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PRICING SYNTHETIC CDO TRANCHES IN A MODEL WITH

DEFAULT CONTAGION USING THE MATRIX-ANALYTIC

APPROACH

ALEXANDER HERBERTSSON

Centre For Finance and Department of Economics, Göteborg University

Abstract. We value synthetic CDO tranche spreads, index CDS spreads, kth-to-default
swap spreads and tranchelets in an intensity-based credit risk model with default con-
tagion. The default dependence is modelled by letting individual intensities jump when
other defaults occur. The model is reinterpreted as a Markov jump process. This allow
us to use a matrix-analytic approach to derive computationally tractable closed-form ex-
pressions for the credit derivatives that we want to study. Special attention is given to
homogenous portfolios. For a fixed maturity of five years, such a portfolio is calibrated
against CDO tranche spreads, index CDS spread and the average CDS and FtD spreads,
all taken from the iTraxx Europe series. After the calibration, which render perfect fits,
we compute spreads for tranchelets and kth-to-default swap spreads for different subport-
folios of the main portfolio. We also investigate implied tranche-losses and the implied
loss distribution in the calibrated portfolios.

1. Introduction

In recent years the market for synthetic CDO tranches and index CDS-s, which are
derivatives with a payoff linked to the credit loss in a portfolio of CDS-s, have seen a
rapid growth and increased liquidity. This has been followed by an intense research for
understanding and modelling the main feature driving these products, namely default
dependence.

In this paper we derive computationally tractable closed-form expressions for synthetic
CDO tranche spreads and index CDS spreads. This is done in an intensity based model
where default dependencies among obligors are expressed in an intuitive, direct and com-
pact way. The financial interpretation is that the individual default intensities are constant,
except at the times when other defaults occur: then the default intensity for each obligor
jumps by an amount representing the influence of the defaulted entity on that obligor.
This phenomena is often called default contagion. The above model is then reinterpreted
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2 ALEXANDER HERBERTSSON

in terms of a Markov jump process. This interpretation makes it possible to use a matrix-
analytic approach to derive practical formulas for CDO tranche spreads and index CDS
spreads. Our approach is the same as in [15] and [17] where the authors study aspects of
kth-to default spreads in nonsymmetric as well as in symmetric portfolios. The contribu-
tion of this paper is a continuation of this technique to synthetic CDO tranches and index
CDS-s.

Except for [15] and [17], the methods presented in [2], [4], [7], [8], [9], [11], [12], Section
5.9 in [22] and Subsection 9.8.3 in [23], are currently closest to the approach of this article.
The framework used here (and in [15] and [17]) is the same as in [11], [12] and is related
to [2], [4]. The main differences are that [11], [12] use time-varying parameters in their
practical examples and then solve the corresponding Chapman-Kolmogorov equation us-
ing numerical methods for ODE-systems. Furthermore, in [12], the authors also consider
numerical examples where the portfolio is split into homogeneous groups with default con-
tagion both within each group and between groups. [4] use Monte Carlo simulations to
calibrate and price the instruments.

Default contagion in an intensity based setting have previously also been studied in for
example [1], [3], [6], [13], [14], [19], [21], [25], [26] and [27]. The material in all these papers
and books are related to the results discussed here.

This paper is organized as follows. In Section 2 we give an introduction to synthetic
CDO tranches and index CDS-s which motivates results and introduces notation needed
in the sequel. Section 3 presents the intensity-based model for default contagion. Using
a result from [17], the model is reinterpreted in terms of a Markov jump process. The
results in Section 4, convenient analytical formulas for synthetic CDO tranche spreads and
index CDS spreads, are the main theoretical contribution in this paper. We assume that
the recovery rates are deterministic and that the interest rate is constant. In Section 5
we apply the results from Section 4 to a homogenous model. Then, in Section 6, for a
fixed maturity of five years, this portfolio is calibrated against CDO tranche spreads, the
index CDS spread and the average CDS and FtD spreads, all taken from the iTraxx series,
resulting in perfect fits. After the calibration, we compute kth-to-default swap spreads
for different subportfolios of the main portfolio. This problem is slightly different from
the corresponding one in previous studies, e.g. [15] and [17], since the obligors undergo
default contagion both from the subportfolio and from obligors outside the subportfolio,
in the main portfolio. Further, we compute spreads on tranchelets which are nonstandard
CDO tranches with smaller loss-intervals than standardized tranches. We also investigate
implied tranche-losses and the implied loss distribution in the calibrated portfolios. The
final section, Section 7 summarizes and discusses the results.

2. Valuation of Synthetic CDO tranche spreads and index CDS spreads

In this section we give a short description of tranche spreads in synthetic CDO-s and
of index CDS spreads. It is independent of the underlying model for the default times
and introduces notation needed later on. At the end of the section we give a technical
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motivation for the main purpose of this article, which, roughly speaking, is to derive
practical formulas for functions of the credit loss in a portfolio.

2.1. The cash-flows in a synthetic CDO. In this section and in the sequel all com-
putations are assumed to be made under a risk-neutral martingale measure P. Typically
such a P exists if we rule out arbitrage opportunities. Further, we assume the that risk-free
interest rate, rt is deterministic.

A synthetic CDO is defined for a portfolio consisting of m single-name CDS’s on obligors
with default times τ1, τ2 . . . , τm and recovery rates φ1, φ2, . . . , φm. It is standard to assume
that the nominal values are the same for all obligors, denoted by N . The accumulated
credit loss Lt at time t for this portfolio is

Lt =

m∑

i=1

N(1 − φi)1{τi≤t}. (2.1.1)

We will without loss of generality express the loss Lt in percent of the nominal portfolio
value at t = 0. For example, if all obligors in the portfolio have the same constant recovery
rate φ, then LTk

= k(1 − φ)/m where T1 < . . . < Tk is the ordering of τ1, τ2, . . . , τm.
A CDO is specified by the attachment points 0 = k0 < k1 < k2 < . . . kκ = 1 with

corresponding tranches [kγ−1, kγ]. The financial instrument that constitutes tranche γ
with maturity T is a bilateral contract where the protection seller B agrees to pay the
protection buyer A, all losses that occurs in the interval [kγ−1, kγ] derived from Lt up to
time T . The payments are made at the corresponding default times, if they arrive before
T , and at T the contract ends. The expected value of this payment is called the protection
leg, denoted by Vγ(T ). As compensation for this, A pays B a periodic fee proportional
to the current outstanding (possible reduced due to losses) value on tranche γ up to time
T . The expected value of this payment scheme constitutes the premium leg denoted by

Wγ(T ). The accumulated loss L
(γ)
t of tranche γ at time t is

L
(γ)
t = (Lt − kγ−1) 1{Lt∈[kγ−1,kγ ]} + (kγ − kγ−1) 1{Lt>kγ}. (2.1.2)

Let Bt = exp
(
−
∫ t

0
rsds

)
denote the discount factor where rt is the risk-free interest rate.

The protection leg for tranche γ is then given by

Vγ(T ) = E

[∫ T

0

BtdL
(γ)
t

]
= BT E

[
L

(γ)
T

]
+

∫ T

0

rtBtE

[
L

(γ)
t

]
dt,

where we have used integration by parts for Lebesgue-Stieltjes measures together with
Fubini-Tonelli and the fact that rt is deterministic. Further, if the premiums are paid at
0 < t1 < t2 < . . . < tnT

= T and if we ignore the accrued payments at defaults, then the
premium leg is given by

Wγ(T ) = Sγ(T )

nT∑

n=1

Btn

(
∆kγ − E

[
L

(γ)
tn

])
∆n
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where ∆n = tn − tn−1 denote the times between payments (measured in fractions of a
year) and ∆kγ = kγ − kγ−1 is the nominal size of tranche γ (as a fraction of the total
nominal value of the portfolio). The constant Sγ(T ) is called the spread of tranche γ and
is determined so that the value of the premium leg equals the value of the corresponding
protection leg.

2.2. The tranche spreads. By definition, the constant Sγ(T ) is determined at t = 0
so that Vγ(T ) = Wγ(T ), that is, so that the value of the premium leg agrees with the
corresponding protection leg. Furthermore, for the first tranche, often denoted the equity

tranche, S1(T ) is set to 500 bp and a so called up-front fee S
(u)
1 (T ) is added to the premium

leg so that V1(T ) = S
(u)
1 (T )k1 + W1(T ). Hence, we get that

Sγ(T ) =
BT E

[
L

(γ)
T

]
+
∫ T

0
rtBtE

[
L

(γ)
t

]
dt

∑nT

n=1 Btn

(
∆kγ − E

[
L

(γ)
tn

])
∆n

γ = 2, . . . , κ

and

S
(u)
1 (T ) =

1

k1

[
BT E

[
L

(1)
T

]
+

∫ T

0

rtBtE

[
L

(1)
t

]
dt − 0.05

nT∑

n=1

Btn

(
∆k1 − E

[
L

(1)
tn

])
∆n

]
.

The spreads Sγ(T ) are quoted in bp per annum while S
(u)
1 (T ) is quoted in percent per

annum. Note that spreads are independent of the nominal size of the portfolio.

2.3. The index CDS spread. Consider the same synthetic CDO as above. An index
CDS with maturity T , has almost the same structure as a corresponding CDO tranche,
but with two main differences. First, the protection is on all credit losses that occurs in the

CDO portfolio up to time T , so in the protection leg, the tranche loss L
(γ)
t is replaced by the

total loss Lt. Secondly, in the premium leg, the spread is paid on a notional proportional
to the number of obligors left in the portfolio at each payment date. Thus, if Nt denotes
the number of obligors that have defaulted up to time t, i.e Nt =

∑m

i=1 1{τi≤t}, then the

index CDS spread S(T ) is paid on the notional (1− Nt

m
). Since the rest of the contract has

the same structure as a CDO tranche, the value of the premium leg W (T ) is

W (T ) = S(T )

nT∑

n=1

Btn

(
1 −

1

m
E [Ntn ]

)
∆n

and the value of the protection leg, V (T ), is given by V (T ) = BT E [LT ] +
∫ T

0
rtBtE [Lt] dt.

The index CDS spread S(T ) is determined so that V (T ) = W (T ) which implies

S(T ) =
BT E [LT ] +

∫ T

0
rtBtE [Lt] dt

∑nT

n=1 Btn

(
1 − 1

m
E [Ntn ]

)
∆n

(2.3.1)

where 1
m

E [Nt] = 1
1−φ

E [Lt] if φ1 = φ2 = . . . = φm = φ. The spread S(T ) is quoted in bp
per annum and is independent of the nominal size of the portfolio.
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2.4. The expected tranche losses. From Subsection 2.2 we see that to compute tranche

spreads we have to compute E

[
L

(γ)
t

]
, that is, the expected loss of the tranche [kγ−1, kγ] at

time t. If we let FLt
(x) = P [Lt ≤ x] then (2.1.2) implies that

E

[
L

(γ)
t

]
= (kγ − kγ−1) P [Lt > kγ ] +

∫ kγ

kγ−1

(x − kγ−1) dFLt
(x). (2.4.1)

Hence, in order to compute E

[
L

(γ)
t

]
and E [Lt] and we must know the loss distribution

FLt
(x) at time t. Furthermore, if the recoveries are nonhomogeneous, then to determine

the index CDS spread, we also must compute E [Ntn ], which is equivalent to finding the
default distributions P [τi ≤ t] for all obligors, or alternatively determining the distributions
P [Tk ≤ t] for all ordered default times Tk.

To find analytical expressions for expected tranche losses, expected losses, and thus for
tranche spreads and index CDS spread, is the main objective in this paper.

3. Intensity based models reinterpreted as Markov jump processes

In this section we define the intensity-based model for default contagion which is used
throughout the paper. The model is then translated into a Markov jump process. This
makes it possible to use a matrix-analytic approach to derive computationally convenient
formulas for CDO tranche spreads, index CDS spreads, single-name CDS spreads and kth-
to-default spreads. The model presented here is identical to the setup in [17] where the
authors study aspects of kth-to-default spreads in nonsymmetric as well as in symmetric
portfolios. In this paper we focus on synthetic CDO trances, index CDS and kth-to-default
swaps on subportfolios to the CDO portfolio.

With τ1, τ2 . . . , τm default times as above, define the point process Nt,i = 1{τi≤t} and
introduce the filtrations

Ft,i = σ (Ns,i; s ≤ t) , Ft =
m∨

i=1

Ft,i.

Let λt,i be the Ft-intensity of the point processes Nt,i. Below, we for convenience often
omit the filtration and just write intensity or ”default intensity”. With a further extension
of language we will sometimes also write that the default times {τi} have intensities {λt,i}.
The model studied in this paper is specified by requiring that the default intensities have
the form,

λt,i = ai +
∑

j 6=i

bi,j1{τj≤t}, τi ≥ t, (3.1)

and λt,i = 0 for t > τi. Further, ai ≥ 0 and bi,j are constants such that λt,i is non-negative.
The financial interpretation of (3.1) is that the default intensities are constant, except at

the times when defaults occur: then the default intensity for obligor i jumps by an amount
bi,j if it is obligor j which has defaulted. Thus a positive bi,j means that obligor i is put
at higher risk by the default of obligor j, while a negative bi,j means that obligor i in fact
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benefits from the default of j, and finally bi,j = 0 if obligor i is unaffected by the default
of j.

Equation (3.1) determines the default times through their intensities. However, the
expressions for the loss and tranche losses are in terms of their joint distributions. It is by
no means obvious how to go from one to the other. Here we will use the following result,
proved in [17].

Proposition 3.1. There exists a Markov jump process (Yt)t≥0 on a finite state space E

and a family of sets {∆i}
m

i=1 such that the stopping times

τi = inf {t > 0 : Yt ∈ ∆i} , i = 1, 2, . . . , m,

have intensities (3.1). Hence, any distribution derived from the multivariate stochastic
vector (τ1, τ2, . . . , τm) can be obtained from {Yt}t≥0.

Each state j in E is of the form j = {j1, . . . jk} which is a subsequence of {1, . . .m}
consisting of k integers, where 1 ≤ k ≤ m. The interpretation is that on {j1, . . . jk} the
obligors in the set have defaulted. The Markov jump process Yt on E is specified by making
{1, . . .m} absorbing and starting in {0}.

In this paper, Proposition 3.1 is throughout used for computing distributions. However,
we still use Equation (3.1) to describe the dependencies in a credit portfolio since it is
more compact and intuitive. In the sequel, we let Q and α denote the generator and
initial distribution on E for the Markov jump process in Proposition 3.1. The generator
Q is found by using the structure of E, the definition of the states j, and Equation (3.1),
see [17]. By construction α = (1, 0, . . . , 0). Further, if j belongs to E then ej denotes a
column vector in R

|E| where the entry at position j is 1 and the other entries are zero.
From Markov theory we know that P [Yt = j] = αeQtej were eQt is the matrix exponential
which has a closed form expression in terms of the eigenvalue decomposition of Q.

4. Using the matrix-analytic approach to find CDO tranche spreads and
index CDS spreads

In this section we derive practical formulas for CDO tranche spreads and index CDS
spreads. This is done under (3.1) together with the standard assumption of deterministic
recovery rates and constant interest rate r. Although the derivation is done in an inhomo-
geneous portfolio, we will in Section 5 show that these formulas are almost the same in a
homogeneous model.

The following observation is a key to all results in this article. If the obligors in a
portfolio satisfy (3.1) and have deterministic recoveries, then Proposition 3.1 implies that
the corresponding loss Lt can be represented as a functional of the Markov jump process
Yt, Lt = L (Yt) where the mapping L goes from E to all possible loss-outcomes determined

via (2.1.1). For example, if j ∈ E where j = {j1, . . . jk} then L (j) = 1
m

∑k

n=1(1 − φjn
).

The range of L is a finite set since the recoveries are deterministic. This implies that for
any mapping g(x) on R and a set A in [0,∞), we have

∫

A

g(x)dFLt
(x) = αeQth(g, A)



PRICING SYNTHETIC CDO TRANCHES 7

where h(g, A) is a column vector in R
|E| defined by h(g, A)j = g(L(j))1{L(j)∈A}. From

this we obtain the following easy lemma, which is stated since it provides notation which
is needed later on.

Lemma 4.1. Consider a synthetic CDO on a portfolio with m obligors that satisfy (3.1).
Then, with notation as above,

E

[
L

(γ)
t

]
= αeQtℓ(γ) , E [Lt] = αeQtℓ and E [Nt] = αeQt

m∑

i=1

h(i)

where ℓ(γ) is a column vector in R
|E| defined by

ℓ
(γ)
j =






0 if L(j) < kγ−1

L(j) − kγ−1 if L(j) ∈ [kγ−1, kγ]
∆kγ if L(j) > kγ

(4.1)

and L is the mapping such that Lt = L(Yt). Furthermore, ℓ and h(i) are column vectors in

R
|E| defined by ℓj = L(j) and h

(i)
j = 1{j∈∆i} where the sets ∆i are as in Proposition 3.1.

We now present the main results of this paper.

Proposition 4.2. Consider a synthetic CDO on a portfolio with m obligors that satisfy
(3.1) and assume that the interest rate r is constant. Then, with notation as above,

Sγ(T ) =

(
αeQT e−rT + αR(0, T )r

)
ℓ(γ)

∑nT

n=1 e−rtn

(
∆kγ − αeQtnℓ(γ)

)
∆n

γ = 2, . . . , κ (4.2)

and

S
(u)
1 (T ) =

1

k1

(

αeQT e−rT + αR(0, T )r + 0.05

nT∑

n=1

αeQtne−rtn∆n

)

ℓ(1) − 0.05

nT∑

n=1

e−rtn∆n

(4.3)

where

R(0, T ) =

∫ T

0

e(Q−rI)tdt =
(
eQT e−rT − I

)
(Q − rI)−1 . (4.4)

Furthermore,

S(T ) =

(
αeQT e−rT + αR(0, T )r

)
ℓ

∑nT

n=1 e−rtn

(
1 − αeQtn ℓ̂

)
∆n

(4.5)

where

ℓ̂ =

{ 1
1−φ

ℓ if φ1 = φ2 = . . . = φm = φ
1
m

∑m

i=1 h(i) otherwise
. (4.6)

Proof. Since rt = r, using Lemma 4.1 we have that
∫ T

0

rtBtE

[
L

(γ)
t

]
dt = α

∫ T

0

e(Q−rI)tdtℓ(γ)r = αR(0, T )ℓ(γ)r
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where R(0, T ) is given by (4.4). So by Lemma 4.1 again, we get

Vγ(T ) = BT E

[
L

(γ)
T

]
+

∫ T

0

rtBtE

[
L

(γ)
t

]
dt =

(
αeQT e−rT + αR(0, T )r

)
ℓ(γ)

and

Wγ(T ) = Sγ(T )

nT∑

n=1

Btn

(
∆kγ − E

[
L

(γ)
tn

])
∆n = Sγ(T )

nT∑

n=1

e−rtn
(
∆kγ − αeQtnℓ(γ)

)
∆n.

Recall that for all tranches γ, except for the equity tranche, the spreads Sγ(T ) are deter-
mined so that Vγ(T ) = Wγ(T ). Thus, the equations above prove (4.2). Furthermore, for

the equity tranche, S1(T ) is set to 500 bp and the up-front premium S
(u)
1 (T ) is determined

so that V1(T ) = S
(u)
1 (T )k1 + W1(T ). The expressions for V1(T ) and W1(T ) together with

the fact that ∆k1 = k1 then imply that S
(u)
1 (T ) is given by

S
(u)
1 (T ) =

1

k1

[

BT E

[
L

(1)
T

]
+

∫ T

0

rtBtE

[
L

(1)
t

]
dt − 0.05

nT∑

n=1

Btn

(
∆k1 − E

[
L

(1)
tn

])
∆n

]

=
1

k1

[
(
αeQT e−rT + αR(0, T )r

)
ℓ(1) − 0.05

nT∑

n=1

e−rtn

(
∆k1 − αeQtnℓ(1)

)
∆n

]

=
1

k1

(
αeQT e−rT + αR(0, T )r + 0.05

nT∑

n=1

αeQtne−rtn∆n

)
ℓ(1) − 0.05

nT∑

n=1

e−rtn∆n

which establish (4.3). Finally, to find expressions for the index CDS spreads S(T ), recall
that this contract is almost identical to a CDO tranche (see (2.3.1)), with the differences

that ℓ(γ) is replaced by ℓ in the protection leg, and in the premium leg ∆kγ is replaced by

1 and ℓ(γ) by ℓ̂, where

ℓ̂ =

{ 1
1−φ

ℓ if φ1 = φ2 = . . . = φm = φ
1
m

∑m
i=1 h(i) otherwise

which proves (4.5) and (4.6). �

The message of Proposition 4.2 is that under (3.1), computations of CDO tranche spreads
and index CDS spreads are reduced to compute the matrix exponential. Finding the gener-

ator Q and column vectors ℓ(γ), ℓ, ℓ̂ are straightforward and the matrix (Q − rI) is invert-
ible since it is upper diagonal with strictly negative diagonal elements, see [17]. Computing
eQt efficiently is a numerical issue, which for large state spaces requires special treatment,
see [17]. For small state spaces, typically less then 150 states, the task is straightfor-
ward using standard mathematical software. Several computational shortcuts are possible

in Proposition 4.2. The quantities ℓ(γ), ℓ and ℓ̂ do not depend on the parametrization,
and hence only have to be computed once. The row vectors αeQT e−rT + αR(0, T )r and∑nT

n=1 αeQtne−rtn∆n are the same for all CDO tranche spreads and index CDS spreads and
hence only have to be computed once for each parametrization determined by (3.1). In
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particular note that
∑nT

n=1 αeQtne−rtn∆n and (Q − rI)−1 also appears in the expressions
for single-name CDS spreads and kth-to-default spreads studied in [17].

In a nonhomogeneous portfolio we have |E| = 2m which in practice will force us to
work with portfolios of size m less or equal to 25, say ([17] used m = 15). Standard
synthetic CDO portfolios typically contains 125 obligors so we will therefore, in Section
5 below, consider a special case of (3.1) which leads to a symmetric portfolio where the
state space E can be simplified to make |E| = m + 1. This allows us to practically work
with the Markov setup in Proposition 4.2 for large m, where m ≥ 125 with no further
complications. Using homogeneous credit portfolio models when pricing CDO tranches is
currently standard in almost all credit literature today.

5. A homogeneous portfolio

In this section we apply the results from Section 4 to a homogenous portfolio. First,
Subsection 5.1 introduces a symmetric model and shows how it can be applied to price
CDO tranche spreads and index CDS spreads. Subsection 5.2 presents formulas for the
single-name CDS spread in this model. Finally, Subsection 5.3 is devoted to formulas
for kth-to-default swaps on subportfolios of the main portfolio. This problem is slightly
different from the corresponding task in previous studies, e.g. [15] and [17], since the
obligors undergo default contagion both from the subportfolio and from obligors outside
the subportfolio, in the main portfolio.

5.1. The homogeneous model for CDO tranches and index CDS-s. In this sub-
section we use the results from Section 4 to compute CDO tranche spreads and index CDS
spreads in a totally symmetric model. We consider a special case of (3.1) where all obligors
have the same default intensities λt,i = λt specified by parameters a and b1, . . . , bm, as

λt = a +

m−1∑

k=1

bk1{Tk≤t} (5.1.1)

where {Tk} is the ordering of the default times {τi} and φ1 = . . . = φm = φ where φ
is constant. In this model the obligors are exchangeable. The parameter a is the base
intensity for each obligor i, and given that τi > Tk, then bk is how much the default
intensity for each remaining obligor jump at default number k in the portfolio. We start
with the simpler version of Proposition 3.1.

Corollary 5.1. There exists a Markov jump process (Yt)t≥0 on a finite state space E =
{0, 1, 2, . . . , m}, such that the stopping times

Tk = inf {t > 0 : Yt = k} , k = 1, . . . , m

are the ordering of m exchangeable stopping times τ1, . . . , τm with intensities (5.1.1).
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Proof. If {Tk} is the ordering of m default times {τi} with default intensities {λt,i}, then

the arrival intensity λ
(k)
t for Tk is zero outside of {Tk−1 ≤ t < Tk}, otherwise

λ
(k)
t =

(
m∑

i=1

λt,i

)

1{Tk−1≤t<Tk}. (5.1.2)

Hence, since λt,i = λt for every obligor i where τi ≥ t, (5.1.2) implies

λt1{Tk−1≤t<Tk} =
λ

(k)
t

m − k + 1
, k = 1, . . . , m. (5.1.3)

Now, let (Yt)t≥0 be a Markov jump process on a finite state space E = {0, 1, 2, . . . , m},
with generator Q given by

Qk,k+1 = (m − k)

(
a +

k∑

j=1

bj

)
k = 0, 1, . . . , m − 1

Qk,k = −Qk,k+1, k < m and Qm,m = 0

where the other entries in Q are zero. The Markov process always starts in {0} so the
initial distribution is α = (1, 0, . . . , 0). Define the ordered stopping times {Tk} as

Tk = inf {t > 0 : Yt = k} , k = 1, . . . , m.

Then, the intensity λ
(k)
t for Tk on {Tk−1 ≤ t < Tk} is given by λ

(k)
t = Qk−1,k. Further, we

can without loss of generality assume that {Tk} is the ordering of m exchangeable default
times {τi}, with default intensities λt,i = λt for every obligor i. Hence, if τi ≥ t, (5.1.3)
implies

λt1{Tk−1≤t<Tk} =
λ

(k)
t

m − k + 1
=

Qk−1,k

m − k + 1
= a +

k−1∑

j=1

bj , k = 1, . . . , m

and since λt =
∑m

k=1 λt1{Tk−1≤t<Tk}, it must hold that λt = a+
∑m−1

k=1 bk1{Tk≤t}, when τi ≥ t,
which proves the corollary. �

By Corollary 5.1, the states in E can be interpreted as the number of defaulted obligors
in the portfolio.

Recall that the formulas for CDO tranche spreads and index CDS spreads in Proposition
4.2 where derived for an inhomogeneous portfolio with default intensities (3.1). However,
it is easy to see that these formulas (with identical recoveries) also can be applied in a

homogeneous model specified by (5.1.1), but with ℓ(γ) and ℓ slightly refined to match the
homogeneous state space E. This refinement is shown in the following lemma.

Lemma 5.2. Consider a portfolio with m obligors that all satisfy (5.1.1) and let E, Q and
α be as in Corollary 5.1. Then, (4.2), (4.3) and (4.5) hold, for

ℓ
(γ)
k =






0 if k < nl(kγ−1)
k(1 − φ)/m − kγ−1 if nl(kγ−1) ≤ k ≤ nu(kγ)
∆kγ if k > nu(kγ)

(5.1.4)
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where nl(x) = ⌈xm/(1 − φ)⌉ and nu(x) = ⌊xm/(1 − φ)⌋. Furthermore, ℓk = k(1 − φ)/m.

Proof. Since Lt = L(Yt) and due to the homogeneous structure, we have

{Lt = k(1 − φ)/m} = {Yt = k}

for each k in E. Hence, the loss process Lt is in one-to-one correspondence with the process
Yt. Define nl(x) = ⌈xm/(1 − φ)⌉ and nu(x) = ⌊xm/(1 − φ)⌋. That is, nl(x) (nu(x)) is
the smallest (biggest) integer bigger (smaller) or equal to xm/(1− φ). These observations

together with the expression for ℓ(γ) and ℓ in Proposition 4.1, yield (5.1.4). �

In the homogeneous model given by (5.1.1), we have now determined all quantities needed
to compute CDO tranche spreads and index CDS spreads as specified in Proposition 4.2.

5.2. Pricing single-name CDS in a homogeneous model. If F (t) is the distribution
for τi, which by exchangeability is the same for all obligors under (5.1.1), then the single-
name CDS spread R(T ) is given by (see e.g. [17])

R(T ) =
(1 − φ)

∫ T

0
BtdF (t)

∑nT

n=1

(
Btn∆n(1 − F (tn)) +

∫ tn

tn−1

Bt (t − tn−1) dF (t)
) (5.2.1)

where the rest of the notation are the same as in Section 2. Hence, to calibrate, or
price single-name CDS-s under (5.1.1), we need the distribution P [τi > t] (identical for all
obligors). This leads to the following lemma.

Lemma 5.3. Consider m obligors that satisfy (5.1.1). Then, with notation as above

P [τi > t] = αeQtg and P [Tk > t] = αeQtm(k) , k = 1, . . . , m

where m(k) and g are column vectors in R
|E| such that m

(k)
j = 1{j<k} and gj = 1 − j/m.

Proof. By the construction of Tk in Corollary 5.1, we have

P [Tk > t] = P [Yt < k] =
k−1∑

j=0

αeQtej = αeQtm(k) where m
(k)
j = 1{j<k}

for k = 1, . . . , m. Furthermore, due to the exchangeability,

P [Tk > t] =

m∑

i=1

P [Tk > t, Tk = τi] = mP [Tk > t, Tk = τi]

so

P [τi > t] =
m∑

k=1

P [Tk > t, Tk = τi] =
m∑

k=1

1

m
P [Tk > t] = αeQt

m∑

k=1

1

m
m(k) = αeQtg,

where g = 1
m

∑m

k=1 m(k). Since m
(k)
j = 1{j<k} this implies that gj = 1 − j/m which

concludes the proof of the lemma. �

A closed-form expression for R(T ) is obtained by using Lemma 5.3 in (5.2.1). For ease
of reference we exhibit the resulting formulas (proofs can be found in [15] or [16]).
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Proposition 5.4. Consider m obligors that all satisfies (5.1.1) and assume that the interest
rate r is constant. Then, with notation as above

R(T ) =
(1 − φ)α (A(0) − A(T )) g

α (
∑nT

n=1 (∆neQtne−rtn + C(tn−1, tn)))g

where

C(s, t) = s (A(t) − A(s)) − B(t) + B(s), A(t) = eQt (Q − rI)−1
Qe−rt

and

B(t) = eQt
(
tI + (Q − rI)−1) (Q − rI)−1

Qe−rt.

For more on the CDS contract, see e.g [10], [15] or [23].

5.3. Pricing kth-to-default swaps on subportfolios in a homogeneous model. Con-
sider a homogenous portfolio defined by (5.1.1). Our goal in this subsection is to find
expressions for kth-to-default swap spreads on a subportfolio in the main portfolio. The
difference in this approach, compared with for example [17] and [12] is that the obligors
undergoes default contagion both from entities in the selected basket and from obligors
outside the basket, but in the main portfolio.

Let s be a subportfolio of the main portfolio, that is s ⊆ {1, 2, . . . , m} and let |s| denote
the number of obligors in s so |s| ≤ m. The market standard is |s| = 5. If the recoveries
are homogeneous, it is enough to find the distribution for the ordering of the default times
in the basket. Hence, we seek the distributions of the ordered default times in s denoted

by {T
(s)
k }. The kth-to-default swap spreads R

(s)
k (T ) on s are then given by (see e.g. [17])

R
(s)
k (T ) =

(1 − φ)
∫ T

0
BtdF

(s)
k (t)

∑nT

n=1

(
Btn∆n(1 − F

(s)
k (tn)) +

∫ tn

tn−1

Bt (t − tn−1) dF
(s)
k (t)

) (5.3.1)

where F
(s)
k (t) = P

[
T

(s)
k ≤ t

]
are the distribution functions for {T

s)
k }. The rest of the

notation are the same as in Section 2. In Theorem 5.5 below, we derive formulas for the

survival distributions of {T
(s)
k }. This is done by using the exchangeability, the matrix-

analytic approach and the fact that default times in s always coincide with a subsequence
of the default times in the main portfolio.

Theorem 5.5. Consider a portfolio with m obligors that satisfy (5.1.1) and let s be an
arbitrary subportfolio with |s| obligors. Then, with notation as above

P

[
T

(s)
k > t

]
= αeQtmk,s for k = 1, 2, . . . , |s| (5.3.2)

where

m
k,s
j =






1 if j < k

1 −
∑j∧|s|

ℓ=k

(|s|ℓ )(m−|s|
j−ℓ )

(m
j )

if j ≥ k.
(5.3.3)
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Proof. The events {Tℓ > t} and
{

T
(s)
k = Tℓ

}
are independent where k ≤ ℓ ≤ m−|s|+k. To

motivate this, note that since all obligors are exchangeable, the information
{
T

(s)
k = Tℓ

}

will not influence the event {Tℓ > t}. Thus, P

[
Tℓ > t, T

(s)
k = Tℓ

]
= P [Tℓ > t] P

[
T

(s)
k = Tℓ

]
.

This observations together with Lemma 5.3 implies that

P

[
T

(s)
k > t

]
=

m−|s|+k∑

ℓ=k

P

[
T

(s)
k > t, T

(s)
k = Tℓ

]

=

m−|s|+k∑

ℓ=k

P

[
T

(s)
k = Tℓ

]
P [Tℓ > t]

=

m−|s|+k∑

ℓ=k

P

[
T

(s)
k = Tℓ

]
αeQtm(ℓ) = αeQtmk,s

where

mk,s =

m−|s|+k∑

ℓ=k

P

[
T

(s)
k = Tℓ

]
m(ℓ).

Using this and the definition of m
(ℓ)
j renders

m
k,s
j =

{
1 if j < k

1 −
∑j

ℓ=k P

[
T

(s)
k = Tℓ

]
if j ≥ k

and in order to compute m
k,s
j for j ≥ k, note that

j⋃

ℓ=k

{
T

(s)
k = Tℓ

}
=
{
k ≤ N

(s)
j ≤ j ∧ |s|

}

where N
(s)
j is defined as N

(s)
j = sup

{
n : T

(s)
n ≤ Tj

}
, that is, the number of obligors that

have defaulted in the subportfolio s up to the j-th default in the main portfolio. Due to

the exchangeability, N
(s)
j is a hypergeometric random variable with parameters m, j and

|s|. Hence,

j∑

ℓ=k

P

[
T

(s)
k = Tℓ

]
=

j∧|s|∑

ℓ=k

P

[
N

(s)
j = ℓ

]
=

j∧|s|∑

ℓ=k

(
|s|
ℓ

)(
m−|s|
j−ℓ

)
(

m

j

) .

which proves the theorem. �

Returning to kth-to-default swap spreads, expressions for R
(s)
k (T ) may be obtained by

inserting (5.3.2) into (5.3.1). The notation and proof are the same as in Proposition 5.4
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Corollary 5.6. Consider a portfolio with m obligors that satisfy (5.1.1) and let s be an
arbitrary subportfolio with |s| obligors. Assume that the interest rate r is constant. Then,
with notation as above,

R
(s)
k (T ) =

(1 − φ)α (A(0) − A(T ))mk,s

α (
∑nT

n=1 (∆neQtne−rtn + C(tn−1, tn))) mk,s
, k = 1, 2, . . . , |s|.

For a more detailed description of kth-to-default swap, see e.g. [10], [15], [17] or [23].

6. Numerical study of a homogeneous portfolio

In this section we calibrate the homogeneous portfolio to real market data on CDO
tranches, index CDS-s, average single-name CDS spreads and average FtD-spreads (i.e
average 1th-to-default swaps). We match the theoretical spreads against the corresponding
market spreads for individual default intensities given by (5.1.1). First, in Subsection 6.1
we give an outline of the calibration technique used in this paper. Then, in Subsection
6.2 we calibrate our model against an example studied in several articles, e.g [12] and
[18], with data from iTraxx Europe, August 4, 2004. The iTraxx Europe spreads has
changed drastically in the period between August 2004 and November 2006. We therefore
recalibrate our model to a more recent data set, collected at November 28th, 2006. This
second calibration also lends some confidence to the robustness of our model.

Having calibrated the portfolio, we can compute spreads for exotic credit derivatives,
not liquidly quoted on the market, as well as other quantities relevant for credit portfo-
lio management. In Subsection 6.3 we compute spreads for tranchelets, which are CDO
tranches with smaller loss-intervals than standardized tranches. Subsection 6.4 investigates
kth-to-default swap spreads as function of the size of the underlying subportfolio in main
calibrated portfolio. Continuing, Subsection 6.5 studies the implied expected loss in the
portfolio and the implied expected tranche-losses. Finally, Subsection 6.6 is devoted to
explore the implied loss-distribution as function of time.

6.1. Some remarks on the calibration. The symmetric model (5.1.1) can contain at
most m different parameters. Our goal is to achieve a ”perfect fit” with as many parameters
as there are market spreads used in the calibration for a fixed maturity T . For a standard
synthetic CDO such as the iTraxx Europe series, we can have 5 tranche spreads, the index
CDS spread, the average single-name CDS spread and the average FtD spread. Hence, for
calibration, there is at most 8 market prices with maturity T available. However, all of
them do not have to be used. We make the following assumption on the parameters bk for
1 ≤ k ≤ m − 1

bk =






b(1) if 1 ≤ k < µ1

b(2) if µ1 ≤ k < µ2
...
b(c) if µc−1 ≤ k < µc = m

(6.1.1)

where 1, µ1, µ2, . . . , µc is an partition of {1, 2, . . . , m}. This means that all jumps in the
intensity at the defaults 1, 2, . . . , µ1−1 are same and given by b(1), all jumps in the intensity
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at the defaults µ1, . . . , µ2 − 1 are same and given by b(2) and so on. This is a simple way
of reducing the number of unknown parameters from m to c + 1.

If η is the number of calibration-instruments, that is the number of credit derivatives
used in the calibration, we set c = η − 1. Let a = (a, b(1), . . . , b(c) denote the parameters
describing the model and let {Cj(T ; a)} be the η different model spreads for the instruments
used in the calibration and {Cj,M(T )} the corresponding market spreads. In Cj(T ; a)
we have emphasized that the model spreads are functions of a = (a, b(1), . . . , b(c)) but
suppressed the dependence of interest rate, payment frequency, etc. The vector a is then
obtained as

a = argmin
â

η∑

j=1

(Cj(T ; â) − Cj,M(T ))2 (6.1.2)

with the constraint that all elements in a are nonnegative. Note that it would have been
possible to let the jump parameters bk be negative, as long as λt > 0 for all t. In economic
terms this would mean that the non-defaulted obligors benefit from the default at Tk.

The model spreads {Cj(T ; a)}, such as average CDS spread R(T ; a), index CDS spread
S(T ; a), CDO tranche spreads {Sγ(T ; a)} etc. are given in closed formulas derived in
the previous sections. We use Padé-approximation with scaling and squaring, (see [24])
to compute the matrix exponential, since in the present setting, it outperforms all other
methods, both in computational time and accuracy. Note that this is not the case for a
nonhomogeneous portfolio with a large state space E, where the uniformization method is
better, see [17]. The reason for the lesser performance of the uniformization method in the
homogeneous CDO model is that the quantity max

{
|Qj,j| : j ∈ E

}
is very large, which

introduces many terms in the approximation of the matrix exponential.
The initial parameters in the calibration can be rather arbitrary. The ”optimal solution”

for this first iteration, is taken as a the initial value in a new calibration. Repeating this
procedure one, or if needed, two or three times, have in our numerical examples (see next
subsections) always lead to perfect calibrations. Finding good initial parameters when
using the model in practice is most likely a minor problem. This is due to the fact that
calibrations are performed on a daily basis and the initial guess could simply be the optimal
solution from the previous calibration.

Finally, it should be mentioned that the calibrated parameters are not likely to be
unique. By perturbing the initial guesses, we have been able to get calibrations that are
worse, but ”close” to the optimal calibration, and where some of the parameters in the
calibrated perturbed vector, are very different from the corresponding parameters in the
optimal vector. We do not further pursue the discussion of potential nonuniqueness here,
but rather conclude that the above phenomena is likely to occur also in other pricing
models.

6.2. Calibration to the iTraxx Europe series. In this subsection we calibrate our
model against credit derivatives on the iTraxx Europe series with maturity of five years.
There are five different CDO tranche spreads with tranches [0, 3], [3, 6], [6, 9], [9, 12] and
[12, 22], and we also have the index CDS spreads and the average CDS spread.
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First, a calibration is done against data taken from iTraxx Europe on August 4, 2004
used in e.g. [12] and [18]. Here, just as in [12] and [18], we set the average CDS spread
equal to (i.e. approximated by) the index CDS spread. No market data on FtD spreads
are available in this case. The iTraxx Europe spreads has changed drastically since August
2004. We therefore recalibrate our model to a more recent data set, collected at November
28th, 2006. This data also contains the average CDS spread and average FtD spread (see
Table 8). All data is taken from Reuters on November 28th, 2006 and the bid, ask and
mid spreads are displayed in Table 7.

In both calibrations the interest rate is set to 3%, the payment frequency is quarterly
and the recovery rate is 40%.

Table 1: iTraxx Europe, August 4th 2004. The market and model spreads and the corresponding
absolute errors, both in bp and in percent of the market spread. The [0, 3] spread is
quoted in %. All maturities are for five years.

Market Model error (bp) error (%)
[0, 3] 27.6 27.6 0.0004514 1.635e-005
[3, 6] 168 168 0.003321 0.001977
[6, 9] 70 70.07 0.06661 0.09515
[9, 12] 43 42.91 0.09382 0.2182
[12, 22] 20 20.03 0.03304 0.1652
index 42 41.99 0.01487 0.03542

avg CDS 42 41.96 0.04411 0.105
Σ abs.cal.err 0.2562 bp

Table 2: iTraxx Europe Series 6, November 28th, 2006. The market and model spreads and the
corresponding absolute errors, both in bp and in percent of the market spread. The
[0, 3] spread is quoted in %. All maturities are for five years.

Market Model error (bp) error (%)
[0, 3] 14.5 14.5 0.007266 0.0005011
[3, 6] 62.5 62.41 0.08523 0.1364
[6, 9] 18 18.1 0.09727 0.5404
[9, 12] 7 6.881 0.1193 1.704
[12, 22] 3 3.398 0.3979 13.26
index 26 26.13 0.1299 0.4997

avg CDS 26.87 26.12 0.7535 2.804
Σ abs.cal.err 1.59 bp

We choose the partition µ1, µ2, . . . , µ6 so that it roughly coincides with the number of
defaults needed to reach the upper attachment point for each tranche, see Table 10 in



PRICING SYNTHETIC CDO TRANCHES 17

Appendix. The numerical values of the calibrated parameters a, obtained via (6.1.2), are
shown in Table 9 in Appendix 8.

For both data sets we also performed calibrations where some of the available market
spreads were excluded from the fitting and where the model spreads for the omitted in-
struments were computed with the parameters obtained from the rest of the instruments
in the calibration.

There were two reasons for these tests. First, we wanted to explore if the derivatives not
used in the calibration, but computed with the parameters obtained from the rest of the
instruments, produces model spreads that are close to the corresponding market spreads.
Secondly, we wished to investigate the ”robustness” of the model, that is, would the model
spreads change drastically if we used different calibration instruments. For the August 4th

2004 data set, this was done for two cases. In the first fitting we excluded the index CDS
and in the second, the average CDS spread was omitted in the calibration. The sum of the
absolute calibration error for the two cases (and sum of total absolute model error, equal
to the total calibration error and sum of absolute differences between model and market
spreads for instruments not used in the calibration) were approximately 1.14 bp (1.577 bp)
and 1.129 bp (1.623 bp) respectively. We can therefore, in all three calibrations, speak of a
perfect fit for T = 5 years. A superior fit was in this case obtained when both the average
CDS spread and index CDS were included, see Table 1

We also performed the same procedure for the November 28th, 2006 data set, but now
with one more case since we had one more market observation, the average FtD spread.
The sum of the absolute calibration error for the three cases (and sum of total absolute
model error) were approximately 1.661 bp (4.096 bp), 0.7527 bp (3.921 bp) and 3.919
bp (3.919 bp), where the last case included the average FtD-spread. Hence, once again,
we can in all four cases speak of a perfect fit when T = 5. In the 2006-11-28 study we
observed that the FtD model spread was very robust, that is, the computed model spreads
differed very little after each calibration. This may indicate that the average FtD spread is
difficult to calibrate using the model in (5.1.1). To summarize, in both data sets, the best
calibrations where obtained when both the index CDS spread and average CDS spread
where included, but where the average FtD-spread was excluded, see Tables 1 and 2.

Finally, since the calibrations where performed on two data sets where the corresponding
spreads differed substantially, the above observations lend some confidence in the robust-
ness of our model.

6.3. Pricing tranchelets in a homogeneous model. As discussed above, a tranchelet
is a nonstandard CDO tranche with smaller loss-intervals than standardized tranches, see
e.g. [5] or [20]. Tranchelets are typically computed for losses on [0, 1], [1, 2], . . . , [5, 6].
Currently, there are no liquid market for these instruments, so they can still be regarded
as somewhat ”exotic”. Nevertheless, tranchelets have recently become popular and pricing
these instruments are done in the same ways as for standard tranches.

In this subsection we compute the five year tranchelet spreads for [0, 1], . . . , [11, 12], on
iTraxx Europe Series 6, November 28th 2006, and iTraxx Europe, August 4th, 2004 as well
as the corresponding absolute difference in % of the 2004-08-04 spreads. The computations
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Table 3: Tranchelet spreads on iTraxx Europe, November 28th 2006 (Series 6) and August 4th

2004 and the absolute difference in % of the 2004-08-04 spreads. The [0, 1] and [1, 2]
spreads are the upfront premiums on the tranche nominals, quoted in % where the
running fee is 500 bp. Tranchelets above [1, 2] are expressed in bp. All maturities are
five years.

Tranchelet 04/08/04 06/11/28 diff. (in %)
[0, 1] 60.85 47.93 21.25
[1, 2] 22.43 7.006 68.76
[2, 3] 488.9 245.5 49.79
[3, 4] 240.9 97.85 59.39
[4, 5] 154 54.49 64.61
[5, 6] 110.2 35.13 68.12
[6, 7] 84.29 24.26 71.22
[7, 8] 68.41 17.35 74.65
[8, 9] 57.53 12.69 77.94
[9, 10] 49.29 9.315 81.1
[10, 11] 42.53 6.676 84.3
[11, 12] 36.9 4.652 87.39

are done with parameters obtained from the calibrations in the Tables 1 and 2, where all
other quantities such as recovery rate, interest rate, payment frequency etc. are the same
as in these tables. The [0, 1] and [1, 2] spreads are computed with Equation (4.3) where

ℓ(1) is replaced by a corresponding column vector adapted for [0, 1], and [1, 2] respectively,
given as in Lemma 5.2. Furthermore, in (4.3), k1 is set to 0.01 for both tranchelets [0, 1]
and [1, 2]. Tranchelets above [1, 2] are computed with Equation (4.2). It is interesting to
note that the average for the three tranchelets between 3 and 6 are 168.4 (2004-08-04)
and 62.49 (2006-11-28) which both are close to the corresponding [3, 6] spreads. The same

Table 4: The market spreads (used for calibration) on iTraxx Europe, November 28th 2006
(Series 6) and August 4th 2004 and the absolute difference in % of the 2004-08-04
spreads. All maturities are five years.

[0, 3] [3, 6] [6, 9] [9, 12] [12, 22] index avg CDS
04/08/04 27.6 168 70 43 20 42 42
06/11/28 14.5 62.5 18 7 3 26 26.87
diff. (%) 47.46 62.8 74.29 83.72 85 38.1 36.02

holds for the averages of tranchlets between 6 to 9 and 9 to 12, which are 70.08, 18.1 and
42.91, 6.881 respectively. These observations explain why the average of the differences for
the three tranchelets between 3 to 6, 6 to 9 and 9 to 12, given by 64 %, 74.6 % and 84.3
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%, are close to the corresponding differences in the [3, 6], [6, 9] and [9, 12] tranche spreads,
displayed in Table 4.

6.4. Pricing kth-to-default swaps on subportfolios in a homogeneous model. In

this subsection we price five year kth-to-default spreads R
(s)
k with k = 1, . . . , 5 for different

subportfolios s, of the main portfolio. The subportfolios have sizes |s| = 5, 10, 15, 25, 30
and the computations are done for the two different data sets, iTraxx Europe Series 6,
November 28th, 2006 and iTraxx Europe August 4th, 2004. The computations are done
with parameters obtained from the calibrations in the Tables 1 and 2 , where all other
quantities such as recovery rate, interest rate, payment frequency etc. are the same as in
these tables.

Table 5: The five year kth-to-default spreads R
(s)
k with k = 1, . . . , 5 for different subportfolios

s in the main portfolio calibrated to iTraxx Europe, November 28th 2006 (Series 6)
and August 4th 2004 and the absolute difference in % of the 2004-08-04 spreads. We
consider |s| = 5, 10, 15, 25, 30.

|s| Date k = 1 k = 2 k = 3 k = 4 k = 5
5 04/08/04 180.9 25.19 7.002 3.037 1.404

06/11/28 119 9.597 2.31 1.728 1.59
diff. (%) 34.19 61.9 67.01 43.09 13.25

10 04/08/04 331 67.94 22.39 10.85 6.35
06/11/28 226.8 30.6 6.183 2.6 1.937
diff. (%) 31.47 54.96 72.39 76.03 69.49

15 04/08/04 467.4 117.1 41.91 21.13 12.9
06/11/28 327.7 58.89 13.69 4.848 2.68
diff. (%) 29.89 49.7 67.33 77.05 79.22

20 04/08/04 594.6 170.1 64.57 32.96 20.6
06/11/28 423.1 91.73 24.34 8.69 4.234
diff. (%) 28.84 46.07 62.31 73.63 79.44

25 04/08/04 714.9 225.5 90.06 46.15 29
06/11/28 514.1 127.6 37.6 14 6.691
diff. (%) 28.08 43.42 58.25 69.67 76.93

There exists liquid quoted market spreads on FtD baskets (i.e. k = 1) and often the FtD
spreads are also quoted in percent of the sum of the individual spreads in the subportfolio
s (see Table 8 in Appendix). No market spread on FtD swaps are available for 2004-08-04
but the model FtD-spread is 180.9 bp which is around 86 % of the SoS (sum of spreads)
given by 5 · 42 = 210 bp. As seen in Table 8 in Appendix, this is a very realistic FtD
spread in terms of the SoS. Furthermore, for 2006-11-28 we have access to the average FtD
market-spread which is 116.8 bp, see Table 8.
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From Table 5 we see that, for fixed s and k, the spreads differ substantially between the
two dates. Given the difference between the market spreads in the calibration (Table 4),
this should not come as a surprise. For example, when |s| = 5, k = 1 the difference is 34
%, and for |s| = 15, k = 5 the 2006-11-28 spread is 79 % lower than the 2004-08-04 spread.
The spreads increase as the size of the portfolio increases, as they should.

For the 2006-11-28 case, the increase from a portfolio of size 5 to one of size 25 is 432%
for a 1st-to-default swap, 1330% for a 2nd-to-default swap, 1628% for a 3rd-to-default swap,
and for a 5th-to-default swap the increase is 421%. Further, for a portfolio of size 10 the
price of a 1st-to-default swap is about 117 times higher than for a 5th-to-default swap and
the corresponding ratio for a portfolio of size 15 is about 122. These ratios are much
smaller than for a ”isolated” portfolio, which only undergo default contagion from obligors
within the basket, see [17]. Qualitatively the above results are completely as expected,
however, given market spreads on CDO tranches, index CDS spreads etc. it would seem
rather impossible to guess the sizes of the effects without computation.

6.5. The implied tranche losses and implied loss in a homogeneous portfolios.

In the credit literature today, expected risk-neutral tranche losses are often called implied
tranche losses. Here ”implied” is refereing to the fact that the quantities are retrieved from
market data via a model. Similarly, the implied portfolio loss refers to the expected risk-
neutral portfolio loss. In this subsection we compute the expected risk-neutral portfolio
loss and the implied expected tranche losses at different time points.

Table 6: The implied tranche losses in % of tranche nominal, at t = 3, 5, 7, 10 for the calibrated
CDO portfolios on iTraxx Europe Series 6, November 28th 2006, and iTraxx Europe,
August 4th, 2004 and the absolute differences in % of the 2004-08-04 tranche losses.

t Date [0, 3] [3, 6] [6, 9] [9, 12] [12, 22]
3 04/08/04 26.52 0.7142 0.1014 0.03198 0.005744

06/11/28 19.31 0.2082 0.01647 0.002157 0.0004121
diff. (%) 27.18 70.85 83.75 93.26 92.83

5 04/08/04 49.26 8.649 3.67 2.258 1.059
06/11/28 36.61 3.255 0.954 0.3641 0.1802
diff. (%) 25.67 62.37 74.01 83.88 82.99

7 04/08/04 69.28 28.61 18.7 14.74 10.13
06/11/28 54.39 13.7 7.005 4.161 2.9
diff. (%) 21.49 52.09 62.54 71.78 71.38

10 04/08/04 87.91 63.57 54.27 49.67 43.12
06/11/28 75.73 40.75 30.24 24.01 20.58
diff. (%) 13.86 35.89 44.27 51.65 52.28

These are important quantities for a credit manager and Lemma 4.1 and Lemma 5.2

provides formulas for computing them. We study 100 · E

[
L

(γ)
t

]
/∆kγ for 3, 5, 7 and 10
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Figure 1: The implied tranche losses in % of tranche nominal for the 2006-11-28 portfolio.
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Figure 2: The implied portfolio losses in % of nominal, for the 2004-08-04 and 2006-11-28 port-
folios.

years on CDO portfolios calibrated against iTraxx Europe Series 6, November 28th 2006,
and iTraxx Europe, August 4th, 2004. Just as for previous computations, the corresponding
tranche losses differ substantially between the two dates. For example, in the 2006-11-28
case, the tranche loss on [0, 3] for t = 3 is 27 % smaller than the corresponding quantity for
the 2004-08-04 collection, but this differences drastically increases for the upper tranches,
[6, 9], [9, 12] to 84% and 93%, as seen in Table 6. Further, for the 2006-11-28 case, we clearly
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see the effect of default contagion on the upper tranche losses, making them lie close to each
other, see Figure 1. From Figure 2 we conclude that our model, with a constant recovery
rate of 40%, calibrated to market spreads on the five year iTraxx Europe Series implies
that the whole portfolio has defaulted within approximately 30 years (for both data sets).
In reality, this will likely not happen, since risk-neutral (implied) default probabilities are
substantially larger than the ”real”, so called actuarial, default probabilities.

6.6. The implied loss distribution in a homogeneous portfolio. In this subsection
we study the implied distribution for the loss process Lt at different time points. Since we
are considering constant recovery rates, then for every t, the distribution of Lt is discrete
and formally the values for P [Lt = x] should be displayed as bars at x = k(1−φ)/m where
0 ≤ k ≤ m.
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Figure 3: The implied loss distributions for the 2004-08-04 and 2006-11-28 portfolios.
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Figure 4: The implied loss distributions (in log-scale) for the 2004-08-04 and 2006-11-28 port-
folios.

However, since there are totaly 126 different outcomes we do not bother about this and
connect the graph continuously between each discrete probability. The loss probabilities
are computed by using that Lt = L(Yt) so P [Lt = k(1 − φ)/m] = P [Yt = k] = αeQtek for
k = 0, 1, . . . , m, see Corollary 5.1.

In Figure 3 for 0 < x < 12, the implied loss probabilities in the 2006-11-28 case are bigger
than their 2004-04-28 counterparts, at several occasions in time t, which at first glance may
contradict the results in Table 6. However, a more careful study, using a log-scale, shows
that for 20 < x < 50 and at most time points t, the 2004-04-28 loss distribution is about
10 times bigger than the corresponding values for the 2006-11-28 case, see Figure 4. This
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supports the results in Table 6 where the expected tranche losses for the 2004-04-28 case
are always bigger than in the 2006-11-28 case.

7. Conclusions

In this paper we have derived closed-form expressions for CDO tranche spreads and index
CDS spreads. This is done in a inhomogeneous model where dynamic default dependencies
among obligors are expressed in an intuitive, direct and compact way. By specializing this
model to a homogenous portfolio, we show that the CDO and index CDS formulas simplify
considerably in a symmetric model. The same method are used to derive kth-to-default
swap spreads for subportfolios in the main CDO portfolio. In this setting, we calibrate
a symmetric portfolio against credit derivatives on the iTraxx Europe series for a fixed
maturity of five years. We do this at two different dates, where the corresponding market
spreads differ substantially. In both cases we obtain perfect fits. These two calibrations
therefore lends some confidence to the robustness of our model.

In the calibrated portfolios, we compute tranchelet spreads and investigate kth-to-default
swap spreads as function of the portfolio size. Further, the implied tranche losses and the
implied loss distributions are also extracted. All these computations and investigations
would be difficult to perform without having convenient formulas for the quantities that
we want to study. Furthermore, given the recovery rate, the number of model parameters
are as many as the market instruments used in the calibration. This implies that all
calibrations are performed without inserting ”fictitious” numerical values for some of the
parameters, making the calibration more realistic.
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8. Appendix

Tables 7 shows the market spreads collected from iTraxx Europe Series 6, November
28th, 2006 and taken from Reuters. Table 8 shows the FtD spreads, i.e. 1st-to-defaults
spreads for 6 standardized subportfolios on iTraxx Europe Series 6, launched September
20th, 2006. Each basket consist of five obligors that are taken from a sector in the iTraxx
Series 6 (Autos, Energy, Industrial, TMT, Consumers and Financial). The names of the
obligors in each basket as well as the selection criteria can be found on the webpage for
iboxx. In the financial FtD basket, we have used the subordinated FtD spread, since the
senior spread is much smaller (30 bp) than the other spreads, which will pull down the
average mid FtD spread to 112.25 bp.

The numerical values of the calibrated parameters a, obtained via (6.1.2), are shown in
Table 9 and the partition (see Equation (6.1.1)) in Table 10.



26 ALEXANDER HERBERTSSON

Table 7: The market bid, ask and mid spreads for iTraxx Europe (Series 6), November 28th,
2006. All data is taken from Reuters. The mid spreads, i.e. average of the bid and ask
spread, are used in the calibration in Section 6.

bid ask mid time
[0, 3] 14.5 14.5 28 Nov, 18:23
[3, 6] 60 65 62.5 28 Nov, 17:14
[6, 9] 16.5 19.5 18 28 Nov, 13:36
[9, 12] 5.5 8.5 7 28 Nov, 13:36
[12, 22] 2 4 3 28 Nov, 13:36
index 25.75 26.25 26 28 Nov, 18:34

avg CDS 25.94 27.8 26.87 28 Nov, 19:40

Table 8: The market bid, ask and mid spreads for different FtD spreads on subsectors of iTraxx
Europe (Series 6), November 28th, 2006. Each subportfolio have five obligors. We also
display the sum of CDS-spreads (SoS) in each basket, as well as the mid FtD spreads
in % of SoS. The mid spread is used in the calibration in Section 6.

Sector bid ask mid SoS mid/SoS % time
Autos 154 166 160 202 79.21 % 28 Nov, 10:26
Energy 65 71 68 86 79.07 % 28 Nov, 10:26

Industrial 114 123 118.5 141 84.04 % 28 Nov, 10:26
TMT 167 188 177.5 217 81.8 % 28 Nov, 10:26

Consumers 113 122 117.5 140 83.93 % 28 Nov, 10:26
Financial 55 63 59 79 74.68 % 28 Nov, 10:26
average 111.3 122.2 116.8 144.2 80.98 %

Table 9: The calibrated parameters that gives the model spreads in the Tables 1 and 2.

a b(1) b(2) b(3) b(4) b(5) b(6)

04/08/04 33.0 16.4 84.5 145 86.4 124 514 ×10−4

06/11/28 24.9 13.9 73.6 62.4 0.823 2162 4952 ×10−4

Table 10: The integers 1, µ1, µ2, . . . , µc are partitions of {1, 2, . . . ,m} used in the models that
generates the spreads in the Tables 1 and 2

partition µ1 µ2 µ3 µ4 µ5 µ6

7 13 19 25 46 125
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