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Abstract. Reactive synthesis guarantees correct-by-construction con-
trollers from logical specifications, but is costly cost — 2EXPTIME-
complete in the size of the specification. In a practical setting, the desired
controllers need to interact with an environment, but the more precise
the model of the environment used for synthesis, the greater the cost
of synthesis. This can be avoided by using suitable abstractions of the
environment, but this in turn requires appropriate techniques to mediate
between controllers and the real environment. Runtime verification can
help here, with monitors acting as these mediators, and even as activa-
tors or orchestrators of the desired controllers. In this paper we survey
literature for combinations of monitors with controller synthesis, and
consider other potential combinations as future research directions.
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1 Introduction

Developing programs correctly is difficult, always requiring iteratively finding
and repairing bugs. The traditional formal solution is model checking, which
can be employed to confirm the correctness of programs with respect to some
specification (often in linear temporal logic). Recently, significant effort has in-
stead gone into reactive synthesis, the study and development of techniques that
automatically produce correct-by-construction programs from LTL specifications
[26, 25, 19]. See, for example, [13] for an introduction to reactive synthesis.

In the setting of an adversarial environment, where certain goals are desired,
reactive synthesis techniques can be used to determine if these goals are always
achievable and if the answer is positive, to construct a program that achieves
these goals. This kind of program is called a controller, and both the goals and
the environment are usually described in linear temporal logic (LTL).
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Unfortunately, practical considerations can make this costly — already for
LTL specifications the problem is 2EXPTIME-complete [26]. In what concerns
cost, on the other hand, formal verification allows one to verify whether an exist-
ing system satisfies the desired specification, at a cheaper price (e.g., PSPACE-
complete for model checking of LTL [28]). This is even more true for runtime
verification on single execution prefixes at runtime [18]. However, reactive synthe-
sis is still more alluring, since it promises to solve the problem of automatically
developing a controller for whatever the environment does, when possible, at
least in a theoretical setting — the price is worth paying.

Applying reactive synthesis in a practical setting however may not be easy.
One problem is that a desired controller may need to interact with systems whose
full representation in LTL can be very large, the size of which is a parameter
to the 2EXPTIME-complete complexity of reactive synthesis. This problem can
be handled by using appropriate abstractions of the environment. For example,
if the environment is at times engaged in a process that requires several actions
in sequence, but the reactive synthesis problem is only interested in the point
this process ends, then we can do with only one proposition that is true when
the process ends. This avoids the need to have a proposition for every possi-
ble state of the environment. However, applying such high-level controllers in
practical settings requires an interface with the real environment that adapts
real-world events to the expected higher-level, abstract events. In literature we
find monitors used in such a manner.

Monitors are objects that observe a system. In runtime verification they are
used to output, given a certain execution prefix, whether the system currently
satisfies or violates a certain property [18]. Synthesising such monitors is cheap
but when combined with reactive synthesis they open up the possibility to solve
problems not expressible in LTL (see Section 3), or at least to reduce the size
(and thus cost) of the reactive synthesis problem. Essentially, their use can be to
abstract away parts of specification, to reduce the synthesis problem to a kernel
of the original specification.

In literature we find several ways in which monitors are used thusly. In this
paper we set out to survey these combinations, mostly based on our own experi-
ence and contributions in this line. More concretely, we classify the approaches
found in literature as according the following:

i) Monitors to identify what guarantee should start holding and when (Sec-
tion 3);

ii) Monitors for environment assumptions (Section 4); and
iii) Monitors as orchestrators between controllers (Section 5).

Before presenting these, in the next section we give some brief background
to runtime verification and reactive synthesis, and after in Section 6 we consider
and propose other combinations providing future directions for research, and we
give our concluding remarks in Section 8.
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2 Background

We give a brief background on runtime verification and reactive synthesis, with
a running example of a monitor and a reactive synthesis problem.

2.1 Runtime Verification

Runtime verification (RV) is a lightweight verification technique, consolidated in
between informal non-exhaustive techniques like testing and formal static veri-
fication techniques like model checking, static verification and theorem proving.
In a way, RV is understood to be a good complementary approach surmounting
the weaknesses of those techniques.

RV techniques allow the construction of monitors for the execution of software
systems in order to ensure the validity of a given property, or the detection of its
violation, at runtime [15, 18]. These monitors can be constructed from higher-
level formal specifications, usually LTL, but also from more operational and
more expressive symbolic automata.

q0start q1 q2

inUse ∧ inUseFor < n
7→ inUseFor ++

inUse ∧ inUseFor ≥ n

¬inUse ∧ unused < m
7→ unused ++

inUse
7→ unused = 0

¬inUse ∧ unused ≥ m

Fig. 1. Monitor that checks that the room has been in use for n time steps, after which
when there is a period of m time steps where the room is empty it flags.

Symbolic automata monitors are finite-state automata, with internal vari-
ables. Rather than labelling transitions by events, these automata’s transitions
are labelled by propositional guards over events and internal variables, and ac-
tions on the internal variables. This allows succinct program-like specifications,
leaving it up to the writer how much information to encode in the control-flow
and how much to make symbolic.

An example is the monitor illustrated in Fig. 1. This monitor represents
operationally some implementation that, through sensors, detects when people
are in the room (inUse). Moreover, it deduces that the room needs cleaning
depending on how long the room has been in use and after that waits for enough
time to pass until the room no longer has any foot traffic (¬inUse). Reaching
q2 is the point at which the monitor identifies the room as being dirty, and thus
ready to be cleaned.

There are several variations on these monitors that include richer features,
like a notion of timers and communication over channels [11]. In runtime verifica-
tion they have been used to monitor programs written in different programming
languages, e.g., Java [11], and Solidity [4].
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INPUTS { ROOMCLEAN; INROOM; DOORLOCKED; }

OUTPUTS { GOTOROOM; LEAVEROOM; CLEAN; LOCKDOOR; }

ASSUMPTIONS {

G F (!GOTOROOM || INROOM);

G F (!LEAVEROOM || !INROOM);

G F (!(LOCKDOOR && INROOM && CLEAN) || ROOMCLEAN);

G ((DOORLOCKED && ROOMCLEAN) -> X ROOMCLEAN);

G ((!ROOMCLEAN && !CLEAN) -> X !ROOMCLEAN);

G ((!INROOM && !GOTOROOM) -> X !INROOM);

G ((INROOM && !LEAVEROOM) -> X INROOM);

G (LOCKDOOR -> X DOORLOCKED);

G (!LOCKDOOR -> X !DOORLOCKED);

}

GUARANTEES {

F (ROOMCLEAN && (X F !INROOM) && (X F !DOORLOCKED));

}

Fig. 2. Snippet in TLSF [16] format for the reactive synthesis of a cleaning robot.

2.2 Reactive Synthesis

Controllers are programs that control for a certain goal in the context of some
environment. Focusing on reactive controllers, the problem of reactive synthesis
is to construct controllers from linear temporal logic (LTL) specifications [26].
We assume faimiliarty with LTL, but for completeness, LTL is the language over
a set of atomic propositions AP , with negation, conjunction, the unary operator
next (X), and the binary operator G. The eventually operator (F ) is often used,

where Fφ
def
= trueUφ.

Specifications in reactive synthesis are of the form:

A → G,

where A is the assumption specification, restricting the way variables can be
controlled by the environment, and G, the guarantee specification, describing
behaviour the desired controller should induce. The environment is assumed to
be adversarial, and when for every possible environment behaviour the controller
can always ensure G then problem is said to be realisable, otherwise it is said to
be unrealisable and then no controller exists. This problem of LTL realizability
is known to be 2EXPTIME-complete [26].

Consider Fig. 2 as an example of a reactive synthesis problem for a robot
to clean a room. We have a partition of propositions into input (uncontrollable)
and output (controllable) propositions. The assumptions are an abstraction of
the robot’s environment and the effect of the robot’s actions (outputs) on the
environment. The guarantees require that a robot synthesised using this specifi-
cation will eventually clean the room, and then leave the room while leaving the
room unlocked. This problem is realisable: Fig. 3 shows a controller for it.
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3 Monitoring for Guarantees

Monitors can be used to identify the point at which a certain property is satisfied
or violated. In reactive synthesis we often want to activate the obligation for
the controller to satisfy some guarantee once the environment behaves in some
way. In literature we find two ways in which monitors are exploited to aid this.
Initially, we look at our own work [5], that consider a priori monitors that
identify points where we require some guarantees. We also look into an approach
by Finkbeiner et al. [14], where guarantees become known only at runtime. In
that work monitors are used to ensure outstanding co-safety obligations arising
from the initially required guarantees hold even when requirements change at
runtime and a new controller needs to be generated and used.

Monitor Triggers We start with an example, based on the cleaning robot exam-
ple. Consider we have an a priori precise notion of when the room is dirty and
needs cleaning, given as a program-like monitor, as illustrated in Fig. 1. Consider
the problem of finding a strategy for a cleaning robot to ensure a room is clean.
The question then is how to synthesise a strategy for a cleaning robot to ensure
the room is eventually cleaned whenever this obligation starts holding (at q2).

In [5] we propose to specify such problems with the combination of symbolic
monitors (M) and LTL (assumptions A and guarantees φ), in two ways: simple
triggering A → M : φ and triggering with repetition A → (M;φ)∗. The point
at which a monitor triggers the obligation to satisfy φ is clear, given appropriate
final states in M. However, an important aspect, is that it is not obvious at
which point a controller for φ should return back control to M. For general
LTL formulas there is no specific point at which an obligation is satisfied, e.g.,
an invariant Gφ′ would have to continue enforcing φ′ forever. However, for co-
safety formulas there is such a natural point: the end of a tight or satisfaction-
informative prefix (the dual of the violation-informative prefix of [17]). [5] gives a
2EXPTIME-complete algorithm to construct a controller that finishes executing
when such a point has been reached, remaining within the same complexity class
as reactive synthesis. Simply plugging in such a controller C for A → φ, with
M, results in (M; C)∗, a controller for the original formula.

q0

startstart

qF

000/1-00
011/-011
010/-011
001/1-00
101/0--0
111/-1-0

100/0--0
110/-1-0 010/-100

110/-1-0

Fig. 3. Cleaning robot controller, as given by Strix [19] — inputs (outputs) on
left(right)-hand side of transition labels, with 0 (1) at nth position for input (output)
denotes nth proposition in input (output) list (from Fig. 2) being false (true).
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This approach has limitations. Assumptions about the environment have
to be stateless, given the controller synthesis is done for A → φ. For stateful
assumptions one would have to reason about their state at points where the
monitor triggers, and at the point the required controller gives back control to the
monitor. Moreover, to have many such trigger constructs running in parallel is
problematic, since it does not allow to re-use the compositional synthesis method
we described, e.g. the synthesis of a controller for (M ;φ) ∧ (M ′;φ′) cannot be
delegated to just synthesising a controller for φ and for φ′ independently, but
requires synthesising both together.

On the other hand, properly abstracting the monitor in LTL (which is pos-
sible in this case) results in very large controllers even for small values of n and
m in the monitor. For example, setting n = m = 2 in M, and combined with
G appropriately, Strix [19], the state-of-art tool in LTL reactive synthesis, pro-
duces a controller with around four times the transitions as that of the symbolic
monitor and the tight controller for G. Moreover, this continues to increase as n
and m increases, while with our approach changing the value of the parameters
does not change the size of the final controller.

Obligation Monitors In our work, there is an a priori description on when an
obligation is in effect, and of the obligated LTL requirement itself. These may
however both be relaxed. In general, reactive synthesis assumes that the guar-
antees do not change at runtime. However this is not necessarily the case in
a practical setting — often requirements change and systems are taken offline.
Monitors have been used to aid the process of updating such obligations.

Finkbeiner et al. [14] consider the problem of live synthesis, where a system
may be replaced by another at runtime. They consider that at the point where
the replacement occurs, there may be outstanding obligations from the require-
ments of the first system that would be violated if it is simply replaced with a
synthesised controller for the new requirements. Instead, they require that the
new controller also satisfies these outstanding obligations. The problem then is
how to identify what the obligations are at the exact point of replacement.

For example, consider a setting where we want to re-assign the cleaning robot
to clean other room. If we do the handover between the old and new strategy
näıvely, the robot could leave the first room unclean. A more natural requirement
on this handover would ensure the robot achieves one last time its co-safety
requirements in the first room, before moving to the second room. For example,
consider a setting where we want to re-assign the cleaning robot to clean other
room. If we do the handover between the old and new strategy näıvely, the robot
could leave the first room unclean. A more natural requirement on this handover
would ensure the robot achieves one last time its co-safety requirements in the
first room, before moving to the second room.

Considering outstanding obligations as co-safety properties, Finkbeiner et
al. [14] use monitors to consider any remaining outstanding obligations. They
synthesise monitors at the same time as the original controller is synthesised,
that monitors for the remaining obligations given any execution prefix of the
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controller. Then, when a system update must be effected then the new controller
is synthesised to also satisfy the obligations the monitor signals as outstanding.

In our example, if the cleaning robot has not yet managed to clean the room,
then the new strategy will take this into account and clean the room, unlock the
door, and leave the room, before leaving for its new mission. Similarly, if it has
cleaned the room but not yet unlocked the door and left the room, it will do so
before attempting the next mission.

Compare this also with the approach of [24], where additional specifications
are required for the transition between the new and old specifications. This work
also assumes additional signals that control the transition process.

4 Monitoring for Assumptions

As mentioned, commonly, a reactive synthesis problem has two parts: guarantees
(G) we wish a controller to control for in the context of some assumptions (A)
about the environment, i.e. the specification A =⇒ G. If the assumptions can
be invalidated by the controller then the specification becomes true, and the
controller has ‘won’ since the implication then becomes trivially true whatever
the controller does after. This is not always ideal. Often, we want to exclude
solutions to a reactive synthesis problem where the controller invalidates the
assumption, since it is not usually the intention of the designer. Excluding these
kinds of solutions usually requires expertise in modelling the environment in the
assumptions appropriately. There is however work to exclude these automati-
cally, e.g., for the GR(1) subset of LTL [20].

Moreover, reactive synthesis is adversial, i.e., the environment is assumed not
to invalidate its own assumptions, but in a practical setting the real-world envi-
ronment may actually violate the constraints that were assumed. This may be
due to imprecise modelling or unpredicted changes that occur during the lifetime
of the system. Theoretically this is not problematic, since the controller simply
wins in this case. Practically this can be a problem — an assumption violation
may go unnoticed and lead to a controller working based on information that is
not accurate. This can lead it to trying to fulfil a now impossible goal, resulting
in a waste of resources at best and at worst interfering with the goals of other
agents. In this setting, the controller would ideally halt or change its behaviour
once the environment no longer satisfies our original assumptions about it, for
which we can exploit monitors. Monitors for environment assumptions can be
run concurrently with the controller, stopping the controller (or taking other
actions) if an environment assumption is violated. We consider two works along
this direction.

Unmodelled Environment Behaviour In a practical setting, the designer may not
give exact or even sound environment assumptions, but instead give a necessary
abstraction of the environment assumptions. This measure may be taken to re-
duce complexity, or in the case that the environment model is not discrete or
expressible in LTL. In this case we do not fulfil our goals simply by the environ-
ment remaining within the bounds of our necessary version of the assumptions.
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Here, having an environment assumption monitor running concurrently with the
controller also can be useful, to signal possible failure of the controller, due to
unmodelled environment behaviour. This setting is considered by Zudaire et.al.
in [32], and described further below.

In a hybrid setting, a description of the environment and guarantees are given
in a language richer than LTL (e.g., with events carrying real numbers). To use
automatic reactive synthesis techniques entails discretising these descriptions,
and thus abstracting them. In this case, monitoring the LTL version of the
environment assumption may not be enough. For example, instead of describing
a sensor’s behaviour in detail, its LTL abstraction may simply be abstracted
with one boolean variable that is set as true when the sensor’s value is above a
certain value. However, at runtime a sensor may become miscalibrated due to
external factors (e.g., weather), although in the reactive synthesis problem we
may choose not to model this (since we may not necessarily be able to control
for the non-modelled factors).

In [32], Zudaire et.al. handle the above problem by combining temporal task
planning with streaming runtime verification. Discrete task specifications are
enriched with an explicit representation of the assumptions about the continuous
world allowing, in this way, the monitoring of the validity of these assumptions,
and thus reacting to it accordingly. See [32] for an application of the technique
to three different scenarios in the context of Unmanned Aerial Vehicles.

In this case, instead of monitoring for the complete LTL abstraction, we
can monitor for a richer specification of the abstraction that captures the non-
modelled behaviour. This monitor can then be used to notify when realisability
of the concrete problem is no longer ensured, due to non-modelled factors. It can
also be used in a predictive manner, where the possibility of failure is detected
before it occurs and (continuous) control measures are taken to prevent it (e.g.,
recalibration of sensor is carried out when accuracy falls beneath a certain level,
before a collision occurs).

Unknown Environment In another case, the environment may not be known. A
sound assumption to make here would be simply true, but this would make any
interesting goal unrealisable, given it puts no limitations on the environment.
However, there are techniques to identify environment assumptions for which a
goal is realisable (e.g., [7, 8]). If these assumptions are reasonably minimal and
weak, they can be used to synthesise a controller for the goal that can work in a
number of settings. Moreover, in the general case, beliefs about the environment
may turn out to be false and at runtime unexpected behaviour may be exhibited.

Environment monitors in these cases can also be used to monitor for the
environment assumptions used for synthesis, but moreover they can be used at
runtime to adjust these assumptions. In this line of work, Wong et al. [30] pro-
pose that when a violation is detected, the environment behaviour at runtime
can be used to re-synthesise a new controller that takes this new behaviour into
account. Before this, if the assumption violation still allows progress, the con-
troller maintains safety and takes action to allow progress when the environment
returns to the expected behaviour.
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5 Monitors as Orchestrators in Contextual Missions

In [22] Maoz and Ringert list three main challenges concerning the application
of reactive synthesis to the robotics domain. The first challenge concerns the
scalability of using high-level declarative specification languages like LTL. Rea-
soning in LTL is not something developers are used to — they are used to more
imperative languages, while LTL specifications can quickly become very com-
plex. Moreover, writing appropriate assumptions (and guarantees) is an art in
and of itself, and inadequate assumptions can lead to problematic implementa-
tions, as discussed in the previous sections. The second challenge is the need for
techniques to abstract from time and complex data, to allow for more tractable
synthesis. The final challenge relates to having appropriate support for the de-
velopment process, e.g., a tool integrating both verification and testing of the
controller, to allow the developer to check the controller respects their inten-
tions, or techniques that allow re-using previous synthesis artefacts when the
specification evolves (to avoid full re-synthesis).

The use of monitors has been proposed to help tackle these challenges (see
an initial proposal by Mallozzi et al. in [21, Chap. 7]). In particular: (1) monitors
add a level of imperativeness to a specification (as we also saw in Section. 3); (2)
reasoning about time, data, and complex behaviour can be relegated to monitors,
while still being represented in a formal structure, amenable to verification; and
(3) the use of monitors as orchestrators between different guarantees/controllers
can allow different parts of a specification to be synthesised separately (with
some caveats). In this section we briefly describe an application of monitors with
reactive synthesis as described in [21, Chap. 7] — a framework using monitors
as orchestrators in robotic missions with contextual missions/guarantees.

Let us consider a very simple example: an robot (or agent here) needs to
clean rooms r1 and r2 (task 1) one after the other during the day, and rooms r3
and r4 (task 2) during the night (see Fig. 4). Switching between tasks happens
when the context switches (from day to night and vice-versa).

Synthesising a controller for the above simple example is within reach using
existing techniques, however the synthesis needs to be done at a global level and
not compositionally, thus a certain context’s task changing (e.g., the layout of
furniture in one room is changed) requires re-synthesis for the whole mission.
Ideally, when possible, one would want to synthesise only for the changed tasks.
Moreover, should the context not be expressible in LTL, appropriate abstrac-
tions (perhaps of time or complex data) would need to be used, adding to the
complexity of the problem.

However, in these kinds of specifications one can attempt to do better. Under
different contexts, the robot has different tasks, which suggests that it would
be useful if the controller for each tasks could be synthesised separately and
then integrated later somehow with appropriate logic for context monitoring.
This first solution is not without its problems thought: trying to do a certain
task may have an effect on the state of another tasks. In a monolitic reactive
synthesis approach this is handled smoothly (the controller is aware of the states
of every task), but attempting to do things compositionally requires extra work
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Fig. 4. A robot cleaning 4 regions.
Fig. 5. A high-level representation of con-
textual robot missions for 2 contexts.

to transition smoothly between tasks. This however may be unavoidable when
the specification required goes beyond LTL, or involves large numbers of variables
such as to make the synthesis problem intractable.

For that, Mallozzi et al. in [21, Chap. 7] suggest an architecture and devel-
opment environment composed of the following key components:
1. Agents: The agent has tasks (LTL specifications), each associated with a

certain context (explained next). These tasks are achievable through appro-
priately synthesised controllers acting under different contexts1. They can
be automatically synthesised from LTL specifications, or other specification
languages like Spectra [23]. The authors also allow programs in general.

2. Contexts: One assumes a set of contexts (in the example here day or night),
and a function that determines the current context from some knowledge
about the current state of the world. For example contexts can be geo-
graphical, like the neighbourhood of a city the controller is currently in; or
something more complex, like being in a certain neighbourhood at a certain
time of day. An important aspect is that context can change, i.e. the current
context depends on the current point in time, and the previous behaviour of
the environment and the system.

3. Recovery controllers: Agents have no control on which context they are in
at any time-step. Thus, when the context changes, they are expected to
transition seamlessly to making progress in the task of the next context.
However, the state of the task of this next context may have changed since
the last time the agent was in that context (e.g., someone may have moved
some things around in a room), and thus the agent might need to do some
recovery task to either get the agent or the environment in a state where
the agent can continue where they left off (e.g., returning the things moved
around to their previous position). Similarly, before leaving a context, it is
reasonable to pre-specify that the agent leaves it in a safe state (e.g., turned
off any lights). Recovery controllers serve these purposes.

4. Transition controllers: This is activated after the recovery controller leaves
the state in the previous context in a sane state, and activates the recovery
controller to prepare the state of the new context for the agent to continue.

1 Some of these may be written manually, or provided a priori, and appropriately
model checked.
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5. Orchestrator: This is in charge of notifying the controllers of the change in
context in the real-world, and triggering of the actual change in context in
the system, as illustrated in Fig. 5.
Such a framework integrates the use of reactive synthesis in a much richer

setting. Using runtime monitors as orchestrators (or context monitors) in this
case adds considerable power: one can easily write simple monitors with the
capabilities of counting, accumulating, computing averages, memorising current
states, etc., besides the fact of allowing for parameterised specifications. There is
then a tradeoff between the strong guarantees about what is synthesised and the
expressive power of the orchestration against the requirement to have to specify
recovery transitions However, this can be managed in this setting through the
use of verification, which is possible for domains beyond synthesis.

Note that [21, Chap. 7] only presents an ad hoc solution to the problem given
in Fig. 4 when contexts are given by propositional variables (“night” and “day”).
A more general solution along the lines of the architecture presented in (Fig. 5)
for more general contexts and that can handle dynamic changes, is still missing.

6 Other Potential Combinations

We have seen monitors used effectively alongside controllers in extending the
scope of reactive synthesis. In each of these uses of monitors, the interaction
between monitors and controllers is, however, very specific and limited. Limiting
interaction has its benefits — it preempts the need for reasoning about complex
interactive behaviour. However, it also prevents interesting deeper applications.
We consider further possible combinations here.

Concurrent Monitors and Controllers We can imagine discrete environment
events that can be controlled by monitors, e.g., a monitor written in a rich lan-
guage can be used to monitor the continuous world to notify a discrete controller
about some event. Some approaches, as we saw in Section 4, simply ignore these
more complex specifications, and use complete restrictions of them (e.g., that
a sensor can never become miscalibrated), with a monitor attempting to take
care of their violation at a higher-layer. This approach however trades overall
correctness guarantees of the hybrid controller, for easier automatic synthesis,
since the monitor’s behaviour may be crucial for realisability of the full problem.

As a first step, we are currently exploring the incorporation of more program-
like descriptions of the environment (encoded as symbolic monitors) in a reactive
synthesis problem. This would allow including complex specifications or imple-
mentations of the environment in a reactive synthesis, and through an appropri-
ate (sound) abstraction-refinement loop automatically synthesising a controller.
This will reduce the current necessary abstraction decisions the developer would
have to do, while it extends the scope of reactive synthesis to richer domains.

We are also considering the use of monitors to abstract away parts of a
given LTL formula that are purely about the environment. Such an approach
could enable to reduce a synthesis problem by replacing some sub-formula with
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a new variable, and composing the controller for the abstracted formula with
the monitor for the removed sub-formula. The crucial aspect of this problem
is that assumptions about the new variable may need to be added to make
the abstract problem realisable, and in the worst case full knowledge of the
hidden sub-formula may be needed. For example, consider a co-safety formula
about the environment φ, if we have a guarantee G(φ =⇒ Fc), where c is a
controller event. If this is all we have, then replacing φ in the guarantee by a fresh
environment event e suffices, and the controller generated can be composed with
a monitor for φ (that outputs e at every step φ is tightly/informatively satisfied
[5]) to create a controller for the original problem.

Monitors for Discretising Data-Carrying Events Another problem to be tackled
is that of controllers for specification that require more than a finite alphabet,
but also data-carrying events. Consider a standard arbiter example, where we
want every request to eventually be matched by a grant. A standard way of
specifying this in LTL is to not allow new requests in between a request and the
corresponding grant, given the limitations with regards to counting in LTL. A
more general specification would be able to index an incoming request, and check
that there is a grant with a matching index. Consider a monitor with a counter,
that decorates a given request with the current value of the counter, increases
the counter, and then triggers a controller to eventually perform the associated
grant. The controller can be parametrised with a number, such that the events
it generates are parametrised by this number, and the monitor can then activate
such a distinct controller each time a request comes in. Such a system has an
infinite alphabet, but re-uses simpler LTL reactive synthesis techniques.

Running controllers in parallel is not simple however. These controllers may
be sharing resources, and thus the synthesis from a grant specification needs
to be modified such that a controller is aware there may be other controllers
working in parallel. A monitor here can also be used to mediate between the
controllers. A controller only needs to be aware of its own version of the events
(tagged by some number), and that the same events with a different number
can occur. A näıve solution would seem to require the controller being aware of
the whole infinite alphabet, however a monitor can be used to turn any event
labelled by another number into a generic other event, that can still be enough
for realising a controller.

7 Related Work

Monitors have been been used as enforcers of properties at runtime, where if a
system, acting as a shield [6]. This is done through suppression and/or insertion
of system events by the enforcer, ensuring the property holds at runtime. The
setting of these approaches is usually that of an existing system and a shield
that enforces some (co-)safety or infinite-renewal properties about the system.
Reactive synthesis of LTL is more general that LTL runtime enforcement, given
the limitations of monitoring with regards to liveness properties.
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Runtime verification has been exploited in other contexts to manage the
expense or limitations of other techniques, e.g., static verification [1, 9, 2, 3] and
testing [10]. Moreover it has found applications beyond the dynamic analysis of
software, see [27] for a survey.

Other work that combines in some way monitors with reactive synthesis is
by Maoz and Ringert. In [23] they consider a language that includes a notion
of monitors, but these become part of the specification to be controlled, not
benefiting from treating monitors separately. Ehlers and Finkbeiner consider a
monitoring approach where prefixes are classified into whether the specification
remains realisable or not, or has been violated or fulfilled [12]. Chou et al do
something similar, but for linear stochastic systems [31].

An ad hoc combination of monitors with reactive synthesis is given in [29].
In that paper, Ulus and Belta use runtime monitors to check and enforce safety
properties (e.g., to avoid certain locations or collision for robots), while control
techniques enforce the high-level mission. Monitored properties are expressed as
regular expressions and past temporal logic formulas. Monitors are also used to
discard unsafe trajectories from a proposed set of trajectories.

8 Conclusions

Reactive synthesis provides strong guarantees, but becomes harder the more pre-
cise and rich a specification language. In this paper we have seen how runtime
monitoring techniques have been used to increase the scope of reactive synthesis
without increasing the hardness, by relegating parts of an envisioned system to
a monitor. We have surveyed techniques in literature along these lines, includ-
ing our own previous work, and identified three main kinds of monitor-synthesis
synergies: monitors to identify or trigger obligations; monitors that identify as-
sumption violation; and monitors that act as orchestrators between controllers.

We identified some promising possible combinations. One is the use of mon-
itors in parallel with controllers, where monitors can even correspond to some
general non-regular property of the environment, or to a sub-formula of the
LTL specification we want to synthesise. We have also described how monitors
can have more control by dynamically activating copies of the same controller,
possibly in parallel, and mediating between these (e.g., to allow use of shared
resources), and decorating of their outputs according to some scheme, to ensure,
for example, that the nth request is matched by a grant from the nth controller.

We hope the reader may find other novel and interesting ways to combine in a
systematic and useful way runtime verification and reactive controller synthesis.
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