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ABSTRACT 
 
For a long time, pertinent biological conundrums, such as the 
organization and compartmentalization of the cytoplasm and 
nucleoplasm, perplexed the scientific community. The organization of 
the complex biochemistry in an accurate space and time manner could 
not be explained without the enclosure of a membrane. In recent years, 
many of the processes relating to membraneless cellular organization 
and cytoplasmic regulation have become illuminated by the 
incorporation of liquid-liquid phase separation (LLPS) into biology. 
Phase separation entails a process by which a homogenous liquid 
solution of macromolecules, such as proteins or nucleic acids, separates 
into two distinct co-existing phases, a dense and dilute phase. LLPS 
thereby enables a spatiotemporal control over complex biochemical 
reactions, a vital process for cellular functions. Altered phase separation 
dynamics can lead to aberrant condensate assemblies that mature into a 
more solid-like state and are associated with disease. The list of cell 
compartments and biological processes thought to be formed and 
regulated through the process of phase separation has grown at a fast 
pace and includes a plethora of cellular functions, such as stress granule 
(SG) formation and disease associated protein aggregation. However, 
the mechanisms regulating the formation, and subsequent impact, of 
these phase-separated assemblies still remain elusive.  
 
In this thesis, regulation of SG formation is explored using genome-wide 
phenomic screening. The results show a signaling cascade involving e.g. 
long-chain-base sphingolipids and ubiquitin, regulating the phase 
separation behavior of Lsm7 and further SG induction. Cellular 
consequences of cytotoxic aggregation of the ALS-associated disease 
protein FUS (fused in sarcoma) are also explored. A cytotoxic gain-of-
function involving protein sequestration, resulting in delayed cell cycle 
progression, is identified. Overall, our findings elucidate the underlying 
mechanisms and cellular impacts of phase separated assemblies in 
health and disease. 
 
Keywords: phase separation, LLPS, stress granules, Lsm7, FUS, Ccr4 



 

 



SAMMANFATTNING 
 
Hur molekyler organiseras och grupperas i den cellulära cytoplasman 
och nukleoplasman orsakade länge huvudbry inom det vetenskapliga 
samfundet. Organiseringen av den komplexa biokemiska miljön kunde 
inte förklaras utan att involvera omhöljande membran, som fallet är för 
mitokondrier eller cellkärnan. Under de senaste åren har dock en process 
som involverar fasseparation av vätskor kommit att klarlägga dessa 
frågor. Fasseparation av vätskor innebär att två separata faser uppstår ur 
en homogen lösning med makromolekyler bestående av till exempel 
proteiner och nukleinsyror. Den ena fasen innehåller därmed molekyler 
som inte är representerade i den andra fasen. Denna fasseparation av 
vätskor möjliggör således spatiotemporal reglering av komplexa 
biokemiska reaktioner och skapande av biomolekylära kondensat, en 
process som är väsentlig i åtskilliga cellulära funktioner. Rubbning av 
denna process kan leda till bildande av abnorma sjukdomsrelaterade 
kondensat som har förmågan att utvecklas till mer stabila strukturer över 
tid. Rapporter om biologiska processer som involverar fasseparation har 
ökat markant de senaste åren men många av de underliggande 
mekanismerna är fortfarande outforskade, såsom initieringen av 
stressgranuler och de cellulära implikationerna av sjukdomsrelaterad 
proteinaggregering. 

I denna avhandling utforskar vi bland annat hur bildningen av 
stressgranuler regleras. Våra resultat visar att en signaleringskaskad som 
inkluderar exempelvis sfingolipider och ubikvitin reglerar 
fassepareringen av proteinet Lsm7 vilket följaktligen påverkar 
initieringen av stressgranuler. Vi diskuterar ytterligare de cellulära 
konsekvenserna av abnorm fasseparering av FUS, ett protein som har 
påvisats bilda sjukdomsaggregat hos patienter med amyotrofisk 
lateralskleros. Vi påvisar att FUS-aggregering resulterar i förändrade 
funktioner hos andra proteiner vilket i sin tur försenar cellcykelns 
fortskridning. Våra resultat belyser därmed underliggande mekanismer 
och konsekvenser av fasseparering i både sjukdom och hälsa.
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AIM OF THE THESIS 
 
Liquid-liquid phase separation (LLPS) has been implicated in the formation of 
a multitude of biomolecular condensates, including stress granules. LLPS is 
therefore considered to be a vital and ubiquitous process needed for various 
cellular functions. However, the mechanisms underlying the formation of these 
phase separated assemblies still remain elusive. Altered phase separation 
dynamics can further lead to aberrant condensate assemblies that have matured 
into a more solid-like state. These aberrant forms of condensates are associated 
with disease, such as the cytotoxic aggregation of human FUS (fused in 
sarcoma) protein in amyotrophic lateral sclerosis (ALS), further underscoring 
the importance of elucidating the different aspects underlying phase separated 
assemblies in both health and disease. 
 
This thesis compiles a total of three research papers which demonstrate 
mechanisms and cellular impacts of phase separated assemblies at a genome-
wide scale. The initial part of the thesis introduces the concept of phase 
separation and further describes its role in the formation of ribonucleoprotein 
granules, and more specifically stress granules and processing bodies. Next, 
known aspects of phase separation in a disease context are described, with 
further emphasis on the human disease protein FUS. The papers can therefore 
be divided into two main groups that explore different aspects of phase 
separation. In Paper I and Paper II, we explore a regulatory mechanism 
behind stress granule formation. In Paper III, focus lies on the cellular 
consequences of aberrant FUS protein phase separation and subsequent 
aggregation.  
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INTRODUCTION 

THE CONCEPT OF PHASE SEPARATION 

The development of various organelle structures is a vital feature of biological 
evolution. The existence of contained chemical microenvironments within the 
cytoplasm of eukaryotic cells enables the sequestration of molecules and 
proteins, thereby increasing the reaction rate of biochemical processes and 
critical functions. Enabled by the lipid bilayer membranes, membrane-bound 
organelles can harbor specific molecules in a restricted space separated from 
the rest of the cytoplasm1. This is a necessary feature underscored by the 
consequences of leakage from these confined spaces, such as the release of 
cytochrome c from mitochondria resulting in apoptosis2. 
 
In addition to membrane-bound organelles, such as the nucleus, endoplasmic 
reticulum and mitochondria, eukaryotic cells also harbor membraneless 
organelles, such as nucleoli, Cajal bodies, processing bodies (PBs) and stress 
granules (SGs). As suggested by the name, these organelles lack an 
encapsulating membrane3. Even though lacking a membrane separating them 
from the immediate environment, these cytoplasmic and nuclear organelles are 
stable and capable of controlled exchange with its surrounding4. But how are 
these structures formed and controlled without the support of a membrane? 
 
Already in 1899, E. B. Wilson hypothesized that the cytoplasm of cells behaves 
like a mixture of different chemically suspended drops5. Subsequently, in 
1999, it was suggested that a high intracellular concentration of two 
incompatible macromolecules should result in demixing in the cytoplasm, i.e. 
molecular crowding could promote liquid-liquid phase separation (LLPS) in 
the cytosol6. However, evidence in support of this was not found until 2009, 
when P granules in Caenorhabditis elegans were shown to be driven by a 
controlled dissolution and condensation of granule components, resulting in a 
structure behaving in a liquid-like manner, also referred to as condensates7. 
This process of separation of a well-mixed liquid solution into two distinct 
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liquid phases, where one phase contains enriched components lacking in the 
other phase, is the essence of LLPS8. Subsequently, LLPS has been shown to 
be involved in various processes, such as heterochromatin assembly, immune 
signaling, autophagy and disease development9-12. LLPS has been further 
implicated in the formation of eukaryotic membraneless organelles, such as 
PBs, nucleoli and SGs7,13-15. The process of LLPS is thereby emerging as a 
crucial mechanism in explaining the formation and function of membraneless 
organelles and phase-separated assemblies16.  
 
Biomolecular condensates have been found to be enriched with multivalent 
molecules, i.e. molecules containing multiple sites capable of potential inter- 
or intra-molecular interactions, referred to as multivalency17. Multivalency has 
thus been established as a driving force of phase separation18,19. Two types of 
multivalent interactions have been identified as contributing to LLPS, (1) 
intracellular protein-protein, protein-RNA and RNA-RNA interactions and (2) 
weak, transient multivalent interactions between intrinsically disordered 
regions (IDRs), such as cation-anion interactions, π–π interactions, π–cation 
interactions and dipole–dipole interactions17,20,21. LLPS can therefore be 
described as the product of the force of electrochemical gradients established 
through multivalent interactions within and between proteins and RNA (Figure 
1). Multivalency also provides an explanation as to how the assembly of 
condensates can be regulated, since minor changes in the structure’s 
stoichiometry could have forceful effects on the valency of key components20. 
 
It is thought that in their physiological state, certain LLPS condensates form 
and dissolve frequently upon specific external stimuli. However, some 
conditions might impair proper dissipation of LLPS droplets, such as certain 
mutations, chronic stress or aging. This could further result in a phase 
transition into a more solid-like state, of which, examples have been uncovered 
in a disease context15,22.    
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LLPS OF RIBONUCLEOPROTEIN GRANULES 

Ribonucleoprotein particle (RNP) granules, termed so due to their high 
concentration of protein and RNA, are membraneless organelles found both in 
the nucleus, e.g. paraspeckles and nucleolus, and in the cytoplasm, such as SGs 
and PBs23. RNP granules are membraneless biomolecular condensates that 
form through multivalent interactions resulting in a demixing into two stably 
co-existing phases, a selective dense phase, enriched for protein and RNA, and 
a dilute phase24-26. As such, RNP granules form through a sum of various 
protein and RNA interactions, where many RNP granule-associated proteins 
contain IDRs27. Generally, a specific population of RNA is needed for RNPs 
to form. For instance, both SGs and PBs require non-translating RNAs for their 
formation and stability13,28. In accordance, RNPs also harbor specific RNA-
binding proteins (RBPs), where SGs and PBs display distinct but also shared 
components29,30. The mRNP composition in these granules determines the fate 

Figure 1. Formation of biomolecular condensates. (a) A multivalent protein or RNA can work 

as a structural platform/scaffold and initiate nucleation by attracting IDR-containing proteins 

and RNA in a liquid solution surrounded by other small soluble molecules. (b) Phase separation 

resulting in a liquid-like condensate where the condensate is enriched in molecules not present 

in the surrounding. Emergence of more scaffolds, in addition to RNA-RNA, protein-RNA, 

protein-protein interactions. Created with Biorender.com. 
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of mRNA by regulating various processes, including transport, degradation 
and translation31. It has been shown that a threshold protein and/or RNA 
concentration is needed for the assembly of RNP granules driven by 
concentration-dependent LLPS. However, these liquid-like condensates might 
further convert into a different state, such as hydrogel- or solid-like, if the 
concentration is exceeded32,33. 
 
It has been proposed that the dynamics of RNP components within the granule 
is largely controlled by two key principles. First, higher protein or RNA 
valency results in slower exchange rate due to increased avidity25. The 
importance of this factor is underscored by the rigid and static features of 
centrally located mRBPs in RNP granules, indicating these RBPs have many 
interactions trapping them in the center, whereas RNP surface components are 
more dynamic, indicative of fewer more transient interactions34,35. Moreover, 
studies indicate slow dynamics of phase separated RNAs in vitro as well as in 
RNP granules, reasonable since RNAs would be expected to be highly 
multivalent due to their generally increased spatial extent and mass, in 
comparison to proteins34-37. Second, tighter affinity for RNA, of any 
component, results in slower exchange rates. Accordingly, in vitro studies 
show that RNA affinity correlates with the presented dynamics of RBPs, 
further supported by in vivo FRAP (fluorescence recovery after 
photobleaching) measurements of different RNP granule components38,39. 
Furthermore, RNA self-assembly occurs readily in vitro and biochemical 
changes increasing/decreasing RNA self-assembly in vitro correspondingly 
affect RNP granule formation in vivo40-42.  
 

STRESS GRANULES 

Eukaryotic cells are frequently exposed to fluctuating and potentially 
unfavorable environmental conditions, such as chemical, physical and 
nutritional stress, leading to e.g. starvation and cellular oxidative stress43. To 
deal with stressful conditions, cells have evolved defense and coping 
mechanisms enabling energy conservation and protection of macromolecules. 
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For short-term survival, rapid responses mainly exert their effects at the post-
translational level in the form of post-translational modifications (PTMs), 
protein binding and protein relocalization. Medium-term survival and recovery 
are mainly focused on reducing the translation level of house-keeping and 
proliferation-linked genes, instead prioritizing the synthesis of proteins 
involved in stress adaptation44,45. Protein synthesis is a major consumer of the 
cell’s energy production and therefore, under stress conditions, translation 
needs to be tightly regulated. Subsequently, cells decrease the stability and 
translation rate of most mRNAs under stress, whereas mRNAs needed for 
stress survival are stabilized and highly translated 46-49. Long-term survival 
under chronic stress is characterized by transcriptional modification as the 
major regulatory mechanism50,51.  
 
The post-transcriptional stress response program also entails the formation of 
two evolutionarily conserved cytoplasmic mRNP granules, SGs and PBs. 
These stress-induced membraneless granules allow cells to adapt to diverse 
environmental and cellular cues. In contrast to SGs, PBs are present 
constitutively, however; under stress, the number of PBs increases28,52. SGs 
only form under conditions of severe stress such as temperature changes, viral 
infection, oxidative and osmotic stress, irradiation and starvation53-55. The 
induction of SGs is triggered by the stress-induced inhibition of translation and 
have been observed in isolated cells and in the context of the entire organism56-

59. Moreover, SGs are dynamic structures that have been shown to undergo 
fusion and fission events, in addition to exchanging components with the 
cytoplasm29. The structure of SGs has been proposed to include two diffusely 
distinct compartments, a stable core substructure surrounded by a more 
dynamic shell60,61. Subsequently, SG assembly has been proposed to be 
nucleated by the stable core followed by the assembly of the shell62,63. The full 
function of SGs and assembly mechanism still remain unclear, however; 
distinct modes of mechanisms have been assigned to SGs64. 
 
SGs range in size from 100 to 2000 nm and contain a high local concentration 
of proteins and mRNA, of which most encode housekeeping proteins65. The 
composition of SGs varies based on the stress situation but usually include 
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translationally arrested mRNAs, translation initiation factors, RBPs and small 
ribosomal units56,66. It has been hypothesized that the close contact, within the 
confined space of SGs, enables an increased efficiency of certain reaction 
kinetics, for instance in promoting interactions between translation factors and 
mRNA to enhance the formation of translation initiation complexes upon stress 
relief28. Accordingly, during stress, SGs temporarily store and protect non-
translating mRNA and proteins from autophagy and proteasomal degradation, 
thereby allowing a fast restart of translation when stress subsides64. In addition, 
SGs have been implicated as modifiers of signal transduction under stress, 
since specific signaling factors have been identified to be sequestered in SGs, 
such as members of the TORC1 signaling complex67. Sequestration into SGs 
could result in their activity in particular signaling pathways becoming 
altered67,68. Even though SGs contain many translational repressors, formation 
of SGs is not required for translation inhibition during stress69,70,71.  
 
Under normal conditions, the formation of SGs is a dynamic and reversible 
process needed for increased survival during stress responses72-74. However, 
prolonged stress or disease-linked mutations in proteins known to associate 
with SGs have been identified to alter normal SG dynamics. Accordingly, SGs 
are associated with a number of human diseases, including cancers, viral 
infections and neurodegenerative disorders, such as amyotrophic lateral 
sclerosis (ALS) and spinocerebellar ataxia type 275-77.  
 

STRESS GRANULE ASSSEMBLY  

As previously stated, SGs are formed upon stress-induced inhibition of 
translation56-59. Inhibition of translation is often induced through 
phosphorylation of elongation initiation factor 2 alpha (eIF2α), by one or more 
kinases56,78. Subsequently, this results in polysome disassembly and release of 
translation initiation factors, ribosomal subunits and RBP-coated mRNAs. 
Released polysome components accumulate in the cytoplasm and are further 
sequestered into SGs where they will be kept silent and protected from 
degradation until the stress subsides72,78. Disassembly of polysomes has 
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therefore been suggested to be the universal trigger of SG formation. Inhibition 
of translation has been shown to be mediated through various routes, such as 
previously mentioned phosphorylation of eIF2α, inhibition of TOR or 
interference with the eIF4F complex79. Formation of SGs can therefore be 
either dependent or independent of the initiation factor eIF2α56,58. Accordingly, 
observations of eIF2α-independent SG formation have been reported in both 
yeast and mammalian cells80-83.  
 
Moreover, the signaling pathways needed for SG formation can vary based on 
the type of stress, where specific regulators might be crucial under certain 
stress conditions, but not others83. In accordance, the composition of SGs, and 
exchange dynamics of individual SG components, differ depending on the type 
of stressor84. The protein composition of SGs can also vary depending on 
which step of the mRNA translational cycle stalling occurs31. Accordingly, the 
importance of non-translating mRNAs has been linked to the formation of SGs, 
where trapping mRNAs in polysomes results in failed SG formation73. 
Furthermore, the local RNA concentration has been reported to influence SG 
formation85,86. 
 
Many SG-associated proteins contain IDRs or prion-like domains (PLDs), and 
some have been linked to stress granule LLPS, such as the PLD of human TIA-
1 protein, which has been reported to promote SG formation87. Specific 
characteristics of an IDR is the lack of a defined 3D structure, in addition to 
containing low diversity repeated sequences that contribute to multivalent 
intermolecular interactions. Many proteins with IDRs have thus been shown to 
phase separate on their own in vitro15,88. In accordance, RBPs with IDRs have 
been implicated in the formation of various RNP granules, where e.g. 
disruption of a key protein’s IDR could lead to decreased LLPS and disrupted 
granule formation89,90.  
 
Only a fraction of SG-associated proteins is believed to be necessary in the 
induction and maintenance of SGs. Key proteins that are essential in driving 
SG formation are usually referred to as “scaffold proteins”91. Examples of such 
key RBP components of SGs have been identified in yeast and mammalian 
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models, e.g. PolyA-binding protein (PABP), RasGAPSH3-binding protein 
(G3BP), Lsm7 (Sm-like protein 7) and T-cell intracellular antigen-1 (TIA-
1)13,56,66. Many key SG components are known to be substrates for PTMs. 
Subsequently, PTMs have been reported to play a role in SG regulation, where 
various modifications have been shown to influence SG assembly, such as e.g. 
demethylation of G3BP and phosphorylation of eIF2α92,93. Accordingly, 
studies have shown that a specific deubiquitinase enzyme, Ubp3 (yeast) / 
USP10 (human), is needed for efficient assembly of SGs94,95. Further 
identification of different components in the SG interactome is ongoing with 
many additional SG-related proteins being identified continuously13,31.  
 

STRESS GRANULE DISASSEMBLY 

The process of assembly and disassembly of SGs is in equilibrium with 
polysomes, steered by the presence of stress41. The assembly of SGs has been 
far more extensively studied than the disassembly process31. However, studies 
have identified that distinct subsets of proteins associate with SGs during the 
disassembly phase, indicating that disassembly is not a mere passive 
dissolution of SG components, but a highly regulated process96. Upon stress 
relief, SGs can dissolve at different rates depending on the stress, e.g. within 
minutes after return to normal temperature after cold stress, and up to hours 
after heat shock53,97. Disassembly of SGs enables recycling of SG components, 
which would otherwise have had to be synthesized de novo, thereby allowing 
for a more energy efficient process98. Moreover, the disassembly of SGs is 
important for protein homeostasis and viability in cells, which is further 
highlighted by the reported consequences of impaired SG clearance resulting 
in aberrant SGs and protein aggregates, implicated in neurodegenerative 
disease76,99.   
 
It has been hypothesized that the loss of some highly multivalent components 
could lead to a subsequent disassembly of SGs, as a result of decreased 
multivalency. Accordingly, a stepwise disassembly model has been proposed, 
involving the titration of stalled mRNAs out of SGs, resulting in structural 
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instability of the protein assemblies and subsequent disassembly of visible 
SGs100. Additionally, post-translational modifications of certain essential SG 
node proteins have been linked to the disassembly of SGs101,102. For instance, 
during heat shock, ubiquitination is not needed for SG assembly but instead 
aids in SG disassembly, where loss of ubiquitination results in delayed 
disassembly103. Lastly, chaperones have been proposed to function as SG 
regulators, e.g. by preventing irreversible aggregation of aberrant proteins 
within SGs, thereby ensuring continuous SG fluidity and eventual 
disassembly104,105.  
 
As mentioned before, many RBPs contain IDRs or low complexity domains 
(LC) which allow for multiple interactions and a flexibility in folding. These 
characteristics enable the formation of dense protein-protein or protein-RNA 
networks64,106. However, this conformational flexibility also entails a 
proneness to aggregation, i.e. a transition into a more solid-like state is possible 
and could further function as a seeding mechanism to incorporate other 
proteins that are aggregation-prone8,107. Accordingly, mutations in the PLD of 
RBPs has been linked to increased aggregation. Furthermore, these aggregated 
proteins could lead to the aberrant persistence of SGs upon stress removal, 
leading to other cellular pathological changes108,109. These kind of changes in 
LLPS behavior have been linked to, in addition to IDR-mutations, high protein 
concentration and changes in temperature and pH8,110. In accordance, 
accumulating findings suggest that LLPS-driven aberrant SG assembly is 
associated with e.g. cancer, virus infections and neurodegenerative 
disease8,76,111. 
 

PROCESSING BODIES 

mRNA turnover is a vital cellular function in regulating gene expression. The 
process of mRNA degradation is initiated by deadenylation of the 3´-
polyadenosine (polyA) tail, predominantly performed by the deadenylases in 
the Ccr4-Not complex. Deadenylation is primarily followed by decapping, 
carried out by Dcp1 and Dcp2 decapping enzymes, a process regulated by 
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decapping co-activators such as the Lsm1-7/Pat1 complex. The decapped 
mRNA is then further 5´-to-3´degraded by the exonuclease Xrn1112. Non-
translating mRNAs together with the mRNA decay machinery and other 
translation repressors accumulate into conserved cytoplasmic mRNP granules, 
called processing bodies (PBs), under both normal and stressed conditions113-

115. In other words, PBs are present constitutively but drastically increase in 
number upon stress. PBs have been linked to various types of mRNA 
regulation, including mRNA decapping in regular mRNA decay, nonsense-
mediated mRNA decay, AU-rich element-mediated mRNA decay, 
microRNA-mediated translational repression, general translation repression 
and mRNA storage113,116. 
 
Efficient mRNA degradation is correlated with the formation of PBs but 
macroscopically observable PBs are not necessarily required for mRNA 
degradation to occur114,117. Moreover, mRNAs stored in the large PBs visible 
under yeast stationary phase recycle back into translating polysomes when 
growth resumes, indicating mRNAs residing in PBs can re-enter the 
translational machinery118. It has therefore been proposed that PBs, in addition 
to hosting the mRNA decay machinery, also function as storage sites for 
translationally repressed mRNAs and inactive mRNA decay enzymes113. 
 
As mentioned before, SGs are associated with mRNA sorting and storage 
during stress. From SGs, mRNAs can be further routed to either reinitiation or 
degradation119. Accordingly, SGs and PBs, being sites of mRNA degradation, 
are spatially and functionally linked120. Even though SGs and PBs share and 
exchange several protein and RNA components, they are distinct and 
independent cytoplasmic structures72,73. Just like SGs, PBs are dynamic liquid-
like structures that constantly exchange mRNAs with the surrounding cytosol 
and polysomes119. Accordingly, drugs that stabilize polysomes lead to a 
disassembly of both SGs and PBs, suggesting both these structures require 
non-translating mRNA for their persistence78. Multiple PB-associated proteins 
have been shown to undergo LLPS in vitro, such as Dcp2, Edc3 and the IDR 
domain of Lsm4, of which the IDR and RRM regions of Edc3 and Lsm4 have 
been shown to be especially important for PB maintenance121-123. The 
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importance of these LLPS-associated domains further highlights the likely role 
of phase separation in PB formation122.  
 
It has been hypothesized that the formation of SGs is dependent on a preceding 
formation of PBs28. For instance, mutations affecting PB formation often also 
result in SG deficiencies, whereas disrupted SGs do not necessarily affect PB 
formation28. Furthermore, upon stress, PB formation increases before SGs start 
to appear, often appearing close to or overlapping with PBs. However, studies 
in yeast have shown that SGs and PBs are regulated by different signaling 
pathways13,124. In accordance, individual SGs have been observed to form 
independently of pre-existing PBs125. Furthermore, knockdown of specific 
mRNAs in mammalian cells lead to suppressed PB formation without affecting 
SGs71. Lastly, SG-associated proteins have been shown to phase separate in 
vitro without the addition of PB components13,126.  
 

LSM1-7 COMPLEX 

The conserved Lsm1-7 (Sm-like proteins) complex resides in the cytoplasm 
where it is involved in regulation of decapping, with the interacting partner 
Pat1. The Lsm components form a hetero-heptameric ring127,128 structure that 
constitutes the assembled complex (Figure 2). The Lsm1-7/Pat1 complex has 
also been shown to protect mRNA 3’-ends from premature trimming129. The 
Lsm1-7/Pat1 complex selectively binds at the 3’-end of deadenylated mRNAs, 
with preferential binding of oligoadenylated RNAs over polyadenylated 
RNAs130,131. Pat1 has been shown to stabilize the binding of the Lsm1-7 
complex to RNA, in addition to broadening the RNA-binding specificity132. 
Lsm1 is also known to regulate the specific RNA binding properties of the 
complex133. Loss of function of any of the complex subunits results in 
stabilization of mRNAs in vivo due to impaired 5´to 3´ mRNA decay129. 
Moreover, the Lsm1-7 complex shares components with another complex, 
Lsm2-8 which resides in the nucleus. The Lsm2-8 complex is involved in pre-
mRNA splicing and processing of various nuclear RNAs as well as nuclear 



Michelle Lindström 

13 

mRNA decay134. Both complexes have been shown to form the ring-structure 
spontaneously in the absence of RNA128. 
 
The Lsm1-7/Pat1complex is heavily concentrated in PBs and shown to be 
required for efficient decapping during mRNA degradation134. Accordingly, 
the Lsm1-7/Pat1 complex components are usually considered part of the 
conserved core of proteins found in PBs. Accordingly, deletion of Pat1 results 
in reduced number of PBs122. Pat1 is a multifunctional protein that binds 
decapping-related proteins, such as Dcp1-Dcp2 and Dhh1, to activate 
decapping135. Pat1 has also been shown to interact with Xrn1 and the Ccr4-Not 
complex, members of the mRNA decay machinery136. Loss of Pat1 or Lsm1 
leads to an accumulation of deadenylated and capped transcripts, indicating 
disturbed decapping process137. It has been proposed that the efficiency of 
recruitment of the Lsm1-7/Pat1 complex onto an mRNA could be the key 
determinant of which mode of decay (5’ to 3’or 3’ to 5’) the mRNA goes 
through. I.e. fast association of the Lsm1-7/Pat1 complex with an 
oligoadenylated mRNA tail would probably lead to decapping and mRNA 
degradation in 5’ to 3’, whereas inefficient binding to the complex could result 
in complete deadenylation and subsequent targeting to the exosome for 3’ to 
5’ decay138. 

Figure 2. The heptameric ring structure of the Lsm1-7 complex. Lsm1 displays a C-terminal 
extension into the central channel of the complex. The interacting partner Pat1 interacts with 
Lsm2 and Lsm3. Adapted from Sharif and Conti, 2013. Created with Biorender.com. 
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CCR4-NOT COMPLEX 

The Ccr4–Not (carbon catabolite repression 4 (Ccr4)-negative on TATA-less 
(Not)) complex is a highly conserved multifunctional assembly of proteins. 
The complex is heavily implicated in the rate of protein synthesis. It has been 
shown that the complex is involved, to different extents, in all steps controlling 
protein synthesis rate, including ribosomal protein and RNA synthesis, mRNA 
transcription as well as degradation, leading to both negative and positive 
regulation of global gene expression139-141. Additional functions linked to the 
complex include regulation of mRNA export, interaction with the nuclear 
exosome, mRNA elongation control, cell cycle regulation, as well as ubiquitin-
protein transferase activity142-144. The role of the complex in mRNA decay has 
been extensively researched. Subsequently, the Ccr4-Not complex has been 
found to be involved in different types of mRNA decay, including generic 
mRNA deadenylation, nonsense mediated mRNA decay (NMD), targeted 
mRNA decay and deadenylation-independent decapping140. 

 
The Ccr4-Not complex (Figure 3) is a large L-shaped modular assembly of 
proteins (1.9 MDa in yeast) with nine core subunits in yeast; Ccr4, Caf proteins 
Caf1/Caf40/Caf130 (Ccr4 associated factor) and Not proteins 
Not1/Not2/Not3/Not4/Not5145. In humans, the complex is composed of the 
human orthologues CNOT1-CNOT9, in addition to three other subunits 
CNOT10, Tab182 (Tankyrase 1-binding protein1, TNKS1BP1) and C2ORF29 
(CNOT11), which have not been identified in yeast146,147. Moreover, the human 
CNOT3 is orthologous to two yeast subunits, Not3 and Not5148. 
 
Not1 is the largest subunit (>200 kD) and functions as a scaffold for the 
others140. Studies have identified distinct submodules to be organized onto the 
Not1 backbone, Ccr4 with Caf1, Caf40, Caf130, and Not2-Not5145. In yeast, 
two deadenylase components are present in the complex, Ccr4 and Caf1. In the 
human complex, four deadenylase subunits are present, forming various 
heterodimers; CNOT7/CNOT6, CNOT7/CNOT6L, CNOT8/CNOT6, and 
CNOT8/CNOT6L. Therefore, either CNOT7 or CNOT8 are incorporated into 
the complex, perhaps through competition for the same CNOT1 binding site149. 
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Lastly, CNOT4 is not as stably associated with the complex in mammalian 
cells, as Not4 is in yeast150. 
 
The Ccr4-Not complex associates with PBs in the cytoplasm and is considered 
to be part of the conserved core113,151. The localization of Ccr4-Not components 
to PBs is limited to stressed conditions but not unstressed cells when decay is 
ongoing40,140. It has therefore been proposed that the localization of the Ccr4-
Not complex to PBs might initiate the degradation of mRNAs to avoid de-
prioritized or damaged mRNAs from re-entering translating polysomes, during 
stress conditions152. 
 

 
 

Figure 3. The Ccr4-Not complex. The expected positions of the core subunits on the Not1 
scaffold. Adapted from Collart, 2016. Created with Biorender.com. 
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FUNCTIONS OF INDIVIDUAL COMPONENTS 

In PBs, the Ccr4-Not complex partakes in mRNA decay through the 
deadenylase functions of the two deadenylase components, Ccr4 and Caf1113. 
The Ccr4-Not complex together with the deadenylases Pan2 and Pan3 function 
as the dominant deadenylase complexes, conserved from yeast to human153,154. 
Ccr4 and Caf1 are regarded as the main deadenylase complex due to the severe 
effects on deadenylation upon their depletion153,155. Studies show that Caf1 
(CNOT7/8) binds to Not1 (CNOT1), thereby allowing full access of RNAs to 
the active site on Caf1156. Subsequently, Ccr4 (CNOT6/6L) binds to Caf1, not 
to Not1, through its leucine rich repeat (LRR) domain156,157. 

In yeast, Ccr4 is considered to be the major mRNA deadenylase in the Ccr4-
Not complex, not Caf1145,153. Degradation of mRNA is initiated by trimming 
of selectively long poly(A)-tails to a length of approximately 110 nt by the 
Pan2/3 deadenylase dimer, after which Ccr4-Not complex takes over and 
completes deadenylation158. After the tails are shortened to an oligo(a) length 
of approximately 10-15 residues, the mRNA is further subjected to 
decapping129. It has been shown that Ccr4 and Caf1 play distinct deadenylation 
roles. Ccr4 is activated by Pab1 to shorten Pab1-protected sequences, whereas 
Caf1 gets blocked by Pab1 and thus only degrades naked poly(A) sequences. 
Accordingly, it has been established that Ccr4 can trim all mRNAs, thereby 
acting as a general deadenylase, whereas Caf1 is more specialized and 
deadenylates mRNA with reduced translation elongation and Pab1 binding159. 
Lastly, Ccr4 activity has been linked to cell cycle progression regulation144. 

Since Not1/CNOT1 functions as the complex scaffold, depletion of 
Not1/CNOT1 has adverse effects on the stability of the whole complex and its 
functions. No distinct enzymatic activity has been linked to Not1/CNOT1 but 
its scaffolding function is of great importance for the deadenylase activity of 
the complex even though CNOT6/6L and CNOT7/8 components remain intact. 
Accordingly, CNOT1 depletion also leads to degradation of other complex 
subunits, such as CNOT2, CNOT6L, CNOT7 and CNOT9160. Moreover, 
through interactions with specific RBPs, CNOT1 mediates the recruitment of 
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CNOT6/6L and CNOT7/8 to the selected mRNA thereby triggering 
degradation of target mRNAs140.  
 
The Not submodule (Not2-Not5) of the Ccr4-Not complex consists of a diverse 
set of proteins with no known enzymatic activity (except for Not4). Not much 
is therefore known about this submodule but it has been suggested it provides 
complex stability, since deletion of some of these components results in 
destabilization of the other complex subunits145. Accordingly, it has been 
shown that depletion of CNOT2 impacts the deadenylase activity of the 
complex161. The Ccr4-Not complex physically associates with ribosomes in 
yeast, and this association is enabled by Not5 recruitment to the ribosomal E-
site162. Moreover, the interaction between the complex and ribosomes further 
requires specific ubiquitylation of ribosomal subunits by Not4. Loss of Not5, 
or this specific ubiquitylation by Not4, results in dysregulation of mRNA half-
life and impairment of decapping162. Accordingly, deadenlyation-independent 
decapping of certain mRNAs is dependent on Not2, Not4, and Not5 in yeast163. 
 
Not4 constitutes the second major enzymatic activity of the Ccr4-Not complex, 
i.e. E3 ligase-mediated ubiquitylation145. In accordance with its E3 ligase 
activity, Not4 is part of the ubiquitin(ub)-proteasome pathway (UPP) involved 
in cellular protein turnover. Accordingly, Not4 has been shown to associate 
with proteasomes, and even aid in the correct assembly of the proteasome164. 
Loss of Not4 results in accumulation of polyubiquitylated, misfolded and 
aggregated proteins and lower levels of free ubiquitin, a phenotype consistent 
with a defect in proteasome function164. 
 
Caf130 is a yeast specific component, whereas Caf40 is conserved. The 
mammalian ortholog of Caf40, CNOT9, has been linked to gene expression 
regulation through binding to transcription factors and interaction with miRNA 
processing cascades165. However, the functions of both Caf40 and Caf130 
remain poorly understood. Furthermore, the mammalian specific complex 
components CNOT10, CNOT11 and Tab182 (TNKS1BP1) do not appear to 
have any enzymatic activity147. However, the presence of CNOT10 and 
CNOT11 have been shown to promote deadenylation by stabilizing the RNA 
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substrate166. Tab182 contributes to radiation-induced DNA damage repair140. 
In addition to these integral complex components, a number of proteins have 
been found to associate with the complex for routine functions140. The results 
of these interactions have reported to be either activation or repression of the 
deadenylase activity of the complex, as well as regulatory in mRNA 
interaction140.  
 

CELL CYCLE REGULATION 

In addition to the functions already mentioned, the Ccr4-Not complex has 
further been identified to greatly affect cell cycle progression in both 
mammalian and yeast cells167. In yeast, cell cycle progression is primarily 
controlled at the G1 to S phase transition168. Furthermore, for cell cycle 
progression past this transition point, yeast cells must attain a minimum cell 
size169. When cells approach the critical cell size requirement, cell cycle 
proteins Bck2 and Cln3 (cyclin) activate the transcription of the downstream 
G1-phase cyclins CLN1 and CLN2, thereby initiating cell cycle 
progression170,171. To promote CLN1/2 transcription, Cln3 together with Cdc28 
phosphorylates Whi5, another cell cycle regulator known to suppresses G1-
phase cyclin expression, thereby enabling CLN1/2 transcription172. 
Overexpression of CLN3 or BCK2 initiates premature CLN1 and CLN2 
transcription resulting in cell cycle progression170,171. Moreover, deletion of 
WHI5, results in premature CLN1/2 expression and cell cycle 
progression172,173. Furthermore, deletion of CLN3 or BCK2 results in delayed 
CLN1/2 expression and cell cycle delay170,171,174. 
 
It has been shown that Ccr4 works downstream of Bck2, independently of 
Cln3, assisting in cell cycle coordination by negatively regulating the half-life 
of WHI5 mRNAs, thereby contributing to the size-dependent timing of CLN1/2 
expression144. Accordingly, deletion of CCR4 results in delayed transcription 
initiation of CLN1/2 and enlarged cell size morphology144.  Moreover, 
overexpression of WHI5 is lethal in ccr4D cells and overexpression of 
CLN1/2/3 or deletion of WHI5 reduces the cell size of ccr4D cells. Double 
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deletion of CLN3 and CCR4 is lethal, suggesting that Bck2 is dependent upon 
Cln3 to inhibit Whi5 in the absence of Ccr4144. Further support for the 
involvement of the Ccr4-Not complex in cell cycle regulation is found in 
mammalian cancer cell studies where human CNOT6/L were identified to be 
dysregulated, further knockdown could significantly inhibit cell proliferation 
and tumorigenicity. Depletion of CNOT6/L resulted in a subsequent G0/G1 
cell cycle phase arrest175. Accordingly, depletion of CNOT6 and CNOT6L in 
mammalian cells leads to reduced cell proliferation, with more cells being in 
G1 phase176,177. Lastly, loss of CNOT6L has been shown to induce meiotic cell 
cycle arrest during mouse oocyte maturation178. 
 
 

PHASE SEPARATION IN 
NEURODEGENERATIVE DISORDERS 

Under normal conditions, LLPS is an essential and vital process in a wide range 
of cellular processes and systems. However, accumulating evidence179 is 
linking LLPS-capable proteins to pathological aggregates found in various 
disease, indicating that pathological aggregates could originate from an 
aberrant phase separation (Figure 4). Indeed, aberrant protein aggregation is a 
hallmark of various neurodegenerative disorders, such as amyotrophic lateral 
sclerosis (ALS), Parkinson’s disease (PD), Alzheimer’s disease (AD) and 
frontotemporal lobar degeneration (FTLD)180. Proteins implicated in these 
disorders, such as  TAR DNA-binding protein 43 (TDP-43) and fused in 
sarcoma (FUS), have been shown to be able to transition from a reversible 
dynamic LLPS into an irreversible aggregated state22,179. PTMs and disease-
associated mutations have been shown to regulate this shift1. For many of these 
proteins, LLPS is mainly regulated by their IDR sequences1, where disease-
linked mutations have been shown to affect condensate formation and 
development. The full impact of disease-linked mutations and PTMs on phase 
separation is not yet fully understood. However, it has been suggested that 
mutations that lead to a lowering of the saturation concentration, i.e. the 
threshold protein concentration needed for LLPS to occur, could force the 
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protein into a condensed state, over time favoring the transition from a 
reversible dynamic LLPS to an irreversible solid and aggregated state. 
Moreover, mutations and altered PTMs could also result in modified binding 
to cellular LLPS regulators1,181. 
 

 
 

YEAST MODELS OF NEURODEGENERATION 

Saccharomyces cerevisiae has been extensively used to study the mechanisms 
behind neurodegenerative disease phenotypes, such as the impact of disease-
linked protein misfolding and cytotoxic aggregation182. Yeast as a model 
organism has many advantages compared to more complex higher organisms, 
such as a fully sequenced genome, well-characterized phenotypes, easy genetic 
manipulation, as well as simplified culturing and handling. Moreover, 
pathways coupled to protein folding pathology are conserved in yeast, enabling 
the study of these in a more accessible model organism, underscored by the 
existence of a high number (approx. 20%) of orthologous gene families linked 
to human diseases183,184. 

Figure 4. Aberrant phase separation. Factors such as PTMs and disease-associated 
mutations can trigger a transition from a reversible dynamic LLPS into an irreversible 
aggregated state. Created with Biorender.com. 
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Of the many experimental advantages provided by the yeast system, the main 
benefit is the ability to perform genome-wide high-throughput screening 
techniques185,186. These genetic modifier screens have contributed to the 
pioneering role yeast has played in uncovering protein deletion and over-
expression phenotypes, protein localization, as well as toxicity modifiers, 
revealing pathways involved in human neurodegenerative disease187-189. Yeast 
high-throughput screenings are a convenient first approach, especially to 
uncover new mechanisms related to pathogenesis and pathophysiology, 
succeeded by further validation in higher organism models and potential 
therapeutic target discovery183.  
 
Yeast models of Huntington disease (HD), Parkinson’s disease (PD) and 
Amyotrophic lateral sclerosis (ALS) have uncovered mechanisms behind toxic 
protein aggregation linked to pathogenesis, involving e.g. mutated huntingtin 
(HD), α-synuclein (PD), TDP-43 and FUS (ALS)183. α-synuclein was one of 
the first neurodegenerative-linked proteins to be characterized in a yeast model 
where it was identified to form cytotoxic inclusions in a dose-dependent 
manner187. Correspondingly, longer polyglutamine stretches in huntingtin has 
been validated to increase the protein tendency to form insoluble inclusions in 
yeast, whereas overexpression of wild-type TDP-43 and FUS leads to 
cytoplasmic mislocalization and aggregation, in accordance with their disease 
pathology188,190. Moreover, proteins involved in lipid metabolism, vacuolar 
degradation and vesicular transport have been identified as potential enhancers 
or suppressors of α-synuclein toxicity191. Furthermore, yeast screenings have 
identified many human RNA-binding proteins (RBPs) that aggregate in a toxic 
manner in yeast, including ALS-linked proteins FUS and TDP-43, highlighting 
a shared feature among most of these proteins, namely an IDR, more 
specifically a prion-like domain192. In addition, suppressors and enhancers of 
FUS and TDP-43 toxicity have been uncovered in yeast deletion and 
overexpression screens, thereby identifying possible candidate genes with 
human orthologs188,190,193. 

Although Saccharomyces cerevisiae is a simple single-celled eukaryote it has 
proven highly useful in a multitude of neurodegenerative studies, of which 
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only a fraction is listed here. Studies in yeast contribute to not only uncovering 
the mechanisms behind pathology, but have also suggested that yeast specific 
proteins, such as potentiated Hsp104 (heat shock protein 104) disaggregase 
variants, have the capacity to reverse the toxic phenotype linked to highly 
aggregation-prone human disease proteins, such as FUS, indicating that yeast 
proteins may eventually be used as a therapeutic agent in human 
neurodegenerative disease194,195. Indeed, the ability to actively reverse and 
control protein misfolding is a vital attribute when designing new therapeutic 
solutions for proteinopathies. 
  

AMYOTROPHIC LATERAL SCLEROSIS 

Amyotrophic lateral sclerosis (ALS), also called Lou Gehrig's disease, is a 
neurodegenerative disease characterized by preferential degeneration of upper 
and lower motor neurons leading to rapidly progressing paralysis and eventual 
death by respiratory failure, typically 3-5 years after disease onset196,197. ALS 
is the most common motor neuron disease with a global incidence of 2.5 cases 
per 100,000 individuals each year, and an average age of onset of 60 years198. 
As of today, there are no cures and available treatments do not effectively slow 
disease progression. Most cases of ALS are sporadic with no apparent genetic 
link (sALS), whereas inherited ALS (familial, fALS) accounts for 
approximately 10% of all reported ALS cases. However, given the similarities 
in disease display and pathology of sporadic and familial ALS, the study of 
genes implicated in fALS could uncover mechanisms underlying both fALS 
and the more common sporadic form199.  
 
The degeneration of cells in ALS patients coincides with the accumulation of 
misfolded protein inclusions in motor neurons and oligodendrocytes, as well 
as neuroinflammation200. In ALS pathology, more than 20 genes have been 
linked to disease progression. Among these genes some have been identified 
as the most common causative genes, such as SOD1 (Cu-Zn superoxide 
dismutase 1), C9ORF72 (chromosome 9 open reading frame 72), TDP-43 
(TAR-DNA-binding protein-43 kDa) and FUS (fused in sarcoma; also known 
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as TLS, translocated in liposarcoma201,202. SOD1 was first to be linked to fALS 
and much research has been focused on identifying the cause and results of 
mutated SOD1 in ALS pathology203. Eventually, other genes involved in fALS, 
such as the RNA-binding proteins TDP-43 and FUS, were identified204. 
Subsequently, mutations in FUS have also been identified in sALS and a subset 
of FTLD (frontotemporal lobar degeneration) cases205,206. 
 

FUSED IN SARCOMA (FUS) 

FUS/TLS was first discovered as part of a chromosomal translocation 
associated with human myxoid liposarcomas, resulting in gene fusions and 
production of chimeric oncoproteins, hence the name fused/translocated in 
liposarcoma207. The FUS gene is located on chromosome 16 and encodes for a 
526 amino acid protein ubiquitously expressed in all tissues. Moreover, FUS 
is a DNA/RNA-binding protein (RBP) belonging to the FET 
(FUS/EWS/TAF15) protein family208. FUS has different domains (Figure 5) 
linked to various functions of the protein; the N-terminal prion-like domain 
(PLD) that is enriched in polar amino acids (glutamine, glycine, serine and 
tyrosine, QGSY) and contains a glycine-rich region (sometimes referred to as 
an RGG domain), the conserved RNA-recognition motif (RRM, RNA-binding 
domain), two arginine-glycine-glycine (RGG)-repeat regions, a C2/C2 zinc 
finger motif as well as the nonclassical C-terminal nuclear localization signal 
(NLS)209,210. Together, the zinc finger motif, the RRM region, and the RGG 
regions contribute to the DNA/RNA-binding ability of FUS199,211.  
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FUS is involved in many regulatory functions, such as DNA repair, 
transcriptional control, RNA splicing and mRNA transport to the 
cytoplasm199,212. FUS binds to both single stranded DNA and RNA in vitro213. 
Accordingly, several FUS target genes have been identified through chromatin 
immunoprecipitation combined with transcriptomics214. Moreover, it has been 
shown that FUS binds to nascent pre-mRNAs, as well as components of the 
spliceosome, thereby regulating pre-mRNA fate, including pre-mRNA 
splicing199. In addition, FUS has been identified as a regulator of microRNA 
(miRNAs) and long noncoding RNA (lncRNAs) biogenesis through its 
interaction with Drosha215. FUS has also been identified in neuronal mRNA 
transport granules indicating that it plays an active role in mRNA trafficking 
along axons and dendrites216. Many FUS functions involve the binding of 
RNA, a direct interaction enabled by the RNA-binding domain through 
hydrogen bonds and ring stacking210. RNA binding is further supported by the 
zinc finger domain and the RGG motifs211. 
 
In neurons and glial cells, FUS is predominantly localized to the nucleus but 
have been shown to shuttle between the nucleus and the cytoplasm, e.g. when 

Figure 5. The different domains of FUS. The N-terminal prion-like domain (PLD) has been 
underlined. Created with Biorender.com. 
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being transported to dendritic spines at excitatory post-synapses212,217,218. 
Moreover, during stress, such as heat shock or oxidative stress, FUS has been 
shown to exit the nucleus and temporarily assemble into perinuclear SGs and 
PBs, eventually re-localizing to the nucleus. Accumulation of FUS in SGs is 
therefore a reversible process in healthy neurons219,220. The C-terminal NLS of 
FUS is known to be recognized by a nuclear transport receptor called 
Transportin 1/Karyopherin-β2, an interaction that results in FUS re-entering 
the nucleus219,221. 
 
As previously mentioned, FUS is normally localized to the nucleus, but has 
been shown to form neuronal cytoplasmic inclusions in ALS patients when 
mutated222. Aggregation of mutated FUS has been implicated in 7.5% of fALS 
and <1% of sALS cases, in addition to rare forms of frontotemporal lobar 
degeneration (FTLD)222-224. FTLD is the second most common form of 
dementia in people under 65, characterized by neuronal cell death in the frontal 
and temporal cortex225. ALS patients with mutated FUS display a particularly 
severe disease progression, where 60% of cases display pathogenesis by the 
age of 40226. 
 
Even wild-type FUS has been linked to cytotoxic accumulation in some cases 
of juvenile ALS, basophilic inclusion body disease, Huntington's disease, 
spinocerebellar ataxia (SCA, type 1, 2, and 3), dentatorubral-pallidoluysian 
atrophy, in addition to the majority of tau- and TDP-43-negative FTLD cases, 
as well as a subtype of FUS-FTLD227-230. Moreover, mutations leading to 
increased expression of FUS have been identified in ALS patients231.  Further 
support of wild-type FUS being implicated in disease comes from studies in 
transgenic mice, where overexpression of wild-type human FUS results in 
ALS-like behavior and degeneration, including spinal cord motor neuron 
degeneration and progressive hind limb paralysis, followed by death, 
suggesting that high levels of wild-type human FUS trigger a gain-of-function 
toxicity131. Indeed, it has been proposed that the cytoplasmic mislocalization 
and aggregation of FUS may lead to a loss of normal nuclear protein functions 
and/or gain of new toxic functions in the cytoplasm199,232. 
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The increasing number of findings of both wild-type and mutated FUS 
inclusion formation in disease broaden the spectrum of disorders linked to FUS 
beyond ALS and FTLD, emphasizing the importance of identifying the 
mechanisms behind both normal and aberrant FUS functions, thereby 
uncovering the pathology of FUS proteinopathies. 
 

FUS-ALS 

Known FUS mutations linked to ALS reside in certain distinct regions of the 
gene, including the N-terminal PLD, a portion of the glycine-rich region and 
the C-terminal NLS209. However, most FUS-ALS mutations are clustered in 
the NLS. Some of these mutations, such as P525L and R521C have been shown 
to contribute to cytoplasmic FUS mislocalization due to disruption of the 
transportin-mediated nuclear import of FUS as a result of reduced interaction 
with the nuclear import receptor Transportin 1221,231. Accordingly, disruption 
of the FUS/Transportin interaction has been shown to result in nuclear 
depletion and cytoplasmic accumulation of FUS in mammalian cells221,233. 
Moreover, ALS disease severity correlates with the extent of mutated FUS 
redistribution to the cytoplasm, where patients with the FUS-R495X mutation, 
which results in high cytoplasmic retention of FUS due to a truncated NLS, 
display early disease onset and severe disease development219,233. 
 
Furthermore, when expressed at high level (hereafter referred to as 
overexpression) in yeast, both wild-type and mutated FUS has been shown to 
mislocalize to the cytoplasm forming toxic aggregates largely due to a non-
functional NLS188,193. Upon replacement of the non-functional NLS with a, in 
yeast, recognizable sequence, predominantly nuclear localization of FUS can 
be seen in addition to a reduction in cytotoxicity, further supporting the role of 
the NLS in cytoplasmic mislocalization of FUS and toxicity188,193. However, 
studies in mammalian cells have shown that FUS can enter the nucleus even 
though missing the C-terminal NLS, indicating that other sequences also 
enable import of FUS188,234. The importance of a functional nuclear import has 
thus lead to the hypothesis that impaired nuclear import and subsequent 
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cellular accumulation of FUS may be necessary, and potentially sufficient, for 
FUS pathogenesis219,233. 
 
As mentioned before, overexpression of wild-type FUS in yeast results in the 
formation of cytotoxic FUS inclusions in accordance with ALS 
pathology188,193,235. This phenotype has been utilized to identify the exact 
sequence domains needed for FUS aggregation and cytotoxicity in yeast. By 
employing a set of truncated FUS plasmids it was shown that the RRM domain, 
PLD and parts of the first RGG domain are required for full cytoplasmic FUS 
aggregation and toxicity in yeast188. Further studies in insect cells support the 
notion that the PLD is needed for the forming of FUS inclusions22. Moreover, 
in vitro studies using purified FUS have shown that FUS is intrinsically 
aggregation-prone, displaying rapid aggregation in a concentration dependent 
manner, regulated mainly by the PLD and first RGG domain188. In vitro FUS 
aggregates form large, tangled and stacked linear polymers, resembling those 
found in ALS and FTLD patients, with a seemingly non-amyloid nature188,236. 
 
The cytoplasmic aggregation of FUS has been hypothesized to further lead to 
a toxic protein gain-of-function in the cytoplasm. This hypothesis is supported 
by a multitude of studies highlighting changes in FUS function upon 
aggregation in the cytoplasm. For instance, aggregation of mutated FUS has 
been shown to affect the expression of its target genes through sequestration 
of these mRNAs within the cytoplasmic FUS aggregates237. Moreover, 
mutated FUS displays changed mRNA binding patterns and an increase in 
unique targeting of an overrepresented group of transcripts238. Accordingly, by 
disrupting the RNA binding activity of FUS, FUS-related cytotoxicity was 
reduced in yeast, indicating that aggregated FUS exerts some of its toxicity 
through binding to RNA and potential RNA sequestration188. Moreover, 
mutant FUS has been shown to suppress protein translation and alter the 
nonsense-mediated decay (NMD) pathway, leading to hyperactivation of 
NMD and thereby disruption of NMD autoregulation239.  
 
Furthermore, studies indicate that aggregation of mutated FUS causes an 
imbalance in the cytoplasmic RBP homeostasis due to interaction impairment 
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between FUS and other RBPs. Accordingly, RBPs of the FET family have 
been shown to buffer the aggregation tendency of FUS under normal 
circumstances but is suggested to be impaired in disease due to the disrupted 
RBP homeostasis, resulting in disease exacerbation. Accordingly, studies in 
iPSC (induced pluripotent stem cells)-derived neurons, with increased 
cytoplasmic FUS levels, have shown reduced protein levels of the same FET 
family of RBPs, findings further confirmed in ALS-patient tissue samples, as 
well as an impaired protein degradation machinery226. 
 
Another gain-of-function of FUS has been identified in regards to neuronal cell 
cycle progression and differentiation. Exogenous expression of human wild-
type FUS in neural stem progenitor cells results in reduced growth and arrest 
in cell cycle progression in G1/S phase. Moreover, expression of ALS-linked 
FUS-P525L displays an abnormal cellular distribution in the cytoplasm and 
drives cell differentiation towards a glial lineage, thereby reducing the 
development of neurons, in addition to decreased overall proliferation240. 
Lastly, FUS is known to interact with SGs in a reversible manner in healthy 
neurons, however; ALS-linked FUS mutants display increased association 
with SGs and have been shown to bind and sequester wild-type FUS into 
SGs202,219. This finding is of special interest since SGs have been proposed to 
play a role in neurodegeneration as possible precursors of pathological 
inclusions241. 
 

INTERACTION WITH SGS AND PBS 

It has been suggested that disease-related association of FUS with stress 
granules is another step in FUS pathology, where the aberrant interaction of 
FUS with SGs may impair cellular stress response, ultimately causing 
disease241. In accordance, a co-localization of pathological FUS aggregates 
with SGs has been seen in yeast, mammalian cell lines, as well as in ALS-
patient tissue samples219,242. SGs have a protective function in healthy neurons 
but mutations in their components or perturbations to their overall function 
might convert them into overly stable structures241. Accordingly, the different 
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ALS-linked FUS mutations result in varying amount of FUS recruitment into 
and impact on SGs, where some result in increased number of SGs that persist 
longer243,244. Upon overexpression in yeast, wild-type and mutated FUS induce 
both SG and PB formation without the addition of any external stressors188. 
Moreover, studies show that overexpressed or endogenous mutant FUS can 
compete with SGs for their core proteins, such as G3BP1, and RNA species 
thereby disrupting physiological SGs245. External stresses have been proposed 
as further drivers of FUS-ALS development, supported by studies showing that 
FUS aggregation and partitioning into SGs is increased by different 
stressors233,243,246. Accordingly, mutant-FUS delays SG formation in 
mammalian cell lines under oxidative stress conditions but upon formation, 
SGs containing mutant-FUS are bigger, increased in number and more 
dynamic than those without FUS. Furthermore, deletion of either FUS-RGG 
domain results in impaired assembly of FUS into SGs, indicating that these 
domains are needed for the interaction with SGs247. 
 
Interaction between FUS and SGs has been established in disease, but does it 
connect to FUS toxicity, or is it merely a downstream result of cellular stress 
associated with degeneration pathology? On that matter, several yeast genome-
wide screens have identified components of SGs as potential regulators of FUS 
toxicity, when overexpressed or deleted. For instance, overexpression of Tif2, 
Tif3 or Pab1, proteins involved in SG assembly in yeast, was able to reduce 
FUS toxicity. Another SG component, Pub1, was shown to suppress FUS 
toxicity when deleted188. 
 
In addition to being linked to SGs, FUS has been shown to be associated with 
PBs as well, in both healthy neurons and in a disease context. Wild-type 
expression of FUS in yeast induces PB formation188. In mammalian cell 
studies, wild-type FUS has been shown to clearly localize with SGs under 
stress, but only moderately with PBs248. However, pull-downs of mutated FUS 
in mammalian studies reveal interactions with PB-associated proteins249. 
Moreover, overexpression of SBP1, a component of PBs, has been shown to 
reduce FUS toxicity in yeast193. Therefore, SGs and PBs, or individual 
components of these RNP granules, might play an important role in mediating 
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FUS toxicity, in addition to being markers of FUS-positive inclusions in 
disease. 
 

PHASE SEPARATION OF FUS 

FUS is able to undergo rapid and reversible phase separation between 
dispersed, liquid droplet and hydrogel states22,250,251. In vitro studies using 
purified FUS have shown that FUS is intrinsically aggregation-prone, 
displaying rapid aggregation in a concentration dependent manner, regulated 
mainly by the PLD and first RGG domain188. Accordingly, further studies in 
insect cells demonstrate the importance of the PLD in the formation of FUS 
liquid droplets, as well as in the formation of aggregates in yeast22,188. Over 
time, in vitro FUS droplets become more viscoelastic eventually adopting a 
more solid-like state and ceasing to exchange molecules with the surroundings, 
a process referred to as maturation15,22,37. It is still unclear what the exact 
material properties of these in vitro hardened states are, but they are often 
referred to as hydrogels250,252. FUS hydrogels can further transition into solid-
like fibrillar aggregates composed of large, tangled and stacked linear 
polymers resembling those found in ALS and FTLD patients, similarities 
further supported by their seemingly non-amyloid nature15,22,188,228,236. 
Furthermore, in vitro liquid droplets of ALS-FUS with mutations in the PLD 
convert faster into an aggregated fibrous state15,22. The importance of PLDs in 
LLPS is further underscored by it being a shared feature among multiple 
proteins that form aggregates in disease235,253. 
	
PLDs have distinct residue compositions, being enriched in polar amino acids 
and aromatic residues254. It has been proposed that PLDs drive FUS droplet 
and hydrogel phase separation mainly through the formation of beta-sheeted 
structural motifs stabilized by hydrogen bonding250,255. FUS demixing is 
further mediated by cation-π interactions between positively charged arginine 
residues in the C-terminal RGG domain and tyrosines in the PLD181. Lastly, 
both phosphorylation and methylation of FUS has been shown to influence 
FUS LLPS181,256.  
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Arginine hypomethylation has been identified to lead to increased FUS phase 
separation, of which relevance is underscored by the significant 
hypomethylation of FUS in FUS-FTLD patients181. Moreover, the nuclear 
import receptor Transportin-1 acts as a chaperone of FUS, reducing phase 
separation and gelation of both methylated and hypomethylated FUS through 
its interaction with the NLS and PLD of FUS181,257. Transportin-1 has also been 
shown to reduce the association of FUS with SGs258. Disease-linked mutations 
in FUS have been identified to prevent the interaction between FUS and 
Transportin-1, thereby indirectly suppressing the physiological LLPS behavior 
of FUS and promoting aggregation181,258. Moreover, FUS interaction with other 
RBPs has been shown to prevent FUS from undergoing an aberrant liquid-to-
solid transition, a regulation that is probably lost upon disease-associated 
mislocalization of FUS to the cytoplasm, further leading to cytotoxic FUS 
aggregation226. Lastly, Pub1 (TIAL-1 in human) has been identified as a 
deletion suppressor of FUS in yeast188. Pub1 also contains a PLD which has 
been shown to template the aggregation of the polyQ protein huntingtin, 
suggesting that FUS aggregation and cytoplasmic sequestration might be 
templated in a similar manner by Pub1227,259. It has therefore been proposed 
that aberrant FUS LLPS is a result of hampered Transportin-1 binding 
followed by impaired nuclear transport and altered protein/RNA interactions 
in the cytoplasm193,233,258. 
 
The formation of in vitro FUS hydrogels has been shown to be regulated by 
protein concentration. At physiological concentrations, FUS demixes into 
dynamic liquid droplets, but converts into hydrogels when the concentration is 
increased15,22. However, FUS protein concentrations, similar to the 
physiological nuclear FUS concentrations, give rise to FUS LLPS in vitro, but 
in vivo there are barely any detectable condensates. Even though the protein 
saturation concentration is obtained, something else prevents LLPS from 
happening260.  
 
Accordingly, RNA has been proposed to act as a regulator of FUS phase 
separation, highlighted by the prevalence of an RNA-binding domain in many 
disease-linked proteins. Indeed, small amounts of RNA has been shown to 
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increase FUS LLPS in vitro, whereas high RNA to protein ratios prevent FUS 
phase separation260. It has been further hypothesized that in environments with 
high RNA concentration, such as the nucleus or SGs, specific highly structured 
RNAs could act as scaffolds to enable FUS phase separation despite high 
RNA/protein ratio. Lastly, addition of RNA to in vitro FUS droplets has been 
shown to keep the droplets in a soluble state, preventing fibril formation260. 
RNA certainly appears to be an important regulator of FUS LLPS, with the 
ability to prevent the formation of solid assemblies that can cause disease. 
However, studies in yeast have shown that when impairing the RNA-binding 
ability of FUS, through residue substitutions in the RRM domain, FUS toxicity 
is drastically mitigated without affecting the cytoplasmic aggregation of FUS. 
This indicates that, in yeast, binding of RNA by FUS is not needed for LLPS 
and aggregation188.  
 
The correlation between FUS inclusion formation and toxicity is further 
complicated by mouse models of juvenile FUS-ALS displaying motor neuron 
loss without the occurrence of FUS aggregates, and studies in Drosophila 
where neither wild-type FUS nor ALS-linked FUS expression resulted in any 
cytoplasmic inclusions even though toxicity was observed261,262. Moreover, 
identified suppressors of FUS toxicity in yeast do not significantly alter the 
aggregation of FUS, suggesting that these genes act downstream or in parallel 
to FUS aggregation, in addition to potentially modifying the dynamics or 
composition of FUS inclusions in a subtle way188. Nevertheless, a decrease in 
toxicity often coincides with a decline in aggregation capacity of truncated 
FUS constructs in yeast188,263. 
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MAIN FINDINGS 

PAPER I 
Stress granules (SGs) are membraneless organelles that form in response to 
stress and are needed for cellular stress management. Liquid-liquid phase 
separation (LLPS) has been implicated in the formation of these 
ribonucleoprotein granules. However, the exact regulatory mechanisms behind 
SG initiation, and the role of phase separation, still remains elusive. In this 
study, a genome-wide imaging-based screen was performed to identify SG co-
localizing proteins under 2-deoxy-D-glucose (2-DG) stress. Further studies 
into one of the SG-associated proteins, Lsm7, uncovered a mechanism needed 
for SG assembly. 
 

• The genome-wide imaging-based screen uncovered previously 
unreported proteins that form foci, co-localizing with SGs (Pab1), 
under 2-DG stress.  
 

• The highly conserved RNA-binding protein Lsm7 was among the 
screen candidates and was identified as needed for promoting SG 
formation.  
 

• The ability to undergo LLPS and form dynamic condensates, a 
process driven by the intrinsically disordered region and hydrophobic 
clusters within the Lsm7 sequence, is needed for Lsm7’s role in 
inducing SG formation. 
 

• Lsm7 condensates appear to work as seeding scaffolds, 
promoting Pab1 demixing and subsequent SG initiation, 
seemingly mediated by RNA interactions.  

 
In conclusion, Lsm7 was identified as an early phase separation component 
involved in promoting SG formation, most likely through modulating RNA 
interactions and/or acting as a seeding scaffold. 
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PAPER II 
In Paper I, we uncovered that the RNA-binding protein Lsm7, displays SG 
regulatory functions. However, the signaling cascade leading to Lsm7 
activation remained unexplored. Reports indicate that certain signaling 
components, RNA-binding proteins and regulatory proteins function in SG 
initiation; however, the crosstalk between these remains elusive. Therefore, in 
this study, we wanted to identify the upstream pathway leading to Lsm7 
activation and subsequent SG formation under 2-DG stress. Consequently, two 
genome-wide imaging-based screens were performed to uncover genes 
regulating SG formation. Subsequently, the identified candidates led to the 
uncovering of upstream signaling components that form a possible signal 
transduction pathway in regulating SG formation.  
 
 

• TORC1/2 signaling, through Sch9 and Ypk1 was identified as an 
early step in the pathway. 
 

• Upon 2-DG stress, Sch9 and Ypk1 activation leads to reduced levels 
of LCB (long-chain base) sphingolipids. 
 

• Reduction in LCBs further results in derepression of the 
deubiquitinase Ubp3, and subsequent downregulation of the ubiquitin 
gene UBI4. 
 

• Further, Ubp3 was shown to positively regulate Lsm7 phase 
separation by suppressing Ubi4, resulting in SG formation.  

 
 
In conclusion, key components in a SG regulatory pathway, under 2-DG stress, 
were identified. Characterized by an interplay between Sch9/Ypk1, LCBs, 
Ubp3, Ubi4 and Lsm7 regulating SG formation.  
 



Michelle Lindström 

35 

PAPER III 
Mislocalization and cytoplasmic aggregation of the human DNA/RNA-
binding protein FUS (fused in sarcoma) is a hallmark of aberrant FUS phase 
separation behavior, implicated in amyotrophic lateral sclerosis (ALS) and 
other neurodegenerative disorders. When overexpressed in yeast, wild-type 
FUS forms cytotoxic aggregates, reminiscent of the ALS phenotype. We 
utilized the FUS phenotype presented in yeast to elucidate the cellular effects 
of toxic FUS aggregation. We performed a genome-wide imaging-based 
screen to identify proteins, which upon FUS induction, form protein 
assemblies co-localizing to FUS aggregates. Further studies into one of the 
screen candidates, Ccr4, uncovered a toxic gain-of-function for FUS. 

 
• The genome-wide imaging-based screen uncovered proteins that form 

assemblies, co-localizing with FUS aggregates. PB and SG-associated 
proteins, involved in regulation of mRNA metabolism, were enriched 
among the screen candidates. 
 

• The Ccr4-Not complex subunit, Ccr4, physically interacts with FUS, 
forming co-localizing assemblies upon cytoplasmic FUS aggregation. 
A process which is driven by the N-terminal domain of FUS and can 
be enhanced by ALS-associated mutations in FUS. 

 
• Prolonged FUS exposure leads to Ccr4 protein downregulation and 

assembly transition into a less dynamic state, further hampering Ccr4-
mediated cell cycle regulation. 

 
• Subsequently resulting in delay of cell cycle progression, contributing 

to the FUS toxicity phenotype. 
 
 
In conclusion, induction of FUS results in cell cycle delay from G1 to S phase, 
a process which can be due to Ccr4 sequestration and Ccr4 protein 
downregulation, and subsequent loss of Ccr4 cell cycle regulatory functions, 
resulting in contribution to the FUS toxicity phenotype. 



Functional roles of protein phase separated assemblies in cellular stress response and proteinopathies 

36 

CONCLUDING REMARKS AND FUTURE 
PERSPECTIVES 

Already at the end of the 19th century it was hypothesized that the cytoplasm 
of cells behaves like a mixture of various chemically suspended drops. 
However, evidence of the vastness and full impact of cellular liquid-liquid 
phase separation (LLPS) did not emerge until a decade later. In recent years, 
accumulating reports implicate phase separation in the formation of a wide 
range of biomolecular condensates involved in a multitude of cellular 
functions, as well as a potential driver of disease. Being such a young research 
field, many regulatory pathways and functional implications still remain 
undescribed.  
 
The work in this thesis presents insights into the molecular mechanisms driving 
condensate formation needed for physiological cellular functions, such as 
stress granule formation upon stress, but also highlights implications of 
aberrant phase separation, including dysregulation of stress granules and 
cytotoxic aggregation of the human protein FUS (fused in sarcoma). The initial 
approach in all three papers was a high-content genome-wide screening that 
could elucidate the underlying pathways involved. Further studies into the 
identified candidates subsequently led to uncovering novel underlying 
mechanisms. 
 
In Paper I-II, we uncover a regulatory pathway behind stress granule 
formation (SG) under glucose limiting conditions (2-deoxy-D-glucose). The 
genome-wide imaging-based screening performed in Paper I identified 
previously unreported proteins that form co-localizing foci with SGs (Pab1). 
The highly conserved RNA-binding protein Lsm7 was among the screen 
candidates and its role in SG formation was established to be through the 
forming of liquid-liquid phase-separated condensates that further triggered 
Pab1 demixing and subsequent SG initiation. We further hypothesized that the 
promotion of Pab1 demixing could be due to Lsm7 working as a seeding 
scaffold or through mediating RNA interactions. An informative future study 
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would be to describe the probable link between Lsm7, Pab1 and RNA in phase 
separation and SG formation. We have shown that Lsm7 can rescue Pab1 
demixing in vitro upon addition of RNA. However, whether inhibition of the 
RNA-binding domain of Lsm7 would result in a loss of this rescue effect, due 
to impaired Lsm7-RNA interactions, would give further useful insight into this 
process. Another pertinent future study would be to investigate the roles of the 
key components identified in Paper I-II in SG formation under a variety of 
different stress conditions. 
 
In Paper II, we looked to uncover the upstream pathway leading to Lsm7 
activation and phase separation, resulting in SG formation. In this study two 
separate genome-wide imaging-based screenings were performed to identify 
genes that regulate SG formation. An early step in the pathway was found to 
be governed by Sch9 and Ypk1, downstream effectors of TORC1/2. Upon 
stress activation of Sch9 and Ypk1, the level of long-chain base (LCB) 
sphingolipids is reduced which further leads to derepression of the 
deubiquitinase Ubp3 and downregulation of the ubiquitin gene UBI4. This 
subsequently results in activation of Lsm7 phase separation and SG formation. 
The potential existence of other regulatory components in this pathway could 
be studied by revisiting the screening results and characterizing other 
candidates and whether they can regulate the key components identified in this 
paper. It also remains unknown how reduced ubiquitin levels lead to Lsm7 
phase separation. Since ubiquitin and polyubiquitin has been reported to 
influence the LLPS behavior of some SG components it would be pertinent to 
investigate the role of ubiquitin on Lsm7 phase separation further. A possibility 
would be to employ the in vitro setup described in Paper I to look at the effects 
of added free ubiquitin on Lsm7 phase-separated droplets, and/or define 
potential ubiquitination/deubiquitination of Lsm7 itself. 
 
In Paper III, we focused on establishing the cellular impact of aberrant FUS 
protein phase separation and subsequent aggregation. A genome-wide 
imaging-based screening assay was performed and uncovered proteins forming 
protein assemblies co-localizing with FUS aggregates. The highly conserved 
deadenylase Ccr4 was identified as a hit and shown to physically interact with 
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FUS, forming assemblies that transition into a more solid-like state over time. 
It was also established that prolonged induction of FUS results in Ccr4 protein 
downregulation. We identified that such sequestration and downregulation 
most likely contribute to the FUS-induced delay in cell cycle progression from 
G1 to S phase, and contributing to the FUS toxicity phenotype. Further studies 
describing the phase separation link between Ccr4 and FUS assembly 
formation, and the impact of RNA on this, would elucidate the relationship 
between Ccr4 and FUS even further, and discern whether RNA is involved in 
the phase separation process. An in vitro assay, similar to the one described in 
Paper I, could help to answer this further. Another valuable addition would be 
to determine the extent of FUS-induced toxicity due to cell cycle delay. Growth 
assays of overexpressed downstream cell cycle activators could possibly 
discern this. Lastly, determining any potential loss of other functions of Ccr4, 
due to the association with FUS, could yield valuable information to decipher 
the FUS-related toxicity in neurodegenerative disease.  
 
Pertinent future studies related to Paper I-III would be to investigate the 
functions of identified conserved key components in mammalian model 
systems. This would further deepen the knowledge of phase separation-related 
mechanism in both health and disease. 
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