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Abstract. We consider partial order semantics of concurrent systems in
which local reconfigurations may have global side effects. That is, local
changes happening to an entity may block or unblock events relating to
others, namely, events in which the entity does not participate. We show
that partial order computations need to capture additional restrictions
about event ordering, i.e., restrictions that arise from such reconfigura-
tions. This introduces ambiguity where different partial orders represent
exactly the same events with the same participants happening in differ-
ent orders, thus defeating the purpose of using partial order semantics.
To remove this ambiguity, we suggest an extension of partial orders called
glued partial orders. We show that glued partial orders capture all possi-
ble forced reordering arising from said reconfigurations. Furthermore, we
show that computations belonging to different glued partial orders are
only different due to non-determinism. We consider channeled transition
systems and Petri-nets with inhibiting arcs as examples.

1 Introduction

The most common way to represent computations is by considering linear se-
quences of events. When reasoning about concurrent systems, the linear order
semantics of computation does not capture important information about partic-
ipation in events and the interdependence of events. In order to capture this
extra information in computations, instead of linear order, partial order se-
mantics needs to be used. Existing approaches to partial order semantics (cf.
Process semantics of Petri nets [27,23,32] and Mazurkiewicz traces of Zielonka
automata [34,17,22]) proved useful in recovering information about the partici-
pants of events and (in)dependence of concurrent events.

In this paper, we are interested in concurrenct systems where events are af-
fected by changes happening to non-participants. This situation, which we call
in general reconfiguration, arises in two types of very different models of concu-
crrent systems: Channeled Transition Systems (CTS) [5,4]1 and Petri net with
inhibitor arcs (PTI-nets) [21,16,11]. In the first, processes connect and disconnect
to channels during execution and by doing so disable and enable communications

? This work is funded by ERC consolidator grant D-SynMA (No. 772459) and Swedish
research council grants: SynTM (No. 2020-03401) and grant (No. 2020-04963).

1 CTS can be considered as a generalisation of Zielonka automata, supporting rich
interactions alongside change of communication interfaces.
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on these channels in which they ultimately do not participate. In the second,
tokens enter and exit places that inhibit transitions and by doing so disable
and enable said transitions without participating in the transitions themselves.
In these two settings, dependencies among events emerge dynamically as side-
effects of interaction, leading to difficulties in capturing these emergencies in
partial-order semantics.

It is possible to suggest a partial order semantics of such types of systems.
Indeed, we give a partial order semantics to both types of systems (cf. [20] for
an alternative partial order semantics of PTI-nets). However, we recognise that
reconfiguration induces another dimension of nondeterminism in these systems.
Reconfiguration creates a situation where some events must be ordered with
respect to sequences of other events dynamically during execution, and thus
forcing interleaving in a non-trivial way. That is, from the point of an event, a
sequence of other events is considered as a single block and can only happen
before or after it.2 Just like multiple linear sequences correspond to different
interleavings arising from the same partial order, reconfigurations lead to mul-
tiple partial order computations corresponding to exactly the same events with
exactly the same participants happening along a computation just in different
orders.

To resolve that, we propose an extension of partial orders with additional
objects called glue. Using these structures we can define semantics that char-
acterises reconfiguration. Both reconfiguration points and their corresponding
scheduling decisions are captured in a single structure, while preserving a true-
concurrent execution of independent events.

Contributions. We show how to give partial order semantics to these two types
of systems in a way that captures reconfigurations. We use a specialised version
of partial orders, that we call labelled partial orders (LPO for short). We show
how to construct an LPO representing the computations of a specific system.
Such LPOs consider only the local views of individual processes / indistinguish-
able tokens and their interaction information. An LPO captures participation in
events and the relations between events. In the spirit of Mazurkiewicz traces, the
states of different processes / distinguishable tokens are (strictly) incomparable,
that is there is no notion of a global state. This way we can easily single out
finite sequences of computation steps where a process (or a group of processes)
/ tokens execute independently. We can also distinguish individual events from
joint ones. As mentioned, despite the fact that an LPO may refer to reconfigu-
ration points, it cannot fully characterise reconfiguration in a single structure.
For this reason, we introduce glued labeled partial orders (g-LPO, for short), that
is an extension of LPO with glue to separate a non-deterministic choice from
forced scheduling due to reconfiguration. We show that a g-LPO is sufficient to

2 Note that reconfiguration is an internal event, and is totally hidden from the per-
spective of an external observer [26] who may only observe message-/token-passing.
Indeed, messages or tokens can only indicate the occurrence of exchange but cannot
help with noticing that a reconfiguration has happened and what are the conse-
quences of reconfiguration.
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represent LPO computations that differ in scheduling due to reconfiguration. We
also show that LPO computations belonging to different g-LPO(s) are different
due to nondeterministic selection of independent events.

The paper is organised as follows: In Sect. 2, we informally present our partial
order semantics and in Sect. 3, we introduce the necessary background. In Sect. 4,
we provide the LPO semantics and in Sect. 5 we define the glued partial orders.
In Sect. 6 we prove important results on g-LPO with respect to reconfiguration
and nondeterminism. In Sect. 7 we present concluding remarks. All proofs are
included in the appendix.

2 Labelled Partial Order Computations in a Nutshell

We use the CTS formalism to informally illustrate the LPO semantics under
reconfiguration and the idea behind g-LPO. The example is kept simple to aid
the reader, but our semantics can handle much more intricate cases where de-
pendencies are nontrivial.

We consider the CTSs in Fig. 1(a-c) where each CTS Ti for i ∈ {1, 2, 3}
represents an individual agent and their parallel composition defines the system
behaviour as we will explain shortly. A CTS Ti consists of a set of states and
transitions. We will use the notation Ti,k to denote that agent Ti is currently
in state k. A state is labelled with a dynamic listening function to define the
set of channels that the agent is connected to, including a special nonblocking
broadcast channel ?. All other channels are blocking multicast. An agent cannot
disconnect from the broadcast channel. Each transition is labelled with a message
of the form (υ, r, ch) where υ is the message contents, r ∈ {!, ?} is the role of the
transition either send ! or receive ?, and ch is a channel name.

The system behaviour is defined as follows: if there exists an agent with a
send transition on a specific channel then for all other agents: In case of broad-
cast: the sender cannot be blocked and all agents who can supply a matching
receive transition participate. In case of multicast: all agents who are listening
to the channel must participate by supplying their matching receive transition
or otherwise the sender is blocked. For instance, agent T2 can initially (i.e., in
state T2,1 ) send the message (v2, !, d) and move to T2,2 and only agent T3 is
initially listening to channel d in T3,1. Thus, T3 participates (and moves from
T3,1 to T3,2) while T1 stays still as it cannot observe the communication. After
the joint transition T2 starts listening to c (in T2,2) while T3 disconnects from d
and starts listening to e (in T2,2).

Agents can reconfigure their interaction interfaces by updating their listening
functions as in the previous example. The side effects of such reconfiguration may
change the ordering of events at system level even though the reconfiguration
happened internally. For instance, after sending message (v2, !, d), agent T2 starts
listening to channel c (in state T2,2) but cannot supply a receive transition for this
channel. Thus, agent T1 is now blocked until T2 exits state T2,2 and disconnects
from c. That is, if (v2, !, d) happened before (v1, !, c) then (v1, !, c) may only
happen after (v3, !, e). In other words, (v1, !, c) is now ordered with respect to the
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(d) Three LPO computations and two g-LPO computations

Fig. 1. Channel Transition System CTS

sequence (v2, !, d),(v3, !, e). It should be noted that initially (from T1,1 and T2,1)
there were no dependencies between (v1, !, c) and (v2, !, d), but such dependencies
arose as side effects of internal reconfiguration of agent T2.

Moreover, agent T3 (from T3,2) may inhibit the sending of message (v3, !, e)
by nondeterministically choosing to send (v4, !, b) instead and moving to state
T3,4. Note that T3 still listens to e (in T3,4), but cannot supply a matching receive
transition, and thus permanently blocks T2 (in T2,2).

By restricting attention to the interleavings, we have that (v1, !, c) considers
both (v2, !, d) and (v3, !, e) as a single block, and their execution cannot be inter-
rupted. Namely, the only viable interleavings (in case (v3, !, e) is scheduled later)
are (v1, !, c), (v2, !, d), (v3, !, e) or (v2, !, d), (v3, !, e), (v1, !, c). Note that this is only
from the point of view of (v1, !, c) and has no implications for other messages.
This creates a forced interleaving in a non-trivial way due to the occurrence of
non-observable reconfigurations that we cannot reason about from a global per-
spective. Furthermore, these dependencies among events emerge dynamically as
side-effects of interaction, and thus put the correctness of partial order semantics
at stake.

To handle this issue, we introduce a partial order semantics of computations
under reconfiguration. We illustrate our LPO and g-LPO semantics in Fig. 1(d),
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which characterises all possible (maximal) computations of the composed system.
Here, we use the dashed arrow 99K to indicate a happen before relation (or an
interleaving order →i as we will see later).

The two diagrams succinctly encode three possible LPOs: (i) the LPO ob-
tained from Fig. 1(d) left structure with the dashed arrow from (v1, !, c) to
(v2, !, d); (ii) the LPO obtained from Fig. 1(d) left structure with the dashed
arrow from (v3, !, e) to (v1, !, c); and (iii) the LPO obtained from Fig. 1(d) right
structure with the dashed arrow from (v1, !, c) to (v2, !, d). LPOs (i) and (ii) agree
that agent T3 (in state T3,2) nondeterministically chooses to send (v3, !, e) while
in (iii) T3 nondeterministically chooses (v4, !, b). All LPOs capture information
about interaction and interdependence among events. Indeed, in all cases we see
that both states T2,1 and T3,1 synchronise through the transition (v2, !, d). States
that are not strictly ordered with respect to a common transition are considered
concurrent (or unordered). Thus, as in Mazurkiewicz traces there is no notion of
a global state. Notice that LPOs (i) and (ii) differ only in the forced interleaving
of (v1, !, c) with respect to the block (v2, !, d), (v3, !, e).

Note that both LPOs (i) and (ii) have information both on reconfiguration
and nondeterminism, but each individually cannot be used to distinguish the
hidden reconfiguration. In fact, (v1, !, c) 99K (v2, !, d) in (i) indicates that (v1, !, c)
happened before a reconfiguration caused by (v2, !, d), and (v3, !, e) 99K (v1, !, c)
in (ii) indicates that (v1, !, c) happened after the reconfiguration. In (iii), due to
the different nondeterminsitic choice, the only possible case we have to consider
is that of (v1, !, c) happening before (v2, !, d).

This suggests that we can actually isolate reconfiguration from nondeter-
minism by using a more sophisticated structure than LPO, and thus expose
the difference in a way that allows reasoning about these hidden events from a
global perspective. For this reason, we define g-LPO computations, that are an
extension of LPO with a notion of glue.

In this simple example, a g-LPO simply drops strict ordering of events with
respect to each other (like (v1, !, c) 99K (v2, !, d) or (v3, !, e) 99K (v1, !, c)), and
instead assigns each event a (possibly empty) glue relation defining the glued
elements from the point of view of that event. The glue relation is defined based
on reconfiguration points in CTS, and on inhibitor arcs in Petri nets.

Consider now the structures in Fig. 1(d) without the dashed arrows and,
now, with an explanation of the red arrows. These two structures are each a g-
LPO. For the one on the left, since T2,2 inhibits (v1, !, c) all existing incoming and
outgoing edges from T2,2 are glued to T2,2. Thus, (v1, !, c)’s glue relation includes
these edges (in red). All other transitions have empty glue relations because
they are not inhibited. As they are not inhibited, their interdependence is well-
captured statically based on their communication. Note that the glue relation is
not required to be transitive and the glue only relates states and transitions. In
the structure on the right of the figure, (v2, !, d) is glued only to T3,2. As (v4, !, b)
is scheduled rather than (v3, !, e), then T2,2 remains as a maximal element.

As we show later, a single g-LPO can be used to characterise reconfiguration
and separate it from other sources of nondeterminism in the system.
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3 Preliminaries

3.1 Partial Orders and Labeled Partial Orders

We use a specialised form of partial orders to represent computations.

A partial order (PO, for short) is a binary relation ≤ over a set O that is
reflexive, antisymmetric, and transitive. We use a < b for a ≤ b and a 6= b. We
use a#b for a 6≤ b and b 6≤ a, i.e., a and b are incomparable.

A labelled partial order (LPO, for short) is (O,→c,→i, Σ, Υ, L), where O =
V
⊎
E is a set of elements partitioned to nodes and edges, respectively, →c and

→i are disjoint, anti-reflexive, anti-symmetric, and non-transitive communica-
tion and interleaving order relations over O. We have →c⊆ V ×E ∪E × V and
→i⊆ E × E. When →i= ∅ we omit it from the tuple. We denote →=→c ∪ →i.
The relation ≤ is the reflexive and transitive closure of →. We require that ≤ is
a partial order. The labelling function L : O → Σ ∪ Υ satisfies L(V ) ⊆ Σ and
L(E) ⊆ Υ , where Σ is a node alphabet and Υ is an edge alphabet. Given an
element a ∈ O we write •a for {b | b→ a} and a• for {b | a→ b}.

Intuitively, for CTS, elements in V relate to execution histories of individual
agents and elements in E to communication events. Thus, a history belongs to
an individual agent and a transition corresponds to either an individual com-
putational step or a synchronisation point among multiple agents. The relation
→c captures participation in communication and the relation→i captures order
requirements.

For PTI-nets, elements in V correspond to a history of a token or multi-
ple tokens with the same history and elements in E correspond to transitions.
Similarly, →c captures participation in transitions and →i captures order.

3.2 Channelled Transition Systems (CTS)

We present Channeled Transition Systems [5,4]. A Channelled Transition System
(CTS) is a tuple of the form T = 〈C,Λ,B, S, S0, R, L, ls〉, where C is a set
of channels, including the broadcast channel (?), Λ is a state alphabet, B is
a transition alphabet, S is a set of states, S0 ⊆ S is a set of initial states,
R ⊆ S × B × S is a transition relation, L : S → Λ is a labelling function, and
ls : S → 2C is a channel-listening function such that for every s ∈ S we have
? ∈ ls(s). That is, a CTS is listening to the broadcast channel in every state.
We assume that B = B+×{!, ?}×C, for some set B+. That is, every transition
labeled with some b ∈ B is either a message send (!) or a message receive (?) on
some channel c ∈ C. We write B! for B+ × {!} × C and B? for B+ × {?} × C.

Given (b+, !, c) ∈ B we write ?(b+, !, c) for (b+, ?, c) and ch(b+,−, c) for c.
That is, ?(b) is the corresponding receive transition of a send transition b and
ch(b) is the channel of b.

For a receive transition b = (b+, ?, c) and a state s ∈ S we write s →b if
c ∈ ls(s) and there is some s′ such that (s, b, s′) ∈ R. That is, s is listening on
channel c and can participate, i.e., has an outgoing receive transition for b. We
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(a) Petri net with Inhibitor arcs (b) Two possible g-LPO computations

Fig. 2. Petri net with inhibitor arcs

write s 6→b if c ∈ ls(s) and it is not the case that s →b. That is, s is listening
on channel c and is not able to participate.

A history h = s0, . . . , sn is a finite sequence of states such that s0 ∈ S0 and for
every 0 ≤ i < n we have that (si, bi, si+1) ∈ R for some bi ∈ B. The length of h is
n+ 1, denoted |h|. For convenience we generalise notations applying to states to
apply to histories. For example, we write c ∈ ls(h) when c ∈ ls(sn), h→b when
sn →b and h 6→b for sn 6→b. Similarly, if h = s0, . . . , sn and h′ = s0, . . . , sn, sn+1

where (sn, bn, si+1) ∈ R, we write (h, bn, h
′) ∈ R. Let hist(T ) be the set of all

histories of T .
Consider a system S = T1 ‖ · · · ‖ Tn with n CTSs, where Ti = 〈Ci, Λi, Bi, Si, Si0, Ri, Li, lsi〉

is a CTS. We denote C =
⋃
i Ci, and B =

⋃
iBi and B! =

⋃
iB

!
i. A global state

of S is S =
∏
i Si and S0 =

∏
i S

i
0 is the set of initial states. The global linear

order transition relation ∆ ⊆ S ×B! × S is defined as follows:

∆ =


 (s1, . . . , sn),

(υ, !, c),
(s′1, . . . , s

′
n)


∣∣∣∣∣∣∣∣
∃i . (si, (υ, !, c), s

′
i) ∈ Ri and ∀j 6= i .

(1) (sj , (υ, ?, c), s
′
j) ∈ Rj and c ∈ lsj(sj) or

(2) c /∈ lsj(sj) and s′j = sj or
(3) c = ?, s′j = sj , and ∀s′′ . (sj , (υ, ?, c), s

′′) /∈ Rj


Intuitively, there exists one sender and potentially multiple receivers. Multicast
channels are blocking, i.e., (1) all agents who are listening to the channel must
be able to participate in the communication in order for a send to be possible;
(2) agents that are not listening ignore the message. The broadcast channel
is non-blocking and agents always listen to it, i.e., (1) if they can participate,
each supplies a receive transition and receives the message; (3) if they cannot
participate in a communication it still goes on without them.

3.3 Petri Nets with Inhibitor Arcs (PTI-nets)

We present Petri Nets with inhibitor arcs [21,16,11]. A Petri net N with inhibitor
arcs is a bipartite directed graph N = 〈P, T, F, I〉, where P and T are the set of
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places and transitions such that P ∩ T = ∅, F : (P × T ) ∪ (T × P ) → N is the
flow relation, and I ⊆ (P ×T ) is the inhibiting relation. We write (s, s′) ∈ F for
F (s, s′) > 0. Without loss of generality, we restrict attention to Petri nets where
all transitions have a non-empty preset and a non-empty post-set.

The configuration of a Petri net at a time instant is defined by a marking.
Formally, let N be a Petri net with a set of places P = {p1, . . . , pk}. A marking
is a function m : P → N, where m(pi) corresponds to the number of tokens in
pi, for i = 1, . . . , k. Functions can be added, subtracted, and compared in the
usual way. We assume some initial marking m0. For p ∈ P let p be the function
p : P → {0, 1} such that p(p) = 1 and p(p′) = 0 for every p′ 6= p. Let M denote
the set of all markings.

For a transition t ∈ T we define the pre-function of t, denoted by •t, to be
•t(p) = F (pi, t). Similarly, the post-function of t is t• = F (t, pi).

An inhibitor arc from a place to a transition means that the transition can
only fire if no token is on that place. The inhibitor set of a transition t is the set
◦t = {p ∈ P | (p, t) ∈ I}, and represents the places to be “tested for absence” of
tokens. That is, an inhibiting place allows to prevent the transition firing.

A transition t is enabled at m if for every p we have m(p) ≥ F (p, t) and all
inhibitor places are empty, i.e., for every p ∈ ◦t we have m(p) = 0. Note that if
for some t and p ∈ ◦t we have (p, t) ∈ F then t can never fire, i.e., it is blocked.

The running example and the corresponding LPOs and g-LPOs can be mod-
elled in PTI-Nets as in Fig. 2 where the multiplicities for all edges is 1. Intuitively,
the inhibitor arc plays the role of a CTS state that listens to a message but does
not supply a receive transition.3

4 LPO Semantics

In this section, we provide CTSs and PTI-nets with a labelled partial order
semantics. The labelled partial order semantics of CTSs is novel while the one
of Petri nets extends occurrence nets [23] with event-to-event connections that
allow to capture reconfigurations. We include in Appendix C the labelled partial
order semantics of asynchronous automata, which do not require the interleaving
relation →i, and, thus, show that the separation of results in this paper only
make sense in reconfigurable systems.

4.1 Channelled Transition Systems (CTS)

Consider a system S = T1 ‖ · · · ‖ Tn, where Ti = 〈Ci, Λi, Bi, Si, Si0, Ri, Li, lsi〉.
We denote C =

⋃
i Ci, and B =

⋃
iBi.

Definition 1 (LPO-computation). A computation of S is an LPO (O,→c,→i

, Σ, Υ, L), where V ⊆
⋃
i hist(Ti), Σ = V , →c=→s

⊎
→r is the disjoint union

of the send and receive relations, Υ = {(υ, !, c) ∈ B} are the set of message
sends, and for h ∈ V we have L(h) = h. In addition we require the following:
3 A general translation of CTS to PTI-nets is quite involved and loses the distinction

between channels and processes.
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C1. The edge eε such that L(eε) = (b, !, ?) is the unique minimal element ac-
cording to ≤. For every i, we have s0i ∈ V and eε →r s

0
i .

C2. If h ∈ V ∩ hist(Ti) there is a unique e ∈ E such that e →c h. If |h| >
1, there is also a unique h′ ∈ V ∩ hist(Ti) such that h′ →c e and either
(h′, L(e), h) ∈ Ri or (h′, ?(L(e)), h) ∈ Ri.

C3. For every h ∈ V there is at most one e ∈ E such that h→c e.
That is, h participates in at most one communication.

C4. For every e ∈ E \ {eε} there is I ⊆ [n] such that all the following hold:
(a) For every i ∈ I we have |•e ∩ hist(Ti)| = 1 and |e• ∩ hist(Ti)| = 1.

That is, for each agent that participates in a communication the edge
connects exactly to one predecessor history and one successor history.

(b) There is a unique i ∈ I and h, h′ ∈ V ∩hist(Ti) such that (h, L(e), h′) ∈
Ri and h →s e →s h

′ and for every i′ ∈ I \ {i} there are h′′, h′′′ ∈
V ∩ hist(Ti′) such that (h′′, ?(L(e), h′′′) ∈ Ri′ and h′′ →r e→r h

′′′.
That is, every communication has a unique sender and the rest are re-
ceivers. All these connections satisfy the respective agent transitions.

(c) If L(e) = (υ, !, c) for c 6= ? then for every h ∈ V such that c ∈ ls(h) we
have h ≤ e or e ≤ h.
That is, a communication on a multicast channel is ordered with respect
to every history that listens to the same channel. Thus, the history either
participates in the communication or happens before or after it.

(d) If L(e) = (υ, !, ?) then for every h ∈ V such that h →?(L(e)) we have
h ≤ e or e ≤ h.
That is, a communication on the broadcast channel is ordered with re-
spect to every history that could participate in the communication.

C5. For every e 6= e′ such that ch(e) = ch(e′) we have e ≤ e′ or e′ ≤ e.
That is, all communications on the same channel are ordered.

C6. If e→i e
′ then there is some h = s0, . . . , sj and one of what follows holds:

(a) ch(e) = ch(e′).
(b) L(e′) = (υ, !, c) for c 6= ?, h→c e and ch(L(e′)) ∈ ls(h).
(c) L(e) = (υ, !, c) for c 6= ?, e′ →c h and ch(L(e′)) ∈ ls(h).
(d) L(e′) = (υ, !, ?), h→c e and h→?(L(e′)).
(e) L(e) = (υ, !, ?), e′ →c h and h→?(L(e)).
That is, we only allow connections between two edges in order to capture
the ordering in a single channel (a), to capture the order between multi-cast
messages and histories that could be listening to them (b,c), or to capture the
order between broadcasts and histories that could participate in them (d,e).

That is, a computation starts from a unique broadcast that initiates all the
initial states of Ti for all i (C1). Every history has a unique communication that
leads to it and (if it is not the initial state) the communication connects a unique
previous history of the same agent according to the transition of the agent (C2).
Every history participates in at most one communication (C3). For every transi-
tion there exists a set of agents participating in it (C4). Each agent participates
in the communication exactly once (C4a), has one sender and all the rest are
receivers (C4b), is ordered with respect to all places that could participate in it
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(C4c,d). Then, all communications on the same channel are ordered (C5). Inter-
leaving (C4c,d and C5) is captured by interleaving relation. Communications on
the same channel can be ordered (C6a). For a multicast, a history h that could
participate in the multicast already participated in a communication (C6b), or
the communication leading to h happens after the multicast (C6c). For a broad-
cast, a history h that could participate in the broadcast already participated in
a communication (C6d), or the communication leading to h happens after the
broadcast (C6e).

Note that an LPO computation relates histories of individual CTSs, and thus
allows to draw relations among finite sequences of individual computation steps
of one CTS (or a group of CTSs) with respect to others; Furthermore, a CTS
is always listening to the broadcast channel, and thus, it becomes mandatory to
order broadcast messages that enable/disable participation to each other.

We will use comp(S) to denote the set of LPO computations of S.

4.2 Petri Nets with Inhibitor Arcs (PTI-nets)

We now define the LPO semantics of PTI-nets. We start with a definition of
histories and then use them to define the vertices and edges of an LPO. In
Appendix D, we show our developments for PTI-nets through a detailed example.

Definition 2 (History). We define the set of histories of a net N by induction.
We define a special transition tε such that tε

• = m0. The pair (∅, tε) is a
t-history. Note that tε is not a transition in T .

For a place p, let h = (S, t) be a t-history such that t•(p) > 0. Then we have
(h, p, t•(p)) is a p-history. That is, given a t-history h ending in transition t,
where p is in t•, then the combination of h, p, and the number of tokes that t
puts in p form a p-history.

Consider a transition t ∈ T . A t-history is a pair (S, t), where S = {(h1, i1),
. . . , (hn, in)} is a multiset satisfying the following. For every j we have hj =
(−, p, cj) is a p-history, where cj ≥ ij and •t =

∑
j ij · pj . That is, the t-history

identifies the p-histories from which t takes tokens and the number of occurrences
of a p-history in the multiset is the number of tokens taken from it.

Let hist(N) be the set of all histories of N partitioned to histp(N) and
histt(N) in the obvious way. Given a t-history h = (S, t) and a p-history h′ we
write h(h′) for the number of appearances of h′ in the multiset S.

We define the labelled partial order semantics of a PTI-net as follows.

Definition 3 (LPO-computation). A computation of N is an LPO (O,→c

,→i, Σ, Υ, L), where V ⊆ histp(N), E ⊆ histt(N), Σ = P , Υ = T , for a p-
history v = (−, p, i) we have L(v) = p and for a t-history (S, t) we have L(e) = t,
and such that:

N1. The t-history (∅, tε) is the unique minimal element according to ≤.
N2. For a p-history v = (e, p, i) ∈ V we have e ∈ E and e is the unique edge

such that e→c v.
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N3. For a p-history v = (h, p, i) ∈ V , let e1, . . . , ej be the t-histories such that
v →c ej. Then, for every k we have ek(v) > 0 and

∑
k ek(v) ≤ i.

That is, v leads to t-histories that contain it with the multiplicity of v being
respected.

N4. For every e ∈ E, where e = ({(v1, i1), . . . , (vn, in)}, t), all the following hold:
(a) •e ∩ V = {v1, . . . , vn} and e• ∩ V = {(e, p, t•(p)) | t•(p) > 0}.

That is, the connections of a t-history respect the structure of the net.
(b) For every v = (h, p, i) ∈ V such that p ∈ ◦L(e) we have e ≤ v or, where

e1, . . . , ej are all the edges such that v →c ek, we have
∑
k ek(v) = i and

for every k, ek < e.
That is, if a place inhibits a transition, then either the transition happens
before the place is visited or all the tokens are taken from the place before
the transition happens.

(c) If e→i e
′ then there is some v such that either (i) v →c e and (L(v), L(e′)) ∈

I or (ii) e′ →c v and (L(v), L(e)) ∈ I.
That is, we only allow connection between two t-histories to capture the
forced interleaving due to inhibition.

That is, a computation starts from the dummy transition tε, which establishes
the initial marking (N1) Every other transition is a t-history that connects the
p-histories that it contains (N3) to those that contain it (N2). If a place inhibits a
transition then either the transition happens before a token arrives to the place or
after all tokens left that place (N4b). Namely, if p inhibits t then either t happens
before the transition putting token in p or after the transitions taking the tokens
from p (N4b). This is possible by adding direct interleaving dependencies (→i)
between edges (N4c).

We will use comp(N) to denote the set of LPO computations of N .

5 Partial Order with Glue

We extend labeled partial orders with glue. Intuitively, two elements are glued
from the point of view of another element if they both happen either before or
after said element.

Definition 4 (Glue). A Glue over a set O and a relation →c⊆ O × O is a
relation R ⊆→c.

Intuitively, a glue relation R over the set O and a relation →c defines pairs
of elements that are glued together.

Definition 5 (Glued LPO). A glued LPO (g-LPO, for short) is lpg = (P,G, E),
where P = (O = V

⊎
E,→c,→i, Σ, Υ, L) is an LPO, G = {G1, . . . , Gk} is a set

of Glue relations over O and →c, and E : Υ ↪→ G labels elements in E (with
their edge labels) by glue relations.

Definition 6 (g-LPO-refinement). An LPO lpo = (O,→c,→i, Σ, Υ, L) where
O = V

⊎
E refines a g-LPO lpg = (Pg,G, E), denoted lpo � lpg, where Pg =

(O,→c,→g
i Σ,Υ, L) if the following conditions hold:
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– For every e ∈ E and (a, b) ∈ E(L(e)) we have e ≤ a or b ≤ e.
– →g

i ⊆ →i and (e, e′) ∈ (→i \ →g
i ) implies (e′, v) ∈ E(L(e))or (v, e) ∈

E(L(e′))for some v.

That is, the two share the relation →c, the relation →g
i is preserved and

extended by extra interleaving to capture the glue. In order to respect the glue,
an edge that is glued to a pair (a, b) must happen either before a or after b.

We show now that g-LPOs enable to remove parts of the interleaving order
relation for both PTI-nets and CTSs. g-LPOs capture better reconfiguration by
combining multiple orderings due to the same reconfiguration in the same g-LPO.

5.1 Glue Computations for CTSs

Consider a system S = T1 ‖ · · · ‖ Tn, where Ti = 〈Ci, Λi, Bi, Si, Si0, Ri, Li, lsi〉.
We denote C =

⋃
i Ci and B =

⋃
iBi.

We now define a g-computation for CTS. The differences from the definition
of LPO (Definition 1) are highlighted with a “∗” (C4.(c-d) and C6.(b-e) are
removed and ∗C7 is new).

Definition 7 (g-computation). A g-computation of S is a g-LPO (P,G, E),
where P = (O,→i,→c, Σ, Υ, LV , LE) and V , E, Σ, Υ , and L are as before,
→c=→s

⊎
→r, where:

∗C1. The edge eε such that L(eε) = (b, !, ?) is the unique minimal element ac-
cording to ≤. For every i, we have s0i ∈ V and eε →r s

0
i .

∗C2. If h ∈ V ∩ hist(Ti) there is a unique e ∈ E such that e →c h. If |h| > 1,
there is also a unique h′ ∈ V such that h′ →c e and either (h′, L(e), h) ∈ Ri
or (h′, ?(L(e)), h) ∈ Ri.

∗C3. For every h ∈ V there is at most one e ∈ E such that h→c e.
∗C4. For every e ∈ E \ {eε} there is I ⊆ [n] such that all the following hold:

(a) For every i ∈ I we have |•e ∩ hist(Ti)| = 1 and |e• ∩ hist(Ti)| = 1.
(b) There is a unique i ∈ I and h, h′ ∈ V ∩hist(Ti) such that (h, L(e), h′) ∈

Ri and h →s e →s h
′ and for every i′ ∈ I \ {i} there are h′′, h′′′ ∈

V ∩ hist(Ti′) such that h′′ →r e→r h
′′′ and (h′′, ?(L(e), h′′′) ∈ Ri′ .

∗C5. For every e 6= e′ such that ch(e) = ch(e′) we have e ≤ e′ or e′ ≤ e.
∗C6. If e→i e

′ then the following holds:
(a) ch(e) = ch(e′).

∗C7. For every (υ, !, c) ∈ B then

E((υ, !, c)) = {(h, e) | for c = ?, h→c e and h→?(υ,!,c)} ∪
{(e, h) | for c = ?, e→c h and h→?(υ,!,c)} ∪
{(h, e) | for c 6= ?, h→c e and c ∈ ls(h)} ∪
{(e, h) | for c 6= ?, e→c h and c ∈ ls(h)}

We drop from the interleaving relation all order relations that correspond to
reconfiguration and keep only those that correspond to the usage of a common
resource. Furthermore, we assign each broadcast and multicast message with a
glue relation. That is, for every broadcast b add all existing ingoing and outgoing
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messages of histories that may participate in m. The rationale is that if such his-
tories can participate in a broadcast then they cannot be enabled independently
from the broadcast as they would participate in it. For every multicast m add all
existing ingoing and outgoing messages of histories that either block m or could
participate in m. The rationale is that such histories cannot be independent from
the multicast as they either block it or would participate in it. Note that ∗C7
adds one glue for every multicast channel but one for every broadcast.

We use compg(S) to denote the set of g-computations of CTS S and show
that it indeed captures the same notion of computation.

Theorem 1. Given a CTS T , comp(T ) = {π | π � πg ∧ πg ∈ compg(T )}.

5.2 Glue Computations for PTI-nets

Let N = 〈P, T, F, I〉 be a PTI-net and m0 its initial marking. We now define a g-
computation. The differences from the definition of LPO (Def. 3) are highlighted
with a “∗” (N4.(b-c) are removed and ∗N5 is new).

Definition 8 (g-computation). A g-computation of N is a g-LPO (P,G, E),
where P = (O,→c, Σ, Υ, L), the components V , E, Σ, Υ , and L are as for LPO,
and the following holds.
∗N1. The t-history (∅, tε) is the unique minimal element according to ≤.
∗N2. For a p-history v = (e, p, i) ∈ V we have e ∈ E and e is the unique edge

such that e→c v.
∗N3. For a p-history v = (h, p, i) ∈ V , let e1, . . . , ej be the t-histories such that

v →c ej. Then, for every j we have ej(v) > 0 and
∑
j ej(v) ≤ i.

That is, v leads to t-histories that contain it with the number of tokens in v
being respected.

∗N4. For every e ∈ E, where e = ({(v1, i1), . . . , (vn, in)}, t) the following holds:
∗(a) •e = {v1, . . . , vn} and e• = {(e, p, t•(p)) | t•(p) > 0}.

∗N5. We define a predicate capturing that a place is left without tokens. For a
p-history v = (h, p, i), let e1, . . . , ej be the t-histories such that v →c ej. If∑
j ej(v) = i we write f(v). Otherwise, it is the case that ¬f(v).

For every t ∈ T we have:

E(t) = {(v, e) | v →c e and (L(v), t) ∈ I} ∪
{(e, v) | e→c v and (L(v), t) ∈ I} ∪
{(v, e) | ∃v′ . (L(v′), t) ∈ I, ¬f(v′), v′ ≤ v, and v →c e} ∪
{(e, v) | ∃v′ . (L(v′), t) ∈ I, ¬f(v′), v′ ≤ e, and e→c v}

That is, for a transition t, add all existing ingoing and outgoing transitions
of places that inhibit t to t’s glue. Moreover, if some place that inhibits t has
some tokens left in it, then whatever happens after that place is glued as well.

That is, we drop→i and assign each inhibited transition with a glue relation.
We use compg(N) to denote the set of g-computations of Petri net N and

show that it indeed captures the same notion of computation.

Theorem 2. Given a PTI-net N , comp(N) = {π | π � πg ∧ πg ∈ compg(N)}.
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6 Separating Choice and Reconfiguration-Forced
Interleaving

We show that g-LPOs distinguish nondeterministic choice, which corresponds to
different g-LPOs, and interleaving choices due to reconfiguration, which corre-
spond to different ways to refer to glue. For both CTS and PTI-nets, we show
that distinct g-LPOs contain different nondeterministic or order choices. Thus,
we manage to define one structure that captures all possible interleavings and
reconfigurations together.

6.1 Choice vs Interleaving in CTSs

A choice that distinguishes two computations for a CTS is either (a) a situation
where all the agents have exactly the same history and at least one agent partic-
ipates in a different interaction or (b) communications on the same channel are
ordered differentently. Note that as channels are global resources, the case that
changing the order of communications on a channel does not have side effects is
accidental. Indeed, such a change of order could have side effects and constitutes
a different choice.

We show that every two distinct g-computations of the same CTS have a
joint history of some agent that “sees the difference” or a channel that transfers
messages in a different order. Difference for a history is either maximality in
one and not the other or extension by different communications in the two g-
computations.

Theorem 3. Given a CTS T and two different g-LPOs G1, G2 ∈ compg(N)
then one of the following holds:
1. For some agent i there exists a history hi in both G1 and G2 such that either

hi is maximal in Gα and not maximal G3−α, where α ∈ {1, 2};
2. For some agent i there exists a history hi in both G1 and G2 such that for the

edges e1 and e2 such that hi →c1 e1 and hi →c2 e2 we have L1(e1) 6= L2(e2);
3. or; There is a pair of agents i and i′ and histories hi and hi′ in both G1 and

G2 such that the order between the communications of i and i′ is different
in G1 and G2.

Theorem 3 is not true for LPOs as shown by the LPOs and g-LPO of the CTS
in Figure 1. We note that by the proof of Theorem 1 all the LPOs that disagree
only on forced interleavings are refined by the same g-LPO.

6.2 Choice vs Interleaving in PTI-nets

A choice that distinguishes two computations is a situation where a set of to-
kens have exactly the same history and they do a different exchange. We show
that every two distinct g-computations of the same net have a set of tokens that
“see the difference”. That is, they participate in a different transition in the two
g-computations. This includes the option of tokens in one g-computation partic-
ipating in a transition and tokens in the other g-computation not continuing.
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Theorem 4. Given a Petri net P and two different g-LPOs G1, G2 ∈ compg(N)
then one of the following holds:

1. There is a node vi in both G1 and G2 such that the number of tokens not
taken from vi in G1 and G2 is different.

2. There is a set of p-histories v1, . . . , vn in both G1 and G2 that participate in
some transition t in Gα but not in G3−α, where α ∈ {1, 2}.

Note that item 2 includes the case where the transition t happens in both G1

and G2 but takes a different number of tokens from every node. This difference
is significant as the nodes communicate via the identified transition and share
the knowledge about the difference.

Theorem 4 is not true for LPOs. This is already shown by the very simple
examples in Figure 2(b). Indeed, in the two LPOs demonstrated by the dashed
arcs in the figure, all sets of nodes participate in exactly the same transitions.

We note that by the proof of Theorem 2 all the LPOs that disagree only on
forced interleavings are refined by the same g-LPO.

7 Concluding Remarks

We laid down the basis to reason about systems in which events are affected
also by non-participants. We showed how to isolate forced interleaving deci-
sions of the system due to such effects, and other decisions due to standard
concurrent execution of independent events. This was shown for CTS [5,4] and
PTI-nets [16,11], which cover a wide range of interaction capabilities from two
different schools of concurrency. In particular, CTS capture channel communica-
tion and require order of events without flow of information (captured through
the interleaving relation) while PTI-nets are unbounded and more general. We
proposed, for both, a partial order semantics, named LPO, of computations un-
der reconfiguration. An LPO supports event-to-event connections that allows to
refer to reconfiguration points. Moreover, to fully characterise reconfiguration
in a single structure, we proposed a glued LPO semantics, named g-LPO. The
latter is able to fully isolate scheduling decisions due to reconfiguration from the
ones due to standard concurrency. We show that any LPO computation is only
a refinement of some g-LPO of the same system. Finally, we prove important
results on g-LPO with respect to reconfiguration and nondeterminism.
Perspectives and future work: Capturing all possible interleavings in a sin-
gle structure offers opportunities in terms of specification and verification. For
example, using languages of linear sequences as a specification language for con-
current system requires some care. Indeed, languages that include certain inter-
leavings of the same computation and exclude others are obviously inappropriate
as specifications: there is no system that satisfies them. Invariability under in-
terleaving without reconfiguration is easy to check using some representations of
languages (deterministic automata) but harder using other representations (tem-
poral logic). We do not know to characterise languages of linear sequences that
capture all possible interleavings with reconfiguration. Thus, creating structures
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that capture precisely such behaviour is important for the definition of appro-
priate specification languages. Studying g-LPOs could give us insights into the
properties of languages of linear sequences that are appropriate to specify con-
current systems with reconfigurations. We could also exploit g-LPO semantics
to define specifications over g-LPO computations (rather than linear sequences
or LPOs).
Related works: The prevalent approach to semantics of reconfigurable inter-
actions is based on linear order semantics (cf. Pi-calculus [25,15], Mobile Ambi-
ents [13], Applied Pi-calculus [1], Psi-calculus [10,8], concurrent constraint pro-
gramming [30,18], fusion calculus [33], the AbC calculus [2,3], ReCiPe [4] etc.).
This semantics cannot distinguish the different choices of the system from a
global perspective. It hides information about interactions and possible inter-
dependence among events. In fact, linear order semantics ignores the possible
concurrency of events, which can be important e.g. for judging the temporal ef-
ficiency of the system [32]. Linear order semantics comes even shorter to capture
information about reconfiguration from an external observer’s point of view.

Partial order semantics (cf. Process semantics of Petri nets [27,23,32] and
Mazurkiewicz traces of Zielonka automata [34,17,22]), on the other hand, is able
to refer to the interaction and event dependencies, but does not deal very well
with reconfiguration. This is because the latter formalisms have fixed interac-
tion structures, and thus the interdependence of events is defined structurally.
Reconfiguration, on the other hand, enforces reordering of events dynamically in
non-trivial ways, and thus makes defining correct partial order semantics very
challenging. As shown in [20], some aspects of concurrency are almost impossible
to tackle in either linear-order or partial-order causality-based models, and one
of them is PTI-nets [16]. In fact, reconfiguration increases the expressive power
of the formalism, e.g., adding inhibitor arcs to Petri nets makes them Turing
Powerful [6]. However, this expressive power does not come without a cost. It
prevents most analysis techniques for standard Petri nets [11].

Partial order semantics for PTI-nets are given in [21] and [20]. Much like
our LPOs, they represent different forced interleavings separately. As they use
occurrence nets they have many more ways to represent essentially the same
computation due to symmetry between tokens. Relational Structures [20] add
an additional “not later than” relation to partial orders. Their emphasis is on
providing a general semantic framework for concurrent systems. Thus, relational
structures handle issues like priority and error recovery, which we do not handle.
However, they are not concerned with uniqueness of representation. So the two
works serve different purposes and it would be interesting to investigate mutual
extensions.



A PO Characterisation of Reconfiguration 17

References

1. Mart́ın Abadi, Bruno Blanchet, and Cédric Fournet. The applied pi calculus:
Mobile values, new names, and secure communication. J. ACM, 65(1):1:1–1:41,
2018. doi:10.1145/3127586.

2. Yehia Abd Alrahman, Rocco De Nicola, and Michele Loreti. A calculus for
collective-adaptive systems and its behavioural theory. Inf. Comput., 268, 2019.
doi:10.1016/j.ic.2019.104457.

3. Yehia Abd Alrahman, Rocco De Nicola, and Michele Loreti. Programming interac-
tions in collective adaptive systems by relying on attribute-based communication.
Sci. Comput. Program., 192:102428, 2020. doi:10.1016/j.scico.2020.102428.

4. Yehia Abd Alrahman, Giuseppe Perelli, and Nir Piterman. Reconfigurable interac-
tion for MAS modelling. In Proceedings of the 19th International Conference on Au-
tonomous Agents and Multiagent Systems, AAMAS ’20, Auckland, New Zealand,
May 9-13, 2020, pages 7–15. International Foundation for Autonomous Agents and
Multiagent Systems, 2020.

5. Yehia Abd Alrahman and Nir Piterman. Modelling and verification of recon-
figurable multi-agent systems. Auton. Agents Multi Agent Syst., 35(2):47, 2021.
doi:10.1007/s10458-021-09521-x.

6. Tilak Agerwala. A complete model for representing the coordination of asyn-
chronous processes. Technical report, Johns Hopkins Univ., Baltimore, Md.(USA),
1974.

7. Yehia Abd Alrahman and Hugo Torres Vieira. A coordination protocol language
for power grid operation control. J. Log. Algebraic Methods Program., 109, 2019.
doi:10.1016/j.jlamp.2019.100487.

8. Jesper Bengtson, Magnus Johansson, Joachim Parrow, and Björn Victor. Psi-
calculi: a framework for mobile processes with nominal data and logic. Logical
Methods in Computer Science, 7(1), 2011. doi:10.2168/LMCS-7(1:11)2011.

9. Michele Boreale, Rocco De Nicola, and Rosario Pugliese. Basic observables for
processes. Inf. Comput., 149(1):77–98, 1999. doi:10.1006/inco.1998.2755.

10. Johannes Borgström, Shuqin Huang, Magnus Johansson, Palle Raabjerg, Björn
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A Proofs for Section 5 (Partial Order with Glue)

Lemma 1. Given a CTS T and an LPO π1 ∈ comp(T ), there exists a corre-
sponding g-LPO π2 ∈ compg(T ) such that π1 � π2.

Proof. Let π2 be the g-LPO obtained from π1 by using the partial order induced
by →c of π1, by →i of π1 whenever e →i e

′ implies ch(e) = ch(e′), and adding
the glue relations according to Def. 7.

Note that by construction both π1 and π2 agree on →c⊆ V ×E ∪E×V and
only agree on →i⊆ E × E whenever e→i e

′ implies ch(e) = ch(e′). We have to
show that the conditions of Definition 6 hold.

Consider some e ∈ E and (a, b) ∈ E(L(e)). We have to show that e ≤ a or
b ≤ e. By definition we know that a →c b. We show that either e ≤ a or b ≤ e.
We have the following cases.

– ch(L(e)) is a multicast channel:
• If a ∈ V and b ∈ E then by definition ch(L(e)) ∈ ls(a). By C4(c) in

definition 1 we have that either e ≤ a or a ≤ e. If e ≤ a we are done. If
a ≤ e then from a→c b it follows that either e = b or b < e.

• If a ∈ E and b ∈ V then by definition ch(L(e)) ∈ ls(b). By C4(c) in
definition 1 we have that either e ≤ b or b ≤ e. If b ≤ e we are done. If
e ≤ b then from a→c b it follows that either e = a or e < a.

– ch(L(e)) is the broadcast channel:
• If a ∈ V and b ∈ E then a →?(L(e)). By C4(d) in definition 1 we have

that either e ≤ a or a ≤ e. If e ≤ a we are done. If a ≤ e then from
a→c b it follows that either e = b or b < e.

• If a ∈ E and b ∈ V then b →?(L(e)). By C4(d) in definition 7 we have
that either e ≤ b or b ≤ e. If b ≤ e we are done. If e ≤ b then from a→c b
it follows that either e = a or e < a.

Consider e, e′ ∈ E such that (e, e′) ∈→g
i . By construction we have that

(e, e′) ∈→i, and thus →g
i⊆→i. Consider e, e′ ∈ E such that (e, e′) ∈ (→i \ →g

i

). We show that for some v either (v, e) ∈ E(L(e′)) or (e′, v) ∈ E(L(e)). By
C6(b) − (e) in Definiton 1 there exists v ∈ V such that one of the following
holds.

– ch(L(e′)) 6= ?, ch(L(e′)) ∈ ls(v) and v →c e. By ∗C7 in Definition 7, we
have that (v, e) ∈ E(L(e′)) as required.

https://doi.org/10.1007/978-3-540-45187-7_2
https://doi.org/10.1007/978-3-540-45187-7_2
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– ch(e) 6= ?, ch(L(e)) ∈ ls(v) and e′ →c v. By ∗C7 in Definition 7, we have
that (e′, v) ∈ E(L(e)) as required.

– ch(e′) = ?, v →?(L(e′)) and v →c e. By ∗C7 in Definition 7, we have that
(v, e) ∈ E(L(e′)) as required.

– ch(e) = ?, v →?(L(e)) and e′ →c v. By ∗C7 in Definition 7, we have that
(e′, v) ∈ E(L(e)) as required.

Lemma 2. Given a CTS T , a g-LPO π1 ∈ compg(T ), and an LPO π2 such
that π2 � π1 then π2 ∈ comp(T ).

Proof. Given that π2 � π1, it follows that both π2 and π2 agree on→c⊆ V ×E∪
E × V and only agree on →i⊆ E × E whenever e→i e

′ implies ch(e) = ch(e′).
Hence, it is sufficient to prove that C4(c) − (d) and C6(b) − (e) in Definition 1
hold for π2.
We prove C4(c)− (d). Consider some e ∈ E. We have the following cases.

– ch(L(e)) is a multicast channel:
Consider some v ∈ V such that ch(L(e)) ∈ ls(v). We have to show that
e ≤ v or v ≤ e. By Definition 7 (∗C7), there is some e′ such that one of the
following cases holds.
• (v, e′) ∈ E(L(e)) where v →c e

′. By refinement, we have that if (v, e′) ∈
E(L(e)) then either e ≤ v as required or e′ ≤ e, which implies that v ≤ e.
• (e′, v) ∈ E(L(e)) where e′ →c v. By refinement, we have that if (e′, v) ∈
E(L(e)) then either v ≤ e as required or e ≤ e′, which implies that e ≤ v.

– ch(L(e)) is a broadcast channel:
Consider some v ∈ V such that v →?(L(e)). We have to show that e ≤ v or
v ≤ e. By Definition 7 (∗C7), there is some e′ such that one of the following
cases holds.
• (v, e′) ∈ E(L(e)) where v →c e

′. By refinement, we have that if (v, e′) ∈
E(L(e)) then either e ≤ v as required or e′ ≤ e, which implies that e ≤ v.
• (e′, v) ∈ E(L(e)) where e′ →c v. By refinement, we have that if (e′, v) ∈
E(L(e)) then either v ≤ e as required or e ≤ e′, which implies that e ≤ v.

We prove C6(b) − (e). Consider (e, e′) ∈→i such that (e, e′) ∈ (→i \ →g
i ). By

refinement, we have one of the following cases hold.

– ch(L(e)) is a multicast channel:
• (e′, v) ∈ E(L(e)) for some v. By Definition 7 (∗C7), we have that e′ →c v

and ch(L(e)) ∈ ls(v) as required.
• (v, e) ∈ E(L(e′)) for some v. By Definition 7 (∗C7), we have that v →c e

and ch(L(e)) ∈ ls(v) as required.
– ch(L(e)) is a broadcast channel:
• (e′, v) ∈ E(L(e)) for some v. By Definition 7 (∗C6), we have that e′ →c v

and v →?(L(e)) as required.
• (v, e) ∈ E(L(e′)) for some v. By Definition 7 (∗C6), we have that v →c e

and v →?(L(e′)) as required.

Theorem 1. Given a CTS T , comp(T ) = {π | π � πg ∧ πg ∈ compg(T )}.
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Proof. The proof follows by Lemma 1 and Lemma 2.

Lemma 3. Given a Petri net N and an LPO π1 ∈ comp(N), there exists a
corresponding g-LPO π2 ∈ compg(N) such that π1 � π2.

Proof. Let π2 be the g-LPO obtained from π1 by using→c of π1, setting→g
i= ∅,

and adding the glue relations according to Def. 8.
We have to show that the conditions of Def. 6 hold. Note that by construction

both π1 and π2 agree on →c⊆ V × E ∪ E × V and only disagree in terms of
→i⊆ E × E and the glue.

Consider some e such that L(e) = t ∈ T and (a, b) ∈ E(t). We have to show
that e ≤ a or b ≤ e. By definition we know that a→c b. We have the cases:

– If a = (h, p, i) ∈ V , b ∈ E and (L(a), t) ∈ I. By N4b in Def. 3 we have that
either (i) e ≤ a or (ii) e1, . . . , ej are all the edges such that a →c ek, we
have

∑
k ek(a) = i and for every k, ek < e. If Case: (i) then we are done. If

Case: (ii) then from a →c b it follows that b < e. Note that Case: (ii) does
not apply if ¬f(a).

– If a ∈ E , b ∈ V and (L(b), t) ∈ I. By N4b in Def. 3 we have that either
(i) e ≤ b or (ii) e1, . . . , ej are all the edges such that b →c ek, we have∑
k ek(b) = i and for every k, ek < e. If Case: (i) then from a→c b it follows

that e < a. If Case: (ii) then we are done. Note that Case: (ii) does not apply
if ¬f(b).

– If a = (h, p, i) ∈ V , b ∈ E, (L(c), t) ∈ I, c ≤ a and ¬f(c). By N4b in Def. 3
we have that either (i) e ≤ c or (ii) e1, . . . , ej are all the edges such that
c →c ek, we have

∑
k ek(c) = i and for every k, ek < e. If Case: (i) then by

c ≤ a it follows that e ≤ a. Note that since ¬f(c) there does not exist an
LPO such that Case: (ii) holds.

– If a ∈ E , b ∈ V and (L(c), t) ∈ I, c ≤ a and ¬f(c). By N4b in Def. 3 we have
that either (i) e ≤ c or (ii) e1, . . . , ej are all the edges such that c →c ek,
we have

∑
k ek(c) = i and for every k, ek < e. If Case: (i) then by c ≤ a it

follows that e ≤ a. Note that since ¬f(c) there does not exist an LPO such
that Case: (ii) holds.

Consider some (e, e′) ∈→i. We have to show that either (e′, v) ∈ E(L(e)) for
some v or (v, e) ∈ E(L(e′)). By definition, we have that there exists v ∈ V such
that one of the following holds.

– (L(v), L(e′)) ∈ I and v →c e. By ∗N5 in Def. 8, we have that (v, e) ∈ E(L(e′))
as required.

– (L(v), L(e)) ∈ I and e′ →c v. By ∗N5 in Def. 8, we have that (e′, v) ∈ E(L(e))
as required.

Lemma 4. Given Petri net N , a g-LPO π1 ∈ compg(N), and an LPO π2 such
that π2 � π1 then π2 ∈ comp(N).

Proof. Given that π2 � π1, it follows that both π1 and π2 agree on →c⊆ V ×
E ∪ E × V and only disagree in terms of →i⊆ E × E and the glue.

It is sufficient to prove that N4, items (b) and (c) in Def. 3 hold for π2.
Consider some e ∈ E. We have the following cases.
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– Consider some v ∈ V and e ∈ E such that L(v) ∈ ◦L(e). In order to show
that π2 ∈ comp(N) we have to show that (i) e ≤ v or (ii) e1, . . . , ej are all
the edges such that v →c ek, we have

∑
k ek(v) = i and for every k, ek < e.

Let e′ be the edge such that e′ →c v and f(v). By Def. 8 ∗N5 we have that
(e′, v) ∈ E(L(e)). By refinement, we have that either e ≤ e′, which implies
(i) as required; or v ≤ e which by f(v) and →c implies (ii). For the case
with ¬f(v) we can show by Def. 8 ∗N5 that we can construct a maximal or
infinite order rooted in v with all adjacent elements included in the glue of
e and thus it does not allow e to happen after.

– Consider some v ∈ V and e ∈ E such that L(v) ∈ ◦L(e). In order to show
that π2 ∈ comp(N) we have to show that (i) e ≤ v or (ii) e1, . . . , ej are all
the edges such that v →c ek, we have

∑
k ek(v) = i and for every k, ek < e.

Now, consider every ek such that v →c ek and f(v). By Def. 8 ∗N5 we have
that (v, ek) ∈ E(L(e)) such that f(v). By refinement, we have that either
e ≤ v; or ek ≤ e as required. The case with ¬f(v) does not apply.

– Consider some v, v′ ∈ V and e, e′ ∈ E such that v →c e
′, L(v′) ∈ ◦L(e) and

v′ ≤ v. Let ¬f(v′) then by Def. 8 ∗N5 we have that (v, e′) ∈ E(L(e)). In
order to show that π2 ∈ comp(N) we have to show that e ≤ v′ or e1, . . . , ej
are all the edges such that v′ →c ek, we have

∑
k ek(v′) = i and for every k,

ek < e.

(i) By refinement, we have the option e ≤ v. We need to prove that (if
e ≤ v and given v′ ≤ v then e ≤ v′). By induction on v′ ≤k v, we have
that if k = 0 then v′ = v, (v′, e′) ∈ E(L(e)) and e ≤ v′ as required.
Assume that if e ≤ v and v′ ≤k v then e ≤ v′ holds and prove it for
k + 1. We have v′ ≤k v′′ →c e

′′ →c v then by Def. 8 ∗N5, we have also
that (v′′, e′′), (e′′, v) ∈ E(L(e)) thus, we have that e ≤ e′′ and e ≤ v′′ and
by the induction hypothesis e ≤ v′ as required.

(ii) By refinement, we have the option e′ ≤ e. we will show that this is
not possible for ¬f(v′). Let us assume that e′ ≤ e holds then either
e′ →c v

′′ 6→c (i.e., v′′is maximal) then by Def. 8 ∗N5 we have that
(e′, v′′) ∈ E(L(e)), and thus e ≤ v′′ and e 6≥ v′′, e 6≥ e′ as required; there
is an infinite order σ starting in e′ with every pair of adjacent elements
in σ is in E(L(e)) as in Def. 8 ∗N5, and thus e 6≥ e′ as required

– Consider some v ∈ V and e, e′ ∈ E such that L(v′) ∈ ◦L(e), ¬f(v′) and
v′ ≤ e′. This case is similar to the previous one.

– Consider some e′ ∈ E such that e→i e
′. By refinement, we have one of the

following cases holds.

• (e′, v) ∈ E(L(e)) for some v. By Def. 8 ∗N5, we have that e′ →c v and
(L(v), L(e)) ∈ I as required.

• (v, e) ∈ E(L(e′)) for some v. By Def. 8 ∗N5, we have that v →c e and
(L(v), L(e′)) ∈ I as required.

Theorem 2. Given a PTI-net N , comp(N) = {π | π � πg ∧ πg ∈ compg(N)}.

Proof. The proof follows directly from Lemma 3 and Lemma 4.
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B Proofs for Section 6 (Separating Choice and
Reconfiguration-Forced Interleaving)

Theorem 3. Given a CTS T and two different g-LPOs G1, G2 ∈ compg(N)
then one of the following holds:

1. For some agent i there exists a history hi in both G1 and G2 such that either
hi is maximal in Gα and not maximal G3−α, where α ∈ {1, 2};

2. For some agent i there exists a history hi in both G1 and G2 such that for the
edges e1 and e2 such that hi →c1 e1 and hi →c2 e2 we have L1(e1) 6= L2(e2);

3. or; There is a pair of agents i and i′ and histories hi and hi′ in both G1 and
G2 such that the order between the communications of i and i′ is different
in G1 and G2.

Proof. We define the depth of elements in a partial order as their distance from
the minimal element. Formally, the depth of the minimal element is 0 and all
the initial states (runs of length 1) have depth of 1. The depth of a non-minimal
element o is maxo′∈•o depth(o′) + 1.

We order the elements in a g-LPO by increasing depth. In addition, elements
of the same depth are ordered so that edges appear before vertices and there is
some arbitrary order between edges of the same depth and between vertices of
the same depth. In this order, every element appears after all the elements that
are smaller than it according to ≤. Indeed, if a→c b or a→i b, then the depth
of b is at least the depth of a plus one. Every element has a finite depth and
there is a finite number of elements in every depth. Hence, this order constitutes
a linearization of the elements of the g-LPO.

We prove the theorem by induction according to the order mentioned above.
We are going to mark elements in the partial order as “equivalent” in both G1

and G2.
Consider the minimal element edges in G1 and G2 and their post-sets of runs

of length 1 (depth 1). By definition, these correspond to the initial states of the
different agents. It follows that they are the same. Mark all of them.

Assume that we have marked up to a point in G1 and G2 according to the
induction order. We build the marking so that the maximal marked elements
according to ≤ are all nodes. Obviously, all maximal (according to ≤) marked
elements are incomparable. It follows that we maintain the minimal unmarked
element (in induction order) as an edge. Clearly, this is true for the marking of
the minimal nodes.

Consider the set of unmarked edges in G1 and G2. If both are empty, then
G1 and G2 are the same. Suppose that the set of unmarked edges in (wlog)
G1 is empty and G2 is not empty. Consider the sender participating in the
communication of the first unmarked edge in G2. It must be the case that we
have found an agent i and a history hi that is maximal in G1 and not maximal
in G2. The remaining case is that both G1 and G2 have unmarked edges.

Consider the g-LPO G1. Let e be the minimal unmarked edge in G1 according
to the induction order. Let h1, . . . , hn be •e in G1 with h1 being the sender. As
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all elements of smaller depth than e have been marked, it follows that h1, . . . , hn
have been marked and that they appear also in G2.

Consider a history hi ∈ •e. If hi is maximal in G2 we are done. Otherwise,
let ei be the edge such that hi →c2 ei. If L1(e) 6= L2(ei) we are done as hi
does something different in G1 and G2. The same holds for every j ∈ {1, . . . , n}.
Hence, for every j we have ej exists and L(ej) = L(e).

Suppose that G1 and G2 are different here. This can only happen if there are
at least two agents j and j′ for which ej and ej′ are distinct edges labeled by
the same communication. In particular, n ≥ 2 and the agents in histories hi for
i > 1 are listening to channel ch(L(e)).

However, for ej and ej′ each, there is a unique sender. If h1 is not sending
in G2 then h1 does something different in G1 and G2 and we are done. Wlog,
assume that h1 is the sender of ej . Consider the following options.

– Suppose that one of the agents hi for i > 1 is the sender of ej′ . Then, hi
is a history that receives in G1 and sends in G2. Thus, hi does something
different in G1 and G2.

– Suppose that there exists an additional agent k and a history hk such that
hk is the sender for ej′ . In order not to find a difference between G1 and G2,
it must be the case that hk is a sender of ej′ also in G1 and the set of agents
that participate in ej and ej′ together is the same and they have the same
roles. That is, every agent that is a receiver in G1 is a receiver in G2 and
vice versa. However, as we assumed that G1 and G2 are different, there are
again two options:

• Either the order between ej and ej′ in G1 and G2 is reversed. This
matches the difference 3, where the senders are the agents witnessing
the difference.

• Or the order between ej and ej′ is the same in both G1 and G2. Then,
the matching between senders and receivers in G1 and G2 to ej and ej′

is different. Consider a receiver that moved from listening to (wlog) ej
to ej′ . It follows that this agent participates in an early communication
in G1 (ej) and a later communication in G2 (ej′). This receiving agent
and the sender of ej see a different order of the communication they
participate in (from equal to one before the other).

By induction, unless this process terminates prematurely by finding a differ-
ence, it will visit all of G1 and G2 and show that they are, in fact, equivalent.

Theorem 4. Given a Petri net P and two different g-LPOs G1, G2 ∈ compg(N)
then one of the following holds:

1. There is a node vi in both G1 and G2 such that the number of tokens not
taken from vi in G1 and G2 is different.

2. There is a set of p-histories v1, . . . , vn in both G1 and G2 that participate in
some transition t in Gα but not in G3−α, where α ∈ {1, 2}.
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Proof. We define the depth of a history to be the maximal number of transitions
taken by some token in the history. Formally, the depth of (∅, tε) is 0. The depth
of a p-history (h, p, j) is depth(h)+1. For a t-history e ∈ E, let •e be {h1, . . . , hn},
then the depth of e is maxj depth(hj). Notice, that a t-history e could have other
edges in its preset.

We order the elements in a g-LPO by increasing depth. In addition, elements
of the same depth are ordered so that edges appear before vertices and there
is some arbitrary order between edges of the same depth and between vertices
of the same depth. Clearly, in this order every element appears after all the
elements that are smaller than it according to ≤. Indeed, if a →c b or a →i b,
then the depth of b is at least the depth of a plus one. As every element has a
finite depth and there is a finite number of elements in every depth, it follows
that this order is some linearisation of all the elements in the g-LPO.

We prove the theorem by induction according to the order mentioned above.
We are going to mark nodes and edges that appear in both G1 and G2. Nodes
are marked by the number of tokens in them that we have not handled yet.
When this number is 0 the node is called closed. Otherwise, it is open. Edges are
simply marked (or unmarked). For all marked nodes, we “handle” tokens that
are participating in the same transitions in G1 and G2. Nodes could have tokens
that do not participate in transitions. As we “handle” tokens we mark transitions
continuing from the node as not forming part of the difference between G1 and
G2. Once we mark nodes as closed they are also equivalent in G1 and G2. As we
go through the nodes in G1 in induction order either we find a difference or, if
not, the induction proves that G1 and G2 are equivalent in contradiction to the
assumption.

Both G1 and G2 have the t-history hε = (∅, tε) as minimal element. Mark
it as closed. The p-histories of the form (hε, p,m0(p)) such that m0(p) > 0 are
marked by m0(p). Clearly, as both G1 and G2 start from the initial marking m0

both G1 and G2 have the same nodes marked and they have the same positive
number of tokens.

Assume that we have marked a prefix of G1 and G2 such that all closed nodes
have all their outgoing transitions marked. Furthermore, the number marking a
node is sufficient for all unmarked transitions existing from the node. Clearly,
this is true of the marking of the minimal nodes.

Suppose that there are some open nodes. Choose the minimal open node v
according to the induction order. If there are no unmarked edges connected to v
in both G1 and G2 then mark v as closed. If there is no unmarked edge connected
to v in G1 and there is some unmarked edge connected to v in G2 then we have
found a difference as the number of tokens “left” in v in G1 is larger than in G2.
In this case, we have identified the difference between G1 and G2. Similarly for
the other way around.

The remaining case is when both in G1 and G2 there are unmarked edges
connected to v. Let e be the minimal unmarked edge connected to v in G1. If e is
not connected to v in G2 we are done. Indeed, the preset of e either participate
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in e in G1 and not in G2 or participate in a transition L(e) in different ways in
G1 and G2.

Otherwise, e is connected to v both in G1 and G2. By its construction as a
multiset of place histories, e “takes” the same number of tokens from v in G1

and G2. As e is unmarked, all the other nodes that e takes tokens from have
a sufficient number of unhandled tokens. Again, by e’s structure as a pair of a
multiset and a transition, e connects to exactly the same nodes in G1 and G2

in the same way. Reduce the marking of all predecessors of e by the number of
tokens taken by e from them. If some of them are reduced to 0 then they are
closed. Mark e as well.

If there are no open nodes, then both G1 and G2 are finite and equivalent.
Otherwise, continue handling open nodes by induction.

C Additional Materials for Section 3 and Section 4

C.1 Asynchronous automata

A process is P = (Act, S, s0, δ), where Act is a finite non-empty alphabet, S is a
finite and non-empty set of states, s0 ∈ S is an initial state, and δ ⊆ S×Act×S.
We also write δ : S × Act→ 2S when convenient.

A history h = s0, . . . , sn is a finite sequence such that s0 = s0 and for every
0 ≤ i < n we have si+1 ∈ δ(si, ai) for some ai ∈ Act. The length of h is n + 1,
denoted |h|. For convenience, if h1 = s0, . . . , sn and h2 = s0, . . . , sn, sn+1 such
that sn+1 ∈ δ(sn, an) we write h2 ∈ δ(h1, an) or δ(h1, an, h2). We define hist(P )
to be the set of histories of P .

A finite asynchronous automatonA with n processes isA = (P1, . . . , Pn) such
that each Pi = (Acti, Si, s

0
i , δi) is a process. Let Act =

⋃
i Acti. A global state

of A is S =
∏
i Si and the initial state s0 is (s01, . . . , s

0
n). The global transition

∆ ⊆ S × Act× S is defined as follows:

∆ =

{
((s1, . . . , sn), a, (s′1, . . . , s

′
n))

∣∣∣∣ ∀i . a ∈ Acti → (si, a, s
′
i) ∈ δi and

a /∈ Acti → s′i = si

}
Definition 9 (linear computation). A linear computation of A is a finite
or infinite sequence π = s0, a0, s1, a1, . . . such that s0 = s0, for every i we have
(si, ai, si+1) ∈ ∆, and if π is finite it ends in a state.

We use compl(A) to denote the set of linear computations of A.

C.2 LPO semantics for asynchronous automata

We include the LPO semantics of asynchronous automata. As asynchronous au-
tomata do not have reconfigurations of communication we only need the com-
munication relation and do not use the interleaving order relation. This makes
the notion of glue not relevant for asynchronous automata.

Consider a finite asynchronous automatonA with n processes,A = (P1, . . . , Pn),
such that each Pi = (Acti, Si, s

0
i , δi) is a process. Let Act =

⋃
i Acti.
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Definition 10 (computation). A computation of A is an LPO (O,→c, Σ, Υ, L),
where V ⊆

⋃
i hist(Pi), Σ = V , L(h) = h, and Υ = Act such that:

1. The edge eε such that L(eε) = a for some a is the unique minimal element
according to ≤. For every i, we have s0i ∈ V and eε →c s

0
i .

2. If h ∈ V there is a unique e ∈ E such that e →c h. If |h| > 1, there is also
a unique h′ ∈ V such that h ∈ δ(h′, L(e)) and h′ →c e.

3. For every h ∈ V there is at most one e ∈ E such that h→c e.
4. For every e ∈ E there is I ⊆ [n] such that all the following hold:

(a) LE(e) ∈
⋂
i∈I Acti \

⋃
i/∈I Acti

(b) •e, e• ∈
⋃
i∈I hist(Pi)

(c) For every i ∈ I we have |•e ∩ hist(Pi)| = 1 and |e• ∩ hist(Pi)| = 1

That is, a computation starts from an arbitrary joint edge that leads to
the initial states of all processes. For every transition, the set of participating
processes is all those having the transition’s label in their alphabet. Each partic-
ipating process has a history that is a predecessor of the transition and a history
that is a successor of the transition. The pair of histories that belong to one
process satisfy the transition relation of that process.

In particular, the main result that required the introduction of glued partial
orders for CTS and Petri nets holds already for LPOs: Every two different LPOs
have some process in some (shared) history that does a different action.

D Additional Materials for Section 4 and Section 5

We will use the PTI-net in Fig. 3 (where the multiplicity of unlabelled edges is
1) as a running example to explain our developments and how we handle more
intricate cases.

Example 1 (History construction). Consider the PTI-net in Fig. 3(a). As men-
tioned in Def. 2, every execution is rooted in a special transition tε with tε

• = m0.
That is why, in Fig. 3(b) both LPOs have a minimal element (∅, tε) corresponding
to the history of tε.

Let us focus on the LPO on Fig. 3(b). The history of the place pi for i ∈
{1, 2, 7} is hi = ((∅, tε), pi, tε•(pi)) = (. . . , pi, 1). Note that tε

•(pi) corresponds
exactly to the number of tokens in pi according to the initial marking m0, namely
m0(pi). Accordingly, the history of transition t1 is ({(h1, 1), (h2, 1)}, t1).

In the latter case, •t1(pi) = tε
•(pi) for i ∈ {1, 2}. However, the history of t6

considers the history h5 = (ht2 , p5, 2) of place p5 and the history h6 = (ht2 , p6, 1)
of place p6. That is, ht6 = ({(h5, 1), (h6, 1)}, t6) and •t6(p5) ≤ t2•(p5). Thus, the
other token in p5 does not belong to the history ht6 (and it is “stuck” in p5 (or
rather h5) becuase it does not have a matching token in p6).

Example 2 (LPO construction). The structure on Fig. 3(b) which represents only
one possible LPO, we will consider the construction of such LPO according to
Def. 3.
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p1 p2

t1

p3 p4

t2 t3

p5 p6

p7

t4

p8

t5

p9 t6

p10

2

p1 p2

(∅, tε)

(S1, t1)

p3 p4

(S2, t2)

p5 p6

p7

(S4, t4)

p8

(S5, t5)

p9 (S6, t6)

p10

(a) Petri net with Inhibitor arcs (b) One possible LPO (and g-LPO) computations

Fig. 3. Extended PTI-net with nontrivial reconfigurations

The structure on Fig. 3(b) represents an LPO rooted in (∅, tε) (according to
N1), with →c respecting the structure of the PTI-net (according to N2-N3) and
with→i (the dashed arrows) referring to reconfiguration points according to N4
as follows. Notice that we just write the names of places rather than the full
p-histories.

LPO : (S4, t4)→i (S1, t1) and (S5, t5)→i (S2, t2). That is, the history (S4, t4)
happens before (S1, t1) and the history (S5, t5) can only happen before (S2, t2).
Note that (S5, t5) cannot happen after (S2, t2) because it does not satisfy N4b
which ensures that all tokens are removed from place p5 before (S5, t5) can hap-
pen. Note that t2 in the PTI-net puts two tokens in p5 and t6 only consumes one,
and thus one token gets stuck in p5 disabling the execution of t5 permanently.
By restricting attention to interleaving semantics, this LPO gives rise to the fol-
lowing interleavings: 〈t4, t5, t1, t2, t6〉, and 〈t4, t1, t5, t2, t6〉, where t4 is ordered
with respect to the block 〈t1, t2〉 and t5 is ordered with respect to 〈t2, t6〉.

Example 3 (g-LPO construction). Consider the PTI-net in Fig. 3(a), Def. 8 and
the structure on Fig. 3(b) without the dashed arrows, which corresponds to a
unique g-LPO as follows.

The structure of Fig. 3(b) consists of the LPO from Example 2. Note that
the relation →c of the latter LPO is respected according to N1-∗N4. Moreover,
(S4, t4)→i (S1, t1) is dropped and is replaced with a glue relation (demonstrated
with red colouring) for transition t4 according to the first two items of E(t) ∗N5.
Furthermore, (S5, t5)→i (S2, t2) and the impossibility of (S5, t5) happening after
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(S6, t6) are replaced with a glue relation (demonstrated with orange colouring)
for t5 according to the last three elements of E(t) ∗N5.
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