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ABSTRACT 
 

Background: The extremely preterm infant is at risk of lifelong 
neurodevelopmental impairments due to brain injuries or abnormal 
neurovascular development. Mechanisms are largely unknown and biomarkers 
for adverse outcomes are sparse. The growth factor insulin-like growth factor 
(IGF)-1 is a key regulator of neurovascular developmental processes and 
endogenous levels are low following preterm birth. 
Aim of the thesis: To investigate the impact of growth factors on 
neurovascular development, e.g. retinopathy of prematurity (ROP), brain 
injury, brain volumes measured by magnetic resonance imaging, and 
neurodevelopmental outcome in preterm infants and in an animal model. In 
addition to identify possible biomarkers for abnormal neurovascular 
development in preterm infants.  
Materials and Methods: Paper I: Associations between serum glucose levels, 
serum IGF-1, and ROP were explored in preterm infants (n=117) and in an 
oxygen-induced retinopathy/hyperglycemia mice model including IGF-1 
substitution treatment. Paper II: Longitudinal serum Neurofilament Light 
(NfL, biomarker for axonal injury) levels were evaluated in preterm infants 
(n=221) as a biomarker for ROP, brain injury, and neurodevelopmental 
outcome at 2 years of age. Paper III: Longitudinal serum growth factor levels 
were correlated with total and regional brain volumes at term in extremely 
preterm infants (n=49). Paper IV: Longitudinal serum levels of NfL and IGF-
1 and the association to neurodevelopmental outcomes at early school age were 
investigated (n=72).  
Results: Paper I: Hyperglycemia was associated with lower IGF-1 levels, 
increased number of any ROP and with ROP severity. Hyperglycemia 
decreased endogenous IGF-1 expression, and IGF-1 treatment decreased ROP-
associated vascular changes in the mice model. Paper II: NfL levels increased 
after birth and remained high, with increased levels independently associated 
with ROP development. High NfL levels were associated with unfavorable 
neurodevelopmental outcomes at 2 years. Paper III: Low serum IGF-1 levels 
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were independently associated with reduced total brain, white matter, cortical 
grey matter, deep grey matter, and cerebellar volumes. Paper IV: Unpublished 
results, see Paper IV. 
Conclusion: IGF-1 may have a beneficial role in brain development and may 
have a protective role in ROP development. NfL may serve as a biomarker for 
ROP and adverse neurodevelopmental outcome.  
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neurodevelopment, BSID, IGF-1, NfL 

ISBN 978-91-8069-107-9 (PRINT)  
ISBN 978-91-8069-108-6 (PDF) 
  

SAMMANFATTNING PÅ SVENSKA 
Barn som föds mycket för tidigt löper en ökad risk för akuta sjukdomar och 
skador som påverkar ögonen och hjärnan. Dessa tillstånd kan i sin tur leda till 
långsiktiga svårigheter för barnen. En mindre andel barn får svåra 
funktionsnedsättningar såsom cerebral pares (CP) eller intellektuell 
funktionsnedsättning, medan betydligt fler får mindre uttalade motoriska 
problem, inlärningssvårigheter eller synnedsättning. På senare tid har man 
också förstått att många för tidigt födda barn får autism eller ADHD (attention 
deficit hyperactivity disorder). Risken är störst för de barn som föds extremt 
för tidigt, dvs mer än tre månader före fullgången tid.  

Den vanligaste och allvarligaste sjukdomen som drabbar ögonen hos för tidigt 
födda barn är ROP (retinopathy of prematurity). Den kännetecknas av en 
sjuklig tillväxt av blodkärlen i näthinnan och kan vid utebliven behandling ge 
en allvarlig synpåverkan. Många barn får också en påverkan på hjärnan, 
antingen i form av direkta skador (framförallt hjärnblödningar) men också på 
grund av en påverkad tillväxt och utveckling av hjärnan. Många kliniska 
riskfaktorer är gemensamma för ROP och hjärnpåverkan, exempelvis svår 
lungsjukdom eller bristande nutrition hos det nyfödda barnet. Det är därför 
sannolikt att det finns gemensamma mekanismer och också gemensamma 
markörer för sjukdom/skada och senare funktionsnedsättning. Trots 
omfattande forskning är skademekanismerna till stora delar okända och det 
finns idag inget enkelt och säkert sätt att tidigt identifiera riskbarn. 

I denna avhandling studeras sambandet mellan tillväxtfaktorer i blodet, 
framförallt IGF (insulin-like growth factor)-1, och ROP, hjärnans utveckling 
och senare funktionspåverkan. IGF-1 har stor betydelse för hjärnans och ögats 
normala utveckling och man vet att för tidigt födda barn har lägre nivåer i blod 
än fullgångna barn. Våra studier visar att IGF-1 är lågt hos för tidigt födda barn 
med högt blodsocker och att dessa barn har en ökad risk för svår ROP. För att 
bekräfta sambandet mellan IGF-1 och ROP använde vi också en djurmodell 
och fann att risken för ögonsjukdomen minskade då möss fick behandling med 
IGF-1. Vi undersökte också IGF-1 i relation till hjärnans utveckling och fann 
att hela hjärnan, men också specifika områden i hjärnan, var volymmässigt 
mindre i fullgången tid hos barn som haft låga IGF-1 nivåer i blodet efter 
födelsen.  

Vi undersökte också om så kallade hjärnskadeproteiner i blodet kunde fungera 
som en tidig markör för senare ögonsjukdom och hjärnpåverkan. Vi fann att 
markören NfL (neurofilament light), som stiger vid skador på nervceller, låg 



 

were independently associated with reduced total brain, white matter, cortical 
grey matter, deep grey matter, and cerebellar volumes. Paper IV: Unpublished 
results, see Paper IV. 
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högt hos för tidigt födda barn under veckorna efter födelsen. Barnen som hade 
de högsta nivåerna hade också en förhöjd risk för ROP och utvecklades sämre 
då de bedömdes vid 2 års ålder. 

Vi har även undersökt kopplingen mellan nivåerna av IGF-1 och NfL tidigt 
efter födelsen med utvecklingen och neuropsykiatriska diagnoser i skolåldern. 
Dessa data är ännu inte publicerade, men återfinns i avhandlingen. 

Våra studier tyder på att IGF-1 är viktigt för hjärnans utveckling och för att 
skydda mot ROP hos extremt för tidigt födda barn, men ytterligare studier 
krävs innan vi kan säga detta med säkerhet. NfL är en lovande tidig markör för 
ROP och avvikande utveckling, men man behöver undersöka vid vilken 
tidpunkt (ålder) prover skall tas och vilka gränsvärden som är kopplade till 
ökad risk. 
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production and IGF-
1 levels and 
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neovascularization 
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Serum levels of 
NfL increased 
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birth and 
decreased 5-6 
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High levels of NfL 
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independently 
associated with 
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IGF-1 could be 
beneficial for 
early brain 
growth in the 
extremely 
preterm infant. 

Unpublished 
conclusion, 
see attached 
Paper IV.  



iv 
 

 

 

THESIS AT A GLANCE 
 Paper I Paper II Paper III Paper IV 
 

A 

I 

M 

S 

To investigate 
associations 
between serum 
glucose levels, 
serum IGF-1, and 
ROP in extremely 
preterm infants 
and in an 
experimental 
ROP/hyperglyce-
mia model. 

To evaluate 
longitudinal 
postnatal serum 
levels of NfL and 
GFAP in very 
preterm infants as 
possible 
biomarkers for 
ROP and neuro-
developmental 
outcome at 2 
years. 

To investigate 
links between 
longitudinal 
serum levels of 
growth factors 
IGF-1, BDNF, 
PDGF, and 
VEGF and brain 
volumes at term 
equivalent age 
in extremely 
preterm infants.  

To investigate 
associations 
between early 
postnatal serum 
levels of IGF-1 
and NfL and 
long-term 
neuro-
developmental 
outcome at early 
school age in 
extremely 
preterm infants. 

 

        

M 

E 

T 

H 

O 

D 

S 

Clinical 
observational 
study, and 
experimental 
oxygen-induced 
retinopathy mice 
model of ROP. 

117 infants, <28 
weeks GA at The 
Queen Silvia 
Children's 
Hospital, 
Gothenburg and 
Skåne University 
Hospital, Lund. 

Included from 
2005 to 2007, and 
2013 to 2015. 

Clinical 
observational 
study.  

221 infants, <32 
weeks GA at The 
Queen Silvia 
Children's 
Hospital, 
Gothenburg, 
Skåne University 
Hospital Lund, 
and Uppsala 
University 
Hospital, Uppsala.  

Included from 
1999 to 2002, 
from 2005 to 
2007, and from 
2013 to 2015. 

Clinical 
observational 
study.  

49 infants <28 
weeks GA at 
The Queen 
Silvia Children's 
Hospital, 
Gothenburg.  

Included 2013 
to 2015. 

Clinical 
observational 
study. 

72 infants, <28 
weeks GA at 
The Queen 
Silvia Children's 
Hospital, 
Gothenburg. 

Included 2013 
to 2015. 

v 
 

 
 

Abbreviations: BDNF: brain-derived neurotrophic factor, GA: gestational age, 
GFAP: glial fibrillary acidic protein, IGF-1: insulin-like growth factor 1, NfL: 
neurofilament light, PDGF: platelet-derived growth factor, ROP: retinopathy of 
prematurity, VEGF: vascular endothelial growth factor 

THESIS AT A GLANCE 
 Paper I Paper II Paper III Paper IV 
 

 

 

R 

E 

S 

U 

L 

T 

S 

Hyperglycemia was 
associated with 
decreased levels of 
IGF-1 and increased 
ROP severity. In the 
oxygen-induced 
retinopathy model, 
reduced insulin-
signaling suppressed 
liver IGF-1 
production and IGF-
1 levels and 
increased 
neovascularization 
whereas exogenous 
IGF-1 improved 
retinal 
revascularization and 
decreased 
pathological neo-
vascularization.  

Serum levels of 
NfL increased 
following preterm 
birth and 
decreased 5-6 
weeks postnatally. 
High levels of NfL 
during postnatal 
weeks 2-4 were 
independently 
associated with 
ROP and 
unfavorable 
neuro-
developmental 
outcome at 2 years 
corrected age 
measured by 
Bayley scale of 
infant 
development. 

High serum 
levels of IGF-1 
during the first 4 
postnatal weeks 
were 
independently 
positively 
associated with 
total brain 
volume, white 
matter volume, 
deep and 
cortical grey 
matter volume, 
and cerebellar 
volume at term 
equivalent age.  

Unpublished 
results, see 
attached 
Paper IV.  

C 
O 
N 
C 
L 
U 
S 
I 
O 
N 
S 

IGF-1 might have a 
preventive role in the 
development of 
ROP. 

NfL shows 
promise in 
predicting risk of 
ROP and adverse 
neurodevelop-
mental outcome. 

Higher levels of 
IGF-1 could be 
beneficial for 
early brain 
growth in the 
extremely 
preterm infant. 

Unpublished 
conclusion, 
see attached 
Paper IV.  



William Hellström 

1 

1 INTRODUCTION 

1.1 PRETERM BIRTH 
 
Preterm birth is a major medical challenge in modern medicine. Annually, 15 
million infants are born preterm1. Preterm birth is most commonly categorized 
by gestational age (GA) at birth, Figure 1. In Sweden, approximately 5.5% are 
born preterm, just below 1% are born very preterm, and extremely preterm 
infants account for 0.3% of all births, corresponding to 300-400 infants per 
year2.  
 

 

 
 
Figure 1. Classification of preterm birth by gestational age at birth3. GA: 
gestational age, w: weeks 

 

1.1.1 SURVIVAL RATES 
 
Preterm birth complications are the number one cause of death in infants below 
5 years of age4. Over the last decades, the number of surviving infants born at 
low GAs has increased, leading to a growing population of immature infants5.  
The improved survival rate is the result of rapid advances in maternal and 
perinatal care, including the introduction of maternal prenatal injections of 
steroids for fetal lung maturation, surfactant treatment, and stricter guidelines 
regarding antibiotics, oxygen therapies, thermal care, and improved nutritional 
strategies6-10. Data on Swedish survival rates are shown in Figure 2.  
 
According to recent data from the second Swedish Extremely Preterm Infants 
in Sweden Study (EXPRESS2), including all infants born before 27 weeks GA 
between 2014 and 2016, the one-year survival-rate was 77%5. In similar 
nationwide cohorts in Norway (Norwegian Extreme Prematurity Study-2 
[NEPS-2]), France (Etude Epidémiologique sur les Petits Ages Gestationnels-
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2 [EPIPAGE-2]) and UK/Ireland (EPICure 2), the one-year survival rates were 
67%, 55%, and 51% respectively11-13. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. Neonatal deaths (0–27 days), percentage of total births, by 
gestational age (weeks), 1973–2018, adapted from data from 
Socialstyrelsen14. 
 

1.1.2 NEURODEVELOPMENTAL CHALLENGES IN 
PRETERM INFANTS 

 
The prevalence of life-long neurodevelopmental disabilities remains high in 
preterm infants15. Several major organ systems are affected following preterm 
birth, however, the biggest concern for long-term sequelae is the brain. A 
recent Swedish cohort study, including 383 Swedish infants born before 24 
weeks GA from 2007 to 2018, reported that 75% had at least one 
neurodevelopmental disorder16. 

Over the last decades, the general risk of severe macroscopic brain injuries 
such as severe intraventricular hemorrhage (IVH), periventricular hemorrhagic 
infarction (PVHI) and cystic periventricular leukomalacia (cPVL), with strong 

0

20

40

60

80

19
73

19
75

19
77

19
79

19
81

19
83

19
85

19
87

19
89

19
91

19
93

19
95

19
97

19
99

20
01

20
03

20
05

20
07

20
09

20
11

20
13

20
15

20
17

Pe
rc

en
ta

ge
 (%

)

Year

Neonatal mortality rate per 
gestational age and year in 

Sweden

-27 28-31 32-36 37+

William Hellström 

3 

associations with the most severe forms of sequelae such as cerebral palsy (CP) 
and intellectual disability has decreased in preterm infants17,18. Instead, a larger 
group of surviving preterm infants develop less pronounced neurological, 
cognitive, and behavioral disorders of a more subtle and complex nature. The 
underlying etiology is not fully known, nor is the proportion of what has 
historically been defined as structural brain injury and disruptions in the 
normal brain maturation as a result of preterm birth. Although the beneficial 
role of early detection and early intervention programs on long-term 
neurodevelopmental outcomes is well described19, simple and reliable 
biomarkers to identify high-risk infants in the neonatal period are still lacking. 

 

1.2 DEVELOPMENT OF THE BRAIN AND OF 
THE EYE 

 
During the third trimester, the brain undergoes rapid development in the 
strictly regulated intrauterine environment, and several critical processes, 
including neuronal development and migration, synaptic development, and 
selective apoptosis, take place in a hierarchic fashion based on both cellular 
and genetic mechanisms Figure 320-23.  
 

 
 
 
Figure 3. Development of the human brain, schematic overview. GW: 
gestational weeks 
 
The third trimester is also the time of differentiation and proliferation of glial 
cells, including astrocytes, oligodendrocytes (OLs), microglial cells, Schwann 
cells, and ependymal cells. These cells have specific tasks and interact in a 
spatiotemporal scheme for optimal development which is specific to the human 
brain and sensitive to insult24.  
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1.2.1 WHITE MATTER DEVELOPMENT 
 
Myelination is initiated by OLs and is essential for effective signaling across 
the axon, and in providing axonal trophic support and protection25,26. The 
development and progression of the OL lineage cells occur in a strict order 
during brain development, and perinatal exposure to adverse events following 
preterm birth alters cellular maturation27. The OL lineage cells originate from 
the subventricular zone and radial glial progenitor cells, and the major cell type 
at 28 weeks GA is pre-OLs, which account for 90% of the cell population28. 
Myelination is initiated at approximately 30 weeks GA and is peaking during 
the first year of life29-31. Myelination develops regionally and is initiated 
centrally, starting in the visual system and expanding to the periphery in an 
occipital-frontal direction32. In the preterm infant, white matter dysmaturation 
and white matter injury (WMI) are proposed to be accompanied by grey matter 
disturbances, either by altered neurogenesis or disturbed neuronal 
maturation33.  
 

1.2.2 NEURONAL PROLIFERATION AND 
ORGANIZATION 

 
Neuronal proliferation is initiated during early gestation and peaks at 2-4 
months GA in the cerebrum and later in the cerebellum34. At 28 weeks GA, the 
specific position and organization of the cortical layers are microscopically 
visible20. The transient subplate is visible from 14-15 weeks GA and is most 
prominent before 35 weeks GA35. It is the initial cortical area getting thalamic 
sensory input, and is considered an area of crucial importance in several key 
processes in early cortical development and function35. It involves migrating 
cells and extrinsic axons which later will transform into white matter following 
myelination and it exceeds the cortical plate in thickness by 4 times at the 
beginning of the third trimester, only to diminish in size during the first 6 
months of postnatal life21. Disruption of normal development in this zone 
following preterm birth and/or exposure to asphyxia and neonatal intensive 
care will severely impact sensory input20. It is suggested that subplate neurons 
are affected following periventricular leukomalacia (PVL)36. Further, the 
important process of neurogenesis is an ongoing event during the final 
trimester and is suppressed following preterm birth37. Most of the infants 
investigated in this thesis were born prior to the third trimester and thus 
exposed to altered physiological environment during this period. 
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1.2.3 CORTICAL EXPANSION  
 
During the third trimester, the complex human cortex develops, and cortical 
folding is increased by 4 times38. In utero, the fetal brain increases in weight, 
from 80 grams in GA 22 weeks to around 400 grams at term equivalent age 
(TEA)39. During this more advanced stage of development, the superficial 
layers are, in a disproportional manner, increased in thickness21. The 
spatiotemporal dynamics of cortical development have been investigated 
thoroughly. Despite this, the underlying processes are still poorly understood.  
 

1.2.4 RETINAL DEVELOPMENT 
 
The development of the human eye via the embryonic diencephalon is initiated 
early in the first trimester. However, the development of the retina takes place 
both prenatally and postnatally40. The retina constitutes a part of the central 
nervous system sharing neuronal and vascular components with the brain. The 
underlying mechanisms of retinal vascularization are similar to those observed 
in cerebrovascular development41. The vascular development of the human eye 
is finalized in utero just prior to term birth. Angiogenesis in the maturing retina 
is facilitated by vascular endothelial growth factor (VEGF), expressed by 
neuroglia41. Several studies suggest that retinal neuro- and vascular 
morphology reflects cerebral microstructural integrity, brain injury, and 
dysmaturation42-44.  
 

1.3 NEUROVASCULAR INJURY AND 
DEVELOPMENTAL DISTURBANCES IN THE 
PRETERM INFANT 

 
The preterm infant is at high risk of cerebral insults, however, the number of 
preterm infants with a macroscopic injury cannot explain the high prevalence 
of neurodevelopmental impairment in surviving preterm infants45. Current 
knowledge suggests an altered development of the brain in the preterm, also in 
infants without macrostructural brain injury46,47. While magnetic resonance 
imaging (MRI) at TEA and brain ultrasound during the neonatal period will 
identify macroscopic injuries, early and reliable biomarkers for abnormal 
neurovascular development and brain dysmaturation are lacking.  
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1.2.3 CORTICAL EXPANSION  
 
During the third trimester, the complex human cortex develops, and cortical 
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spatiotemporal dynamics of cortical development have been investigated 
thoroughly. Despite this, the underlying processes are still poorly understood.  
 

1.2.4 RETINAL DEVELOPMENT 
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1.3 NEUROVASCULAR INJURY AND 
DEVELOPMENTAL DISTURBANCES IN THE 
PRETERM INFANT 
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knowledge suggests an altered development of the brain in the preterm, also in 
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identify macroscopic injuries, early and reliable biomarkers for abnormal 
neurovascular development and brain dysmaturation are lacking.  
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1.3.1 INTRAVENTRICULAR HEMHORRAGE 
 
The most common macrostructural brain injury in preterm infants is IVH. 
Fragility of the highly vascularized capillary network in the germinal matrix 
and variability in cerebral blood flow are proposed as underlying 
mechanisms48. IVH diagnosed by cranial ultrasound was originally classified 
by Papile et al., Table 1. However, in recent years, an updated classification 
was presented by Volpe et al., primarily redefining Grade I as Germinal matrix 
hemorrhage and Grade IV as PVHI34,49. 
 
 
Table 1. Original intraventricular hemorrhage (IVH) grading according to 
Papile et al.49. 
 

Grade Extension of hemorrhage  

I Subependymal hemorrhage 
II Intraventricular hemorrhage without ventricular distension  
III Intraventricular hemorrhage with ventricular distension  
IV Intraventricular hemorrhage with parenchymal hemorrhage  

 
 
IVH occurs almost exclusively during the first postnatal week, and around 90% 
occurs during the first 3 days of life. IVH grade III and IV/PVHI remain severe 
injuries affecting approximately 10% of extremely preterm infants with 
persisting neurodevelopmental impairment, most importantly CP, in as many 
as 50-75%50-52. In relation to GA, severe IVH/PVHI affects approximately 
21%, 8%, and 2% of infants born before 25, 27, and 31 weeks GA, 
respectively53. Recent studies also suggest that low-grade IVH (grade I and II), 
are associated with reduced cortical volume, reduced blood flow in grey 
matter, as well as slightly increased risk of CP54-57. 
 

1.3.2 WHITE MATTER INJURY AND 
DYSMATURATION 

 
The dominant pathology underlying neurodevelopmental disorders in preterm 
infants is WMI with affected oligodendroglia, accompanied by impaired 
axonal development. More subtle alterations in white matter development 
following preterm birth are generally referred to as either diffuse white matter 
damage or WMI. It may, however, be more suitable to characterize it as 
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abnormal or arrested maturation, reflected by an impaired organization and 
reduced volumes of white matter. Studies have reported some degree of WMI 
in up to 50% of infants born preterm, however, the interstudy variability is 
high58,59. The previously not-so-uncommon macroscopic focal PVL is now 
only rarely observed. Instead, a more common form of non-cystic or diffuse 
WMI is seen in infants born very and extremely preterm.  

1.3.2.1  PATHOPHYSIOLOGY AND CELLULAR MECHANISMS 

The main pathogenetic mechanism in diffuse WMI is an affected 
oligodendroglia cell lineage and, more specifically, a decrease in pre-OLs, 
Figure 4. This results in an increase of oligodendroglia progenitors but these 
cells do not have the capacity for complete development and are unable to 
complete differentiation to mature myelinating cells. The disruption of normal 
pre-OLs maturation and failure of differentiation results in hypomyelination60. 
In addition, OL dysmaturation is accompanied by damage to immature 
axons61,62. The axonal injury is characterized by the disintegration of axons and 
neurons in the cerebral cortex, cerebellum, and basal ganglia24.  
 
Pathogenic factors implicated in diffuse brain injury and dysmaturation include 
ischemia and inflammation. Activation of immune responses during critical 
neurodevelopmental phases has lasting neurological and neurocognitive 
effects63,64. Potential targets for inflammation, other than oligodendroglial 
development, include endogenous stem cells, neuronal migration and survival, 
synaptogenesis, as well as epigenetic changes65.  
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Figure 4. Schematic overview of fetal and perinatal development of OPCs, 
pre-OLs, and brain myelination. The population of pre-oligodendrocytes peaks 
in the third trimester (dark blue line), while the oligodendrocyte precursor cells 
(blue line) peak earlier in gestation. The initiation of myelination occurs 
prenatally and is accelerated following birth (light blue line). Following preterm 
birth, infants are heavily exposed to perinatal insults during the most active 
stage of pre-oligodendrocyte proliferation, leading to impaired differentiation to 
myelin-producing oligodendrocytes. This results in the increased number of 
pre-oligodendrocytes and impaired myelination, which characterizes WMI in 
the preterm infant (dotted dark blue and dotted light blue line). Figure adapted 
from original figure by Van Tilborg et al. 201827, figure data originating from 
Back et al., 200128 and Buser et al., 201260. OPC: Oligodendrocyte progenitor 
cell, OL: oligodendrocyte  
 

1.3.3 PRETERM BRAIN VOLUMES 
 
Very and extremely preterm infants have disturbed brain growth, and brain 
maturation is delayed. The underlying cause is likely multifactorial and is 
suggested to include both primary brain injury and a secondary disturbance in 
genetically programmed brain maturation66-69.  
 
At TEA, global brain volumes are generally reduced in preterm infants70-72, and 
the volume reduction is more prominent in infants with lower GA at birth71-74. 
Several studies have shown alterations in cortical grey matter, basal ganglia, 
cerebral white matter, and corpus callosum size in preterm infants compared 
with term controls24,75,76. This pattern seems to persist during childhood. Ment 
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et al. reported disturbed cerebral maturation between the ages of 8 to 12 years 
in preterm infants compared to term born controls, with both less white matter 
gain and grey matter reduction over time77. Further, in a recent meta-analysis 
by Schmitz-Koep B et al., including data from 538 preterm infants and 
investigating brain volumes from 1.1 to 28.5 years of age, the cerebral grey 
matter was continuously reduced in preterm infants up to early adulthood and 
white matter volumes were notably low in adolescence in preterm teenagers 
compared to term controls78. However, some studies have also reported larger 
regional volumes, primarily in the frontal and parieto-temporal cortex in the 
preterm infant compared to term controls and in brain regions involved in 
visual processing in the extremely preterm infant70,73,79-81.  
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1.3.3.1 FACTORS LINKED TO VOLUMETRIC BRAIN                                        
1.3.4.1 ALTERATIONS IN PRETERM INFANTS  
 

Figure 5. Risk factors for altered brain volume in preterm infants based on 
clinical associations. BPD: bronchopulmonary dysplasia, IUGR: intrauterine 
growth restriction, NEC: necrotizing enterocolitis, ROP: retinopathy of 
prematurity. Created with BioRender.com. 

Several clinical risk factors may influence brain morphology around TEA in 
preterm infants, Figure 5. A more comprehensive list of perinatal risk factors 
associated with brain morphology at TEA is provided on the following pages 
(summary based on review by Boardman et al.82), Table 2.   
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Table 2. Factors associated with brain morphology alterations in the preterm 
infant.  

Variable Population Result Author 
Maternal 
anxiety 

251 infants ≤ 
32 weeks 
gestational 
age (GA) 

Increased stressful maternal 
events were associated with 
higher axial, radial, and mean 
diffusivity in the left uncinate 
fasciculus as well as higher 
axial diffusivity in the right 
uncinate fasciculus at term 
equivalent age (TEA) 
 

Lautarescu et 
al. 202083 
 
 
 
 
 

Maternal 
antide-
pressants 

177 infants < 
32 weeks GA  

At magnetic resonance 
imaging (MRI) performed at 
32 and 40 weeks, maternal 
SSRI exposure was associated 
with increased fractional 
anisotropy (FA), decreased 
measures of diffusivity in 
superior white matter, and 
decreased FA in basal ganglia 
and thalamus 
 

Podrebarac 
et al. 201784 

Chorio- 
amniotis 

90 infants ≤ 
32 weeks GA  

Histological chorioamnionitis 
associated with lower FA in 
several cerebral anatomic 
regions including  
in the inferior longitudinal 
fasciculi, cingulum cingulate 
gyri, centrum semiovale, genu 
and limbs of the internal and 
external capsule, and 
cerebellum at TEA 
 

Anblagan et 
al. 201685 

Intra 
uterine 
growth 
restriction 
(IUGR) 

28 preterm 
infants  

IUGR infants had reduced 
intracranial volume (ICV) and 
cortical grey matter at early 
postnatal MRI and at TEA 

Tolsa et al. 
200486 
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Variable Population Result Author 
Genetic/ 
Epi-
genetic 

83 preterm 
infants  
 
 
72 infants 
<33 weeks 
GA 
 
 
194 infants 
<33 weeks 
GA 

Two genetic variants were 
associated with white matter 
abnormality  
 
Associations between fatty 
acid pathways and variability 
in cerebral white matter 
development 
 
Polygenic risk scores for 
neuropsychiatric disease 
associated with lentiform 
volume at TEA. 
 

Boardman et 
al. 201487 
 
 
Krishnan et 
al. 201688  
 
 
 
Cullen et al. 
201989 
 

Pain 155 infants 
<32 weeks 
GA 
 
 
 
 
 
 
51 infants 
<32 weeks 
GA 
 

Early and late skin breaks. 
Large number of early skin-
breaks were associated with 
less thalamic volume increase 
at MRI at 32 and 40 weeks 
post menstrual age as well as 
variations in thalamocortical 
pathways 
 
Invasive procedures associated 
with decreased total brain, 
basal ganglia, and thalamus 
volume as well as decreased 
functional connectivity 
 

Duerden et 
al. 201890 
 
 
 
 
 
 
 
Schneider et 
al. 201891  

Medi-
cations  

138 infants 
<32 weeks 
GA 
 
 
 
 
58 infants 
<28 weeks 
GA 

MRI performed at 32 and 40 
weeks showed that Midazolam 
intake was associated with 
smaller hippocampus and 
increased mean diffusivity  
 
 
Higher morphine exposure 
before TEA associated with 
lower total brain and cerebellar 
volume at TEA MRI 
 

Duerden et 
al. 201692 
 
 
 
 
 
Tataranno et 
al. 202093 
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Variable Population Result Author 
Protein 
and 
energy 
intake 

49 infants 
<30 weeks 
GA 
 
 
 
 
 
131 infants 
<31 weeks 
GA 
 
 
 
 
 
 
 
42 infants ≤ 
30 weeks GA 

High energy intake and lipid 
intake the first 2 postnatal 
weeks associated with 
increased total brain and basal 
nuclei volume, as well as FA 
in selected WM tracts 
 
 
Cumulative fat and enteral 
intakes in the first 3 weeks of 
life were linked to increased 
cerebellar, basal ganglia and 
thalami volumes. Cumulative 
enteral, caloric, and fat intake 
were linked to FA in the 
posterior limb of the internal 
capsule 
 
Increased lipid and energy 
intake the first 2 postnatal 
weeks associated with 
improved MRI scores at TEA 
 

Schneider et 
al. 201894 
 
 
 
 
 
 
Coviello et 
al. 201895 
 
 
 
 
 
 
 
 
Beauport et 
al. 201796 

Breast 
milk 
intake 

68 infants < 
32 weeks GA 
 

Infants receiving breast milk 
had increased total brain 
volume, cerebellar, and 
amygdala-hippocampus 
volumes, and improved 
microstructural organization in 
the cerebellum, corpus 
callosum, and posterior limb of 
capsula interna, as compared 
to infants receiving formula 
 

Ottolini et al. 
202097 
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Variable Population Result Author 
Retino- 
pathy of  
prematur-
ity (ROP) 

52 infants 
<31 weeks 
GA  
 
 
98 infants 
<28 weeks 
GA 

ROP (any grade) associated with 
reduced total brain, reduced 
unmyelinated white matter and 
cerebellar volume 
 
Severe ROP associated with lower 
FA in posterior WM and lower 
regional volumes 
 

Sveinsdó-
ttir et al. 
201898  
 
 
Glass et 
al. 201799 

Lung 
morbidity 
 
 
 
 
 

119 infants 
<32 weeks 
with birth 
weight 
<1500 g + 
21 term-
born infants  
 
93 preterm 
infants  

The severity of respiratory 
illness/days on ventilator associated 
with deep nuclear grey matter (GM) 
volume/relative ICV and nuclear 
GM volume  
 
 
 
Infants with chronic lung disease 
had increased radial diffusivity as 
well as decreased FA in the 
centrum semiovale, corpus 
callosum, as well as the inferior 
longitudinal fasciculus 
 

Inder et 
al. 200571 
 
 
 
 
 
 
Ball et al. 
2010100 

Necrotiz- 
ing 
entero- 
colitis 
(NEC) 

155 infants 
<30 weeks 
GA 
 
 
192 infants 
<30 weeks 
GA 
 
33 infants 
<32 weeks 
GA 

NEC with sepsis was associated 
with decreased diameter of the 
cerebellum and increased unilateral 
ventricular diameter  
 
NEC/sepsis was associated with 
white matter abnormality at TEA 
 
 
Surgically treated NEC was 
associated with more severe white 
matter injury at TEA than 
spontaneous intestinal perforation 
surgery  
 

Lee et al. 
2014101 
 
 
 
Shah et 
al. 
2008102 
 
Shin et al. 
2016 103 
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1.3.3.2  THE CONSEQUENCES OF ALTERED BRAIN      
1.3.4.2  VOLUMES - ASSOCIATIONS WITH                      
1.3.4.2  NEURODEVELOPMENT OUTCOME 

Reduced brain volumes in preterm infants at TEA are associated with 
neurodevelopmental outcome at 2 and 5 years of age, including motor, 
neurosensory, cognitive, and behavioral impairments104-107. Both associations 
between global cerebral volumes and regional brain volumes and 
neurodevelopmental outcomes have been investigated. In volumetric studies 
in the preterm infant, the brain is commonly subdivided into white matter and 
cortical and deep grey matter. In addition, the cerebellum, hippocampus, and 
corpus callosum are frequently targeted in analyses. As summarized by Kieviet 
et al.108, reductions in total brain volume, white and grey matter, cerebellar 
volume, corpus callosum, and hippocampus volumes are linked to lower 
intelligence quotient in children born very preterm109-117. Further, smaller total 
brain volumes were associated with impaired executive functions116. Reduced 
white matter volumes are linked to reduced language, memory, and executive 
functions116,117 and grey matter volume to memory116. Cerebellar volumes are 
associated with memory, motor skills, and executive functions116, and corpus 
callosum with language, memory, motor skills, and executive 
functions112,116,118,119. 

 

1.3.4 RETINOPATHY OF PREMATURITY 
 
The preterm infant is at risk of impaired neurovascular development, resulting 
in the retinal disease retinopathy of prematurity (ROP). ROP is a major reason 
for loss of vision in children, and annually approximately 20,000 children 
become blind or severely visually disabled as a result of ROP120. The incidence 
of ROP varies globally due to heterogeneity in critical care regimes and in 
regional survival. In Sweden, approximately 32% of infants born <31 weeks 
GA develop any form of ROP, and in preterm infants born <27 weeks GA, 
20% require treatment121,122.  

Schematically, ROP is a two-phased disease, with an initial phase of vascular 
arrest, due to hyperoxia which downregulates VEGF, followed by a second 
phase of uncontrolled vessel growth/neovascularization orchestrated by 
growth factors including insulin-like growth factor (IGF)-1, and VEGF, as 
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1.3.3.2  THE CONSEQUENCES OF ALTERED BRAIN      
1.3.4.2  VOLUMES - ASSOCIATIONS WITH                      
1.3.4.2  NEURODEVELOPMENT OUTCOME 

Reduced brain volumes in preterm infants at TEA are associated with 
neurodevelopmental outcome at 2 and 5 years of age, including motor, 
neurosensory, cognitive, and behavioral impairments104-107. Both associations 
between global cerebral volumes and regional brain volumes and 
neurodevelopmental outcomes have been investigated. In volumetric studies 
in the preterm infant, the brain is commonly subdivided into white matter and 
cortical and deep grey matter. In addition, the cerebellum, hippocampus, and 
corpus callosum are frequently targeted in analyses. As summarized by Kieviet 
et al.108, reductions in total brain volume, white and grey matter, cerebellar 
volume, corpus callosum, and hippocampus volumes are linked to lower 
intelligence quotient in children born very preterm109-117. Further, smaller total 
brain volumes were associated with impaired executive functions116. Reduced 
white matter volumes are linked to reduced language, memory, and executive 
functions116,117 and grey matter volume to memory116. Cerebellar volumes are 
associated with memory, motor skills, and executive functions116, and corpus 
callosum with language, memory, motor skills, and executive 
functions112,116,118,119. 

 

1.3.4 RETINOPATHY OF PREMATURITY 
 
The preterm infant is at risk of impaired neurovascular development, resulting 
in the retinal disease retinopathy of prematurity (ROP). ROP is a major reason 
for loss of vision in children, and annually approximately 20,000 children 
become blind or severely visually disabled as a result of ROP120. The incidence 
of ROP varies globally due to heterogeneity in critical care regimes and in 
regional survival. In Sweden, approximately 32% of infants born <31 weeks 
GA develop any form of ROP, and in preterm infants born <27 weeks GA, 
20% require treatment121,122.  

Schematically, ROP is a two-phased disease, with an initial phase of vascular 
arrest, due to hyperoxia which downregulates VEGF, followed by a second 
phase of uncontrolled vessel growth/neovascularization orchestrated by 
growth factors including insulin-like growth factor (IGF)-1, and VEGF, as 
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illustrated in Figure 6123. Neovascularization could lead to detachment of the 
retina if left untreated123. 

 

Figure 6. Retinopathy of prematurity, with a bi-phasic progression involving 
vaso-obliteration, followed by neovascularization. Neovascularization could 
result in retinal detachment and blindness if untreated. Created with 
BioRender.com. 

Many risk factors have been associated with ROP, such as oxygen exposure 
(concentration, variability and duration), immaturity, low birth weight, and 
prolonged mechanical ventilation124. However, a wide range of other, both 
maternal and perinatal factors, such as insufficient nutrition, insulin treatment, 
sepsis, thrombocytopenia, anemia, blood transfusions, and elevated serum 
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glucose levels are also associated with ROP124. Treatment regimes for more 
severe forms of ROP now include laser therapy and anti-VEGF therapy125, the 
latter being easier to administer intravitreally but with unknown long-term 
systemic effects.  

1.3.4.1  RETINOPATHY OF PREMATURITY AND              
1.3.4.1  NEURODEVELOPMENT 

Although the mechanisms are not fully understood, severe ROP has commonly 
been associated with later neurodevelopmental impairment126,127 and reduced 
brain volumes98. Recent results indicate an impact of preterm birth on 
microstructures of the central nervous system128-130. As previously mentioned, 
recent research has emphasized the possible role of the retina as a proxy for 
cerebral integrity131. Clinical studies in adults have suggested a link between 
brain abnormalities such as MRI-characterized deep white matter 
hyperintensities, microbleeds, and neurodegenerative morbidities and the 
structural integrity and complexity of the retinal vasculature networks, 
commonly measured and quantified by fractal dimensions44,132,133. The 
association between ROP and neurodevelopmental outcome as well as 
common risk factors for ROP and impaired brain development, suggest that 
there may be common mechanisms and possibly common biomarkers for 
neurovascular injury of the eye and brain. 
 

1.4 DIAGNOSIS OF BRAIN INJURY AND 
ABNORMAL MATURATION 

 
Imaging techniques have improved enormously in recent years and now 
provide robust bedside examinations as well as technically sophisticated 
diagnostic options to detect subtle abnormalities. 
 

1.4.1 CRANIAL ULTRASOUND 
 
Cranial ultrasound has been a cornerstone for early detection of cerebral 
injuries and malformations in newborn infants for almost 50 years. It enables 
rapid, non-invasive, bedside detection and monitoring of intraventricular 
hemorrhages but also of macroscopic white matter abnormalities, including 
cysts and infarctions as well as ventricular dilatation, which are all linked to 
neurodevelopmental disorders. Although cranial ultrasound is an excellent tool 
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in detecting and monitoring macroscopic injuries and allows repeated 
examination in very immature infants without radiation, it is currently inferior 
to MRI in detecting subtle brain anomalies, e.g., white matter abnormalities. 
 

1.4.2 MAGNETIC RESONANCE IMAGING  
 
The addition of MRI and, more recently, advanced post-processing techniques, 
have provided valuable new insights into preterm brain development. Various 
approaches to quantify brain development and injury in the preterm include 
volumetric MRI, diffusion weighted MRI with diffusor tensor imaging and 
measures including fractional anisotropy, mean, axial and radial diffusitivity, 
proton MR spectroscopy, and resting-state functional MRI, and the predictive 
ability for assessing long-term neurocognitive outcomes seems very 
promising134. The signal intensity of neonatal, predominantly unmyelinated 
WM, has been specifically addressed and developed in recent years135,136. 

 

1.5 LONG-TERM NEURODEVELOPMENTAL 
OUTCOMES IN THE PRETERM 

 

1.5.1 COGNITIVE OUTCOME  
 
While the risk of severe motor injury is high following extremely preterm birth, 
the risk of suboptimal cognitive development is even higher, with 
approximately a third of extremely preterm infants classified as having 
intellectual disability at early school age147. A meta-review including 3,500 
preterm infants showed, on average, a 12-point lower intelligence quotient (IQ) 
score compared to those born at term, and a very tight relationship between 
GA at birth and cognitive outcome137, but IQ is also affected by other factors 
such as sex and maternal education138. Studies have also repeatedly shown that 
early low IQ persists into adulthood, with relatively small variability139. 
Further, very preterm infants or very low birth weight infants have impaired 
executive functions, and attention, also when adjusted for IQ140-143. In addition 
to being at increased risk of global cognitive impairment, many infants have 
speech disorders affecting language processing, short-term phonological 
memory, and articulation144. 
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1.5.1.1  MAJOR COGNITIVE IMPAIRMENT 

Intellectual disability is an important cognitive impairment among those born 
preterm, and is defined by an IQ below 70 (-2 standard deviations [SD]) with 
impaired adaptive skills145. The prevalence of intellectual disability among 
very and extremely preterm infants is high compared to the normal population 
where approximately 0.9% develop intellectual disability146. A Swedish study 
showed an odds ratio (OR) of 14.5 when born at 24 weeks GA compared with 
term born infants, with decreasing risk with increasing GA at birth146. 
According to the Swedish EXPRESS-study, including infants born <27 weeks 
GA, the prevalence of moderate to severe cognitive impairment (<-2SD) was 
11% at 2.5 years of age and increased to 30% at early school age147,148.  
 
1.5.1.2  MINOR COGNITIVE IMPAIRMENT 

While intellectual disability is common in extremely preterm infants, an even 
larger group develops learning difficulties and sub-optimal IQ, generally 
defined as IQ 70-85. In the EPICure study, extremely preterm infants scored 
lower than peers for cognition, reading, and mathematics, with a 10-fold 
increase in the need for special educational support at the age of 11 years149. In 
the Swedish EXPRESS study, the prevalence of mild cognitive impairment 
was 24% at 2.5 years of age and 30% at early school age147,148.  
 

1.5.2 MOTOR OUTCOME 
 
1.5.2.1  MAJOR MOTOR IMPAIRMENT – CEREBRAL PALSY 

CP is characterized by a non-progressive disruption to the motor center of the 
developing brain150. In extremely preterm infants, CP prevalence range from 
7-20%, and the risk of developing CP is inversely related to GA at birth151,152. 
CP is strongly linked to macroscopic brain injuries, such as severe IVH/PVHI 
but most importantly marked WMI153 with an OR for CP at 5 for severe 
IVH/PVHI and 15 for WMI154. CP is also linked to a wide range of underlying 
intrauterine pathologies, such as fetal growth restriction, placental vascular 
pathologies, infections in utero, and inflammation155. CP is heterogenous with 
a large variability in motor function. It is functionally classified according to 
the Gross Motor Function Classification System, a 5-level system based on 
individual mobility. CP is strongly associated with other neurodevelopmental 
disorders such as cognitive impairment, poor vision and neuropsychiatric 
disorders. Novak et al. performed a systemic review in 2012 and concluded 
that approximately 1 out of 2 children with CP had an intellectual disability, 1 
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out of 3 lacked the ability to walk, and 1 out of 4 lacked speech156. In the 
EXPRESS study, 76% had at least one additional neurodevelopmental 
impairment at 6.5 years of age157 and approximately 45% of children with CP 
develop autism or attention deficit hyperactivity disorder (ADHD), with an 
association to WMI158. 
  
1.5.2.2  MINOR MOTOR IMPAIRMENT 
 
Although only a small fraction of infants born preterm are affected by CP, a 
much larger group have less pronounced motor difficulties. The most common 
mild motor difficulty in the preterm population is developmental coordination 
disorder (DCD). DCD involves impaired motor function that interferes with 
daily life that cannot be explained by CP or other impairments159. 
 
In the Swedish EXPRESS study, 37% had DCD at early school age, with clear 
links to cognitive and behavioral disturbances160. Internationally, the 
prevalence within the preterm community usually varies between 10-50% 
depending on classification161-164. In children born term, the corresponding 
number is 5-6% at early school age165. DCD is associated with increased risk 
of cognitive deficits and neuropsychiatric disorders in particular166-168. Preterm 
infants diagnosed with DCD experience lasting effects throughout 
childhood169.  
 

1.5.3 NEUROSENSORY IMPAIRMENTS IN THE 
PRETERM INFANT 

 
According to the EXPRESS study, 8.8% of children born before 27 weeks GA 
had severe visual impairment, and 2.1% were blind at early school age170. In 
addition, almost 38% of had some major ophthalmologic abnormality, 
including strabismus and refractive errors, compared to 6.2% in term-born 
children. The risk of visual and eye impairments is strongly linked to GA and 
can, to a certain degree, be the result of severe ROP requiring treatment171,172. 
Furthermore, preterm infants are at higher risk of impairment of more complex 
tasks involving the visual system, such as visual perception and motor 
integration, which are also associated with cognitive function, fine motor 
development, and academic performance in school173,174. These problems are 
generally defined as cerebral visual impairment, i.e. visual problems resulting 
from pathology of the brain rather than the eye175,176.  
 
A relatively small number of preterm infants develop hearing impairments, 
although the risk is increased compared to term infants. In Sweden, less than 
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1% had severe hearing disorders at 2.5 years of age, and 2% (0.5% severe) had 
moderate to severe hearing disorders at early school age147,148. 
 

1.5.4 NEUROPSYCHIATRIC DISORDERS 
 
In recent years, neuropsychiatric disorders including autism spectrum 
disorders (ASD) and ADHD have been highlighted as major long-term 
challenges in preterm infants. In the first report from the EPICure study, 23% 
of extremely preterm infants at the age of 11 fulfilled the criteria for at least 
one neuropsychiatric disorder, with high prevalence of ASD and ADHD of the 
inattentive subtype177,178.  
 
1.5.4.1  AUTISM SPECTRUM DISORDERS 
 
Following the EPICure study, several other studies have reported an odds ratio 
of up to 10 for developing ASD following preterm birth179-181. A Swedish 
population-based study of infants <28 weeks GA reports 6% autism between 
1973 and 2013, and a recent study of infants <24 weeks GA reports 24% ASD, 
while ASD is found in approximately 1% of the general population with a 
strong genetic component16,182,183. The preterm population also differs from 
the general population regarding specific risk factors, such as low GA, 
abnormal placenta findings, and exposure to inflammation16,180,181,184,185. The 
link to neuroinflammation is highlighted by the increased risk for autism 
following chorioamnionitis in the preterm group186. In the experimental 
setting, neuroinflammation in the immature brain results in autism-like 
behavior187. All together, external factors that affect brain development are also 
associated with ASD specifically in the preterm group179,188. 
 
1.5.4.2  ATTENTION DEFICIT HYPERACTIVITY DISORDER 
 
Preterm infants have increased risk of ADHD symptoms and the risk is most 
pronounced for the most immature infants with an OR of 3 compared with term 
infants189. The EPICure study reported that 11% of children born <26 weeks 
GA fulfilled criteria for ADHD, with a predominance for the inattention 
subtype177. In a recent study of children born before 24 weeks GA, 30% had a 
clinical diagnosis of ADHD at school age16. It also appears that the 
sociodemographic and genetic risk have less impact in infants born preterm. 
Instead, as for ASD, clinical risk factors are of importance190.  
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1.6 MECHANISMS  
At preterm birth, the maternal-fetal dyad is disrupted, and the immature infant 
faces extra-uterine challenges during a period of critical maturation, with 
undeveloped organs and without the mother's support to uphold metabolic 
equilibrium. Thus, several factors necessary for normal development are 
significantly altered in the preterm infant compared to the corresponding 
period during fetal life. The maturing preterm brain may be exposed to 
inflammation, hyper/hypoxia, and stress during a time of both nutritional and 
metabolic challenges. As a reference, the newborn brain following term birth 
requires well above 60% of the total energy intake191.  

 

1.6.1 CARBOHYDRATE METABOLISM 
 
In the intrauterine environment, the primary factors influencing the regulation 
of glucose, insulin, and overall fetal growth is placental function and glucose 
control in the mother192. Under normal physiological conditions, the fetus does 
not produce glucose endogenously193 but is dependent on delivery over the 
placenta. There is a linear relationship between maternal glucose levels and 
fetal glucose levels193,194. In contrast, insulin and glucagon do not cross the 
placental barrier195. Thus, the production of these substances relies on fetal 
activity. Studies have shown an essential role of insulin in fetal growth; this 
relationship is especially prominent at 29-40 weeks GA and insulin is also a 
determinator of birth weight193,196.  
 
1.6.1.1  PRETERM GLUCOSE REGULATION 

The exact impact of preterm birth on glucose and insulin functions and 
interactions are largely unknown. The extremely preterm infant depends on 
continuous glucose infusions, but unlike in adults, endogenous glucose 
production is not suppressed by exogenic glucose supplementation. Following 
preterm birth, insulin levels are most commonly reported to be low, and 
pancreatic production is increased after the initiation of oral nutrients197. In 
extremely preterm infants, insulin resistance and a relative insulin deficiency 
are common features of the neonatal period. The first is related to the low 
volumes of skeletal muscles and adipose tissue, which are essential for 
sufficient peripheral glucose uptake198. Other contributing factors might be the 
administration of glucocorticoids and inotropic drugs, which suppress insulin 
secretion and affect insulin resistance199. Also, hepatic regulation of endogenic 
glucose homeostasis might fail following hepatic insulin resistance200,201. The 
compensating mechanism of increased insulin production may fail, thus 
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resulting in a relative insulin deficiency. This has been suggested to be a result 
of the immaturity of β-cells, but infants born extremely preterm with 
hyperglycemia also have faulty processing of pro-insulin to insulin202.  
 
1.6.1.2  HYPERGLYCEMIA 

During the first 2 postnatal weeks, hyperglycemia is seen in around 88% of 
infants with a birth weight <1000 grams203, and it is inversely related to GA 
and maturity204. However, in research and clinically, an absolute threshold for 
hyperglycemia is not agreed upon205. This is likely due to the lack of an exact 
threshold for negative long-term effects. The underlying causes of 
hyperglycemia are likely multifactorial. Increased glucose levels have been 
associated with excessive glucose infusions, steroid treatment, respiratory 
distress syndrome, sepsis, IVH, and reduced white matter206-209. More 
specifically, several independent associations between hyperglycemia, ROP, 
and IGF-1 have been described210,211. 

 

1.6.2 GROWTH FACTORS AND THE PRETERM 
BRAIN 

 
1.6.2.1  INSULIN-LIKE GROWTH FACTOR 1 

IGF-1 is a crucial regulator in pre- and postnatal neurodevelopment212. Preterm 
birth results in low serum concentrations of IGF-1 compared to intrauterine 
levels212. IGF-1 is a 70 amino acid protein with a molecule weight of 7.5kD. It 
is a mediator in the somatotropic axis and predominantly, the protein is 
synthesized in the liver, but also produced by all cell types in the brain. Around 
99 % of the IGF-1 molecules are circulating in the body as a complex with one 
of at least 7 IGF binding proteins (IGFBPs) and a third protein labeled acid-
labile subunit. Around 80% is bound to IGFBP-3, which extends the half-life 
of IGF-1 by decreasing proteolysis. The IGF-1 molecule binds to distinct 
receptors, mainly the IGF-1 R, a membrane-bound receptor consisting of 2 α-
subunits and one β-subunit, structurally resembling a tyrosine-kinase family 
receptor. Downstream mechanisms activate the PI3K/AKT/MAPK 
pathways213. 

1.6.2.1.1  IGF-1 and the retina  

IGF-1 is a known regulator of retinal development214. Previous studies indicate 
a role of IGF-1 in vascular growth in an experimental model of ROP as a 
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resulting in a relative insulin deficiency. This has been suggested to be a result 
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permissive factor in VEGF-activated endothelial cell proliferation which 
occurs during initial ROP phases213. In the preterm infant, decreased 
circulating IGF-1 levels have been linked to ROP development213. 
 
1.6.2.1.2  IGF-1 and the brain 

In rats, IGF-1 reaches peak expression in the brain in the perinatal period with 
ongoing neurogenesis in several brain areas such as cerebellum, hippocampus, 
and olfactory bulb215. After the completion of this phase of neuronal 
proliferation, IGF-1 expression decreases216. The expression of the IGF-1 
receptor is located in cortical grey matter, hippocampus, cerebellum, 
hypothalamus, and spinal cord, and the expression decreases following term 
birth. Overall, locally produced and secreted IGF-1 seems to play an important 
role in neurodevelopment. 

IGF is a highly mitogenic protein improving cell survival, proliferation, 
migration, and growth. IGF-1 also impacts myelination, plasticity, and 
formations of synapses212. In the early development of the brain, IGF-1 
promotes glucose uptake in neurons217. It is involved in all phases of neuronal 
maturation. In vitro studies have shown enhanced neuronal progenitor cell 
proliferation and maintenance and an increased number of neurons produced 
from neural stem cells after exposure to IGF-1218. It is also established that 
IGF-1 promotes subsequent steps of the differentiation of neurons, astrocytes, 
and OLs219. 

1.6.2.1.3  IGF-1 in the preterm infant 

In preterm infants, decreased levels of IGF-1 are associated with poor 
growth220. In term infants, higher levels of IGF-1 in the umbilical cord are 
associated with increased fetal body size221. Further, associations between low 
levels of IGF-1 and IVH, ROP, bronchopulmonary dysplasia (BPD), and 
necrotizing enterocolitis (NEC) have been documented in preterm infants222. 
Low IGF-1 levels are also linked to altered brain volumes223 as well as 
unfavorable neurodevelopmental outcomes at 2 years of age224 in preterm 
infants. In a recent randomized trial investigating the role of exogenous IGF-
1/IGFBP-3 treatment in extremely preterm infants, a tendency toward fewer 
IVH was observed225. 

1.6.2.1.4  IGF-1 and autism 
 
A few studies have presented data indicating a link between autism and 
dysregulated IGF-1/PI3K/AKT/mTOR signaling226. IGF-1 levels are also 
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altered in an age-dependant manner in children with ASD227-229. In addition, 
IGF-1 has neuroprotective functions in the immature brain following 
neuroinflammartion230,231 which in turn has been associated with autism-like 
behaviour. 
 
1.6.2.2  BRAIN-DERIVED NEUROTROPHIC FACTOR  

Levels of Brain-Derived Neurotrophic Factor (BDNF) are low following 
preterm birth232. BDNF is of central importance during different 
neurodevelopmental phases, with an important role in axon outgrowth, 
synaptic formation, stabilization, and transmission, as well as neural 
plasticity233-236. Further, BDNF has neuroprotective properties following 
oxidative injury as well as excitotoxic injury237,238. High expression of BDNF 
is found in the hippocampus, amygdala, cerebral cortex as well as 
cerebellum239,240. Further, there is a possible link between IGF-1 and BDNF 
function241. In preterm infants, low endogenous BDNF levels have been linked 
to unfavorable neurodevelopmental outcomes in early childhood242. 

 

1.7 MARKERS FOR NEUROVASCULAR 
INJURY  

 
Early biomarkers for neurodevelopmental disorders in preterm infants would 
be of great importance for early diagnosis and thus enabling adequate support 
and therapeutic interventions. In the adult population, several brain injury 
markers are in clinical use for diagnosis, assessment of progression of disease, 
and evaluation of therapeutic interventions243-245. No such markers are in 
clinical use in preterm infants, and most studies in the neonatal setting have 
focused on term infants246 or preterm infants with major brain injuries while 
few have focused on neurodevelopmental outcome. In term infants, elevated 
brain injury markers with association to asphyxia and severity of hypoxic-
ischemic encephalopathy have been found in blood and cerebrospinal fluid 
(e.g., tubulin-associated unit [Tau], S100B, and neuron-specific enolase-
[NSE])247-253. In this thesis, we focused on neurofilament light (NfL), a brain-
specific peptide used as a marker for neuro-axonal injury, and glial fibrillary 
acidic protein (GFAP), a marker for astroglial cell injury. 
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1.7.1 NEUROFILAMENT LIGHT 
 
NfL is a brain-specific peptide that is part of the neuronal cytoskeleton and 
used as a marker for axonal injury as it can be detected in peripheral blood as 
well as cerebrospinal fluid. In adults, it is used to evaluate the severity and 
clinical course of neurodegenerative diseases243-245, and hypoxic and traumatic 
brain injuries254,255. In term infants, increased NfL has been associated with 
asphyxia, hypoxic-ischemic encephalopathy, and abnormal brain MRI248,256. 
Data on NfL in preterm infants are sparse, but an inverse relationship between 
circulating NfL and GA has been observed257. Recent studies also report an 
association between high levels of NfL and severe peri-/intraventricular 
hemorrhage/infarction in preterm infants as well as later poor motor outcome 
or death257,258. The same research group observed an increase in serum NfL 
levels during the first week of life257.  
 

1.7.2 GLIAL FIBRILLARY ACIDIC PROTEIN 
 
GFAP is the main interfilament of the most abundant cell in the brain, the 
astrocyte. Following astrocyte death it is released into serum and has been used 
as a prognostic marker and to evaluate the course of neurodegenerative 
diseases in adults259,260. In comparison with NfL, GFAP seems to be circulating 
in peripheral blood for shorter periods in adults following brain injury and a 
detection span of hours rather than weeks has been suggested261,262. In term 
infants, GFAP has been suggested as a brain injury marker263, but cord blood 
GFAP did not predict asphyxia, grade of encephalopathy or outcome in a 
recent study264. As for NfL, studies evaluating GFAP levels in preterm infants 
are few. A recent case-control study investigating the potential of GFAP as a 
biomarker for IVH or PVL in infants born preterm during the first 3 days of 
life did not show any elevated serum levels in the IVH/PVL group265. One 
study reported elevated levels of serum GFAP days 1-4 in low birth weight 
infants with periventricular WMI266.  
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2 AIM 
Preterm infants are at considerable risk of altered brain development, 
neurovascular injury and neurodevelopmental disorders. Endogenous levels of 
growth factors, involved in important neurodevelopmental processes, such as 
IGF-1 are low following preterm birth. Additional studies are required to 
elucidate the exact role of IGF-1 in the preterm infant. Further, the clinical 
benefits of identifying infants at high risk of altered neurodevelopment would 
be high, but the clinical usefulness of biomarkers used in the adult population, 
such as the axon-specific NfL, has not been studied in the preterm population. 
 
The overall aim of this thesis was to investigate mechanisms and potential 
markers of abnormal neurovascular development and injury in preterm infants. 
The specific aims were to investigate associations of endogenous growth 
factors, such as IGF-1, and systemic brain injury biomarkers with abnormal 
brain development, neurovascular injury, and long-term adverse outcomes in 
preterm infants. 
 
The specific aims of each paper were as follows 
 
Paper I To investigate the relationship between hyperglycemia, the 

growth factor IGF-1, and the development of the 
neurovascular eye disease ROP in preterm infants and in an 
experimental model. 

 
Paper II  To evaluate longitudinal serum levels of brain injury 

biomarkers NfL and GFAP in preterm infants, and to explore 
links between these biomarkers and neonatal morbidities as 
well as neurodevelopmental outcomes at 2 years of age.  

 
Paper III  To investigate the connection between IGF-1 and brain 

development by utilizing brain volume segmentation at TEA 
MRI examinations in extremely preterm infants. 

 
Paper IV To evaluate early postnatal levels of IGF-1 and NfL in 

association with long-term neurodevelopmental outcomes, 
including cognitive, motor, and neuropsychiatric diagnoses. 
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3 PATIENTS AND METHODS 
Data from 3 clinical cohorts were utilized in this thesis. In addition, an 
experimental model for ROP was included in Paper I. 

3.1 STUDY POPULATION 

3.1.1 THE DONNA MEGA COHORT (PAPERS I-IV) 
 
The Donna Mega cohort includes infants born extremely preterm at The Queen 
Silvia Children’s Hospital, Gothenburg, Sweden 2013-2015. In total, 138 
extremely preterm infants were born during the study period and 90 infants 
were included in the final study cohort with a mean (SD) GA at birth of 25.4 
(1.4) weeks. Thirty-nine infants (43.3%) were females. The primary aim of the 
original randomized trial was to investigate the effect of a parenteral lipid 
emulsion containing fish oil on ROP, and the main findings with detailed 
description of the study inclusion process were published by Najm et al. 
2017267. Infants were randomized to either Clinoleic®, or SMOFlipid®, MRI 
was performed at TEA, and children were examined at 2 years corrected age 
using Bayley scales of infant development (BSID)-III and at 5.5 years 
chronological age using Wechsler Preschool and Primary Scale of Intelligence 
(WPPSI)-IV and Movement Assessment Battery for Children (MABC)-2. 
 

3.1.2 THE LUND COHORT (PAPERS I-II) 
 
The Lund cohort comprises 74 infants out of 169 infants born before 32 weeks 
GA treated at the Skåne University Hospital, Lund, Sweden 2005-2007. The 
mean (SD) GA at birth was 27.1 (2). Thirty-five infants (47%) were females. 
Follow-up was performed at 2 years corrected age using BSID-II.  
 

3.1.3 THE GOTHENBURG/UPPSALA COHORT 
(PAPER II) 

 
The Gothenburg/Uppsala cohort includes 84 infants born <32 weeks GA 1999-
2002 with a median (range) GA at birth of 27.2 (23.0-31.8) weeks. Forty-four 
(52%) infants were female. Seventy infants were admitted to The Queen Silvia 
Children’s Hospital, Gothenburg, Sweden, and 14 infants were treated at 
Uppsala University Hospital, Uppsala, Sweden.  

William Hellström 

29 

3.1.4 EXPERIMENTAL RETINOPATHY MODEL 
(PAPER I) 

 
The oxygen-induced retinopathy mice model of ROP was initially described 
by Smith et al. in 1994 and developed further during later years268,269. It is 
designed to study retinal development and mimics the immature state of the 
retinal blood vessels following preterm birth270. The model allows for the study 
of ongoing postnatal development of the retinal vasculature and underlying 
molecular mechanisms, isolated from the influence of other developmental 
processes271. The model is schematically described in Figure 7. In short, the 
model encompasses both a quantifiable vaso-obliterative phase, corresponding 
to the first phase of ROP, and a second phase with neovascularization peaking 
at approximately postnatal day 17269. 
 
 

 
Figure 7. Schematic overview of the oxygen-induced retinopathy (OIR) model, 
mimicking the course of ROP in the preterm infant. P: postnatal day. Created 
with BioRender.com. 
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3.2 ETHICAL PERMITS  
 
The Donna Mega cohort (Papers I-IV) 
The blood sampling, MRI examinations and collection of clinical data were 
covered by ethical permit issued by the Regional Ethical Review Board in 
Gothenburg, Sweden (application Dnr 303-11, approved 2011-09-06). 

The Lund cohort (Papers I-II) 
The blood sampling, and collection of clinical data were covered by ethical 
permit issued by Regional Ethical Review Board in Lund, Sweden (application 
Dnr LU 87-03, approved 2003-02-12). 
 
The Gothenburg/Uppsala cohort (Paper II) 
This study was approved by the Ethical Review Board at Uppsala University, 
Sweden (Dnr 99033, approved 1999-03-08) and the Regional Ethical Review 
Board of Gothenburg, Sweden (application Dnr 547-98, approved 1998-11-
16).  

Experimental ROP model (Paper I) 
The experimental ROP model (oxygen-induced retinopathy in mouse) was 
performed at Boston Children’s Hospital/Harvard Medical School, Boston, 
MA, USA. The study was executed in agreement with the Association for 
Research in Vision and Ophthalmology Statement for the Use of Animals in 
Ophthalmic and Vision Research. The study was authorized by the Boston 
Children’s Hospital Institutional Animal Care and Use Committee (19-04-
3913R).  
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3.3 MEASUREMENTS AND EVALUATIONS OF 
OUTCOME  

3.3.1 RETINOPATHY OF PREMATURITY  
 
Screening for ROP was performed according to Swedish national guidelines 
including infants born at <32 weeks GA prior to July 2012 and <31 weeks GA 
from July 2012 and onwards. Ophthalmological examinations started at 
postnatal age 5-6 weeks and at the earliest at postmenstrual age 31 weeks. 
Screening was performed by dilating the pupils during the screening period 
until approximately TEA, when the retinal vasculature had grown out in the 
periphery (biweekly to twice a week, based on the presence and severity of 
ROP). Generally, infants undergo a median of 7 examinations, a number that 
increases with decreasing GA.  
 
3.3.1.1  EXPERIMENTAL OXYGEN-INDUCED RETINOPATHY 
3.3.1.1  MODEL 
 
In the oxygen-induced retinopathy mice model of ROP, a hyperglycemic, 
hypoinsulinemic state was induced by streptozotocin destruction of β cells in 
the pancreas. The C57BL/6 mouse was used. Following the induction of 
hyperglycemia, mice pups were exposed to recombinant IGF-1 and at the end 
of the study hepatic samples were taken and prepared for Ribonucleic Acid 
(RNA) analysis according to a strict protocol. 
 

3.3.2 NEURODEVELOPMENTAL EVALUATION 
 
Since 2015 all Swedish infants born <28 weeks GA are included in a national 
follow-up program with the aim of early identification of neurodevelopmental 
deviations and early referral for further evaluation272. Mandatory visits with 
reports to the neonatal national patient registry (Swedish Neonatal Quality 
Register [SNQ]) are scheduled at 2 years corrected and 5.5 years chronological 
age and all infants undergo brain stem audiometry and eye examination upon 
discharge from neonatal care. The following standardized tests and validated 
questionnaires are included in the program. 
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permit issued by Regional Ethical Review Board in Lund, Sweden (application 
Dnr LU 87-03, approved 2003-02-12). 
 
The Gothenburg/Uppsala cohort (Paper II) 
This study was approved by the Ethical Review Board at Uppsala University, 
Sweden (Dnr 99033, approved 1999-03-08) and the Regional Ethical Review 
Board of Gothenburg, Sweden (application Dnr 547-98, approved 1998-11-
16).  

Experimental ROP model (Paper I) 
The experimental ROP model (oxygen-induced retinopathy in mouse) was 
performed at Boston Children’s Hospital/Harvard Medical School, Boston, 
MA, USA. The study was executed in agreement with the Association for 
Research in Vision and Ophthalmology Statement for the Use of Animals in 
Ophthalmic and Vision Research. The study was authorized by the Boston 
Children’s Hospital Institutional Animal Care and Use Committee (19-04-
3913R).  
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3.3 MEASUREMENTS AND EVALUATIONS OF 
OUTCOME  

3.3.1 RETINOPATHY OF PREMATURITY  
 
Screening for ROP was performed according to Swedish national guidelines 
including infants born at <32 weeks GA prior to July 2012 and <31 weeks GA 
from July 2012 and onwards. Ophthalmological examinations started at 
postnatal age 5-6 weeks and at the earliest at postmenstrual age 31 weeks. 
Screening was performed by dilating the pupils during the screening period 
until approximately TEA, when the retinal vasculature had grown out in the 
periphery (biweekly to twice a week, based on the presence and severity of 
ROP). Generally, infants undergo a median of 7 examinations, a number that 
increases with decreasing GA.  
 
3.3.1.1  EXPERIMENTAL OXYGEN-INDUCED RETINOPATHY 
3.3.1.1  MODEL 
 
In the oxygen-induced retinopathy mice model of ROP, a hyperglycemic, 
hypoinsulinemic state was induced by streptozotocin destruction of β cells in 
the pancreas. The C57BL/6 mouse was used. Following the induction of 
hyperglycemia, mice pups were exposed to recombinant IGF-1 and at the end 
of the study hepatic samples were taken and prepared for Ribonucleic Acid 
(RNA) analysis according to a strict protocol. 
 

3.3.2 NEURODEVELOPMENTAL EVALUATION 
 
Since 2015 all Swedish infants born <28 weeks GA are included in a national 
follow-up program with the aim of early identification of neurodevelopmental 
deviations and early referral for further evaluation272. Mandatory visits with 
reports to the neonatal national patient registry (Swedish Neonatal Quality 
Register [SNQ]) are scheduled at 2 years corrected and 5.5 years chronological 
age and all infants undergo brain stem audiometry and eye examination upon 
discharge from neonatal care. The following standardized tests and validated 
questionnaires are included in the program. 
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3.3.2.1  AT 2 YEARS CORRECTED AGE 

3.3.2.1.1  Bayley scales of infant development-III 
 
Developmental evaluation including cognitive, language, and motor scales 
performed by a trained psychologist. In study cohorts prior to the 
implementation of the national program BSID-II was used. Scores are not 
immediately comparable between BSID-II and BSID-III, and adjustments of 
cut-off scores are needed273,274.  
 
3.3.2.1.2  Modified Checklist for Autism in Toddlers (M-CHAT)  
 
M-CHAT is a two-stage parent questionnaire used to screen for early signs of 
autism (www.m-chat.org). 
 
3.3.2.2  AT 5.5 YEARS CHRONOLOGICAL AGE 
 
3.3.2.2.1  Wechsler Preschool and Primary Scale of Intelligence IV (WPPSI-
3.3.2.2.1  IV) 
 
An intelligence test for children up to 7.5 years with subscales used to calculate 
verbal, performance and full-scale IQ. Performed by a trained psychologist. 
 
3.3.2.2.2  Movement Assessment Battery for Children 2 (MABC-2)  
 
Standardized test of multiple motor domains performed by a trained 
physiotherapist. The test can be used to diagnose DCD with a cut-off at <5th 
percentile for definite and <15th percentile for suspect motor impairment. 
 
3.3.2.2.3  The Strengths and Difficulties Questionnaire (SDQ) 
 
Brief emotional and behavioural questionnaire for parents and teachers.  
 

3.3.3 VOLUMETRIC SEGMENTATION AT MAGNETIC 
RESONANCE IMAGING 

 
MRI-based volumetric segmentation of the brain of the extremely preterm 
infant is a complex process with specific challenges compared to the 
corresponding examination of the mature brain. Challenges include low 
contrast-to-noise ratio and signal-to-noise ratio, in addition to high variability 
in size and morphology during this intensive phase of development. In Paper 
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III, volumetric segmentation was performed on T2-weighted images, which 
were merged into a 3D image volume for each infant. The regional anatomical 
volumes were retrieved based on a volumetric segmentation procedure, 
previously specified by Makropoulos et al. in the Developing human 
connectome project275. The regional volumes were classified based on to the 
atlas presented by Gousias et al.276. The automatic anatomical segmentation 
was atlas-based, performed by utilizing the Developing brain Region 
Annotation with Expectation-Maximization (DrawEM), which is a module of 
the Medical Image Registration Toolkit136,275. Following a quality scoring 
protocol, insufficiently defined volumetric segmentations were removed. The 
final step included a merging of anatomical subregions into cortical grey and 
deep grey matter, white matter, and cerebellum, as well as total brain volume 
(after removing cerebrospinal fluid volume and ventricular volume), Figure 8. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8. Volumetric segmentation of the neonatal brain. GMd: grey matter 
deep, GMc: grey matter cortical, Crb: cerebellum, Vnt: ventricles, WM: white 
matter  
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3.3.4 BLOOD SAMPLING REGIMES 
 
Study cohorts in this thesis include very preterm and extremely preterm infants 
and serial blood samples were retrieved according to cohort-specific regimes. 
An overview of blood sampling regimes is shown in Figure 9.  

 
Figure 9. Blood sampling regimes in study cohorts. *Cord blood samples also 
available. PND: postnatal day, PMA: postmenstrual age, w: weeks. Created 
with BioRender.com. 
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3.3.5 LABORATORY ANALYSES  
 

Details on laboratory analyses used are presented in each paper. 

3.3.5.1  MEDIAGNOST, RADIOIMMUNOASSAY 

Radioimmunoassays (RIAs) are traditional immunological assays where radio-
labelled recombinants of the analyte (tracers) are used for detection. In 
Mediagnost IGF-1 RIA, a secondary antibody is used to precipitate complexes 
of IGF-1 and primary antibodies, which allows unbound tracers to be removed. 
Specific for Mediagnost IGF-1 RIA is an initial dissociation of IGF-1 from the 
carrier protein IGFBP-3 by reducing the pH in the sample. An excessive 
amount of IGF-2 with higher affinity for IGFBP-3 is added to keep IGF-1 free 
for analysis.  

3.3.5.2  SIMOA 

Simoa® (Quanterix) is a new generation, semi-automatic and ultrasensitive 
immunological assay. A primary antibody is utilized to trap the analyte of 
interest to paramagnetic beads and a secondary antibody attached to a 
fluorophore is used for detection. An electromagnetic field trap complexes of 
bead, antibodies and antigens in microwells (one bead per well) on a disc and 
fluorescent substrate is used for amplification and detection of complexes.  

3.3.5.3  HANDLING OF ANALYTICAL ERRORS 

All analytical methods include errors related to the assay and/or the 
performance. Automation of analytical steps partially handled variation 
induced by laborants. In addition, aliquots of one or more pooled samples were 
used to calculate the inter-assay variation between different plates while intra-
assay variation was estimated by the coefficient of variation of multiple (e.g. 
duplicate) samples on the same plate. 
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3.3.6 COMMENTS ON SELECTED STATISTICS 
 

Details on statistical methods are presented in each paper. 
 
3.3.6.1  AREA UNDER THE CURVE (PAPER II, III, IV) 
 
As a measure of longitudinal endogenous exposure, area under the curve 
(AUC) was used in Papers II-IV. AUC was retrieved by utilizing the 
trapezoidal rule277. AUC provides a comprehensive analysis of exposure under 
highly variable clinical conditions with irregular sampling but is less usable for 
identification of single sample biomarkers with defined cut-off values. 

3.3.6.2  REGRESSION MODELS  

Both binary and linear regression models were utilized depending on outcome 
variables. Adjustment for confounding factors is of specific importance in 
extremely preterm infants as clinical variables including GA and sex have 
profound effects on any morbidity or outcome within the group. In Paper I, 
mixed model regression analysis was performed. In Paper II and Paper IV, 
binary regression models were utilized. In Paper III, linear regression models 
were utilized. 
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4 RESULTS AND DISCUSSION 

4.1 INSULIN-LIKE GROWTH FACTOR 1 AND 
ITS RELATION TO HYPERGLYCEMIA AND 
RETINOPATHY OF PREMATURITY (PAPER 
I) 

 
In Paper I, we showed that high glucose levels were linked to low IGF-1 levels 
in extremely preterm infants and that high glucose levels were associated with 
ROP development. In the hyperglycemic/hypoinsulinemic oxygen-induced 
retinopathy mice model of ROP, these findings were confirmed as diminished 
insulin signaling was associated with decreased hepatic IGF-1 output, as well 
as retinal neovascularization. In addition, exogenous IGF-1 had beneficial 
effects on retinal vascularization, suggesting a mechanistic role for IGF-1.  
 
In total, 117 infants were included with a mean (range) GA of 25.4 (22.7–27.9) 
weeks at birth. We showed that plasma glucose levels were inversely related 
to GA at birth, r = –0.648, P <0.0001. Infants with the highest plasma glucose 
levels, presented as tertiles, had mean glucose values that correlated with 
amount of parenteral glucose (r = 0.67, P <0.0001). Infants with the highest 
glucose had lower longitudinal IGF-1 serum levels when compared to infants 
in the low and intermediate glucose tertiles at postnatal day 28 (P = 0.038 
and P = 0.03). Infants in the high plasma glucose tertile also developed ROP 
to a larger extent than infants in the low glucose tertile (87% vs. 49%), and the 
prevalence of severe ROP was higher in the high tertile (71% versus 32%).  

In the experimental oxygen-induced retinopathy mice model of ROP, 
hyperglycemia induced lower hepatic expression of IGF-1 (P <0.0001) at P12 
and at P17 (P <0.0001). When exposed to recombinant human IGF-1, the 
physiological vascular regrowth increased and pathologic neovascularization 
decreased (P = 0.027 and P <0.0001 respectively). 

An increasing number of studies indicate a specific role of IGF-1 in 
neurovascular injury and neurodevelopmental outcome212. The results in our 
study are in line with previously published clinical and experimental data214,278-

280. The potential beneficial effect of IGF-1 on neurovascular morbidity was 
recently evaluated in a multicentre trial of exogenous rhIGF-1/rhIGFBP-3 
administration in extremely preterm infants. Contrary to previous findings, the 
study showed no reduction in ROP development281. One possible explanation 
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provided by the authors included an increase in target oxygen saturation prior 
to study start, which could have promoted ROP and surpassing the role of IGF-
1. In addition to decreased IGF-1 levels, high glucose could in itself affect ROP 
development211. In addition, excess glucose can, via the generation of more 
reactive oxygen species and/or by a defective scavenging system, lead to 
apoptosis and cellular dysfunction in the critically ill282. To establish a 
mechanistic role of IGF-1 in ROP development further studies are needed. 
 

4.2 NEUROFILAMENT LIGHT IN VERY 
PRETERM INFANTS AND ITS RELATION 
TO RETINOPATHY OF PREMATURITY AND 
NEURODEVELOPMENTAL OUTCOME AT 2 
YEARS CORRECTED AGE (PAPER II) 

 
In Paper II, we found an immediate increase in serum NfL levels following 
preterm birth, with high levels persisting the first month of life before levelling 
out. Further, we showed that high NfL levels in the postnatal period associated 
with ROP and exploratively linked to unfavorable neurodevelopmental 
outcome at 2 years corrected age.  
 
In total, 221 infants were included with a mean (SD) GA of 26.5 (2.1) weeks 
at birth. NfL serum levels increased following preterm birth and remained 
elevated for the first month, followed by a decline after 3 months of life, Figure 
10. In the final binary regression model (including GA at birth, Apgar score at 
5 minutes, birth weight standard deviation score, as well as the mode of 
delivery), NfL (AUC week 2-4) was linked to the development of any ROP (P 
<0.001) with an OR (95% confidence interval [CI]) of 4.8 (2.2-10.6). Further, 
in an explorative binary regression analysis, NfL (AUC week 2-4) was linked 
to lower BSID scores at 2 years corrected age (P = 0.01), with an OR (95% CI) 
per 10-unit NfL AUC increase of 1.07 (1.02-1.13). No associations were found 
between GFAP and any of the outcomes.  
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Figure 10. Simplified presentation of longitudinal serum levels of neurofilament 
light following very preterm birth. 

 
Published data on NfL in preterm infants are scarce, but our findings 
correspond to results from a previous study including more mature infants, as 
well as a recent publication investigating infants with moderate to severe 
IVH/PIVH which indicates a maturity-dependent decrease of NfL levels, as 
well as a link between early elevated serum levels of NfL and brain injury, 
poor motor outome at 2 years of age and mortality257,283. Although promising 
results have been shown in preterm infants and a clinical role of NfL is 
established in the adult, comprehensive prospective studies are needed to 
evaluate whether NfL might be a clinically relevant marker for brain injury and 
adverse outcome in the preterm setting.  
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4.3 NEONATAL INSULIN-LIKE GROWTH 
FACTOR 1 LEVELS AND BRAIN VOLUMES 
AT TERM EQUIVALENT AGE (PAPER III) 

 
In Paper III, we showed that low postnatal levels of IGF-1 were associated 
with decreased total and regional brain volumes at term.  
 
In total, 49 extremely preterm infants with a median (range) GA of 25.4 weeks 
(22.9–27.9) were included. IGF-1 levels in the first month of life (AUC week 
1-4) were associated with increased total and regional brain volumes at term in 
univariate correlation, as well as in a regression model following adjustment 
for GA at birth and postmenstrual age at time of MRI scan (total brain volume 
[P <0.001, β = 0.90, R2 = 0.64], white matter volume [P = 0.007, β = 0.33, R2 
= 0.30], cortical grey matter volume [P = 0.002, β = 0.43, R2 = 0.72], deep grey 
matter [P = 0.008, β = 0.05, R2 = 0.41], and cerebellar volume [P = 0.006, β = 
0.08, R2 = 0.63]). P-values, 95% CI of β illustrated in Figure 11. The results 
remained statistically significant after adjustment for significant brain injury, 
which was defined as IVH grade 3, PVHI, and/or abnormality classified by 
Kidokoro et al.284. No associations with brain volumes were found for BDNF, 
platelet-derived growth factor (PDGF), or VEGF. 

In an explorative sub-analysis of the impact of GA, associations between 
endogenous IGF-1 levels and brain volumes were most prominent in the more 
mature infants (GA above 25 weeks or above median of the study group). 
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Figure 11. Insulin-like growth factor 1 AUC postnatal week 1-4 and 
median/mean brain volumes at TEA in a regression model, adjusted for 
gestational age at birth and postmenstrual age at magnetic resonance imaging 
examination, 95% CI of β for total brain volume 0.41–1.39, white matter 0.09–
0.56, grey matter: 0.17–0.70, deep grey matter 0.01–0.08 and cerebellar 
volume 0.02–0.13. All associations remained statistically significant following 
multiple adjustments. AUC: Area under the curve, CI: confidence interval, TEA: 
term equivalent 

 
These results are in line with the findings of Hansen-Pupp et. al. who 
demonstrated a similar association in less immature infants and linked early 
circulating IGF-1 levels to neurodevelopmental outcome at 2 years of age223,224. 
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In an explorative sub-analysis of the impact of GA, associations between 
endogenous IGF-1 levels and brain volumes were most prominent in the more 
mature infants (GA above 25 weeks or above median of the study group). 
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Figure 11. Insulin-like growth factor 1 AUC postnatal week 1-4 and 
median/mean brain volumes at TEA in a regression model, adjusted for 
gestational age at birth and postmenstrual age at magnetic resonance imaging 
examination, 95% CI of β for total brain volume 0.41–1.39, white matter 0.09–
0.56, grey matter: 0.17–0.70, deep grey matter 0.01–0.08 and cerebellar 
volume 0.02–0.13. All associations remained statistically significant following 
multiple adjustments. AUC: Area under the curve, CI: confidence interval, TEA: 
term equivalent 

 
These results are in line with the findings of Hansen-Pupp et. al. who 
demonstrated a similar association in less immature infants and linked early 
circulating IGF-1 levels to neurodevelopmental outcome at 2 years of age223,224. 
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As discussed in this thesis, several potential factors could influence brain 
growth, and although cumulative evidence suggests a link between reduced 
brain volume at term and adverse neurodevelopmental outcomes, results of 
previous studies are not consistent70,104,285. A possible explanation is lack of 
standardized volumetric methods which may influence our comparisons with 
previous studies. We also found that the association between early postnatal 
levels of IGF-1 and brain volumes was more pronounced in more mature 
infants. Available data on neurovascular morbidity suggest that the function of 
IGF-1 might be threshold-related213. A certain level of circulating IGF-1, 
which is also related to GA and postnatal age, might be required for a more 
pronounced role of IGF-1 on brain development.  

 

4.4 NEONATAL INSULIN-LIKE GROWTH 
FACTOR 1 AND NEUROFILAMENT LIGHT 
LEVELS IN RELATION TO 
NEURODEVELOPMENTAL OUTCOME AT 
EARLY SCHOOL AGE (PAPER IV) 

 
In Paper IV, we investigated associations between early postnatal serum levels 
of IGF-1 and NfL and long-term neurodevelopmental outcome at early school 
age in extremely preterm infants. The importance and relevance of the findings 
are discussed in Paper IV. 
 

4.5 SUMMARY 
 
In summary, this thesis presents results that suggest that increased levels of 
IGF-1 are associated with improved brain development and may have a 
beneficial role in ROP development in extremely preterm infants, where 
endogenous levels are generally low. In addition, studies included in the thesis 
indicate that an early elevation of brain injury marker NfL is associated to ROP 
as well as poor long-term neurodevelopmental outcome. This is of particular 
interest as an increasingly high prevalence of neurodevelopmental disorders is 
reported as more immature infants survive and early reliable markers for 
adverse outcome are lacking. 
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5 GENERAL CONSIDERATIONS 
Studying neurovascular development in extremely preterm infants present 
multiple challenges, including difficulties in obtaining representative samples 
at relevant time-points to reflect an ongoing process.  
 

5.1 AVAILABILITY AND VARIABILITY OF 
STUDY SUBJECTS 

 
There is an extreme heterogeneity within this patient group with individual 
pre-and postnatal exposures, insults, nutritional practices and therapeutic 
interventions. In addition, GA at birth, as well as postnatal age and 
postmenstrual age are likely to affect developmental processes as well as 
results of sampling and examinations with different implications at different 
developmental stages. One way to overcome these difficulties would be larger, 
prospective studies providing more data, but every large study in this rare 
group of patients requires careful consideration as it will obstruct other studies. 
This emphasizes the importance, from a scientific as well as an ethical 
perspective, of utilizing data already collected to answer new research 
questions. In our studies, this is reflected by the retrospective use of data and 
samples that were prospectively collected in the clinical studies included.  
 

5.2 SELECTION AND TIMING OF SAMPLING 
AND IMAGING 

 
Another important factor when conducting research in this clinical setting is to 
select easily accessible, well-defined, and measurable variables and short-term 
outcomes, preferably at standardized time points. A strength of this thesis is 
the availability of longitudinal blood sampling in several preterm cohorts. Still, 
different cohorts had different sampling regimes, sampling was dependent on 
clinical decisions to draw blood leading to deviations from the planned regimes 
and missing values from different time points. The use of AUC was an attempt 
to overcome these limitations but prevented us from defining single 
biomarkers at select time points for potential clinical use.  
 
Short-term outcomes consisted of standardized ROP screening according to an 
established protocol in clinical use. MRI was performed as part of clinical 
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routine in some infants with added research images and as pure research 
examinations in others. Our studies are limited by families declining MRI due 
to long journeys or other reasons, and by poor image quality in a number of 
patients.  
 

5.3 LONG-TERM FOLLOW-UP 
 
A major strength of this thesis is the availability of long-term follow-up data 
collected prospectively with the use of standardized methods and with 
diagnoses of neurodevelopmental disorders and/or test results from almost all 
children up to school age. The importance of long-term follow-up is illustrated 
by our findings of NfL association with cognitive scores at 2 years of age and 
with other neurodevelopmental disorders at 5.5 years suggesting that causes of 
developmental delays and deviations become clearer over time.  
 

5.4 THE MECHANISTIC IMPORTANCE OF 
INSULIN-LIKE GROWTH FACTOR 1 

 
Despite the strong association of low circulating IGF-1 with neurovascular 
disease and neurodevelopment and in spite of the experimental study 
supporting a mechanistic role, IGF-1 may serve as a modulator and/or a marker 
for other biological processes of higher mechanistic importance. It should also 
be noticed that low levels of IGF-1 are associated with other severe neonatal 
morbidities such as BPD and NEC, that in themselves may influence brain 
development and outcome by other mechanisms. 
 
To evaluate causal relationships in the preterm infant is not an easy task. 
Extremely preterm infants are exposed to intensive care, together with high 
risk of dysfunction of multiple organ systems. Following the introduction of 
new advanced analytic techniques, such as proteomics, and new assays, many 
studies of biomarkers and associative relationships to outcome are published, 
which in many cases contribute to completing the current knowledgebase. 
However, due to the complexity of especially brain development, the need for 
well-defined long-term follow-up routines, is crucial. The role of 
(inter)nationally accepted follow-up regimes, availability of databases for 
clinical and laboratory data, and quality registers should be emphasized in 
order to facilitate research and further improve neonatal care.  
 

William Hellström 

45 

5.5 BIOMARKER CHALLENGES IN PRETERM 
INFANTS 

 
In this thesis, we found an association between high postnatal levels of NfL 
and ROP in the neonatal period, as well as adverse neurodevelopmental 
outcomes later in childhood. The results are in line with the few studies that 
have previously addressed NfL in the neonatal setting. No markers for preterm 
brain injury or brain development are in clinical use. This may be explained by 
the complex and prolonged nature of the injury process. Longitudinal 
measurements, rather than a single value, may better reflect the complex 
pathophysiology of disturbed brain maturation but is of little help in identifying 
simple markers for clinical use. Larger, prospective studies are needed to 
validate our findings and explore the clinical relevance. Other factors 
complicating the search for relevant biomarkers are varying definitions of 
brain development as well as brain injury, small study groups with differing 
inclusion criteria, limited follow-up time as well as difficulties in retrieving 
long-term data. Our study is limited by brain volume measurements as the only 
short-term outcome regarding brain injury and brain development but 
strengthened by availability of long-term data. 
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6 CONCLUSIONS AND FUTURE 
DIRECTIONS 

 
• High neonatal glucose levels were associated with low serum 

IGF-1 levels and ROP in preterm infants. IGF-1 may help 
prevent the neurovascular disease ROP, but results from 
intervention studies are hitherto not entirely conclusive.  
 

• Low serum levels of IGF-1 during the first month of life in 
extremely preterm infants were associated with reduced brain 
volumes at TEA suggesting a protective role of IGF-1 in brain 
development. 
 

• Serum levels of brain injury biomarker NfL were increased 
following very preterm birth, and elevated levels were 
associated with the development of ROP and adverse 
neurodevelopmental outcome in early childhood at 2 years 
corrected age. However, timing of sampling and cut-off 
values have not been established. 
 

• Extremely preterm infants with high neonatal serum levels of 
brain injury marker NfL and low levels of IGF might be at 
increased risk of adverse neurodevelopmental outcomes at 
early school age.  

 
These findings warrant further investigation and their clinical utility should be 
elucidated in larger prospective cohorts.  
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7 ETHICS 
A wide range of ethical questions needs to be addressed and thoroughly 
considered when conducting trials involving critically ill, extremely preterm 
infants in intensive care. These infants represent the most fragile group of 
individuals within the neonatal population and continued research is crucial to 
reduce mortality and morbidity in this growing population. 

7.1 THE DECISION TO ENROLL  
 
An infant cannot decline participation or consider the benefits and 
disadvantages of a scientific study. Parental consent for trials among neonates 
presents particular problems, even when pregnancy, labour, and delivery are 
uncomplicated286,287. The decision regarding an infant's participation in a study 
lies solely with the parents. Parental consent is often required in close 
connection to preterm birth, an event that is related to considerable emotional 
stress288. Under the Helsinki declaration, constituted by the World Medical 
Association, a fundamental principle in human research is the right of self-
determination and right to make informed decisions prior to participation. For 
these infants and children, this decision is made by the parents who need to be 
well informed to a make a decision on behalf of their child. In the studies of 
this thesis, both oral and written information was given by research staff 
familiar with all procedures, and written consent was required for participation. 
In addition, information was repeated throughout the studies, and research staff 
was available in the neonatal intensive care unit for any questions.  
 
Further, an individual subject's welfare must always have priority over science 
and society's interests. In the United Nations Convention on the Rights of the 
Child article three, the child's best interests shall be a primary consideration289. 
In the studies included in this thesis, blood sampling regimes, examinations, 
and interventions were carefully evaluated to minimize discomfort, pain, and 
potentially harmful events. MRI examinations at TEA were performed without 
contrast medium and under light sedation as in clinical routine. Blood sampling 
was restricted to sampling from venous or arterial lines or in association with 
venous punctures for clinical purposes. ROP screening was performed as part 
of the clinical routine program. No procedures were considered as a medical 
risk although minor discomfort could not be excluded.  
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7.2 BLOOD SAMPLING IN THE NEONATAL 
SETTING  

 
In recent years, the blood sampling regimes in neonatal intensive care units 
have been addressed. Recent studies suggest a 58% blood volume loss in 
extremely preterm infants due to clinical blood sampling the first 2 weeks of 
life followed by replacement transfusions290. Excessive blood sampling may 
lead to loss of important blood factors including fetal haemoglobin with a link 
to neonatal morbidity291,292. Currently, a multicentre randomized controlled 
trial with the aim of minimizing blood loss during the first weeks of life is 
ongoing in Sweden (ClinicalTrials.gov Identifier: NCT04239690). In the 
studies included in this thesis, blood sampling was restricted due to the low 
blood volume of the preterm infant, samples were used for multiple research 
questions in several studies and new methods requiring minute volumes were 
used.  

7.3 EXPERIMENTAL ANIMAL RESEARCH  
 
The potential benefit for science versus the animals’ welfare must be 
thoroughly considered when conducting animal studies. It is essential to 
recognize the animal as a sentient being and do everything possible to 
maximize the animal's well-being and minimize harm. Novel strategies are 
being developed, and the role of animal research might be diminished in the 
future by, for example, using computational simulations and cell cultures. In 
light of the high risk of mortality, morbidity, and long-term sequels and the 
fact that biomarkers and mechanisms of abnormal development are largely 
unexplored in this patient group of prematurely born children, the potential 
clinical gain could justify animal studies according to guidelines for animal 
welfare in research (SJVFS2019:9, Saknr L 150). The animal research 
conducted in this thesis utilized an oxygen-induced retinopathy mice model of 
ROP with well established methods, and executed in agreement with the 
Association for Research in Vision and Ophthalmology Statement (ARVO) 
and US legislations, and were approved by the Boston Children’s Hospital 
Institutional Animal Care and Use Committee. As stated by the Norwegian 
Committee for Research Ethics in Science and Technology on the matter, “Our 
treatment of animals, including the use of animals in research, is an expression 
of our attitudes and influences us as moral actors”293. 
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