
Code smells in machine learning pipelines:
an MSR sample study

Bachelor of Science Thesis in Software Engineering and Management

Johann Henri Tammen

Department of Computer Science and Engineering
UNIVERSITY OF GOTHENBURG
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2022



The Author grants to University of Gothenburg and Chalmers University of Tech-
nology the non-exclusive right to publish the Work electronically and in a non-
commercial purpose make it accessible on the Internet.
The Author warrants that he/she is the author to the Work, and warrants that the
Work does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for
example a publisher or a company), acknowledge the third party about this agree-
ment. If the Author has signed a copyright agreement with a third party regarding
the Work, the Author warrants hereby that he/she has obtained any necessary
permission from this third party to let University of Gothenburg and Chalmers Uni-
versity of Technology store the Work electronically and make it accessible on the
Internet.

Investigating technical debt in form of code smells in machine learning
data pipelines

© Johann Henri Tammen, June, 2022.

Supervisor: Daniel Strüber
Examiner: Richard Berntsson Svensson

University of Gothenburg
Chalmers University of Technology
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

Department of Computer Science and Engineering
University of Gothenburg
Chalmers University of Technology
Gothenburg, Sweden 2022



Code smells in machine learning pipelines: an MSR
sample study

Johann Henri Tammen
Department of Computer Science and Engineering

University of Gothenburg
Gothenburg, Sweden

gustammjo@student.gu.se

Abstract—As technical debt in software engineering projects
continues to negatively impact the development process, this
study focuses on technical debt in form of code smells in machine
learning pipelines and in code written by data scientists. This
study contributes to the body of knowledge on technical debt
as it tries to quantify the assumption in the literature that
scientists without a software engineering background struggle
with software engineering’s best practices when writing code.
Furthermore, as machine learning continues to evolve in software
engineering, it makes sense to minimize technical debt in machine
learning pipelines. Therefore, the source code from repositories in
the version control system GitHub was analyzed. The results show
that indeed data scientists produce more code smells than soft-
ware engineers. In addition, the study fails to demonstrate that
data pipelines yield more code smells than non-data pipelines.

Index Terms—technical debt, code smells, machine learning,
data science

I. INTRODUCTION

With the rise of machine learning (ML) in software ap-
plications comes an inevitable increase of code related to
ML. While the main challenge of software engineering is to
produce clean code for applications, ML focuses on the data
that builds the basis for machine learning models [1]. The
process of transforming raw data into a form that can be used
by ML is called the data pipeline. The individual steps that
form the data pipeline consist of methods and code that clean,
validate and shape the data into the desired form. As Munappy
et al. [2] claim, the data pipeline is a highly automated process
and can thereafter be regarded as a dedicated piece of software.
Hence, the question arises if the code that forms the data
pipelines for ML is subject to common anti-patterns or code
smells.

Code smells are sections of code that violate common
coding best practices. In their book, Fowler et al. [3] gathered
a list of typical code smells that should be refactored. It is
important to mention that such violations are not directly
considered software defects. In many cases, sections with
code smells still fulfill the desired functionality but can affect
software development efforts badly at a later point in time [4].
Examples of code smells are large classes, also referred to as
god classes or blob classes, long methods, and methods with
a long parameter list [3]. The main disadvantages of smells in
source code concern readability and maintainability as will be
shown in the related work section.

Thereafter, code smells and pattern violation become a
form of technical debt, that can potentially cost companies
a lot of resources to fix [4]. Despite the negative impacts,
practitioners still fall for code smells. Literature often lists
time pressure from tight project deadlines as the main reason
for practitioners to violate best practices [4]. Other reasons
for code smells are a lack of awareness of implementing them,
improper knowledge transfer to other programming languages,
and committing preliminary code [5].

Over time, many methods to identify code smells have been
developed [6], [7] of which many use artificial intelligence
[8]–[10]. However, very little research has been done about
code smells in machine learning code. Investigating code
smells in machine learning pipelines is especially interesting
to look at as the people responsible for the pipelines are often
data scientists and not software engineers [11]. In which case
the experiences by Wilson [12] show that scientists without a
software engineering background often struggle with software
engineering’s best practices. This observation gets supported
by Falessi and Kazman [5], who state that a major reason for
code smells in source code is that the developers did not know
that a better solution is available. By investigating code smells
in machine learning code, this study will be valuable for future
research in machine learning and technical debt to further
improve code quality in machine learning data pipelines.
For example, this study can help to identify common code
smells in machine learning pipelines with potential contextual
explanations of how they arise. Researchers and tool builders
who want to develop ML domain-specific analyzing tools
can benefit from this knowledge by providing specialized
refactoring support, tailored to machine learning code.

In essence, the objective of this study is to investigate code
smells in the specific domain of data pipelines for machine
learning algorithms. This study will focus on open source
repositories on GitHub. A series of filters will be set up to
find repositories with machine learning data pipelines and
code sections written by data scientists. Additionally, a set
of similar code sections that do not include ML pipelines and
code sections written by software engineers will be selected for
comparison. To investigate code smells in ML pipelines, code
analysis tools will be applied to the identified code sections,
and statistical tests will be performed for comparison.

1



II. RELATED WORK

One instance that aggregates best practices for object-
oriented code design is the book by Booch [13] first pub-
lished in 1994. It gives guidance to software engineers about
principles to keep in mind to write good code according to
Booch. Most of the suggested principles were designed for
an object-oriented paradigm. Indeed, many of the principles
apply to other programming paradigms as well. Examples of
such principles that can be transferred regard code complexity
and modularity. Violations of the best practices introduced
by Booch can be called code smells. In 1999 Fowler [3]
published a seminal book regarding these code smells with a
list of common violations of best practices. The book contains
clear suggestions for specific code sections that violate best
practices and should therefore be refactored to increase the
modifiability and readability of the code.

Many studies have shown that code smells can have a
negative impact on software practices. One factor is that code
smells contribute negatively to the maintainability of software.
For example changes in large classes are more likely to
break the code, compared to smaller, individual classes [14].
Additionally, the study by Falessi and Voegele [15] shows that
sections with a high density of best practice violations are
more prone to faults introduced by changes. Another negative
impact of code smells is that they make the code harder to
understand [16]. As pointed out by Brown et al. [4], this kind
of technical debt can cost organizations substantial resources
to fix. With low maintainability in code, developers introduce
more bugs that need to be fixed and with low readability,
developers simply need more time to understand the code to
make changes which results in slower progress.

Code quality is already a challenge for software engineers,
who, via their training, are aware of these issues, but are
sometimes required to make compromises due to time pres-
sure. But the situation might be even worse for programmers
without dedicated software engineering training. As described
by Wilson [12], not only software developers write code
nowadays. In his experience, scientists from physics, life
science, or mechanical and civil engineering are involved
in writing code. Wilson claims that scientists from other
domains than software engineering often struggle with basic
software engineering practices like version control, unit tests,
or debugging. Moreover, he states that many scientists also
lack the knowledge of understanding code quality principles
which can lead to meaningless variable names and poor
software modularity. Both meaningless variable names and
poor software modularity are both typical code smells [3].
To help such scientists with software engineering practices,
Wilson [12] taught software carpeting courses and seminars.
Furthermore, Wilson et al. [17] proposed a set of practices for
all kinds of scientists for research computing, including basic
software engineering practices. With this experienced lack
of knowledge in the software domain by scientists, one can
come to the assumption that the code produced by scientists
other than software engineers is also not conforming to best

practices. This is in line with the observation by Falessi and
Kazman [5]. However, this assumption in the literature is based
on personal experiences and assumptions.

Code smells are still an actively studied topic in software
engineering research, in particular in conferences such as
Technical Debt (co-located with ICSE, first edition in 2018).
The combination of code smells and machine learning has
so far mostly been considered in the opposite direction, of
using machine learning to detect code smells. The results of
the study by Patnaik and Padhy [18] show that the random
forest classifier has the best performance to identify code
smells. MacDonald’s research [19] supports this claim. Recent
literature, like the study by Pigazzini et al. [20], also focuses
on detecting code smells in a specific context. That particular
study engages in detecting code smells for microservices.
After mapping Wilson’s experiences with recent literature, it
becomes evident that there is a lack of quantifiable data about
code smells in data pipelines. Hence, this study will fill that
gap in the literature by quantifying Wilson’s claims in the
context of data pipelines with open source repositories.

III. RESEARCH METHODOLOGY

This study tries to quantify the underlying assumption of
Wilson’s research [12], [17] that scientists without a software
engineering background are not familiar with software engi-
neering’s best practices in terms of code smells. Thereafter,
the goal of this study according to Goal-Question-Metric as
described by Basili et al. [21] is the following:
Analyse source code
For the purpose of comparing code smells
With respect to the role of the author of the code and the
type of code (ML data pipeline, not ML data pipeline)
From the point of view of researchers
In the context of an mining software repositories sample study
run with open source projects on GitHub.

A. Definitions

For the context of this study, I analyze open-source code
from data scientists and software engineers gathered in the
version control system GitHub. I consider profiles for this
study to belong to either population if the profile states ”data
scientist” or ”software engineer” in the biography respectively.
The resulting validity threats are discussed in section VI.

B. Research questions and hypotheses

Thereafter, this study suggests the following research ques-
tions:

RQ1: How does the code quality from data scientists
compare to code quality from software engineers in terms
of code smells?

Research question one is directly related to the research
by Wilson [12], [17]. The goal of RQ1 is to quantify Wil-
son’s experiences that code produced by scientists other than
software engineers compares worse than code produced by
software engineers in terms of code quality. Since code quality
has many attributes, the focus of this study is code smells. I

2



consider code smells as anti-patterns in the code, similar to
the list of code smells described by Fowler et al. [3] and
broken coding conventions like bad indentations or variable
names that do not follow conventions. Furthermore, I also
consider other anomalies in the source code like unused
import statements and depreciated methods and classes as code
smells. A full list of the individual anti patterns can be found
in [22].

RQ2: How does the code quality of data pipelines
compare to non-data pipeline code in terms of code smells?

Similar to the definition of code smells for this study as
stated for RQ1, RQ2 also analyzes source code in terms of
code smells. Albeit, the context of analyzed code is different.
RQ2 focuses on code smells in machine learning pipelines
compared to none machine learning pipelines. As code smells
proof to negatively impact the development process [4], [14]–
[16], and with the gap in the literature that investigates code
smells in machine learning pipelines, I deem it worthwhile
to understand if code smells are a factor in machine learning
pipelines as well.

According to the proposed research questions the study
states the following hypotheses regarding code smells (CS):

H1 states that: Code produced by software engineers yields
fewer code smells per file than code produced by data scien-
tists.

H1A :
CS(software engineers)

files
<

CS(data scientists)

files

and the corresponding null hypothesis is:

H10 :
CS(software engineers)

files
≥ CS(data scientists)

files

By comparing the code smells per file for software engineers
and data scientists, I can quantify the code smells for both
groups. This helps to understand which population is more
prone to produce code smells, which in turn helps to answer
RQ1.

H2 states that: Data pipelines yield more code smells per
file compared to ordinary code sections.

H2A :
CS(data pipeline)

files
>

CS(not data pipeline)

files

and the corresponding null hypothesis is:

H20 :
CS(data pipeline)

files
≤ CS(not data pipeline)

files

Similar to hypothesis one, the second hypothesis compares
code smells in data pipelines to none data pipelines. With this
comparison, I can evaluate to which degree code smells appear
in data pipelines to answer RQ2.

C. Used Research Methodology

Gathering the required data via an mining software repos-
itories (MSR) sample study in GitHub seems appropriate as
the version control system GitHub is the most commonly used
tool to store code online currently with more than 287 million
repositories [23]. Hence, mining repositories there offers state-
of-the-art open-source projects with which one can quantify
the above-stated hypothesis. In this case, the author has control
over which data to sample from desired populations, but can
not influence the outcome or artifacts of the sampled data.
Thereafter, a sample study seems the appropriate research
method as the goal of a sample study is to generalize over
a certain population [24]. This aligns with the aim of this
study which tries to generalize the occurrence of code smells
in data pipelines in comparison to regular code and code smells
produced by data scientists compared to code smells produced
by software engineers. Subsequently, this study samples code
from the four populations; data scientists, software engineers,
data pipelines, and regular code. The unit of analysis or
investigated artifact of this study is the source code of selected
files in repositories that are part of the desired population.

Since the most common code smells are defined by Fowler
et al. [3], one can identify such code smells in source code
either by manually reviewing code and searching for such anti-
patterns or one can make use of static code analysis tools
that identify code smells as well. Static code analysis tools
are made upon a set of rules that are checked on the syntax
of a given file. These rules identify errors, warnings, pattern
violations, and other information in the code. Hence, when a
rule is broken, that line in the code gets added to the report of
the analysis tool stating which rule was broken in that specific
line. For the purpose of this study, the author was mostly
interested in broken conventions, warnings, and refactoring
suggestions which are in essence code smells.

To establish a fair comparison, the chosen metric of this
study is the amount of code smells per file for a subject of
the given population. Thereby it does not matter how many
files are analyzed per subject. Another advantage is that this
metric can be used for all populations in this study.

D. Data collection

As pointed out in the previous section, this study focuses
on open source repositories from GitHub. The main challenge
in data gathering is to filter the vast amount of open-source
repositories to a subset of interest. To filter the GitHub
repositories, the author used the GitHub REST API. The API
offers a search endpoint with which one can search GitHub
resources via query strings. The limitation of that API is that it
provides only the first 1000 results for a query. A summary of
the mining process for data scientists and software engineers
can be found in Fig. 1, while the process for pipelines and
non-data pipelines is summarized in Fig. 2.

1) Data Scientists & Software Engineers: To find GitHub
users that belong to the software engineer and data scientist
population, the main criterion was found in the biography of
the user’s account. Many GitHub users state their role in their

3



Fig. 1. Repository mining process for data scientists and software engineers

Fig. 2. Repository mining process for pipelines and non-data pipelines

biography. Thereafter, the selected criteria in a user’s biog-
raphy were the keywords ”data scientist” or ”data engineer”
for the data scientist population and ”software engineer” or
”software-engineer” for the software engineer population. Due
to the REST API rate limit, 1000 users could be fetched.
Additionally, only users with more than five public repositories
were selected to make sure that only users were chosen who
can contribute to this study. Another criterion was that the
users had to have at least 30 followers. A summary of the
filter criteria can be found in Table I. With these filters, the
author tried to exclude experimental accounts. With the list
of users that fall into the populations in place, the next step
was to select repositories from the users. First of all, only a
maximum amount of five repositories have been taken into
consideration for this study to avoid an over-representation of
individual users. Next, only repositories where Python is the
main programming language were selected to be able to use
the same static code analysis tool for all populations which
makes the results comparable. Another selection criterion for
the repositories was that the repository size had to be between
70 and 20000 kilobytes. The lower threshold was selected to
exclude small experimental repositories that are almost empty
and do not represent a working program, while the upper
threshold was selected to exclude very large repositories with
potentially many files that would take a considerably long
time to clone and process during the analysis. Finally, for
the repository selection, the author had to make sure that the
code in the selected repositories was written by the studied
user. Hence only repositories were selected that were not
forks of another repository and where the user was the only
contributor. In GitHub, users can copy open source repositories
from other users and modify the source code. Such a copy of
a repository is called a fork and it is important to exclude
such repositories from this study because the forked project
might show just one contributor that did changes to the copy,

TABLE I
FILTER CRITERIA FOR DATA SCIENTISTS AND SOFTWARE ENGINEERS

users repositories

data
scientist

biography: ”data scientist”
OR ”data engineer”
public repositories: >5
followers: >30

maximal repositories per user: 5
programming language: Python
repository size: >70kB & <20 000kB
contributors: 1 & user is only contributor
fork: repository is not a fork

software
engineer

biography: ”software engineer”
OR ”software-engineer”
public repositories: >5
followers: >30

maximal repositories per user: 5
programming language: Python
repository size: >70kB & <20 000kB
contributors: 1 & user is only contributor
fork: repository is not a fork

while the original authors do not show up in the contributor
list of the forked repository. After applying all these filters, the
resulting repositories have been cloned to a local disk where
the analysis was performed.

2) Data Pipelines & Not Data Pipelines: To find files
for the comparison of data pipelines vs. none data pipelines,
the most promising approach seemed to search for files that
include common machine learning libraries. For the purpose
of this study, the author selected the Tensorflow library. This
library is primarily designed for the Python programming
language. To increase the chance of finding such files in
repositories, the author applied filters to repositories via the
GitHub REST API. The main criterion in the query string
was to filter for topics. In GitHub, the owners and contribu-
tors of repositories can tag their repositories with keywords.
These tags are called topics and are comparable to tags on
social media. The chosen topic for this study was to include
repositories that are tagged with TensorFlow for the data
pipeline population. For the not data pipeline population,
repositories were excluded that were tagged with ai, machine-
learning, TensorFlow, and PyTorch. Furthermore, to exclude
experimental repositories, further filters were applied for both
populations to only include repositories that have more than
30 stars, more than 20 forks, are bigger than 35 kilobytes,
and have had at least one contribution since the first of April
2019. After filtering the repositories, the GitHub REST API
was used again to search for files in the repositories. For the
data pipeline population, files were selected that included an
”import tensorflow” statement. For the not pipeline population,
the author excluded files that imported the TensorFlow library,
and to exclude data pipelines implemented with other libraries,
files including the PyTorch or scikit-learn libraries were also
excluded. The filter criteria for this comparison is summarized
in Table II. During the study, it showed that data pipeline files
can be very long. Hence the number of files per repository
was limited to ten for both populations in an attempt to make
sure that the analysis tool could handle the files. The selected
files were downloaded and stored per repository on a local
machine to be able to run the analysis.

E. Data analysis

After cloning the source code to a local machine, the
objective was to analyze the source code of the repositories
in terms of code smells. An efficient way for this kind of

4



TABLE II
FILTER CRITERIA FOR DATA PIPELINES AND NON-DATA PIPELINES

repositories files

data
pipelines

topic: TensorFlow
programming language: Python
stars: >30
forks: >20
size: >35kB
latest contribution: >2019-04-01

maximal files per repository: 10
line of code: ”import tensorflow”

non-data
pipelines

topic: NOT TensorFlow
AND NOT ai
AND NOT machine-learning
AND NOT PyTorch
programming language: Python
stars: >30
forks: >20
size: >35kB
latest contribution: >2019-04-01

maximal files per repository: 10
line of code: NOT ”import tensorflow”
AND NOT ”from tensorflow”
AND NOT ”import torch”
AND NOT ”from torch”
AND NOT ”import sklearn”
AND NOT ”from sklearn”

analysis is to use a static analyzing tool that can identify
code smells in source code and generate descriptive reports
automatically without manual review. The selected analysis
tool was pylint. The author selected pylint because of the
support for the Python programming language. As explained
above, this is important because the selected machine learning
library TensorFlow is implemented for Python. Additionally,
pylint offers great support to find code smells and defects
in Python code ranging from fatal defects to broken coding
conventions. A comprehensive list of all defects and smells
pylint detects can be found in [22]. Thereafter, pylint includes
code smell detection. In detail, pylint categorizes anti-patterns
into fatal, error, warning, refactor, convention and information.
However, for this study, the author took only the warning,
refactor, and convention categories into account as the other
categories either report on actual defects in the source code
or other information. A further advantage is that the produced
report can be stored in the JSON file format which makes it
possible to automate the analysis and aggregation later on.

For this study, running pylint for a repository was set up in
a way that it would take a maximum amount of 20 files into
account for a single repository. During the study, it showed that
considering too many files at once would crash the analysis
tool. Hence, the boundary of 20 files per repository was set.
For both the data pipeline and not data pipeline populations
this was not an issue because here only a maximum amount
of ten files were downloaded per repository in the first place.
Since the entire repository was cloned for the data scientist
and software engineer populations, there have been instances
where more than 20 python files were present in a single
repository. In that case, 20 Python files were selected at
random for the analysis. With these restrictions, pylint was run
on the selected files and the resulting reports were stored per
repository. To summarise the findings for a population, another
script was set up that went through the JSON reports for a
population and counted the number of warnings, refactoring
suggestions, broken conventions, and the number of analyzed
files per repository. This data enabled the author to calculate
the amount of code smells per file, warnings per file, refactor
suggestions per file, and broken conventions per file for a
repository. The results were stored in one CSV file for a

population. The author decided to divide the amount of code
smells by the number of files analyzed per repository because
the number of files analyzed differed between repositories.
Hence, by calculating the amount of code smells per file, the
data could be compared between repositories and populations.

To answer the hypothesis and research questions, the code
smells per file were statistically analyzed. Firstly, the data
were checked for normality with the Shapiro-Wilk Test. As
the results section will show, the data of all four populations
were not normally distributed. Hence, a Man-Whitney U test
was performed to determine statistical significance between
the populations. In the case of significant results, the Rank-
Biserial correlation indicates the effect size. The advantage of
this measure is that it is strictly non-parametric, which means
that the underlying distribution of the data does not matter
[25]. The Rank-Biserial correlation can be interpreted in a
way that a value of +1 means that all ranks of the greater
category are above the ranks of the lower category. A value of
-1 suggests the opposite, all ranks of the lower category rank
higher than the ranks of the greater category.

IV. RESULTS

A. Data Scientists & Software Engineers

The final data set for the comparison of data scientists and
software engineers included 1296 repositories with 9741 ana-
lyzed files for the data scientist population and 632 repositories
with 5537 analyzed files for the software engineering popula-
tion. With the chosen filter criteria for the selection of users
and repositories during the data collection, more than twice as
many repositories from data scientists were analyzed compared
to software engineers. Such a big difference in the number
of selected repositories was definitely not intended with the
filter criteria. However, the author argues that the selected
criteria are reasonable for this study as both populations show
a sufficiently large data set to perform statistical analysis.

By comparing the total code smells per file for both pop-
ulations, it becomes evident that the data scientist population
showed more code smells per file than the software engineer-
ing group. The mean value of code smells per file shows
27.204 for data scientists and 20.491 code smells per file
for the software engineering group. Considering the minimum
amount of code smells per file for both groups, reveals that
both populations contain repositories with zero code smells
per file according to the used analysis tool. For the data
scientist population, 96 out of the 1296 repositories had no
code smells, for the software engineer population it is 54 out
of the 632 repositories. In contrast to the minimal amount of
code smells, the maximal amount differs drastically. While the
maximal amount of code smells per file for a repository of the
data scientist population is 790.389, the software engineering
population showed a maximal 299.950 code smells per file.
With the help of the box plot in Fig. 3, one can figure that the
maximum values of both populations consist of a few outliers
that stand apart from the rest of the data by a big margin.
In the case of data scientists, the five repositories with the
most code smells per file accumulate the vast amount of code

5



Fig. 3. Box plot for code smells from data scientists and software engineers

smells mostly via broken conventions such as too long lines
and broken naming conventions.

To determine if the data was normally distributed the
Shapiro-Wilk was performed. With a p-value smaller than
the confidence interval of 0.05, the data is not normally
distributed. Hence, the Mann-Whitney U test was performed to
determine the statistical significance between the two groups.
With a p-value smaller than 0.001 and therefore smaller than
the confidence interval of 0.05, the Mann-Whitney U test
suggests a significant result. Thereafter, the null hypothesis of
H1 can be rejected. This indicates that in this study software
engineers produced fewer code smells than data scientists. To
measure the effect size of this comparison, the Rank-Biserial
Correlation was calculated. With a value of 0.125, the value
indicates a small effect size.

Table III shows the descriptive statistics of the different
categories from pylint next to the overall code smells per
file. As the data suggests, the average code smells per file
are higher for the data scientist group in every category.
Albeit, the difference in the mean code smells per file in the
refactor category is relatively small with a difference of 0.328.
Additionally, the p-value of the Shapiro-Wilk test suggests
that the data of all categories are not normally distributed.
Thereafter, a Mann-Whitney U test was performed for every
category. The results of those tests can be found in Table
IV. As the table depicts, there is a significant difference
between the two populations in the total code smells per file,
conventions per file, and warnings per file. On the contrary, the
amount of refactoring suggestions is not statistically relevant
with a p-value of 0.168. With Rank-Biserial correlation values
of 0.143 for the conventions category and 0.100 for the
warnings category, the effect sizes for these two comparisons
are also small.

B. Data Pipelines & Not Data Pipelines

For the comparison of data pipelines and not data pipelines,
892 repositories with 5763 files have been analyzed for the
data pipeline population and 927 repositories with 7336 files

Fig. 4. Box plot for code smells in data pipelines and non-data pipelines

for the not data pipeline population. The descriptive statistics
for this comparison can be found in Table V. By comparing
the overall code smells per file, it can be observed, that the
mean code smells per file are very similar with 54.108 and
54.448 for not pipelines and pipelines respectively. Similar to
the comparison of software engineers and data scientists, this
sample study also includes repositories with no code smells
for both groups. In this case, no code smells can be found
in ten out of the 892 pipeline repositories and in just three
out of the 927, not pipeline repositories. As Table V and
the box plot in Fig. 4 show, the non-data pipeline population
contains a massive outlier that has 2774 code smells per file.
This particular repository represents a monitoring tool that has
bundled the source code of the application in a single python
file with 5687 lines of code. Most of the code smells for this
repository were warnings about bad indentations and too-long
lines of code.

As the Shapiro-Wilk test reveals, the amount of code
smells per file is not normally distributed for the pipeline
and non-pipeline population. The test results in a p-value of
less than 0.001 for both populations. Since the data is not
normally distributed, a Mann-Whitney U test was performed to
determine the statistical significance between the two groups.
With a p-value of 0.617 and therefore by a big margin larger
than the confidence interval of 0.05, the Mann-Whitney test
does not suggest a significant result. In which case it does not
make sense to calculate an effect size. Thereafter, this study
fails to reject the null hypothesis of H2.

Even with the overall code smells per file not showing sig-
nificant results, the individual code smells categories provide
interesting insights. As Table V depicts, the average code
smells per file are actually higher for the not data pipeline
population in the refactor and conventions categories. Just the
mean value of the raised warnings per file category is lower
for the not data pipeline group compared to data pipelines.
Which is remarkable because the warning category contains
the majority of the earlier described massive outlier in the not-
data pipeline group. The maximal amount of code smells per

6



TABLE III
DESCRIPTIVE STATISTICS DATA SCIENTISTS AND SOFTWARE ENGINEERS

smells per file conventions per file warnings per file refactor per file
data-scientist software-engineer data-scientist software-engineer data-scientist software-engineer data-scientist software-engineer

Valid 1296 632 1296 632 1296 632 1296 632
Missing 0 0 0 0 0 0 0 0
Mean 27.204 20.491 16.257 11.902 8.978 6.949 1.968 1.640
Std. Deviation 47.173 30.410 29.875 16.815 21.654 18.963 5.052 2.555
Variance 2225.317 924.759 892.527 282.748 468.906 359.579 25.526 6.526
Shapiro-Wilk 0.478 0.606 0.409 0.616 0.412 0.348 0.287 0.610
P-value of Shapiro-Wilk < .001 < .001 < .001 < .001 < .001 < .001 < .001 < .001
Minimum 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Maximum 790.389 299.950 477.000 149.800 247.500 289.050 135.000 23.450

TABLE IV
INDEPENDENT SAMPLES T-TEST DATA SCIENTIST AND SOFTWARE

ENGINEER

W df p Rank-Biserial Correlation

smells per file 460835.500 < .001 0.125
conventions per file 468263.500 < .001 0.143
warnings per file 450353.000 < .001 0.100
refactor per file 420530.500 0.168 0.027

Note. For all tests, the alternative hypothesis specifies that group data-scientist
is greater than group software-engineer.
Note. Mann-Whitney U test.

file depicts that well. While the not data pipeline population
scores a maximum of 2213.5 warnings per file, the data
pipeline group just counts 703 as the maximum value. Again,
the Shapiro-Wilk test indicates that the data for all categories
is not normally distributed. Hence, the Mann-Whitney U test
was performed to measure the statistical significance, shown
in Table VI. The chosen alternative hypothesis for this test was
in sync with hypothesis 2 from section III-B stating that not
data pipelines contain less code smells than data pipelines.
For the refactor and conventions categories, the resulting p-
value has a value of 1.0. This indicates that with a certainty
of 100% none-data pipelines do not contain less code smells
than data pipelines in the refactor and convention category of
this study. The p-value of the Mann-Whitney U test for the
warning category results in a value of 0.131 and is therefore
not lower than the confidence interval of 0.05, which means
that from a statistical perspective we can not say that the data
pipelines contain fewer code smells in the warning category
than none data pipelines.

V. DISCUSSION

A. Research Question 1

In research question one of this study I asked How does the
code quality from data scientists compare to code quality from
software engineers in terms of code smells? As the results
show, the study is able to reject the null hypothesis of H1.
This means that code produced by software engineers yields
fewer code smells than code produced by data scientists in
the context of this study. This observation is not only true
for the average amount of code smells per file, but it also
proves to hold for both the warnings and broken convention
code smell categories. Only the refactor category does not

provide significant results. This means that the overall results
for this research question are in line with anecdotal events in
literature which are now quantified with this systematic study.
The experience by Wilson [12], [17] claims that scientists
without a software engineering background often struggle with
software engineering practices. With the results of this study,
one can argue that this argument counts as well for data
scientists in terms of producing code smells. By looking into
the individual categories, one can identify that the broken
conventions category seems to be the biggest struggle for data
scientists with 16.257 violations per file on average. It has to
be said though, that this is also the category where software
engineers struggle the most. Albeit, data scientists produce
significantly more code smells in this category than software
engineers.

Despite the category where the code smells come from,
code smells have a negative impact on the maintainability and
readability of code [14]–[16]. Therefore, the author advises
developers to make an effort in reducing code smells in their
projects. One way to do so is by implementing static code
analysis tools such as pylint for Python directly into the CI/CD
pipeline of a project to fix the code smells before they end
up in production code and become technical debt. With the
results of this study, this becomes especially true for data
scientists. Moreover, the results of this study are also valuable
for educators of data scientists. As the results showcase, data
scientists produce significantly more code smells than software
engineers. Hence it makes sense for educators to sensitize
data scientists in their education more to code smells. For
researchers, the results provide the opportunity to extend the
research and to investigate code smells from data scientists
in more detail. Section VIII provides suggestions on how to
enhance the findings of this study.

B. Research Question 2

To find answers for research question two which states How
does the code quality of data pipelines compare to non-data
pipeline code in terms of code smells?, I ran a second sample
study. The results of that study failed to reject the underlying
null hypothesis of H2. Hence, this study does not show that
non-data pipelines contain significantly fewer code smells than
data pipelines. On the contrary, the results of the statistical
analysis of the code smell categories suggested by pylint,
reveal that for the refactor and conventions category equal or

7



TABLE V
DESCRIPTIVE STATISTICS DATA PIPELINES AND NON-DATA PIPELINES

smells per file conventions per file refactor per file warnings per file
not-pipeline pipeline not-pipeline pipeline not-pipeline pipeline not-pipeline pipeline

Valid 927 892 927 892 927 892 927 892
Missing 0 0 0 0 0 0 0 0
Mean 54.108 54.448 30.391 26.248 6.255 4.164 17.461 24.036
Std. Deviation 113.473 80.842 41.045 35.589 7.733 5.088 82.680 56.583
Shapiro-Wilk 0.288 0.528 0.545 0.559 0.640 0.611 0.135 0.426
P-value of Shapiro-Wilk < .001 < .001 < .001 < .001 < .001 < .001 < .001 < .001
Minimum 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Maximum 2774.000 940.000 495.000 390.500 70.000 69.000 2213.500 703.000

TABLE VI
INDEPENDENT SAMPLES T-TEST DATA PIPELINES AND NON-DATA

PIPELINES

W df p Rank-Biserial Correlation

smells per file 416777.500 0.617 0.008
refactor per file 496587.500 1.000 0.201
conventions per file 453296.500 1.000 0.096
warnings per file 400899.000 0.131 −0.030

Note. For all tests, the alternative hypothesis specifies that group not-pipeline
is less than group pipeline.
Note. Mann-Whitney U test.

fewer code smells are found in data pipelines. Thereafter, the
research question can be answered in a way that data pipelines
do not contain more code smells than non-data pipelines.
However, just because there are not more code smells in data
pipelines compared to no data pipelines, does not mean that
code smells will not create issues in data pipelines. As code
smells continue to be researched in literature in an attempt
to understand their implications, the author argues that data
pipelines should be involved in that discussion. As Munappy et
al. [2] put it, data pipelines are just another piece of software.
Hence, the author argues that it is well worth making an
effort in trying to decrease the amount of code smells in data
pipelines to increase maintainability, readability and to save
precious resources in the future.

VI. LIMITATIONS

Like every study, this one comes with a set of validity
threats. In terms of external validity, a potential issue is to
select comparable repositories to establish a fair comparison.
Factors that try to keep the comparison of repositories fair
in this study are the repository size, number of stars and
forks, and the latest contribution date as described in section
III-C. Another threat is generalizability in terms of the time
frame. As the software community increases, best practices
could potentially spread into other domains. Furthermore, the
number of files in the repositories differs a lot. To counter
this issue and to make sure that the analysis tool could handle
the number of files for a single repository, the author took
two measures. On one hand, the author decided to only take
a maximum amount of 20 files per repository into account
for the data scientist and software engineer comparison and

just ten files per repository for the data pipeline and not
data pipeline comparison. In the case that more files than the
threshold were downloaded, the files were selected randomly.
This way also larger repositories could participate in this study.
On the other hand, the desired metric of this study has been
the amount of code smells per file for a repository. With this
metric, the author was able to compare the amount of code
smells across repositories with different amounts of files. For
the comparison of data pipelines and none data pipelines, an
additional validity threat is that the exclusion of topics in the
GitHub REST API does not work flawlessly. This is a known
bug and reported multiple times [26]. With this bug, the author
can not be certain that none of the excluded topics ended up in
the final data set of the non-data pipeline population. But, to
make sure that at least no data pipeline files end up in the final
data set, the author excluded files that use import statements
from other common machine learning libraries. These libraries
are TensorFlow, scikit-learn, and PyTorch. Since excluding
code statements from files is done via another API endpoint
and different query syntax, the author is convinced that no
pipeline files ended up in the data set. Additionally, the author
manually validated files from twenty repositories, which did
not include data pipeline files.

In regards to internal validity, the biggest threat is the
selection bias of the criteria that includes and excludes the
repositories from the study. However, the author argues that
the selected criteria form the borders for a fair comparison. A
further internal thread is how the author decided to gather the
user profiles that make data scientists and software engineers.
Linking users to a population, based on their biography text
on GitHub gives the author no chance to verify that the role
the user claims to have is actually true. Furthermore, this
study does not take the background of individual users into
account. Since every user can put whatever they choose in
their GitHub biography, there could be users who claim to be
in a certain role with no background education at all. On the
other hand, there could be users who claim to be data scientists
and actually have a software engineering background and vice
versa. On a further note, even checking that the studied user
is the only author of a repository, does not guarantee that
they wrote all the code. There are instances, where people
commit external libraries, which have been written by external

8



sources, to their repositories. Other examples of committing
code written by someone else is to not fork a repository
directly on GitHub but to download the source code and upload
it to a new repository or copying code snippets form public
sources like stack overflow.

A further internal threat is the selected tool to analyze the
source code. To counter this threat, industries’ most recognized
tools were selected. The limiting factors of this study are query
rates, for the GitHub REST API the query limit is 5000 queries
per hour and a maximum of 1000 results for a request to
the search endpoint for an authenticated user. Nonetheless,
the author argues that the acquired data sets are sufficiently
large to form a population study. A different limiting factor is
processing power for analyzing the source code with the static
code analyzing tools. Analyzing hundreds of code sections
can potentially take a lot of time to process. To counter this,
access to a specialized computing infrastructure at the Swedish
National Infrastructure for Computing has been set up.

VII. CONCLUSIONS

This study contributes to the current research of technical
debt in software engineering by asking how code written by
data scientists compares to code written by software engineers
in terms of code smells. Furthermore, this study investigates
code smells in machine learning pipelines compared to not
machine learning pipelines. To acquire source code relevant
to this study, the author selected open source repositories
from the version control system GitHub via filter criteria.
After cloning selected files to a local machine, the static code
analysis tool pylint was used to identify and summarize code
smells in the repositories. The results reveal that the code
written by data scientists yields more code smells than the
code written by software engineers. With the results of this
study, the author was able to contribute to the assumption
in the literature that scientists without a software engineering
background struggle with best practices when writing code.
As this study focuses on data scientists, the study contributes
to this field for data scientists.

Furthermore, this study failed to showcase that data
pipelines contain more code smells than non-data pipelines.
On the contrary, that does not mean that code smells can
not become technical debt in data pipelines. Thereafter, the
author suggests continuing in making an effort to reduce code
smells for data pipelines and non-data pipelines in an attempt
to increase the maintainability and readability of source code.

VIII. FUTURE WORK

To extend this study in the future, two paths seem straight-
forward. On one hand, this study only takes the TensorFlow li-
brary into account for the machine learning population. Hence,
this study can be extended by investigating the phenomenon
of code smells with other ML libraries. Suggestions here are
scikit-learn, Pytorch, and Keras. On the other hand, this study
does not take the background of the studied developers into
account as section VI discusses further. Thereafter, it makes
sense to conduct this study with a qualitative analysis as

well. In this case, a further research question emerges in the
sense of how aware data scientists and software engineers
are of their produced code smells. The following question is:
Are the developers aware that they are implementing code
smells and do it non the less or do they not know in the
first place? To gather the qualitative data, the author suggests
either running this study together with industry partners or
interviewing developers of open source projects. This way
the researchers can also learn more about the individual
backgrounds of the developers, which can give a more reliable
data set. Furthermore, it would be interesting to investigate
how code smells in data pipelines differ in industry projects
compared to open source projects. As this study takes mostly
generic Python code smells into account, another possible
enhancement of this study is to investigate if there are data
pipeline-specific code smells.

ACKNOWLEDGMENT

The author of this study would like to thank his supervisor
Daniel Strüber for the help and guidance while conducting the
research.

REFERENCES

[1] S. Amershi, A. Begel, C. Bird, R. DeLine, H. Gall, E. Kamar, N. Nagap-
pan, B. Nushi, and T. Zimmermann, “Software engineering for machine
learning: A case study,” 5 2019, pp. 291–300.

[2] A. R. Munappy, H. H. Olsson, and J. Bosch, “Data pipeline management
in practice: Challenges and opportunities,” Marco, J. A. M. Maurizio,
and Torchiano, Eds. Springer International Publishing, 2020, pp. 168–
184.

[3] M. Fowler, E. Gamma., and K. Beck, Refactoring : improving the design
of existing code. Addison-Wesley, 2000. [Online]. Available: https:
//search.ebscohost.com/login.aspx?direct=true&db=cat07470a&AN\
=clc.53577083.7739.4078.a00b.7ae8a17c9750&site=eds-live&scope\
=site&authtype=guest&custid=s3911979&groupid=main&profile=eds

[4] P. Kruchten, R. L. Nord, and I. Ozkaya, “Technical debt: From metaphor
to theory and practice,” IEEE Software, vol. 29, pp. 18–21, 11 2012.

[5] D. Falessi and R. Kazman, “Worst smells and their worst reasons,” 2021,
pp. 45–54.

[6] S. Charalampidou, A. Ampatzoglou, and P. Avgeriou, “Size and
cohesion metrics as indicators of the long method bad smell:
An empirical study.” Association for Computing Machinery, 2015.
[Online]. Available: https://doi.org/10.1145/2810146.2810155

[7] N. Moha, Y.-G. Gueheneuc, L. Duchien, and A.-F. L. Meur, “Decor: A
method for the specification and detection of code and design smells,”
IEEE Transactions on Software Engineering, vol. 36, pp. 20–36, 2010.

[8] A. Alazba and H. Aljamaan, “Code smell detection using feature selec-
tion and stacking ensemble: An empirical investigation,” Information
and Software Technology, vol. 138, p. 106648, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0950584921001129

[9] D. Cruz, A. Santana, and E. Figueiredo, “Detecting bad smells
with machine learning algorithms: An empirical study.” Association
for Computing Machinery, 2020, pp. 31–40. [Online]. Available:
https://doi.org/10.1145/3387906.3388618

[10] T. Guggulothu and S. A. Moiz, “Code smell detection using multi-
label classification approach,” Software Quality Journal, vol. 28,
pp. 1063–1086, 2020. [Online]. Available: https://doi.org/10.1007/
s11219-020-09498-y

[11] Continuous delivery for machine learning. [Accessed: 2022-03-09].
[Online]. Available: https://martinfowler.com/articles/cd4ml.html

[12] G. Wilson, “Software carpentry: Getting scientists to write better code
by making them more productive,” Computing in Science Engineering,
vol. 8, pp. 66–69, 11 2006.

9

https://search.ebscohost.com/login.aspx?direct=true&db=cat07470a&AN\=clc.53577083.7739.4078.a00b.7ae8a17c9750&site=eds-live&scope\=site&authtype=guest&custid=s3911979&groupid=main&profile=eds
https://search.ebscohost.com/login.aspx?direct=true&db=cat07470a&AN\=clc.53577083.7739.4078.a00b.7ae8a17c9750&site=eds-live&scope\=site&authtype=guest&custid=s3911979&groupid=main&profile=eds
https://search.ebscohost.com/login.aspx?direct=true&db=cat07470a&AN\=clc.53577083.7739.4078.a00b.7ae8a17c9750&site=eds-live&scope\=site&authtype=guest&custid=s3911979&groupid=main&profile=eds
https://search.ebscohost.com/login.aspx?direct=true&db=cat07470a&AN\=clc.53577083.7739.4078.a00b.7ae8a17c9750&site=eds-live&scope\=site&authtype=guest&custid=s3911979&groupid=main&profile=eds
https://doi.org/10.1145/2810146.2810155
https://www.sciencedirect.com/science/article/pii/S0950584921001129
https://doi.org/10.1145/3387906.3388618
https://doi.org/10.1007/s11219-020-09498-y
https://doi.org/10.1007/s11219-020-09498-y
https://martinfowler.com/articles/cd4ml.html


[13] G. Booch, Object-oriented analysis and design with
applications. Addison-Wesley, 2007. [Online]. Available: https:
//search.ebscohost.com/login.aspx?direct=true&db=cat07470a&AN\
=clc.3abf3272.f95e.4a2c.9dbe.4499c0d53fec&site=eds-live&scope\
=site&authtype=guest&custid=s3911979&groupid=main&profile=eds

[14] N. Zazworka, M. A. Shaw, F. Shull, and C. Seaman, “Investigating
the impact of design debt on software quality.” Association
for Computing Machinery, 2011, pp. 17–23. [Online]. Available:
https://doi.org/10.1145/1985362.1985366

[15] D. Falessi and A. Voegele, “Validating and prioritizing quality rules for
managing technical debt: An industrial case study,” 10 2015, pp. 41–48.

[16] M. Abbes, F. Khomh, Y.-G. Guéhéneuc, and G. Antoniol, “An empirical
study of the impact of two antipatterns, blob and spaghetti code, on
program comprehension,” 3 2011, pp. 181–190.

[17] G. Wilson, J. Bryan, K. Cranston, J. Kitzes, L. Nederbragt, and
T. K. Teal, “Good enough practices in scientific computing,” PLOS
Computational Biology, vol. 13, pp. 1–20, 3 2017. [Online]. Available:
https://doi.org/10.1371/journal.pcbi.1005510

[18] A. Patnaik and N. Padhy, “Does code complexity affect the quality
of real-time projects? detection of code smell on software projects
using machine learning algorithms.” Association for Computing
Machinery, 2021, pp. 178–185. [Online]. Available: https://doi.org/10.
1145/3484824.3484911

[19] R. MacDonald, “Software defect prediction from code quality measure-
ments via machine learning,” E. Bagheri and J. C. K. Cheung, Eds.
Springer International Publishing, 2018, pp. 331–334.

[20] I. Pigazzini, F. A. Fontana, V. Lenarduzzi, and D. Taibi, “Towards
microservice smells detection.” Association for Computing Machinery,
2020, pp. 92–97. [Online]. Available: https://doi.org/10.1145/3387906.
3388625

[21] V. R. Basili, G. Caldiera, and D. H. Rombach, The Goal Question Metric
Approach. John Wiley & Sons, 1994, vol. I.

[22] Messages overview - pylint 2.14.0-b1 documentation. [Accessed:
2022-05-25]. [Online]. Available: https://pylint.pycqa.org/en/latest/user
guide/messages/messages overview.html

[23] Code search · github. [Accessed: 2022-03-10]. [Online]. Available:
https://github.com/search

[24] K.-J. Stol and B. Fitzgerald, “The abc of software engineering
research,” ACM Trans. Softw. Eng. Methodol., vol. 27, no. 3, sep 2018.
[Online]. Available: https://doi.org/10.1145/3241743

[25] E. E. Cureton, “Rank-biserial correlation,” Psychometrika, vol. 21,
pp. 287–290, 1956. [Online]. Available: https://doi.org/10.1007/
BF02289138

[26] Github search api - exclude certain topics - stack overflow. [Accessed:
2022-05-23]. [Online]. Available: https://stackoverflow.com/questions/
65554246/github-search-api-exclude-certain-topics

10

https://search.ebscohost.com/login.aspx?direct=true&db=cat07470a&AN\=clc.3abf3272.f95e.4a2c.9dbe.4499c0d53fec&site=eds-live&scope\=site&authtype=guest&custid=s3911979&groupid=main&profile=eds
https://search.ebscohost.com/login.aspx?direct=true&db=cat07470a&AN\=clc.3abf3272.f95e.4a2c.9dbe.4499c0d53fec&site=eds-live&scope\=site&authtype=guest&custid=s3911979&groupid=main&profile=eds
https://search.ebscohost.com/login.aspx?direct=true&db=cat07470a&AN\=clc.3abf3272.f95e.4a2c.9dbe.4499c0d53fec&site=eds-live&scope\=site&authtype=guest&custid=s3911979&groupid=main&profile=eds
https://search.ebscohost.com/login.aspx?direct=true&db=cat07470a&AN\=clc.3abf3272.f95e.4a2c.9dbe.4499c0d53fec&site=eds-live&scope\=site&authtype=guest&custid=s3911979&groupid=main&profile=eds
https://doi.org/10.1145/1985362.1985366
https://doi.org/10.1371/journal.pcbi.1005510
https://doi.org/10.1145/3484824.3484911
https://doi.org/10.1145/3484824.3484911
https://doi.org/10.1145/3387906.3388625
https://doi.org/10.1145/3387906.3388625
https://pylint.pycqa.org/en/latest/user_guide/messages/messages_overview.html
https://pylint.pycqa.org/en/latest/user_guide/messages/messages_overview.html
https://github.com/search
https://doi.org/10.1145/3241743
https://doi.org/10.1007/BF02289138
https://doi.org/10.1007/BF02289138
https://stackoverflow.com/questions/65554246/github-search-api-exclude-certain-topics
https://stackoverflow.com/questions/65554246/github-search-api-exclude-certain-topics

	Introduction
	Related Work
	Research Methodology
	Definitions
	Research questions and hypotheses
	Used Research Methodology
	Data collection
	Data Scientists & Software Engineers
	Data Pipelines & Not Data Pipelines

	Data analysis

	Results
	Data Scientists & Software Engineers
	Data Pipelines & Not Data Pipelines

	Discussion
	Research Question 1
	Research Question 2

	Limitations
	Conclusions
	Future Work
	References

