • 59

• universal-list: this chunk temporarily stores the universal restrictions that
do not need to be inspected for the moment.

• count-order: these chunks have two slots. One containing a number and
the other the successor of that number.

• used-list: this chunk stores all roles that have been derived after inferring
from an existential restriction.

5.2.3 Overview

During initialising SHARP, the chunks necessary in the simulation run (chunks
representing each formula, count-orders and the starting goal chunk) are stored
into the declarative memory. For this, an estimation is made of the number
of distinct elements that are needed for the deduction. Chunks created during
the simulation are stored in the declarative memory, except in case the buffer
containing the chunk is cleared.

After initialisation, SHARP first tries to find a clash (a contradiction among
atomic formulas), then it runs Module2 which selects a complex formula to
make a derivation from. This complex formula can be one of three kinds: a
conjunction, an existential restriction and a universal restriction, after which the
⊓-rule, ∃-rule or ∀-rule fires. Depending on which one is selected, Module3,
Module4 or Module5 will start running. The process stops if either a clash is
found (in which case the ABox is inconsistent), or no clash is found and no
new formula can be derived (in which case the ABox is consistent). The more
detailed view of what happens inside the different modules can be seen in the
frames below.

5.2.4 Module 1: find a clash

SHARP uses Module1 to find a clash among the atomic concept assignments.
If at some point no clash is found, either the ABox is consistent, or the ABox
is inconsistent and some other formula still needs to be derived in order to
give rise to a clash. The variable Derivenew handles these different situations.
Derivenew = yes denotes ignorance of whether a new formula can be derived.
Derivenew = no denotes certainty that nothing can be derived further (which, in
the absence of a clash, means the ABox is consistent).

60 • MODELLINg THE LOgIcAL MIND

find atomic formula (nondeterministic)
store atomic formula in clash-list
repeat

find atomic formula clashing with first formula in clash-list
if found then

output I and stop
else

find atomic formula not in clash-list (nondeterministic)
stack this formula to clash-list

end if
until no atomic formula found
if Derivenew = yes then

go to Module2
else

output C and stop
end if

Module1, find clash. nondeterminism of selections is indicated. Derivenew
indicates whether a new formula can be derived; it is set in Module2.

5.2.5 Module 2: find next complex formula

SHARP selects a new complex formula to be inspected and goes to the cor-
responding module where the relevant inference step is made. There are two
different production rules taking care of this selection, because universal restric-
tions have a different chunk type compared to the other formulas. If one of
those production rules fails to retrieve a chunk, the other one fires. Note that
only those universal restrictions are retrieved with the current count in the goal
state. If the two rules both fail to retrieve a formula after one another, the vari-
able Derivenew is set to no to indicate that if Module1 does not find a clash, the
ABox is consistent.

THE MODEL SHARp • 61

find complex formula (nondeterministic)
if conjunction found then

go to Module3
else if existential restriction found then

go to Module4
else if universal restriction found (with prvious count) then

go to Module5
else if no non-universal formula found then

find universal restriction (nondeterministic)
if universal restriction found (with previous count) then

go to Module5
else

set Derivenew = no
go to Module1

end if
else if no universal restriction found then

find non-universal formula (nondeterministic)
if conjunction found then

go to Module3
else if existential restriction found then

go to Module4
else

set Derivenew = no
go to Module1

end if
end if

Module2, find next complex formula. There are different production rules
for finding a non-universal formula and finding a universal restriction, be-
cause of their different chunk types. When a retrieval request for the one
fails, it tries the other. Nondeterministic choices are indicated.

5.2.6 Module 3: infer from conjunction

InModule3, the formula under consideration is first stored in a store-list, thereby
disqualifying it for further inference. Then SHARP, in random order, labels the
two conjuncts as derived. From then on the conjuncts qualify for further in-

62 • MODELLINg THE LOgIcAL MIND

ference (if they not also happen to be used earlier in the simulation run). In
case one of the conjuncts is an atomic formula, SHARP runs Module1 to find
a clash. If both conjuncts are atomic, SHARP randomly selects one to find a
clash with, so only in this case is the choice nondeterministic. If both conjuncts
are non-atomic, it runs Module2.

store conjunction in store-list
retrieve a conjunct and label it as derived (nondeterministic)
retrieve the other conjunct and label it as derived
if atomic formula derived then

select atomic formula and put in clash-list (possibly nondetermin-
istic)

go to Module1
else

go to Module2
end if

Module3, derive from conjunction. The choice of which conjunct to de-
rive first is a nondeterministic one.

5.2.7 Module 4: infer from existential restriction

Module4 first stores the existential restriction in a store-list. It then selects a
corresponding and unused role formula and labels it as derived. It retrieves the
corresponding (complex) formula that represents the (complex) concept of the
found related element and labels it as derived too. Module1 is invoked if the
found concept is atomic. Else, it runs Module2.

THE MODEL SHARp • 63

store formula in store-list
retrieve used-list of role formulas that are already used
retrieve role formula not in the used-list (nondeterministic)
label role formula as derived
retrieve corresponding (complex) formula
label formula as derived
if atomic formula found then

put formula in clash-list
go to Module1

else
go to Module2

end if

Module4, derive from an existential restriction.

5.2.8 Module 5: infer from universal restriction

Module5 makes inferences on the universal restriction formulas and does so ex-
haustively. That it does so exhaustively is undesired from a modelling perspective,
but it is necessary to solve the problem that ACT-R is not quite suitable to keep
track of an unlimited number of chunks.

repeat
repeat

retrieve role formula not in universal-chunk (nondeterministic)
store role formula in universal-chunk
retrieve corresponding (complex) concept
label formula as derived

until no role formula found
label universal restriction with current count
put universal restriction in universal-list
find universal restriction not in universal-list

until no universal restriction found
set count → count + 1
go to Module2

Module5, derive from a universal restriction.

First, a corresponding role formula is retrieved. In case of multiple role for-

64 • MODELLINg THE LOgIcAL MIND

mulas corresponding, this selection is nondeterministic. Then the correspond-
ing (complex) concept formula is retrieved and labelled. This process is repeated
until no more relevant role formulas can be found. Then the universal chunk is
labelled with the current count. After that, another universal formula is retrieved
and the same procedure is applied. This is repeated until no universal formula
can be retrieved. count is increased by one to indicate that, for the time being,
it is useless to select a universal restriction to make an inference from. Lastly,
Module2 is run.

5.2.9 Justification

Three properties of ACT-R prevent a complete implementation of the inconsistent()
algorithm in SHARP. The first is that the list-chunk types in SHARP are fixed,
meaning in particular that their length is limited. This causes problems when
the ABox under consideration is too complex. In that case, the lists fail to store
the necessary formulas and SHARP keeps selecting formulas that should be dis-
qualified from retrieval (this can happen when: selecting atomic formulas using
the clash-list in Module1, selecting a complex formula using the store-list in
Module2, selecting a universal restriction using the universal-list in Module5
and selecting a role formula using the role-list in Module4). In these cases
SHARP does not terminate. A future improvement on SHARP may be to make
the lists’ lengths scale with the complexity of the input, but this would require
code over and above ACT-R and seems difficult to implement.

The second property preventing a full implementation of the 𝒜ℒℰ ABox
inconsistency algorithm is ACT-R’s subsymbolic parameters. More specifically:
the retrieval threshold, the decay parameter, the base-level activation, noise level
and latency factor. These parameters, which are explained in Section 3.7.7, affect
the retrieval process. Most relevant for our implementation is the possibility
of a retrieval failure. This happens when a chunk’s activation drops below the
retrieval threshold. SHARP might then fail to find a clash, even if the ABox
under consideration is inconsistent.

Besides the two problems above, the other point where SHARP differs from
the abstract 𝒜ℒℰ ABox inconsistency algorithm is in its selection of the expan-
sion rule to apply. Due to the issue related to the universal restrictions reported
earlier, SHARP’s selection can at some point during a simulation run be con-
fined to just universal restrictions. This deviation does not, however, have an
influence on SHARP’s final judgement on the input ABox.

THE MODEL SHARp • 65

5.3 Analysis of performance
As established in the previous section, SHARP needs exponentially much memory
space with increasing input, because the inconsistent() algorithm does too.

5.3.1 Exponential scaling

To verify that there is at least exponential scaling with the input, simulations were
made on the five ABoxes below. They are designed to show AND-branching,
meaning that the ABox’s models are trees with at least binary branching, so that
the size of these structures grows exponentially with the size of the ABox.

• 𝒜0 = {𝑎 ∶ ∃𝑟.𝛢 ⊓ ∃𝑟.𝛣} with size(𝒜0) = 5,
• 𝒜1 = {𝑏 ∶ ∃𝑟.(∃𝑟.𝛢 ⊓ ∃𝑟.𝛣) ⊓ ∃𝑟.𝛣} with size(𝒜1) = 9,
• 𝒜2 = {𝑐 ∶ (∃𝑟.𝛢 ⊓ ∃𝑟.𝛣) ⊓ ∀𝑟.(∃𝑟.𝛢 ⊓ ∃𝑟.𝛣)} with size(𝒜2) = 12,
• 𝒜3 = {𝑑 ∶ (∃𝑟.𝛢⊓∃𝑟.𝛣)⊓∀𝑟.(∃𝑟.(∃𝑟.𝛢⊓∃𝑟.𝛣)⊓∃𝑟.𝛣)} with size(𝒜3) = 16,
• 𝒜4 = {𝑒 ∶ ((∃𝑟.𝛢 ⊓ ∃𝑟.𝛣) ⊓ ∀𝑟.((∃𝑟.𝛢 ⊓ ∃𝑟.𝛣) ⊓ ∀𝑟.(∃𝑟.𝛢 ⊓ ∃𝑟.𝛣)))} with
size(𝒜4) = 19.

The exponential scaling of the size of the models with the size of the input
requires an exponential scaling in the number of reasoning steps. This results
in an exponential increase of run time, which can be recognised in the graph of
Figure 1. Each data-point corresponds to an average of 10 simulations. The data
is fit to an exponential function of the form:

𝑦 = 𝑎 ⋅ 𝑒𝑏⋅𝑥,
where 𝑎, 𝑏 are the parameters and 𝑒 is the exponential constant and has 𝑟2 = 0.9991,
indicating that the increase is indeed exponential.

SHARP is expected to be unable to handle ABoxes that have a bigger size than
𝒜4 above, as some list types may have insufficiently many slots. It is difficult to
determine the size limit beyond which SHARP fails, because different ABoxes
with the same size may overflow different list-types.

5.3.2 Polynomial scaling

The above situation is the worst possible scenario. In scenarios without AND-
branching the run time scales polynomially or even linearly with the input size.
To verify the polynomial scaling, we ran SHARP on the following ABoxes:

• 𝒜0 = {𝑎 ∶ 𝛢} with size(𝒜0) = 1,
• 𝒜1 = {𝑎 ∶ 𝛢, (𝑎, 𝑏) ∶ 𝑟, 𝑎 ∶ ∀𝑟.𝛣} with size(𝒜1) = 4,

66 • MODELLINg THE LOgIcAL MIND

Figure 1: Exponential scaling of simulation time with input size in case of AND-branching.

THE MODEL SHARp • 67

Figure 2: The less complex scenarios show polynomial scaling of the simulation time with
the input size.

• 𝒜2 = {𝑎 ∶ 𝛢, (𝑎, 𝑏) ∶ 𝑟, (𝑎, 𝑐) ∶ 𝑟, 𝑎 ∶ ∀𝑟.𝛣, 𝑎 ∶ ∀𝑟.𝐶} with size(𝒜2) = 7,
• 𝒜3 = {𝑎 ∶ 𝛢, (𝑎, 𝑏) ∶ 𝑟, (𝑎, 𝑐) ∶ 𝑟, (𝑎, 𝑑) ∶ 𝑟, 𝑎 ∶ ∀𝑟.𝛣, 𝑎 ∶ ∀𝑟.𝐶, 𝑎 ∶ ∀𝑟.𝐷}

with size(𝒜3) = 10,
• 𝒜4 = {𝑎 ∶ 𝛢, (𝑎, 𝑏) ∶ 𝑟, (𝑎, 𝑐) ∶ 𝑟, (𝑎, 𝑑) ∶ 𝑟, (𝑎, 𝑒) ∶ 𝑟, 𝑎 ∶ ∀𝑟.𝛣, 𝑎 ∶ ∀𝑟.𝐶, 𝑎 ∶ ∀𝑟.𝐷, 𝑎 ∶ ∀𝑟.𝛦}

with size(𝒜4) = 13.

For these ABoxes, the number of ∀-rule applications in the inconsistent()
algorithm grows quadratically with the size of the ABoxes. This results in a
quadratic scaling of run time. The time average of 10 simulations was taken for
each ABox and the resulting data was fit to the polynomial formula:

𝑦 = 𝑎 + 𝑏 ⋅ 𝑥 + 𝑐 ⋅ 𝑥2,
with 𝑎, 𝑏 and 𝑐 being the parameters. This resulted in Figure 5.3.2.

For the fit, we can report 𝑟2 = 0.9999, confirming the quadratic dependence
on input size.

68 • MODELLINg THE LOgIcAL MIND

5.3.3 Linear scaling

In some simple cases, the scaling is linear; to demonstrate this, we fed the ABoxes
below to SHARP, where the number of steps needed in the inconsistent() scales
linearly with the size of the ABox.

• 𝒜0 = {𝑎 ∶ 𝛢} with size(𝒜0) = 1,
• 𝒜1 = {𝑎 ∶ 𝛢, 𝑎 ∶ 𝛣} with size(𝒜1) = 2,
• 𝒜2 = {𝑎 ∶ 𝛢, 𝑎 ∶ 𝛣, 𝑎 ∶ 𝐶} with size(𝒜2) = 3,
• 𝒜3 = {𝑎 ∶ 𝛢, 𝑎 ∶ 𝛣, 𝑎 ∶ 𝐶, 𝑎 ∶ 𝐷} with size(𝒜3) = 4,
• 𝒜4 = {𝑎 ∶ 𝛢, 𝑎 ∶ 𝛣, 𝑎 ∶ 𝐶, 𝑎 ∶ 𝐷, 𝑎 ∶ 𝛦} with size(𝒜4) = 5.

SHARP ran 10 simulations on each ABox and the average simulation time
was taken as the data, on which a linear regression was made, using the formula:

𝑦 = 𝑎 + 𝑏 ⋅ 𝑥,
with 𝑎 and 𝑏 being the parameters. This resulted in Figure 3, for which we can
report 𝑟2 = 0.982, showing that the linear dependence on input size is a good
approximation to the run time, although slight deviations from the linear pattern
can be seen.

5.3.4 Future extensions

In the future, SHARP could be extended to simulate reasoning in description
logics stronger than 𝒜ℒℰ. In particular, the following non-exhaustive list of
suggestions contains constructors that can likely be incorporated into SHARP.

• Role intersection, 𝑟 ⊓ 𝑠. New role chunks need to be added with slots
that contain their sub-roles. SHARP can then reason with the sub-roles
separately.

• Role negation, ¬𝑟. A chunk type representing a list with all the role for-
mulas corresponding to 𝑟 needs to be added. SHARP can then retrieve
all role formulas not in that list.

• Role composition, 𝑟 ∘ 𝑠. The role formulas need to be extended to contain
the sub-formulas. SHARP can then derive those and reason about them
separately.

• Transitive closure of roles, 𝑟+. A similar construction as inModule5 needs
to be made, as formulas containing transitive closures of roles can never
be discarded. SHARP is then able to re-use these formulas when needed.

THE MODEL SHARp • 69

Figure 3: In some easy cases, there is a linear dependence of simulation time on the size
of the input.

70 • MODELLINg THE LOgIcAL MIND

• Role inverses, 𝑟−. New slots need to be added to store the inverse pair.
SHARP can then retrieve that pair from declarative memory and mark it
as derived.

• Number restrictions, ⩾ 𝑛𝑟 for a natural number 𝑛. SHARP needs a chunk
type to list the number of 𝑟- successors. It can then add as many as needed,
similar to what happens in Module4. Note that 𝑛 is now assumed to be
fixed.

• TBox formulas, 𝛢 ⊑ 𝛣 or 𝛢 ≡ 𝛣. A construction as in Module5 needs to
be made, because these formulas cannot be discarded. SHARP may then
infer formulas such as 𝑎 ∶ 𝛣 from 𝑎 ∶ 𝛢 and 𝛢 ⊑ 𝛣.

The above suggestions are necessarily a bit vague as they are not implemented
yet. Complex concept negations and concept unions are not in the list, as they
can probably not be implemented in SHARP: backtracking is needed and this
seems impossible in ACT-R, because it is impossible to erase chunks from the
declarative memory.

Moreover, SHARP could be extended to allow deep inference (Tubella and
Straßburger, 2019) and (Strannegård et al., 2013). Deep inference refers to
inference rules that apply to connectives other than the main connective. This
extension would most likely be quite involved, as the chunks representing the
formulas must have slots for all their subformulas.

Another way in which SHARP can be improved is by tweaking its subsym-
bolic parameters to make its output fit empirical data. The empirical data needed
for this step is planned to be collected in the near future, by measuring human
performance on the list of ABoxes in Section 6.2.8.

Based on the proposed methodology in (Dimov et al., 2020) multiple models
need to be made in order to compare their performance on data after fitting. This
will improve the performance of the final model and makes it easier to argue for
the modelling choices made.

In the literature there are indications that some inference steps are much
harder than others, e.g. trivial satisfaction of universal quantification (Horridge,
2011, p.245). This distinction is not directly made in SHARP, but it can be ad-
ded by associating rewards to the production rules. These rewards can in turn be
tweaked to make the model’s output fit the data thereby increasing its accuracy.

SHARP does not make use of the visual module, but this functionality could
be added to it. Adding this feature will make predictions perhaps more accurate,
as the order of formulas will likely affect inference time. Design choices in the
visual module could also be supported by eye-tracking measurements.

6 Predicting inference times with SHARP

The inference times that SHARP predicts are dependent on the subsymbolic
parameters in ACT-R, the values of which we do not know exactly. This means
that SHARP’s predicted inference times might deviate from experimental data,
because the parameters take the wrong settings. It is therefore important to
understand the distinction between SHARP’s quantitative predictions, i.e. the
exact inference times predicted, and the qualitative predictions, i.e. the more
general effects that are displayed in the simulated data. These qualitative effects
seem robust with respect to minor changes in the used ACT-R parameter values,
so they can be more easily empirically falsified. The quantitative predictions are
empirically weaker, because these are dependent on the exact parameter values,
which are not fixed, but can be adjusted post hoc for fitting to data.

6.1 Predicted effects
The graphs in this chapter serve to illustrate the qualitative effects found. We set
these subsymbolic parameters to the indicated values:

• utility noise = 0.2
• retrieval threshold = −0.05
• decay = 0.005 , default value: 0.5.
• instantaneous noise = 0.005, typical value: 0.25.

These values are rather different from the default values. They were chosen
such as to make SHARP’s output match the inference times we deemed realistic:
no formal criterion was used for this estimation, in particular there was no exper-
imental data to fit the parameter values to. We enabled base-level learning and
production compilation, but disenabled partial matching and utility learning.

In the following, unless otherwise indicated, 300 simulations were run on
each ABox. The data is presented in terms of kernel density estimations. These
estimations are non-parametric smoothings of the data, aimed to approximate
the underlying probability density function; they can be regarded as the continu-
ous analogues of histograms. They are made as follows, if (𝑥0, ..., 𝑥𝑛) is a certain
sample from a distribution we are interested in estimating, we calculate and plot
the function:

72 • MODELLINg THE LOgIcAL MIND

𝑓𝑏(𝑥) = 1
𝑛𝑏

𝑛
∑
𝑖=0

𝛫 (𝑥 − 𝑥𝑖
𝑏) ,

where 𝛫 is the so-called kernel. In our case, we used a gaussian kernel, where 𝛫
is given by:

𝛫(𝑥) = 1
√2𝜋

𝑒− 1
2 𝑥2 .

𝑓𝑏(𝑥) can be seen as the resulting function by summing over the kernels that
are evaluated at each data-point. Increasing 𝑏 increases the width of these kernels,
so that the influence of a data-point reaches further. In the limit of 𝑏 → 0, the
kernels become dirac delta distributions and the data is unsmoothed.

The Scikit Learn Python library was used to create the plots in this section;
the bandwidth of its KernelDensity function was set to 0.05 (which yielded
visually good results, no formal criterion was used); otherwise default settings
were used.

6.1.1 Statistical significance

According to (Troitzsch, 2014) and (White et al., 2013) statistical significance
of sample differences is considered less relevant than effect size when simulated
data is concerned. To illustrate this, let us imagine two populations that are dif-
ferent in some way. In principle, if we make sample sizes large enough, samples
can always be drawn from these populations that are statistically significantly
different. When it comes to empirical data, sample sizes this large are usually
unattainable because of budget constraints, deadlines, and other limitations.

In simulation experiments, on the other hand, there is much more control
over the sample size. Therefore, population differences, if they exist, can always
be made visible by making the sample sizes large enough, i.e. by running the sim-
ulation long enough. This makes the situation of two samples being statistically
significantly different less interesting.

So, rather than demonstrating that two samples are different, we will look at
how large this difference actually is and whether this is interesting. We therefore
estimate the relative difference of the means of two samples (𝑡𝑖) and (𝑠𝑖), expressed
as a percentage. This seems reasonable for our purposes, as we are interested in
the factor by which the inference time of one process exceeds the inference time
of another. The absolute differences are also reported and serve as illustrations.
The relative difference of the means is defined by:

pREDIcTINg INfERENcE TIMES wITH SHARp • 73

Figure 4: Changing element names does not affect inference times.

Δ((𝑡𝑖), (𝑠𝑖)) = mean({𝑡𝑖}) − mean({𝑠𝑖})
mean({𝑡𝑖}) .

We use IT𝒜𝑖
to denote the sample of simulated inference times corresponding

to 𝒜𝑖. The absolute differences reported below serve as illustrations.

6.1.2 Name dependence

𝒜ℒℰ has element names, concept names and role names. We are interested in
how renaming those things in a given ABox affects the predicted inference time,
in particular when the new name already appears elsewhere in the ABox. To
investigate the dependence on renaming element names, we ran simulations on
the following ABoxes:

• 𝒜0 = {𝑎 ∶ 𝛢, 𝑏 ∶ ¬𝛢, 𝑎 ∶ 𝛣}
• 𝒜1 = {𝑎 ∶ 𝛢, 𝑏 ∶ ¬𝛢, 𝑏 ∶ 𝛣}
• 𝒜2 = {𝑎 ∶ 𝛢, 𝑎 ∶ ¬𝛢, 𝑎 ∶ 𝛣}
• 𝒜3 = {𝑎 ∶ 𝛢, 𝑎 ∶ ¬𝛢, 𝑏 ∶ 𝛣}

Where the ABoxes are identical except for certain element names. 𝒜0 and
𝒜1 are consistent and the other two are inconsistent.

74 • MODELLINg THE LOgIcAL MIND

Figure 5: Changing concept names does not affect inference times.

The graph in Figure 4 shows that the inference times for 𝒜0 and 𝒜1 are very
similar, as are the inference times for the other two ABoxes.

More numerically, we get Δ(IT𝒜0
, IT𝒜1

) = 0.0% with the absolute difference
being 0 seconds. And Δ(IT𝒜2

, IT𝒜3
) = 1.2% with the absolute difference being

0.012 seconds.
This illustrates that when changing an element name in a given ABox without

changing its consistency, no interesting change in inference time is predicted.
This is not surprising from SHARP’s design, as it makes no distinction between
element names.

A similar pattern is seen with concept names. We used the following ABoxes:
• 𝒜0 = {𝑎 ∶ 𝛢, 𝑏 ∶ 𝛢, 𝑎 ∶ ¬𝛢}
• 𝒜1 = {𝑎 ∶ 𝛢, 𝑏 ∶ 𝛣, 𝑎 ∶ ¬𝛢}
• 𝒜2 = {𝑎 ∶ 𝛢, 𝑏 ∶ 𝛢, 𝑎 ∶ ¬𝛣}
• 𝒜3 = {𝑎 ∶ 𝛢, 𝑏 ∶ 𝛣, 𝑎 ∶ ¬𝛣}

Where again, these ABoxes are identical except for some concept names. The
first two ABoxes are inconsistent and the last two are consistent.

In Figure 5 no difference is visible between the two inconsistent ABoxes;
neither is there any substantial difference between the two consistent ABoxes.
This is numerically confirmed by the relative difference in the mean inference

pREDIcTINg INfERENcE TIMES wITH SHARp • 75

times: Δ(IT𝒜0
, IT𝒜1

) = −0.5% with an absolute difference of −0.005 seconds.
And Δ(IT𝒜2

, IT𝒜3
) = 0.0% with an absolute difference of 0.0 seconds.

This shows that renaming concepts, if it does not change the consistency of
the ABox, does not change inference time. Again this is to be expected on the
basis of SHARP’s design.

Things change, however, when it comes to role names. To investigate the
dependence of renaming roles, we used the following ABoxes:

• 𝒜0 = {𝑎 ∶ ∃𝑟.𝛢, 𝑎 ∶ ∀𝑟.¬𝛢, 𝑎 ∶ ∃𝑟.𝛣}
• 𝒜1 = {𝑎 ∶ ∃𝑟.𝛢, 𝑎 ∶ ∀𝑟.¬𝛢, 𝑎 ∶ ∃𝑠.𝛣}
• 𝒜2 = {𝑎 ∶ ∃𝑟.𝛢, 𝑎 ∶ ∀𝑠.¬𝛢, 𝑎 ∶ ∃𝑟.𝛣}
• 𝒜3 = {𝑎 ∶ ∃𝑟.𝛢, 𝑎 ∶ ∀𝑠.¬𝛢, 𝑎 ∶ ∃𝑠.𝛣}
• 𝒜4 = {𝑎 ∶ ∃𝑟.𝛢, 𝑎 ∶ ∀𝑟.¬𝛢, 𝑎 ∶ ∀𝑟.𝛣}
• 𝒜5 = {𝑎 ∶ ∃𝑟.𝛢, 𝑎 ∶ ∀𝑟.¬𝛢, 𝑎 ∶ ∀𝑠.𝛣}
• 𝒜6 = {𝑎 ∶ ∃𝑟.𝛢, 𝑎 ∶ ∀𝑠.¬𝛢, 𝑎 ∶ ∀𝑟.𝛣}
• 𝒜7 = {𝑎 ∶ ∃𝑟.𝛢, 𝑎 ∶ ∀𝑠.¬𝛢, 𝑎 ∶ ∀𝑠.𝛣}

The first four ABoxes are identical to each other, except for some role names.
The same holds for the last four ABoxes. The last four differ from the first only
in that their last formula is a universal instead of an existential restriction; this
is to investigate whether the effect of changing role names is dependent on the
type of restriction they occur under (universal or existential).

The results are plotted in Figure 6. More quantitatively, we have:
• Δ(IT𝒜0

, IT𝒜1
) = −4.7%, with an absolute difference of −0.31 seconds.

• Δ(IT𝒜2
, IT𝒜3

) = −8.2%, with an absolute difference of −0.48 seconds.
• Δ(IT𝒜4

, IT𝒜5
) = 13.9%, with an absolute difference of 0.91 seconds.

• Δ(IT𝒜6
, IT𝒜7

) = −12.7%, with an absolute difference of −0.74 seconds.
It makes a difference whether a role name is the same as another, or differ-

ent from all the others, even when the consistency of the ABox is not affected
by it. On average we see that the ABoxes with one universal restrictions have
longer inference times than the ones with two universal restrictions. Moreover,
the ABoxes with only one universal restriction show a wider spread in inference
times.

6.1.3 Order insensitivity

The order in which the formulas of the ABox are presented does not affect the
inference time. To demonstrate this effect, we ran simulations on the following
ABoxes:

76 • MODELLINg THE LOgIcAL MIND

Figure 6: Changing role names does affect inference times non-trivially.

• 𝒜0 = {𝑎 ∶ 𝛢 ⊓ 𝛣, 𝑎 ∶ 𝐶}
• 𝒜1 = {𝑎 ∶ 𝐶, 𝑎 ∶ 𝛢 ⊓ 𝛣}
• 𝒜2 = {𝑎 ∶ 𝛢 ⊓ 𝛣, 𝑎 ∶ ¬𝛢}
• 𝒜3 = {𝑎 ∶ ¬𝛢, 𝑎 ∶ 𝛢 ⊓ 𝛣}

The first two ABoxes are consistent and differ only in the order of their for-
mulas; the other two ABoxes are inconsistent and also have different formula
orders. The insensitivity of order can be seen in Figure 7.

The first two ABoxes yield Δ(IT𝒜0
, IT𝒜1

) = 0.0%, with an absolute differ-
ence of 0.0 seconds. For the second two, we get: Δ(IT𝒜2

, IT𝒜3
) = −1.0%, with

an absolute difference of −0.022 seconds. SHARP seems therefore insensitive
to changing the order of formulas. From SHARP’s design, this effect is not sur-
prising, as all formulas in the ABox are fed to the model at once and the only
distinction made in selecting the formula chunks is based on their activation.

Secondly, the order in which conjunctions are presented does not affect in-
ference time. To demonstrate this, we fed SHARP the following ABoxes:

• 𝒜0 = {𝑎 ∶ 𝛢 ⊓ 𝛣, 𝑎 ∶ 𝛣}
• 𝒜1 = {𝑎 ∶ 𝛣 ⊓ 𝛢, 𝑎 ∶ 𝛣}
• 𝒜2 = {𝑎 ∶ 𝛢 ⊓ 𝛣, 𝑎 ∶ ¬𝛣}
• 𝒜3 = {𝑎 ∶ 𝛣 ⊓ 𝛢, 𝑎 ∶ ¬𝛣}

pREDIcTINg INfERENcE TIMES wITH SHARp • 77

Figure 7: The order of presenting the formulas does not affect the inference time.

The first two are consistent and differ only in the order of the conjuncts in
the first formula. The second two ABoxes are inconsistent and differ again only
in the order of the conjuncts of the first formula.

Figure 8 shows no different inference time between the first two, and very sim-
ilar difference in inference times between the second two ABoxes. More quantit-
atively speaking, we have Δ(IT𝒜0

, IT𝒜1
) = 0.0%, with an absolute difference of

0.002 seconds. For the inconsistent ABoxes, we have: Δ(IT𝒜2
, IT𝒜3

) = −0.6%,
with an absolute difference of −0.015 seconds.

These small differences are not interesting, so we conclude that the order in
which the conjuncts are given is irrelevant for predicting the inference time.

6.1.4 Insensitivity to negations

SHARP is insensitive to negations in the sense that a positive and negated atomic
concepts are both processed equally easily. To show this effect, we observed
SHARP’s output on the following ABoxes:

• 𝒜0 = {𝑎 ∶ 𝛢, 𝑎 ∶ 𝛣}
• 𝒜1 = {𝑎 ∶ ¬𝛢, 𝑎 ∶ ¬𝛣}
• 𝒜2 = {𝑎 ∶ 𝛢 ⊓ 𝛣}
• 𝒜3 = {𝑎 ∶ ¬𝛢 ⊓ ¬𝛣}

78 • MODELLINg THE LOgIcAL MIND

Figure 8: Conjunction order does not affect inference time.

• 𝒜4 = {𝑎 ∶ ∃𝑟.𝛢}
• 𝒜5 = {𝑎 ∶ ∃𝑟.¬𝛢}

All the ABoxes above are consistent. 𝒜0 differs from 𝒜1 in that the con-
cepts appears negated. The same holds for 𝒜2 and 𝒜3 and for 𝒜4 and 𝒜5
respectively.

Figure 9 indicates that it makes no difference to SHARP whether a concept
appears negated or not. This is to be expected based on the inner workings
of SHARP: retrieval requests when looking for a clash in Module1 make no
distinction between positive and negative atomic concepts.

In quantitative terms, we have Δ(IT𝒜0
, IT𝒜1

) = 0.0% with an absolute dif-
ference of 0.0 seconds. And Δ(IT𝒜2

, IT𝒜3
) = 0.0% with an absolute difference

of 0.001 seconds. And lastly Δ(IT𝒜4
, IT𝒜5

) = 0.0% with an absolute difference
of 0.0 seconds.

6.1.5 Nesting sensitivity

SHARP predicts that the inference time is highly dependent on how the prim-
itive concepts are nested in conjunctions. For this subsection, we need the fol-
lowing useful definition.

Definition 6.1.1. Two ABoxes 𝒜 and ℬ are concept-equivalent if and only if

pREDIcTINg INfERENcE TIMES wITH SHARp • 79

Figure 9: Whether atomic concepts are negated or not does not affect inference times.

there exists an ABox 𝒞 that is a complete ABox corresponding to both 𝒜 and
ℬ.

The definition says that in concept-equivalent ABoxes, every element satisfies
the same concepts in both ABoxes.

Deeply nested concepts can only be inferred after the more shallowly nested
concepts have been inspected. We therefore expect that a deeply nested clash
is found after a longer time than a shallowly nested clash. To demonstrate this
effect, SHARP’s outputs on the following ABoxes are compared.

• 𝒜0 = {𝑎 ∶ ((𝛢 ⊓ ¬𝛢) ⊓ (𝛣 ⊓ 𝐶))}
• 𝒜1 = {𝑎 ∶ ((𝛢 ⊓ 𝛣) ⊓ (¬𝛢 ⊓ 𝐶))}
• 𝒜2 = {𝑎 ∶ (𝛢 ⊓ (¬𝛢 ⊓ (𝛣 ⊓ 𝐶)))}
• 𝒜3 = {𝑎 ∶ (𝛢 ⊓ (𝛣 ⊓ (¬𝛢 ⊓ 𝐶)))}
• 𝒜4 = {𝑎 ∶ (𝛣 ⊓ (𝛢 ⊓ (¬𝛢 ⊓ 𝐶)))}
• 𝒜5 = {𝑎 ∶ (𝛣 ⊓ (𝐶 ⊓ (¬𝛢 ⊓ 𝛢)))}

These ABoxes are inconsistent and are all concept-equivalent. The first two
differ from the rest in terms of the nesting structure of the conjunctions, they
differ from each other in terms of how the clashing concepts are distributed in
the conjunctions. The last four ABoxes also differ from each other in terms of
how the clashing concepts are distributed in the conjunctions.

80 • MODELLINg THE LOgIcAL MIND

Figure 10: Nesting affects the inference times.

After feeding the ABoxes to SHARP, we get Figure 10.
The data shows varying inference times, despite concept-equivalence. Com-

paring 𝒜0 with 𝒜1 gives Δ(IT𝒜0
, IT𝒜1

) = 31.0%, the difference in absolute
terms being 1.05 seconds. This difference can be explained by the fact that the
clash in 𝒜0 can be derived after two inference steps, whereas the clash in 𝒜1
needs three inference steps. Moreover, 𝒜0 allows the clash to be derived after
three steps, which creates the second peak.

Comparing 𝒜1 with 𝒜3, we get Δ(IT𝒜1
, IT𝒜3

) = 7.7%, with the absolute
difference being 0.342 seconds. This difference is present because SHARP looks
for a clash among primitive concepts – i.e. it starts Module1 – as soon as it de-
rives any formula of the form 𝑎 ∶ 𝐶 with 𝐶 a primitve concept name. In reasoning
from 𝒜3, SHARP runsModule1 an extra time compared to when SHARP reas-
ons from 𝒜1, making the inference time longer.

Comparing 𝒜2 with 𝒜5, we get Δ(IT𝒜2
, IT𝒜5

) = 51.1%, with the absolute
difference being 1.56 seconds. This is again explained by the fact that SHARP
has to make three inference steps when reasoning on 𝒜5, whereas it (precisely)
needs two reasoning steps when reasoning from 𝒜2.

When we compare 𝒜3 with 𝒜4, we get Δ(IT𝒜3
, IT𝒜4

) = 2.2%, with the
absolute difference being 0.108 seconds. This relatively small difference is ex-
plained by the fact that, in the case of 𝒜3, the chunk representing the formula

pREDIcTINg INfERENcE TIMES wITH SHARp • 81

𝑎 ∶ 𝛢 has been retrieved twice from declarative memory when the clash is de-
rived. In the case of 𝒜4, however, it has been retrieved only once when the
clash is derived. This means that the activation of the chunk representing 𝑎 ∶ 𝛢
is slightly higher in the case of 𝒜3, making it easier to retrieve the clash. For
both ABoxes, the number of reasoning steps are the same. This shows that the
chunks’ activation has a nontrivial, albeit little, effect on inference time.

One might expect humans to be less susceptible to these nesting effects, as
they are able to reason with deep inference rules (Tubella and Straßburger, 2019).
These rules, however, can hardly be implemented in SHARP’s production rules;
indeed, such an implementation necessitates formulas represented by chunks
with slots for all the formula’s subformulas.

6.1.6 Time scaling with input size

As we saw in the previous chapter, AND-branching is what makes reasoning
in 𝒜ℒℰ difficult. SHARP’s run time was seen to scale exponentially with the
input size, and it is therefore not surprising that the inference time also scales
exponentially with input size in the case of AND-branching. To test this, we
used the following ABoxes.

• 𝒜 = {𝑎 ∶ ∃𝑟.𝛢 ⊓ ∃𝑟.𝛣} with size(𝛢) = 5,
• ℬ = {𝑏 ∶ ∃𝑟.(∃𝑟.𝛢 ⊓ ∃𝑟.𝛣) ⊓ ∃𝑟.𝛣} with size(𝛣) = 9,
• 𝒞 = {𝑐 ∶ (∃𝑟.𝛢 ⊓ ∃𝑟.𝛣) ⊓ ∀𝑟.(∃𝑟.𝛢 ⊓ ∃𝑟.𝛣)} with size(𝐶) = 12,
• 𝒟 = {𝑑 ∶ (∃𝑟.𝛢 ⊓ ∃𝑟.𝛣) ⊓ ∀𝑟.(∃𝑟.(∃𝑟.𝛢 ⊓ ∃𝑟.𝛣) ⊓ ∃𝑟.𝛣)} with size(𝐷) = 16,
• ℰ = {𝑒 ∶ ((∃𝑟.𝛢 ⊓ ∃𝑟.𝛣) ⊓ ∀𝑟.((∃𝑟.𝛢 ⊓ ∃𝑟.𝛣) ⊓ ∀𝑟.(∃𝑟.𝛢 ⊓ ∃𝑟.𝛣)))} with
size(𝛦) = 19.

The models corresponding to each ABox have a binary tree structure with 3,
5, 7, 11 and 15 nodes respectively. Twenty simulations were run on each of the
ABoxes above. The data is fit to the formula:

𝑦 = 𝑎 ⋅ 𝑒𝑏⋅𝑥,
with parameters 𝑎, 𝑏. The data and the fit are shown in Figure 11.

We reach 𝑟2 = 0.971 (with parameter values 𝑎 = 1.678, 𝑏 = 0.195) indicating
an exponential increase in inference time with increasing input size. ABoxes ℬ
and 𝒟 have a slightly lower inference time than might be expected compared
to the inference times of the other ABoxes. This happens because the relatively
inefficient Module5 is invoked fewer times.

82 • MODELLINg THE LOgIcAL MIND

Figure 11: The inference time roughly scales exponentially with the input size in the case
of AND-branching, showing a similar scaling as the simulation time in Figure
1.

pREDIcTINg INfERENcE TIMES wITH SHARp • 83

Figure 12: The nesting of clashing concepts affects the spread of inference times.

Moreover, we expect polynomial and linear time scaling of the inference time
for the sets of ABoxes used to show these respective scalings for the simulation
time in sections 5.3.2 and 5.3.3.

6.1.7 Spreading

As mentioned earlier, the run is the order of formulas that are created in infer-
ence steps by SHARP. Some ABoxes allow multiple different runs. For incon-
sistent ABoxes these runs generally correspond to different inference times: a
clash can be found quickly, or more slowly if formulas that do not give rise to
the clash are inspected in between. It can therefore be expected that inconsistent
ABoxes that allow for multiple different runs have a greater spread in inference
times than concept-equivalent ABoxes that allow fewer runs. This effect can be
demonstrated by applying SHARP to the following ABoxes.

• 𝒜0 = {𝑎 ∶ (𝛢 ⊓ (𝛣 ⊓ (𝐶 ⊓ (𝐷 ⊓ ¬𝛢))))},
• 𝒜1 = {𝑎 ∶ (𝛢 ⊓ 𝛣), 𝑎 ∶ (𝛣 ⊓ 𝐶), 𝑎 ∶ (𝐶 ⊓ 𝐷), 𝑎 ∶ (𝐷 ⊓ ¬𝛢)}.

The ABoxes are concept-equivalent, but the second one allows for multiple
different runs, whereas the first one allows for only one run.

In Figure 12, the second ABox shows indeed more spread in inference time
than the first. The standard deviation of the distribution corresponding to 𝒜0

84 • MODELLINg THE LOgIcAL MIND

Figure 13: Making inferences on existential restrictions before universal restrictions is
faster.

is 0.31 seconds, whereas the standard deviation of the 𝒜1 distribution is 1.60
seconds.

6.1.8 ∃ before ∀
SHARP does not conclude anything from a universal restriction 𝑎 ∶ ∀𝑟.𝐶 if there
is no corresponding role formula (𝑎, 𝑏) ∶ 𝑟 in its memory. So if the role formula
is concluded from an existential restriction 𝑎 ∶ ∃𝑟.𝐷, the order in which SHARP
inspects 𝑎 ∶ ∀𝑟.𝐶 and 𝑎 ∶ ∃𝑟.𝐷 affects the inference time. Inspecting the existential
restriction before the universal restriction therefore reduces the inference time.

We demonstrate this with the following ABox: 𝒜 = {𝑎 ∶ ∀𝑟.𝛢, 𝑎 ∶ ∃𝑟.¬𝛢},
for which the simulation results for its two runs are shown in Figure 13.

Run0 is the run where the universal restriction is inspected first, then the ex-
istential restriction, and then the universal restriction again to derive the formula
𝑥 ∶ 𝛢, where 𝑥 was introduced in the previous inference step.

Comparing Run0 with Run1, we get Δ(ITRun0
, ITRun1

) = 16.3%, with the
absolute difference being 0.66 seconds.

It will be difficult to verify this effect experimentally, because the order of
inspected formulas is likely not an easy thing to measure. This order might be
influenced by the order in which the formulas are presented to the subject, but

pREDIcTINg INfERENcE TIMES wITH SHARp • 85

this is mere speculation at this point, as based on SHARP, the order does not
affect the reasoning process.

6.1.9 The role of decay

The more recently a formula is derived the less its chunk’s activation has decayed.
This means that recently derived formulas have chunks with a relatively high
activation, meaning that they are more likely to be retrieved and are retrieved
more quickly. We expect this mechanism to give different inference times for
different runs. The decrease of a chunk’s activation is determined by the decay
parameter, the true value of which we don’t know, so that the size of these effects
is difficult to predict.

To demonstrate this effect, we ran SHARP on the following ABox:

𝒜0 = {𝑎 ∶ (𝛢 ⊓𝛼 (𝛣 ⊓𝛽 𝐶)), 𝑎 ∶ (𝐷 ⊓𝛾 (𝛦 ⊓𝛿 ¬𝐶))}
We have labelled the connectives to define the runs; the greek letters designate

the connectives that the inference steps are made on.
For 𝒜0, we have the following runs:
• Run0 = 𝛼 - 𝛽 - 𝛾 - 𝛿
• Run1 = 𝛼 - 𝛾 - 𝛿 - 𝛽
• Run2 = 𝛼 - 𝛾 - 𝛽 - 𝛿
• Run3 = 𝛾 - 𝛿 - 𝛼 - 𝛽
• Run4 = 𝛾 - 𝛼 - 𝛽 - 𝛿
• Run5 = 𝛾 - 𝛼 - 𝛿 - 𝛽

To compare the runs, we use the following definition.

Definition 6.1.2. Let 𝜙 or {𝜙0, 𝜙1} be the result of an inference step SHARP
made, where 𝜙 and at least one of 𝜙0, 𝜙1 is a complex formula. If SHARP makes
the next inference step on a formula 𝜓 different from 𝜙, 𝜙0 or 𝜙1, we say that
SHARP made a switch.

This definition captures the situation of SHARP reasoning with a formula
different from one it has just derived.

We ran 3994 simulations and categorised the data based on the number
of switches. So we group together the data from Run0 and Run3 (with zero
switches), as well as the data from Run1 and Run4 (with one switch) and also
the data from Run2 and Run5 (with two switches).

86 • MODELLINg THE LOgIcAL MIND

Figure 14: The number of switches only slightly affects inference time, but it affects the
likelihood of the runs quite profoundly (not displayed in graph)

The groups are rather different in size: 3357 (84.1%) for zero, 529 (13.2%)
for one, 108 (2.7%) for two switches.

So in short, the more switches, the less likely the run. This effect should be
attributed to the decay, because only the decay causes differences in the activation
of the chunks, which in turn determines the retrieval probability of the chunk.

This effect will be difficult to test experimentally, as the order of the formulas
inspected can probably only be obtained from introspection, the accuracy of
which is questionable.

Figure 14 shows that different runs also have moderately different inference
times. We find: Δ(IT0Switches, IT1Switch) = 0.1%, with the absolute difference
being 0.008 seconds, meaning groups 0 and 1 amount to the same inference
times. And we get Δ(IT0Switches, IT2Switches) = 2.1%, with the absolute difference
being 0.15 seconds.

The difference in time is not caused by the decay, but by the fact thatModule1
searches through different numbers of formulas in the different runs. More spe-
cifically, in Run0, after 𝛼 Module1 only looks at one atom, namely: 𝑎 ∶ 𝛢. After
𝛽 it looks at three atoms, after 𝛾 it looks at four, and after 𝛿 it looks at six. This
totals to 14 atoms inspected in Module1. On the other hand, in Run1, after 𝛼
Module1 looks at one formula, then after 𝛾 it looks at two atoms, after 𝛿 it looks

pREDIcTINg INfERENcE TIMES wITH SHARp • 87

at four, and after 𝛽 it looks at six. This number totals only 13; the same holds
for Run2 and similarly for the other three runs. So because the atoms are derived
later, Module1 has to look through fewer atoms in total, resulting in a shorter
inference time.

Under some assumptions we can estimate the size of the effect the decay
has on inference time. For a default Latency factor of 𝐹 = 1.0 and the used
decay value of 𝑑 = 0.005, two chunks that are retrieved at times 𝑡1 = 1.0 and
𝑡2 = 2.0 respectively have, according to 𝛢𝑖 = ln 𝑡−𝑑

𝑖 , activations: 𝛢1 = 0.0 and
𝛢2 = −0.00347. This means that their retrieval times, according to 𝛵𝑖 = 𝐹𝑒−𝛢𝑖

are: 𝛵1 = 1.0 s and 𝛵2 = 0.997 s, so that the absolute difference in their retrieval
times is: Δ𝛵 = 0.003, i.e. too small to be of interest to us. This difference is
also smaller than the statistical accuracy with which we estimate inference times.
This statistical accuracy can be estimated, under some further assumptions. If
the data is distributed according to a gaussian, the standard error of the mean
is given by 𝜎SEM = 𝜎

√𝑛 , where 𝑛 is the sample size. If we want 𝜎SEM to equal
Δ𝛵 = 0.003, assuming the standard deviation is typically 0.5 s, we need a sample
size of 𝑛 = (0.5

0.003)2 ≈ 27800, which is bigger than our samples.
It should be noted that the size of this effect, to a first order approximation,

scales linearly with the decay. For example, if we consider chunks that have had
only one presentation, the retrieval time difference can be approximated linearly
by the formula: 𝛵2 − 𝛵1 = 𝐹(𝑒𝛢2 − 𝑒𝛢1) = 𝐹(𝑡−𝑑

2 − 𝑡−𝑑
1) ≈ 𝐹 𝑑

𝑑𝑡 (𝑡−𝑑)|𝑡2
Δ𝑡 =

−𝐹𝑑𝑡−𝑑−1
2 Δ𝑡. Considering that the default value of 𝑑 is much higher than the

value we used, it is then expected that the effect of inference time depending on
run is more pronounced: in the above example, with a decay value of 0.5, we
would get an absolute retrieval time difference of 0.29 s.

6.2 Complexity measures
The complexity of the ABox consistency problem can be analysed in two ways:
by using some notion of proofs, or by using no such thing. We call the first kind
proof-complexity measures and the second kind entailment-complexity measures.

A proof-complexity measure can be used to define a complexity measure on
entailments by calculating some aggregate score (e.g. the mean) from (a subset
of) all of the proof-complexity values of the entailment’s proofs. Note that we
don’t call such a complexity measure on entailments an entailment-complexity
measure, as it uses the notion of a proof in some way. Conversely, an entailment-
complexity measure can be used to define a proof-complexity measure by looking
at the entailment of the proof, abstracting away from the proof ’s deduction rule

88 • MODELLINg THE LOgIcAL MIND

applications.
Several different complexity measures exist in the literature (Alrabbaa et al.,

2020a), although it is not immediately clear if they accurately measure the cognit-
ive complexity; they are briefly discussed in the following. Then two complexity
measures based on SHARP are defined. We hypothesize that SHARP, because
it is designed to simulate human reasoning, will yield a complexity measure that
accurately estimates the cognitive complexity of an ABox inconsistency problem.

6.2.1 Naive measures

These naive measures (Strannegård et al., 2013) are easy to compute and are
primarily based on simple features of the ABoxes.

• size(𝒜), the size of 𝒜 as defined in Definition 4.1.1,
• #∃∀(𝒜), the number of restrictions that appear in 𝒜,
• #¬(𝒜), the number of negations that appear in 𝒜,
• #Elm(𝒜), the number of elements in a model of 𝒜,
• #Rel(𝒜), the number of relations in a model of 𝒜.

These measures are all entailment-complexity measures, as no formal proofs
are used in their definitions.

6.2.2 Measures based on formal proof

We found two proof-complexity measures in the literature (Strannegård et al.
(2013), Section 6). They were originally defined for other logics, but can be
easily adapted to 𝒜ℒℰ):

• Len𝑝𝑟𝑓(𝒜), the proof length, i.e. the number of deduction steps in the
shortest proof.

• Size𝑝𝑟𝑓(𝒜), the proof size, i.e. Σ𝑖Size(𝜙𝑖), where 𝑖 numbers each formula
in the shortest proof and in case of multiple shortest proofs, Size𝑝𝑟𝑓(𝒜)
is minimised.

The idea of these measures is that the human reasoner forms the proof in
their mind, so that the cognitive complexity scales with the complexity of that
proof, regardless of whether it is the length, or the size of that proof.

6.2.3 Least-time

For each run, the (arithmetic) mean inference time is computed; the least of
these forms the least-time complexity measure CMSRP

𝑙𝑠𝑡 . This is a proof-complexity

pREDIcTINg INfERENcE TIMES wITH SHARp • 89

measure, because it is based on a run. This measure is well-defined because the
logistic distribution has a well-defined mean and the mean of a linear combina-
tion of random variables is well-defined; SHARP’s predicted inference times are
distributed according to a linear combination of logistic distributions. SHARP,
being a simulation, can only be used to estimate the least-time complexity value,
rather than compute it. By the law of large numbers, this measure can be ap-
proximated well: the estimate’s precision scales with 1

√𝑛 , where 𝑛 is the number
of simulations. The measure thus defined assumes that the inconsistency prob-
lem is not more difficult than the cognitively easiest way of solving it, where
again cognitively easiest means that it takes least inference time. This measure is
therefore suitable for modelling human reasoning in which clever heuristics are
used.

6.2.4 Average-time

The average-time complexity measure CMSRP
𝑎𝑣𝑔 estimates the complexity of an ABox

inconsistency problem by SHARP’s (arithmetic) mean inference time. As above,
this complexity measure is well-defined. It is a proof-complexity measure, as
it is dependent on runs. In case of multiple runs with each a different average
inference time, each run contributes to the cognitive complexity value, weighted
by the likelihood of the run. This complexity measure models human reasoning
in which clever heuristics play a less prominent role.

6.2.5 Linear Combination

Another complexity measure in (Strannegård et al., 2013) is: CMlc, a linear
combination of size(𝒜), #Elm(𝒜) and the product size(𝒜) ⋅ #Elm(𝒜), with
coefficients fitted to data.

More formally, CMlc = 𝛽0
lc + 𝛽1

lc ⋅ size(𝒜) + 𝛽2
lc ⋅ #Elm(𝒜) + 𝛽3

lc ⋅ size(𝒜) ⋅
#Elm(𝒜), with 𝛽𝑖

lc (for 𝑖 ∈ {0, 1, 2, 3}) the coefficients to be estimated. We
fitted these coefficients to the average-time complexity and got an adjusted R-
squared of 0.575 with coefficient values 𝛽0

lc = −0.955, 𝛽1
lc = 0.631, 𝛽2

lc = 0.650,
and 𝛽3

lc = −0.0311. An assumption is here that the average-time complexity
correlates sufficiently with empirical data, so that it can be thought of as fitted
to empirical data.

Note that CMlc is an entailment-complexity measure because no proofs are
used in its definition; that the measure is here fitted to data from a proof-complexity
measure is considered irrelevant, because the measure is supposed to be fitted to
empirical data. The found coefficients are difficult to interpret when the average-

90 • MODELLINg THE LOgIcAL MIND

time complexity is taken as resembling how humans actually reason: somehow
the base-level expected time is negative, which means we could positively gain
time by solving ABox consistency problems with empty ABoxes; a very strange
situation indeed.

6.2.6 Average Inference Step time (AIS)

This complexity measure is based on the idea that each deduction rule takes a
certain average time to complete; it is a proof-complexity measure. The inference
time for a certain ABox can then be approximated by summing the average times
of the deduction rules used in the proof. More precisely, the ⊓-rule, the ∃-rule
and the ∀-rule are performed in average times 𝑡⊓, 𝑡∃ and 𝑡∀ respectively. The
formula:

𝛵AIS = 𝑡0 + 𝑡⊓𝛮⊓ + 𝑡∃𝛮∃ + 𝑡∀𝛮∀

Then gives the approximated inference time. Here, 𝛮𝑖 is the (average) num-
ber of times the 𝑖-rule is used in the proof(s) for 𝑖 ∈ {⊓, ∃, ∀} and 𝑡0 is interpreted
as the time it takes to find a clash if no inference steps have to be performed.

If for example a certain proof is formed by one ∃-rule-application and one
∀-rule-application (i.e. 𝛮⊓ = 0, 𝛮∃ = 1, 𝛮∀ = 1), the time of this deduction is
approximated by 𝑡 = 𝑡0 + 𝑡∃ + 𝑡∀.

This complexity measure does not take into account that the time a certain de-
duction rule application takes might depend on the stage of solving the problem
nor on the formula it is applied to.

The parameters 𝑡0, 𝑡⊓, 𝑡∃ and 𝑡∀ are approximated by a multilinear regression
to the average-time complexity. In case an entailment allows multiple different
runs, the (arithmetic) mean number of rule applications are used for the fit,
without using weights for the likelihood of the runs.

The SKlearn library was used for calculating the statistics; its linear regression
function minimises the residual sum of squares between the model and the data.
Again we assume that the average-time complexity correlates well with empirical
data, so that this linear combination would give similar results as when it is fitted
to empirical data. The coefficients found are: 𝑡0 = 3.62 s, 𝑡⊓ = 1.59 s, 𝑡∃ = 0.941 s
and 𝑡∀ = 0.270 s.

To determine the quality of the fit, we compute the adjusted coefficient of
determination (adjusted R-squared) as follows:

pREDIcTINg INfERENcE TIMES wITH SHARp • 91

𝑅2
𝑎𝑑𝑗 = 1 − (1 − 𝑅2)(𝛮 − 1)

𝛮 − 𝑝 − 1 ,

where 𝛮 is the sample size and 𝑝 is the degrees of freedom, i.e. the number of
parameters in the fit. The adjusted R-squared is smaller than or equal to the
R-squared and corrects for the number of parameters in the fit. Adding more
parameters does not automatically give a better adjusted R-squared (even though
it always will give a better R-squared). We can report an adjusted R-squared of:
𝑅2

𝑎𝑑𝑗 = 0.770, indicating that the AIS complexity measure is only able to replicate
the average-time complexity to a moderate extent.

It seems unlikely that the ⊓-rule takes more time than the ∀-rule, but that it
would be almost 6 times longer is truly hard to believe; so although this measure
is easy to interpret in principle, the concrete values it yields are problematic
explainability-wise.

This unexpected difference is caused by many runs invoking the ∀-rule more
often than needed. Namely, SHARP can at any time execute the ∀-rule, even if
there is no corresponding role formula so that it does not yield anything. Some
runs therefore have many ∀-rule-applications with each one contributing little
to the inference time.

6.2.7 SHARP simplified

It is desirable to have an accurate and simple-to-calculate complexity measure
that closely resembles the least- or average-time complexity measures above. The
least- and average-time complexity measures are not accurately estimated by the
other measures, as can be seen in the table below. We therefore tried to find a
linear combination of certain syntactic features that gives the highest adjusted R-
squared value. This means we optimised for both accurate prediction and having
few features.

This was done by calculating the adjusted R squared for the following list of
features: number of conjunctions, number of existential restrictions, number of
universal restrictions, number of total restrictions, number of clashes, number of
elements in a model, size, the product of size and number of elements, number
of roles, number of negations, proof lengths. The least predictive features were
then removed from the fit one by one until removing further features decreased
the adjusted R squared. The result is the following linear combination of the
number of conjunctions, size, number of quantifiers and proof length (this last
one makes the measure a proof-complexity one):

92 • MODELLINg THE LOgIcAL MIND

CMSRP
𝑠𝑚𝑝 = 𝛽0 + 𝛽1 ⋅ 𝛮⊓ + 𝛽2 ⋅ size + 𝛽3 ⋅ #∃∀ + 𝛽4 ⋅ Len𝑝𝑟𝑓,

with the following coefficient values: 𝛽0 = 2.70 s, 𝛽1 = 0.756, 𝛽2 = 0.751,
𝛽3 = −0.429, 𝛽4 = 0.827.

We can report an adjusted R-squared of 0.844, which is not surprisingly a
substantial improvement in comparison with the linear combination and AIS.
Even so, this measure leaves a significant gap between its values and the ones it
is designed to estimate. Moreover, CMSRP

𝑠𝑚𝑝 is difficult to interpret: the negative
coefficient for the number of quantifiers makes explanation especially hard, but
it is also difficult to explain why it is precisely these syntactic features that are
relevant and how they combine to give the complexity value.

6.2.8 Comparing different measures

To compare the different complexity measures, it would not suffice to compare
their values on one ABox only: a set of ABoxes is needed that somehow forms
a representative sample of the description logic 𝒜ℒℰ. To draw a representative
sample from the population of ABoxes is difficult, as this population is infinite
and has arbitrarily long formulas and ABoxes. We are not equally interested
in every ABox, so some practical boundaries have to be drawn. Inspired by
the technique of stratified sampling (Thompson, 2020), we attempt to create
a sample representative of 𝒜ℒℰ in two steps. As a first step, we generated 30
quintuples (𝛸1, 𝛸2, 𝛸3, 𝛸4, 𝛸5) of random natural numbers. The numbers were
all distributed uniformly, but in different ranges, namely 𝛸1 in range (3-20), 𝛸2
in range (0-5), 𝛸3 in range (0-5), 𝛸4 in range (0-2) and 𝛸5 in range (0-1). These
random variables are then interpreted as follows:

• 𝛸1: the size of an ABox
• 𝛸2: the number of existential and universal restrictions occuring in an

ABox
• 𝛸3: the number of negations occuring in an ABox
• 𝛸4: the degree of superfluousness, if 0 then every formula is needed to

derive the clash, if 1 a third of the formulas is not needed to derive the
clash, if 2, half of the formulas are not needed to derive the clash

• 𝛸5: the number of clashes in the ABox

Step two is to construct an ABox that satisfies the constraints of the tuple,
a construction which is still somewhat arbitrary. Moreover, in some cases no
ABox could be found, e.g. there is no ABox satisfying 𝛸1 = 3 and 𝛸3 = 5; the
created ABox was then chosen to stay as close to the constraints as possible. We

pREDIcTINg INfERENcE TIMES wITH SHARp • 93

hope that this two step approach yielded a sample that can be considered in some
sense representative for the logic 𝒜ℒℰ. The result of the above process is, where
a ∗ indicates inconsistency:

• 𝒜0 = {𝑎 ∶ 𝛢, 𝑏 ∶ ¬𝛢, 𝑎 ∶ ¬𝛣}
• 𝒜1 = {𝑎 ∶ ∃𝑟.∀𝑠.∃𝑟.∀𝑡.¬𝛢}
• 𝒜∗

2 = {𝑎 ∶ 𝛢, 𝑎 ∶ ¬𝛢, 𝑏 ∶ ∀𝑟.𝛢}
• 𝒜3 = {𝑎 ∶ (𝛢 ⊓ (¬𝛣 ⊓ (𝐶 ⊓ 𝐷))), 𝑎 ∶ 𝐷}
• 𝒜4 = {𝑎 ∶ ∀𝑟.∃𝑠.∃𝑟.¬𝛢, 𝑏 ∶ ∀𝑠.¬𝛣}
• 𝒜5 = {𝑎 ∶ (𝛢 ⊓ ¬𝛣), 𝑏 ∶ (¬𝐶 ⊓ ¬𝐷), 𝑎 ∶ ¬𝐶}
• 𝒜6 = {𝑎 ∶ ∀𝑟.∃𝑠.(¬𝛢 ⊓ ¬𝛣), 𝑏 ∶ ¬𝛢, 𝑐 ∶ ¬𝛣}
• 𝒜∗

7 = {𝑎 ∶ ∃𝑟.𝛢, 𝑎 ∶ ∀𝑟.¬𝛢, 𝑏 ∶ ∀𝑠.(𝛣 ⊓ 𝛢)}
• 𝒜∗

8 = {𝑎 ∶ ∃𝑟.∃𝑠.¬𝛢, ∀𝑟.∀𝑠.𝛢, ∃𝑠.¬𝛣}
• 𝒜9 = {𝑎 ∶ ¬𝛢, 𝑎 ∶ ¬𝛣, 𝑏 ∶ ¬𝐶, 𝑏 ∶ ¬𝛢, 𝑐 ∶ ¬𝛢, 𝑐 ∶ 𝛣}
• 𝒜∗

10 = {𝑏 ∶ ∀𝑟.∀𝑠.∃𝑠.¬𝛢, (𝑎, 𝑏) ∶ 𝑟, 𝑏 ∶ ∃𝑠.∀𝑠.𝛢}
• 𝒜∗

11 = {𝑎 ∶ ∃𝑟.(𝛢 ⊓ (𝛣 ⊓ ¬𝛢)), 𝑏 ∶ ∀𝑟.∃𝑠.∃𝑡.(𝛣 ⊓ ¬𝐶)}
• 𝒜12 = {𝑏 ∶ ¬𝐷, (𝑎, 𝑏) ∶ 𝑟, 𝑎 ∶ ∃𝑠.(¬𝛢 ⊓ (¬𝛣 ⊓ (¬𝐶 ⊓ 𝐷)))}
• 𝒜∗

13 = {𝑎 ∶ ∀𝑟.∃𝑠.¬𝛣, 𝑏 ∶ ∀𝑠.(¬𝛢 ⊓ (¬𝐶 ⊓ 𝛣)), (𝑎, 𝑏) ∶ 𝑟}
• 𝒜∗

14 = {𝑎 ∶ ∀𝑟∃𝑠.¬𝛣, (𝑎, 𝑏) ∶ 𝑟, 𝑏 ∶ ∀𝑠.𝛣, 𝑎 ∶ ¬𝛢, 𝑏 ∶ 𝛣}
• 𝒜∗

15 = {𝑎 ∶ ∃𝑟.𝛢, 𝑎 ∶ ∀𝑟.¬𝛢, 𝑏 ∶ ∃𝑠.𝛣, 𝑏 ∶ ∀𝑠.𝛢, (𝑏, 𝑎) ∶ 𝑠}
• 𝒜∗

16 = {𝑎 ∶ ∃𝑟.¬𝛢, 𝑎 ∶ ∀𝑟.(𝛢 ⊓ ¬𝛣), 𝑏 ∶ ∃𝑟.¬𝛣, 𝑎 ∶ ¬𝐶, 𝑎 ∶ 𝛣}
• 𝒜17 = {𝑎 ∶ (¬𝛢 ⊓ (𝛣 ⊓ ¬𝐶)), 𝑏 ∶ (¬𝛣 ⊓ (𝐶 ⊓ 𝛢)), 𝑏 ∶ (𝛢 ⊓ 𝐶), 𝑎 ∶ 𝛣}
• 𝒜18 = {𝑎 ∶ ∀𝑟.∀𝑠.(𝛢 ⊓ ¬𝛣), (𝑎, 𝑏) ∶ 𝑟, (𝑏, 𝑐) ∶ 𝑠, 𝑐 ∶ 𝛢, 𝑏 ∶ 𝛣}
• 𝒜19 = {𝑎 ∶ ∀𝑟.∃𝑠.∀𝑡.¬𝛣, 𝑏 ∶ (¬𝐶 ⊓ ∃𝑟.(¬𝛣 ⊓ 𝛢)), 𝑐 ∶ ∃𝑠.∃𝑡.𝛣}
• 𝒜∗

20 = {𝑎 ∶ ∀𝑟.∃𝑠.∃𝑡.(¬𝛢 ⊓ 𝛣), (𝑎, 𝑏) ∶ 𝑟, 𝑏 ∶ ∀𝑠.∀𝑡.(¬𝛣 ⊓ ¬𝐶)}
• 𝒜∗

21 = {𝑎 ∶ (𝛢 ⊓ ¬𝛣), 𝑏 ∶ (𝐶 ⊓ ¬𝛢), 𝑎 ∶ (¬𝛣 ⊓ (𝐶 ⊓ ¬𝛢)), 𝑏 ∶ (𝐶 ⊓ (𝐷 ⊓ 𝛣))}
• 𝒜∗

22 = {𝑎 ∶ ∀𝑟.∃𝑟.∀𝑠.¬𝛢, (𝑎, 𝑏) ∶ 𝑟, 𝑏 ∶ ∀𝑟∃𝑠.(¬𝛣 ⊓ (¬𝐷 ⊓ (¬𝐶 ⊓ 𝛢)))}
• 𝒜∗

23 = {𝑎 ∶ ∀𝑟.∃𝑟.∃𝑠.∃𝑡.(¬𝛢 ⊓ (¬𝐶 ⊓ (¬𝛣 ⊓ (¬𝐷 ⊓ (¬𝛦 ⊓ 𝛢))))), (𝑎, 𝑏) ∶ 𝑟}
• 𝒜∗

24 = {𝑎 ∶ ∀𝑟.(𝛢 ⊓ (𝛣 ⊓ ¬𝐶)), (𝑎, 𝑐) ∶ 𝑟, 𝑐 ∶ (¬𝛣 ⊓ ¬𝐶), 𝑏 ∶ ¬𝛢, 𝑏 ∶ ∃𝑟.𝛢}
• 𝒜25 = {𝑎 ∶ ∀𝑟.(𝛢⊓¬𝛣), 𝑏 ∶ ∃𝑟.(𝛢⊓(𝛣⊓𝐶)), 𝑐 ∶ (𝛢⊓𝛣), (𝑏, 𝑐) ∶ 𝑠, (𝑐, 𝑑) ∶ 𝑟}
• 𝒜26 = {𝑎 ∶ ∃𝑟.(𝛢⊓¬𝛣), 𝑏 ∶ ∀𝑠.∃𝑡.¬𝐶, 𝑐 ∶ ∀𝑟.(𝛣⊓¬𝛢), 𝑏 ∶ (𝐶⊓¬𝐷), (𝑎, 𝑏) ∶ 𝑠}
• 𝒜27 = {𝑎 ∶ ∀𝑟.(𝛣 ⊓ ∀𝑠.¬𝛢), (𝑎, 𝑏) ∶ 𝑟, 𝑏 ∶ ∃𝑠.(𝛢 ⊓ 𝛣), 𝑏 ∶ ∀𝑟.(¬𝛢 ⊓ (𝛣 ⊓

∀𝑠.𝛢))}
• 𝒜∗

28 = {𝑎 ∶ ∀𝑟.∀𝑠.(𝛢⊓¬𝛣), (𝑎, 𝑏) ∶ 𝑟, (𝑏, 𝑐) ∶ 𝑠, 𝑐 ∶ 𝛣, 𝑏 ∶ ∃𝑟.∃𝑟.(𝛢⊓𝛣), 𝑏 ∶ ∀𝑠.𝛣}

94 • MODELLINg THE LOgIcAL MIND

• 𝒜∗
29 = {𝑎 ∶ ∀𝑠.(¬𝛢 ⊓ 𝛣), (𝑏, 𝑎) ∶ 𝑟, 𝑏 ∶ ∀𝑟.∃𝑠.(𝛢 ⊓ 𝛣), 𝑐 ∶ (¬𝛣 ⊓ 𝐶), 𝑎 ∶ (𝛣 ⊓

¬𝐶), (𝑏, 𝑐) ∶ 𝑠}
In the tables below the complexity measures can be compared; the first one

contains the entailment-complexity measures and the second one the proof-complexity
measures.

From the tables we can conclude that the simpler complexity measures on
the ABox inconsistency problem seem to make rather coarse distinctions and
seem not to correlate much with CMSRP

𝑎𝑣𝑔 or CMSRP
𝑙𝑠𝑡 . Under the assumption that

CMSRP
𝑎𝑣𝑔 and CMSRP

𝑙𝑠𝑡 correlate well with the cognitive complexity, the simpler
complexity measures seem unsuitable for estimating the latter. If we, moreover,
take into account the parameter values we get from the fits, then the explanatory
value, even for AIS, is still more reduced as the results are absurd, however high
the quality of the fit.

This means, firstly, that SHARP simulates processes in a way that is not easily
reproduced by simple calculations. Secondly, the SHARP complexity measures
stand out in their explanatory value compared to the other complexity measures
as they both are easy to interpret.

pREDIcTINg INfERENcE TIMES wITH SHARp • 95

ABox size #∃∀ #¬ #Elm #Rel CMlc
𝒜0 5 0 2 2 0 3.19
𝒜1 6 4 1 1 0 3.29
𝒜2 5 1 1 2 0 3.19
𝒜3 9 0 1 1 0 5.09
𝒜4 8 4 2 2 0 4.90
𝒜5 11 0 4 2 0 6.60
𝒜6 11 2 4 3 0 6.91
𝒜7 9 3 1 3 1 5.83
𝒜8 10 5 2 5 3 7.05
𝒜9 11 0 5 3 0 6.91
𝒜10 9 5 1 4 3 6.20
𝒜11 14 4 2 3 1 8.52
𝒜12 14 1 4 3 2 8.52
𝒜13 13 3 3 3 2 7.98
𝒜14 10 3 2 3 2 6.37
𝒜15 10 4 1 4 3 6.71
𝒜16 15 3 5 4 2 9.24
𝒜17 17 0 3 2 0 10.0
𝒜18 10 2 1 3 2 6.37
𝒜19 16 6 3 6 3 10.1
𝒜20 15 5 3 4 3 9.24
𝒜21 20 0 4 2 0 11.7
𝒜22 18 5 4 4 3 10.8
𝒜23 21 4 5 5 4 12.3
𝒜24 17 2 4 4 2 10.3
𝒜25 16 2 1 5 3 9.90
𝒜26 19 4 4 4 2 11.3
𝒜27 19 5 2 3 2 11.2
𝒜28 16 5 1 5 4 9.90
𝒜29 20 3 3 4 3 11.8

Table 1: The entailment-complexity measures

96 • MODELLINg THE LOgIcAL MIND

ABox Len𝑝𝑟𝑓 Size𝑝𝑟𝑓 CMSRP
𝑎𝑣𝑔 CMSRP

𝑙𝑠𝑡 𝛵ps CMSRP
𝑠𝑚𝑝

𝒜0 0 0 3.56 3.56 3.62 4.21
𝒜1 1 6 3.08 3.06 4.83 2.57
𝒜2 0 3 0.853 0.853 3.62 3.78
𝒜3 3 17 8.66 8.66 8.38 8.20
𝒜4 0 0 2.62 2.61 4.16 2.49
𝒜5 2 9 7.83 7.81 6.79 7.37
𝒜6 0 0 3.59 3.59 3.89 4.10
𝒜7 2 9 4.92 4.34 5.46 5.32
𝒜8 4 17 7.80 5.89 7.25 7.62
𝒜9 0 0 5.54 5.54 3.62 4.96
𝒜10 5 23 8.20 7.44 7.42 7.70
𝒜11 3 17 4.88 3.56 8.16 7.23
𝒜12 4 32 10.2 10.2 9.32 10.1
𝒜13 5 28 8.04 7.53 9.08 9.32
𝒜14 4 14 7.78 7.76 5.64 6.98
𝒜15 2 9 8.01 5.47 6.47 5.65
𝒜16 3 16 8.31 6.00 7.45 7.66
𝒜17 5 23 14.7 14.0 11.5 12.1
𝒜18 3 20 7.82 7.81 6.28 7.34
𝒜19 5 22 11.4 9.60 10.6 10.3
𝒜20 7 46 9.11 7.95 8.73 10.1
𝒜21 3 18 10.0 4.45 11.7 10.5
𝒜22 8 62 12.5 10.8 12.9 12.4
𝒜23 9 138 14.2 12.5 15.6 16.0
𝒜24 4 26 9.71 6.66 9.70 10.4
𝒜25 4 17 11.1 9.60 10.1 11.2
𝒜26 3 13 9.89 8.10 9.22 7.98
𝒜27 5 27 9.18 6.68 9.46 8.46
𝒜28 3 20 6.56 4.64 8.89 7.97
𝒜29 5 26 11.1 6.90 11.5 11.2

Table 2: The proof-complexity measures

7 Conclusion

Explanations are essential elements in many areas of human experience. It is diffi-
cult to define what makes a good explanation, but we proposed as a way forward
the criterion of cognitive load: an explanation is best when it explains the fact by
posing the lowest cognitive load on the user. With this idea in mind we looked
at knowledge base debugging – a widely occurring activity in industry that is
often deemed difficult, even for experienced users – and found much literature
on how to optimise this debugging process, although connections with cognitive
theory are often weak. This prompted the exploration of using cognitive archi-
tectures to model the reasoning process that takes place during debugging. It
resulted in the ACT-R model SHARP which simulates symbolic human reason-
ing, more specifically: the 𝒜ℒℰ ABox inconsistency algorithm. With the model
we can predict certain (qualitative) effects such as: renaming elements and con-
cepts does not affect inference time while renaming roles does; certain formulas
show a higher spread in inference times; reasoning from an existential restriction
before a universal restriction is more time-efficient; and more. Quantitative ef-
fects are more difficult to predict in absence of empirical data for fine-tuning the
model’s subsymbolic parameters.

Based on this model we defined two different complexity measures on logical
entailments. It is expected that these complexity measures estimate the cognit-
ive complexity of the 𝒜ℒℰ ABox inconsistency task to a reasonable extent. It
seemed difficult to reproduce the same results of the measures by simpler calcu-
lations, showing that SHARP’s simulations are non-trivial.

The approach taken seems unique in that it forges a strong connection between
the symbolic reasoning necessary for debugging of knowledge bases on the one
hand and cognitive psychology on the other. Moreover, the use of a cognitive ar-
chitecture for this purpose is unique and can be considered an improvement over
using other theories of reasoning such as the mental models theory and the men-
tal rules theory for two reasons: claims about the inner workings of the reasoning
process are more explicit, and the predictions made with the model are more pre-
cise. In creating the model it was necessary to violate a basic recommendation
well-known in the cognitive modelling community: that chunks should have a
small number of slots. In fact, SHARP uses chunks with a number of slots too

98 • MODELLINg THE LOgIcAL MIND

great to be considered realistic. These large chunks were, however, considered ne-
cessary for modelling the task at hand. This could on the one hand indicate that
logic is very difficult for humans, but on the other hand it could indicate that
the cognitive architecture ACT-R is unable to model a least one basic cognitive
mechanism.

SHARP is not claimed to be a perfect model; far from it, as there are many
ways in which SHARP may be improved. One such way is that the subsymbolic
parameters can (and should) be optimised to fit empirical data. Currently, in ab-
sence of empirical data, it is very difficult to judge whether simulation data out-
put by SHARP is empirically accurate. In the future, experiments are planned
to yield empirical data such that these subsymbolic parameters can be fine-tuned.
A further possible improvement is that rewards could be used to make some reas-
oning steps easier than others; this would reflect better what we see in practice.
Lastly, visual processes could be incorporated in the simulation. The ACT-R
architecture allows for this, but in creating the current version of SHARP none
such processes were considered. It would allow modelling how the order of
presenting the formulas in the given ABox might affect inference time (SHARP
currently and counterintuitively shows no such order effect).

The model can also be extended in certain ways. Stronger logics than 𝒜ℒℰ
can be considered for this, although one has to keep in mind that not all de-
scription logics can be modelled, as discussed earlier. Among the extensions
considered in Section 5.3.4 are number restrictions, various role constructors
and TBox formulas. The latter might be the most desired extension, as much
literature on description logic reasoning deals with TBoxes. It is expected that
for this, a construction is necessary similar to the one in Module 5 for modelling
reasoning with universal restrictions, as TBox formulas can never be discarded.

Another way in which SHARP may be extended is by using deep rules of
inference. Such rules may lie closer to how humans reason and could therefore
improve performance of the model.

As mentioned before, an experiment is planned to verify the predictions made
with SHARP; a draft of its design can be found in the Appendix. The accuracy
of SHARP will be determined after fitting its output to the experiment’s data by
fine-tuning the subsymbolic parameters.

The values of any complexity measure based on SHARP are computationally
difficult to obtain, so approximation by a simpler model is desired. As linear
regression does not seem to be able to approximate SHARP’s output accurately
– indeed, strong non-linear effects are expected – symbolic regression is proposed

cONcLuSION • 99

as a more viable alternative as, it proved quite succesful in (Udrescu and Teg-
mark, 2020). In short, this type of regression does not make any assumption
on the structure of the desired algebraic expression, only that it is an algebraic
expression. The loss function to be minimised consists of an error term, which
measures the discrepancy with the data, and a complexity term, which meas-
ures the complexity of the found algebraic expression. In this way, the trade-off
between predictive accuracy and model parsimony is optimised.

Assuming the above will result in a complexity measure on description logic
entailments, the measure can be used Horridge’s algorithm for finding justifica-
tion based proofs.

Appendix

The following experimental design is a draft and needs some improvements.

Introduction and Goals

The goal of this experiment is to verify the predictions made with the model
SHARP. This will either give us trust in the model, or give specific pointers on
how to improve it.

Participants

The sample consists of international participants (both women and men) re-
cruited from the logic master program of the University of Gothenburg, aged
between 20 and 45. Most participants have no experience with description logic
nor with the description logic 𝒜ℒℰ in particular. We offered ... as a reward for
participating in the experiment.

Material

To the participants we present a representative selection of ABoxes via a computer
sceen using LimeSurvey. The selection of ABoxes should be able to identify all
the effects that we predicted with the model SHARP in section 6.1. They are
presented in symbolic form to reduce any semantic effects.

Procedure and Tasks

The experiment is conducted in English. Firstly, the participants get an intro-
duction to the description logic 𝒜ℒℰ. This introduction discusses the syntax
and semantics, as well as the syntax expansion rules from section 4.2. Moreover,
the notion of a clash is explained and some common pitfalls such as trivial sat-
isfaction of universal restriction formulas. The participants are encouraged to
be precise in their reasoning and to make as few mistakes as possible, while not
taking too much time to think.

The participants are then asked some basic demographic information. They
then get two practice cases to make sure what is expected of them and to reduce
learning effects; they are encouraged to ask questions in case they have any. Par-

102 • MODELLINg THE LOgIcAL MIND

ticipants can at any moment in between two ABox presentations decide to take
a break, to reduce fatigue effects. At the moment of presenting an ABox to the
participant, a stopwatch is started and stopped at the moment the participant
presses a key: ‘i’ for inconsistent, ‘c’ for consistent and ‘n’ for not able to decide.
After each such decision is made, the participant is asked to score the experienced
difficulty of the ABox inconsistency task on a Likert-scale. The participants are
not allowed to use pen, paper or other tools.

Hypotheses

The hypotheses follow from the simulation results in section 6.1, namely:

• Inference time does not depend on concept or element names,
• Inference time depends on role names,
• The order in which formulas are presented does not affect inference time,
• Whether concepts are negated or not does not affect inference time,
• Inference time is dependent on how concepts are nested, as explained in

section 10,
• Inference time scales linearly, polynomially or exponentially with the size

of the ABox, depending on which formulas the ABox contains,
• Certain formulas show a spreading effect in inference time.

Apart from the above hypotheses, we are interested in the relationship between
inference time and error rate; about this relationship we assume the null-hypothesis
that there is no correlation. Two hypotheses made by SHARP are not tested:
how inference time is affected by the order of inferring from universal and exist-
ential restrictions respectively, and that runs with more switches are less likely to
occur. Perhaps a later experiment could be performed to test for these effects.

References

(2023a). Act-r publications and models. http://act-r.psy.cmu.edu/publication/.
Accessed: 2022-12-15.

(2023b). Act-r software. http://act-r.psy.cmu.edu/software/. Accessed: 2022-12-
15.

Adler, J. E. and Rips, L. (2008). Reasoning: Studies of human inference and its foundations.
Cambridge University Press, Cambridge.

Alrabbaa, C., Baader, F., Borgwardt, S., Koopmann, P., and Kovtunova, A. (2020a). On the
complexity of finding good proofs for description logic entailments. In Proceedings of the
33rd International Workshop on Description Logics, volume 33, pages 1–19. CEUR.

Alrabbaa, C., Baader, F., Borgwardt, S., Kovtunova, A., and Koopmann, P. (2020b). Find-
ing small proofs for description logic entailments: Theory and practice. LPAR-23: 23rd
International Conference on Logic for Programming, Artificial Intelligence and Reasoning,
73:32–67. arXiv:2004.08311.

Alrabbaa, C., Borgwardt, S., Hirsch, A., Knieriemen, N., Kovtunova, A., Rothermel, A. M.,
and Wiehr, F. (2022). In the head of the beholder: Comparing different proof represent-
ations.

Anderson, J. R. (2005). Human symbol manipulation within an integrated cognitive archi-
tecture. Cognitive Science, 29(3):313–341.

Anderson, J. R. (2007). How Can the Human Mind Occur in the Physical Universe? Oxford
University Press, Oxford.

Anderson, J. R. and Bower, G. H. (1973). Human associative memory. Winston and Sons,
Washington.

Anderson, J. R. and Byrne, M. D. (2004). An integrated theory of the mind. Psychological
Review, 111(4):1036–1060.

Anderson, J. R., Fincham, J. M., Qin, Y., and Stocco, A. (2008). A central circuit of the
mind. Trends in Cognitive Sciences, 12(4):136–143.

Andrews, A. D. (1993). Mental models and tableau logic. Behavioural and Brain Sciences,
16:334.

Andrews, G. and Halford, G. S. (2002). A cognitive complexity metric applied to cognitive
development. Cognitive Psychology, 45:153–219.

Baader, F., Calvanese, D., McGuinness, D., Nardi, D., and Patel-Schneider, P. (2003). De-
scription Logic Handbook. Cambridge University Press, Cambridge.

Baader, F., Horrocks, I., Lutz, C., and Sattler, U. (2017). An introduction to Description Logic.
Cambridge University Press, Cambridge.

http://act-r.psy.cmu.edu/publication/
http://act-r.psy.cmu.edu/software/

104 • MODELLINg THE LOgIcAL MIND

Baader, F., Peñaloza, R., and Suntisrivaraporn, B. (2007). Pinpointing in the description logic
ℰℒ+. KI 2007, pages 52–67.

Baader, F. and Peñaloza, R. (2007). Axiom pinpointing in general tableaux. In Olivetti,
N., editor, Automated Reasoning with Analytic Tableaux and Related Methods. TABLEAUX
2007, volume 4548 of Lecture Notes in Computer Science(), pages 11–27, Berlin, Heidel-
berg. Springer Verlag.

Baader, F. and Peñaloza, R. R. (2010). Axiom pinpointing in general tableaux. Journal of
Logic and Computation, 20.

Baader, F. and Suntisrivaraporn, B. (2008). Debugging SNOMED CT using axiom pin-
pointing in the description logic ℰℒ+. In Proceedings of the 3rd Knowledge Representation
in Medicine (KR-MED’08): Representing and Sharing Knowledge Using SNOMED, volume
410 of CEUR-WS.

Barrouillet, P. and Lecas, J. F. (2000). Illusory inferences from a disjunction of conditionals:
a new mental models account. Cognition, 76(2):167–173.

Bonatti, L. (1994). Propositional reasoning by model? Psychological Review, 101(4):725–733.

Brachman, R. J. and Levesque, H. J. (1984). The tractability of subsumption in frame-based
description languages. In AAAI-84 Proceedings.

Brachman, R. J. and Schmolze, J. G. (1985). An overview of the kl-one knowledge repres-
entation system. Cognitive Science, 9:171–216.

Braine, M. D. S. (1993). Mental models cannot exclude mental logic and make little sense
without it. Behavioural and Brain Sciences, 16:338.

Brasoveanu, A. and Dotlačil, J. (2020). Computational Cognitive Modeling and Linguistic
Theory, volume 6. Springer Open, Cham, Switzerland.

Bundy, A. (1993). ‘semanti procedure’ is an oxymoron. Behavioural and Brain Sciences,
16:339.

Cohen, L. J. (1993). Some difficulties about deduction. Behavioural and Brain Sciences,
16:341.

Colyvan, M. J. (2012). Introduction to the Philosophy of Mathematics. Cambridge University
Press, Cambridge.

Colyvan, M. J. and McQueen, K. (2018). Two flavours of mathematical explanation. In Re-
utlinger, A. and Saatsi, J., editors, Explanation beyond Causation, pages 231–249. Oxford
University Press, Oxford.

Cornet, R. and de Keizer, N. (2008). Forty years of snomed: a literature review. BMC Medical
Informatics and Decision Making, 8(1).

Cox, J. R. and Griggs, R. A. (1982). The effects of experience in wason’s selection task. Memory
and Cognition, 10(5):496–502.

de Giacomo, G. and Lenzerini, M. (1994). Boosting the correspondence between description
logics and propositional dynamic logics. Proceedings of the 12th National Conference on
Artificial Intelligence, pages 205–212.

Diakopoulos, N. (2014). Algorithmic accountability: Journalistic investigation of computa-

REfERENcES • 105

tional power structure. Digital Journalism, 3(3):398–415.

Dimov, C., Khader, P. H., Marewski, J. N., and Pachur, T. (2020). How to model the
neurocognitive dynamics of decision making: A methodological primer with act-r. Beha-
vior Research Methods, 52:857–880.

Donini, F., Hollunder, B., Lenzerini, M., Speccamela, A. M., Nardi, D., and Nutt, W. (1991).
The complexity of existential quantification in concept languages. Technical Report RR-
91-02, Deutsches Forschungszentrum für Künstliche Intelligenz GmbH.

Donini, F., Lenzerini, M., Nardi, D., and Schaerf, A. (1994). Deduction in concept languages
from subsumption to instance checking. Journal of Logic and Computation, 4(4):423–452.

Engström, F., Nizamani, A. R., and Strannegård, C. (2014). Generating comprehensible
explanations in description logic. 27th International Workshop on Description Logics.

EU (2016). Regulation 2016/679 - protection of natural persons with regard to the processing
of personal data and on the free movement of such data, and repealing directive 95/46/ec
(general data protection regulation).

Feilmayr, C. and Wöß, W. (2016). An analysis of ontologies and their success factors for
application to business. Data and Knowledge Engineering, 101.

Garnham, A. (1993). Some difficulties about deduction. Behavioural and Brain Sciences,
16:350.

Goel, V. (2007). Anatomy of deductive reasoning. Trends in cognitive sciences, 1(10):435–441.

Goel, V., Buchel, C., Frith, C., and Dolan, R. J. (2000). Dissociation of mechanisms under-
lying syllogistic reasoning. Neuroimage, 12(5):504–514.

Gruber, T. R. (1993). Toward principles for the design of ontologies used for knowledge
sharing. International Journal of Human-Computer Studies, 43(5-6).

Halford, G. S., Wilson, W. H., and Phillips, S. (2010). Relational knowledge: the foundation
of higher cognition. Trends in Cognitive Sciences, 14(11):497–505.

Hanna, G., Jahnke, H. N., and Pulte, H. (2010). Explanation and Proof in Mathematics.
Philosophical and Educational Perspectives. Springer, New York.

Harari, O. (2008). Proclus’ account of explanatory demonstrations in mathematics and its
context. Mathematics and its Context, 90(2):137–164.

Hayes-Roth, F. and Waterman, D. A. (1983). Building expert Systems. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA.

Herman, I. (2010). Why owl and not wol?

Hodges, W. (1993). The logical content of theories of deduction. Behavioural and Brain
Sciences, 16:353.

Horridge, M. (2011). Justification Based Explanation in Ontologies. PhD thesis, University of
Manchester, Manchester.

Horridge, M., Bail, S., Parsia, B., and Sattler, U. (2013). Toward cognitive support for owl
justifications. Knowledge-Based Systems, 53.

Horridge, M., Parsia, B., and Sattler, U. (2009). Lemmas for justifications in owl. In Grau,
B., Horrocks, I., Motik, B., and Sattler, U., editors, Proceedings of the 22nd International

106 • MODELLINg THE LOgIcAL MIND

Workshop on Description Logics (DL 2009), volume 477 of CEUR Workshop Proceedings.
CEUR-WS.org.

Horridge, M., Parsia, B., and Sattler, U. (2010). Justification oriented proofs in owl. In The
Semantic Web - ISWC 2010 - 9th International Semantic Web Conference, ISWC.

Horrocks, I., Ruttenberg, A., Hawke, S., and Herman, I. (2023). Owl working group.

Ilkou, E. and Koutraki, M. (2020). Symbolic vs sub-symbolic ai methods: Friends or en-
emies? In Conrad, S. and Tiddi, I., editors, CIKMW2020: Proceeding of the CIKM 2020
Workshops, volume 2699. CEUR.

Johnson-Laird, P. N. (2010). Mental models and human reasoning. PNAS, 107(43):18243–
18250.

Juvina, I. and Taatgen, N. A. (2009). A repetition-suppression account of between-trial effects
in a modified stroop paradigm. Acta Psychologica, 131:72–84.

Karplus, K. (1999). Algorithm description.

Kitcher, P. (1989). Explanatory unification and the causal structure of the world. In Scientific
Explanation, volume XIII, pages 410–505. University of Minnesota Press, Minneapolis.

Kontopoulos, E., Bassiliades, N., and Antoniou, G. (2010). Visualizing semantic web proofs
of defeasible logic in the dr-device system. Knowledge-Based Systems, 24(3):406–419.

Kotseruba, I. and Tsotsos, J. K. (2020). 40 years of cognitive architectures: core cog-
nitive abilities and practical applications. Artificial Intelligence Review, 53:17–94.
https://doi.org/10.1007/s10462-018-9646-y.

Kulesza, T., Burnett, M., Wong, W.-K., and Stumpf, S. (2015). Principles of explanatory
debugging to personalize interactive machine learning. Proceedings of the 20th International
Conference on Intelligent User Interfaces, pages 126–137.

Lange, M. (2017). Because Without Cause: Non-causal Explanations in Science and Mathem-
atics. Oxford University Press, Oxford.

Lewis, M. W., Milson, R., and Anderson, J. R. (1987). Artificial Intelligence and Instruc-
tion, chapter The teacher’s apprentice: Designing an intelligent authoring system for high
school mathematics. Addison-Wesley, Reading, MA.

Lockey, S., Gillespie, N., Holm, D., and Someh, I. A. (2021). A review of trust in artificial
intelligence: Challenges, vulnerabilities and future directions. In Proceedings of the 54th
Hawaii International Conference on System Sciences, HICSS.

Mancosu, P. (2018). Explanation in mathematics. Stanford Encyclopedia of Philosophy.

Marr, D. (1982). Vision: A Computational Investigation into the Human Representation and
Processing of Visual Information. W.H. Freeman, San Francisco, CA.

McGuinness, D. L. (1996). Explaining Reasoning in Description Logics. PhD thesis, Rutgers
University, New Jersey.

McGuinness, D. L. and van Harmelen, F. (2004). Owl web ontology language overview.

Miller, T. (2019). Explanation in artificial intelligence: Insights from the social sciences.
Artificial intelligence, 267:1–38.

Minsky, M. (1974). A framework for representing knowledge. The Psychology of Computer

REfERENcES • 107

Vision.

Müller, V. E., Bassiliades, N., and Antoniou, G. (2011). Ethics of artificial intelligence and
robotics. The Stanford Encyclopedia of Philosophy.

Newell, A. (1992). Précis of unified theories of cognition. The behavioural and brain sciences,
15(3):425–437. doi:10.1017/S0140525X00069478.

Newell, A., Shaw, J. C., and Simon, H. A. (1959). report on a general problem solving
program.

Newstead, S. E., Handley, S. J., and Buck, E. (1999a). Falsifying menatl models: Testing the
predictions of theories of syllogistic reasoning. Memory and Cognition, 27(2):344–354.

Newstead, S. E., Handley, S. J., and Buck, E. (1999b). Falsifying mental models: testing the
predictions of theories of syllogistic reasoning. Memory and cognition, 27(2):344–354.

Nunokawa, K. (2010). Proof, mathematical problem-solving, and explanation in mathemat-
ics teaching. In Explanation and Proof in Mathematics, pages 223–236. Springer, Boston.

O’Brien, D. P., Braine, M. D. S., and Yang, Y. (1994). Propositional reasoning by mental
models? simple to refute in principle and in practice. Psychological Review, 101(4):711–
724.

PARLIAMENT, T. E. and UNION, T. C. O. T. E. (2016). Regulation (eu) 2016/679 of
the european parliament and of the council. Official Journal of the European Union.

Paseau, A. (2010). Proofs of the compactness theorem. History and Philosophy of Logic, 31:73–
98.

Petrillo, F., Soh, Z., Khomh, F., Pimenta, M., Freitas, C., and Guéhéneuc, Y.-G. (2016).
Towards understanding interactive debugging. 2016 IEEE International Conference on
Software Quality, Reliability and Security (QRS).

Peñaloza, R. (2019). Explaining axiom pinpointing. Description Logic, Theory Combination,
and All That.

Peñaloza, R. and Sertkaya, B. (2017). Understanding the complexity of axiom pinpointing
in lightweight description logics. Artificial Intelligence, 250.

Powers, D. M. W. (1983). Robot intelligence. School of Electrical Engineering. unable to find.

Powers, D. M. W. (1990). Bibliographies and literature reviews: Goals, issues and directions
in machine learning of natural language and ontology. ACM SIGART Bulletin.

Raussen, M. and Skau, C. (2004). Interview with michael atiyah and isadore singer. EMS
Newsletter, 53:24–30.

Ribeiro, M. T., Singh, S., and Guestrin, C. (2016). ”why should i trust you?”: Explaining
the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’16, page 1135–1144, New
York, NY, USA. Association for Computing Machinery.

Rips, L. (1994). Psychology of proof: deductive reasoning in human thinking. MIT Press,
Cambridge, Massachusetts.

Robinson, J. A. (2000). Proof = guarantee + explanation. In Hölldobler, S., editor, Intellectics
and Computational Logic, pages 277–294. Kluwer, Dordrecht.

108 • MODELLINg THE LOgIcAL MIND

Schaerf, A. (1993). On the complexity of the instance checking problem in concept languages
with existential quantification. Journal of Intelligent Information Systems, 2:265–278.

Schild, K. (1991). A correspondence theory for terminological logics: Preliminary report.
Proceedings of the 12th International Conference on Artificial Intelligence, pages 466–471.

Schlobach, S. (2004). Explaining subsumption by optimal interpolation. European Workshop
on Logics in Artificial Intelligence.

Schlobach, S. and Cornet, R. (2003). Non-standard reasoning services for the debugging of
description logic terminologies. IJCAI.

Schmidt-Schauß, M. and Smolka, G. (1991). Attributive concept descriptions with comple-
ments. Artificial Intelligence, 48:1–26.

Shortliffe, E. H. and Buchanan, B. G. (1975). A model of inexact reasoning in medicine.
Mathematical Biosciences, 23(3-4):351–379.

Sloutsky, V. M. and Goldvarg, Y. (2004). Mental representation of logical connectives.
The Quarterly Journal of Experimental Psychology A: Human Experimental Psychology,
57A(4):636–665.

Sowa, J. F. (2000). Knowledge Representation: Logical, Philosophical, and Computational
Foundations. Pacific Grove: Brooks / Cole.

Steiner, M. (1978). Mathematical explanation. In Philosophical Studies, volume 34, pages
135–151. Springer, Dordrecht.

Stenning, K. and van Lambalgen, M. (2008). Human Reasoning and Cognitive Science. MIT
Press, Cambridge, Massachusetts.

Strannegård, C., Engström, F., Nizamani, A. R., and Rips, L. (2013). Reasoning about truth
in first-order logic. Journal of Logic, Language and Information, 22:115–137.

Strannegård, C., Nizamani, A. R., Engström, F., and Häggström, O. (2014). Symbolic reas-
oning with bounded cognitive resources. 36th Annual Conference of the Cognitive Science
Society.

Sun, R. (2004). Desiderata for cognitive architectures. Philosophical Psychology, 17(3):341–
373. https://doi.org/10.1080/0951508042000286721.

Swartout, W., Paris, C., and Moore, J. (1991). Explanations in knowledge systems: Design
for explainable expert systems. IEEE Expert: Intelligent Systems and Their Applications,
6(4):58–64.

Thompson, S. (2020). Lesson 6: Stratified sampling.

Troitzsch, K. J. (2014). Simulation experiments and significance tests. Artificial Economics
and Self Organization, 669.

Tubella, A. A. and Straßburger, L. (2019). Introduction to deep inference. https://hal.
inria.fr/hal-02390267.

Udrescu, S.-M. and Tegmark, M. (2020). Ai feynman: A physics-inspired method for sym-
bolic regression. Science Advances, 6(16).

unknown (1995). Methods of Algorithm Description: Second Edition. Board of Studies NSW,
North Sydney.

https://hal.inria.fr/hal-02390267
https://hal.inria.fr/hal-02390267

REfERENcES • 109

Wagon, S. (1987). Fourteen proofs of a result about tiling a rectangle. The American Math-
ematical Monthly, 94:601–617.

Wang, T. D., Parsia, B., and Hendler, J. (2006). A survey of the web ontology landscape. In
The Semantic Web - ISWC 2006, volume 101 of ISWC 2006.

Warren, P. (2017). Human Reasoning and Description Logics: Applying Psychological Theory
to Understand and Improve the Usability of Description Logics. PhD thesis, The Open
University.

Wason, P. (1968). Reasoning about a rule. Quarterly Journal of Experimental Psychology,
20(3):273–281.

White, J. W., Rassweiler, A., Samhouri, J. F., Stier, A. C., and White, C. (2013). Ecologists
should not use statistical significance tests to interpret simulation model results. Oikos,
123(4):385–388.

Whitehill, J. (2013). Understanding act-r - an outsider’s perspective.

Whittaker, M., Crawford, K., Dobbe, R., Fried, G., Kaziunas, E., Mathur, V., West, S. M.,
Richardson, R., Schultz, J., and Schwartz, O. (2018a). Ai now 2018 report.

Whittaker, M., Crawford, K., Dobbe, R., Fried, G., Kaziunas, E., Mathur, V., West, S. M.,
Richardson, R., Schultz, J., and Schwartz, O. (2018b). Ai now report 2018. Technical
report, AI Now Institute, University of New York.

Yackel, E. (2001). Explanation, justification and argumentation in mathematics classrooms.
In Proceeding of the conference of the International Group of for the Psychology of Mathematics
Education, volume 1, pages 9–24. PME, Utrecht.

Zerilli, J., Knott, A., Maclaurin, J., and Gavaghan, C. (2019). Transparency in algorithmic
and human decision-making: Is there a double standard? Philosophy and Technology,
32(4):661–683.

Zielinski, T. A., Goodwin, G. P., and Halford, G. S. (2010). Complexity of categorical
syllogisms: An integration of two metrics. EUROPEAN JOURNAL OF COGNITIVE
PSYCHOLOGY, 22(3):391–421.

Sammanfattning

Problemet att optimera automatiserade förklaringar för slutledningar i kunskaps-
baser angrips genom att modellera deduktiva resonemangsprocesser med den
kognitiva arkitekturen ACT-R. Detta resulterar i modellen SHARP som simu-
lerar algoritmen för att avgöra inkonsistens av en ABox i beskrivningslogiken
ALE så som den exekveras av en människa. Närmare bestämt kan SHARP för-
utsäga slutledningstiden för den här processen, vilket antas spegla den kognitiva
belastningen hos en mänsklig agent. Med hjälp av slutledningstiden definieras
två komplexitetsmått som bör korrelera med den kognitiva belastningen tack
vare hur de är konstruerade.

	Introduction
	Proofs as explanations
	Proofs and cognition
	Artificial intelligence and explainability
	Goals

	Knowledge Representation
	Description Logics
	Justifications

	Logic and cognition
	Mental Logic
	Mental Models
	Comparison
	Other Schools
	Interpretations
	Cognitive Architectures
	ACT-R

	ALE ABox inconsistency
	The ALE ABox inconsistency problem
	A tableau algorithm for tALE ABox inconsistency

	The model SHARP
	Obstacles in designing SHARP
	SHARP's design
	Analysis of performance

	Predicting inference times with SHARP
	Predicted effects
	Complexity measures

	Conclusion
	References
	Sammanfattning på svenska

