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Abstract

Rayo and Becker (2007) model happiness as an imperfect measurement tool: It
provides a partial ordering of alternative courses of actions. In this paper, decision-
makers use their inability to rank two actions, to rationally infer rankings of other
pairs of actions. I demonstrate that rational inference generates violations of the
“rationality axiom” (independence of irrelevant alternatives). Moreover, coarser hap-
piness information increases the power of inference. Therefore, a “Reasoning Man,”
endowed with an unlimited ability for rational inference, would be characterized by
muted feelings and blurred perception. Behavior would nevertheless maximize hap-
piness and evolutionary fitness, and not be merely satisficing.
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1 Introduction

Rayo and Becker (2007) view happiness as a decision-making device, allowing individuals
to rank alternative courses of action. But our nervous system is subject to physical
limitations, reducing the precision of sensory information, and therefore the quality of our
decisions. There are (i) bounds on how happy or sad we can be, and (ii) we are unable
to perceive small differences in the happiness to be expected from alternative actions.
Therefore, human behavior is only satisficing, meaning that we must choose at random
among the actions that we cannot distinguish from the best. Figure 1 provides an example.
The decision-maker ranks action A over C, but she cannot perceive any difference in
expected happiness (or utility) between A and B or between B and C. The decision-
maker’s perception sensitivity - indicated by the length of the arrows - is not sufficient,
given the narrow range of utility levels. As only C is perceived inferior, the decision-
maker must choose at random between A and B. Rayo and Becker go on to argue that

Figure 1: Utility-levels and perception-sensitivity.
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the human happiness-function is innate, selected by nature to maximize fitness, rewarding
the actions producing the most expected offspring. They demonstrate that to maximize
fitness, subject to the two neurological constraints above, nature must assign maximum
happiness to all fitness-levels above some performance benchmark and minimum utility to
all fitness-levels below it. Extended versions of their model may explain several “behavioral
regularities” documented in empirical work.1

This paper ads inference as an intermediate step between sensing happiness informa-
tion and taking decisions. Knowing the limitations of her sensory system, the decision-
maker above understands that the difference in utility between actions B and C must be
smaller than that between A and C. It follows that A is also better than B and therefore
the only maximizing choice.2 The paper explores the implications of the decision-maker

1In the dynamic version the performance benchmark varies over time. Habits and peer comparisons
arise as special cases. Utility is volatile and continuously reverts to its long-term mean.

2If the inference process is unconscious, the decision-maker may experience it as a part of perception.
In that case, the decision-maker would so-to-say see the ranking between A and B in a similar way as
that between A and C.
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having an unlimited ability to draw such inferences, and produces three surprising results.
First, given the neurological limitations on the sensory system described above, adding

the ability to draw rational inferences from known unknowns leads to violations of an
important axiom of rational choice, namely the Independence of Irrelevant Alternatives
(IIA). Consider the decision-maker above as an example. She can only infer that A is bet-
ter than B when action C is in the choice set. While dominated, action C is not irrelevant
to a decision-maker with limited perception. It provides a valuable “contrast,” accentuat-
ing the difference between A and B. Violations of IIA by humans and other animals are
well-documented in empirical studies (see e.g. Cohen et al., 2019). The present explana-
tion differs from previous ones by suggesting that the presence of dominated alternatives
may increase the decision maker’s expected utility and fitness.

Second, a more precise sensory system – that is, a wider range of happiness-levels or a
higher perception sensitivity – reduces the power of inference. As a result, a less precise
sensory system can be better than a more precise. Consider the decision-maker above
again. She would not have inferred that A is better than B, if her sensory system had
been sufficient to perceive that B is better than C. As it turns out, there does not exist a
tradeoff between the metabolic cost of the sensory capacity and the quality of decisions,

Third, if nature selects an unlimited ability for inference, then the decision-maker’s
behavior will be fully utility-maximizing, thereby fitness-maximizing, and not merely
satisficing, while at the same time only using a minimum of sensory information. To
minimize the metabolic cost of the sensory system, the decision-maker will be equipped
with the lowest possible perception sensitivity generating useful information given her
utility function, and a utility step-function where the fitness benchmark maximizes the
contrast between the best and the worst actions. As a result, the expected utility of
actions will reflect the probability with which the actions meet the fitness benchmark.

Finally, I argue that nature is more apt to endow the decision-maker with an ability
for inference in an environment with a plethora of available actions where the difference
in outcome is small even between the best and the worst action. Moreover, the decisions
based on an unlimited ability for inference, when coupled with a minimum perception
capacity, can be replicated by a surprisingly simple and possibly cheap decision-making
process.

2 A model of decision-making with inference

A decision-maker selects an action i = {1, 2, ...N} to maximize expected utility, Vi ∈
[Vmin, Vmax]. Label actions so that V1 ≤ V2 ≤ ... ≤ VN and assume V1 < VN .3 Following

3Rayo and Becker let the set of actions be a compact and convex subset of RN and expected utility a
continuous function. However, as explained below, with these assumptions, inference would always lead
to maximizing choice.
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Rayo and Becker, the decision-maker compares pairs of actions and perceives which action
is better if, and only if, the difference in expected utility is larger than her perception
threshold, |Vi − Vj| ≥ Θ. A lower perception sensitivity means that the threshold is
higher. A positive affine transformation of the utility function normalizes all expected
utilities as vi = Vi−Vmin

Vmax−Vmin
∈ [0, 1]. Let θ = Θ

Vmax−Vmin
be an (inverse) measure of the overall

capacity of the sensory system.
The key idea is that the decision-maker has a limited ability to compare the utilities to

be expected from different actions. For a concrete interpretation, in terms of perception,
it is helpful to think about some (unmodeled) attributes of the actions that the decision-
maker can observe and which she has learned are predictors of utility. Consider a forager
choosing an apple to bring back home. Ripe apples contain more nutrients, including
sugar, which increase fitness. Ripe apples also provide more utility, by tasting sweeter.
The decision-maker can assess the expected sweetness (expected utility) by the size, color,
and fragrance of the apple. The problem is that the decision-maker’s ability to perceive
differences in these attributes is limited.

As any sensorily dominated action is dominated by the best action, the set of sensorily
undominated actions is S (θ) = {i : vN − vi < θ}. This is the decision-maker’s satisficing
set, absent inference. With choice probabilities Pr {i |θ} = wi∑

j∈S(θ) wj
, ∀i ∈ S (θ), and

fixed decision-weights wi > 0 for all i, a higher capacity of the sensory system (lower θ)
increases expected utility,

∑
i∈S(θ) Pr {i |θ} · vi. Let θ (v) = vN − v1 represent the smallest

usable sensory capacity. This is the minimum capacity required to perceive a difference
between the best and the worst actions, given a certain utility function. A lower sensory
capacity (θ > θ) would not affect decisions, but still require energy to maintain. I will
regularly suppress the dependency on the utility function and simply write θ.

The inability to rank two actions informs the decision-maker that the difference in
expected utility is small. Additional rankings can then be inferred. This paper explores
the consequences of the decision-maker correctly drawing all inferences that are possible.
While I do not describe the details of this inference process, the end-result is easily
characterized. For a decision-maker with θ ≤ θ, the best sensorily dominated action
is vH(θ) where H (θ) = max {i : vN − vi ≥ θ}. Any action i ∈ S (θ) which is sensorily
indistinguishable from some sensorily dominated action is sensorily indistinguishable from
vH(θ). Thus, the set of undominated actions is S∗ (θ) =

{
i ∈ S (θ) : vi − vH(θ) ≥ θ

}
. Figure

2 provides an example. The two worst actions are sensorily dominated, as indicated by
the left-pointing arrow of length θ from the best action. The best sensorily dominated
action, vH(θ), cannot be distinguished from the three subsequent actions, as indicated by
the right-pointing arrow of length θ. Thus, S∗ = {N − 2, N − 1, N}.4 Given the decision-
weights above, choice probabilities are given by Pr {i |θ} = wi∑

j∈S∗(θ) wj
, ∀i ∈ S∗ (θ). In

4Note that I only use vH(θ) to characterize S∗ (θ). The decision-maker may not know which action is
the best sensorily dominated action.
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Figure 2: Perception and inference
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conclusion:

Lemma 1. A decision-maker with unlimited ability for inference, and sensory capacity θ,
selects an action j with positive probability if, and only if, vj ≥ s∗ (θ), where the threshold
is defined by

s∗ (θ) = vH(θ) + θ. (1)

and H (θ) = max {i : vN − vi ≥ θ}.

Clearly, inference increases expected utility whenever it leads to the elimination of some
actions.

2.1 Why irrelevant alternatives matter

One of the axioms of rational choice is Independence of Irrelevant Alternatives (IIA).5 Luce
(1959) formulated IIA in probabilistic terms as follows. Let PX (i) denote the probability
that the decision-maker selects an action i from a choice set X. Let X and Y be two
choice sets, both containing actions i and j. Then, the relative probability of selecting i

and j is unaffected by what other actions are included in the two choice sets, i.e.

PY (i)

PY (j)
=

PX (i)

PX (j)
. (2)

The present model predicts violations of IIA. These violations arise when rational inference
is added to a limited sensory capacity. This is illustrated in Figure 3. The addition of
a new best dominated action d leads to the elimination of action i, thereby reducing the
relative choice probability of i relative to N .

5For a summary of various alternative definitions (including the principle of regularity, Sen’s property
a, the constant-ratio-rule and Luce’s choice axiom) and their logical differences, see Ray (1973).
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Figure 3: Adding dominated action d leads to the elimination of i.
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Proposition 1. Consider a decision-maker with unlimited ability for inference. Adding a
new sensorily dominated action d to the choice set increases the decision-maker’s expected
utility, if vd ∈

(
vH(θ), vN − θ

)
and there exists some action i with vi ∈

(
vH(θ) + θ, vd + θ

)
.

The increase in utility is coincident with a violation of Independence of Irrelevant Alter-
natives.

Proof. Note that the new action d is sensorily dominated as vN − vd > θ and that it
replaces vH(θ) as the best sensorily dominated action as vd > vH(θ). The new action allows
the decision-maker to eliminate any action i with vi − vd < θ, which was previously in S∗

due to vi − vH(θ) > θ. The elimination of i from S∗ increases the probability of choosing
all the remaining actions in S∗, which all have higher expected utility than i. For any
j remaining in S∗, P{1,...,N}(i)

P{1,...,N}(j)
= wi

wj
>

P{1,...,N}∪{d}(i)

P{1,...,N}∪{d}(j)
= 0, which constitutes a violation of

IIA.

Humans and other animals have been observed to violate IIA in empirical studies (see
e.g. Cohen et al. 2019, and the references therein). Such effects (referred to as asymmetric
dominance, attraction, decoy, or menu dependence) have been found to be robust, sizable
and of practical significance e.g. in consumer choice (Doyle et al., 1999). Other examples
include voting and hiring (see Bateman et al., 2005).

Previous theories suggest that adding actions increases complexity which may distract
or confuse the decision-maker, creating “cognitive overload” or “biased attention”. It ap-
pears likely that irrational choice behavior could be the cost of a more global optimization
over both behavior and neural constraints (Louie et al., 2012). However, the neuronal
mechanisms that lead to irrational behaviors are still unknown (Cohen et al. 2019). And
proposition 1 even suggests that violations of IIA in some instances may be a feature
rather than a bug. A dominated action is not irrelevant to a decision-maker with limited
perception, as it may provides a valuable “contrast” accentuating the difference between
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other actions.6

2.2 Why a higher sensory capacity reduces the power of inference

Recall that the threshold for undominated actions is given by s∗ (θ) = vH(θ) + θ. As
inference leads to the elimination of all actions with expected utility vi ∈

(
vH(θ), s

∗ (θ)
)
,

we may take the length of this interval, ie s∗ (θ) − vH(θ), as a measure of the power of
inference. And, as s∗ (θ)−vH(θ) = θ, it follows immediately that a higher sensory capacity
reduces the power of inference.

Moreover, the s∗ (θ)−equation reveals that the threshold is determined by two op-
posing forces. The first term of the threshold-function, ie vH(θ), is the expected utility of
the best sensorily dominated action. This term captures the direct benefit of the sensory
system. A higher sensory capacity (lower θ), weakly increases vH(θ), meaning that more
actions are eliminated on the basis of sensorial domination. In Figure 2, this is repre-
sented by a short left-pointing arrow. However, a higher sensory capacity (lower θ) also
makes fewer actions indistinguishable from vH(θ); it reduces the power of inference. This
is represented by the second term of equation 1 being lower. It is also illustrated by the
right-pointing arrow of Figure 2 being shorter.

Lemma 2. As a higher sensory capacity reduces the power of inference, the threshold-
function s∗ (θ) oscillates. In particular, for j = 1...N − 1, and vj+1 ̸= vj, the threshold-
function is given by s∗ (θ) = vj + θ over the interval θ ∈ (vN − vj+1, vN − vj], thus in-
creasing from s∗ (vN − vj+1) = vN − (vj+1 − vj) < vN to s∗ (vN − vj) = vN . Moreover,
s∗ (θ) ≤ v1, for θ > θ = vN − v1.

An example of a threshold-function is illustrated in Figure 4.

Proof. Recall that for a decision-maker with θ ≤ θ, the best sensorily dominated action
is vH(θ) where H (θ) = max {i : vN − vi ≥ θ}. It follows that H (θ) = j, for j = 1...N − 1,
if vN − vj ≥ θ and vN − vj+1 < θ (when all N utility levels are distinct). Thus, over the
interval θ ∈ (vN − vj+1, vN − vj], the threshold-function is given by s∗ (θ) = vj + θ. A
final interval j = 0 is defined by θ > θ = vN − v1. A decision-maker who cannot even
distinguish between the best and the worst actions can also not infer any rankings. Thus,
s∗ (θ) ≤ v1.

The following proposition is a corollary.

Proposition 2. Consider decision-makers with an unlimited ability for inference. A
higher capacity of the sensory system reduces the power of inference. As a consequence,

6The experiment in Proposition 1 changes the set of alternatives while keeping constant the utility-
function and the capacity of the sensory system. One may think of this as short-term variations in the
choice set, so that evolution does not change the human cognitive makeup.
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Figure 4: The threshold function s∗ (θ) oscillates
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expected utility is a non-monotonic function of sensory capacity. The smallest sensory
capacity that induces the decision-maker to select an action with the highest expected
utility is the smallest usable capacity, θ = vN − v1.

Sensory capacity and inference are partly complements and partly substitutes in the pro-
duction of good decisions. They are complements as some minimum of sensory information
(θ ≤ θ) is a necessary seed for inference. More surprisingly, inference is also a substitute
for sensory capacity. The best action would be chosen by either a “hyper sensitive man”
with no ability for inference but a capacity for strong emotions (large Vmax − Vmin) and a
high sensitivity (small Θ), so that θ ≤ vN − vN−1, or a “reasoning man” characterized by
the ability to draw inferences based on muted feelings and blurred perception. Sensory
capacity and inference are even antagonistic to some extent, as sensory information be-
yond the smallest usable level may harm a decision-maker with the capacity for inference.
The key implication is that, given an unlimited ability for inference, there is no tradeoff
between sensory capacity beyond the smallest usable level and the quality of decisions.

Remark A decision-maker will only suffer small utility losses as a result of her limited
sensory capacity, if she has an unlimited ability for inference. The losses may even be
trivial, e.g. if the choice set contains many actions with expected utilities that are spread
relatively evenly over [v1, vN ].

To see this, let δi = vi+1−vi be the difference in expected utility between two adjacent
actions i and i+1, given a certain utility function v. Let δ = max1≤i≤N−1 δi ∈ [0, 1] be the
largest such difference. Then, if a decision-maker with an unlimited ability for inference
and sensory capacity θ ≤ θ selects action i with positive probability, then the loss of
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utility is limited by vi > vN − δ. If the difference is largest at the top, ie vN − vN−1 = δ,
then the decision-maker selects the best action independent of the sensory capacity.7

As a consequence, if the decision-maker could include randomizations over “pure”
actions, and if the decision-maker would be able to compare the expected utility of pairs
of “mixed” actions according to the same standard as she compares “pure” actions, then
δ could be made arbitrarily small. Moreover, in case there is a continuum of actions and
the associated set of expected utilities is an interval [v, v], and θ ∈ (0, v − v), the best
sensorily dominated action is H (θ) = v − θ. As any action v − H (θ) < θ cannot be
distinguished from H (θ), inference eliminates all actions v < v.

3 Natural Selection

3.1 The cognitive makeup and behavior of “Reasoning Man”

There are M outcomes cum fitness levels y1 < y2 < ... < yM . Each action i =

{1, 2, ...N} is characterized by its cumulative distribution function over fitness levels,
Fi (y

j) = Pr {y ≤ yj |i}. The actions are ordered in terms of (strict) first-order stochastic
dominance, ie Fi+1 (y

j) < Fi (y
j) for all j < M , so that E {y |1} < E {y |2} < E {y |3}.

Rayo and Becker let nature select a non-decreasing utility function V (y1) ≤ V (y2) ≤
... ≤ V

(
yM

)
maximizing the decision-maker’s fitness, subject to a given range V (yj) ∈

[Vmin, Vmax] and a limited perceptions sensitivity Θ > 0. I will not take the sensory
capacity as given, but instead assume that the metabolic cost of the sensory system is
increasing in both the range of utility levels (large Vmax−Vmin) as well as in the perception
sensitivity (low Θ). I also assume that the ability to draw inferences is costly.

Proposition 3. If nature selects an unlimited ability to draw inferences, then the decision-
maker is induced to choose the action maximizing expected utility, thereby also maximizing
fitness. Moreover, nature selects

(i) the utility step-function, with V (yj) = Vmax for all j ≥ b+1 and V (yj) = Vmin

for all j ≤ b, and performance benchmark yb = argmax [F1 (y
j)− FN (yj)],

(ii) the smallest usable sensory capacity, θ = θ = Θ
Vmax−Vmin

= F1

(
yb
)
− FN

(
yb
)
.

The difference in (transformed) expected utility between two actions is equal to the differ-
ence in the probability that the benchmark fitness-level is reached, vi−vj = Fj

(
yb
)
−Fi

(
yb
)
.

Proof. First, note that if nature selects an unlimited ability for inference, then E {V |i+ 1} >

E {V |i}, so that an action with strictly higher fitness also provides the decision-maker
7To prove these claims, recall that by the definition of vH(θ), it follows that vN − vH(θ)+1 < θ. By the

definition of δ, vH(θ)+1 − vH(θ) ≤ δ. Combining the two inequalities, vN − θ < vH(θ)+1 ≤ vH(θ) + δ, i.e.
vN − δ < vH(θ) + θ. As vi ∈ S∗ (θ) implies vi ≥ vH(θ) + θ, it follows that vi > vN − δ for all vi ∈ S∗ (θ).
If vN − vN−1 = δ, then vi > vN − (vN − vN−1), so that only vi > vN−1, ie vN , is selected.
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with strictly higher expected utility. To see this, note that

E {V |i} = V
(
yM

)
−

M−1∑
j=1

[
V
(
yj+1

)
− V

(
yj
)]

· Fi

(
yj
)
,

so that

E {V |i+ 1} − E {V |i} =
M−1∑
j=1

[
V
(
yj+1

)
− V

(
yj
)]

·
[
Fi

(
yj
)
− Fi+1

(
yj
)]

> 0.

The inequality follows from the actions being ordered according to first-order stochastic
dominance and the utility function being non-decreasing. The strictness of the inequality
follows from the fact that V (yj+1) > V (yj) for some j, since otherwise the costly cognitive
makeup would be redundant, as it would lead to random choice among all actions.

Second, it follows from Proposition 2 that if nature selects an unlimited ability for
inference, it also selects Θ so that θ = θ (v), thereby inducing fully fitness-maximizing
behavior. The reason is that θ = θ (v) is sufficient to induce fully maximizing behavior. A
capacity beyond this level, θ < θ, requires more energy and may even reduce the fitness of
the behavior. A capacity below this level, θ > θ, would make the costly cognitive makeup
redundant, as it would lead to random choice among all actions.

Third, to minimize the metabolic cost of the sensory system, nature selects the utility
function to minimize the sensory capacity, ie θ = θ = E{V |N }−E{V |1}

Vmax−Vmin
, where the difference

in expected utility between the best and the worst actions is given by

E {V |N } − E {V |1} =
M−1∑
j=1

[
V
(
yj+1

)
− V

(
yj
)]

·
[
F1

(
yj
)
− FN

(
yj
)]

.

To maximize this difference, given Vmax and Vmin, nature selects V
(
yM

)
= Vmax and

V (y1) = Vmin. Moreover, as the utility range is bounded, any increase in the difference in
utility between yk and yk−1 must be balanced by a reduction in the difference in utility
between some other fitness levels yl and yl−1. It follows that the only two adjacent fitness
levels that should be assigned different utility levels is a yj+1 and yj where F1 (y

j)−FN (yj)

is the largest. Thus,

E {V |N } − E {V |1} = [Vmax − Vmin] ·
[
F1

(
yb
)
− FN

(
yb
)]

,

where
yb = argmax

yj

[
F1

(
yj
)
− FN

(
yj
)]

,

so that θ = θ = F1

(
yb
)
− FN

(
yb
)
.

Finally, as E {V |i} = Vmax−Fi

(
yb
)
·[Vmax − Vmin], it follows that E {V |i}−E {V |j } =
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[
Fj

(
yb
)
− Fi

(
yb
)]

· [Vmax − Vmin], implying vi − vj = Fj

(
yb
)
− Fi

(
yb
)
.

The main point is that, with an unlimited ability for inference, the decision-maker’s be-
havior is fully utility-maximizing, thereby fitness-maximizing, and not merely satisficing,
while at the same time using the smallest usable sensory capacity.

The utility function maximizing the power of inference takes on the same step-shape
as Rayo’s and Becker’s utility function, for essentially the same reason. In both cases the
utility function is constructed to assist the decision-maker’s perception by maximizing the
difference in expected utility between the best action and some alternative action. For
Rayo and Becker the alternative action is the worst satisficing action. With inference the
alternative action is the worst available action (which is also the best sensorily dominated
action).

A potentially testable prediction of Proposition 3 is that a very high capacity for
inference should be coupled with a low sensory capacity.

3.2 Will “Reasoning Man” be selected?

It is possible that the ability to draw inferences from inconclusive comparisons of expected
utility is an add-on to the utility function, rather than an application of some general
ability for inference. If so, this ability would emerge only after nature has already selected
some utility function and some sensory capacity θ ≤ θ. And, unless inference emerges
as a saltation, it would have to increase fitness, even when taking this existing utility
function and sensory capacity as given. In what environment could inference overcome
this hurdle?

Recall that the actions are ordered in terms of first-order stochastic dominance. Let the
distance between two adjacent actions i and i+1 be denoted by ϕi = maxj {Fi (y

j)− Fi+1 (y
j)}

for 1 ≤ i ≤ N − 1. The overall difference between adjacent actions in the environment
can then be measured by ϕ = max1≤i≤N−1 ϕi ∈ [0, 1], ie the largest distance between any
pair of adjacent actions.

Inference gives rise to a gross gain in fitness (not counting the metabolic cost), if it
leads to the elimination of some sensorily undominated action.

Proposition 4. Consider a decision-maker with a given utility function and sensory
capacity. If the difference between adjacent actions is sufficiently small compared to the
sensory capacity, ϕ < θ, then unlimited inference gives rise to a gross gain in fitness.

Proof. First, I demonstrate that for any utility function, δ ≤ ϕ. That is, the distance
between actions is smaller in terms of expected (transformed) utilities than in terms of
probabilities. To see this, note that the expected utility of action i is

E {V |i} = V
(
yM

)
−

M−1∑
j=1

[
V
(
yj+1

)
− V

(
yj
)]

· Fi

(
yj
)
.
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The difference in expected utility between two adjacent actions is thus given by

E {V |i+ 1} − E {V |i} =
M−1∑
j=1

[
V
(
yj+1

)
− V

(
yj
)]

·
[
Fi

(
yj
)
− Fi+1

(
yj
)]

.

The utility function that would maximize the difference in expected utility between actions
i+ 1 and i is a step-function, so that

E {V |i+ 1} − E {V |i} ≤ [Vmax − Vmin] ·max
j

[
Fi

(
yj
)
− Fi+1

(
yj
)]

.

The argument is the same as in the proof of Proposition 3. Thus, dividing by Vmax−Vmin,
applying the affine transformation, and using the definition of ϕi,

vi+1 − vi ≤ ϕi.

Using the definitions of δ and ϕ it follows that δ ≤ ϕ.
Second I demonstrate that, if the decision-maker cannot perceive the difference be-

tween any pair of adjacent actions, i.e. δ < θ, then there exists an action i characterized
by vi ∈

(
vN − θ, vH(θ) + θ

]
, meaning that i is not sensorily dominated but that it will be

eliminated by inference. To see this, note that by the definition of δ, there must exist
some action i with vH(θ) < vi ≤ vH(θ) + δv. If δ < θ, it follows that vi ≤ vH(θ) + θ,
meaning that i is sensorily indistinguishable from vH(θ), so that it will be eliminated by
inference. By definition of vH(θ) this action must also be characterized by vi > vN − θ,
since otherwise vi would be the best sensorily dominated action, meaning that vi is not
sensorily dominated.

Third, combining the two points above, namely that all utility functions are charac-
terized by δ ≤ ϕ, and that δ < θ implies a gain from inference, it follows that ϕ < θ

implies a gain.

Proposition 4 suggests that there may be an evolutionary pressure to provide inference,
even if nature has already provided the decision-maker with a high sensory capacity, in case
the decision-maker must choose from a plethora of available actions and the differences
in outcome is small even between the best and the worst action.8

8Consider the case with only two fitness levels. Let pi be the probability of the lower fitness level when
action i is chosen. Then Fi

(
yLow

)
= pi and Fi

(
yHigh

)
= 1. Thus, maxj

[
Fi

(
yj
)
− Fi+1

(
yj
)]

= pi−pi+1.
If the actions are all on equal distance from one another, ϕ = pi − pi+1 = p1−pN

N−1 . Then, if

p1 − pN
N − 1

< θ

unlimited inference gives rise to a gain in fitness. That is, even if the sensory capacity is high (θ is low),
there are gains from inference, if there are many actions or if the difference in expected fitness even
between the best and the worst actions is small.
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4 Concluding Remarks

This article studies the possible emergence and consequences of an unlimited ability to
draw inferences. A natural next step would be to consider degrees of inferential ability.
To do so, one would need to describe the process of inference in more detail. And, as the
metabolic cost of inference is presumably increasing in the number of steps taken, one
may expect there to be a tradeoff between this decision-making cost and the quality of
decisions. An interior solution appears plausible.

Surprisingly, however, the decisions based on an unlimited ability for inference, when
coupled with a minimum perception capacity, can actually be replicated by a simple
and possibly cheap decision process. The decision-maker does not even need to compare
all pairs of actions sensorily, before inference starts. With N alternative actions, there
are N · (N − 1) /2 potential sensory comparisons to be made. When the decision-maker
has the smallest usable sensory capacity, all comparisons will be inconclusive, except the
one between the best and the worst actions. Thus, in order to select the best action, the
decision-maker can simply continue to search for the one pair of actions that can be ranked,
and once found, choose the better one. If the pairwise comparisons come in random order,
then the probability that the conclusive comparison is the i’th comparison is 1

N ·(N−1)/2
for

all i. Thus the expected number of comparisons before a choice is N ·(N−1)+2
4

.
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