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MODELLING DEFAULT CONTAGION USING MULTIVARIATE

PHASE-TYPE DISTRIBUTIONS

ALEXANDER HERBERTSSON

Centre For Finance and Department of Economics, Göteborg University

Abstract. We model dynamic credit portfolio dependence by using default contagion
in an intensity-based framework. Two different portfolios (with 10 obligors), one in the
European auto sector, the other in the European financial sector, are calibrated against
their market CDS spreads and the corresponding CDS-correlations. After the calibration,
which are perfect for the banking portfolio, and good for the auto case, we study several
quantities of importance in active credit portfolio management. For example, implied
multivariate default and survival distributions, multivariate conditional survival distribu-
tions, implied default correlations, expected default times and expected ordered defaults
times. The default contagion is modelled by letting individual intensities jump when
other defaults occur, but be constant between defaults. This model is translated into a
Markov jump process, a so called multivariate phase-type distribution, which represents
the default status in the credit portfolio. Matrix-analytic methods are then used to derive
expressions for the quantities studied in the calibrated portfolios.

1. Introduction

In recent years, understanding and modelling default dependency has attracted much
interest. A main reason is the incentive to optimize regulatory capital in credit portfolios,
provided by new regulatory rules such as Basel II. Another reason is the growing financial
market of products whose payoffs are contingent on the default behavior of a whole credit
portfolio consisting of, for example, mortgage loans, corporate bonds or single-name credit
default swaps (CDS-s).

In this paper we model dynamic credit portfolio dependence by using default contagion
and consider two different portfolios, one in the European auto sector, the other in the
European financial sector. Both baskets consist of 10 companies which are calibrated
against their market CDS spreads and the corresponding CDS correlations, resulting in a
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2 ALEXANDER HERBERTSSON

perfect fit for the banking case and good fit for the auto case. We then study the implied
joint default and survival distributions, the implied univariate and bivariate conditional
survival distributions, the implied default correlations, and the implied expected default
times and expected ordered defaults times. These quantities are of importance in active
credit portfolio management.

We us an intensity based model where default dependencies among obligors are expressed
in an intuitive and compact way. The financial interpretation is that the individual default
intensities are constant, except at the times when other defaults occur: then the default
intensity for each obligor jumps by an amount representing the influence of the defaulted
entity on that obligor. This model is then translated into a Markov jump process, which
leads to so called multivariate phase-type distributions, first introduced in [3]. This trans-
lation makes it possible to use a matrix-analytic approach to derive practical formulas for
all quantities that we want to study. The contribution of this paper is to adapt results from
[3] to credit portfolio applications. Special attention is given how to retrieve the model
parameters from market CDS spreads and their CDS-correlations.

The framework used here is the same as in [19], where the authors consider CDS and
kth-to default spreads and in [18] where the same technique is applied to synthetic CDO
tranches and index CDS-s. In this paper however, we focus on multivariate default and
survival distributions. As mentioned above, computing such quantities is at the core of
active credit portfolio management. The paper is an extension of Chapter 6 in the licentiate
thesis [17]. Default contagion in an intensity based setting have previously also been studied
in for example [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [21], [22],[23], [24],
[25], [26] and [28]. The material in all these papers and books are related to the results
discussed here.

The rest of this paper is organized as follows. Section 2 contains the formal definition
of default contagion used in this paper, given in terms of default intensities. It is then
used to construct such default times as hitting times of a Markov jump process. The
joint distribution of these hitting times is called a multivariate phase-type distribution, see
[3]. The results in Section 3 give convenient analytical formulas for multivariate default
and survival distributions, conditional multivariate distributions, marginal default distri-
butions, multivariate default densities, default correlations, and expected default times.
These are the main theoretical contribution of this paper. Some of the results in this
section have previously been stated in [3], but without proofs. Section 4 gives formulas
for CDS-spreads. They are our main calibration instruments. We provide a detailed de-
scription of the calibration against CDS spreads and their correlations. Special attention
is given to the relation between market CDS-correlations and the corresponding default
correlations. Furthermore, we discuss how to deal with negative jumps in the intensities,
which are required if there are negative CDS-correlations. In Section 5 we use the results
of Section 3 for our numerical investigations. Two CDS portfolios are calibrated against
market CDS spreads and their CDS-correlations. We then study several quantities of in-
terest in credit portfolio management. Section 6 is devoted to numerical issues and the
final section, Section 7, summarizes and discusses the results.
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2. Intensity based models reinterpreted as Markov jump processes:
multivariate phase-type distributions

In this section we define the intensity-based model for default contagion which is used
throughout the paper. The model is then reinterpreted in terms of a Markov jump process,
a so called multivariate phase-type distribution, introduced in [3]. Such constructions have
largely been developed for queueing theory and reliability applications, see e.g. [1] and
[3]).

For the default times τ1, τ2 . . . , τm, define the point process Nt,i = 1{τi≤t} and introduce
the filtrations

Ft,i = σ (Ns,i; s ≤ t) , Ft =

m∨

i=1

Ft,i.

Let λt,i be the Ft-intensity of the point processes Nt,i. Below, we will for convenience often
omit the filtration and just write intensity or ”default intensity”. With a further extension
of language we will sometimes also write that the default times {τi} have intensities {λt,i}.
The model studied in this paper is specified by requiring that the default intensities have
the following form,

λt,i = ai +
∑

j 6=i

bi,j1{τj≤t}, t ≤ τi, (2.1)

and λt,i = 0 for t > τi. Further, ai ≥ 0 and bi,j are constants such that λt,i is non-negative.
The financial interpretation of (2.1) is that the default intensities are constant, except at

the times when defaults occur: then the default intensity for obligor i jumps by an amount
bi,j if it is obligor j which has defaulted. Thus a positive bi,j means that obligor i is put
at higher risk by the default of obligor j, while a negative bi,j means that obligor i in fact
benefits from the default of j, and finally bi,j = 0 if obligor i is unaffected by the default
of j.

Equation (2.1) determines the default times through their intensities as well as their
joint distribution. However, it is by no means obvious how to find these expressions. Here
we will use the following observation, proved in [19].

Proposition 2.1. There exists a Markov jump process (Yt)t≥0 on a finite state space E

and a family of sets {∆i}m
i=1 such that the stopping times

τi = inf {t > 0 : Yt ∈ ∆i} , i = 1, 2, . . . , m, (2.2)

have intensities (2.1). Hence, any distribution derived from the multivariate stochastic
vector (τ1, τ2, . . . , τm) can be obtained from {Yt}t≥0.

The joint distribution of (τ1, τ2, . . . , τm) is sometimes called a multivariate phase-type
distribution (MPH), and was first introduced in [3]. In this paper, Proposition 2.1 is
throughout used for computing distributions. However, we still use Equation (2.1) to
describe the dependencies in a credit portfolio since it is more compact and intuitive.

Each state j in E is of the form j = {j1, . . . jk} which is a subsequence of {1, . . .m}
consisting of k integers, where 1 ≤ k ≤ m. The interpretation is that on {j1, . . . jk} the
obligors in the set have defaulted. Before we continue, further notation are needed. In the
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sequel, we let Q and α denote the generator and initial distribution on E for the Markov
jump process in Proposition 2.1. The generator Q is found by using the structure of E,
the definition of the states j, and Equation (2.1). The states are ordered so that Q is
upper triangular, see [19]. In particular, the final state {1, . . .m} is absorbing and {0} is
always the starting state. The latter implies that α = (1, 0, . . . , 0). Furthermore, define
the probability vector p (t) = (P [Yt = j])j∈E. From Markov theory we know that

p (t) = αeQt, and P [Yt = j] = αeQtej, (2.3)

where ej ∈ R
|E| is a column vector where the entry at position j is 1 and the other entries

are zero. Recall that eQt is the matrix exponential which has a closed form expression in
terms of the eigenvalue decomposition of Q.

3. Using Multivariate Phase-type distributions and the matrix-analytic
approach to find multivariate default distributions

In this section we derive expressions for various quantities of importance in active credit
portfolio management. The portfolio consists of m obligors with default intensities (2.1).
Subsection 3.1 presents formulas for multivariate default and survival distributions, condi-
tional multivariate default distributions, and multivariate default densities. In subsection
3.2 we briefly restate some expressions for marginal survival distributions, originally pre-
sented in [19]. These distributions are needed in Section 4. Analytical formulas for the
default correlations are given in Subsection 3.3. Finally, in Subsection 3.4 we present
compact expressions for the moments of the default times and the ordered default times.

3.1. The multivariate default distributions. In this subsection we derive formulas for
multivariate default and survival distributions, conditional multivariate default distribu-
tions, and multivariate default densities. Let Gi be |E| × |E| diagonal matrices, defined
by

(Gi)j,j = 1{j∈∆C
i } and (Gi)j,j′ = 0 if j 6= j ′. (3.1.1)

Further, for a vector (t1, t2, . . . , tm) in R
m
+ = [0,∞)m, let the ordering of (t1, t2, . . . , tm) be

ti1 < ti2 < . . . < tim where (i1, i2, . . . , im) is a permutation of (1, 2, . . . , m). The following
proposition was stated in [3], but without a proof.

Proposition 3.1. Consider m obligors with default intensities (2.1). Let (t1, t2, . . . , tm) ∈
R

m
+ and let ti1 < ti2 < . . . < tim be its ordering. Then,

P [τ1 > t1, . . . , τm > tm] = α

(
m∏

k=1

eQ(tik−tik−1)Gik

)
1 (3.1.2)

where ti0 = 0.
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Proof. First, note that

P [τ1 > t1, . . . , τm > tm] = P [τi1 > ti1 , . . . , τim > tim ]

= P
[
Yti1

∈ ∆C
i1
, . . . , Ytim ∈ ∆C

im

]

= P
[
Y0 = 0, Yti1

∈ ∆C
i1 , . . . , Ytim ∈ ∆C

im

]

=
∑

ji1
∈∆C

i1

· · ·
∑

jim
∈∆C

im

P
[
Y0 = 0, Yti1

= ji1, . . . , Ytim = jim

]
(3.1.3)

where 0 = {0} is the state representing that no default have occurred. Further,

P
[
Y0 = 0, Yti1

= ji1 , . . . , Ytim = jim

]

= P [Y0 = 0] P
[
Yti1

= ji1

∣∣Y0 = 0
]
· . . . · P

[
Ytim = jim

∣∣Ytm−1
= jim−1

]

= αeQti1eji1
eT

ji1
eQ(ti2−ti1)eji2

eT
ji2

· . . . · ejim−1
eT

jim−1

eQ(tim−tim−1)ejim

(3.1.4)

where the first equality follows from the Markov property of Yt, and P [Y0 = 0] = 1. The
second equality is because

P

[
Yt = jik

∣∣Ys = jik−1

]
= P

[
Yt−s = jik

∣∣Y0 = jik−1

]
=
(
eT

jik−1

eQ(t−s)
)

jik

since Yt is a homogeneous Markov process. Next,

∑

jik
∈∆C

ik

ejik
eT

jik

eQ(tik−tik−1) =



∑

jik
∈∆C

ik

ejik
eT

jik


 eQ(tik−tik−1) = Gike

Q(tik−tik−1) (3.1.5)

for k = 1, 2, . . .m − 1, and
∑

jim
∈∆C

im

eQ(tim−tim−1)ejim
= eQ(tim−tim−1)Gim1. (3.1.6)

Hence, inserting the equations (3.1.4)-(3.1.6) into (3.1.3) shows that (3.1.2) hold. �

Let (ti1 , ti2 , . . . , tim) be the ordering of (t1, t2, . . . , tm) ∈ R
m
+ and fix a p, 1 ≤ p ≤ m − 1.

We next consider conditional distributions of the types

P
[
τip+1

> tip+1
, . . . , τim > tim

∣∣ τi1 ≤ ti1 , . . . , τip ≤ tip
]

and

P
[
τip+1

> tip+1
, . . . , τim > tim

∣∣ τi1 ≤ ti1 , . . . , τip ≤ tip , Tp+1 > tip
]

There is a subtle but important difference between these two probabilities. The condition-
ing in the first expression includes the possibility that all obligors have defaulted before tip .
This is not the case in the second one, where the event excludes the possibility that other
obligors than i1, . . . , ip default before tip. These probabilities may of course be computed
from (3.1.2) without any further use of the structure of the problem. However, using this
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structure leads to compact formulas. For this, further notation is needed. Define ∆ as the
final absorbing state for Yt, i.e.

∆ =

m⋂

i=1

∆i, (3.1.7)

and let F i and H i be |E| × |E| diagonal matrices, defined by

(F i)j,j = 1{j∈∆i\∆} and (F i)j,j′ = 0 if j 6= j ′. (3.1.8)

(H i)j,j = 1{j∈∆i} and (H i)j,j′ = 0 if j 6= j ′. (3.1.9)

The following proposition is useful.

Proposition 3.2. Consider m obligors with default intensities (2.1). Let (t1, t2, . . . , tm) ∈
R

m
+ and let ti1 < ti2 < . . . < tim be its ordering. If 1 ≤ p ≤ m − 1 then,

P
[
τi1 ≤ ti1 , . . . , τip ≤ tip , τip+1

> tip+1
, . . . , τim > tim

]

= α

(
p∏

k=1

eQ(tik−tik−1)F ik

)(
m∏

k=p+1

eQ(tik−tik−1)Gik

)
1.

(3.1.10)

Further,

P
[
τip+1

> tip+1
, . . . , τim > tim

∣∣ τi1 ≤ ti1 , . . . , τip ≤ tip
]

=
α
(∏p

k=1 eQ(tik−tik−1)F ik

)(∏m
k=p+1 eQ(tik−tik−1)Gik

)
1

α
(∏p

k=1 eQ(tik−tik−1)H ik

)
1

.
(3.1.11)

and

P
[
τip+1

> tip+1
, . . . , τim > tim

∣∣ τi1 ≤ ti1 , . . . , τip ≤ tip, Tp+1 > tip
]

=
α
(∏p

k=1 eQ(tik−tik−1)F ik

)(∏m
k=p+1 eQ(tik−tik−1)Gik

)
1

α
(∏p

k=1 eQ(tik−tik−1)F ik

)
1

(3.1.12)

where ti0 = 0.

Proof. First we prove (3.1.10). Similarly as in the proof of Proposition 3.1

P
[
τi1 ≤ ti1 , . . . , τip ≤ tip , τip+1

> tip+1
, . . . , τim > tim

]

= P

[
Y0 ∈ E, Yti1

∈ ∆i1 \ ∆, . . . , Ytip ∈ ∆ip \ ∆, Ytip+1
∈ ∆C

ip+1
, . . . , Ytim ∈ ∆C

im

]

=
∑

j0∈E

∑

ji1
∈∆i1

\∆

· · ·
∑

jip
∈∆ip\∆

∑

jip+1
∈∆C

ip+1

· · ·
∑

jim
∈∆C

im

P
[
Y0 = j0, Yti1

= ji1 , . . . , Ytim = jim

]

= α

(
p∏

k=1

eQ(tik−tik−1)F ik

)(
m∏

k=p+1

eQ(tik−tik−1)Gik

)
1.
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Here the last equality follows from similar arguments as in the equations (3.1.4)-(3.1.6) in
Proposition 3.1, using the definition of the matrix F k.

To prove (3.1.11) it is enough to show that

P
[
τi1 ≤ ti1 , . . . , τip ≤ tip

]
= α

(
p∏

k=1

eQ(tik−tik−1)H ik

)
1

since Equation (3.1.11) then follows from (3.1.10) and the definition of conditional proba-
bilities. Now,

P
[
τi1 ≤ ti1, . . . , τip ≤ tip

]
= P

[
Y0 ∈ E, Yti1

∈ ∆i1 , . . . , Ytip ∈ ∆ip

]

=
∑

j0∈E

∑

ji1
∈∆i1

· · ·
∑

jip
∈∆ip

P

[
Y0 = j0, Yti1

= ji1 , . . . , Ytip = jip

]

= α

(
p∏

k=1

eQ(tik−tik−1)H ik

)
1

where the last equality follows from arguments as in Proposition 3.1, using the definition
of the matrix Hk. Finally, for Equation (3.1.12), note that

P
[
τip+1

> tip+1
, . . . , τim > tim

∣∣ τi1 ≤ ti1 , . . . , τip ≤ tip , Tp+1 > tip
]

=
P
[
τi1 ≤ ti1 , . . . , τip ≤ tip , τip+1

> tip+1
, . . . , τim > tim

]

P
[
τi1 ≤ ti1 , . . . , τip ≤ tip, Tp+1 > tip

] .

Hence, by using (3.1.10) it is enough to show that

P
[
τi1 ≤ ti1 , . . . , τip ≤ tip , Tp+1 > tip

]
= α

(
p∏

k=1

eQ(tik−tik−1)F ik

)
1.

Let En be the set of states representing precisely n defaults. Then,

P
[
τi1 ≤ ti1 , . . . , τip ≤ tip , Tp+1 > tip

]

= P

[
Yti1

∈ ∆i1 , . . . , Ytip ∈ ∆ip , Ytip ∈
m⋃

k=p+1

Eik

]

= P

[
Y0 ∈ E, Yti1

∈ ∆i1 \ ∆, . . . , Ytip ∈ ∆ip \ ∆
]

=
∑

j0∈E

∑

ji1
∈∆i1

\∆

· · ·
∑

jip
∈∆ip\∆

P

[
Y0 = j0, Yti1

= ji1 , . . . , Ytip = jip

]

= α

(
p∏

k=1

eQ(tik−tik−1)F ik

)
1

where the second equality comes from the fact that ∆ is an absorbing state representing
default of all obligors. The last equality follows from arguments as in Proposition 3.1,
using the definition of the matrix F k. �
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The following corollary is an immediate consequence of Equation (3.1.10) in Proposition
3.2.

Corollary 3.3. Consider m obligors with default intensities (2.1). Let {i1, . . . , ip} and
{j1, . . . , jq} be two disjoint subsequences in {1, . . . , m}. If t < s then

P
[
τi1 > t, . . . , τip > t, τj1 < s, . . . , τjq

< s
]

= αeQt

(
p∏

k=1

Gik

)
eQ(s−t)

(
q∏

k=1

Hjk

)
1

and for s < t

P
[
τi1 > t, . . . , τip > t, τj1 < s, . . . , τjq

< s
]

= αeQs

(
q∏

k=1

F jk

)
eQ(t−s)

(
p∏

k=1

Gik

)
1.

We can of course generalize, the above proposition for three time points t < s < u, four
time points t < s < u < etc. Using the notation of Corollary 3.3 we conclude that if t < s
then

P
[
τj1 < s, . . . , τjq

< s
∣∣ τi1 > t, . . . , τip > t

]
=

αeQt (
∏p

k=1 Gik) eQ(s−t) (
∏q

k=1 Hjk
) 1

αeQt (
∏p

k=1 Gik) 1

and for s < t

P
[
τi1 > t, . . . , τip > t

∣∣ τj1 < s, . . . , τjq
< s
]

=
αeQs (

∏q
k=1 F jk

) eQ(t−s) (
∏p

k=1 Gik) 1

αeQs (
∏q

k=1 Hjk
) 1

.

Our next task is to find the probability density f(t1, . . . , tm) of the multivariate ran-
dom variable (τ1, . . . , τm). For (t1, t2, . . . , tm), let (ti1 , ti2, . . . , tim) be its ordering where
(i1, i2, . . . , im) is a permutation of (1, 2, . . . , m). We denote (i1, i2, . . . , im) by i, that is,
i = (i1, i2, . . . , im). Furthermore, in view of the above notation, we let fi(t1, . . . , tm) denote
the restriction of f(t1, . . . , tm) to the set ti1 < ti2 < . . . < tim . The following proposition
was stated in [3], but without a proof.

Proposition 3.4. Consider m obligors with default intensities (2.1). Let (t1, t2, . . . , tm) ∈
R

m
+ and let ti1 < ti2 < . . . < tim be its ordering. Then, with notation as above

fi(t1, . . . , tm) = (−1)mα

(
m−1∏

k=1

eQ(tik−tik−1) (QGik − GikQ)

)
eQ(tim−tim−1)QGim1

(3.1.13)
where ti0 = 0.

Proof. By Proposition 3.1, since the order of partial differentiation is irrelevant

fi(t1, . . . , tm) = (−1)m ∂m

∂ti1 · · ·∂tim
P
[
τi1 > ti1 , . . . , τip > tip

]

= (−1)mα

(
∂m

∂ti1 · · ·∂tim

m∏

k=1

eQ(tik−tik−1)Gik

)
1

(3.1.14)
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where ti0 = 0. First, note that

∂

∂ti1

m∏

k=1

eQ(tik−tik−1)Gik = eQti1 QGi1

m∏

k=2

eQ(tik−tik−1)Gik

− eQti1Gi1e
Q(ti2−ti1)QGi2

m∏

k=3

eQ(tik−tik−1)Gik

= eQti1 QGi1

m∏

k=2

eQ(tik−tik−1)Gik

− eQti1Gi1Q

m∏

k=2

eQ(tik−tik−1)Gik

= eQti1 (QGi1 − Gi1Q)

m∏

k=2

eQ(tik−tik−1)Gik

(3.1.15)

where the second equality is due to the fact that eQtQ = QeQt. Next, (3.1.15) implies
that

∂2

∂ti1∂ti2

m∏

k=1

eQ(tik−tik−1)Gik = eQti1 (QGi1 − Gi1Q)
∂

∂ti2

m∏

k=2

eQ(tik−tik−1)Gik . (3.1.16)

The derivative of the product in the right-hand side in Equation (3.1.16) is treated exactly
as in (3.1.15) but now with ti2 instead of ti1 . Hence, by repeating this procedure for
k = 3, . . . , m − 1 and noting that

∂

∂tim
eQ(tim−tim−1)Gim = eQ(tim−tim−1)QGim

and inserting the results in Equation (3.1.14) finally yields

fi(t1, . . . , tm) = (−1)mα

(
m−1∏

k=1

eQ(tik−tik−1) (QGik − GikQ)

)
eQ(tim−tim−1)QGim1

where ti0 = 0. This proves (3.1.13). �

3.2. The marginal distributions. In this section we state expressions for the marginal
survival distributions P [τi > t] and P [Tk > t], and for P [Tk > t, Tk = τi] which is the prob-
ability that the k-th default is by obligor i and that it not occurs before t. The first ones
are more or less standard, while the second one is less so. These marginal distributions
are needed to compute single-name CDS spreads and kth-to-default spreads, see e.g [17],
[19]. Note that CDS-s are used as calibration instruments when pricing portfolio credit
derivatives. We come back to this in Section 4. The following lemma is trivial, but stated
since it is needed later on.

Lemma 3.5. Consider m obligors with default intensities (2.1). Then,

P [τi > t] = αeQtg(i) and P [Tk > t] = αeQtm(k) (3.2.1)
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where the column vectors g(i), m(k) of length |E| are defined as

g
(i)
j = 1{j∈(∆i)

C} and m
(k)
j = 1{j∈∪k−1

n=0
En}

and En is set of states consisting of precisely n elements of {1, . . .m} where E0 = {0}.

The lemma immediately follows from the definition of τi in Proposition 2.1. The same
holds for the distribution for Tk, where we also use that m(k) sums the probabilities of
states where there has been less than k defaults. We next restate the following result,
proved in [19].

Proposition 3.6. Consider m obligors with default intensities (2.1). Then,

P [Tk > t, Tk = τi] = αeQt
k−1∑

ℓ=0

(
k−1∏

p=ℓ

Gi,pP

)
hi,k, (3.2.2)

for k = 1, . . .m, where

P j,j′ =
Qj,j′∑
k6=j Qj,k

, j, j ′ ∈ E,

and hi,k is column vectors of length |E| and Gi,k is |E| × |E| diagonal matrices, defined
by

h
i,k
j = 1{j∈∆i∩Ek} and G

i,k
j,j = 1{j∈(∆i)

C∩Ek} and G
i,k
j,j′

= 0 if j 6= j ′.

Equipped with the above distributions, we can derive closed-form solutions for single-
name CDS spreads and kth-to-default swaps for a nonhomogeneous portfolio, see e.g [17],
[19]. In the present we focus on CDS spreads as our main calibration tools, see Section 4.

3.3. The default correlations. In this subsection we derive expressions for pairwise
default correlations, i.e. ρi,j(t) = Corr(1{τi≤t}, 1{τj≤t}) between the obligors i 6= j belonging
to a portfolio of m obligors satisfying (2.1).

Lemma 3.7. Consider m obligors with default intensities (2.1). Then, for any pair of
obligors i 6= j,

ρi,j(t) =
αeQtc(i,j) − αeQth(i)αeQth(j)

√
αeQth(i)αeQth(j)

(
1 − αeQth(i)

)(
1 − αeQth(j)

) (3.3.1)

where the column vectors h(i), c(i,j) of length |E| are defined as

h
(i)
j = 1{j∈∆i} and c

(i,j)
j = 1{j∈∆i∩∆j} = h

(i)
j h

(j)
j . (3.3.2)

Proof. By the definition of covariance and variance

Cov(1{τi≤t}, 1{τj≤t}) = P [τi ≤ t, τj ≤ t] − P [τi ≤ t] P [τj ≤ t] ,
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and Var(1{τi≤t}) = P [τi ≤ t] (1 − P [τi ≤ t]). According to Equation (2.2) we have that

P [τi ≤ t] = αeQth(i) where h
(i)
j = 1{j∈∆i}, and that

P [τi ≤ t, τj ≤ t] = P [Yt ∈ ∆i ∩ ∆j ] =
∑

j∈∆i∩∆j

P [Yt = j] = αeQtc(i,j)

where c
(i,j)
j = 1{j∈∆i∩∆j} = h

(i)
j h

(j)
j . Inserting these expressions into the definition for

correlation between two random variables yields (3.3.1). �

Note that if we have determined the vector g(i), then h(i) is retrieved from g(i) according
to h(i) = 1 − g(i) which is useful for practical implementation.

3.4. Expected default times. By construction (see Proposition 2.1), the intensity matrix
Q for the Markov jump process Yt on E has the form

Q =

(
T t

0 0

)

where t is a column vector with |E| − 1 rows. The j-th element tj is the intensity for Yt

to jump from the state j to the absorbing state ∆ = ∩m
i=1∆i. Furthermore, T is invertible

since it is upper diagonal with strictly negative diagonal elements. Thus, we have the
following standard lemma.

Lemma 3.8. Consider m obligors with default intensities (2.1). Then, with notation as
above

E [τn
i ] = (−1)nn!α̃T −ng̃(i) and E [T n

k ] = (−1)nn!α̃T −nm̃(k)

for n ∈ N where α̃, g̃(i), m̃(k) are the restrictions of α, g(i), m(k) from E to E \ ∆.

Proof. We prove the results for n = 1. By Lemma 3.5 we have that

P [τi > t] = α̃eT tg̃(i) and P [Tk > t] = α̃eT tm̃(k)

where α̃, g̃(i), m̃(k) are the restrictions of α, g(i), m(k) from E to E \ ∆. If FTk
(t) =

P [Tk ≤ t], then fTk
(t) is given by

fTk
(t) =

d

dt
FTk

(t) = − d

dt
P [Tk > t] = −α̃eT tTm̃(k)

so that

E [Tk] =

∫ ∞

0

tfTk
(t) dt = −α̃

∫ ∞

0

teT tdtTm̃(k) = −α̃T −1m̃(k).

To motivate the last equality we use partial integration and the fact that T is invertible
to conclude that ∫ ∞

0

teT tdtT = lim
t→∞

eT t
(
tI − T −1

)
+ T−1 = T−1

since limt→∞ eT t
(
tI − T −1

)
= 0 because the eigenvalues of T are strictly negative. The

expression for E [T n
k ] and E [τn

i ] are derived analogously for n = 1, 2, 3, . . .. �
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The above proof can also be done by using Laplace transforms, see e.g. [2]. From Lemma
3.8 we can determine the risk-neutral, i.e implied, expected default times according to
E [τi] = −α̃T −1g̃(i) and E [Tk] = −α̃T −1m̃(k). Furthermore, the implied variances of the
default times are then given by

Var[τi] = 2α̃T −2g̃(i) −
(
α̃T−1g̃(i)

)2

for i = 1, 2, . . . , m

Var[Tk] = 2α̃T−2m̃(k) −
(
α̃T−1m̃(k)

)2

for k = 1, 2, . . . , m.

3.5. Some remarks. The message in Subsections 3.2-3.3 is that under (2.1), computa-
tions of multivariate default and survival distributions, conditional multivariate default
and survival distributions, marginal default distributions, multivariate default densities
and default correlations can be reduced to compute the matrix exponential. Computing
eQt efficiently is a numerical issue, which for large state spaces requires special treatment.
This is discussed in Section 6. Finally, recall that |E| = 2m which in practice will force us
to work with portfolios where m is less or equal to 25, say ([19] used m = 15).

4. Calibrating the model parameters against CDS spreads and CDS
correlations

In this section we discuss how to find the parameters in the model (2.1). First, Subsection
4.1 derives the model spreads for single-name credit default swaps, CDS-s, which are the
most liquid traded credit derivative today. Next, Subsection 4.2 gives a detailed description
of the calibration against CDS spreads and the corresponding CDS-correlations. We also
discuss how to deal with negative jumps in the intensities, which are required if there are
negative CDS-correlations

4.1. Using the matrix-analytic approach to find CDS spreads. Given the model
(2.1), we will in this subsection derive expressions for CDS-spreads, which constitute our
primary calibration instruments. In the sequel all computations are assumed to be made
under a risk-neutral martingale measure P. Typically such a P exists if we rule out arbitrage
opportunities.

Consider a single-name credit default swap (CDS) with maturity T where the reference
entity is a obligor i with default times τi and recovery rates φi. The protection premiums
are paid at 0 < t1 < t2 < . . . < tnT

= T if τi > T , or until the default time of obligor i,
whichever comes first. Assuming that the default time and the risk-free interest rate are
independent for each obligor and that the recovery rate is deterministic, one can show that
the CDS spread is given by (see e.g. [17] or [19]),

Ri(T ) =
(1 − φi)

∫ T

0
BsdFi(s)

∑nT

n=1

(
Btn∆n(1 − Fi(tn)) +

∫ tn
tn−1

Bs (s − tn−1) dFi(s)
) (4.1.1)

where Bt = exp
(
−
∫ t

0
rsds

)
denote the discount factor, rt is the risk-free interest rate, and

Fi (t) = P [τi ≤ t] is the distribution function of the default time for obligor i. Note that
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the CDS spread is independent of the amount that is protected. Expressions for Ri(T )
may be obtained by inserting the expression for P [τi > t] in (3.2.1) into (4.1.1), and have
previously been stated in [18], [19], but without proofs. For completeness, this is done in
the following proposition.

Proposition 4.1. Consider m obligors with default intensities (2.1) and assume that the
interest rate r is constant. Then,

Ri(T ) =
(1 − φi)α (A(0) − A(T ))g(i)

α (
∑nT

n=1 (∆neQtne−rtn + C(tn−1, tn))) g(i)
(4.1.2)

where C(s, t) = s (A(t) − A(s)) − B(t) + B(s) for A(t) = eQt (Q − rI)−1
Qe−rt and

B(t) = eQt
(
tI + (Q − rI)−1) (Q − rI)−1

Qe−rt.

Proof. Let fi (t) denote the density for τi,

fi (t) =
d

dt
Fi (t) = − d

dt
P [τi > t] = −αQeQtg(i)

where the last equality is due to Lemma 3.5. Then,
∫ T

0

BtdFi(t) =

∫ T

0

e−rtfi(t)dt = −α

∫ T

0

Qe(Q−rI)tdtg(i) = α (A(0) − A(T ))g(i)

since
∫ b

a

Qe(Q−rI)tdt = A(b) − A(a) where A(t) = eQt (Q − rI)−1
Qe−rt.

Furthermore,
∫ tn

tn−1

Bt (t − tn−1) dFi(t) =

∫ tn

tn−1

te−rtfi(t)dt − tn−1

∫ tn

tn−1

e−rtfi(t)dt

= −α

(∫ tn

tn−1

tQe(Q−rI)tdt − tn−1

∫ tn

tn−1

Qe(Q−rI)tdt

)
g(i)

= α (tn−1 (A(tn) − A(tn−1)) − B(tn) + B(tn−1))g(i)

= αC(tn−1, tn)g(i)

where C(s, t) = s (A(t) − A(s)) − B(t) + B(s) and
∫ b

a

tQe(Q−rI)tdt = B(b) − B(a) for B(t) = eQt
(
tI + (Q − rI)−1) (Q − rI)−1

Qe−rt.

Now, inserting the above expressions in Equation (4.1.1) renders (4.1.2). �

By using the technique in Proposition 4.1 and the expressions for P [Tk > t, Tk = τi] and
P [Tk > t] in Subsection 3.2, we can derive formulas for kth-to-default swaps, which are
generalizations of CDS contracts, to a portfolio of several obligors. These contracts offers
protection on the kth default in the portfolio. For more on this, see e.g. [17], [19].
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4.2. The calibration. The parameters in (2.1) are obtained by calibrating the model
against market CDS spreads and market CDS correlations. As in [19] we reparameterize
the basic description (2.1) of the default intensities to the form

λt,i = ai

(
1 +

m∑

j=1,j 6=i

θi,j1{τj≤t}

)
, (4.2.1)

where the ai-s are the base default intensities and the θi,j measure the ”relative dependence
structure”. In [19] we assumed that the matrix {θi,j} was exogenously given and then
calibrated the ai-s against the m market CDS spreads. In this paper we use the m market
CDS spreads as in [19] but in addition also determine the {θi,j} from market data. Let
ρi,j(T ) = Corr(1{τi≤T}, 1{τj≤T}) be the default correlation matrix computed under the risk
neutral measure. This matrix is a function of the parameters {θi,j}, but is not observable.

Instead we use β{ρ(CDS)
i,j (T )} as a proxy for it, where {ρ(CDS)

i,j (T )} is the observed correlation
matrix for the T -years market CDS spreads, and β is a parameter at our disposal. Thus,

in the calibration we match ρi,j(T ) against β{ρ(CDS)
i,j (T )}.

For standardized portfolios, CDS-correlation matrices can be obtained from e.g. Reuters.
However, given times-series for the CDS-spreads on obligors in any portfolio, these matrices
can easily be computed using standard mathematical software.

A further issue remains. This is that the CDS correlation matrix is symmetric and
thus only contains m(m − 1)/2 pairwise CDS correlations. Hence, together with the m
market CDS spreads we have m(m + 1)/2 data observations, while there are m2 unknown
parameters in (4.2.1); the m(m − 1) different θi,j-s and the m base intensities {ai}. To
make the number of model parameters and the number of market observations match, we
hence assume that the θi,j-s are the same for some of the ordered pairs (i, j), so that there
are only m(m − 1)/2 different θi,j-s.

We now explain the calibration in more detail. First, we reduce the m(m − 1) un-
known variables {θi,j} to a set of (m − 1)m/2 different nonnegative parameters {dq} =
{d1, d2, . . . d(m−1)m/2}, so that the total number of model parameters are as many as
the market observations. Secondly, we assume a exogenously given dependence matrix
{Di,j} where Di,j ∈ {1, 2, . . . (m − 1)m/2} which determines the matrix {θi,j} according

to θi,j = ±dDi,j
, where the sign is the same as the market CDS correlation ρ

(CDS)
i,j (T ). It

is a topic for future research to find methods to estimate the dependence matrix {Di,j}.
For example, from corporate data or from the rapidly increasing market of credit portfolio
products, such as CDO’s and basket default swaps. In this paper, the matrix {Di,j} is
determined randomly, see Appendix 8.

Let v = ({ai}, {dq}) denote the parameters describing the model and let {Ri(T ; v)}
be the m different model T -year CDS spreads and {Ri,M(T )} the corresponding market
spreads. Furthermore, as above, we let ρi,j(T ; v) = Corr(1{τi≤T}, 1{τj≤T}) denote the pair-
wise T -year default correlations. Here we have emphasized that the model quantities are
functions of v = ({ai}, {dq}) but suppressed the dependence of the matrix {Di,j}, interest



DEFAULT CONTAGION VIA MULTIVARIATE PHASE-TYPE DISTRIBUTIONS 15

rate, payment frequency, etc. The vector v is obtained as

v = argmin
v̂

[δCDS(T ; v̂) + δcorr(T ; v̂)] (4.2.2)

where

δCDS(T ; v) = F

m∑

i=1

(Ri(T ; v) − Ri,M(T ))2

δcorr(T ; v) =
m∑

i=1

m∑

j=i+1

(
ρi,j(T ; v) − βρ

(CDS)
i,j (T )

)2
(4.2.3)

with F > 0 and 0 < β ≤ 1 exogenously chosen. The second expression in (4.2.3) is due to

that we use β{ρ(CDS)
i,j (T )} as a proxy for {ρi,j(T )}. It is possible to include F and β in the

unknown parameter vector v and we make some further comments on this at the end of
the present subsection.

If all CDS-correlations are positive, the minimization in (4.2.2) is performed with the
constraint that all elements in v are nonnegative. However, if there are negative CDS-

correlations, that is ρ
(CDS)
i,j (T ) < 0 for some pairs (i, j), then we require that θi,j =

sign(ρ
(CDS)
i,j (T ))dDi,j

= −dDi,j
< 0, since it otherwise is difficult to generate negative default

correlations. Because λt,i must be positive and all parameters are nonnegative, we have to
bound some of the {dq} if there are negative CDS-correlations. It is then practical to as-
sume that the dependence matrix {Di,j} is constructed so that it splits {dq} in two disjoint

groups, {dq} = d− ∪ d+ such that if ρ
(CDS)
i,j (T ) < 0 then dDi,j

∈ d− and if ρ
(CDS)
i,j (T ) ≥ 0

then dDi,j
∈ d+. Let Ni denote the sets of obligors j 6= i which are negatively correlated

with entity i, that is, where ρ
(CDS)
i,j (T ) < 0. Thus, if j ∈ Ni then dDi,j

∈ d− and the
following constraints

ai −
∑

j∈Ni

aidDi,j
> 0 that is, 1 >

∑

j∈Ni

dDi,j
, (4.2.4)

must simultaneously hold for every i = 1, 2, . . . , m. These joint bounds finally determine
the proper constraints on the parameters in d−, which heavily depend on the elements Di,j

and the sign of ρ
(CDS)
i,j (T ). If the number of negative CDS correlations are less than positive

CDS correlations, it may be convenient to assume that each p, where dp ∈ d−, only appears
once in the matrix {Di,j} and use the constraints dp < 1

|Ni|
if θi,j = −dp for some j ∈ Ni.

Recall that in economic terms, negative CDS correlation, and thus negative jumps in the
intensities for a obligor i, means that entity i benefits from defaults of obligors j ∈ Ni.

Let us finally give some remarks on the parameters β and F . A naive first attempt
is to let F = 1 and β = 1 in the calibration (4.2.2). However, the market CDS spreads

Ri,M(T ) are about 100 times smaller than ρ
(CDS)
i,j (T ), which then implies unrealistic model

CDS spreads. The problem can be avoided by letting
√

F = 100 so that
√

FRi,M(T )

and ρ
(CDS)
i,j (T ) are approximately in the same order. This leads to bad correlation fits, i.e.

δcorr(T ; v) is big, when β = 1. In our examples, the calibrations produce default correlations
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much smaller than the corresponding CDS correlations. Motivated by this we assume that
0 < β << 1 and in our numerical studies we let β = 0.05 and

√
F = 100. This gives

perfect correlation calibrations for our data sets where all entities in the CDS-correlation
matrix are nonnegative, and reasonable calibrations when the correlation matrix contains
both positive and negative entities (see Subsection 5.1). It is possible to include β and F
in the parameter vector v, and then decrease the set {dq} so that |{dq}| = m(m−1)/2−2,
where the total number of model parameters still are as many as the market observations.

5. Numerical studies

In this section we will use the theory developed in previous sections to study quantities of
importance in active credit portfolio management. We consider the same parameterization
of (2.1) as in Subsection 4.2, that is

λt,i = ai

(
1 +

m∑

j=1,j 6=i

εi,jdDi,j
1{τj≤t}

)
,

where εi,j is the sign of ρ
(CDS)
i,j (T ), and {Di,j} is a exogenously given matrix such that

Di,j ∈
{
1, 2 . . .

(m−1)m
2

}
. Further, the dq-s are (m−1)m/2 different nonnegative parameters

which will be determined in the calibration, together with the base default intensities ai.
In Subsection 5.1 we introduce two CDS portfolio, one in the European auto sector,

the other in the European financial sector. These portfolios, which both consist of 10
companies, are used as a basis for the numerical studies in the rest of this section. For
exogenously given dependence matrices {Di,j}, we calibrate the portfolios against market
CDS spreads and their correlations. In the calibrated portfolios, we then study the implied
joint default and survival distributions and the implied univariate and bivariate condi-
tional survival distributions (Subsection 5.2), the implied default correlations (Subsection
5.3), and finally the implied expected default times and expected ordered defaults times
(Subsection 5.4).

5.1. Two CDS portfolios. Table 1 and Table 2 describe the two CDS portfolios which
are used in our numerical studies and Table 3 and Table 4 their correlation matrices. The
maturity was 5 years and the data was obtained from Reuters at February 15, 2007 for
the auto portfolio and March 28, 2007 for the financial portfolio.

The correlation matrices are based on rolling 12 months 5-years CDS midpoint market
spreads for each obligor, with a daily sampling frequency of the closing level of the spreads.
In both portfolios, we have assumed a fictive relative dependence structure {Di,j} which
are given in Table 11 and Table 12 in Appendix 8 together with a description how they
where created. Further, we have also assumed a fictive recovery rate structure which is the
same in both baskets. The interest rate was assumed to be constant and set to 3%, and
the protection fees were assumed to be paid quarterly.

For each portfolio, the ai-s and dq-s are obtained by simultaneously calibrate the CDS
spreads in Table 1 and Table 2 and the corresponding correlation matrices in Table 3
and Table 4, as described in Subsection 4.2. In both portfolios the CDS calibrations
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Table 1: The auto companies and their 5 year market (2007-02-15) and model CDS spreads, the
absolute calibration errors, and the recoveries. The spreads are given in bp.

Company name Market Model abs.error recovery %
Volvo AB 25.84 25.87 0.03336 32
BMW AG 9.415 9.593 0.178 48
Comp. Fi. Michelin SA 25.34 25.53 0.1915 45
Continental AG 43.66 43.68 0.01789 34
DaimlerChrysler AG 44 43.98 0.02175 42
Fiat SPA 58 58.02 0.016 41
Peugeot SA 24.84 24.9 0.06289 29
Renault SA 28.67 28.72 0.05989 39
Valeo SA 66 65.98 0.01812 51
Volkswagen AG 22.17 22.08 0.08343 41
Σ abs.cal.err 0.6828 bp

Table 2: The financial companies and their 5 year market (2007-03-28) and model CDS spreads,
the absolute calibration errors, and the recoveries. The spreads are given in bp.

Company name Market Model abs.error recovery %
ABN Amro Bank NV 6.085 6.225 0.1402 32
Barclays Bank PLC 7 6.9 0.1 48
BNP Paribas 6.665 6.562 0.1026 45
Commerzbank AG 9.335 9.41 0.07492 34
Deutsche Bank AG 13.59 13.5 0.08747 42
HSBC Bank PLC 7.25 7.247 0.002626 41
Hypovereinsbank AG 7 7.217 0.2173 29
The Royal Bank of Scotland PLC 7 6.844 0.1556 39
Banco Santander Central Hispano 8.25 8.22 0.02998 51
Unicredito Italiano SPA 9.915 9.989 0.07363 41
Σ abs.cal.err 0.9844 bp

where perfect. The correlation fit for the financial portfolio was also perfect, as seen in
Table 5, while the corresponding calibration for the auto case was mediocre. One possible
explanation for the lesser performance in the auto portfolio, is that the negative jumps
in the intensities are bounded, which may bound the absolute value of the negative CDS-
correlations by a scalar smaller than one.

A quick look in Table 14 reveals that 15 (out of 18) ”negative” parameters hit their
upper bounds (for more details on this, see Appendix). Such limitations can be avoided
by using a different parametrization of the intensities in (2.1), making the jumps-sizes also
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Table 3: The auto CDS correlation matrix, based on 5-years CDS midpoint market spreads for
each obligor, between 2006-02-15 and 2007-02-15, with a daily sampling frequency of
the closing level of the spreads.

VOLV BMW MICH CONT DCX FIAT PEUG RENA VALE VW

VOLV 1
BMW 0.63 1
MICH 0.81 0.64 1
CONT -0.5 -0.69 -0.23 1
DCX 0.12 0.47 0.51 0.13 1
FIAT 0.67 0.97 0.76 -0.64 0.52 1
PEUG 0.66 0.28 0.81 0.14 0.34 0.37 1
RENA 0.55 0.24 0.79 0.1 0.42 0.39 0.82 1
VALE 0.22 -0.42 0.2 0.44 -0.1 -0.31 0.39 0.41 1
VW 0.12 0.66 0.47 -0.2 0.77 0.71 0.16 0.34 -0.44 1

Table 4: The financial CDS correlation matrix, based on 5-years CDS midpoint market spreads
for each obligor, between 2006-03-28 and 2007-03-28, with a daily sampling frequency
of the closing level of the spreads.

ABN BACR BNP CMZB DB HSBC HVB RBOS BSCH CRDIT

ABN 1
BACR 0.91 1
BNP 0.98 0.94 1
CMZB 0.92 0.95 0.92 1
DB 0.88 0.84 0.89 0.81 1
HSBC 0.66 0.96 0.76 0.9 0.88 1
HVB 0.82 0.9 0.89 0.89 0.8 0.85 1
RBOS 0.93 0.98 0.95 0.94 0.85 0.98 0.88 1
BSCH 0.84 0.95 0.89 0.95 0.78 0.88 0.89 0.92 1
CRDIT 0.78 0.9 0.82 0.91 0.76 0.81 0.87 0.84 0.96 1

be functions of the level of the intensity. To be more specific, the bigger the intensity, the
bigger negative jumps are allowed.

From Table 14 and Table 15 in Appendix, we see that in the auto portfolio, the base
intensities can have positive jumps up to 589% of their ”base values” ai, and up to 1749
% in the financial portfolio.

5.2. The implied default and survival distributions and the conditional survival

distributions. In the credit literature today, risk-neutral distributions are often called im-
plied distributions. Here ”implied” is refereing to the fact that the quantities are retrieved
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Table 5: The average, median, min and max absolute calibration-errors in percent of the scaled

market CDS-correlations, i.e. {βρ
(CDS)
i,j (T )}, where β = 0.05

Portfolio mean median min max
Auto 29.2 18.8 0.347 122
Financial 1.43 0.213 0.00988 13.1

from market data via a model. The implied (joint) default and survival distributions at
different time points, are important quantities for a credit manager. The results in Section
3 provides formulas for computing these expressions. In this subsection we use them to find
the implied default and survival distributions, as well as conditional survival distributions,
for different pairs of obligors, in the calibrated portfolios.

We want to study the bivariate default and survival distributions for the pairs Fiat, BMW
and Continental, BMW. Given the CDS spreads and their correlations, it may in general be
difficult to draw some qualitative conclusions about these bivariate probabilities and their
mutual relations, without actually computing them. The CDS spreads for Fiat and BMW
are positively correlated while Continental and BMW are negatively correlated, and the
difference in percent between the spreads for Continental and Fiat are (58 − 43.66)/58 =
24%. From this, we intuitively guess that BMW-s bivariate default probabilities with Fiat
should be bigger than the bivariate default probabilities with Continental. Conversely,
the bivariate survival distributions of the pair Fiat, BMW should be smaller than for
Continental, BMW. These hypothesis are confirmed by the Figures 1, 2, 3 and 4. Similar
shapes of the bivariate default and survival distributions are obtained by obligors in the
financial portfolio, as seen in Figure 5 and 6.

We also note that the CDS spreads for Continental is positively correlated with the
spreads for DaimlerChrysler, Peugeot, Renault and Valeo. We therefore suspect that the
conditional survival distributions for continental are decreasing with the number of defaults
among DaimlerChrysler, Peugeot, Renault and Valeo. For example, when s is fixed, we
guess that the survival distribution P [τCont > t | τDCX < s] as function of t for t > s, should
lie above the curve P [τCont > t | τDCX < s, τPeu < s]. This claim is supported by Figure 7 for
s = 10 and 10 ≤ t ≤ 104 (and also by Figure 9, for a similar test in the financial portfolio).
Furthermore, the CDS spreads for Continental are negatively correlated with the spreads
for Volvo, BMW, Michelin, Fiat and Volkswagen. In view of the above results, it is tempting
to believe that the conditional survival distributions for continental, are increasing with
the number of defaults among for Volvo, BMW, Michelin, Fiat and Volkswagen.

We investigate this for s = 10 and 10 ≤ t ≤ 104, and note that the claim is only true on
the interval 10 ≤ t ≤ 45, as seen in Figure 8. For t > 53, we see that the curves do not lie
in increasing order with increasing amount of negatively correlated defaults. One possible
explanation for this is that the negative jumps in the intensities where bounded, in the
specification that we use, which implies that the effect of a negative jump will diminish as
time progress since several positive jumps then have occurred previously.
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Figure 1: The implied bivariate default distribution for Fiat and BMW (left) and Continental
and BMW (right) in the auto portfolio.
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Figure 2: The isolines for the implied bivariate default distribution for Fiat and BMW (left)
and Continental and BMW (right) in the auto portfolio.

We also compare univariate conditional survival distribution, with bivariate conditional
survival distribution, in the banking portfolio. In Figure 9 and Figure 10 we see that
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Figure 3: The implied bivariate survival distribution for Fiat and BMW (left) and Continental
and BMW (right) in the auto portfolio.
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Figure 4: The isolines for the implied bivariate survival distribution for Fiat and BMW (left)
and Continental and BMW (right) in the auto portfolio.

the bivariate conditional survival distribution declines much faster than the corresponding
univariate conditional survival distribution.
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Figure 5: The implied bivariate default (left) and survival (right) distributions for Royal Bank
of Scotland and HSBC Bank in the financial portfolio.
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Figure 6: The isolines for the implied bivariate default (left) and survival (right) distributions
for Royal Bank of Scotland and HSBC Bank in the financial portfolio.

So far we have only computed joint bivariate distributions, or distributions involving
two time points. To show that we can handle distributions with all 10 obligors for 10
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Figure 7: The survival distribution for Continental, conditional on defaults before time 10 years,
by firms which are positively correlated with Continental. The firms which have
defaulted are indicated in the legend.
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Figure 8: The survival distribution for Continental, conditional on defaults before time 10 years,
by firms which are negatively correlated with Continental. Left figure t < 45, right
figure t > 52. The firms which have defaulted are indicated in the legend.

different time points, Table 6 and 7 displays the joint multivariate default and survival
distributions for all obligors, in each portfolio. Recall that implied default probabilities are
often substantially larger then the ”real” so called actuarial default probabilities.
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Figure 9: The survival distribution for ABN Amro, conditional on defaults before time 10 years.
The firms which have defaulted are indicated in the legend.

10 20 30 40 50 60 70 80 90 100 110
0

10

20

30

40

50

60

70

80

time t (in years)

pr
ob

ab
ili

ty
 (

%
)

 

 

ABN,BSCH | BACR
ABN,BSCH | BACR,BNP
ABN,BSCH | BACR,BNP,CMZB
ABN,BSCH | BACR,BNP,CMZB,DB
ABN,BSCH | BACR,BNP,CMZB,DB,HSBC
ABN,BSCH | BACR,BNP,CMZB,DB,HSBC,HVB
ABN,BSCH | BACR,BNP,CMZB,DB,HSBC,HVB,RBOS
ABN,BSCH | BACR,BNP,CMZB,DB,HSBC,HVB,RBOS,CRDIT

Figure 10: The joint survival distribution for ABN Amro and BSCH, conditional on defaults
before time 10 years. The firms which have defaulted are indicated in the legend.



DEFAULT CONTAGION VIA MULTIVARIATE PHASE-TYPE DISTRIBUTIONS 25

Table 6: The multivariate default and survival probabilities P [τVolv > n, . . . , τVW > 10n] and
P [τVolv ≤ n, τBMW ≤ 2n, . . . , τVW ≤ 10n] (in %) where n = 0.5, 1, 1.5, . . . , 4, in the auto
portfolio.

n = 0.5 n = 1 n = 1.5 n = 2 n = 2.5 n = 3 n = 3.5 n = 4
multi.def.prob 11.1 21 29.8 37.6 44.5 50.7 56.2 61
multi.surv.prob 98.3 96.6 94.9 93.1 91.4 89.7 88 86.2

Table 7: The multivariate default and survival probabilities P [τABN > n, . . . , τCDRIT > 10n] and
P [τABN ≤ n, τBACR ≤ 2n, . . . , τCDRIT ≤ 10n] (in %) where n = 0.5, 1, 1.5, . . . , 4, in the
financial portfolio.

n = 0.5 n = 1 n = 1.5 n = 2 n = 2.5 n = 3 n = 3.5 n = 4
multi.def.prob 29.4 49.3 63.3 73.3 80.4 85.6 89.5 92.3
multi.surv.prob 99.3 98.6 97.9 97.3 96.7 96.1 95.5 95

5.3. The implied default correlations. It may be of interest for a credit manager to
have a quantitative grasp of the pairwise default correlations ρi,j(t) = Corr(1{τi≤t}, 1{τj≤t})
between two obligors i 6= j, as a function of time t. Especially, if we can study several
pairs for a fixed obligor i, simultaneously. Recall that we have calibrated ρi,j(T ) against

0.05ρ
(CDS)
i,j (T ) for T = 5, as discussed in Subsection 4.2.

We first consider the same example as in the previous subsection, where the CDS spreads
for Continental is positively correlated with DaimlerChrysler, Peugeot, Renault and Valeo,
and negatively correlated with Volvo, BMW, Michelin, Fiat and Volkswagen. We therefore
suspect that for most time points t, the corresponding default correlations ρCont,j(t) are
positive for j = Volv, BMW . . . , CW and negative for j = DCX, Peu, . . . , Valeo. This is
confirmed by Figure 11. Note that the correlations have parabolic shapes as function of
time t.

Furthermore, the CDS-correlation matrix in Table 4 indicate a strong positive correlation
among the different CDS-spreads for the banks. This is also the case for the corresponding
default correlations, as seen in Figure 12, which displays the correlation between Deutsche
Bank and the other banks.

5.4. The implied expected default times and their ordering. In this subsection we
study implied expected default times E [τi] and the implied expected ordered default times
E [Tk] for the two calibrated portfolios in Subsection 5.1.

If we order the sequence {E [τi]} in increasing order {E [τik ]} so that E [τik ] < E
[
τik+1

]

and study the corresponding sequence of model CDS-spreads {Rik}, one would expect that
{Rik} are strictly decreasing. However, from Table 8 and Table 9 we see that this is far
from true.
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Figure 11: The default correlations between Continental and the companies in the auto port-
folio which are negatively correlated (left) and positively correlated (right) with
Continental.
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Table 8: The expected default times in the auto portfolio, sorted in increasing order E [τik ] <

E
[
τik+1

]
, and the corresponding model CDS-spreads.

VALE FIAT DCX RENA PEUG MICH VOLV VW CONT BMW

E [τik ] 47.3 66.9 68.1 78.9 86.3 86.6 89.2 91.8 116 118
Rik 66 58 44 28.7 24.9 25.5 25.9 22.1 43.7 9.59

Table 9: The expected default times in the financial portfolio, sorted in increasing order E [τik ] <

E
[
τik+1

]
, and the corresponding model CDS-spreads.

DB BSCH CMZB BACR CRDIT RBOS HSBC HVB BNP ABN

E [τik ] 113 114 116 117 120 120 126 127 131 133
Rik 13.5 8.22 9.41 6.9 9.99 6.84 7.25 7.22 6.56 6.23

In the financial portfolio, the spreads {Rik} are not decreasing. The auto portfolio has
a decreasing trend in the sequence {Rik}, except for the Continental spread, RCont = 43.7
which is the forth biggest spread, while E [τCont] = 116 years, is the ninth biggest expected
default time in the auto portfolio. These irregularities are likely due to the dependence
structure in (2.1), (4.2.1), which plays a major roll in the calibration. For example, in the
auto case, the CDS spread for Continental is negatively correlated with the spreads for
Volvo, BMW, Michelin, Fiat and Volkswagen which means that Continental will benefit
from defaults on these firms. In Table 3 we also note that for Continental, the average of the
absolute value for the negative correlations is bigger than the corresponding quantity for the
positive correlations and no other car company has so many negative default correlations.
These observations may explain why E [τCont] is the ninth biggest in the sequence {E [τik ]}.
Hence, from an average default timing point of view, Continental is the second less riskiest
company in the auto portfolio, even though the CDS spread is the third biggest. Note
however that the base intensity aCont is the third biggest in the auto basket, see Table 13
in Appendix.

These examples indicate that it can be misleading to use the reverse ordering of the CDS
spreads as a measure for the relative default riskiness among the obligors in the portfolio.

Table 10: The expected ordered default times E [Tk].

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9 k = 10
Auto 17.8 33.7 50.2 62.9 74.1 85.1 96.8 111 131 186
Financial 85.3 98.7 107 113 118 124 129 136 145 162

Other observations are that the difference between the smallest and biggest expected
default time, is 19.5 years in the financial portfolio and 71 years in the auto portfolio.
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Also note that in the banking portfolio, the smallest expected default time lie between the
expected value of the fourth and fifth ordered default time and the biggest between the
seventh and eight. The corresponding quantities in the auto case lie between the second
and third, and between the eight and ninth expected ordered default time.

6. Computation of the matrix exponential

All results derived in this paper include computations of the matrix exponential. In this
section we describe the method for computing eQt that is used throughout this article, the
so called uniformization method (sometimes also is called the randomization method). It

works as follows. Let Λ = max
{
|Qj,j| : j ∈ E

}
and set P̃ = Q/Λ+I. Then, e

ePΛt = eQteΛt

since I commutes with all matrices, and using the definition of the matrix exponential
renders

eQt =
∞∑

n=0

P̃
n
e−Λt (Λt)n

n!
. (6.1)

Recall that p (t) = αeQt and define p̃ (t, N) = α
∑N

n=0 P̃
n
e−Λt (Λt)n

n!
. Furthermore, for a

vector x = (x1, . . . , xn) ∈ R
n, let ‖x‖1 denote the L1 norm, that is ‖x‖1 =

∑n
i=1 |xi|. Given

Q, the uniformization method allows us to find the L1 approximation error for p̃ (t, N)
apriori, as shown in the following lemma, stated in e.g. [16] and [27], but without a proof.

Lemma 6.1. Let ε > 0 and pick N(ε) so that 1 −
∑N(ε)

n=0 e−Λt (Λt)n

n!
< ε. Then,

‖p (t) − p̃ (t, N(ε))‖1 < ε. (6.2)

Proof. By construction, all elements in P̃ are in [0, 1] and all rows in P̃ sums up to one.

We can therefore view P̃ as a transition matrix for a discrete time Markov chain on E.
Since α is a probability distribution on E we conclude that ‖αP̃

n‖1 = 1 for all n ∈ N.
These observations imply

‖p (t) − p̃ (t, N(ε))‖1 =
∣∣∣
∣∣∣

∞∑

n=N(ε)+1

αP̃
n
e−Λt (Λt)n

n!

∣∣∣
∣∣∣
1

≤
∞∑

n=N(ε)+1

‖αP̃
n‖1e

−Λt (Λt)n

n!

= 1 −
N(ε)∑

n=0

e−Λt (Λt)n

n!
< ε

(6.3)

which proves the lemma. �

The lemma implies that, given Q, we can for any ε > 0 find a N(ε) so that p̃ (t, N(ε))
approximates p (t) with an accumulated absolute error which is less than ε. Note that
the sharp error estimation in Lemma 6.1 relies on a probabilistic argument leading to

‖αP̃
n‖1 = 1 for all n ∈ N. It is tempting to try to prove (6.2) without this observation,

by using that ‖αP̃
n‖1 ≤ ‖α‖1‖P̃ ‖n

1 = ‖P̃ ‖n
1 where ‖P̃ ‖1 is the corresponding matrix
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norm, and then try show that ‖P̃ ‖1 is smaller or equal to one. However, it is easy to see

that ‖P̃ ‖1 > 1 for P̃ = Q/Λ + I when Q is the generator of a transient Markov process
on a finite state E with a final absorbing state, where Λ = max

{
|Qj,j| : j ∈ E

}
. This

implies that if we use the uniformization method for an arbitrary matrix Q, which is not
a generator, it may be difficult to find effective apriori error estimates. For such matrices

the elements in P̃ may not even be positive, which makes this method no better than the
standard Taylor-series expansion method.

The probabilistic argument for the matrix P̃ in Lemma 6.1 is no coincidence. The
following result can be found in [20].

Theorem 6.2. Let (Yt)t≥0 be a Markov jump process on a finite state E with generator
Q where Λ = max

{
|Qj,j| : j ∈ E

}
< ∞. Then there exists a discrete time Markov chain

(Xn)∞n=0 on E with transition matrix P̃ = Q/Λ+I and a Poisson process Nt with intensity
Λ, independent of (Xn)∞n=0, such that the processes (XNt

)t≥0 and (Yt)t≥0 have the same finite
dimensional distributions.

Recall that the p (t) = (P [Yt = j])j∈E so pj (t) = P [Yt = j] and Theorem 6.2 implies
that

pj (t) = P [Yt = j]

= P [XNt
= j]

=
∞∑

n=0

P [XNt
= j |Nt = n] P [Nt = n]

=
∞∑

n=0

P [Xn = j] e−Λt (Λt)n

n!
.

(6.4)

Define the row vectors ϕ(n) =
(
ϕj(n)

)
j∈E

for n ∈ N as ϕj(n) = P [Xn = j] when n ∈
N \ {0} and ϕ(0) = α. Theorem 6.2 then implies that ϕ(n) = ϕ(n − 1)P̃ which together
with Equation (6.4) renders

p (t) =

∞∑

n=0

αP̃
n
e−Λt (Λt)n

n!
. (6.5)

But we also know that p (t) = αeQt, so (6.5) is therefore Equation (6.1) restated.
Further benefits with the uniformization method is that all entries in p̃ (t, N(ε)) are posi-

tive so there are no cancelation effects and the approximation error decreases monotonically

with increasing N . If we set f(t, N) = 1 −∑N
n=0 e−Λt (Λt)n

n!
then ∂f(t,N)

∂t
= e−Λt (Λt)N

N !
> 0

so for a fixed N , the approximation error is bounded by a strictly increasing function
in t. This is practical, since we then only have to compute one error tolerance for
T , that will uniformly bound the error ‖p (t) − p̃ (t, N)‖1 for all t ≤ T . For example,
when approximating

∑nT

n=1 αeQtne−rtn where t1 < . . . < tnT
= T , we choose N(ε/nT ) so

1 −
∑N(ε/nT )

n=0 e−Λt (Λt)n

n!
< ε

nT
which implies that the total approximation error for the sum∑nT

n=1 αeQtne−rtn is smaller than ε (since e−rtn ≤ 1 for every n).
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Figure 13: The structure of the nonzero elements in the sparse matrix Q where m = 10.

A further point is that our matrices in general are very large, for example if m = 10
then the generator has 210 = 1024 rows and thus contain 220 ≈ 1. millon entries. However,
at the same time it is extremely sparse, see Figure 13. For m = 10 there are only 0.59%
nonzero entries in Q, and hence only about 6100 elements have to be stored, which roughly
is the same as storing a full quadratic matrix with 78 rows.

A final point is that we are not interested in finding the matrix exponential itself, but
only the probability vector p(t), or a subvector of p(t). This is important, since computing
eQt is very time and memory consuming compared with computing αeQt.

For more on the uniformization method with applications in credit derivatives valuations
and credit risk, see e.g. [19] and [23].
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7. Discussion and conclusions

In this paper we considered the intensity based default contagion model (2.1), where
the default intensity of one firm is allowed to change when other firms default. The model
was reinterpreted in terms of a Markov jump process, a so called multivariate phase-type
distribution. This reinterpretation made it possible to derive practical formulas for many
quantities, such as multivariate default and survival distributions, conditional multivariate
distributions, marginal distributions, multivariate densities, correlations, expected default
times, CDS-spreads and so on.

In the model we used two CDS portfolios for numerical studies, one in the European auto
sector, the other in the European financial sector. Both baskets contained 10 companies.
For an exogenously given dependence matrices {Di,j}, we calibrated the portfolios against
their market CDS spreads and the corresponding CDS-correlations. In both portfolios the
CDS-fits where perfect, and in the financial case the correlation fit was also perfect, while
the autos correlation matching was mediocre.

We then computed the implied joint default and survival distributions, the implied
univariate and bivariate conditional survival distributions, the implied default correlations,
and the implied expected default times and expected ordered defaults times. Qualitatively,
many of the results where as expected. However it would seem rather impossible to guess
the sizes of the probabilities and other quantities, without computation.

Future extensions of the model (2.1) is for example to include first-to-default swaps,
other portfolio credit derivatives and corporate information, so that {Di,j} can be deter-
mined more realistically. Further empirical investigations of the approximation ρi,j(T ) ∼
βρ

(CDS)
i,j (T ) is also needed.
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8. Appendix

The dependence matrix {Di,j} for the financial portfolio was generated by drawing a
random matrix where the entities lie in the interval 1, 2, . . . , 45. If some of the elements in
1, 2, . . . , 45 are not present in the sampling, we removed doublets in Di,j until all integers
between 1 and 45 were present.

The {Di,j} matrix for the auto portfolio was created in the same way. However, we
also made sure that {Di,j} was constructed so that it split {dq} in two disjoint groups,

{dq} = d− ∪ d+ such that if ρ
(CDS
i,j (T )) < 0 then dDi,j

∈ d− and if ρ
(CDS)
i,j (T ) ≥ 0 then

dDi,j
∈ d+, where ρ

(CDS)
i,j (T )) is the CDS-correlation matrix, retrieved from market data.

Furthermore, we also constructed d− so that dp ∈ d− only appeared once in the matrix
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{Di,j}. Then we constrained the parameters in d− as follows

dp ≤
1

|Ni|
− 0.005 if θi,j = −dp for some j ∈ Ni,

where Ni is the set of obligors j 6= i which are negatively correlated with entity i, that is,

where ρ
(CDS)
i,j (T ) < 0.

Table 11: The dependence matrix Di,j for the autos portfolio. Entries with a negative subscript
indicates that the corresponding entry in the correlation matrix is negative.

VOLV BMW MICH CONT DCX FIAT PEUG RENA VALE VW

VOLV 0 28 45 5− 29 25 10 26 36 2
BMW 10 0 16 34− 35 31 40 7 43− 1
MICH 27 41 0 20− 31 7 37 29 39 40
CONT 22− 6− 4− 0 17 24− 29 26 40 9−
DCX 40 15 2 21 0 7 37 17 8− 13
FIAT 45 42 25 19− 23 0 23 32 44− 23
PEUG 21 42 25 29 32 17 0 25 12 13
RENA 2 41 27 39 35 39 13 0 11 21
VALE 37 18− 12 25 14− 38− 15 31 0 3−
VW 16 40 25 30− 25 27 39 28 33− 0

Table 12: The dependence matrix Di,j for the financial portfolio.

ABN BACR BNP CMZB DB HSBC HVB RBOS BSCH CRDIT

ABN 0 10 31 39 22 28 15 20 1 2
BACR 13 0 34 4 29 17 35 12 35 41
BNP 8 6 0 22 2 15 35 19 21 44
CMZB 41 24 24 0 15 40 5 31 2 30
DB 12 31 15 21 0 11 15 38 4 33
HSBC 17 32 3 27 4 0 12 37 43 22
HVB 29 42 12 9 31 14 0 18 27 31
RBOS 14 1 45 23 1 8 40 0 11 16
BSCH 9 26 17 7 14 32 35 7 0 18
CRDIT 10 25 35 33 2 36 11 15 19 0
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Table 13: The calibrated base intensities.

aVOL aBMW aMICH aCON aDCX aFIA aPEU aREN aVALE aVW

Auto 34.7 16.5 43.2 65.4 71.5 94.4 31.5 43.3 128 33.7 ×10−4

Financial 7.85 10.5 10.5 11.4 20.7 10.6 8.48 8.70 13.8 14.8 ×10−4

Table 14: The dependence variables dq s.t θi,j = ±dDi,j
for the autos portfolio. Entries with a

negative subscript indicates that θi,j = −dDi,j
.

d1, . . . , d9 5.49 0.903 0.245− 0.195− 0.995− 0.195− 0.675 0.0191− 0.195−
d10, . . . , d18 3.93 0 0.434 1.78 0.245− 0.946 0.383 0.445 0.245−
d19, . . . , d27 0.495− 0.813− 0 0.195− 0.394 0.195− 1.62 0.758 2.83
d28, . . . , d36 1.53 0.355 0.495− 1.11 0.826 0.495− 0.495− 1.17 0
d37, . . . , d45 1 0.142− 0 0 2.66 3.53 0.495− 0.495− 0.936

Table 15: The dependence variables dq s.t θi,j = dDi,j
for the financial portfolio.

d1, . . . , d9 7.66 4.56 5.43 1.63 9.52 0 7.15 17.9 6.76
d10, . . . , d18 8.68 9.39 10.4 9.68 6.18 7.61 5.2 12.2 11
d19, . . . , d27 1.45 14.3 1.47 2.42 13.4 13.3 0 6.4 7.48
d28, . . . , d36 0.482 7.88 9.77 3.07 4.72 2.98 17 7.34 9.32
d37, . . . , d45 1.47 3.37 4.83 7.21 13.3 9.7 8.22 4.76 17.5

Table 16: The absolute calibration errors for the default correlation matrices, in percent of

matrix {0.05ρ(CDS)
i,j (T )}, for the auto portfolio.

VOLV BMW MICH CONT DCX FIAT PEUG RENA VALE VW

VOLV 0
BMW 3.4 0
MICH 9.6 32 0
CONT 46 83 12 0
DCX 12 17 9.1 9.4 0
FIAT 8.9 7.9 2.8 57 11 0
PEUG 2 49 39 11 31 27 0
RENA 35 89 14 93 9.1 20 23 0
VALE 45 64 19 55 7.3 4.7 9.1 0.41 0
VW 120 0.35 26 20 5.1 24 97 6.8 47 0
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