
R-CHECK: A Model Checker for Verifying Reconfigurable MAS
Extended Abstract

Yehia Abd Alrahman
University of Gothenburg
Gothenburg, Sweden

Shaun Azzopardi
University of Gothenburg
Gothenburg, Sweden

Nir Piterman
University of Gothenburg
Gothenburg, Sweden

ABSTRACT

Reconfigurable multi-agent systems consist of a set of autonomous
agents, with integrated interaction capabilities that feature oppor-
tunistic interaction. Agents seemingly reconfigure their interactions
interfaces by forming collectives, and interact based on mutual in-
terests. Finding ways to design and analyse the behaviour of these
systems is a vigorously pursued research goal. We propose a model
checker, named R-CHECK, to allow reasoning about these systems
both from an individual- and a system- level. R-CHECK also permits
reasoning about interaction protocols and joint missions. R-CHECK
supports a high-level input language with symbolic semantics, and
provides a modelling convenience for interaction features such as
reconfiguration, coalition formation, self-organisation, etc.

KEYWORDS

Model-checking; Agent Theories and Models; Verification of Multi-
Agent Systems

ACM Reference Format:

Yehia Abd Alrahman, Shaun Azzopardi, and Nir Piterman. 2022. R-CHECK:
A Model Checker for Verifying Reconfigurable MAS: Extended Abstract. In
Proc. of the 21st International Conference on Autonomous Agents and Multia-
gent Systems (AAMAS 2022), Online, May 9–13, 2022, IFAAMAS, 3 pages.

1 OVERVIEW OF R-CHECK

R-CHECK accepts a high-level language that is based on the sym-
bolicReCiPe formalism [2, 3].Wewill present the syntax ofR-CHECK
language and informally describe its semantics. For a full exposition
of the formal definition of R-CHECK and its usage through sizeable
case studies, we refer the reader to [4].

We first introduce the class agent, its structure, and how to
instantiate it; we introduce the syntax of its behaviour and how to
create a system of agents. The class agent is reported in Fig. 1.

1 agent 𝑎𝑔𝑒𝑛𝑡_𝑛𝑎𝑚𝑒

2 local:

3 𝑣𝑎𝑟_𝑛𝑎𝑚𝑒 :𝑡𝑦𝑝𝑒 , · · ·, 𝑣𝑎𝑟_𝑛𝑎𝑚𝑒 :𝑡𝑦𝑝𝑒

4 init: \𝑇
5 relabel:

6 𝑐𝑜𝑚𝑚𝑜𝑛_𝑣𝑎𝑟 <− Exp

7
.
.
.

8 𝑐𝑜𝑚𝑚𝑜𝑛_𝑣𝑎𝑟 <− Exp

9 receive−guard: 𝑔𝑟 (𝑉𝑇 , ch)
10 repeat: P

Figure 1: An agent class

Proc. of the 21st International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2022), P. Faliszewski, V. Mascardi, C. Pelachaud, M.E. Taylor (eds.), May 9–13,
2022, Online. © 2022 International Foundation for Autonomous Agents and Multiagent
Systems (www.ifaamas.org). All rights reserved.

Each agent class has a name that identifies a specific type of
behaviour; and uses a set of channels to interact with others. We
permit creating multiple instances/copies with the same class of
behaviour. An agent has a local state “local" represented by a set
of local variables 𝑉𝑇 , and a relabelling function to interact with
other agents anonymously. The initial state of an agent init: \𝑇 is
a predicate characterising the initial assignments to the agent local
variables. The section receive-guard: 𝑔𝑟 (𝑉𝑇 , ch) specifies the
connectedness of the agent to channels given a current assignment
to its local variables. The non-terminating behaviour of an agent is
represented by repeat: P, executing the process P indefinitely.

An agent type of name “𝐴” can be instantiated as follows𝐴(𝑖𝑑, \).
That is, we create an instance of “𝐴” with identity 𝑖𝑑 and an ad-
ditional initial restriction \ . Here, we take the conjunction of \
with the predicate in the init section of the type “𝐴” as the initial
condition of this instance. We use the parallel composition operator
∥ to inductively define a system as in the following production rule:

(System) 𝑆 ::= 𝐴(𝑖𝑑, \) | 𝑆1∥𝑆2
That is, a system is either an instance of agent type or a parallel

composition (with reconfigurable multicast and broadcast seman-
tics as in [2, 3]) of set of instances of (possibly) different types.
Agents interact by state-parametric message exchange.

The syntax of an R-CHECK process is inductively defined as:

(Process) 𝑃 ::= 𝑃 ; 𝑃 | 𝑃 + 𝑃 | rep 𝑃 | 𝐶

(Command) 𝐶 ::= 𝑙 : 𝐶 | ⟨Φ⟩ 𝑐ℎ ! 𝜋 d U | ⟨Φ⟩ 𝑐ℎ ? U

A process 𝑃 is either a sequential composition of two processes
𝑃 ; 𝑃 , a non-deterministic choice between two processes 𝑃 + 𝑃 , a
loop rep 𝑃 , or a command 𝐶 . There are three types of commands
corresponding to either a labelled command, a message-send or
a message-receive. A command of the form 𝑙 : 𝐶 is a syntactic
labelling and is used to allow the model checker to reason about
syntactic elements as we will see later. A command of the form
⟨Φ⟩ 𝑐ℎ ! 𝜋 d U corresponds to a message-send. The predicate Φ is
an assertion over the current local state of an agent, i.e., is a pre-
condition that must hold before the transition can be taken. As the
names suggest, 𝑐ℎ, 𝜋 and (respectively) d are the communication
channel, the sender predicate (specifying the targeted receivers),
and the assignment to data variables (i.e., the actual content of the
message). Lastly, U is an update to local variables after taking the
transition. We use “!" to distinguish send transitions. A command
of the form ⟨Φ⟩ 𝑐ℎ ? U corresponds to a message-receive. Differ-
ently from message-send, the predicate Φ can also predicate on the
received values from the incoming message, i.e., the assignment d.

We can easily create an R-CHECK system as in Equation 1 below.
There, a set of identical clients anonymously coordinate with a
resource manager to get virtual machines (VM).

https://orcid.org/0000-0002-4866-6931
https://orcid.org/0000-0002-2165-3698
https://orcid.org/0000-0002-8242-5357

(a) Client

(b) Manager
(c) Machine

Figure 2: symbolic structure automata

system = Client(client1, TRUE) ∥ Client(client2, TRUE)
∥ Client(client3, TRUE) ∥ Manager(manager, TRUE)
∥ Machine(machine1, gLink = g1 ∧ pLink = vmm1)
∥ Machine(machine2, gLink = g1 ∧ pLink = vmm2)
∥ Machine(machine3, gLink = g2 ∧ pLink = vmm3)

(1)

Notice that the machines {machine1, . . . , machine3}, each be-
longs to a specific group and uses a private link to interact. For
instance, machine1 belongs to group “g1” (the high performance
machines) and has a private link named “vmm1”.

The symbolic behaviour of this system is reported in Fig. 2,
where send transitions “!" synchronise with receive ones “?" having
corresponding labels. The full example is reported in [4].

2 NUXMV AND MODEL-CHECKING

We integrate R-CHECK with the nuXmv model checker [6] to en-
able an enhanced symbolic ltl model-checking. We also demon-
strate our developments using examples. We will show how the
combined features of R-CHECK, the symbolic ltl model-checking,
and nuXmv provides a powerful tool to verify high-level features
of reconfigurable and interactive systems.

R-CHECK provides an interactive simulator that allows the user
to simulate the system either randomly or based on predicates that
the user supplies. For instance, one can refer to message -send and
-receive using command labels. A constraint on a send transition
like “client1−sReserve", to denote the sending of the message la-
belled with “sReserve", means that this transition is feasible in the
current state of simulation. R-CHECK is also supported with a web
editor, syntax highlighting and a visualising tool. For instance, once
the model of Equation 1 is complied, R-CHECK produces the corre-
sponding labelled and symbolic structure automata in Fig. 2, and
thus the user may use these automata to reason about interactions.

SymbolicModelChecking. R-CHECK supports both symbolic
ltlmodel checking and bounded ltlmodel checking. We illustrate
the capabilities of R-CHECK by several examples based on Equa-
tion 1, the automata in Fig. 2 as the system under consideration.

We show how to verify properties about agents both from indi-
vidual and interaction protocols level by predicating on message
exchange rather than on atomic propositions. It should be noted
that the transition labels in Fig. 2 are not mere labels, but rather

predicates with truth values changing dynamically at run-time,
introducing opportunistic interaction. For instance, we can reason
about a client and its connection to the system as follows:

G (client1−sReserve −→ F client1−sRelease) (1)
G (client1−sRequest −→ F client1−rConnect) (2)

The liveness condition (1) specifies that the client does not hold
a live lock on a shared link. Namely, the client releases the shared
link eventually. The liveness condition (2) specifies that the system
is responsive, i.e., after the client’s request, other agents collaborate
to eventually supply a connection.

We can also reason about synchronisation and reconfiguration
in relation to local state as in the following:

G (manager−sForward −→ X machine1−rForward) (3)
F (client1−sRelease ∧ G(!client1−rConnect)) (4)

In (3), we refer to synchronisation, i.e., the manager has to for-
ward the request before the machine can receive it. We can refer to
reconfiguration in (4), i.e., eventually the client disconnects from
the common link, and it can never be able to receive connection on
that link.

We can also specify channel mobility and joint missions from a
declarative and centralised point of view.

©«
F(client1−mLink ≠ empty) &

F (client2−mLink ≠ empty) &
F (client3−mLink ≠ empty)) −−→

F (client1−sSolve | client2−sSolve | client3−sSolve)

ª®®®¬
That is, every client will eventually receive a mobile link (i.e., its

mLink ≠ empty) where it will use this private link to get a VM, and
eventually one client will initiate the termination of the mission by
synchronising with the other clients to solve the joint problem.

We are unaware of a model-checker that enables reasoning at
such a high-level.

3 CONCLUDING REMARKS

We introduced the R-CHECK model checking toolkit for verifying
and simulating reconfigurable multi-agent system. R-CHECK is
supported with a command line tool, a web editor with syntax high-
lighting and visualisation. We integrated R-CHECK with nuXmv
to enable ltl symbolic (bounded) model checking. We showed that
this specialised integration provides a powerful tool that permits
verifying high-level features such as interaction protocols, joint
missions, channel mobility, reconfiguration, self-organisation, etc.

R-CHECK combines the lessons learnt from communication
models like AbC [1, 5] and ReCiPe [2, 3], and mainstreams model
checkers likeMCMAS [12] which is based on Interpreted Systems [8],
MTSA toolkit [7] (based on Hoare’s CSP calculus [10] and Fluent
Linear Temporal logic (FLTL) [9]), SPIN [11] (for protocol design).
Furthermore, R-CHECK strives for expressiveness while preserving
minimality and simplicity.
Future works. We plan to integrate ltol to R-CHECK from [3].
Indeed, the authors in [3] provide a pspace algorithm for ltolmodel
checking (improved from expspace in [2]). This way, we would
not only be able to refer to message exchange in logical formulas,
but also to identify the intentions of agents in the interaction and
characterise potential interacting partners.

REFERENCES

[1] Yehia Abd Alrahman, Rocco De Nicola, and Michele Loreti. 2019. A calculus for
collective-adaptive systems and its behavioural theory. Inf. Comput. 268 (2019).
https://doi.org/10.1016/j.ic.2019.104457

[2] Yehia Abd Alrahman, Giuseppe Perelli, and Nir Piterman. 2020. Reconfigurable
Interaction for MAS Modelling. In Proceedings of the 19th International Confer-
ence on Autonomous Agents and Multiagent Systems, AAMAS ’20, Auckland, New
Zealand, May 9-13, 2020, Amal El Fallah Seghrouchni, Gita Sukthankar, Bo An,
and Neil Yorke-Smith (Eds.). International Foundation for Autonomous Agents
and Multiagent Systems, 7–15.

[3] Yehia Abd Alrahman and Nir Piterman. 2021. Modelling and verification of
reconfigurable multi-agent systems. Auton. Agents Multi Agent Syst. 35, 2 (2021),
47. https://doi.org/10.1007/s10458-021-09521-x

[4] Yehia Abd Alrahman, Shaun Azzopardi, and Nir Piterman. 2022. R-CHECK: A
Model Checker for Verifying Reconfigurable MAS. arXiv:2201.06312 [cs.LO]

[5] Yehia Abd Alrahman, Rocco De Nicola, and Michele Loreti. 2020. Programming
interactions in collective adaptive systems by relying on attribute-based com-
munication. Sci. Comput. Program. 192 (2020), 102428. https://doi.org/10.1016/j.
scico.2020.102428

[6] Alessandro Cimatti and Alberto Griggio. 2012. Software Model Checking via
IC3. In Computer Aided Verification - 24th International Conference, CAV 2012,
Berkeley, CA, USA, July 7-13, 2012 Proceedings (Lecture Notes in Computer Science,

Vol. 7358), P. Madhusudan and Sanjit A. Seshia (Eds.). Springer, 277–293. https:
//doi.org/10.1007/978-3-642-31424-7_23

[7] Nicolás D’Ippolito, Dario Fischbein, Marsha Chechik, and Sebastián Uchitel. 2008.
MTSA: The Modal Transition System Analyser. In 23rd IEEE/ACM International
Conference on Automated Software Engineering (ASE 2008), 15-19 September 2008,
L’Aquila, Italy. IEEE Computer Society, 475–476. https://doi.org/10.1109/ASE.
2008.78

[8] Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Y. Vardi. 1995. Rea-
soning about Knowledge. MIT Press.

[9] Dimitra Giannakopoulou and Jeff Magee. 2003. Fluent model checking for event-
based systems. In Proceedings of the 9th European software engineering and 11th
ACM SIGSOFT international symposium on Foundations of software engineering
(Helsinki, Finland). ACM, 257–266.

[10] C. A. R. Hoare. 2021. Communicating Sequential Processes. In Theories of
Programming: The Life and Works of Tony Hoare, Cliff B. Jones and Jayadev Misra
(Eds.). ACM / Morgan & Claypool, 157–186. https://doi.org/10.1145/3477355.
3477364

[11] Gerard J. Holzmann. 1997. The model checker SPIN. IEEE Transactions on software
engineering 23, 5 (1997), 279–295.

[12] Alessio Lomuscio, Hongyang Qu, and Franco Raimondi. 2017. MCMAS: an open-
source model checker for the verification of multi-agent systems. STTT 19, 1
(2017), 9–30.

https://doi.org/10.1016/j.ic.2019.104457
https://doi.org/10.1007/s10458-021-09521-x
https://arxiv.org/abs/2201.06312
https://doi.org/10.1016/j.scico.2020.102428
https://doi.org/10.1016/j.scico.2020.102428
https://doi.org/10.1007/978-3-642-31424-7_23
https://doi.org/10.1007/978-3-642-31424-7_23
https://doi.org/10.1109/ASE.2008.78
https://doi.org/10.1109/ASE.2008.78
https://doi.org/10.1145/3477355.3477364
https://doi.org/10.1145/3477355.3477364

	Abstract
	1 Overview of R-CHECK
	2 nuXmv and Model-checking
	3 Concluding Remarks
	References

