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Abstract
Reinforcement learning struggles to solve control tasks on directly on images. Per-
formance on identical tasks with access to the underlying states is much better. One
avenue to bridge the gap between the two is to leverage unsupervised learning as a
means of learning state representations from images, thereby resulting in a better
conditioned reinforcement learning problem. Through investigation of related work,
characteristics of successful integration of unsupervised learning and reinforcement
learning are identified. We hypothesize that joint training of state representations
and policies result in higher sample-efficiency if adequate regularization is provided.
We further hypothesize that representations which correlate more strongly with the
underlying Markov decision process result in additional sample-efficiency. These hy-
potheses are tested through a simple deterministic generative representation learning
model (autoencoder) trained with image reconstruction loss and additional forward
and inverse auxiliary losses. While our algorithm does not reach state-of-the-art
performance, its modular implementation integrated in the reinforcement learning
library Tianshou enables easy use to reinforcement learning practitioners, and thus
also accelerates further research. We also identify which aspects of our solution are
most important and use them to formulate promising research directions. In our
tests we limited ourselves to Atari environments and primarily used Rainbow as the
underlying reinforcement learning algorithm.

Keywords: sample-efficient reinforcement learning, state representation learning,
unsupervised learning, autoencoder
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1
Introduction

1.1 What is reinforcement learning?

In computer science, reinforcement learning is the formalization of trial-and-error
learning. While this is not the only legitimate interpretation of the concept, it is the
most straightforward one: “trial” implies existence of an agent which observes its
environment and interacts with it though its own actions. “Error” implies that the
agent has a goal it tries to achieve and that it does not know how to achieve it (in
the most effective manner). What it can do is take different actions and appraise
them according to how closely they lead the agent toward its goal, thereby observing
the quality of those actions. By repeatedly exploring the effects of various sequences
of actions, the agent can find, i.e. learn, the sequence of actions which lead to its
goal.
Here it is important to discuss what a goal is. To formalize the process outlined
above, one needs to describe it in purely mathematical terms. Thus, among other
things, the goal needs to be described numerically. To achieve that, the notion of
a reward function is used: it maps every state of the environment to a number
which denotes its value called the reward. The state of the environment to which
the highest reward is ascribed is then the goal. A more general description of the
goal of reinforcement learning is to maximize the sum of rewards over time. The
formalization of the entire process will be carried out later in 2, while here only the
most important concepts will be outlined.
Due to its generality, reinforcement learning is studied in many different disciplines:
control theory, game theory, information theory, simulation-based optimization,
multi-agent systems etc.. Of these, control theory is of particular importance be-
cause it often enables clear analysis of various reinforcement learning algorithms.
This foremost concerns the usage of dynamic programming which provides a basis
for a large class of reinforcement learning algorithms. Reinforcement learning is also
considered to be one of the pillars of modern data-driven machine learning.
In the context of machine learning, reinforcement learning can be view as a com-
bination of supervised and unsupervised learning: the “trial” portion of the trial-
and-error learning can be interpreted as unsupervised or as self-supervised learning
because in it the agent collects its own dataset without any explicit labels to guide
its way. This process is referred to as “exploration”. The dataset created by explo-
ration is labelled by the reward function. Thus the agent can learning from “past
experience” in a supervised manner. This text will introduce concepts from both
control theory and machine learning which are necessary to formalize the reinforce-

1



1. Introduction

ment learning objective and to develop algorithms to achieve it. It will not concern
itself with other disciplines.

1.2 Why is reinforcement learning interesting?
Interest in reinforcement learning has grown tremendously over the past decade. It
has been fueled by successes of deep machine learning in fields such as computer
vision. The subsequent utilization of neural networks in reinforcement learning,
dubbed deep reinforcement learning, led to impressive results such as achieving
better-than-human performance on Atari games, in the game of go and in many
others. Because large amounts of data are required for neural network training and
thus for reinforcement learning algorithms which utilize them, most of these results
are achieved in computer-simulated environments. 1

While there is case to be made that reinforcement learning is a step toward artificial
general intelligence, there are also more immediate applications. Due to generality
of reinforcement learning and to advances in computer hardware, reinforcement
learning offers a promising avenue toward solving decision and control problems
which have not been solved through other, more direct methods. One of these
is the problem of robotic grasping. Humans and other animals have an intuitive
understanding of physics which they leverage for object manipulation. On the other
hand, to program a robot to do the same, exact physics equations need to be provided
so that the robot’s actions may be calculated. Owing to the complexity of contact
dynamics and the inability to precisely measure the points of contact, this is often
impossible to do. By learning through trial and error and by leveraging the strong
interpolation capabilities of neural networks, such an “intuition” may be learned.
Furthermore, traditional optimization methods require rich objective functions at
every iteration step, while reinforcement learning can handle “sparse” rewards —
objective functions which equate to 0 at nearly all points of the domain.

1.3 Why learn from pixels?
Recent success in reinforcement learning were kick-started by Deep Q-Network
(DQN) algorithm [5] which crucially, by utilizing convolutional neural network, en-
abled the agents to successfully learn from raw pixels. Learning from pixels is incred-
ibly important for many practical applications, such as those in robotics where it is
often impossible to get full access to the state of the environment. The state then
needs to be inferred from observations such as those from cameras. Here the state
refers to the underlying physical parameters of the environment: the positions and
velocities of objects, the friction coefficients and so on. Observations from sensors
such as cameras do not explicitly provide such information. However, since humans
and animals are able to utilize such observations to achieve their goals, we know
that they implicitly hold enough information about the true state of the world for
successful goal completion.

1Simulated environments run as fast as the computers they run on, which enables generating
thousands of trials in seconds.

2



1. Introduction

The problem is that pixel-based observations are much higher-dimensional than the
actual states. This makes the learning problem dramatically more difficult, both
because of its higher dimensionality, but also because it adds the state inference
problem on top of control problem. In a lot of cases a problem which reinforcement
learning algorithms are able to solve with direct state access is unsolvable with only
pixel-based observations. In the cases where it is possible, the training time is much
longer because much more samples are required. This is problematic because rein-
forcement learning is rather inefficient as it is. The high number of required samples
in particular prohibits its use outside of simulated environments, while learning on
agents in the real world is the ultimate goal in most practical applications.

1.4 Efforts to make reinforcement learning more
efficient

1.4.1 Utilizing a world model
An important classification of reinforcement learning algorithms is the one between
model-based and model-free algorithms. As the name suggests, model-free algo-
rithms do not form an explicit model of the environment. Instead, they function as
black-box optimization algorithms, simply finding actions which maximize reward
without other concerns such as predicting the states resulting from those actions.
In other words, they only predict the reward of actions in given states. Model-based
algorithms on the other hand learn an explicit model of the environment and use
it to plan their actions. Thus, they learn the dynamics of the environment and use
that knowledge to choose actions which lead the agent to states with high reward.
Both classes have their benefits and their drawbacks. Since model-free algorithms
do not require any knowledge of environment dynamics to operate, they are more
widely applicable and usually achieve better performance. But the fact that they
can not leverage environment dynamics to create plans results in a harder learning
problem: they need to implicitly learn those dynamics while only being provided
the reward signal. This makes them much less sample-efficient.

Unfortunately, the model-based twin learning objective of learning the best action-
choosing policy to maximize the reward over time, and the learning of the model,
results in fundamental training instabilities which usually results in worse final per-
formance. In simple terms, the reason behind this is the following one: in the
beginning of the learning process, both the policy and the model perform poorly.
For the model to perform better, the agent needs to explore the environment and
update its model. However, many parts of the environment are inaccessible to a
poorly performing agent: for example, if an agent is playing a computer game, and
it is not able to progress to further sections of the game, it will not be able to con-
struct a model of that portion of the game. Thus, to explore the environment and
improve its model, it needs to first learn exploit the model and perform sufficiently
well using it. Furthermore, what it learned at this stage may become obsolete as
the model changes. How bad this problem is depends on the specifics of the setting,

3



1. Introduction

and there are many ways to ameliorate it, but in most cases the necessary trade-offs
result in a lower final performance.

1.4.2 Utilizing state representations
In the case of image-based observations, an alternative to using model-based meth-
ods is to additionally deal only with the problem of extracting states from images.
This can be done by using auxiliary unsupervised representation learning goals.
More concretely, the idea is to utilize learning signals other than the reward signal
to make the model-free learning more sample-efficient. In particular, this amounts to
learning a latent representation of the environment, i.e. finding a lower-dimensional
embedding of the observations, and learning a policy in this space.
The benefits of this approach are two-fold:

• In general, lower-dimensional optimization problems are easier to solve than
higher-dimensional ones.

• Empirical findings show that when reinforcement algorithms have direct state
access, they learn much faster and often achieve better final results.

Since inferring states from observations is not directly related to the reward, unsu-
pervised learning techniques should aid in feature extraction and thus make learning
more sample-efficient. This is the approach investigated in this thesis. Since the goal
is not to learn the dynamics of the environment, but simply to find an equivalent
lower-dimensional representation of it, this approach should not suffer from the
problems faced by model-based approaches.

1.5 Goal of the thesis
Given the previous discussion, the goal of the thesis may be presented: the idea is to
investigate how unsupervised learning techniques can be combined with model-free
algorithms in order to increase their sample-efficiency. To make this a concrete and
manageable goal, we constrain ourselves to the problem of learning from images and
to problems with discrete action spaces in particular. To be able to compare our
results to those of other researchers, we will test our algorithms on the standard
benchmark tasks in the field, namely Atari-57 games [3]. Of course, we are not the
first to suggest such an approach. An overview of the field is provided in 4.

1.5.1 Hypothesis
As already stated, we believe that leveraging unsupervised learning techniques to
learn state representations will make reinforcement learning from images more sample-
efficient. Testing whether this is in fact true is one of our tasks. As will be shown in
3.2, there are many different unsupervised learning techniques which can be adapted
to the goal of state representation learning. Furthermore, there are many different
ways in which state representation learning can be integrated in the reinforcement
learning process. In this thesis, our goal is not to arrive at a new state-of-the-art
algorithm, but to investigate which properties of both the state representation learn-
ing and its integration with reinforcement learning yield better results. We will not

4



1. Introduction

test all of the existing approaches, but rather identify their common properties, form
hypotheses based on those properties and perform tests on a simple implementation.
Here we offer our hypotheses which we elaborate on in 5.1:

1. State representations found by general unsupervised learning techniques will
not equate to true states, although they will be closer to them than raw image-
based observations. Reinforcement learning algorithms are able to implicitly
learn true states, but because they do so indirectly and by using the weak
reward signal, they do so very slowly. Thus we hypothesize that allowing
the reinforcement learning algorithm to continue updating feature extraction
provided the state representation learning algorithm will perform better than
feature extraction learned solely through state representation learning. We
further hypothesize that the best feature extraction will be obtained if both
state representation learning algorithm and the reinforcement learning algo-
rithm continuously update the feature extractor throughout the entire training
process.

2. We hypothesize that state representation learning algorithms whose learned
features better match the underlying Markov decision process will yield better
results. This for example means that representations learned on future predic-
tion tasks will perform better than those which are not incentivized to learn
dynamics.

3. Finally, we hypothesize that strong regularization of the state representation
learning algorithms will yield better results. We believe that proper regular-
ization will yield broader features which the reinforcement learning algorithm
will more easily integrate with.

1.5.2 Contributions
As already mentioned, our main goal is not to produce a state-of-the-art algorithm,
but rather to find and investigate general properties which state representation learn-
ing algorithms should have and how they should best be integrated with reinforce-
ment learning algorithms. In this thesis we provide the following contributions:

1. A systematic overview of recent works which leverage state representation
learning to make model-free reinforcement learning more sample-efficient.

2. Extensive testing of our hypotheses which illuminate the problem and pave
the wave for further algorithm development.

3. Implementation of our method in a high-quality reinforcement learning library.
Despite the fact that our method is not the best available one, its generality
and its implementation makes it easily accessible to practitioners and helps
researchers who wish to build on top of it.

1.6 Outline
The rest of this text is organized as follows. We begin by describing the basics of
reinforcement learning in 2. Here the problem setting and basic concepts are cov-
ered. The main classes of reinforcement learning are introduced in 2.3. Having the
basics of reinforcement learning established, in 2.4 we introduce the reinforcement

5



1. Introduction

learning algorithm we use in our implementation and discuss common reinforcement
learning problems in 2.5. Following the reinforcement learning discussion, we turn
our attention to unsupervised representation learning on images in 3.1 and discuss
common state representation learning approaches for control problems in 3.2. Fol-
lowing the background, discuss related work in 4. Here we cover several existing
approaches to bolstering the sample-efficiency of model-free reinforcement learning
with state representation learning. Having covered the field, in 5.1 we identify key
factors which lead to state representations which can be leveraged by reinforcement
learning algorithms. In other words, we then form the basis for our hypotheses.

6



2
Reinforcement learning

2.1 Problem setting
In the usual engineering approach to problems, prior scientific knowledge is used to
first describe the problem and then to define it mathematically. Once this is done,
unknown variables are measured and solutions are calculated. This approach works
if the inherent stochasticity of the environment can be controlled, i.e. if bounds
of stochasticity are known the solution account for them and be designed to be
robust to them. But some problems have circumstances which can not be known in
advance, or which are incredibly hard to hand-engineer.
In those cases, an entirely different approach becomes the only viable one: designing
a system which can produce and refine its own solution, or in other words, designing
a system which, in a way, learn the solution by itself. This is the idea behind the
learning-based approaches: automating the process of learning. Crucially, now the
world and how it operates is unknown and has to be discovered. The schematic
2.1 shows how this process is formulated in reinforcement learning. Reinforcement

agent environment

observation, reward

action

Figure 2.1: Conceptual schematic of reinforcement learning.

learning is a 2-step iterative process. The agent, which represents the computer
program, takes actions in its environment. It then observes the resulting state
of the environment and is also given a reward which is a function mapping every
state of the environment to a number.
To help introduce reinforcement learning formally, first the simplest possible problem
to which reinforcement learning is the best solution is described.

2.1.1 Bandit problems
Consider the following problem. The agent is faced with k different gambling slot
machines. Each of them give random rewards under an unknown distribution. At

7



2. Reinforcement learning

each turn, the agents has to select one of the machines and pull its lever. The goal is
to maximize the expected total reward over some number of turns. If the agent knew
the distribution of rewards of each of the slot machines, it would simply choose the
one with the highest expected reward. However, the agent does not have access to
that information and hence it can not effectively exploit the environment to obtain
the highest rewards. Instead, it is forced to explore the environment in order to
learn the probability distribution of the reward. In this problem, this amounts to
pulling different levers and recording the received payoffs.
The key issue is thus to balance exploitation and exploration. It is compounded by
the fact that the agent is given only a finite amount of time, or a finite number of
lever pulls in this case. While one could leverage Bayesian statistics to construct
an optimal solution to this simplest formulation of the bandit problem, this quickly
becomes intractable as the complexity of the problem is increased. Namely, the
described problem is stationary, in the sense that past actions do not influence the
state of the world: the slot machines do not change as different levers are pulled.
Said another way, the k-bandit problem has a single state. This is of course not the
case in most problems of interest. To model the agent’s effect on the environment,
additional structure needs to be introduced. This is done in the following sections.

2.1.2 Markov Decision Processes
To model environments in which states change, Markov chains are used. They
capture the stochastic nature of state transitions, while Markov property allows for
easier mathematical analysis. The schematic of a Markov chain is shown in 2.2.

s1 s2
p(st+1|st)

s3
p(st+1|st)

Figure 2.2: Schematic of a Markov chain.

Formally, a Markov chain M is defined by its state space S with discrete or con-
tinuous state s ∈ S and the transition operator T . The notation st denotes the
state at time t and it is a vector of real numbers. The transition operator allows
for a succinct description of environment dynamics. For a transition probability
p(st+1|st), let µt,i = p(st = i) and Ti,j = p(st+1 = i|st = j). Then −→µ t is a vector of
probabilities and −→µ t+1 = T −→µ t. Importantly, T is linear.
To model the agent’s actions, actions are added as priors to state transition proba-
bilities in the Markov chain. With this and the definition of the reward function, a
Markov decision process is constructed. It’s schematic can be seen in 2.3.

s1

a1

s2
p(st+1|st,at)

s3

a2

p(st+1|st,at)

Figure 2.3: Schematic of a Markov decision process.
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The Markov decision process is thus defined by the tuple M = {S,A, T , r}. A
denotes the action space, where a ∈ A is a continuous or discrete action and r is the
reward function r : S×A → R. It should also be noted that the transition operator is
now a tensor. Let µt,j = p(st = j), ξt,k = p(at = k), Ti,j,k = p(st+1 = i|st = j, at = k).
Then µt+1,i = ∑

j,k Ti,j,kµt,jξt,k. Therefore, T retains its linearity.
Finally, partial observability also needs to be accounted for. To do so, a partially
observable Markov decision process (POMDP) needs to be constructed. This is done
by augmenting the Markov decision process to also include the observation space
O, where observations o ∈ O denote the discrete or continuous observations and
the emission probability E which describes the probability p(ot|st) of getting the
observation ot when in state st. The schematic can be seen in 2.4.

s1

a1

o1

s2

o2

s3

o3
a2

Figure 2.4: Schematic of a partially observable Markov decision process.

It is important to note that not all elements of POMDP are present in every problem:
for example, the reward may be a deterministic function of the state and so on. In
general through the text, to aid in simplifying notation, only the necessary elements
will be explicity referenced in sketches and written out in the equations (most often
using just the Markov decision process).

2.2 Key concepts in reinforcement learning

2.2.1 Policy

With the problem space being formally defined, definitions which will allow the con-
struction of a reinforcement learning algorithm may be introduced. The reinforce-
ment learning problem can be defined in finite or infinite time horizons. Different
environments usually naturally fall in either category. In order for the agent to
learn, it needs to be able to try out different actions from the same, or at least
similar states. This is usually achieved by having the agent return to a set of start-
ing states. The period between two such returns is called an episode. The agent
selects actions based on its policy π. The policy is a function which maps states
to actions. The schematic showing it in the context of a Markov decision process is
given in 2.5.
The policy is a stochastic function. The intensity of stochasticity determines the
trade-off between exploration and exploitation. To emphasize that the policy de-
pends on some parameters θ, the notation πθ is used.

9
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s1

a1

s2
p(st+1|st,at)

s3

a2

p(st+1|st,at)

π θ
(a t
|s t

)

π θ
(a t
|s t

)

Figure 2.5: Schematic of a Markov decision process with a policy π.

2.2.2 Goal of reinforcement learning
For simpler notation, the finite horizon form is assumed for the following definitions.
Since the environment is modeled as a Markov decision process, the probability of
observing a trajectory of states and actions can be written as:

pθ(s1,a1, . . . , sT ,aT )︸ ︷︷ ︸
pθ(τ)

= p(s1)
T∏
t=1

πθ(at|st)p(st+1|st,at)︸ ︷︷ ︸
Markov chain on (s,a)

(2.1)

A bit more explicitly, we can a transition probability as:

p((st+1,at+1)|(st,at)) = p((st+1|(st,at))πθ(at+1|st+1) (2.2)

With this, a formal definition of the goal of reinforcement learning can be given. It
is to find policy parameters θ? such that:

θ? = argmax
θ

Eτ∼pθ(τ)

[∑
t

r(st,at)
]

(2.3)

= argmax
θ

T∑
t

E(st,at)∼pθ(st,at) [r(st,at)] (2.4)

To ensure that the expected sum of rewards, also know as the return, is finite
in the infinite horizon case, a discount factor 0 < γ < 1 is introduced in the
sum. The discount factor also plays a role in modelling because usually it makes
sense to value immediate rewards more. It is important to note that the expected
sum of rewards is maximized . This makes the goal a smooth and differentiable
function of the parameters, which means gradient descent can be employed to find
the optimal parameters. This leads us to the first class of reinforcement learning
algorithms: policy gradient algorithms. They will be introduced with the other
classes of algorithm in 2.3.1, while additional concepts required by other classes of
algorithms will be introduced in the following subsection.

2.2.3 Value functions
Value functions are functions which map states or state-action pairs to the expected
returns obtained under a fixed policy. They are a concept from dynamic program-
ming. In fact, reinforcement learning can be interpreted as an extension of dynamic
programming, as shall be done in the following subsection. Having that said, value
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function can be interpreted in other ways as well. The Q-function maps state-
action pairs to the estimated sum of returns under policy πθ:

Qπ(st,at) =
T∑
t′=t

Eπθ [r(st′ ,at′)|st,at] (2.5)

thus denoting the expectred total reward from taking at in st. Value functions
map states to to the expected sum of rewards under policy πθ:

V π(st) =
T∑
t′=t

Eπθ [r(st′ ,at′ |st)] (2.6)

The connection between the two is the following:

V π(st) = Eat∼π(st,at) [Qπ(st,at)] (2.7)

With these definitions, the reinforcement learning objective may also be written as:

Es1∼p(s1) [V π(s1)] (2.8)

2.3 Classes of reinforcement learning algorithms

2.3.1 Policy gradient algorithms
Policy gradients are derived by directly solving for the reinforcement learning objec-
tive using gradient descent, where the derivative is taken with respect to the policy
parameters. To do so, the reinforcement learning objective needs to be evaluated.
To make this a bit easier to follow, we introduce a notational shorthand:

θ? = argmax
θ

Eτ∼pθ(τ)

[∑
t

r(st,at)
]

︸ ︷︷ ︸
J(θ)

(2.9)

J(θ) is estimated by making rollouts from the policy. Simply put, the agent collects
experience under the current policy, and the average return is used as the estimate.
In the equation below i is the sample index. i, t denotes the tth timestep in the ith
sample:

J(θ) = Eτ∼pθ(τ)

[∑
t

r(st,at)
]
≈ 1
N

∑
i

∑
t

r(si,t,ai,t) (2.10)

Simplifying the notation further, we get:

J(θ) = Eτ∼pθ(τ) [r(τ)]︸ ︷︷ ︸∑T

t=1 r(st,at)

=
∫
pθ(τ)r(τ) dτ (2.11)

The goal now is to compute the derivative of the estimated reinforcement learning
objective:

∇θJ(θ) =
∫
∇θpθ(τ)r(τ) dτ (2.12)
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Since the goal of this text is just to introduce the necessary concepts and algorithms,
the derivation(s) will be ommited. We encourage the interested reader to consult
the literature [16, 32] to find more information.
Here we will just note that it is crucial that the final expression can be estimated
by sampling the agent’s experience as the other quantities are not available. The
resulting expression for the policy gradient 2.12 is:

∇θJ(θ) = Eτ∼pθ(τ)

[(
T∑
t=1
∇θ log πθ(at|st)

)(
T∑
t=1

r(st,at)
)]

(2.13)

It can be evaluated through sampling:

∇θJ(θ) ≈ 1
N

N∑
i=1

(
T∑
t=1
∇θ log πθ(ai,t|si,t)

)(
T∑
t=1

r(si,t,ai,t)
)

(2.14)

The estimated gradient can be used to perform gradient ascent. This is the backbone
of the REINFORCE algorithm, also known as “vanilla policy gradient”:
REINFORCE algorithm:

1. sample {τ i} from πθ(at|st) by running the policy
2. use the samples to estimate the gradient of the objective:
∇θJ(θ) ≈ ∑i

(∑T
t ∇θ log πθ(ai,t|si,t)

)
(∑t r(si,t,ai,t))

3. update the policy function by performing a step of gradient ascent:
θ ← θ + α∇θJ(θ)

This algorithm does not work well in practice. The main reason for that is that the
variance of returns is very high. However, there are a number of modifications which
dramatically improve its performance. Since the goal of this text is not to outline
every reinforcement learning algorithm, we will introduce only the modifications
which outline general trade-offs and principles in reinforcement learning algorithm
design.

2.3.1.1 Baselines

The policy gradient in the REINFORCE algorithm lacks some important properties.
One of them is that it should, ideally, make bad actions less likely and good actions
more likely. However, if all rewards are positive, then all actions’ probabilities will
be increased, only by different amounts. This can be changed if a baseline b is
added to actions:

∇θJ(θ) ≈ 1
N

N∑
i=1
∇θ log pθ(τ)[r(τ)− b] (2.15)

b = 1
N

N∑
i=1

r(τ) (2.16)

This addition does not change the gradient in expectation, i.e. it does not introduce
bias, but it does change its variance. Although an optimal bias can be calculated,
it is rarely used in practice due to its computational cost. Using baselines is one of
the key ideas in actor-critic algorithms so they will be discussed further in 2.3.2.
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2.3.1.2 Off-policy gradients

An important property of the REINFORCE algorithm is that it is an on-policy
algorithm. This means that new samples need to be collected for every gradient
step. The reason behind this is the fact that the expectation of the gradient of the
return needs to be calculated with respect to the current parameters of the policy.
In other words, because the policy changes with each gradient step, old samples are
effectively collected under a different policy. This means that they can not be used
to calculate the expected gradient of the return with respect to the current policy
as it would not produce those rollouts:

∇θJ(θ) = Eτ∼pθ(τ)︸ ︷︷ ︸
this is the trouble!

[∇θpθ(τ)r(τ)] (2.17)

If the policy is a neural network, which requires small gradient steps, the cost of
generating a large number of samples for every update could make the algorithm
entirely infeasible. This of course depends on the cost of generating samples, which is
entirely problem dependent — policy gradient algorithms are often the best solution
when the cost of generating samples is low.
However, on-policy algorithms can be turned into off-policy algorithms through
importance sampling, which is the name given to the following mathematical
identity:

Ex∼p(x)[f(x)] =
∫
p(x)f(x) dx (2.18)

=
∫ q(x)
q(x)p(x)f(x) dx (2.19)

=
∫
q(x)p(x)

q(x)f(x) dx (2.20)

= Ex∼p(x)

[
p(x)
q(x)f(x)

]
(2.21)

which is exact in expectation. To use importance sampling to create an off-policy
policy gradient algorithm, certain approximations need to be made. Again, the
details of the derivation are omitted and what follows is just the final result.

∇θ′J(θ′) ≈ 1
N

N∑
i=1

T∑
t=1

πθ′(ai,t|si,t)
πθ(ai,t|si,t)

∇θ′ log πθ′(si,t,ai,t)Q̂i,t (2.22)

To get this equation, the factor πθ′ (si,t)
πθ(si,t) had to be ignored in the expression because

it is impossible to calculate the state marginal probabilities. This means that the
expression works only if πθ′ is not too different from πθ. The justification for this can
be found in the previously referenced literature. What is important in the context
of the thesis is that we will be interested only in off-policy methods as they are
inherently more sample-efficient and out goal is to increase the sample-efficiency of
reinforcement learning.
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2.3.1.3 Advanced policy gradients

The basic algorithm we have outlined is essentially just a basic gradient descent
method. From convex optimization, we know that it can be made much better if
second order derivatives or their approximations are used. For example, conjugate
gradient descent can be used. Further, there are various ways in which this opti-
mization problem can be better conditioned. Such improvements led to algorithms
such as PPO and TRPO, which will not be discussed here.

2.3.2 Actor-critic algorithms
Actor-critic methods can be seen as making a different trade-off between variance
and bias in policy gradient estimation. Consider with the following observation: 1

∇θJ(θ) ≈ 1
N

N∑
i=1

T∑
t=1
∇θ log πθ(ai,t|si,t)

(
T∑
t′=t

r(si,t,ai,t)
)

︸ ︷︷ ︸
Q̂i,t: “reward to go”

(2.23)

Simply put, in the policy gradient method a single-run Monte-Carlo (MC) es-
timate is used to estimate the return. This causes high variance, while incur-
ring no bias. Another option is to try to estimate the full expectation Q̂i,t ≈∑T
t′=t Eπθ [r(st′ ,at′)|st,at]. Since the estimate won’t be perfect, it will introduce

bias. Of course, using multiple runs from the same state-action pair would reduce
variance, but this is sometimes impossible to procure and is certainly more costly.
However, if the “reward to go” estimator can generalize between states, it will be
able to produce good estimates regardless.
Like the policy, the return estimator will have to be learned. In this approach, the
policy is also called the actor and the return estimator is called the critic. If the
correct Q-function was available (i.e. not the estimate, but the actual values), the
policy gradient estimate could be improved by using it both to estimate the return
and as a baseline:

∇θJ(θ) ≈ 1
N

N∑
i=1

T∑
t=1
∇θ log πθ(ai,t|si,t)(Q(si,t,ai,t)− b) (2.24)

bt = 1
N

∑
i

Q(si,t,ai,t) (2.25)

However, having a baseline that depends on actions leads to bias. Thus a state-
dependent baseline is employed:

V (st) = Eat∼πθ(st,at)[Q(st,at)] (2.26)

Since the value function 2.6 gives the expected return of the average action, it is
possible to calculate how much better a certain action is by substracting its Q-value
2.5 for the value function. The result is called the advantage function:

Aπ(st,at) = Qπ(st,at)− V π(st) (2.27)
1In this equation, the summation of rewards is done from time t to T because actions and states

prior to that time do not affect the return from that time onward. This leveraging of causality
reduces the variance of the estimate.
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Thus, either the Q-function, the value function or the advantage function can be
learned. Of these, it is best to learn the value function because there are less states
than state-action pairs. The advantage function is then calculated in the following
way:

Aπ(st,at) ≈ r(st,at) + V π(st+1)− V π(st) (2.28)

The value function can be estimated through samples:

V π(st) ≈
T∑
t′=t

r(st′ ,at′) (2.29)

After collecting many such samples

si,t,
T∑
t′=t

r(si,t,ai,t)︸ ︷︷ ︸
yi,t




(2.30)

the value function can be fitted through supervised regression with the following
loss:

L(φ) = 1
2
∑
i

||V̂ π
φ (si)− yi||2 (2.31)

This process can be sped up with bootstrapped estimates:

yi,t =
T∑
t′=t

Eπθ [r(st′ ,at′)|si,t] + V π(si,t+1) ≈ r(si,t,ai,t) + V̂ π
φ (si,t+1) (2.32)

This will further reduce variance, but again increase bias.
Fortunately, the trade-off between bias and variance can be tuned. In the Monte
Carlo estimate, the entire trajectory was used to estimate the return. In the boot-
strap estimate, only a single step in the future was used along with the estimate.
Instead, a n-step return estimator can used:

Âπn(st,at) =
t+n∑
t′=t

γt
′−tr(st′ ,at′)− V̂ π

θ (st) + γnV̂ π
θ (st+n) (2.33)

In most cases the ideal trade-off for n lies somewhere between 1 and ∞ (the MC
estimate). Finally, an average of all n-step return estimators can be used. This is
called the generalized advantage estimator (GAE):

ÂπGAE(st,at) =
∞∑
n=1

(γλ)t′−tr(st′ ,at′) + γV̂ π
θ (st′+1)− V̂ π

θ (st′) (2.34)

where the factor λ controls the weight of future values.
Combining this into an iterative algorithm, and fixing the issues of naiive implemen-
tations results in the following algorithm:
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Actor-critic algorithm template
1. take action a ∼ πθ(a|s), observe transition (s,a, s′, r) and store it in the

replay buffer R
2. sample a batch {(si,ai, s′

i, ri)} from buffer R
3. update the Q-value estimator Q̂π

θ by using the target:
yi = ri + γQ̂π

θ (s′i,a′i)∀si,ai
4. compute the policy gradient estimate with:
∇θJ(θ) ≈ 1

N

∑
i∇θ log πθ(aπi |si)Q̂π(si,aπi ), where aπi ∼ πθ(a|si)

5. update the policy function by performing a gradient step:
θ ← θ + α∇θJ(θ)

2.3.3 Value function methods
Value function methods use only the critic from actor-critic algorithms. Suppose
that the advantage function Aπ(st,at) is known. It tells us how much better the
action at is than the average action according to the policy π. Thus, if provided
with the advantage function, a deterministic greedy policy could be construct:

πgreedy(st|at) =
{

1 if at = argmaxat Aπ(st,at)
0 otherwise (2.35)

which would yield the highest expected return. In other words, if the advantage
function is known, the policy would be reduced to the argmax operation. This
approach has roots in dynamic programming.

2.3.3.1 Dynamic programming

Dynamic programming refers to a collection of algorithms that can be used to com-
pute optimal policies given a perfect model of the environment. They are of limited
utility in reinforcement learning due to the perfect model requirement and their
great computational expense, but are important theoretically: they provide an es-
sential foundation for understanding the other methods. Usually a finite Markov
decision process is assumed. Dynamic programming can be applied to continuous
problems as well, but exact solution exist only in special cases.
For brevity, dynamic programming will not be fully introduced here. The interested
reader is referred to [16]. Here only the broad idea will be introduced in order to
make value iteration intuitive in its own right. A problem is said to have optimal
substructure if an optimal solution to it can be constructed from optimal solutions
of its subproblems. Value functions have this property: for a single well-defined
problem, nearby optimal states are not related to optimality of distant states. In
other words, the value of one state is related only to the value of states to which
there are transitions from it. This principle is used to derive theBellman equation.
In problem with a finite number of states, it can be shown that iterating between
evaluating the value function with the Bellman equation and updating the policy
based on the value function leads to the optimal value function and policy.
In particular, the bootstrap update for the value function is:

V π(s)← Ea∼π(a|s)
[
r(s,a) + γEs′∼p(s′|a,s)[V π(s′)]

]
(2.36)
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where V π(s′) is the current estimate (initially set to whatever). With 2.35 we can
construct the policy iteration algorithm:
Policy iteration

1. evaluate V π(s) with 2.36
2. set π ← π′

Upon inspection of the argmax in the advantage function, by skipping the policy
update, this produce can be further simplified into the value iteration algorithm: 2

Value iteration
1. set Q(s,a)← r(s,a) + γE[V (s′)]
2. set V (s)← maxaQ(s,a)

2.3.3.2 Fitted value iteration

As mentioned, and as should be clear from the equations, 2.3.3.1 works only on prob-
lems with a finite number of states. While real-valued problems can be partitioned
into discrete ones and limited in scope, for most interesting problems this results in
an intractable algorithm. However, function approximation, in particular nonlinear
function approximation through neural networks can greatly bolster the capacity of
value iteration. Another benefit of such an approach is that it is naturally adaptable
to being off-policy. This is because after collecting samples the goal is to fit the value
function, namely the Q-function, to the gathered data. In particular, the algorithm
template is: 3

Fitted Q-iteration algorithm
1. collect dataset {(si,ai, s′i, ri)} using a policy based on the value function
2. set yi ← r(si,ai) + γmaxa′i Qφ(s′i,a′i)
3. set φ← argminφ 1

2
∑
i ||Qφ(si,ai)− yi||2

By itself, this algorithm does not encourage exploration. This is usually fixed by
using the epsilon-greedy policy:

π(at|st) =
{

1− ε if at = argmaxat Qφ(st,at)
ε

|A|−1 otherwise (2.37)

In this case ε is often set to be large in the beginning of training and is decreased
over time.
Unfortunately, by using nonlinear function approximators for value functions the
convergence guarantees from the finite setting are lost. To see why, we first introduce
the Bellman operator:

B : BV = max
a

ra + γTaV (2.38)

where ra is the stacked vector of rewards of all states for action a, and Ta,i,j = p(s′ =
i|s = j,a) is the matrix of transitions corresponding to the action a. V ? is now a
fixed point of B, meaning that if it is recovered the optimal policy is obtained:

V ?(s) = max
a

r(s,a) + γE[V ?(s′)], so V ? = BV ? (2.39)

2Here the notation was simplified for readability.
3A particular implementation called DQN will be discussed later.
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It’s possible to show that V ? always exists, is unique and corresponds to the optimal
policy. This is because it can proven that B is a contraction. This means that for
any V , V̄ :

||BV − BV̄ ||∞ ≤ γ︸︷︷︸
gap always gets smaller by γ w.r.t. ∞-norm

||V − V̄ ||∞ (2.40)

However, if nonlinear function approximation is used the situation changes. Namely,
in the second step of 2.3.3.1:

V ′ ← argmin
V ′∈Ω

1
2
∑
||V ′(s)− (BV )(s)||2 (2.41)

where Ω is the hypothesis space (ex. the space of all weights of employed neural
network architectures). V ′ will be a projection of BV back to Ω. Let us introduce
an operator for this projection:

Π : ΠV = argmin
V ′∈Ω

1
2
∑
||V ′(s)− V (s)||2 (2.42)

So the fitter value iteration algorithm is:
1. V ← ΠBV

and here B is a contraction (w.r.t. ∞-norm (“max” norm)), Π is a contraction w.r.t.
l2-norm (Euclidean distance), but ΠB is not a contraction of any kind! The same
holds for fitted Q-iteration, but we withhold further analysis for sake of brevity.
Thus fitted value iteration does not converge. Additionally, it is interesting that
Q-learning is not in fact a derivative of the Q-function:

φ← φ− αdQφ

dφ
(si,ai)

Qφ(si,ai)−
[
r(si,ai) + γmax

a′
Qφ(s′i,a′i)

]
︸ ︷︷ ︸

no gradient through target value

 (2.43)

As can be seen, the target Q-values themselves depend on Q-values. Despite these
sad theoretical results, fitted value iteration algorithms work surprisingly well in
practise. In fact, this work uses fitted value iteration algorithms, namely DQN and
Rainbow, which will be introduced next.

2.4 Deep reinforcement learning with Q-functions
In this section we finally introduce reinforcement learning algorithms which are built
upon in the thesis. As the section title suggests, these algorithms utilize (deep) neu-
ral networks. While simple feed-forward networks with 2-3 hidden layers suffice for
many control problems, additional preceding convolutional layers are require form
problems with image inputs. For problems with long-term temporal dependencies,
networks with recurrent layers are often used. We are particularly concerned with
the DQN algorithm [5] and a series of improvements to it which culminated in their
combination which is named the Rainbow algorithm. There are multiple reasons
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why Rainbow was chosen. Firstly, it and other fitted value iteration algorithms are
the best suited ones for problems with discrete action spaces to which we restricted
ourselves. Secondly, leveraging state representation learning is most suitable to fit-
ted value iteration algorithms and critics in actor-critic algorithms because they are
more stable than policy gradients. As shall be discussed later, stability of state
representation learning and of reinforcement learning is necessary for successful si-
multaneous learning of both.

The on-policy version of Q-learning suffers from overfitting to local transitions. The
problem is further exacerbated because the target values change through time. While
this problem can be ameliorated by using parallel workers, a better solution is to use
a replay buffer. A replay buffer is simply an array which keeps track of sampled
transitions. Minibatch updates can be constructed by sampling independent and
identically distributed transitions from the buffer, thereby remove the problem of
overfitting to local transitions. Continuous replacement of old samples with new
ones ensures continual learning as new transitions are collected (the initial epsilon-
greedy policy often can not sample all transitions because it can not reach states
with high rewards). Q-learning then becomes:

Q-learning with a replay buffer
repeat until a satisfactory result is reached:

1. collect dataset {(si,ai, s′i, ri)} using some policy, add it to B
repeat K times:

2. sample a batch (si,ai, s′i, ri) in i.i.d. fashion from B
3. update network weights:
φ← φ− α∑i

dQφ
dφ

(si,ai) (Qφ(si,ai)− [r(si,ai) + γmaxa′ Qφ(s′i,a′i)])
This algorithm still suffers from the fact that Q-learning is not gradient descent and
that it tries to converge to a moving target (which is local overfitting). One technique
to ameliorate this is to use target networks. The idea is to collect transitions with
one network, called the target network, and apply updates to another. For practical
reasons, the two are the same network, where the target network is periodically
updated with the weights of the other network. This can be done by simply copying
the weights or doing it more smoothly via ex Polyak averaging. With this we get
the classic DQN algorithm [5]:

“Classic” DQN
1. take some action ai, observe (si,ai, s′i, ri) and add it to B
2. sample a mini-batch

(
sj,aj, s

′
j, rj

)
from B uniformly

3. compute yj = rj + γmaxa′j Qφ′(s′j,a′j) using the target network Qφ′

4. φ← φ− α∑j
dQφ
dφ

(sj,aj) (Qφ(si,ai)− yj)
5. update φ′: copy φ every N steps

Here the other network is updated at every sample, i.e. K = 1 because that was
the setting in the original paper, but of course it could have any other value.
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2.4.1 Double Q-networks (DDQN)
Empiric evidence shows that Q-networks trained with DQN overestimate returns,
i.e. the true Q-function. The reason for this is the following one:

target value yj = rj + γ max
a′j

Qφ′(s′j,a′j)︸ ︷︷ ︸
herein lies the problem

(2.44)

The explanation goes as follows. Consider two random variables, X1 and X2, and
let them represent a true value obscured by some noise. Provably,

E [max(X1, X2)] ≥ max (E[X1], E[X2]) (2.45)

The relation to Q-learning is the following. If we imagine that Qφ′(s′,a′) is not
perfect because it has added noise, we get exactly the situation in the inequality
— the max over the actions and the expectation over it will lead to systematic
overestimation. Thus maxa′ Qφ′(s′,a′) overestimates the next value. Note that
maxa′ Qφ′(s′,a′) = Qφ′(s′, argmaxa′ Qφ′(s′,a′)) . If noise in the action selection
mechanism and noise in the value evaluation mechanism are decorrelated , the prob-
lem will go away. In other words, getting both actions and values from Qφ′ needs to
be avoided. This can be done by utilizing another network. For practical reasons,
the target network and the updating network can serve this purpose. Although, not
theoretically ideal, this solution works well in practise. Thus the only difference to
the 2.4 is to change the error calculation in step 3 into

y = r + γQφ′

(
s′, argmax

a′
Qφ(s′,a′)

)
(2.46)

2.4.2 Q-learning with multi-step returns
As discussed in 2.3.2, n-step returns 2.33 offer a better balance better bias and
variance than either single-step bootstrap estimates or Monte-Carlo estimates. They
can of course be used in Q-learning as well:

yj,t =
t+N−1∑
t′=t

γt−t
′
rj,t′ + γN max

aj,t+N
Qφ′(sj,t+N ,aj,t+N) (2.47)

2.4.3 Prioritized replay
As mentioned in 2.4, the samples for minibatches are sampled uniformly from the
buffer. Depending on the size of the buffer, this slows down progress as it takes time
for newer transitions to be incorporated into Q-function estimation. Alternatively,
newer samples could be given priority by being sampled with a higher probability,
or, better still, also proportionally to the size of the TD error:

pt ∝
∣∣∣∣rt+1 + γt+1 max

a′
Qφ′(st+1, a

′)−Qφ(st,at)
∣∣∣∣ω (2.48)

where ω is a hyper-parameter determining the shape of the distribution.
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2.4.4 Dueling Network
Dueling Network was designed for value based learning,this architecture separates
the representation of sate-value and state-dependent action advantages without su-
pervision[6].its consists of two streams that represents the value and advantage func-
tions,while sharing a common convolutional feature learning module.This network
has a single Q-learning network with two streams that replace DQN architecture[3].

Q(s, a; θ, α, β) = V (s, θ, β) + A(s, a; θ, α) (2.49)

2.4.5 Noisy Nets
The one limitation of ε-greedy policy is many actions must be executed to collect the
first reward.Noisy Nets proposed a noisy linear layer that combines a deterministic
and noisy stream.Depending on the learning rate the network ignores to learn the
noisy stream.

2.4.6 Integrated Agent:Rainbow
In the Rainbow architecture [13] several architecture changes included the one stated
above where applied to DQN. Distributional loss was replaced by a multi-step vari-
ant. The target distribution was constructed by contracting the value distribution in
St+n according to the cumulative discount, and shifting it by the truncated n-step
discounted return. multi-step distributional loss with double Q-learning by using
the greedy action in St+n selected according to the online network as the bootstrap
action a · t+ n, and evaluating such action using the target network.

2.5 Problems with RL
At the moment of writing reinforcement learning is rapidly evolving, but it is plagued
by problems which prevent it from widespread adoption in practical applications like
robot control. Here we list the most fundamental problems:

• high random seed dependence
• high variance of final algorithm performance across different tasks — no algo-

rithm is universally better than all others at every problem, despite the aim
toward generality

• sensitivity to hyperparameters
• brittleness of solutions to changes in the environment

These problems also result in ambiguities in research, as discussed in [12].
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3
State representation learning

As discussed in 1.3, learning control from images is very desirable. Images, and
observations in general, only implicitly provide information about the underlying
state. Finding a good policy from observations, especially images, is much more
difficult than finding a policy with direct state access because the state first needs
to be inferred from those observations. Reinforcement learning algorithms can by
themselves implicitly extract the relevant information from observations, but this at
best results in much less sample-efficient training and at worst results in complete
failure. Often a problem which a reinforcement learning algorithm can solve with
direct state access, can not achieve any progress when provided only image obser-
vations.

Extracting lower-dimensional information from data in order to extract meaningful
information from it is an established problem in machine learning broadly, and is
referred to as representation learning in that context. Clearly, learning to extract
stateful information from image observations can be viewed as a subset of representa-
tion learning and in this context it is referred to as state representation learning.
One important aspect of representation learning is that the representations can be
abstract and only implicitly represent the data in question. Such representations
can be learned in an unsupervised manner: the goal is to learn latent representations
which have useful features, and as such they can be directly optimized with regards
to these features and not to conform to some explicit semantic form. The purpose
of this chapter is to briefly discuss representation learning in general terms, and
then to investigate how it can be applied to the problem of learning state represen-
tations from images for control problems. Importantly, the problem of learning a
model which can be used to achieve control through planning will not be discussed,
although there are similarities between the two.

The fundamental reason why this is a promising proposition is the fact that the
learning signal generated from for example image reconstruction loss is substantially
stronger than the reward signal, especially in settings with sparse rewards where
the reward signal is not present most of the time. This thus means that the state
representation will be learned quickly compared to policy learning. Hence they can
be leveraged to aid the sample-efficiency in of reinforcement learning, despite their
training starting at the same time as that of the policy.

23
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3.1 Representation learning in general
In general, representation learning refers to the process of learning a parametric
mapping from raw input data domain to a feature vector or tensor, in the hope
of capturing and extracting more abstract and useful concepts that can improve
performance of downstream tasks. This mapping should also meaningfully gener-
alize well on new data. The following list, introduced in [4], summarizes different
assumptions that can be made on the data to be represented. These priors thus
translate themselves as desirable characteristics of learned representations.

1. Smoothness: the learned mapping f is such that x ≈ y generally implies
f(x) ≈ f(y).

2. Multiple explanatory factors: generally, there are several different underlying
factors which are the cause of the observed data. The learned representations
should be able to distinguish between these different factors. In other words,
these causes should ideally be disentangled features in representation space.
The existence of different underlying causes is, by itself, an assumption made
on the observed data.

3. A hierarchical organizations of explanatory factors: The learned abstractions
should relate to each other in a hierarchical fashion. This concerns, for ex-
ample, the assumption that different layers of convolutional neural networks
should embed progressively finer features of images.

4. Semi-supervised learning: for inputs X and target Y to be predicted, learning
P (X) should help learning P (Y |X) because features of X should help explain
Y . This implies that unsupervised pre-training of networks should benefit
supervised learning tasks because the features learned through unsupervised
learning should help explain the supervised learning task.

5. Shared factors across tasks: moreover, the features learned on X should help
in learning different supervised predictions Y ′.

6. Manifolds: if it is assumed that the probability mass concentrates in regions
with much smaller dimensionality than the data itself, then the learned repre-
sentations should have smaller dimensionality to exploit this assumption.

7. Natural clustering: further, it is assumed that different values of categorical
variables are associated with separate manifolds. This too should be evident
in the learned representations.

8. Temporal and spatial coherence: consecutive or spatially nearby observations
tend to be associated with the same value of relevant categorical concepts or
result in small surface move on the surface of the manifold

9. Sparsity: implies either that many features are 0, or that the features are
insensitive to small changes in x

10. Simplicity of factor dependencies: ideally factors are related to each other
linearly, or otherwise in a simple fashion.

The process of extracting representations from observations, or inferring latent vari-
ables in a probabilistic view of a dataset, is often called inference. Models used for
representation learning can be categorized as either generative or as discrimina-
tive models.
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Generative models learn representations by modelling the data distribution p(x).
Such models can therefore generate realistic examples of the data they represent.
They can be used for downstream tasks by evaluating the conditional distribution
p(y|x). This is done via Bayes rule.
Discriminative models instead model the conditional distribution p(y|x) directly.
Discriminative modelling consists first of inference that extracts latent variables
p(v|x), which are then used to make downstream decision from those variables
p(y|v).
The benefit of discriminative models is that the expensive process of learning p(x)
is avoided. That however makes them harder to evaluate. This is especially evident
if you just want a lower dimensional distribution. In the context of reinforcement
learning, the model-based approach benefits from generative models as they can be
used to generate predictions which can then be used for planning. In the model-free
approach, both discriminative and generative models may be used as predictions are
not used.

3.1.1 Generative models

3.1.1.1 Probabilistic models

From the probabilistic modeling perspective, feature learning can be interpreted as
an attempt to recover a parsimonious set of latent random variables that describe a
distribution over the observed data. p(x, h) is the probabilistic model over the joint
space of latent variables h and observed data x. Feature values are then the result of
an inference process to determine the probability distribution of the latent variables
given the data, i.e. p(h|x), a.k.a posterior probability. Learning is the finding the
parameters that (locally) maximize the regularized likelihood of the training data.

3.1.1.2 Directed graphical models

Directed latent factor models separately parametrize p(x|h) and the prior p(h) to
construct p(x, h) = p(x|h)p(h). They can explain away: a priori independent causes
of an event can become nonindependent given the observation of the event. Hence,
they can be conceived them as causal models, where h activations cause the observed
x, making h nonindependent. This makes recovering the posterior p(h|x) intractable.

3.1.1.3 Directly learning a parametric map from input to representation

The posterior distribution becomes complicated quickly. Thus approximate infer-
ence becomes necessary, which is not ideal. Also, depending on the problem, one
needs to derive feature vectors from the distribution. If we want deterministic fea-
ture values in the end, we might as well go ahead and use a nonprobabilistic feature
learning paradigm. Doing so is particularly desirable for representations for model-
free reinforcement learning algorithms: since the data distribution is not explicitly
used to make plans, the stochasticity inherent in statistical modelling hinders the
ability of the reinforcement learning algorithm to use those representations.
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3.1.2 Discriminative models
In discriminative modelling the data distribution is not directly represented. Instead,
it is implicit in the representation space. One way to learn discriminative models is
through contrastive representation learning. Intuitively, it’s learning by comparing.
So instead of needing data labels y for datapoints x, you need to define a similarity
distribution which allows you to sample a positive input x+ ∼ p+(·|x) and a data
distribution for a negative input x− ∼ p−(·|x), with respect to an input sample x.
“Similar” inputs should be mapped close together, and “dissimilar” samples should
be mapped further away in the embedding space.
Let’s explain how this would work with the example of image-based instance dis-
crimination. The goal is to learn a representation by maximizing agreement of the
encoded features (embeddings) between two differently augmented views of the same
images, while simultaneously minimizing the agreement between different images.
To avoid model maximizing agreement through low-level visual cues, views from the
same image are generated through a series of strong image augmentation methods.
Let T be a set of image transformation operations where t, t′ ∼ T are two different
transformations sampled independently from T . There transformations include for
example cropping, resizing, blurring, color distortion or perspective distortion and
their combinations. A (xq,xk) pair of query and key views is positive when these 2
views are created with different transformations on the same image, i.e. xq = t(x)
and xk = t′(x), and is negative otherwise. A feature encoder e(·) then extracts
feature vectors from all augmented data samples v = e(x). This is usually ResNet,
in which case v ∈ Rd is the output of the average pooling layer. Each v is then
fed into a projection head h(·) made up of a small multi-layer perceptron to obtain
a metric embedding z = h(v), where z ∈ Rd′ with d′ < d. All vectors are then
normalized to be unit vectors. Then you take a batch of these metric embedding
pairs {(zi, z′i)}, with (zi, z′i) being the metric embeddings of (xq,xk) of the same
image are fed into the contrastive loss function which does what we said 3 times
already. The general form of popular loss function such as InfoNCE and NT-Xent
is:

Li = − log exp(zTi z′i/τ)∑K
j=0 exp(zi · z′j)/τ

(3.1)

where τ is the temperature parameter. The sum is over one positive and K negative
pairs in the same minibatch.

3.1.3 Common representation learning approaches
3.1.3.1 Deterministic autoencoders

Deterministic autoencoders are generative models.

h(t) = fθ(x(t)) (3.2)

There’s also the reconstruction r = gθ(h), used for the reconstruction error L(x, r)
over the training examples. Autoencoder training boils down to finding θ which
minimizes:

JAE(θ) =
∑
t

L(x(t), gθ(fθ(x(t)))) (3.3)
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One can tie the weights between the encoder and the decoder (i.e. make the same
ones, just reversed).

3.1.3.2 Variational autoencoders

Variational autoencoders marry graphical models and deep learning. The gener-
ative model is a Bayesian network of form p(x|z)p(z), or in the case of multiple
stochastic layers, a hierarchy such as: p(x|zL)p(zL|zL−1) · · · p(z1|z0). Similarly, the
recognition model is also a conditional Bayesian network of form p(z|x) which can
also be a hierarchy of stochastic layers. Inside each conditional may be a deep neu-
ral network, e.g. z|x ∼ f(x, ε) with f being the neural network mapping and ε
a noise random variable. Its learning algorithm is a mix of classical (amortized,
variational) expectation maximization, but with the reparametrization trick ends
up backpropagating through the many layers of the deep neural networks embedded
inside it.
We can parametrize conditional distributions with neural networks. VAEs in par-
ticular work with directed probabilistic models, also know as probabilistic graphical
models (PGMs) or Bayesian networks. The joint distribution over the variables of
such models factorizes as a product of prior and conditional distributions:

pθ(x1, . . . ,xM) =
M∏
j=1

pθ(xj|Pa(xj)) (3.4)

where Pa(xj) is the set of parent variables of node j in the directed graph. For root
nodes the parents are an empty set, i.e. that distribution is unconditional. Before
you’d parametrize each conditional distribution with ex. a linear model, and now
we do it with neural networks:

η = NeuralNet(Pa(x)) (3.5)
pθ(x|Pa(x)) = pθ(x|η) (3.6)

To solve intractabilities, we introduce a parametric inference model qφ(z|x). This
model is called the encoder or recognition model/ φ are called the variational pa-
rameters. They are optimized s.t.:

qφ(z|x) ≈ pθ(z|x) (3.7)

Like a DLVM, the inference model can be almost any directed graphical model:

qφ(z|x) = qφ(z1, . . . ,zM |x) =
M∏
j=1

qbmφ(zj |Pa(zj),x) (3.8)

This can also be a neural network. In this case, parameters φ include the weights
and biases, ex.

(µ, logσ) = EncoderNeuralNetφ(x) (3.9)
qφ(z|x) = N (z;µ, diag(σ)) (3.10)

Typically, one encoder is used to perform posterior inference over all of the data-
points in the dataset. The strategy used in VAEs of sharing variational parameters
across datapoints is also called amortized variational inference.
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3.1.3.3 Deterministic autoencoder regularization

Autoencoders may be employed not only just to learn representations, but to perform
additional auxiliary tasks. One such task is denoising: provided a noisified input
at the encoder, the decoder outputs a denoisified image as output. Importantly,
while this training process results in a denoising autoencoder, it also regularizes the
autoencoder. Regularization not only helps with preventing overfitting, but also
produces better representations as it encourages smoothness and spatial coherence
of when learning. The same result can be accomplished by other data augmentation
techniques like random cropping.
Learning VAEs from data poses unanswered theoretical questions and considerable
practical challenges. This work proposes a generative model that is simpler, deter-
ministic, easier to train, while retaining some VAE advantages. Namely, the obser-
vation is that sampling a stochastic encoder in Gaussian VAE can be interpreted as
injecting noise into the input of a deterministic decoder.
The encoder deterministically maps a data point x to the mean µφ(x) and variance
σφ(x) in the latent space. The input to Dθ is then the mean µφ(x) augmented with
Gaussian noise scaled by σφ(x) via the reparametrizing trick. Authors argue that
this noise injection is a key factor in having a regularized decoder ( noise injection
as a mean to regularize neural networks is a well-known technique). Thus training
the RAE involves minimizing the simplified loss:

LRAE = LREC + βLRAEz + λLREG (3.11)

where LREG represents the explicit regularizer for Dθ, and LRAEz = 1
2 ||z||

2
2, which is

equivalent to constraining the size of the learned latent space, which is needed to
prevent unbounded optimization. One option for LREG is Tikhonov regularization
since it is known to be related to the addition of low-magnitude input noise. In this
framework this equates to LREG = LL2 = ||θ||22. Alternative options include having
a gradient penalty and spectral normalization.

3.2 Representation models for control
In state representation learning the learned features are of low dimension, evolve
through time and are depended on actions of an agent. The last point is partic-
ularly important because in reinforcement learning, features that do not influence
the agent and that can not be influenced by the agent are not relevant for the prob-
lem of optimally controlling the agent. Also, simply reducing the dimensionality
of the input to a reinforcement learning agent results in a computationally easier
learning problem, which can make a difference between the solution being feasible
or infeasible. Ideally, state representation learning should be done in an without
explicit supervision as it can then be done in tandem with the likewise unsupervised
reinforcement learning.
While we assume that state-transitions have the Markov property, partial observ-
ability denies the possibility of having a one-to-one correspondence between each
observation and state — an object whose position is required may be occluded by
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another. Thus prior observations have affect the mapping to the current state. Im-
ages in particular also do not encode kinematic or dynamic information: to get that
crucial information a sequence of images is required. Hence we define the SRL task
as learning a representation s̃t ∈ S̃ of dimension K with characteristics similar to
those of true states st ∈ S. In particular, the representation is a mapping of the
history of observation to the current state: s̃t = φ(o1:t. Actions a1:t and rewards
r1:t can also be added to the parameters of φ. This can help in extracting only the
information relevant for the agent and its task. Often the representation is learned
by using the reconstruction loss; ôt denotes the reconstruction of ot.
In the context of reinforcement learning, state representations should ideally have
the following properties:

• have the Markov property
• be able to represent the current state well enough for policy improvement
• be able to generalize to unseen states with similar features
• be low dimensional

We now discuss different types of models and learning strategies which can be used
to learn state representations.
One way to do this is to explicitly use such methods to learn a function which
maps from observations to states and then use reinforcement learning methods these
learned state representations. This approach is explored in this section, mainly with
the help of the [15] overview paper. In this section state representation learning for
control in general is discussed. as this will allow for a broader contextualization of
our own work.
With representation in learning introduced in general, we can now introduce four
different strategies for learning latent space models for control: the autoencoder,
the forward model, the inverse model and the model with prior. These models
refer to portions of the control problem they are modelling.1 They can be both
discriminative and generative models. In the figures below, the white nodes are
inputs and the gray nodes are outputs. The dashed rectangles are fitted around
variables with which the loss is calculated.

3.2.1 Autoencoder
The idea behind the autoencoder is to just learn a lower-dimensional embedding
of the observation space. This should make the learning problem easier due to
the dimensionality reduction. The auto-encoder may be trained to denoise the
observations by passing an observation with artificially added noise to the encoder,
but then calculating the reconstruction loss on the image without the added noise.
Formally this can be written as

st = φ(ot; θφ) (3.12)
ôt = φ−1(st; θφ−1) (3.13)

where θφ and θφ−1 are the parameters learned for the encoder and decoder respec-
tively.

1The term autoencoder is overloaded in this case.

29



3. State representation learning

st

ot ôt

Figure 3.1: Auto-encoder: learned by reconstructing the observation (one-to-one).
The observation is the input and the computed state is the vector at the auto-
encoder’s bottleneck layer, i.e. is the output of the encoder part of the auto-encoder
network. The loss is calculated between the true observation and the reconstructing
observation (which is obtained by passing the observation though both the encoder
and the decoder).

3.2.2 Forward model
The auto-encoder does not encode dynamic information. Since that information is
necessary for control, usually a few consequtive observations (or their embeddings)
are stacked and passed to the reinforcement learning algorithm. This way the infor-
mation about the dynamics is implicitly provided. While doing so works, it could
be made more efficient by embedding the dynamic information as well. One way to
achieve this is to trained a model to predict future state representations. A model
can also be observations directly, of course provided that the network in question has
a bottleneck layer from which the learned representations can be extracted. Since
learning on sequential information is difficult and would also benefit from lower-
ing the dimensionality, learning a forward model can be done in two steps: first,
learning an auto-encoder to embed individual frames and then learning a predictive
model in the embedded space. In the schematic we show the case where predictions
are learned from embeddings because it is the structurally more complex scheme.
Formally, we have

ˆ̃st+1 = f(s̃t,at; θforward) (3.14)

The forward model can be constrained to have linear transition between s̃t and s̃t+1,
thereby imposing simple linear dynamics in the learned state space. Depending on
the problem, if this is done well enough, learning a control law can be avoided and
instead schemes like model-predictive control can be employed.

3.2.3 Inverse model
The introducing predictions solves the problem of not embedding the dynamic in-
formation. However, not all information in the observation is relevant for control.
Consider a computer game where images feature decorative backgrounds — those
decorations are irrelevant for playing the game well. If the reconstruction loss is
computed from entire observation, that information is also carried over into the
embedded space. However, if the model is trained to predict actions, it is only in-
centivised to use information which the agent can affect. Thus, due to less informa-
tion being required, the inverse model should produce a more compact embedding.
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at

s̃t

ˆ̃st+1

s̃t+1

ot ôt

Figure 3.2: Forward model: predicting the future state from the state-action pair.
The loss is computer from comparing the predicted state against the true next state
(the states being the learned states). This can also be done directly by predicting
the next observation and comparing against it.

Formally, we can write this as:

ât = g(s̃t, ˜st+1; θinverse) (3.15)

If the inverse model is neural network, we can recover the embedding by discarding
the last few layers and use their outputs to produce the embeddings.

at

ât

s̃t s̃t+1

ot ot+1

Figure 3.3: Inverse model: predicting the action between two consecutive states.
The loss is computer from comparing the predicted action between two consecutive
states against the true action that was taken by the agent between those two states.
(the states being the learned states).

3.2.4 Using prior knowledge to constrain the state space
Of course, not everything need be learned in every problem. While in general hand-
engineered features are worse than learned ones, there are other ways to provide
prior knowledge to the learning system. For example, convolutional neural net-
work by their architecture encode the fact that nearby pixels are related. In the
SRL context we already mention the possibility of constraining the model to linear
transitions, but there are other available techniques like for example constraining
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temporal continuity or the principle of causality. Furthermore, priors can be defined
as additional objectives or loss functions. For example, additional loss can be pro-
vided if embeddings from consequtive observation are drastically different. This is
called the slowness principle.

3.2.5 Using hybring objectives
The approaches outlined thus far can be combined into hybrid approaches, for ex-
ample [8].

3.3 Model-based reinforcement learning
Like the name suggest, in model-based reinforcement learning a “world model” is
learned. While there exists a whole spectrum of methods between pure model-free
and model-based ones, the key distinguishing feature of model-based methods is that
the learned model is used to plan actions. In this case, the task of reinforcement
learning in the narrow sense is to learn the values of different states. This then
enables calculation of trajectories toward states with high rewards. In model-free
methods, only the following action is selected at on iteration of the process because
only the transition reward is learned and states these transitions lead to are unknown
(not explicitly modelled).
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4
Related Work

As said in the introduction, the goal of the thesis is to use state representation learn-
ing to increase the efficiency and finals results of model-free reinforcement learning.
We are now ready to discuss the specifics of our approach. Firstly, we limit ourselves
to image observations and discrete action spaces. In particular, we limit ourselves to
Atari57 games as they are common benchmarks in the field for discrete action spaces.
As shall be seen in the following text, a lot of recent work in state-representation
learning for model-free reinforcement learning has been done in robotics problems
with continous action spaces, for example [20]. Importantly, since we are concerned
with finding ways to make reinforcement learning more sample-efficient, we will be
using only off-policy algorithms.
Secondly, we are particularly interested in the problem of simultaneous training of
the state representations and the policy. The reason for this is that two-step training
is often not available because not all state transitions can be observed beforehand.
This state of affairs is the natural setting for problems where reinforcement learning
is a good solution: the problems where exploration is necessary due to either the
high complexity of the dynamics or unanticipatable events. Parallel training of the
state representations and the policy necessitates instability in policy training due
to the fact the state estimations change even for same observations as the state
representation are learned. Hence, related work that focuses on solving or at least
ameliorating this issue is of particular importance to our work.
Finally, we want our method to be robust not just in the sense that it works across
a wide array of problems, but in the sense that it can be easily added to a variety
of reinforcement learning algorithms to a positive effect. In other words, it should
function as a module which can be easily added to new algorithms. Furthermore,
it should work well with other improvements as those suggested in some of the
following related work. To set the context, we begin with by discussing prior work
in the Atari environment.

4.1 Reinforcement learning on Atari
Major interest in reinforcement learning on Atari games started with [5]. We already
discussed [13] some improvements in 2.4. Agent 57 [21] was the first deep RL agent
that out performs the standard human benchmark on all 57 Atari games. It was
built on on top of the Never Give Up (NGU) [22] agent which utilizes a model-based
approach. It combines two ideas: first, the curiosity-driven exploration, and second,
distributed deep RL agents, in particular R2D2 [14]. The agent was able to balance
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the learning of different skills that are required to perform well on such diverse set
of games: exploration and exploitation and long-term credit assignment. In order
to achieve this a neural network was trained to parameterize a family of policies
ranging from very exploratory to purely exploitative, by using adaptive mechanism
polices were prioritized throughout the training process.
However, if we convert simulated time to real time, these algorithms can take up
to 16000 hours to reach their final performance. Since the goal is not really to
solve Atari games, but to find useful general purpose algorithms, the work is still
ongoing. The new proposed benchmark is Atari100K: solving the games with with
only 100000 transitions. 1 This equates to 2.5 hours of real time.

4.2 Efforts in increasing efficiency in Atari
At the moment of writing, to the authors knowledge, the most efficient algorithm is
[38] which is based on MuZero [29] and is a model-based algorithm. However, the
title of the most efficient algorithm often switches between a model-based algorithm,
a model-free algorithm with state representation learning or similar approaches. We
will not discuss model-based approaches, but will discuss some alternative ones as
their techniques illuminate the problem.
In particular, this concerns using data-augmentation as a means to directly regular-
ize reinforcement learning. This was first employed in [26] and expanded in [24] and
[37]. In [26], the observations are augmented before they are passed to the policy
networks. As we discussed in 3.1.3.3, data-augmentation or noisifying input data
functions as strong regularization to feature extractors. The same applies to feature
extraction trained just from reinforcement learning. In [24], the same observation
is copied and augmented several times. All of these augmented version of the same
image are passed through the policy network. The results are then averaged and pro-
vide a better estimates than those obtained by a single pass of either non-modified
or augmented observation. Thus we may conclude that data augmentation provides
benefits to both representation and reinforcement learning.
We now turn to discussing works which utilize unsupervised state representation
learning to increase reinforcement learning efficiency.

4.3 State representation learning for efficient model-
free learning

Auxiliary losses may be used in a myriad of different ways to help reinforcement
learning. In for example [10], [9] or [11] the same models used for state represen-
tations as used to help guide exploration. When, for example, a trained forward
predictive model incurs large error, it is reasonable to assume that this happened
because a novel state has been encountered. This means that the loss can be in-

1This equates to 400000 frames because the standard is to repeat each action 4 times: this
makes learning easier, but also makes sense because humans do not need such small reaction time
to solve the games.
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terpreted as “intrinsic reward” and be added to “extrinsic reward” provided by the
environment, yielding an algorithm which encourages exploration.
Of interest to us is the use of auxiliary losses for state representation learning. The
specific loss and how it’s used depends on the chosen state representation model. In
the following subsections some common approaches will be explored.

4.3.1 Deterministic generative models
Perhaps the simplest model to be used for state representation learning on images
is an autoencoder trained on reconstruction loss. Using an autoencoder ensures
spatial coherence. This idea has been introduced in [1]. It did not get traction in
reinforcement learning more broadly due to the fact that when the autoencoder is
updated, the state representation changes. Unlike regularizing noise which reduces
overfitting and incentivizes learning of desirable properties, this noise is destructive.
It hinders the ability of the reinforcement learning algorithm to associate states with
their values due to the fact that what it is given different numbers as the same state
through the course of autoencoder training. To solve this problem, regularization
needs to used. In [20], this was solved by employing the regularizations introduced
in [18], which were already discussed in 3.1.3.3. Improvements such as using optical
or latent flow [34] can be introduced to get the objective more stateful.
A mayor flaw of this approach is the fact that reconstructive loss incentivizes re-
construction of the entire image which contains information irrelevant to the agent.
This pertains backgrounds and other object which do not effect state transitions.
This does not mean that the obtained representations are not better than raw im-
ages, but that they could be made better. Knowing this, we still opted for this
approach due to its simplicity and easy of debugging.

4.3.2 Stochastic generative models
Stochastic models can be used to generate predictions which can be used to plan
and thus be used in model-based reinforcement learning. However, this does not
mean that they can not be used to bolster model-free learning. As discussed in
2.1.2, the formal setting for reinforcement learning is the Markov decision process
which is stochastic. Of course, the degree of stochasticity depends on the problem at
hand, but given even in a fully deterministic setting stochastic models can be used
to deal with epistemic uncertainty. This is further exacerbated in case of partial
observability. In [27], (approximate) variational inference is used to formulate the
entire algorithm objective. First, control is formulated as an inference problem and is
thereby embedded into the MDP graphical model. From this single graphical model
of the problem, the variational distribution of action-dependent state transitions can
be factorized into a product of recognition, dynamics and policy terms. As with most
approaches which employ stochastic generative models, a variational autoencoder is
used to represent the latent (representation) space. It should be noted that without
this deep integration with the problem, which enables learning state representation
and policies under a single objective, the stochasticity of state representations would
hurt the performance of the algorithm. A detailed analysis of this issue can be found
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in [20].

4.3.3 Discriminative models
Because we are ultimately only interested in state representations, generative models
are not required. Thus it is natural to opt for a discriminative model. Discrimina-
tive models can be trained in different ways. In [25], contrastive loss is employed.
Another common choice, theoretically investigated in [33], is used in [17] and [28]
is to use mutual information. Another option is to use bisimulation metrics [31].
A particularly promising avenue is to learn discriminative representation models
though bootstrapping as introduced in [23]. This has been employed to learn state
representations in [30], and in [39] where the losses have also been used to incentivize
exploration.
These approaches ameliorate problems found in approaches discussed so far: that
they avoid both the stochasticity of stochastic generative models and the unneces-
sary features picked up through reconstruction loss. Learning state representations
through bootstrapping is particularly interesting because it is rather flexible with
its formulation. In both papers mentioned, the bootstrapping happens through self-
predictive loss and is aided with inverse dynamics loss. It would be interesting to
integrate this more deeply with an appropriate reinforcement learning algorithm,
akin to how stochastic generative models are integrated in the MDP in [27].
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5.1 Formulating our hypotheses

Early attempts to integrate unsupervised state representation learning with rein-
forcement learning did not yield the expected results. One of the reasons for this
was due to the fact that joint training of both algorithms did not work due to the
instability caused by different training objectives. Before discussing how to solve
this issue, we first need to elaborate why joint training is beneficial. In most recent
work, convolutional neural networks are used to extract features from images. This
includes reinforcement learning on images: convolutional layers precede linear lay-
ers. The convolutional layers, with possible addition of some of the linear layers,
constitute the “feature extraction” portion of the policy networks which learn from
images. In all of the related work which utilizes state representation learning and
is discussed above unsupervised learning is used train the feature extractor portion
of the reinforcement learning network. Because unsupervised learning tasks are not
trained to extract states in a supervised manner (because the states are inaccessi-
ble), the features they learn will not exactly correspond to true states nor will they
be able to exactly learn the state transition dynamics. This of course does not mean
that approximate state representation can not be sufficiently accurate however. For
example, in [35] the feature extractor trained with augmented temporal contrast (a
novel unsupervised learning task introduced in the work) was, on some problems,
able to learn features which resulted in sample-efficiency close to training on true
states.
On the other hand, by training the policy network to maximize reward, the feature
extraction portion of the network will implicitly learn to extract features which are
good enough to choose reward-maximizing actions. Thus, logically speaking, the
feature extractor trained with just the reinforcement learning signal has to able to
extract stateful information for the images, otherwise the agent would not perform
well. However, because the reward signal is sparse and contains only indirect infor-
mation about state, the feature extractor, which contains most of the policy network
parameters in simple problems, learns slowly.
This leads us to our first hypothesis 1. Assuming that the learned representations
correspond to the images well, thus also meaning that they do not destroy stateful
information, then they could be interpreted as partial extractions of states from im-
ages. Reinforcement learning feature extraction should then learn more efficiently
on top of those representations due to fact that the search space has been con-
stricted. We illustrate this assumption in 5.1. Given the fact that neural networks
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have to be overparametrized in order to learn using stochastic gradient descent and
their generalization capabilities, the feature extractors for the unsupervised learning
and reinforcement learning tasks can be the same network. Furthermore, owing to
learning properties of stochastic gradient descent, networks need to be updated with
samples taken from all available information. In other words, they “forget” infor-
mation they have learned unless it continues to be provided in subsequent gradient
updates. For this reason we suspect that continuing with unsupervised learning up-
dates even after the unsupervised learning loss initially diminishes will be necessary
to ensure the constriction described above. Following this results in joint training of
state representation learning and reinforcement learning, which is why we hypothe-
size that it will yield higher sample-efficiency than other training approaches.

unsupervised
learning (stateful
noisy) features

reinforcement
learning (stateful)
features

latent representation space

Figure 5.1: Schematic of the latent representation space. Since unsupervised learn-
ing converges much faster, it constricts the search space for the features extracted
through reinforcement learning. This constriction is enforced joint training of both
unsupervised state representation and reinforcement learning.

Because the objectives are different and because unsupervised learning is much
faster, we hypothesize that regularization is necessary 3. Additionally, we hypoth-
esize that representations which better represent true states and state transition
dynamics, i.e. the underlying Markov decision process will better condition the
reinforcement learning feature extraction task 2.

5.2 Our approach
As stated previously, the goal is to learn effective state representations while training
the policy. We opt for a deterministic generative model to learn state representations
with, specifically a deterministic autoencoder trained with image reconstruction
loss. This is done because performance of a generative model is easier to analyse
than discriminative ones. The reinforcement learning algorithm shares its encoder
with the encoder for state representation learning (they are the same network, with
different heads attached). Our main inspiration for this foundational approach comes
from [20]. However, since we elect to work in discrete action environments, we choose
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[13] as the underlying reinforcement learning algorithm. Since we are not trying to
achieve state-of-the-art results, we could have elected another algorithm, but this
allowed us to more easily compare our results to those applicable in 4, and also to
have faster training times which made experimentation easier. We introduce changes
informed by 4 in order to test our hypothesis. Specific papers will be referenced when
appropriate. In particular this equates to the following:

1. We test hypothesis 1 with four different training modes.
(a) Only the reinforcement learning algorithm is trained. This serves as the

control case.
(b) The autoencoder is pretrained, fixed in place, and reinforcement learning

algorithm is trained on top of the unsupervised learning features without
the ability to update the encoder. This roughly tells us the quality of
features (state representations) obtained through unsupervised learning
alone.

(c) Same as before, but now we update the encoder with reinforcement learn-
ing loss. This serves as the control case for the following mode.

(d) We jointly train the encoder both with unsupervised learning and with
reinforcement learning loss. The encoder continues to be updated even
after the unsupervised learning loss diminishes.

2. We test hypothesis 2 by reformulating the unsupervised learning objective.
(a) Instead of doing unsupervised learning to reconstruct the given observa-

tions, we also pass it action and predict the following observations. Since
we can not pass the actions before they have been selected by the pol-
icy network, they are passed in the decoder (the generative part of the
autoencoder). This thus constitutes forward prediction in pixel space.

3. We test hypothesis 3 with the following regularization techniques.
(a) Following the analysis carrier out in [20], we begin by using regularization

techniques introduced in [18]. In particular we use the L2 latent space
loss.

(b) Informed by regularization effects of denoising autoencoders, and by great
success achieved with the random shift augmentation in [24, 37] and other
recent work, we too use random shift augmentation on observations in
unsupervised learning updates.

5.3 Environment and Preprocessing
We perform a comprehensive evaluation of our proposed method on the Arcade
Learning Environment [3], which is composed of 57 Atari games. The challenge is
to deploy a single algorithm and architecture, with a fixed set of hyper-parameters,
to learn to play all the games given embedded latent space representation of the
environment from auto encoder and game rewards. This environment is very de-
manding because it is both comprised of a large number of highly diverse games and
the observations are high-dimensional.
Working with raw Atari frames, which are 210 x 160 pixel pictures with a 128
color palette, is computationally expensive, therefore we do a basic preprocessing
step to reduce the input dimensionality. The raw frames are down sampled to a
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84 x 84 picture and transforming their RGB representation to gray-scale. This is
standard practice in the field and it makes the training faster without fundamentally
simplifying the problem.
We constrict ourselves to games in which there is no partial observability and where
the reward is relatively dense. This is because we are not focusing on exploration
which is necessary to solve some of the games. Methods known to use which formu-
late intrinsic rewards are compatible with our approach and can be in fact integrated
with it like in [39].

5.4 Module implementation

5.4.1 Tianshou
We implement our approach as a modular extension in [36]. The purpose of this
choice is to make our work easily accessible and extendable. Tianshou is an actively
updated reinforcement learning library and offers the highest number reinforcement
learning algorithms on the market. It is based on Python and PyTorch. It is well
documented, provides tests and type hints. It offers gym wrappers for the most pop-
ular reinforcement learning benchmarks, including Atari. It supports vectorization
for all environments.
The guiding principle of Tianshou is to abstract the reinforcement learning problem
as much as possible because good abstractions are the basis of modularity. This is
done by splitting reinforcement learning algorithms into the following modules:

• Batch
• ReplayBuffer
• Policy
• Collector
• Trainer

These modules interact in the way depicted in 5.2.

Figure 5.2: Tianshou concepts

Batch is designed to store and manipulate “hierarchical named tensors”. Hierar-
chical named tensors are a set of tensors whose name forms a hierarchy. In essence,
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they are nested dictionaries.
There are 7 reserved keys in Batch :

1. obs — observation at step t
2. act — action at step t
3. rew — reward at step t
4. done — done flag at step t
5. obs_next — observation at step t+ 1
6. info — info at step t
7. policy — data computed by policy at step t

ReplayBuffer stores experience data. It’s purpose is to manage Batch . All data
is stored in a circular queue.
There are different classes of policies, but all policies must inherit from BasePolicy .
Typical function are the following ones:

1. __init__()

2. forward() — compute action with given observation
3. process_fn() — pre-process data from the replay buffer
4. learn() — update policy with a given batch of data
5. post_process_fn() — pre-process data from the replay buffer
6. update() — this one does it all: samples from buffer, pre-processes data (ex.

computing the n-step return), learn from data and post-proces sthe data (ex.
update the prioritized replay buffer)

Collector ’s task is to interact with the environment and store the observed tran-
sitions in ReplayBuffer .

5.4.2 Trainer

’s task is to balance environment interactions by calling on Collector and updating
the agent by calling on Policy .

5.4.3 Implementing state representation learning in Tian-
shou

Surprisingly, Tianshou lacks state representation learning algorithms which is why
believe it could benefit from our work. We implemented state representation learning
as a Policy which takes a reinforcement learning Policy as an argument. This
makes our implementation truly modular and we had to change less than 5 lines
DQN implementation for it to work. We believe that this was due to a minor design
error in n-step return implementation, rather than our lack of foresight. Apart from
this we used Tianshou’s design to our advantage. By having the state representation
learning wrapped around reinforcement learning, we manipulate the batches sent to
the reinforcement learning algorithm and thus keep it fully encapsulated. Data
augmentation is implemented passing appropriate preprocessing functions to the
Trainer . The user only needs to ensure matching network dimensions to utilize
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state representation learning algorithms and pass the appropriate flag to use the one
we implemented.

5.5 Network architectures
As will be further discussed in 6, an encoder just large enough to solve the rein-
forcement learning problem by itself does not have the capacity to (also) solve the
unsupervised pixel reconstruction problem. The forward prediction problem is more
difficult still. In our experiments we used 3 encoders in total, while keeping the fully
connected perceptron for reinforcement learning the same. All decoders are sim-
ply mirror images of the corresponding encoders, where 2-dimensional convolutional
layers are replaced with 2-dimensional deconvolutional layers, and the order of the
layers is flipped.
The smallest encoder is the one used in [6]. It has only convolutional layers. We
will denote a layer’s configuration as the following tuple: (number of input channels,
number of output channels, kernel size, stride, padding). Our smallest network is
thus of the architecture: (number of stacked frames, 32, 8, 4, 0), (32, 64, 4, 2, 0),
(64, 64, 3, 1, 0). The output of the encoder is flattened and passed to the fully
connected reinforcement learning layers. We use rectified linear units as activation
functions after each layer.
In general, and for our purposes in particular, the smaller the bottleneck layer of an
autoencoder, the better it performs its job of dimensionality reduction. For some
games we were able to obtain the bottleneck of length 50, while for more visually
complex games we used a bottleneck of length 256. We are sure that the bottle-
neck layer could be made smaller with more advanced training techniques, but this
would further complicate our method and most likely increase the number of pa-
rameters which would negatively impact the performance of reinforcement learning.
Furthermore, since our goal is state representation learning and not perfect recon-
struction, we believe that it is better to opt for a smaller network which compresses
well enough. Having that said, we would ideally also test the network architecture
and training procedure proposed in [7]. The architecture of the two bigger encoders
differ only in the size of the bottleneck layer. In our experiments we refer to the
length of the bottleneck layer as features dimension. Their convolutional layers
are the following ones. (number of stacked frames, 32, 3, 2, 0), (32, 32, 3, 2, 0), (32,
32, 3, 2, 0), (32, 32, 3, 2, 0). These convolutional layers are now followed by a linear
layer of the size (32 × 35 × 35, features dimension). We use rectified linear units
as activation functions after each layer but the last which is a hyperbolic tangent
function.
The both Q and V networks consist of 2 fully connected linear layers with sizes of
(features dimension, 512) and (512, number of actions ∗ number of atoms).

5.6 Hyperparameters
As our goal was to investigate the effectiveness of leveraging unsupervised learn-
ing for reinforcement learning, we decided to change the underlying reinforcement
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learning algorithm as little as possible. This way we also test the effectiveness of our
method as a module which is meant to be used as an extension to the underlying
algorithm. Of course, ideally we would investigate the interplay between the two
losses to see whether particular configurations work better than others, but we had
to focus on testing our hypothesis, albeit in a somewhat limited way. The reinforce-
ment learning related hyperparameters can be found in 5.1.

Table 5.1: Table of reinforcement learning related hyperparameters.

parameter value
epsilon test 0.005
epsilon train 1.0

epsilon train final 0.05
buffer size 100000

learning rate 0.0001
gamma 0.99

number of atoms 51
vmin -10.0
vmax 10.0

noisy std 0.1
alpha 0.5
beta 0.4

beta final 1.0
beta anneal steps 5000000

n-step 3
target update frequency 500

epoch 50
steps per epoch 100000
steps per collect 10
updates per step 0.1

batch size 32
number of workers for training 10
number of workers for testing 10
number of stacked frames 4

Alternatively, we could have opted for hyperparameters suggested by [19] which are
tailored for sample-efficiency. We chose not to due to the fact that, while they are
more sample-efficient, result in longer training times. Since we are not interested in
achieving state of the art results nor are we thoroughly experiment with reinforce-
ment learning related hyperparameters, we chose to perform more tests by selecting
a less computationally taxing set of hyperparameters.
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Due to computational constraints, we constrain ourselves to 7 Atari games. Both
DQN and Rainbow perform well by themselves on the chosen games. However, the
games vary in visual complexity and control problem difficulty. In particular, the
selected games are:

1. Breakout
2. Enduro
3. Ms Pacman
4. Pong
5. Qbert
6. Seaquest
7. Space Invaders

Because we can only indirectly gauge the effect of various metrics through final
algorithm performance, the primary metric of interest is obtained return in relation
to the number of training iterations. Due to different reward scaling, we keep results
on different games in separate graphs. We further divide the results into those
pertaining to different hypotheses in order to avoid line clutter. As a final note,
the results for each particular setting are single-runs. Generally speaking, this is
not adequate due to high pseudorandom number generator seed dependence and
noisiness of reinforcement learning in general. Depending on the problem, 3-10 runs
are averaged, or the best one is selected, in order to tackle this problem.

6.1 Effectiveness of pretrained encoders
To begin, we first need to estimate the possible sample-efficiency gains. This is done
by comparing returns per training step between only reinforcement learning and
only reinforcement learning where training starts with a encoder trained from the
first reinforcement learning-only run. We will use runs with reinforcement learning
only as the baseline for all cases. Because we chose games which can be essentially
solved with only reinforcement learning, the encoder of a network trained with
reinforcement learning should serve as an ideal pretrained encoder.
As can be observed in 6.1, using a pretrained encoder can be both beneficial or
detrimental, but it does not seem particularly important, especially long-term. We
used the smaller encoder for runs consisting only of Rainbow and we used the same
architecture for the run with an encoder pretrained with Rainbow. Notably, some
games systematically suffer when reconstruction loss is applied in any way, in par-
ticular Breakout . The reason is that MSE loss is not well suited for small details,
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be they critical or not. In Breakout the ball is not well represented, as can be seen
in reconstructions. 1 This and other problems with the method will be further
discussed in 7.

6.2 Effect of varying network sizes on Rainbow
As mentioned in 5.5, we use a larger encoder when using reconstruction loss. Thus
we need to observe the effect of using different encoder sizes reinforcement learning
alone. We present this separately in 6.2 to avoid clutter.
As can be seen in 6.2, some games benefit greatly from having a large encoder (ex.
Seaquest), while learning completely fails on others (ex. Breakout). Despite rising
the variance of the final result, the effect seems to be neutral overall.

6.3 Effectiveness of continuous updates
Having seen the effect of having pretrained encoders, we turn the attention to the
effect of continuous updating of the encoder with reconstruction loss. The results
are shown in 6.3.

6.4 Effectiveness of regularization
Before continuing the discussion, the effectiveness of regularization needs to be dis-
cussed. We present runs with both data augmentation and L2 regularization, runs
with either one or the other and runs without neither in 6.4.
As can be seen in the figure 6.4, regularization can both benefit and hurt learning.
L2 regularization forces the latent space to be distributed more closely to the origin.
While somewhat arbitrary, we checked that it substantially helps in maintaining
the same latent vectors for the same inputs across updates. This was measured by
observing the reconstruction quality over encoders and decoders saved at different
epochs.
Data augmentation seems to only add noise and therefore hurt learning by desta-
bilizing it. This might be due to our particular implementation, but it is more
likely due to the fact that the encoder produces different outputs for the same, but
differently augmented input.

6.5 Effectiveness of forward prediction
Finally, we compare the effectiveness of forward prediction, or the importance of
dynamics for state representations. The results can be observed in 6.5.
Despite fairly poor reconstruction capabilities and an error larger by an order of
magnitude, state representation trained with forward prediction are overall more

1Interestingly, the same is not the case in Pong because there most of the background is black,
thereby making the ball a relatively big source of reconstruction error in comparison.
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effective than simple compression. As with all results, the effects vary from game to
game.
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Figure 6.1: The graphs of potential efficiency gains. As can be observed from
the graphs, if training is started using an encoder which was already trained using
only reinforcement learning better results are achieved more quickly. Of course, this
does not encompass all potential benefits — unsupervised learning could make the
problem easier overall and thereby allow for both even faster learning and higher
final scores.
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Figure 6.2: Runs with Rainbow only, but with different encoder sizes. As can be
seen, some games strongly benefit from having a larger encoder, while learning fails
on others.
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Figure 6.3: Effectiveness of parallel training. Overall the results are negative, some
slightly and others strongly. Interestingly, using a pretrained encoder has a negative
effect in this case. We suspect that this is due to the fixation on a particular local
minimum caused by reconstruction loss. Importantly, the negative effect is present
despite regularization maintaining a fixed latent space over a relatively large number
of epochs (5-10). Results tend to be worse in games where MSE loss is less suitable
and in games with larger visual complexity.
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Figure 6.4: Comparison of using and L2 latent space regularization and data
augmentation in parallel training. L2 regularization helps overall because it helps
fix the latent representations in place, thereby stabilizing the overall training process.
Data augmentation on the other hand clearly hurt across the board.
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Figure 6.5: Comparison between latent representation trained to compress the
current frames and those trained to perform one-step forward predictions. Despite
having a significantly higher reconstruction error, encoder trained to perform for-
ward prediction perform better.
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Overall, the results are both disappointing and inconclusive. Both intuitively and
by being informed with the relevant literature, we expected stronger results. In this
section we explore possible explanations for the results and use them to suggest
promising avenues for further research. We break our discussion of the results into
answering the following questions:

1. What are the differences between features and states and how important are
they to the final performance?

2. Why is reconstruction loss particularly bad at representing stateful informa-
tion?

3. What could be the characteristics of more successful approaches to using un-
supervised learning for state representation learning?

4. What role does regularization play in reinforcement learning, unsupervised
learning and their combination?

Given the generality of our hypothesis, we of course can not answer these questions
fully, but we can give hints and suggestions.

7.1 Differences between features and states
We believe that the central idea behind using unsupervised representation learning
as state representation learning is the one illustrated in 5.1. If the hypothesis behind
it is correct, then learning should be faster. This is certainly the case in numerous
works which use shared layers for actors and critics in actor-critic methods. Of
course, this only works on the condition that the inherent instabilities in training
networks with different losses have been taken care of in one way or another. The
specific differences between our features and states will be further discussed in the
following subsections, while a more general discussion will be held here.
When looking at simple games such as Pong or Seaquest, one can clearly see what
constitutes a state. The dynamic information primarily consists of the positions and
velocities of objects in the image. More static information would be the types of
objects, for example the player, projectiles, obstacles etc., and similar information.
For such simple problems, a resourceful engineering could easily craft representations
consisting of at most a few dozen parameters. From our experiments with different
autoencoder architectures and sets of hyperparameters, we could not obtained such
low-dimensional representations through unsupervised learning. While deep learning
experts could certainly tailor the various parameters and the training process for
each specific game and thereby obtain lower dimensionality, the point of finding
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general purpose reinforcement learning solutions would be lost. After all, one could
(relatively) easily hand-craft near-perfect solutions for every Atari57 game. Thus
we are left with the conclusion that even if unsupervised learning methods can help
reinforcement learning, they by themselves are not the key to getting (super) human
speed in acquiring knowledge in control problems.
We therefore propose two avenues toward highly sample-efficient reinforcement learn-
ing. One is to formulate model or state representation learning which is geared
specifically toward learning dynamics and to make it more restrictive. In other
words to find more inspiration in works such as [2]. This way single problems can
be quickly learned from scratch. Another is quite the opposite and more inspired by
humans. Humans generalize across all of their experiences, which is what enables
them to quickly make sense of novel situations. Similarly, very large neural network
models could also leverage such broad representations to learn quickly. An interest-
ing start would be to see whether a single network could be trained to play most
Atari games, and other games as well and learn new games quicker than starting
from scratch by leveraging its implicit representations.
There is another important broad conclusion to be drawn from the gap between
our expectations and our results. We expected the results to be better because our
vague sense of what is a feature learned through either unsupervised or reinforce-
ment learning led us to believe that they are related. This would probably not
have happened if we had a better understanding of what these features really are.
Hence we believe that having tools to investigate the nature of features obtained
through deep learning would help tremendously in designing unsupervised learning
techniques for state representation learning. Thus better understanding and ex-
plainability of neural networks would help not only in safety of systems relying on
it, but also in algorithm design — just looking at the final result and other indirect
metrics is not good enough.

7.2 Reconstruction loss
Using pixel-reconstruction loss in general, and MSE loss in particular is a very poor
choice for state representation learning. A good reconstruction contains plenty of
non-stateful information, while a poor one looses stateful information while still
keeping a lot of non-stateful information. The reason for this is that lowering pixel-
reconstruction loss does not directly incentivize learning about states. We believed
that simply lowering dimensionality would make the reinforcement learning problem
easier, but this is clearly not the case unless non-stateful information is removed.
Loosely speaking, with encoders trained via pixel-reconstruction the entropy remains
roughly the same when seen through the lens of reinforcement learning. As already
mentioned, parallel training objectives make the training process more unstable
which hinders progress. Hence the representation being learned needs to be good
enough to overcome this negative effect and better still in order to obtain tangible
benefits.
Furthermore, having a generative model significantly increases the wall-clock train-
ing time (200-400%) due to the networks needing more parameters and due to the
existence of the decoder. For this reason discriminative models should be preferred
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for state representation learning and as seen in 4 this is a clear trend in recent years.
Generative models still have their place in model-based approaches of course.

7.3 Importance of representing dynamics
Forward prediction in pixel-space showed an edge over just compression. While
theoretically sound, this is somewhat surprising given the fact that the reconstruc-
tion error was over a magnitude larger than in the case of just compression. This
clearly shows the importance of directly incentivizing learning stateful information.
There are numerous improvements which could be made to improve the quality of
predictions:

• learning to predict further into the future with the help of curriculum learning
should increase the accuracy on shorter time scale

• more specialized architectures like using temporal-convolutions, having sepa-
rate parameters for each action in the decoder,...

We refrain from suggesting further improvements because as discussed in 7.2, we
believe that reconstruction loss is a bad choice for state representation learning
and that an all together different approach should be taken, ex. self-predictive
bootstrapped latent representations.

7.4 Not all regularization is the same
As shown in 6.4, improper regularization hurts learning, while meaningful regular-
ization helps. In our context regularization serves to stabilize the learning process.
This mainly refers to preventing the latent representations to shift over time, i.e. to
produce the same latent representations when given the same frames. Since L2 reg-
ularization constricts the manifold of latent representations, it serves this purpose
well.
In our implementation, data augmentation seems to only introduce noise because
it makes the encoder produce different latent vectors when given the same frame.
Interestingly, it had a positive effect on learning in runs with 10 times more frequent
network updates (compared to environment steps), but as we performed these runs
on a limited number of games this claim can not be further corroborated with
substantial evidence.
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8
Conclusion

The idea behind this thesis is simple and straightforward: using autoencoders trained
with pixel-reconstruction loss to lower the dimensionality of images should make
the reinforcement learning problem on images easier. As it turns out, this is not
necessarily the case. It, although unremarkably, works on visually simple games like
Pong where all important details can be capture by MSE loss, i.e. by formulating
pixel reconstruction loss on a pixel-by-pixel basis. Simultaneously, the same method
completely stunts learning on games such as Breakout where the ball, a crucial
element of the state, is captured poorly.
We conclude that and pixel reconstruction loss should be avoided for the purposes
of state representation learning as it does not directly incentivize learning stateful
information, but only serve to lower dimensionality, sometimes even at the expense
of stateful information. This is most exemplified by the fact that forward prediction
in pixel space supports learning better, despite the fact that it maintains an order
of magnitude bigger error, just because it more strongly encourages embedding of
stateful information (velocities in particular). Given the listed reasons, and the gap
between our expectations and the obtained results, we recommend more research
into the nature of features obtained through both unsupervised and reinforcement
learning so that beneficial combinations can be deduced, rather than guessed. On a
shorter time scale, we recommend discriminative models as both seem more promis-
ing and are faster in terms of wall-clock time.
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Figure A.1: Expandend comparison of having a pretrained encoder. All runs but
rl-only-small-net utilize data augmentation, which is why it is not included in the
main text. As can be seen, continuous updating of the pretrained encoder with pixel
reconstruction loss is worse than joint training from scratch.
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