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ABSTRACT 

Global mean sea level is rising, however not uniformly. Regional deviations of sea surface height 

(SSH) are common due to local drivers, including surface winds, ocean density stratifications, 

vertical land- & crustal movements and more. The contribution of each background driver needs 

to be better understood to create reliable sea level rise projections, enable effective local 

policymaking and aid in urban planning decisions.  

In this study, we assess region-specific historic sea levels along the western Swedish coastline 

(Kattegat, Skagerrak & South Baltic Sea). We use monthly satellite altimetry observations 

spanning 26 years and daily observations spanning 6 years, as well as in situ tide gauge 

measurements to identify SSH covariance between sub-regions. We employed a number of 

manual statistical methods and found that the North – Baltic Sea transition can be effectively split 

up into four separate subbasins of sea level covariance. We found that SSH variability in the 

Skagerrak and Kattegat Seas is different from that of the Belts and south of the Danish Straits. 

While typically the correlation between SSH time series from different locations declines with 

distance, this is not seen at the entrance to the Baltic Sea due to the complexity of the region. To 

investigate this further and identify underlying primary forcings, we quantified the correlation 

between climatic drivers derived from the ERA5 reanalysis such as 10m-winds, sea surface 

temperature and sea level pressure, and principle components of the SSH variability signal within 

these regions. Zonal winds are most important for determining short-term sea level variability 

throughout the study area. As freshwater discharge from rivers and tributaries to the Baltic Sea 

is large, pressure- & density gradients may be more important as SSH regulators in this area. 

Additionally, we used neural networks to try to capture non-linear dependencies between the sea 

level drivers and sea level that are not apparent from statistical analyses. By predicting sea level 

at selected locations from different combination of drivers, we can determine which drivers have 

the highest influence. Since it is important to capture long-term dependencies between variables,  

we employed a recurrent neural network with a long short-term memory architecture and found 

that it is possible to predict daily sea level variability within a few cm of error with only a handful 

of background drivers. We found that excluding the zonal wind component was the most 

detrimental for model accuracy, which agrees with the statistical analysis. 
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1 INTRODUCTION 

Global sea level rise (SLR) is an area of intense study in the global scientific community 

(Church et al., 2013). It is both a good indicator of climate change and also a large cause 

of concern for the impact it may have on coastal ecosystems as well as on human societies 

and settlements (Oppenheimer et al., 2019). Not only is the mean sea level rising, the rate 

of SLR is accelerating. Indications from tide gauge observations show that the global 

mean sea level (GMSL; the spatial average global height of the sea surface) rose by 

1.7 (±0.2) mm yr-1 between 1901 and 2010 (Church et al., 2013). Since the start of the 

satellite altimetry data record 1993-2018, the GMSL rose at an accelerated rate of 

3.1 (±0.3) mm yr-1 (WCRP, 2018). Projections presented in the IPCC Special Report on the 

Ocean and Cryosphere in a Changing Climate (SROCC) estimate GMSL’s 0.43 to 0.84 m 

higher by 2100 relative to 1986-2005 under the “best” emission scenario RCP 2.6 and 

worst-case scenario 8.5 respectively (Oppenheimer et al., 2019).  

Most global SLR is attributed to two dominant factors, the thermal expansion of the ocean 

and the influx of freshwater from ice sheets and glaciers. Thermal expansion is caused by 

rising ocean temperatures. Generally, higher temperatures lead to lower densities, hence, 

as the sea water gets warmer, it expands and occupies more space. Thermal expansion 

accounted for 1.32 mm yr-1 of SLR recorded between 1993-2015 (WCRP, 2018). Higher 

global temperatures in both the oceans and the atmosphere cause the net decrease of ice 

mass in glaciers worldwide. The Greenland and Antarctic ice sheets were together 

responsible for 0.75 mm yr-1 of SLR while other glaciers contributed 0.56 mm yr-1 during 

the same period (Church et al., 2013). Global SLR is not spatially equal or uniform 

however, and local or regional deviations from the global mean are common 

(Oppenheimer et al., 2019; Slangen et al., 2014a). Slangen et al. (2014a) found regional 

coastal sea levels to range from 30% above to 50% below the global mean. Local 

controlling drivers include surface winds, air pressure systems, ocean density 

stratifications, changes in the Earth’s gravity field as well as basin-wide deformation, 

vertical land- & crustal movements, and more (Cazenave & Llovel, 2010; Church et al., 

2013; Mitrovica et al., 2018; Stammer et al., 2013; Woodworth et al., 2019). The sea 

surface height (SSH) at any given moment can be considered the superimposition of these 

various drivers. However, the contribution of each background driver on local sea levels 

needs to be better understood to enable effective local policymaking and urban planning 
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decisions. As regional rates of SLR have significantly deviated from the global mean in the 

past, it should be expected that future regional sea levels will vary as well. Increased sea 

levels, coupled with storm surges and tidal effects are expected to lead to more severe 

flooding events (H.-O. Pörtner et al., 2022). This creates a need to assess region-specific 

historic sea levels and its drivers accurately, in order to create reliable SLR projections 

for local governments and decision-making bodies. 

1.1 AIM 

This project is part of a larger, FORMAS funded, multi-year project called NEEDS. The aim 

of NEEDS is to determine the complete dynamics of sea level and provide sea level and 

flood projections for the next 30 years over Northern Europe using machine learning 

techniques to help determine the main drivers of sea level variability (SLV). Ultimately, 

the aim of the project is to verify if the proposed northern European enclosure dam would 

be a relevant option to protect Scandinavian coastlines. 

This Master’s project in particular aims to complete parts of the first of three objectives 

of NEEDS, which is to identify spatial coherence in the wider Northern European seas and 

identify/map regions that covary on daily to decadal timescales. The focus in this project 

is on high frequency sea level variability at areas along Swedish coastlines, mainly along 

the North Sea – Baltic Sea transition. I also refine these maps with historical tide-gauge 

measurements. After identifying regions that covary, I explain how certain subregions 

covary, using both conventional statistical methods as well as machine learning 

techniques through Recurrent Neural Networks (RNN). The results from this Master’s 

project will be directly compared to those produced for NEEDS using other machine 

learning methods, and allow the project to move to the next phase. 

I aim to compare the results from a classic statistical approach to analyze sea level 

variability and forcing components, with results obtained from a machine learning 

approach. In my case, I intend to predict sea levels based on different combinations of 

background forcing variables. 

1.2 STUDY AREA 

The study area encompasses the wider northern European seas, including the North Sea, 

Baltic Sea, Norwegian Sea and North-East Atlantic Ocean. After preliminary work (not 

shown) and out of personal interest I choose to focus primarily on a limited area 
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consisting of the Skagerrak Sea, Kattegat Sea, Danish Straits, and the south-westernmost 

areas of the Baltic Sea, with effort dedicated to understanding these region’s primary SSH 

influencing drivers.  

Skagerrak is the deepest of the three basins, encompassing the Norwegian trench (>700 

m depth – Figure 1). The salty Jutland Current (black arrows on Figure 1) enters the 

basin from the west, bringing water from the North Sea (Christensen et al., 2018). Once 

past the tip of Denmark, it converges with less salty water originating from the Baltic (red 

arrows), turns north and later follows the Norwegian coast west eventually forming the 

Norwegian Coastal Current (yellow arrows) (Christensen et al., 2018). The Kattegat is in 

comparison shallow (average 25 m) and connects the Baltic Sea to the rest of the open 

ocean through the Danish Straits (namely, from west to east, the Little Belt, Big Belt and 

Oresund i.e., the Belt Sea). Inside the Baltic Sea itself there are no permanent currents. 

However, to compensate for the large freshwater inflow and precipitation events into the 

Baltic there is usually an outflow through the Belts. The Baltic Outflow Current flows 

through these passages, before following the Swedish coast north, undergoes mixing, and 

eventually joining the Norwegian Coastal Current (SMHI, 2014b). Like most currents, 

they can be highly variable and certainly wind dependent (Christensen et al., 2018; 

Hordoir et al., 2013).  

There are however other forcings acting on the currents that we must also consider, for 

instance pressure and density gradients (Gustafsson & Andersson, 2001; Hordoir et al., 

2013). Large river inputs into the Baltic creates a large contrast in salinity content 

between the basins, while saltwater inflow is provided by the North Sea through the 

Skagerrak (Lass & Mohrholz, 2003). As the Baltic Sea drains through the Danish Straits, 

the surface layer of water is brackish with an inflow of salty water travelling in the 

opposite direction beneath the top layer (Lass & Mohrholz, 2003). The outflow from the 

Baltic is driven by a barotropic pressure gradient due to the differences in sea level 

between the Kattegat and Baltic seas. Sea level difference is maintained mainly by winds 

that cause a pileup of water at the coastlines but also due to the many rivers and 

tributaries draining into the Baltic Sea (Lass & Mohrholz, 2003).  

In conclusion, the sub-basins are quite different, with the deeper northern parts of the 

study area open to the wider North Sea, resulting in saltier water, larger tidal variability 

and increased vulnerability to Atlantic storm surges. The Baltic Sea on the other hand is 
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semi-enclosed with fresher water, where short frequency SLV signals do not propagate 

efficiently through the narrow straits, leading to small tidal amplitudes (Hieronymus et 

al., 2017). Thus, there exists differences between these basins in terms of sea level 

variability. 

 

Figure 1: Bathymetry over study area. The colored squares represent the tide gauge 
locations, the color indicates which basin they are located within and the number label their 
station ID. The arrows indicate the general flow of surface currents, the Baltic Outflow 
Current in red, the Jutland Current in black and the Norwegian Coastal Current in yellow. 
The two black points show the location of the areas analyzed using neural networks, the 
northernmost point being the Kattegat location and the other being the SW Baltic location. 
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1.3 SEA LEVEL DRIVERS 

While much of global SLR is attributed to the addition of freshwater from ice sheets and 

glaciers, when considering regional sea surface variability (SSV; sea surface height 

variations over time), the redistribution of existing water mass becomes more significant, 

especially in shallow shelf seas and at high latitudes (>60°N) (Meyssignac et al., 2017; 

Oppenheimer et al., 2019). For instance, as wind-driven currents shift, sea levels may rise 

in one location and fall at another (Woodworth et al., 2019). Additionally, melt water 

released from ice sheets does not cause a uniform rise of global sea levels. Rather, local 

changes to SLR caused by ice sheets yield distinct patterns to regional SLR. Changes to 

the mass distribution of the ice sheets cause the gravitational attraction between the 

ocean and the ice sheet to decrease. Combined with the effect of glacial isostatic 

adjustment (GIA; the response of solid Earth to ice mass loads), relative sea levels 

surrounding the ice sheet will fall, while areas far from the melting ice sheet experience 

enhanced SLR compared to the global mean (Mitrovica et al., 2018). In Northern 

European seas, SLR is expected to be mostly dominated by ice mass loss from the 

Antarctic ice sheet, while ice mass loss from the Greenland ice sheet may induce sea level 

fall. These changes are often referred to as sea level fingerprints (Mitrovica et al., 2018). 

Over time however, long-term trends of SLR accumulate and are expected to dominate 

over the 21st century (Church et al., 2013).  

In situ and satellite observations have shown regional SSH trend variability on decadal to 

interannual timescales (Cazenave & Llovel, 2010; Church et al., 2013), which is also the 

case for northern European Seas. In the North Sea basin rates of SLR have ranged from 

1.3 to 3.9 mm yr-1 between 1993-2014, with higher rates found off the Danish-German 

coast and at isolated regions surrounding NE Great Britain (Sterlini et al., 2017). Low 

levels of SLR were found midway between NE Scotland and SW Norway (Sterlini et al., 

2017).  

Regional deviations of SSH are caused by a combination of various forcings such as 

changes in ocean dynamics, the atmospheric circulation and in the Earth’s gravity field, 

as well as basin-wide deformation and vertical land- & crustal movements (Stammer et 

al., 2013). SSH controlling drivers at any location can be local, remote, dynamic and/or 

static in nature, and operate on a great varying degree of spatial and temporal scales. 

Some examples include storm surges, which would be considered local and short-lived, 
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while changes in atmospheric modes of variability can be considered to be remote and 

long-lived. Slangen et al. (2014b) explained the contributing processes associated to 

regional sea level change across a number of regions including the North Sea. Their 

results indicated that steric/dynamic changes and GIA are the largest factors on 

multidecadal timescales. Dangendorf et al. (2014a) conducted an extensive study where 

they examined sea level variations driven by different forcing factors across a range of 

timescales in the North Sea and found that subannual variability is largely controlled by 

meteorological forcings such as winds and surface air pressure, and that the relative 

importance of the background forcings varies throughout the region. 

SSV is a dynamical system, meaning that it is inherently chaotic and difficult to predict. 

SSV in coastal areas proves to be even more challenging to explain, since these areas 

inherently possess shallow waters, complex coastlines, and river runoff, as well as 

struggle with difficulties associated with satellite altimetry products (Woodworth et al., 

2019). 

Nonuniform thermosteric expansion originating from uneven ocean warming has been 

found to be largely responsible for observed spatial trend patterns in regional sea levels 

(Cazenave & Llovel, 2010). Thermosteric expansion is larger out on the open ocean where 

the water column is deep. It does however effect coastal areas due to dynamic equilibrium 

seeking to be maintained in order to obey mass conservation laws, resulting in water 

mass moving from the open ocean towards the coast (Stammer et al., 2013). The second 

part of steric expansion in the ocean consists of halosteric, i.e., salinity changes. While 

globally much smaller than the thermosteric component (Meyssignac et al., 2017) they 

can still be large locally and should still be considered (Llovel & Lee, 2015), especially in 

the North-Baltic Sea transition area where large salinity contrasts are present.  

Previous studies have shown the importance of surface winds in influencing water mass 

transport and SSV in the North – Baltic Sea transition zone (e.g. Hieronymus et al., 2017; 

Hordoir et al., 2013; Passaro et al., 2015). For instance, Baltic outflow of freshwater has 

been found to be highly restricted by wind driven SSV in the Kattegat (Hieronymus et al., 

2017; Hordoir & Meier, 2010). The predominant wind pattern are the westerlies, i.e. the 

prevailing western winds in the middle latitudes determined by the general atmospheric 

circulation, usually strongest during the winter months (Passaro et al., 2015). The mean 
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transport of wind-driven surface currents in the northern hemisphere is offset clockwise 

to the wind direction by 45°, as a result of the balance between the Coriolis force and drag 

created between underlying water layers. This is known as Ekman transport. This means 

that strong westerlies typically cause higher than usual SSH as they drag water from the 

North Sea into the Skagerrak and Kattegat Seas (Passaro et al., 2015). The coastal 

boundary blocks the wind-driven water transport leading to sea level elevation 

(Woodworth et al., 2019). This in turn causes a reduced slope of the ocean surface 

between the Kattegat and the Baltic that decreases the pressure gradient and 

consequently water flow (Gustafsson & Andersson, 2001; Hordoir et al., 2013). During 

spring and summer, when the westerlies lose strength, the pressure gradient fails to 

sustain itself, which drives seasonal freshwater pulses (Gustafsson & Andersson, 2001; 

Hordoir et al., 2013). Passaro et al. (2015) have previously found that all sea level maxima 

that occurred over an 8-year period in these regions coincided with strong westerlies, 

and that the lowest levels of SLA occurred during easterlies.  

During calm wind conditions, the in- and outflow between the Kattegat and the Baltic Sea 

is bi-directional and is separated by a steep halocline, with salty water flowing into the 

Baltic underneath a much fresher top layer flowing out of it (Sayin & Krauss, 1996). 

Besides the barotropic pressure gradient that exists due to sea level differences, this flow 

is also density-driven by the large contrast in bottom and surface salinity between the 

basins (from 35 to 8 PSU). During strong winds, the flow between the basins is rather 

unidirectional in either direction across the entire water column (Sayin & Krauss, 1996; 

Weisse et al., 2021). 

Through these processes, it is clear that I must consider both surface and bottom salinity 

fields in addition to surface winds when examining water movement in my study area. 

Surface salinity may act as a proxy for the top layer, while the bottom salinity may act as 

a proxy for the bottom layer of water flow. To give additional insight, assuming the bi-

directional flow, I can use mixed layer depth (MLD) as an indication of the state of the 

baroclinic currents. Over the entire study area, the MLD is on average 13 meters deep. In 

the southwest (SW) Baltic, the MLD goes even deeper, reaching more than 20 meters on 

average (not displayed). The relationship between surface salinity, bottom salinity and 

MLD is displayed in Appendix A, together with the depth of the MLD in regard to the 

depth of the water column. 
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Besides wind, one other important meteorological forcing are the changes in atmospheric 

pressure loading known as the Inverse Barometer (IB) effect. As increased air pressure 

exerts a force on its surroundings, it coerces water movement. This is a well-known 

process that states that, approximately, for every 1 mbar increase in surface air pressure, 

the sea level decreases by 1 cm (Roden & Rossby, 1999). Since normal air pressure ranges 

between 950-1050 hPa across the length of a year, air pressure induced sea level 

variability can be expected to reach -37 to +63 cm around the mean sea level annually 

from this effect alone (SMHI, 2014a). 

Just as local sea levels can be varied, so can vertical land motion (Figure 2). Since the last 

Ice Age, the continental crust has been isostatically rebounding after being depressed by 

the ice sheets. In Sweden, GIA is responsible for inducing a land rise that varies from less 

than 1 mm yr-1 in the southernmost parts to 10 mm yr-1  in the northernmost parts of the 

country (Vestøl et al., 2019). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: The vertical GIA [mm/yr] over Fennoscandia derived from 
the land uplift model NKG2016LU (Vestøl et al., 2019).  
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The diurnal tidal pattern is the most dominant tidal component in the Skagerrak and 

Kattegat Sea, it is however typically not larger than 5-10 cm offshore (Christensen et al., 

2018). In the Baltic, the tides are virtually non-existent since the tidal signal undergoes 

significant filtering through the Danish Straits (Carlsson, 1998; Samuelsson & 

Stigebrandt, 1996). Such high-frequency variability is anyhow not captured in this study 

considering the temporal resolution of the datasets being used (daily to monthly). 

Therefore, I do not make any tidal corrections myself, and only use the tidal corrections 

already applied in the satellite altimetry dataset. 
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2 METHODS 

2.1 DATA ACQUISITION 

2.1.1 Satellite Altimetry 

I use satellite altimeter gridded sea surface height data downloaded from the Copernicus 

Marine Environment Monitoring Services (CMEMS) database. The sea surface height 

timeseries is estimated through optimal interpolation techniques, merging all of the 

altimeter missions available since the first recordings in 1992. This includes Jason-3, 

Sentinel-3A/B, HY-2A, Saral/AltiKa, Cryosat-2, Jason-2, Jason-1, Topex/Poseidon, 

ENVISAT, GFO and ERS-1/2 (Pujol & Mertz, 2020). The dataset presents sea surface 

height data as sea level anomaly (SLA), in reference to a 20-year 1993-2012 average. To 

study long-term sea surface trends monthly SLA data spanning 1993-2019 was 

downloaded over the study area in 0.25° × 0.25° spatial resolution. To study short-term 

SSV, daily data spanning 2014-2019 was downloaded over the study area in 0.25° × 0.25° 

spatial resolution. The daily dataset is also utilized in the neural network made for SSV 

prediction. 

Satellite altimetry works by means of transmitting a nadir-viewing radar pulse from the 

satellite down towards the Earth (Robinson, 2010). The distance that this pulse travels is 

referred to as the altimetric range (European Space Agency, 2022). The signal is reflected 

off the surface of the Earth and is received again by the satellite. The returned signal, or 

waveform, has a standard shape over most of the ocean, with a sharp leading edge 

followed by a gradually diminishing trailing edge (Cipollini et al., 2017). Given that the 

velocity of the pulse propagation is known, the time it takes the signal to be reflected is 

used to calculate the distance between the satellite transmitter/receiver and the Earth’s 

surface. By knowing the satellites precise orbit and the distance between the orbit and an 

arbitrary reference ellipsoid, the height of the Earth’s surface can be determined 

(European Space Agency, 2022; Robinson, 2010). This geocentric or absolute form of sea 

level observation has been measured over the last three decades, and has provided 

accurate nearly global observations on a near real-time basis (Church et al., 2013). 

The authors of the satellite altimetry dataset have applied a number of corrections prior 

to distribution. These are explained in the following section. 
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As is presented in Fernandes et al. (2014), the height of the water surface (h) above a 

reference ellipsoid can be expressed as: 

ℎ = 𝐻 − 𝑅𝑜𝑏𝑠 −  ∆𝑅 

where H is the height of the satellites center off mass above a reference ellipsoid, Robs is 

the altimetric range corrected for all instrument effects, and ∆R is the combined 

corrections applied for all range and geophysical effects. The corrections, or ∆R, can 

independently be expressed as: 

∆𝑅 = 𝑅𝑖𝑜𝑛 + 𝑅𝑤𝑒𝑡 + 𝑅𝑑𝑟𝑦 + 𝑅𝑆𝑆𝐵 + 𝑅𝐷𝐴𝐶 + 𝑅𝑡𝑖𝑑𝑒𝑠 

Rion, Rwet and Rdry are corrections that have to be made to account for different speeds of 

light through the Earth’s ionosphere and troposphere, which cause slowdown of the 

electromagnetic signal. This entails ionospheric, wet tropospheric and dry tropospheric 

correction. In the ionosphere, the delay is caused by signal refraction by free electrons, 

the correction for which can accurately be applied by employing dual-frequency 

altimeters. In the wet troposphere the delay is caused by water vapor and in the dry 

troposphere the delay is caused by other dry gasses, mainly nitrogen and oxygen 

(Fernandes et al., 2014). To accurately apply these corrections, a three-channel 

microwave radiometer to determine atmospheric water vapor content can be used 

(Robinson, 2010). However, since not all satellite systems are equipped with the 

necessary sensors, different correction methods may be used for different satellites. Since 

the dataset used in this study merges many different satellite systems together, in cases 

when the satellite is not equipped with all necessary sensors, the creators instead opt for 

model-based estimates of atmospheric water vapor content, which for coastal areas may 

even be preferred as we discuss in a later chapter. Corrections for RSSB (Sea State Bias), 

RDAC (Dynamical Atmospheric Correction) and Rtides (tidal components) also come 

included in the dataset. SSB correction is based on wind and wave height estimates and 

is caused by the influence of ocean waves on the returned waveform. The pulse is better 

reflected from the smoother throughs than the peaks or crests, which results in estimates 
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of sea level being too low (Cipollini et al., 2017). DAC corresponds to the removal of the 

barotropic ocean response to atmospheric forcings, necessary to isolate the response in 

terms of sea level. The dataset uses barotropic models forced by pressure and wind 

simulations. While it does filter out low frequency variability caused by the IB-effect, high 

frequency variability remains. Finally, ocean tidal effects are removed using the FES 

2014b tidal model, which removes 34 ocean tidal components, in addition to the 

correction for pole tide and solid earth tide. 

The limitations of satellite altimetry is its rather short span of available data, obviously 

too short to derive GMSL estimates on century length time scales. 

2.1.2 Tide Gauges 

The other form of sea level observation is instead measured in respect to the solid earth, 

and is thus referred to as relative sea level (RSL). RSL has in some locations been 

measured for centuries, in the form of in situ tide gauge stations. In this report I use 

monthly averaged tide gauge data from 30 stations from the `Revised Local Reference 

(RLR)´ dataset acquired from the Permanent Service for Mean Sea Level database 

(https://www.psmsl.org/) (Holgate et al., 2012; PSMSL, 2022). Tide gauge records were 

chosen on the basis of foremost being inside my study area and secondly, between the 

1993-2012 reference period not having more than 3 years with less than 75% data 

completion (meaning 9 out of 12 months per year). The locations of the stations are 

shown in Figure 1 while Table 1 gives an overview of the name and data series length 

and data completeness of tide gauge stations used. Fortunately, most gaps in the data are 

concentrated to the earlier stages of the tide gauge station timeseries. Since 1993, only 

occasional years are incomplete.  

 

 

 

https://www.psmsl.org/
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Table 1: Station number and name of the monthly tide 
gauge dataset. Years available indicates how many 
years the tide gauge is available. The value in 
parenthesis shows how many years have at least 75% 
data completion. 

Station 
number 

Station name Total years 
available 

Availability 
1993-2012 

1  OSCARSBORG  148 (64) 20 (20) 
2  STAVANGER  102 (91) 20 (20) 
3  TREGDE  93 (89) 20 (20) 
4  HELGEROA  55 (41) 20 (20) 
5  VIKER  30 (30) 20 (20) 
6  KUNGSVIK  47 (47) 20 (20) 
7  SMOGEN  110 (110) 20 (20) 
8  HIRTSHALS  126 (118) 20 (20) 
9  HANSTHOLM  65 (49) 20 (20) 

10  GOTEBORG - TORSHAMNEN  52 (52) 20 (20) 
11  RINGHALS  53 (50) 20 (20) 
12  STENUNGSUND  58 (54) 20 (20) 
13  VIKEN  44 (44) 20 (20) 
14  AARHUS  129 (126) 20 (19) 
15  FREDERIKSHAVN  124 (118) 20 (20) 
16  HORNBAEK  127 (124) 20 (20) 
17  BARSEBACK  84 (60) 20 (20) 
18  KOBENHAVN  129 (124) 20 (18) 
19  KLAGSHAMN  91 (91) 20 (20) 
20  SKANOR  28 (28) 20 (20) 
21  SASSNITZ  84 (74) 20 (20) 
22  WARNEMUNDE 2  164 (164) 20 (20) 
23  WISMAR 2  170 (170) 20 (20) 
24  TRAVEMUNDE  163 (155) 20 (20) 
25  GEDSER  126 (126) 20 (20) 
26  KIEL-HOLTENAU  63 (50) 20 (20) 
27  FYNSHAV  50 (48) 20 (18) 
28  FREDERICIA  128 (127) 20 (20) 
29  KORSOR  121 (116) 20 (20) 
30  SLIPSHAVN  122 (119) 20 (19) 

Modern tide gauges function in a somewhat similar fashion to satellite radar altimetry. 

The main instrument is often a microwave radar sensor placed within a sounding tube 

that is connected to the ocean. The time it takes for the radar pulse to travel back from 

the water surface is recorded and used to calculate the sea level (NOAA, 2021). Other 

instruments include pressure sensors, which instead are submerged in the water. The sea 

level is then determined by measuring the pressure exerted by the water column (SMHI, 

2021). Before the digital age, the sea level was measured using floats connected to an 

analog recorder (NOAA, 2021).  

While sea level timeseries from tide gauge stations exist that started long before the first 

satellite altimeter missions, the data is rather limited in its spatial distribution. 

Additionally, the sea level datasets from tide gauges are largely restricted to the 
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coastlines, particularly those with the longest data records (Woodworth & Player, 2003). 

This gives limited to no information about open ocean processes. Furthermore, since tide 

gauges record sea level in reference to the solid earth, it always includes vertical land & 

crustal movements of the ground itself. Throughout Fennoscandia, considerable vertical 

land movement occurs every year, often larger than the ocean movement itself (Vestøl et 

al., 2019). In the Baltic-North Sea transition zone, rates of GIA range from +4 mm yr-1 in 

northern Skagerrak to 0 mm yr-1 in the southern regions of the Baltic (Figure 2). This 

entails that the relative SLR trend changes throughout the region. In order to make the 

tide gauge dataset comparable to both other tide gauges and the satellite altimetry 

dataset, the difference in local GIA must be accounted for. Previous studies make 

corrections for this by applying land-uplift models such as the NKG2016LU  presented in 

Vestøl et al. (2019) (Figure 2).  I instead opt for a linear least square detrending of both 

datasets. This removes the uneven vertical land movement over the area as well as any 

trend of sea level rise/fall. Since I am interested in studying the short-term variability of 

sea level and not the long-term changes, this is not an issue. Additionally, since the 

satellite altimetry dataset is presented as SLA over a 20-year 1993-2012 average, the 

same 20-year average is computed and subtracted for each tide gauge station, obtaining 

the sea level anomaly over this reference period.  

2.1.3 Accuracy between sea level datasets 

A comparison and correlation analysis between all tide gauge stations and nearest cell of 

the gridded satellite altimetry timeseries is visualized in Figure 3. The tide gauge 

timeseries are here restricted to January 1993-December 2019 to match the satellite 

altimetry dataset. If the tide gauge timeseries are missing data for any month, the month 

in question is also excluded from the altimetry dataset. 
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Figure 3: For all 30 tide gauge stations, correlation between the detrended tide gauge data 
(orange) and that of the closest point of the gridded altimetry dataset (blue). Correlation 
coefficient R and distance to the center of closest cell indicated for each station. 

Generally, there is a high agreement between tide gauge records and the satellite 

altimetry dataset. 25 out of the 30 tide gauge–satellite altimetry pairs exhibit correlation 

coefficients higher than 0.7, and only 2 have coefficients lower than 0.6. Lowest 

correlations were found at Fynshav, Denmark (R = 0.39) and Kiel, Germany (R = 0.47) 

(Figure 3). Both these stations are also located south of the Little Belt (station no. 27 & 

Tide gauge & satellite altimetry correlations 



Page | 18 
 

26, Figure 1), an area that exbibits inconsistent sea level behavior. This is further 

discussed in Chapter 3.1. 

Non-perfect correlations can be expected due to the spatial resolution of the altimetry 

dataset. At 0.25° × 0.25° resolution, each gridded datapoint represents the average sea 

level over approximately 420 km2 of ocean and leads to many coastal areas to be 

unrepresented. In contrast, tide gauges report the sea level at a distinct point, the 

placement of which could be inside a protected bay or harbor, and may be far away from 

the closest cell of the satellite altimetry dataset it is being compared to. This leads to tide 

gauges not being well representative of offshore processes.  

Furthermore, there are known issues that contribute to the decrease of confidence in 

satellite altimetry data near the coasts. Traditionally, satellite altimetry is designed for 

the open ocean and within 10-15 km of the coast, it is often deemed unreliable (Madsen 

et al., 2007). The work to develop new methods, retracking algorithms and satellite 

sensors to increase data precision at the coasts is an active area of study for the satellite 

altimetry scientific community (Cipollini et al., 2017). For instance, the received 

waveform can be distorted by surface inhomogeneities, as is the case at the ocean-land 

transition areas where the presence of land corrupts the echo (Passaro et al., 2015). It is 

then important to implement retracking algorithms that are able to analyze the distorted 

waveforms (Cipollini et al., 2017). Near the coast, the corrections that need to be applied 

become unreliable as well. For instance, the water-vapor correction in the troposphere 

can be distorted by intruding land in the radiometer footprint, which can cause several 

centimeters of error (Cipollini et al., 2017). Such errors can often be remedied by instead 

implementing model-based corrections. The Baltic-North Sea transition zone possess 

countless islands and jagged coastlines, all sources for satellite altimetry error that leads 

this area to be particularly prone to data inaccuracies. 

Additionally, significant differences in corrections and filtering exists between the two 

data products. Since the altimetry dataset is corrected for the tidal components and DAC 

while the tide gauge data is not, discrepancy between the two datasets should be 

expected for this reason as well. 
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2.1.4 Sea level drivers 

A total of nine possible sea level drivers are selected to be included in the analysis. These 

are drivers that past studies have found to be the most important in determining SLV in 

the study area as I have demonstrated in Chapter 1. More variables could be included, 

such as precipitation, evaporation, surface run-off, solar irradiance, NAO index etc. but 

considering the time-scope of this project, I have decided to not include more than the 

ones listed in Table 2. The variables are collected from both the “ERA5 hourly data on 

single levels from 1979 to present” (ERA5-h) dataset from the Copernicus Climate Change 

Service (C3S) Climate Data Store and the “Baltic Sea Physics Reanalysis” (BSPR) dataset 

from the Copernicus Marine Environmental Monitoring Services (CMEMS) database. A 

brief description of the sea level drivers is presented below in Table 2. 

Table 2: The nine possible sea level drivers that I include in the analysis against the SLA 
datasets. 

Driver Description Unit Dataset 

U-component of 10 m 
wind (Zonal) 

The horizontal speed of air moving towards the 
east at 10 meters above the Earth surface. 

m s-1 ERA5-h 

V-component of 10 m 
wind (Meridional) 

The horizontal speed of air moving towards the 
north at 10 meters above the Earth surface. 

m s-1 ERA5-h 

Sea surface temperature The temperature of the sea water at the surface. K ERA5-h 

Sea level pressure The pressure exerted at the Earth’s surface by the 
weight of a vertical column of air. 

Pa ERA5-h 

U-component of surface 
currents 

The horizontal velocity of eastward surface 
currents. 

m s-1 BSPR 

V-component of surface 
currents 

The horizontal velocity of northward surface 
currents. 

m s-1 BSPR 

Surface salinity The amount of salt dissolved at the ocean surface PSU BSPR 

Bottom salinity The amount of salt dissolved at the sea floor PSU BSPR 

Mixed layer depth The depth from the sea surface of the homogenous 
mixed layer 

m BSPR 

2.1.4.1 ERA5 Atmospheric Reanalysis 

Four drivers come from the “ERA5 hourly data on single levels from 1979 to present” 

dataset from the C3S Climate Data Store: eastward and northward surface winds, sea 

surface temperature (SST) and sea level pressure (SLP) (Hersbach et al., 2018). The data 

are provided as hourly estimates on a 0.25° × 0.25° spatial grid and are downloaded over 

the 2014-2019 period covering the entire study area. The variables are derived from the 

ECMWF re-analysis that follows data assimilation principles of combining model data 

with observations, consisting of both satellite and in-situ observations of temperature, 
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humidity, 10 m winds and more. Since the data is only available in hourly estimates, I 

computed the 24-hour daily averages for these variables before they could be used in the 

analysis. 

2.1.4.2 Baltic Sea Physics Reanalysis 

The remaining five drivers come from the “Baltic Sea Physics Reanalysis” dataset from the 

CMEMS database: eastward and northward surface currents, surface and bottom salinity, 

and mixed layer depth (https://doi.org/10.48670/moi-00013). The data are provided as 

daily estimates on a 4 × 4 km spatial grid; I downloaded them over the 2014-2019 period. 

The dataset unfortunately does not cover the entire study area, and is limited by its 

western longitudinal boundary at 9° East. It does however include the whole Baltic Sea 

and Kattegat as well as most of the Skagerrak. The variables are derived from the ice-

ocean model NEMO-Nordic (based on NEMO-3.6) together with assimilated sea surface 

temperature profiles and salinity profiles. The ocean model is developed and used by the 

Swedish Meteorological and Hydrological Institute (SMHI) (Hordoir et al., 2019). Since 

this dataset is on a much finer grid compared to the rest, for analysis with the satellite 

altimetry dataset I interpolated it onto a matching 0.25° × 0.25° spatial grid using a 2-D 

linear interpolation technique. 

The wind is split into two variables of zonal (u10) and meridional (v10) winds. These 

range from negative to positive vector values that are projected onto the x or y axis. 

Negative zonal winds simply mean that the wind is positive in the westward wind 

direction. To obtain the true wind direction and wind speed, the zonal and meridional 

wind components must be combined. However, by leaving them as separate variables, 

one can get a better understanding of how the true North-South-East-West wind bearings 

affect sea level variability. For this reason, I chose to not combine the wind variables, and 

leave them as their separate components. 

2.2 IDENTIFYING BASINS OF COVARIANCE 

Regions of covariance are determined by plotting the correlations between the tide gauge 

timeseries against the “straight-line” distance between them. I only include correlations 

that are significant on a 95% confidence level. Generally, the correlation between the 

timeseries will decrease with distance between the tide gauge stations. I initially placed 

the tide gauge stations within three geographical sub-basins: the Skagerrak, Kattegat, and 
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the SW Baltic. I took a line-of-best-fit approach, where the goal was to minimize the root 

mean squared error (RMSE) and the slope of the line with as few sub-basins as possible. 

I also considered other statistical metrics such as the coefficient of determination (R2), 

which represents the proportion of the variability seen in the response variable Y (the 

correlation) that is explained by the distance variable X. I did this manually by testing 

different configurations of tide gauge groupings. The final result includes a fourth sub-

basin, which I call the Belts, as these stations did not fit well into any other sub-basin 

(Figure 1). 

The cross-basin analysis was done by similar means, except I instead calculated the  

correlation coefficients between every possible tide gauge station pair featuring stations 

from the now-defined separate sub-basins. For instance, the three tide gauge stations 

located in the Belts sub-basin are individually paired with each of the nine tide gauge 

stations located in the Kattegat sub-basin. Between them, they create 27 pairs of tide 

gauge timeseries combinations. Both the Pearson correlation coefficient and the 

“straight-line” distance is calculated between each tide gauge combination, and plotted 

against each other. 

2.3 MAIN DRIVERS AS DETECTED BY STATISTICAL METHODS 

To determine the main drivers of sea level variability by statistical methods, I use 

MATLAB (v.2021B) and the Climate Data Toolbox – a set of functions written for the 

analysis of climatic data (Greene et al., 2021). I also use M-Map, a mapping package for 

MATLAB, to create the various maps seen in the report (Pawlowicz, 2020). 

2.3.1 Pre-processing of datasets 

Primarily, in most sea level drivers there exists a strong seasonal signal that dominates 

the annual short-term variability. It is particularly apparent in variables such as SLA, SST, 

surface salinity and meridional wind (Figure 4).  
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There are multiple reasons to remove the seasonal cycle when computing multi-variate 

analysis. First, as is apparent in Figure 5, each timeseries has its own seasonality. For 

practical reasons, it is better to remove the seasonal cycle altogether than to deal with 

them individually. Second, many climatic variables are inherently seasonal, for instance 

Nordic sea levels being higher during winter months. When sea levels decrease in the fall 

it does not always signal an important change to any background driver, but could simply 

be the seasonal decrease, which in my case holds no important information. By removing 

the seasonal cycle, I limit any spurious correlation between drivers and sea level. Within 

a machine learning approach, it is also important to remove any seasonality when 

forecasting from timeseries, as it provides a clearer relationship between input and 

output variables. As we will see, it is important to ensure the input variables are 

independent from one another. If I do not remove the seasonal cycle, there is a large risk 

of the variables not behaving independently. To remove the seasonal cycle, I estimate the 

climatology by fitting multi-year daily averages of the data. The approximated 

climatological cycle is then removed from the annual sequence. This produces a seasonal  

  

  

Figure 4: Fast Fourier Transforms of some select sea level variable time-series. The large 
peak at the 1-year period indicates a strong recurring signal that returns every year. This 
is the seasonal cycle of the variables that is to be removed. 
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stationary time-series suitable for my analysis. The timeseries datasets are also 

detrended for the same purpose, using the aforementioned linear least-squares 

regression techniques. The estimated trend is then removed from the signal. 

2.3.2 Statistical analysis 

First, I calculate the Pearson Correlation Coefficient for each gridded point between each 

sea level driver and sea level anomaly to get an overview of the relationships between 

sea level variability and its background drivers. Only correlation coefficients within a 

95% confidence interval are included in these figures. While it is important to distinguish 

between correlation and causation, correlation analysis gives a good sense of how well 

the full variability exhibited in the sea surface height signal is accounted for, or 

represented by, the full variance of the sea level drivers. 

I follow statistical decomposition methods of Principal Component Analysis (PCA) and 

Empiric Orthogonal Function (EOF) analysis for timeseries signal breakdown of the daily 

SLA data. PCA/EOF are common and useful multivariate statistical techniques to analyze 

climatic data because they can reduce many variables in a dataset to much fewer new 

variables, which provide insight into both spatial and temporal variations (Wilks, 2006). 

It is common that a large number of principal components (PCs) are needed to explain all 

 

Figure 5: The seasonal cycle of sea level, surface salinity, and sea 
surface temperature at the Kattegat research point. 
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of the variance within a signal. Luckily, the first few PCs usually capture sufficient 

variance. In my case, the first four PCs explain almost 90% of observed variance within 

the daily SSH dataset, and the first two explain almost 80%. Each PC functions as an 

orthogonal vector in time, which means that they are independent of each other. In other 

words, the variance explained by one does not overlap with the variance explained by 

another. The first principal component will capture the most dominant part of the 

variance, the second will capture the second largest part of the variance that is not 

explained by the first, and so on. This is in part why PCA is such an efficient and useful 

tool. In reality, PCs correspond to eigenvectors, the magnitude of which are determined 

by their accompanying eigenvalues. These are vector and scalar properties that have 

been calculated from the dataset’s covariance matrix. It is the eigenvalues of the 

covariance matrix that describe the fraction of variance explained by each PC. Why and 

how this works can be explained in mathematical detail, but it is beyond the scope of this 

work and will not be covered in this report. While the PCs show the temporal variance of 

the signal, the EOF show the spatial structures of them. They are however both calculated 

simultaneously. Likewise, as the PCs are orthogonal in time, so are the EOFs in space, 

meaning there does not exist a spatial correlation between two EOFs. It is then possible 

to visualize the pattern of variability for each mode, and possible to identify underlying 

causes for each one. The EOF maps show which areas co-vary in the same opposition of 

phase, which areas co-vary in the opposite opposition of phase and which areas that are 

not affected by the mode in question at all. 

As I will show when I describe my EOF results in Section 3.2, I find that the explained 

variability drops dramatically after the first two EOFs, so I choose to focus on 

characterizing these two modes that together explain 80% of the sea level variability in 

the area. I compare the first and second PCs independently with the sea level drivers, as 

seen in for instance Passaro et al. (2021) where they compare the two most prominent 

PCs with both zonal and meridional winds. I do this by correlating the PCs with each of 

the deseasoned and detrended sea level drivers. 

2.4 MAIN DRIVERS AS DETECTED BY MACHINE LEARNING 

Machine Learning is the science of utilizing computer algorithms that are capable to 

continually improve its accuracy by self-learning. It has been used in many vastly 
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different fields of science to solve clustering, classification, regression problems and 

more. In this study, I use a type of Recurrent Neural Network (RNN) with a Long Short 

Term Memory (LSTM) architecture to predict sea levels, and to determine the primary 

drivers of sea level variability at two distinct points in the North – Baltic Sea transition 

zone (shown on Figure 1). 

Neural networks are a subsection within Deep Learning and are built out of nodes 

connected through layers. The general idea is that the network mimics the architecture 

of the human brain, with thousands of interconnected nodes/neurons (Goodfellow et al., 

2016). There are input layers, one or more hidden layers and an output layer. The model 

is fed with training data, which in my case consist of the nine possible sea level drivers 

listed in Table 2. All nodes in adjacent layers are connected to each other while nodes in 

the same layer are not, however the connection between particular nodes can sometimes 

be weak, effectively cutting the node off from some other nodes. This happens through 

the training process. At the start of the training session, each node within the network is 

assigned random weights and bias values. As each node receives an incoming value from 

each of its connections, the values are multiplied with the associated weight and added 

together. Only if the resulting product exceeds the bias value will it send the signal 

forward to the next layer. During the training process, the weights and bias values are 

continually adjusted to minimize the loss, which in my case is the root mean squared 

error between the predicted sea level and the true values. The process is then repeated 

over as many iterations as necessary to get the most accurate result, which is called 

gradient descent. This type of basic network is called feed-forward because information 

only flows in one direction, from input x, through the intermediary layers that define f(x), 

which lead to an output ŷ. No feedback function, where for instance the output of the 

model feeds back into itself, exists in this type of network (Goodfellow et al., 2016). 

Early testing using feed-forward neural networks did not perform particularly well for 

my problem. While it did capture some variability, it was limited in its execution. One 

likely reason is the fact that change within a sea level driver does not always result in an 

immediate response in sea level. More likely, there exists a delay between signals, as I will 

show in the Results. Unfortunately, standard feed-forward neural networks treat each 

point in the sequence independently, unable to remember what happened before.  RNNs 

are a type of modulation of the feed-forward neural network, that also possess the ability 
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for the nodes to use the previous output and store it within its memory for a short time. 

What this means in practice, assuming daily values, is that it can store a certain number 

of past days for each forcing, which it will use to predict the current sea level. However, 

there is an issue with RNNs related to backpropagation between the layers that occurs 

when updating the weights of each node: the vanishing gradient problem. As the 

algorithm moves backwards to update the weights related to earlier and earlier time 

steps, the gradient may start to get smaller in size until the weights are no longer updated, 

which prevents training (Goodfellow et al., 2016; Yu et al., 2019).  

The LSTM architecture consists of a chain of repeating modules or cells within the hidden 

layers. Within each cell there are three gates, called the forget-gate, input-gate and 

output-gate that simply put, are filters for the ingoing and outgoing data (Yu et al., 2019). 

The gates filter the data through sigmoid activation functions, meaning that it assigns a 

weight between 0 and 1 depending on the importance. The LSTM networks solve the 

vanishing gradient descent problem by using these gates that ensure that previous 

information is retained. 

Although I will not focus on the mathematical proof behind RNNs, I will present the 

fundamental equations which describe the models below. For a full and detailed 

explanation of RNNs and LSTMs, I refer the reader to Sherstinsky (2020). 

Mathematically, the first layers of a simple RNN can be described as: 

 ℎ𝑡
(1)

=  𝑡𝑎𝑛ℎ (𝑊ℎ
(1)

𝑥𝑡 + 𝑏ℎ
(1)

+  𝑊ℎ
(1)

ℎ𝑡−1
(1)

) ( 1 ) 

where ℎ𝑡  is the output of the current layer at time t, tanh is the activation function, 𝑊ℎ is 

the weight, 𝑥𝑡 is the input data, 𝑏ℎ is the bias and 𝑊ℎℎ𝑡−1 is the output of the past hidden 

layer. The following layers n can be described as: 

 ℎ𝑡
(𝑛)

=  𝑡𝑎𝑛ℎ (𝑊ℎ
(𝑛)

ℎ𝑡
(𝑛−1)

+  𝑏ℎ
(𝑛)

+  𝑊ℎ
(𝑛)

ℎ𝑡−1
(𝑛)

) ( 2 ) 

And the output layer ŷ𝑡  as: 

 ŷ𝑡 = 𝑊𝑜
(𝐿)

ℎ𝑡
(𝐿−1)

+  𝑏𝑜
(𝐿)

 ( 3 ) 

The final layer is a weighted linear combination of the input plus a bias.  
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The architecture of a LSTM cell is more complex than the RNN, since it includes multiple 

gates. Following Yu et al. (2019) it can be described as: 

 
𝑓𝑡 =  𝜎 (𝑊𝑥𝑓 𝑥𝑡 +  𝑊ℎ𝑓 ℎ𝑡−1 +  𝑏𝑓) ( 4 ) 

 
𝑖𝑡 =  𝜎 (𝑊𝑥𝑖  𝑥𝑡 +  𝑊ℎ𝑖   ℎ𝑡−1 +  𝑏𝑖) ( 5 ) 

 
𝑜𝑡 =  𝜎 (𝑊𝑥𝑜  𝑥𝑡 +  𝑊ℎ𝑜 ℎ𝑡−1 +  𝑏𝑜) ( 6 ) 

 
𝑐𝑡 =  𝑓𝑡 ⊙ 𝑐𝑡−1 +  𝑖𝑡 ⊙ 𝜙(𝑊𝑥𝑐  𝑥𝑡 +  𝑊ℎ𝑐  ℎ𝑡−1 +  𝑏𝑐) ( 7 ) 

 
ℎ𝑡 =  𝑜𝑡 ⊙ 𝜙(𝑐𝑡) ( 8 ) 

where 𝑓𝑡 , 𝑖𝑡 and 𝑜𝑡 are the forget gate, input gate and output gate respectively at time t. 

The gates all have the same format, and are calculated using the previous hidden state 

and current input data. They use a sigmoid activation function which assigns a value from 

0 to 1. 𝑥𝑡 is the input data, ℎ𝑡  is the current hidden state and 𝑐𝑡 is the cell state. The cell 

state is a weighted sum of the previous cell state controlled by the forget gate and the 

simple RNN equation controlled by the input gate. Wi, Wc, and Wo are the weights and 𝑏𝑓, 

𝑏𝑖 , 𝑏𝑜 , and 𝑏𝑐  are the bias. 𝜙  is the activation function, and the ⊙  operator denotes 

elementwise multiplication of two vectors. 

After computing the output value, the root mean square error (RMSE) between the 

predicted and true value can be calculated. This is expressed as the loss, which the goal is 

to minimize as much as possible. 

To be able to test the predicted results against independent sea level values, the data are 

first split into 3 categories. 70% of the data is used as training data. The remaining 30% 

are evenly split into validation data, which are used for model evaluation during training, 

and test data, which are used to evaluate the model after the training is completed. 

Knowing the current training set loss, backpropagation algorithms calculate the error 

gradient, which is used to update neuron weights and biases. This process is then 

repeated for several iterations/epochs until the loss no longer decreases. If the loss 

continues to decrease, while the validation set loss does not there might be a case of 

overfitting, which means that the neural network memorizes the training dataset while 

showing worse results on the validation dataset. I implement an early stopping algorithm 
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to preemptively combat overfitting by ending model training when the validation loss 

stops improving. The algorithm has a patience of 3, meaning that should the validation 

loss not improve over 3 epochs, I stop the training and revert the model back to its best 

state, i.e., the smallest validation loss.  

The LSTM network is built and run on a local machine on Jupyter Lab, using the 

Tensorflow library. Two locations, one in the Kattegat Sea and one in the SW Baltic, are 

chosen for the ML analysis. These were chosen based on the differences between the 

spatial coherence regarding sea level in these regions, which I will describe in Section 3.1. 

Since the model is sensitive to the magnitude of the data values, all datasets except the 

sea level time series are normalized before use. There is no need to normalize the target 

of the neural network. 

I first conduct an experiment to determine the optimal number of past days to include in 

the prediction, or rather, the optimal sequence length. I let the number of layers (2) and 

number of neurons within the layers (200 & 400) stay the same between model runs, and 

only change the number of past values the neural network should use to predict. The 

amount of layers and an approximation of a good amount of neurons within the layers 

were determined by early testing and experimentation. I start with running the model 

with a sequence length of 1, 2, 3, 4, 5, 6, 8, 10, 15, 20, 30 and 90 days. If the minimum loss 

is possibly between two of the values, then the model is run again with sequence lengths 

in between these values that previously have been untested. Since initial weights and 

biases are random, the model will produce different results despite using the same 

settings. For this reason, multiple runs should be computed for each setting. I train the 

network 30 times for each run. The results showing the RMSE between predicted and 

true values and the optimal sequence length for each location are discussed in Section 

3.3. 

The second experiment is conducted in order to describe each location’s SSH primary 

drivers. Before I train the models however, it is important to optimize the model in order 

to get the best results. I run the Keras Tuner, a deep learning optimization framework 

that tests for the optimal hyperparameter values (O'Malley et al., 2019). Knowing the best 

hyperparameter values to use before you start training a model is challenging and finding 

the optimal configuration manually is extremely time consuming and virtually 
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impossible. Keras Tuner is built to automate this process. The hyperparameters I 

determined this way are the number of neurons in the two hidden layers. I set the tuner 

to test for values between 50 – 400 neurons in the first hidden layer and 200 – 600 

neurons in the second hidden layer, with increments of 50 in-between. These values were 

found to give good model result based on early testing. The tuner tests different 

configurations of neurons between the layers and returns the best one. Knowing how 

many past days each location should use from the previous experiment, the model is first 

run 30 times at both locations using the tuned hyperparameter values with all possible 

drivers to produce “base” runs. Thereafter, I exclude one of the drivers and I rerun the 

tuner and run the model 30 more times. This process is replicated until each driver has 

been excluded from a model run. Based on the median RMSE between predicted and true 

values across the 30 model runs for each excluded driver, a ranking can be produced 

where an increased RMSE compared to the base run indicates that the excluded driver is 

significant in controlling local sea level.  

In order to visualize how well the model performed in predicting sea levels, I produce 

graphs showing all 30 model runs from one experiment, highlighting the best performing 

one. The graphs have been smoothed using a low-pass Butterworth filter using a 4-day 

running mean. This removes noise created by the prediction, a result of the model 

predicting sea levels for each day separately, independent of past predictions. 
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3 RESULTS AND DISCUSSION 

In the following chapter, the results are presented concurrently with the discussion. The 

first section presents the results from the identification of basins of co-variance estimated 

from in-situ tide gauge station data. The second section introduces the results from the 

statistical analysis between sea level variability and background drivers. The third 

section presents the results from the LSTM neural network experiments. 

3.1 BASINS OF COVARIANCE 

The Baltic – North Sea transition zone can effectively be organized into four separate 

regions or sub-basins of sea level variability. These are Skagerrak, Kattegat, SW Baltic and 

the Belts region. One common attribute of all regions presented in Figure 6, is that the 

correlation between tide gauge stations generally decreases with distance.  

 

Figure 6: Dependence of correlation between pairs of time series on the distance between 
the tide gauges calculated separately for each basin. The displayed values are the slope of 
the line and the RMSE of the regression. 
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The Belts region contains only three tide gauge stations however, leading to this region 

being poorly represented and results not being entirely conclusive. Nevertheless, these 

three stations did not fit well into any other of the sub-basins. When included in the two 

neighboring sub-basins of Kattegat and SW Baltic, it became clear that they do not 

correlate well with any of the other tide gauge stations, significantly worsening the 

correlation – distance relationship. In the Kattegat, the slope of the line steepened from   

-0.00063 to -0.0010, the RMSE increased from 0.037 to 0.071 and the R2 decreased from 

0.61 to 0.56. In the SW Baltic, the RMSE increased from 0.041 to 0.086 and the R2 

decreased from 0.6 to 0.1. They do however correlate well with each other, leading to 

them being separated into their own sub-basin. The three tide gauge stations cover two 

of the three main belts that connects the Baltic Sea to the Kattegat. The third passage, the 

Oresund, is instead best sorted into the Kattegat sub-basin. This passage is represented 

by tide gauge station 13, 16, 17 and 18 (Figure 1). While this divide between the sounds 

may seem surprising, one should first consider the method for calculating the distance 

between the tide gauge stations. I here used a “straight-line” method of measuring 

distance, but this is not always well representative of the true distance the water would 

have to travel between two individual stations. The true distance between tide gauge 

stations can hence be substantially longer. For instance, as can be seen in Figure 1, while 

the “straight-line” distance between station 29 in the Belts and station 18 in the Kattegat 

may appear relatively short (100 km), the stations are situated on opposite sides of and 

separated by the large Danish island of Zealand. This leads to the timeseries of tide gauge 

station 18 not being well represented by the timeseries at tide gauge station 29, leading 

the two tide gauges to have a seemingly short “straight-line” distance but poor 

correlation. 

Additionally, it has been shown that the water transport between the Baltic and the 

Kattegat occurs faster through the Oresund in comparison to the other two straits. This 

is thought to be mostly caused by the shorter length but also a smoother local bathymetry. 

This leads it to be much more straightforward for the water to travel through the Oresund 

in comparison to the others (Lass & Mohrholz, 2003). This most likely has a large 

contribution to the Belts sub-region experiencing different sea level variability compared 

to the Oresund. 
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Figure 7 presents the results from the cross-basin tide gauge correlation analysis, i.e. the 

correlation of pairs of stations from different basins. These results confirm the general 

trend of correlation decreasing with distance that I just discussed. This result holds true 

for all cross-basin analysis combinations except for the Belts – SW Baltic duo (Figure 7f). 

Between these sub-basins, there is a general reversed trend of correlation instead 

increasing with distance. However, the datapoints are indeed quite scattered (RMSE = 

0.08) making the linear relationship more unreliable. The Skagerrak – SW Baltic cross-

basin analysis (Figure 7d) also possesses more scattered datapoints (RMSE = 0.14). In 

fact, all cross-basin analyses that include the SW Baltic sub-region appear to contain more 

scattered datapoints and higher RMSEs (0.12, 0.14, and 0.08) compared to the other 

combinations (0.06, 0.04, and 0.05). This may indicate that the SW Baltic sub-basin’s sea 

level variability is more complex and different from the rest of the sub-basins. 

 

Figure 7: Cross-basin correlation analysis: Dependance of correlation between pairs of 
time series from different basins on the distance between the tide gauges 

The need to separate the basins becomes even more clear when considering Figure 7b 

and d. Here, many tide gauge correlation pairs are weak. This proves that it would be 

inappropriate to consider the whole North Sea – Baltic Sea transition zone as one singular 

area of covariance. This will be further demonstrated in the EOF analysis of Section 3.2 
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It is also important to consider that, since the tide gauge station timeseries have not 

undergone any tidal corrections, this has most likely influenced the results. In shallow 

seas, tides can vary over short distances (Robinson, 2010), especially in areas situated 

closer to the open North Sea such as the Skagerrak and Kattegat. Additionally, previous 

studies have also found that a filtering effect of SLV signals such as tides occurs through 

the Belts (Hieronymus et al., 2017), leading this area to be naturally complex. Since areas 

south of the Belts experience very little tidal variability while areas north of them do, this 

most likely increases the correlation discrepancies between tide gauges between and 

even within sub-basins. 

It should also be mentioned that it is difficult to establish clear borders between basins 

of covariance using this method. For instance, the analysis between Skagerrak – Kattegat 

(Figure 7a) have multiple tide gauges between them with very strong positive 

correlations. This means that it is difficult to sort these tide gauge stations into one basin 

or the other. 

To summarize, the North – Baltic Sea transition zone can be split into 4 separate regions 

of sea level covariance following the tide gauge correlation analysis. In the following 

section, I will discuss how these results compare to the satellite altimetry dataset, 

particularly how this relates to the EOF analysis.  

3.2 MAIN DRIVERS AS DETECTED BY STATISTICAL METHODS 

The correlation analysis between altimetry-based sea level anomaly and sea level drivers 

presented in Figure 8, shows that zonal winds have by far the strongest connection to 

sea level anomaly variability in most of the area. This reaffirms what has been found in 

past research (Hieronymus et al., 2017; Passaro et al., 2021; Sterlini et al., 2016). This is 

especially true in Kattegat and most of Skagerrak. Slightly lower correlations are present 

at the deeper waters of the Skagerrak and the onset of the deeper Norwegian Trench. 

Whereas strong positive correlation exists between zonal winds and sea level anomaly 

for all areas north of the Danish Straits, only negative correlations are found south of 

them. In fact, such a divide can be found in many of the correlation analyses made 

between sea level and background drivers. This includes drivers such as meridional 

winds, sea level pressure and zonal currents (Figure 8). Only correlation coefficients 

within a 95% confidence interval are included in these figures.    
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Figure 8: Correlation between SLA and background drivers.  
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Which of the two wind components is the most significant in controlling local sea levels 

is largely conditioned by local coastal geometry. As wind blows into and over the coasts, 

it drags water along with it. As described in Dangendorf et al. (2014a), who investigated 

the North Sea barotropic response to atmospheric forcings and in Sterlini et al. (2016), 

who investigated the major drivers of SSV in the Danish North Sea, Ekman transport in 

the North Sea is generated by eastward positive winds that drive a net movement of 

water towards the south. Ekman transport from northward positive winds drive a net 

water transport towards the east. Southward winds drive water transport towards the 

west, and eastward winds drive water transport towards the north. As the water nears 

the coastlines, it converges, which leads to an SLA response in the form of higher sea 

levels. This coastal zone effect between surface winds and sea level anomaly can be seen 

throughout the world but is especially apparent in the Nordic seas, including the North – 

Baltic Sea transition zone. In the Skagerrak and Kattegat Seas, higher than usual SLA 

coincide with eastward wind and to a lesser extent northward wind. Higher than usual 

SLA in the SW Baltic is mostly associated with westward and southward wind. Major 

Baltic outflow events are generally caused by weakened or reversed westerly winds that 

fail to sustain the sea level gradient between the basins. Outflow events can rapidly 

decrease the mean sea level in the Baltic (Carlsson, 1998). In the Belts, there is little to no 

correlation between SLA and eastward/westward wind, while there is a larger 

connection to southward wind, meaning that high SLA is caused by northern wind in this 

region. This difference between the basins might be the reason for why the tide gauge 

stations in the Belts did not correlate well with those in either the Kattegat nor SW Baltic. 
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Figure 9: The first two EOF modes of SLA variability (top) and the corresponding PC:s 
(bottom), with their respective explained variance. Together they explain almost 80% of 
the variance.  

SLA variability in the Belts and SW Baltic have a clear positive correlation to variability 

in sea level pressure (Figure 8c). There also exists a weak positive correlation (0.2) 

following most of the Norwegian coastline, with weak negative to non-significant 

correlations in the Kattegat. This result is surprising, as the inverse barometer (IB) effect 

on daily timescales has not been filtered out of the altimetry dataset. If the SLA response 

to changes in SLP was only confined through the IB effect, this known linear relationship 

would lead to negative correlations between SLP and SLA throughout the region. Instead, 

we see areas that experience higher sea levels in tandem with higher SLP values. This 
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further suggests that there is another physical process, driven by spatial changes in SLP, 

and in effect wind, that exerts changes to SLA. It may be that external SLA surges caused 

by pressure systems elsewhere lead to these results. Such an effect is for instance studied 

in Wolski et al. (2014), where it was shown that a deep low pressure system passing over 

central Scandinavia and the north Baltic Sea caused decreased sea levels in the SW Baltic. 

It is important to consider that the correlation analysis has only been considered between 

SLA and background forcings at the same location, while it has been proven that remote 

changes in atmospheric pressure fields and wind movement also influence SLA remotely 

(Dangendorf et al., 2014a; Sterlini et al., 2016; Wolski et al., 2014). Remote forcings on 

local sea levels are however not easily distinguishable in this study. 

In the Kattegat, there is a salinity gradient of surface waters going north to south, going 

from 20-25 PSU in the north to 10-12 PSU in the south (Christensen et al., 2018; 

Stigebrandt, 1983). In most of Kattegat I find a positive correlation between surface 

salinity and sea surface height (Figure 8e). This is most likely also related to the 

variability of surface winds. Since strong zonal winds in the Kattegat control outflow of 

freshwater from the Baltic, it should be expected that strong winds also bring saltier 

water from the North Sea while simultaneously inhibiting freshwater outflow from the 

Baltic. There is general agreement that during weak or moderate zonal wind conditions, 

a two-layer halocline system of in-and-outflow occurs through the Danish Straits (Sayin 

& Krauss, 1996; Weisse et al., 2021). As the westerlies pick up strength, the system shifts 

to in-or-outflow across the entire water column, the strength of which is determined by 

the sea level gradient between Skagerrak and SW Baltic (Weisse et al., 2021). Assessing 

the ocean mixed layer depth can give us a better understanding of these processes. The 

ocean mixed layer is defined as the layer at the surface of the ocean where most intense 

mixing takes place, and therefore temperature and salinity (and hence density) are fairly 

uniform. In this regard, the ocean mixed layer depth is heavily related to the SST,  and 

surface salinity fields. In the Danish Straits for instance, the mixed layer depth is also that 

of the halocline. The correlation between the mixed layer depth and SLA fields follows a 

similar spatial structure as to that of the surface salinity. While not as apparent, a similar 

spatial structure with inversed correlation values can also be seen between mixed layer 

depth and SLA analysis and the bottom salinity and SLA correlation analysis. 
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There is a weak positive correlation between local SLA and sea surface temperature 

across nearly the entire study area. This can be expected as thermal expansion of the 

water column has been found to be a leading cause of rising sea levels. This result 

confirms our expectation, however, since the mean depth throughout most of our study 

area rarely exceeds 30 meters, the effect that the local thermosteric signal has on SLA 

variability is expected to be weak (Dangendorf et al., 2014a; Woodworth et al., 2007).  An 

exception to this is the Norwegian Trench, where the water reaches depths of >700 

meters. Coincidentally, this area also has the strongest correlation between SLA and SST 

variability. Both Bingham and Hughes (2012) and Chen et al. (2014) suggest that, while 

shallow North Sea waters are unable to produce a steric SLA signal, coastal SLA response 

to SST originate from deeper oceanic waters, which then propagate along the coastlines.  

It should also be noted that most analyses between SLA variability and background 

drivers presented in Figure 8 contain many areas that do not have a significant 

correlation on a 95% confidence level. Note that missing datapoints west of 9° East in 

Figure 8e, f, g, h and i is due to spatial limitations of the dataset and not insignificant 

correlations. 

The spatial divides previously discussed are also visible in the EOF analysis presented in 

Figure 9, most notable in the second EOF map. Here the phase opposition of sea level 

variability is strong on opposite sides of the Danish Straits, with little to no variability 

associated with this second principal component in the Belts sub-region. This is also 

visible in the first EOF albeit somewhat weaker. While the Kattegat is unaffected by the 

first EOF, there is a strong signal around and south of the Danish Straits. 

It is not surprising that there is a common spatial structure. Wind patterns are largely 

driven by air pressure fields, that further drive the circulation of surface currents through 

wind stress. As such, zonal and meridional winds are coupled and follow pressure 

distributions in the atmosphere. Many researchers therefore argue that large-scale 

atmospheric modes, in this region predominantly the North Atlantic Oscillation (NAO), 

can be effectively used as an atmospheric proxy, which combines coupled processes such 

as the IB effect, wind stress, air pressure variations and precipitation (Dangendorf et al., 

2014b; Hurrell, 1995; Suursaar & Sooäär, 2007). While the changes to the NAO are mostly 
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related to long-term decadal variability that is not entirely captured in this study, the 

connection still exists. 

To examine which of the forcings best correspond to the PC variability, I also show results 

from the correlation analysis between the PCs and sea level drivers in Figure 10a and b. 

I find that the first PC is strongly linked to zonal winds throughout the study area (average 

R = 0.56), as it is well described by the local zonal wind component, while the second PC 

is best described by the SLP (average R = 0.38). In comparison, PC1 and SLP have an 

average correlation of 0.15, PC2 and zonal winds had an average correlation of 0.16. 

Meridional winds have average correlations to PC1 and PC2 of 0.11 and 0.21 respectively. 

Other results can be viewed in Appendix B. 

  

Figure 10: Correlation analysis between (a) PC1 and zonal (u) wind component, and (b) 
PC2 and sea level pressure. Both sea level drivers were the highest correlated ones to 
each PC.  

To conclude this section, it is clear through our results and what has been discussed by 

past research (e.g. Slangen et al., 2014b), that the short-term variability of sea level 

anomaly is strongly dominated by changes in wind stress, particularly to changes of the 

zonal wind component, but also to changes in the atmospheric pressure field. 
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3.3 MAIN DRIVERS AS DETECTED BY MACHINE LEARNING 

The similar spatial structures between SLA and background variables described in the 

previous section suggests the existence of significant cross-correlations between 

forcings, also known as collinearity. Within a machine learning approach, collinearity 

between input variables, which stems from the variables not being entirely independent 

from one another, can muddle the results. Table 3 shows the complete cross-correlation 

matrix between background drivers, as well as the correlations between  the SLA and the 

drivers for the two locations defined in Figure 1. In the Kattegat location, SLA shows 

highest correlation with the zonal wind. Zonal wind is also moderately well correlated 

with the zonal current and surface salinity, and have a strong negative correlation with 

meridional currents. In the SW Baltic location, the relationship between 10 m winds and 

Table 3:  To the left is displayed the correlation coefficients between the full SLA timeseries and the 
background drivers at the two locations. These values are not considered when evaluating 
collinearity between the background variables. To the right, cross-correlation between SLA and 
background drivers at a Kattegat and SW Baltic location (for exact locations, see Figure 1). Where 
the correlation between two variables exceed ±0.4, they are shaded red. Values are marked as NS if 
the correlation is non-significant at a 95% confidence level.  

Kattegat 

 SLA   u10 v10 SLP SST SS BS CurrU CurrV 

u10 0.53 u10 1.00        

v10 0.20 v10 0.08 1.00       

SLP -0.11 SLP -0.27 -0.21 1.00      

SST 0.12 SST NS NS NS 1.00     

SS 0.28 SS 0.37 NS -0.24 NS 1.00    

BS -0.35 BS -0.18 NS NS NS -0.34 1.00   

CurrU 0.18 CurrU 0.33 0.12 -0.16 NS 0.24 0.04 1.00  

CurrV -0.20 CurrV -0.49 0.28 0.20 NS -0.19 -0.11 -0.28 1.00 

MLD 0.26 MLD 0.28 0.08 -0.18 0.06 0.42 -0.19 0.05 -0.19 

SW Baltic 

 SLA   u10 v10 SLP SST SS BS CurrU CurrV 

u10 -0.11 u10 1.00        

v10 -0.18 v10 NS 1.00       

SLP 0.25 SLP -0.27 -0.25 1.00      

SST -0.08 SST -0.08 NS 0.10 1.00     

SS 0.16 SS 0.13 0.05 -0.13 -0.07 1.00    

BS 0.23 BS 0.22 NS -0.14 NS 0.52 1.00   

CurrU NS CurrU 0.43 0.28 -0.20 NS 0.09 NS 1.00  

CurrV NS CurrV -0.46 0.42 NS 0.08 -0.08 -0.12 NS 1.00 

MLD -0.05 MLD -0.16 -0.16 NS -0.12 NS -0.37 -0.07 -0.10 
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surface currents is even stronger. Moderate negative correlations are also found between 

sea level pressure and zonal winds. In terms of SLA, the strongest correlations are found 

with SLP. 

Sterlini et al. (2016), who undertook a multiple linear regression approach to model sea 

levels, had used a threshold limit of ±0.35 when comparing and excluding sea level 

drivers in their analysis. I however choose to be slightly more lenient, and incorporate a 

threshold limit of ±0.4. Such high values are for instance found between the wind and 

surface current, meaning that much of the variability displayed in the surface current 

signal is captured by the wind signal. Since currents are primarily wind driven, and not 

the other way around, I choose to remove both the zonal and meridional current from 

both locations for the machine learning analysis. Correlations above my threshold are 

present between surface and bottom salinity in the SW Baltic and surface salinity and 

MLD in the Kattegat. Since surface salinity also acts as a proxy for precipitation and 

evaporation, I choose to keep this forcing and instead remove bottom salinity and MLD. 

The two variables are removed from both locations for consistency. 

As seen in Figure 11, there exists a large signal delay between the zonal wind component 

and SLA in the SW Baltic sub-basin. The signal delay is calculated using cross-correlation 

techniques to determine the optimum data shift between the two variables. In the SW 

Baltic, the optimum correlation can be found by shifting the SLA variable back, in some 

regions up to 15 days. This is related to the results presented in Figure 12, which shows 

the differences in RMSE between different model runs using variable sequence length of 

sea level drivers for the two locations. There is a stark contrast between the two locations. 

At the Kattegat location, the optimal sequence length is 6 days, while in the SW Baltic 

location, it is 18 days.  While the results in Figure 11 are the cause for the large contrast 

between the areas in regard to the optimal sequence length for the RNN, there exist no 

clear explanation as to why the signal delay between zonal wind forcing and the SLA 

response is so large. It is possible that the natural complexity in this region plays a large 

role, but also that there might be other variables that I have not considered. Samuelsson 

and Stigebrandt (1996) mentioned that SW Baltic variability is influenced by sea levels in 

the Kattegat, so by including more possible background forcings, in particular remote 

ones, the sequence length may be shortened. 
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Figure 11: Lag (days) yielding the maximum 
correlation in absolute values between the zonal (u) 
wind signal and SLA. The values show by how many 
days the SLA signal is delayed in reference to the u 
wind. The two red dots are the location of the 
Kattegat and SW Baltic data extraction points. 

Generally, the neural network is better at predicting the sea level at the Kattegat location 

(best RMSE = 2 cm, Figure 12a) compared to the SW Baltic location (best RMSE = 4 cm, 

Figure 12b). It also requires a shorter sequence length to produce the better results. The 

model does not seem to perform better after a sequence length of circa 18. Since longer 

sequence lengths make the model run slower, I choose this value for the forcing 

experiment displayed in Figure 13, rather than a higher value of e.g., 30. This indicates 

that SW Baltic SLV is not as easily described as SLV in the Kattegat Sea. 

Figure 13 present the results of the second machine learning experiment. The sea level 

drivers are ordered by median RMSE values and follow as such a ranking system of Any 

sea level drivers below the “All forcings” experiment are those whose exclusion improved 

Signal delay between WindU and SLA 
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the prediction. In the SW Baltic, the model did not perform better when excluding any of 

the background drivers. In the Kattegat, only when excluding SST did the model run 

better on average. 

 

 

Figure 12: Boxplots visualizing the results from 30 model runs featuring all forcings at the (a) 
Kattegat location and (b) SW Baltic location. Root-mean-square error depends on the number 
of past days the model uses to predict. 

It is clear that the zonal wind component serves as the most dominant background driver 

in both locations. In the Kattegat, the RMSE increases by almost 1.5 cm compared to the 

base run when excluding zonal winds from the predictions. In the SW Baltic, the RMSE 
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increases by nearly 8 cm when excluding zonal winds from the predictions, which is a 

significantly worse performance. The second most important driver in the SW Baltic is 

meridional winds, where the RMSE increases by roughly 1 cm compared to the base run. 

In the Kattegat, sea level pressure is found to be the second most important driver, where 

the RMSE increases by 0.5 cm when excluded. This confirms our results from the 

statistical analysis and agrees well with other research that find that atmospheric drivers 

are those most responsible for driving local high frequency sea level variability in the 

North – Baltic Sea transition zone. 

 

 

Figure 13: Forcing experiment at the Kattegat location. Each boxplot visualizes the results 
from 30 model runs featuring all forcings excluding the one named. The highlighted boxplot 
is the base run that includes all forcings. 
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The difference in RMSE between the other sea level drivers are small, and it is difficult to 

say that one is more important than the other since the difference in RMSE is minimal. 

Such a small change may well be due to the random initial weights of the neural network 

at the start of the training phase. However, some points can still be made. For instance, 

sea surface temperature is the least important driver for the Kattegat location, and its 

exclusion even slightly improves predictions. While a known relationship exists between 

thermal expansion and sea level rise, the effect that SST has on sea level variability on 

daily timescales is small. Surface salinity has a negative effect on predictions when 

excluded from the model at both locations. Surface salinity does not only give an 

approximation of precipitation and river run-off, both which would increase local sea 

levels, but may also act as a secondary proxy to the wind stress signal since salinity is 

influenced by wind-driven North Sea inflow of surface waters (Hordoir et al., 2013). In 

the Baltic especially, salinity intrusions from the Kattegat are forced by strong westerlies, 

and in the Kattegat, freshwater inflow from the Baltic is influenced by weak westerlies.  

Regarding the neural network performing consistently much worse at the SW Baltic 

location, this may suggest that other sea level drivers ought to be considered that I have 

currently left out. It is possible that this location in the SW Baltic is more strongly 

influenced by remote drivers, say winds in the Kattegat or freshwater discharge from 

streams and tributaries throughout the entire Baltic proper.  

Finally, Figure 14 displays the results from the base “All forcings” predictions from the 

two locations. In both locations, the models often overestimate sea levels, yet both still 

fail to accurately predict the observed sea level peak at both locations at the end of 

September and in early October 2018, suggesting that this extreme was caused by a 

mechanism not represented in the training data. In the context of protecting coastlines 

and planning preemptive measures in urban environments against rising sea levels, a 

slight overestimation is better than an underestimation. It is however much more vital to 

also be able to capture and predict the extreme sea level events, as these are the ones that 

will be the costliest. In Kattegat (Figure 14a) only during a period between May 2018 – 

June 2018 do most prediction seem to instead underestimate sea levels. In SW Baltic 

(Figure 14b), large discrepancies can be seen between September 2018 – October 2018 

and around January 2019.  
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The range of observed values is also larger in the SW Baltic (-0.3 to +0.28 m) compared 

to the range of observed values in Kattegat (-0.2 to +0.15 m) during this period. It is 

possible that the larger range in values contributed to the model prediction having larger 

RMSE at the SW Baltic location. 

Despite these issues, the model performs well in predicting sea levels. The neural 

network analysis of the sea level drivers also performs well and confirms the conclusions 

about the sea levels primary drivers reached by the traditional statistical approach. 

 

 

Figure 14: Results from the base run including all forcings model prediction at the (a) 
Kattegat location and (b) SW Baltic location. The green line shows the best prediction with 
the lowest RMSE, the light grey show all other predictions from the same model and the 
yellow line show the observed SLA values. Each model is run 30 times. 
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4 CONCLUSION 

The results from this thesis directly contribute to the project NEEDS. Mapping of the 

regions of coherent sea level variability is used in the project to conduct separate 

experiments in each region to determine region-specific drivers of sea level variability.  

Through the work conducted in this thesis, I have successfully defined and mapped 

regions of coherent sea level variability in the North – Baltic Sea transition zone. By 

analyzing the tide gauge timeseries, the area can be effectively divided into four separate 

subbasins of covariance: Skagerrak, Kattegat, South-West Baltic and the Belts. The 

correlations between the pairs of stations in each basin are very strong, ranging from the 

minimum of 0.75 in the Kattegat to the maximum of 0.99 in Skagerrak. The division 

between areas of covariance is a necessary procedure that enabled me to better 

understand each subbasins background sea level drivers on high frequency sea level 

variability. 

Results show that the zonal wind component is the main driver of sea level variability in 

most of the study area, be it through strong predominant westerlies or through their 

weakened or even reversed state. It has a large positive correlation to sea level anomaly 

north of the Belts and a negative correlation south of them. It is closely correlated to the 

first principal component that explains more than 50% of the sea level variability. The 

meridional wind component also has some influence, though much smaller. Which wind 

is most responsible at each location is mostly controlled by local coastal geometry and 

changes significantly in the relatively small area due to the complexity of the coast. Sea 

level pressure is also found to be an important driver in sea level anomaly variability and 

is most correlated to the second principal component. 

When predicting sea level using a neural network, I achieve good model results using only 

a handful of forcings. The information about the dominant drivers of sea level variability 

determined here will be used to build new machine learning models that will quantify the 

flood risk in Sweden and Denmark for the next 30 years based on different climate model 

predictions. The forcings used were zonal wind, meridional wind, sea level pressure, sea 

surface temperature and surface salinity. The main sea level drivers, i.e., the drivers 

whose exclusion resulted in significantly worse prediction are zonal winds, meridional 

winds (for both Kattegat and the South-West Baltic) and sea level pressure (only in the 
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Kattegat). On the other hand, the inclusion of surface salinity or sea surface temperature 

did not improve model results.  

I also showed that the model performed consistently worse at predicting sea levels in the 

South-West Baltic than it did in the Kattegat. This may be a result of not including enough 

forcings as input variables. As has been suggested by other research, Baltic sea level 

variability is most likely also influenced by remote atmospheric forcings outside my study 

area. 

I will finally make some remarks about potential improvements to the thesis and further 

research opportunities. First, to fully utilize the benefits of satellite data coverage, I would 

have liked to calculate spatial averages of both SLA and drivers across all four sub-basins 

delimited by the tide gauge analysis. This might give a more definitive answer to each 

sub-basins primary forcings, as well as be more representative of the sub-basin’s 

variability compared to a single location. I showed that using a machine learning 

approach to determine primary sea level drivers works well, and that it is comparable to 

that of traditional statistical approach. However, to first compute PCA/EOF analysis for 

each sub-basin, and then attempt to predict and find primary forcings for each PC 

separately may give even more substantial results. Lastly, it would be most interesting to 

also include remote drivers in both the statistical and machine learning analysis (e.g. to 

use zonal winds in the Kattegat Sea to determine South-West Baltic sea level variability, 

or river run-off from nearby land catchments), a subject which this report is admittedly 

lacking.
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6 APPENDIX 

6.1 A 

  

 

Figure 1: Correlation maps between mixed layer 
depth (MLD) and bottom salinity (top-left), MLD 
and surface salinity (top-right) and surface and 
bottom salinity (bottom-left). 
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Figure 2: Figures showing the time averaged MLD over 2014-2019 (depth in meters, left) and the 
relationship between time averaged MLD and depth (MLD given as a percentage of the total 
depth, right) 

 

6.2 B  

   

   

Figure 1: Correlation analysis between sea level variability PC1, PC2 and background sea level 
drivers. 
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