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Analyzing the override strategy for collision avoidance functions

Amir Varghaei, Samin Dehghani
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
The automotive industry has been shifting towards leveraging intelligent software
solutions to ensure safety and ease of use. However, ensuring safety during execution
heavily depends on how the human user interacts with these automated systems.
In particular, one of the most commonly used safety features in current vehicles
is called Automatic Emergency Braking (AEB). Although this automatic function
has been proven effective in practice, there still exists an option for the driver to
override the functionality as needed. This motivates the question of understanding
the underlying intention of the driver when performing an override, as this knowledge
can further improve the system’s safety when encountering edge cases. In this work,
we analyze the driver behavior using unsupervised machine learning models and
demonstrate an effective overriding strategy for AEB, through which undesired AEB
intervention can be overridden faster by an average of 0.5 seconds. If verified, the
new strategy would directly impact vehicle safety and enhance the user experience.

Keywords: Collision Avoidance, Driver behaviour, Data science, Driver override,
K-means clustering, Time series clustering, Unsupervised learning
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1
Introduction

The global vehicle population is increasing rapidly day by day. The number stood
at 1.32 billion vehicles (cars and trucks only) in 2016. As in 1996 the number was
670 million, in 20 years, this number has enlarged by almost two times (Petit 2017).
The latest report from the European Automobile Manufacturers’ Association
(ACEA) (2021) states that in 2019 there were 242.7 million passenger car fleets on
the road in Europe. This indicates an increment of 1.8% compared to 2018.

Statistically, the expansion of the vehicle population has led to an upsurge in the
number of collisions on the roads. Alone in Europe, 22,660 lives were lost in road
accidents in 2019. The substantial number of road accidents has made safety an
important principle in the automotive industry.

When discussing safety in vehicles, two main categories are discussed; Passive
safety and active safety. Passive safety refers to the safety systems meant to reduce
the fatality rate in case an accident occurs. For example, airbags, seat belts and
possibly other structural properties in the car that reduces the severity of injuries
to the passengers in the event of an accident (Hojjati-Emami et al. 2012).

Active safety, or Advanced Drivers Assistance Systems (ADAS), on the other hand,
refers to the systems in a place whose purpose is to prevent an accident from
happening. ADAS uses the input given to sensors and cameras on the vehicle, which
are in turn used to detect a potential accident. Technologies like crash detection,
lane-keeping aid, automated braking, blind-spot detection and many more are all
systems that are in place in modern cars to help prevent accidents (Hojjati-Emami
et al. 2012).

1.1 ADAS
As safety is a core value at Volvo Car Corporation (VCC), the company utilizes
innovative technologies to assist drivers in many ways. One of such is the ADAS.
It uses various vehicle sensors to detect obstacles on the vehicle’s drive path. Such
obstacles can be pedestrians, bicycles and other cars.

The system provides a revolutionary change in a low-speed rear-end collision
compared to higher speed scenarios. The engagement of the brake can mitigate the
collision’s damage significantly in high-speed scenarios.

1



1. Introduction

Figure 1.1 is an overview of ADAS functions. This project focuses only on the
Collision Mitigation System (CMS) subsection. The CMS is a function that gets
triggered when the car’s sensors notice a threat in front of the vehicle which has
the potential to create a dangerous situation (Euroncap 2020).

Figure 1.1: ADAS functions (Driver assistance systems | Volvo Cars n.d.).

CMS is a combination of two subfunctions:

1. Forward Collision Warning (FCW): This function is a warning system always
applied before the brakes are engaged.

2. Collision Mitigation by Braking (CMbB): The function applies when the
driver is not active or the brake implemented by the driver is not sufficient
enough. The CMbB can also be referred to as Autonomous/Automatic
Emergency Braking (AEB).

The goal of the CMS function is to help the driver avoid or mitigate a collision and
not disturb the driver in typical driving scenarios. Keeping the balance between
these two goals defines the success of this function.

2



1. Introduction

Systems like AEB have decreased the collision rates significantly; Much research
and studies have supported the statement. For example, the Filippo Caracciolo
Foundation Council (2020) explored the real-world effectiveness of AEB. The study
focused on rear-end crashes and the effect of the AEB on them. The results showed
that implementing AEB enhances safety considerably. In vehicles younger than
three years old, the AEB system resulted in a 45% reduction in collisions. The
system prevented almost one of every two crashes. Notably, VCC was the only
vehicle manufacturer whose AEB system could detect cyclists on the road since
2013 (European-Commission 2016).

The results of a study conducted by Cicchino Cicchino (2017) on the effectiveness
of FCW and AEB show that these systems reduced rear-end crashes by 43% and
the injured rate in these crashes by 45%.

The efficiency of AEB in different nations has been assessed using a meta-analysis.
When compared to a sample of identical vehicles, vehicles equipped with low-speed
(generally under 30 kph) AEB exhibited a 38% reduction in rear-end collisions
(Fildes et al. 2015).

1.2 Driver override
Although the AEB systems have been able to reduce the rate of crashes significantly,
the delinquency of these systems should also be considered. Below are two examples
of the misjudgments of the systems:

• The car is approaching a threat on the drive path, but the system does not
send the FCW and does not apply the brakes (false negative), which will
result in a collision if the driver does not take necessary action.

• If the car is not approaching any threats on the drive path, but the system
wrongly sends an FCW and applies the brakes (false positive), the car might
be put in a dangerous situation and cause a collision with the cars behind.

The override function has been introduced to overcome the system’s delinquency.
This function allows the driver to prevent the brake system from making automatic
decisions and keep the driver in charge of the vehicle (Coelingh et al. 2007).

VCC is currently using two different overriding strategies. The first strategy is
mostly used during high-speed scenarios, e.g., highways. From now on, this strategy
will be referred to as strategy 1. On the other hand, the second strategy is mostly
used in somewhat lower-speed scenarios, e.g., traffic jams. From now on, this
strategy will be referred to as strategy 2.

The override strategy’s activation to overrule the auto-braking system’s decision is
normally dependent on an input parameter from the driver to the car. This means

3



1. Introduction

that the overriding strategy must be defined based on the reactions and behaviors
that drivers usually have in precarious situations.

The accelerator pedal acts as the main trigger to activate the overriding strategy
from the driver to cancel the AEB. For instance, pressing the accelerator pedal can
indicate that the driver is in control of the situation. As a result, the car’s initial
decision of activating the AEB will be overridden by the driver. On the other
hand, the release of the accelerator pedal by the driver indicates that the driver is
avoiding any additional acceleration and thus it can be assumed that the driver
acknowledges the risk of a collision (Coelingh et al. 2007). These two examples
can demonstrate why the accelerator pedal is used as an input to override the
automatic braking by the car.

In such systems, it is important to investigate how the considered threshold for
the accelerator pedal can be improved to be accurate enough to capture all the
events when the driver had the intention to override the false activation of the
auto-braking function.

The lack of a precise trigger or threshold to activate the strategy can cause nuisance
interruptions while driving. For example, a false FCW, which is then followed by a
false AEB activation can be distracting. Also, a false positive AEB in a traffic jam
can increase the risk of rear-end collisions. Hence, the drivers must be confident
that in case of a need to change the car’s automatic decision, they can override it
safely.

1.3 Goal
The primary goal of this thesis is to analyze how the drivers act in a critical situation
after the activation of the AEB function. In addition, this thesis aims to propose a
refinement of the overriding strategies currently used at VCC. An efficient overriding
strategy can release the driver from an unnecessary auto braking situation. The
outcome of this research can contribute to traffic safety and enhance the customer
experience when using the system.

1.3.1 Research questions
1. What is the typical driver reaction to an activated AEB intervention?
2. Can the existing override strategies at VCC be improved?

1.4 Data description
The data used in this thesis project is provided by VCC, consisting of statistics
from customers’ vehicles in Sweden over three years (2017 - 2020). This period has
been divided into 13 quarters, starting from the first quarter in 2017 to the first
quarter in 2020. Each quarter contains several event occurrences. The number of

4



1. Introduction

events that occurred can vary in each quarter. It is also worth mentioning that for
each event, there are multiple corresponding Comma Separated Values (CSV) files
that show the vehicle’s state in case of an event occurrence.

The events can be described as different groups, i.e., activation of different safety
functionalities such as auto-braking and emergency lane-keeping aid systems. This
thesis will mainly focus on the events related to the activation of the AEB (also
known CMbB) and the corresponding data files. Each data file consists of more than
250 signal values in an eight-second time interval (four seconds before and after the
event occurrence, e.g., AEB activation), capturing a sample at the frequency of 5
Hz. These datasets will be referred to as the Sensors datasets in this report.

Figure 1.2: Sample from the sensors - the Sensors dataset.

In addition to the data files described above, a summary file has been provided
by VCC. This file will be referred to as the Summary dataset. The Summary
dataset has derived measurements calculated from 40 sample values of each signal.
Instances of these measurements are the vehicle’s speed when the CMbB function
gets activated. That said, each row represents an event, and each feature is a
qualitative analysis of relevant signals to the driver’s behavior. In other words, the
Summary dataset has the information from all the events in the Sensors datasets
in an accumulative format. However, the Summary dataset needs modifications to
be utilizable. A list of some of the features in this dataset is attached as appendix
A. Figure 1.3 demonstrates an example of the Summary dataset.

Figure 1.3: A sample of the Summary dataset.

It is worth mentioning that there have been minor system updates within the
period in which the data was collected. As the main goal of these updates is to fix
the current bugs, the probability of having a CMbB activation is not affected on a
large scale. Furthermore, an event does not affect the occurrence of the next event.

5



1. Introduction

That said, the observations are independent of each other.

The dataset in this project is based on signal information retrieved from the
vehicles. Therefore, there is no specific labeling in the Sensors datasets. However,
the Summary dataset contains information regarding if the activation of the CMbB
function was true-positive, false-positive or nuisance:

• True-positive: The system has correctly detected the danger and activated
the function.

• False-positive: There was an error in the system’s detection. Thus, the CMbB
function was activated incorrectly.

• Nuisance: The system has correctly detected the danger. However, the
activation of the CMbB function could be delayed as the severity was low.

These labels in the Summary dataset are good indicators for the correctness of
the AEB function itself, however cannot assist to classify the drivers into different
behavioral groups.

1.5 Boundaries
This research is based on the data gathered from the cars’ signals captured at the
time of an event. The data is not capable of demonstrating the drivers’ personal
feelings or intentions at the time of the intervention. There are no images or similar
content to help conduct a ground truth for understanding the driver’s intentions in
regards to overriding the AEB activations. An experiment can be conducted using
Volvo’s test fleets to simulate an AEB event. Further, during the experiment, the
drivers can be interviewed about their intention, which could not be captured by
the signals. However, this is out of the scope of this master thesis and thus will be
proposed as a potential future work to VCC.

The data is collected at the frequency of 5Hz. This frequency can cause potential
latency in the data recorder and, as a result, data loss in some samples. The logs
are captured in eight-second intervals. In the case of having a longer time interval,
better judgments could be drawn about the drivers’ behaviors.

Furthermore, this master thesis will focus on the overriding strategy and the driver
behavior in response to the AEB activation. It will not consider the accuracy or
effectiveness of the false/true positive AEB activations.
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2
Background

In this chapter aims to introduce and discuss the related concepts and work in the
automotive field and driver behavior.

2.1 Human-computer interaction
Human-computer interaction is a bridge between computer technology and human
psychology. This science focuses on the interaction between humans (i.e., system
users) and the computers to fulfill users’ necessities. Although the field initially
dealt only with computers, it gradually included information technology design
in almost all its forms. For example, as the automotive industry is becoming
software-driven, human-computer interaction plays an essential role in system
designs (Bansal & Khan 2018).

Analyzing and understanding human-computer interaction and human behavior
becomes a critical point in developing and improving active safety. Knowing how a
driver reacts, interacts and makes decisions when driving, results in more accurately
predicting that behavior to prevent an accident.

2.2 Driver behavior
Previous research on driver behavior can be considered to limit the relevant
variables for behavior analysis. The papers reviewed in this section have inspected
quantitative variables such as acceleration/deceleration and speed. The studies
done by these papers can be grouped into two categories: (1) The studies which
claim that the driver behaviors can be in the form of longitudinal and lateral control
(Macadam 2003, Qu et al. 2014, Li et al. 2003, Zheng 2014). (2) Studies regarding
the application of the Internet of Vehicles (IoV) for driver assistants, based on
data-driven methods (Dua et al. 2014, Jing-Lin et al. 2014, Yang et al. 2014).
An example of such is an iPhone app (Drive Safe) introduced at the 2014 IEEE
conference that can give feedback and points to drivers by detecting inattentive
behaviors (Bergasa et al. 2014).

Consequently, considering that the driver can take control of the vehicle both
longitudinally and laterally, it can be said that behaviors can be divided into four
main categories: speeding, acceleration/deceleration, braking and steering (Zfnebi
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et al. 2017).

The findings here have been used to create scenarios for the descriptive analysis part
of this thesis. This technique is addressed in more detail in chapter 4, Methods.

2.3 Driver/human reaction time
Categorizing the drivers based on how long it takes them to react to a hazardous
situation depends on various parameters such as age, driving experience, road, traffic
conditions (Hugemann 2002). Hence, previous research in this area has grouped
drivers into different types. For example, McGehee et al. (2000) has examined
the driver reaction time in possible collision situations in an intersection, both in a
simulator and on the test track, using a 95% confidence interval. Table 2.1, retrieved
from this paper, shows the results of this experiment comparing the drivers in the
Iowa Driving Simulator (IDS) and on the test track.

Table 2.1: The results of an experiment conducted by McGehee et al. (2000),
comparing the means and standard deviations of the measurements done by drivers
in the IDS and on the test track.

IDS Test Track

Initial Accelerator Release Mean : 0.96 sec
Std: 0.21

1.28 sec
0.29

Total Brake Ratio (to max brake) Mean : 2.2 sec
Std: 0.44

2.3 sec
0.46

Time to Initial Steering Mean : 1.64 sec
Std: 0.49

1.67 sec
0.46

McGehee et al. (2000) justify the differences in the average time for the accelerator
pedal to be released between the two groups by the fact that the drivers who were
on the test track had seen the in-coming car in the intersection three times before
the actual attack. Additionally, the car was not moving during the three prior
events. Thus, it can be explained that the test track drivers would respond later.
Furthermore, McGehee et al. (2000) mention that although the time for releasing
the accelerator pedal differed between the two groups, it can be claimed that this is
a sign of acknowledging the danger. After the acknowledgment, the further actions
taken by the drivers should not differ.

As mentioned earlier, the driver’s reaction time can depend on several factors.
One of the factors that can make a distinction in the reaction time is the driver’s
attention to the road. Wolfe et al. (2020) have conducted a study in a situation
where drivers did not pay full attention to the road at the time of danger. Two
groups of drivers (20-25 years) and (55-69 years) participated in this study. The
test results show that the younger group can detect the danger at an average of
220 milliseconds and respond to it within an average of 388 milliseconds. The older
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group needed 403 milliseconds to detect and 605 milliseconds to respond to danger.

Another study conducted by Green (2000) has categorized the reaction time in
three primary methodologies:

• Simulator studies, where the subjects are placed in either a simulator of a
car or the cabin of an actual vehicle. The driver is then asked to react,
by braking, to simulated events occurring in front of them. The goal is to
measure the braking reaction time of the driver.

• Controlled road studies, where the subjects were driving on a public or private
road with the researcher as a passenger, aware that they were being monitored
for research purposes. The reaction time was measured by analyzing the
driver’s reaction to unexpected events.

• Naturalistic observation, where drivers were being placed in traffic situations
unaware they were being monitored. A recording equipment is recording their
reaction time to cars braking ahead of them.

The results show that expectancy is the most significant factor for short reaction
times. The interpretation is that in situations where a driver expects something to
happen, reaction times are shorter. When the expectancy was high and uncertainty
was low, the reaction time was the best. The driver’s response time was about 0.70
to 0.75 seconds in these situations. Urgency seemed to significantly impact reaction
times if a sense of urgency was present. A better reaction time was recorded if
the time-to-collision was low. Although it should be noted that the results varied
considerably across the studies, making it difficult to pinpoint a single value or
even an extensive range of values.

The age factor was also relevant as older people generally had a slower reaction
time of 0.1 to 0.3 seconds on average. One crucial factor is a high cognitive load.
If a driver is overwhelmed with the unfamiliarity of the roads or is distracted by a
cellphone, the reaction time is significantly increased.

The outcome of this research seems to be that no single study can capture all
aspects of what affects the reaction time in a driver, since human behavior is quite
complex and extremely sensitive to environmental factors and changes. This forces
the research to lean toward some intuition since the full spectrum of human behavior
cannot be explained mathematically.

2.4 Forward collision warning for AEB
Although drivers’ reaction times can vary depending on their age or level of
attention while driving, the automotive industry has implemented the FCW
function to warn drivers who do not take precautions.
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FCW uses cameras and radars to detect stationary or moving objects in front
of the vehicle. This system is activated when the distance from the host to the
target vehicle is decreased and a possibility of a collision is detected. In the case
of activation, the driver receives an audible and visual warning on the windshield
(Yue et al. 2021). The FCW allows the driver to manually avoid the collision before
the AEB activation. Thus, where an essential reaction is taken by the driver in
response to the FCW, the AEB/CMbB functions will no longer take place.

FCW timing can have an impact on drivers’ response to AEB/CMbB activation.
Abe & Richardson (2006) have shown that the FCW warning time has a greater
influence on drivers’ confidence in the vehicle safety system than the improvement
of the AEB system itself. In addition, the study shows that alarms that occur after
AEB activation are considered delinquent alarms by drivers. This article concludes
that drivers expect to receive an FCW warning before the AEB intervention. By
considering this, further study is done on the impact of FCW timing on the drivers’
AEB override in this master thesis.

2.5 Adaptive cruise control (ACC)
One of the essential factors in increasing the safety of cars and reducing accidents
is to maintain a proper distance from the vehicles in front while driving. Although
the driver can follow this vital principle, car companies have added ACC to their
vehicles. ACC can intelligently reduces the vehicle’s speed when approaching a car
in front to add safety for the drivers who are not following this principle.

ACC is a new generation of speed cruise controls. Prior to ACC, in normal cruise
control, the driver could adjust the car’s speed to a certain value. Although the
normal cruise control provided comfort for drivers to drive for a long time, it was
not able to reduce or increase the car’s speed due to its inability to detect obstacles
in front of it. Thus, the driver was personally responsible for this task.

The new generation of cruise control, ACC, has a more efficient system. The
system combines a road scanning radar, motion sensors and a vehicle computer
or Electronic Control Unit (ECU) that can change vehicle speeds depending on
road conditions. Therefore, the car can increase or decrease its speed without the
driver’s intervention by analyzing the variables in front of it (Volvo Cars 2018).

Using the car’s adaptive cruise control, the driver controls the lateral movement of
the vehicle (steering) and gives longitudinal control to the vehicle. However, the
driver still has the power to accelerate further to increase the chosen speed by the
ACC.
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Theory

This chapter discusses the theory behind the methodology used in this research.

3.1 Quantitative data analysis
A dataset consisting of number-based information which can be measured and
counted can be referred to as quantitative data (Sheard 2018). Having a dataset
with a numerical nature makes the mathematical calculations such as the mean,
the variance and other statistical indicators possible for the observations.

One of the datasets used in this master thesis i.e., the Sensors datasets includes
numerical values obtained from the vehicle signals. Since the observations were
captured in the form of continuous and discrete values, it can be said that this
data is quantitative. Thus, quantitative data analysis on such data can be used
for assessing various scenarios such as the distinction between groups (conducted
from samples), the relationship between features in the data and testing hypothesis
(Watson 2015).

The quantitative data analysis is carried out in the form of descriptive statistics,
which is described in the chapter 4, Methods.

3.1.1 Descriptive statistics (DS)
DS describes the characteristics and contents of a smaller, more detailed and limited
proportion of data called samples. The samples are subsets of a bigger group in the
data, referred to as population. The population forms an entire set of observations
for the study (Berndt 2020). In this thesis, the population is all the drivers in the
world who have experienced an AEB/CMbB activation and the samples are the
drivers in Sweden whose data is available and used in this project, and who had
the same experience.

Furthermore, DS does not focus on making predictions based on the data but
on finding detailed statistical knowledge of the chosen sample. This detailed
information is used to get both a macro and a micro overview of the data. Moreover,
by observing the statistics from each sample, possible errors in the data can be
spotted e.g., an abnormal variation in a specific signal value in similar scenarios. To
solve an issue in an unknown system or come up with an improvement for it, it is
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required to have an insight into the nature of events, groups and humans interacting
with it. It would be impossible to understand this type of system data without
insight into it. These understandings are the necessary bases for applying other
methodologies such as inferential statistics or machine learning modeling (Siedlecki
2020).

3.2 Machine learning
Machine learning uses data to learn and derive meaningful insights based on the
given input. It attempts to design a machine using algorithms so that it can learn
and work without explicitly dictating each action. Machine learning algorithms are
mainly classified into supervised and unsupervised types. The data used to be fed
into the models determines the type of the algorithm (Mahesh 2020).

• Supervised: The data is labeled, and the labels assign each observation to
a specific group. A supervised machine learning algorithm can leverage the
labels in the data to learn and make predictions. Supervised models analyze a
training dataset and then produce an inferential function to make predictions
about output values (Berry et al. 2019).

• Unsupervised: The input data is not labeled. Unsupervised algorithms
attempt to find hidden patterns and structures without the need for human
intervention or involvement of a target label (Berry et al. 2019).

Given the dataset and goals of this project, an unsupervised machine learning
algorithm is used. Thus, the theory in this area is focused on this type of algorithms.

In unsupervised learning, the algorithm must look for finding structures in the
data. Mathematically speaking, unsupervised learning refers to when there are
only input variables X and no output variables Y in the dataset. Unlike supervised
learning, there is no correct answer given to the algorithm to learn from and the
model itself must look for the answer. Unsupervised learning can be divided into
clustering and association tasks.

• Association: The goal is to discover the relationship between the variables in
the data. For example, a person who buys X will most likely buy Y.

• Clustering: When there is an intention to discover intrinsic groups (data that
are inherently in a particular group) in the data, e.g., grouping customers
based on their buying behavior.

To answer the first research question, machine learning can be used to group
the drivers into different groups. Thus, more investigation is done on clustering
algorithms and how they are used to group behavioral data.
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3.2.1 Data scaling
The features in the Summary dataset have different ranges concerning the variance.
Therefore, feature scaling is needed to ensure that the observations are within the
same range. The scaling of the data can have a large impact on the result of the
machine learning algorithms. If the features’ ranges differ significantly, the model
will be biased towards the larger range. The model assumes that the features with
a larger range have a more significant impact on the outcome (Patel & Kushwaha
2020).

In this project the removal of outliers results in a significant loss of data. Thus,
robust scaling can be used. Robust scaling uses the interquartile range to scale the
data so that it is robust to the outliers. The formula below is explaining this scaler
where Q1 and Q3 represent the first and third quartile of the data accordingly and
Q2 is the median of the data:

xi −Q1(x)
Q3(x)−Q1(x) (3.1)

3.2.2 Feature reduction with principal component analysis
(PCA)

Feature selection plays a significant role in unsupervised learning models. The
amount of data required can increase exponentially in high-dimensional datasets.
Therefore feature selection is used to extract the columns that are primarily
contributing to the desired outcome (Jamal et al. 2018).

PCA is one of the commonly used dimensional reduction methods. PCA is used
when the input data has a high dimension of features and the goal is to compress
the dataset into a smaller number of features. The cost of the dimension reduction
in a dataset is the accuracy reduction. Therefore, PCA is recommended exclusively
if the dimension reduction technique trades a little accuracy for higher simplicity in
the data (Kondo et al. 2019).

3.2.3 K-means clustering
The k-means algorithm is an unsupervised machine learning model. The purpose
of the model is to divide the data points with one or multiple dimension into K
number of clusters. The algorithm is centroid based which means each cluster has
its own centroid. The objective of the model is to minimize the sum of distances
of data points within the same cluster, which is reachable when the centroids
are located in the most optimized positions. The model reaches to this goal by
performing repetitive calculations for the positions of the centriods (Hartigan &
Wong 1979).

In this method, the chosen number of clusters will each have a representative, namely
a centroid. Each observation will be grouped in a cluster with the shortest Euclidean
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distance to its centroid. New centroids can be calculated for each iteration by
averaging the data and re-assigning the data to new clusters. This process continues
until the groups are no longer changed (Saxena et al. 2017).

3.2.4 K-means clustering for time-series data
3.2.4.1 Time series data

A sequence of data collected over a period of time forms a time series. These data
reflect the changes in a phenomenon over time. Therefore, these values (changes)
can be considered as a time-dependent vector. If X is a vector, the time series can
be represented as follows where t represents time and X is a random variable

X(t), t = 0,1,2, ... . (3.2)

According to this definition t = 0 is the time of occurrence of a phenomenon or
when the first information was recorded. Hence, X(t) defines the random variable
X in time of t. The observed values of this random variable have an order that
indicates the time of occurrence of each observation (Hamilton 2020).

A time series model is univariate if created based on only one property (i.e., feature)
of a phenomenon. On the other hand, if several features are used to create a time
series model, the model is called multivariate.

3.2.4.2 Tslearn

Tslearn is a python package specially made for analyzing time series data. The
package is built on top of three other packages; Numpy, Scikit-learn, and Scipy
(Tavenard et al. 2020).

3.2.4.3 Dynamic time warping (DTW)

DTW is an algorithm that can measure the similarity between two time series that
may differ in speed or time. This algorithm can be used to overcome the weaknesses
of the Euclidean distance in capturing similarity between two sequences, which may
only differ in time but have a similar pattern. In a study Wang et al. (2013) have
experimented and compared nine different similarity measures on time series data.
Wang et al. (2013) claims that DTW has higher accuracy than Euclidean distance
in small datasets. Wang et al. (2013) further adds that limiting the warping window
size in DTW can reduce the cost in computation while outperforming the Euclidean
distance.

The time complexity of DTW is O(NM), where N is the length of the first sequence
and M is the length of the second sequence. Different techniques can be used to
increase the computational speed of DTW. Wang et al. (2013) has investigated the
effect of LB Keogh (Keogh & Ratanamahatana 2005) and reported that it has a
positive impact on reducing DTW computational cost.
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Hoseini et al. (2021) have conducted a study to annotate scenarios to find driver
behavior based on transitive relations. In this study, Hoseini et al. (2021) have
presented the use of DTW in finding similarities between trajectories with different
lengths in time.

3.2.5 Cluster evaluation
In an unsupervised machine learning model, unlike classification problems, there
is no ground truth (i.e., labels) in the data to verify the quality of the clustering
result. Therefore, the need for appropriate criteria, both to evaluate the efficiency of
a clustering method in cluster retrieval and to compare the performance of different
clustering methods, is necessary. There are two types of criteria for evaluating
clustering results:

• Internal criteria: The purpose of examining internal criteria is to evaluate the
structure of clusters created by clustering algorithms. These criteria measure
the similarity of members within a cluster and the dissimilarity between
clusters.

• External criteria: There is a real label (benchmark) for all the observations
in external criteria, mapping each observation to a belonging cluster. On
the other hand, there are clustering labels, which are unique labels for each
cluster with observation within it. External criteria is the mapping between
these two labels to assure the goodness of the clustering algorithm (Saxena
et al. 2017).

3.2.5.1 Silhouette score

The silhouette score is an example of internal criteria. It is a metric used for
evaluating the quality of the clusters. This criterion depends on the cohesion
within the clusters and their degree of separability. The silhouette score for each
point measures the extent to which it belongs to its cluster relative to the adjacent
cluster. This metric can have the maximum and minimum values of +1 and -1,
respectively. An interpretation of the silhouette score is as follows (Shahapure &
Nicholas 2020):

• +1: The clusters are well distinguished and separated from each other.

• 0: The clusters are similar, or the distance between them is not considerable.

• -1: Each observation is wrongly assigned to its cluster.

The silhouette score can be calculated using the formula below, where a is the
average distance between each observation within a cluster and b is the average
distance between clusters (Shahapure & Nicholas 2020). The highest silhouette
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score can be used to determine the number of clusters (i.e., k) for the K-means
algorithm.

score = (b−a)
max(a,b) (3.3)

3.2.5.2 Cluster Stability

Silhouette score is not the only method for selecting the number of clusters in
the K-means algorithm. Another proposed methodology is using the cluster
stability as a technique for finding the optimal k value. It can be said that an
algorithm produces stable clusters if the clustering results remain identical even
after re-sampling the data from the same distribution (Von Luxburg 2010). This
methodology has introduced new ways of finding the optimal number of clusters.
A recent paper from Mourer et al. (2020) claims that only stability cannot be
adequate in determining the number of clusters since it cannot identify if the
determined number of k is sufficient or too low.

Mourer et al. (2020) has proposed a new internal criterion validation methodology
that overcomes the previous weaknesses. In this technique, a good cluster is defined
based on two characteristics: (1) the cluster needs to be stable, and (2) within each
cluster, there should not be a stable partition. This method validates the clustering
results on stability within clusters and between clusters. They have introduced an
index which stabilizes the trade-off between the within cluster and between cluster
stability, called Stadion. Stadion stands for "stability difference criterion." Stadion
also provides a visualize stability path which is the growth of stability as a function
of ϵ (ϵ-Additive Perturbation).

Furthermore, Mourer et al. (2020) has performed a comparison between Stadion and
other internal-based evaluation metrics such as the Silhouette score. The comparison
shows that Stadion is outperforming these metrics in K-means clustering.
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This chapter aims to describe the methodologies used to answer the two research
questions.

Question 1: What is the typical driver reaction to an activated AEB intervention?
This question is answered by studying the drivers’ behaviors using two methods,
descriptive analysis and K-means clustering. These three methods are addressed
in sections 4.1 and 4.2. In all three methodologies, the data has been split into
three main categories: (1) No overriding, (2) Overriding with strategy 1 and (3)
Overriding with strategy 2.

Question 2: Can the existing override strategies at VCC be improved?
This question could be answered based on the derived results obtained from
question 1. A new strategy has been investigated to answer the second research
question which is addressed in section 5.3, New strategy.

The driver can influence the car in two main ways, laterally and longitudinally.
The lateral control is related to steering, the longitudinal control is related to
acceleration/deceleration and braking (Zfnebi et al. 2017). Section 2.2 of this
report has addressed this categorization in detail. Additionally, section 2.3 has
mentioned the importance of reaction times. Hence, these four parameters (steering,
acceleration/deceleration, braking, and reaction time) are the main focus for the
drivers’ behavioral analysis.

4.1 Descriptive statistics for behavioral analysis
Regarding the longitudinal control, the vehicle’s speed, acceleration and braking
signals have been considered. Furthermore, signals correlating with the steering
wheel, such as the steering wheel angle, are studied. The mean, median, standard
deviation, and skewness of data are considered to analyze the results. These
parameters make the analysis of different groups comparable. The variables in the
signal-based data could not directly be used for analysis. To get valuable insights
from this type of data, it was necessary not to manipulate the variables, but to
make meaningful combinations and groups before statistically analyzing them. In
the following sub-sections the detail of how these groups and combinations were
shaped is described.
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The drivers can have different behaviors in different situations; Although the
recorded signals’ values are informative, they cannot provide exact information
about the drivers’ conditions and their intention. The events have been categorized
into different groups several times to study the drivers’ behaviors. The categorization
is based on the four primary behavioral groups mentioned in the beginning of this
section (steering, acceleration/deceleration, braking, and reaction time). In the
following section, each scenario is described in detail. This way, the problem can
be divided into smaller segments to make the analysis more efficient. The analysis
result of each scenario can be found in chapter 5, Results.

4.1.1 Data pre-processing: the Sensors datasets
The behavioral analysis using the descriptive statistics is performed using the
Sensors datasets. The Sensor datasets were created using four raw data files
(for each event) provided by VCC. Data from these files were merged, sorted
alphabetically, and transposed to create a file with 40 samples per event as rows,
and signals collected as columns. The 40 samples correspond to 4 seconds before
the event and 4 seconds after the event. The data were then filtered to get only
the events related to the CMbB function, thus all other events were discarded.
The filtering was carried out in two steps. The first step is checking the status of
the Collision Reduction by Braking Post Status Arbitration signal, a status signal
for the automatic braking function, to be in a pre-brake or a full-brake state. The
second step is checking the Vehicle Motion Status signal to assure the vehicle was
not stationary and was moving forward at the time of the intervention.

Figure 4.1 illustrates the data pipeline. The total number of events was 153,154
which got reduced to 49,850 events after filtering. The final datasets, namely, the
Sensors datasets will be used for further analysis in this section of the thesis.

Figure 4.1: Pipeline to convert the raw data into sensors dataset.

4.1.2 Investigating the distribution of the overriding drivers
The drivers who have experienced a CMbB activation have been categorized into
two groups; Group one consists of the drivers who have overridden the CMbB
intervention, and group two consists of the drivers who have not. The Collision
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Reduction by Braking Post Status Arbitration signal, a status signal for the
automatic braking function, was used to create these two groups. Each value of
this signal is an indicator of the type of CMbB activation.

Furthermore, considering different existing thresholds and conditions for triggering
each overriding strategy (strategy 1 and 2), the drivers were grouped into two
additional groups. Group one consists of drivers who overrode the intervention
using strategy 1 and group two consists of the drivers who have overridden the
CMbB using strategy 2.

Figure 4.2 is provided to give a better indication of how the categorization is done
in this particular scenario.

Figure 4.2: Grouping the drivers based on whether they overrode the CMbB
activation. Furthermore, grouping based on different strategy used to override the
intervention. Each compared pairs are having a matching color.

4.1.3 Speed investigation at the time of intervention
The drivers’ speed behavior is investigated in three different scenarios using the
Vehicle Speed Longitudinal signal, indicating the host vehicle’s speed.

• The overall speed distribution of the drivers at the time of the CMbB
intervention. This shows the speed the drivers had when entering the
intervention.

• Using the categorization done in the previous scenario where the drivers were
grouped by two different overriding strategies, the speed distribution in each
strategy group was investigated.

• By further looking into the speed distribution of each overriding strategy,
the distribution of the vehicles that fully stopped during the intervention
was studied. This stopping can be occurred by either the driver and/or the
braking of the CMbB function.
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Figure 4.3 gives a better illustration of how the three described scenarios above are
distributed.

Figure 4.3: The groups created to investigate the speed at the time of CMbB
intervention. The groups are addressing the speed of : (1) all the drivers experiencing
CMbB intervention, (2) drivers overriding with strategy 1, (3) drivers overriding
with strategy 2 and (4) all the drivers who overrode the intervention whose vehicle
became stationary during the CMbB.

It should be noted that the data recorder latency was considered in all the described
scenarios above.

4.1.4 Investigating the relationship between the FCW and
the driver override

One question that can be asked, as Abe & Richardson (2006) also points out,
is whether the timing of giving warning to the driver can affect the level of
attentiveness. In other words, is FCW one of the reasons for successfully overriding
a CMbB intervention as it alerts the driver before the intervention? To answer this
question, the Warn Request signal, a signal indicating the activation of FCW, was
investigated. It is also studied at which sample in the Sensors datasets this signal
gets triggered.

The hypothesis was that the drivers who overrode the intervention might have had
an earlier FCW than those who did not override the intervention. To prove the
hypothesis, the duration between FCW initiation and the beginning of the CMbB
intervention was calculated.

Furthermore, the same comparison was made between the drivers who overrode
the CMbB intervention with different strategies. Each overriding strategy (i.e.,
strategies 1 and 2) gets triggered under different conditions; Strategy 1 is for higher
speed, and strategy 2 is for lower speed scenarios. Thus, comparing the effect of
FCW in these two groups can reveal the potential difference concerning the timing
of the warning between these two overriding groups.

Having this information will lead to a more profound understanding of the
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effectiveness of FCW in regards to the driver override, as well as the relative time
of activation of this function based on the time of the CMbB intervention.

Figure 4.4 shows how the different scenarios are created for investigating the effect
of FCW timing in overriding the intervention.

Figure 4.4: Scenarios to be compared in regards to the timing between the FCW
and CMbB activation. The groups with matching colors are compared with each
other.

4.1.5 Investigating the relationship between the length of
intervention and the driver override

A new question to be answered is whether the length of intervention makes an
apparent difference between the drivers who have overridden and those who did
not. This question was answered by by investigating the length of intervention in
isolation. The duration of CMbB intervention was measured and it was studied
how the duration affects the chance to override.

Since there are two different strategies, strategy 1 for high speeds and strategy 2
for low speeds, it would be interesting to investigate if the length of intervention
contributes to the speed distinction in different scenarios. Thus, it was investigated
how the length of intervention differs among overriding drivers using different
strategies.
Figure 4.5 shows a clear illustration of how two different comparison groups are
conducted.
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Figure 4.5: Comparison between different groups in regards to the length of
intervention.

4.1.6 Investigating the driver reaction time concerning the
usage of ACC

Based on the characteristics of ACC discussed in section 2.5, the CMbB events in
which the driver was using ACC were selected in this scenario. Additional rounds
of filtering were carried out which are described as follows:

1. ACC = "ON" and "ACTIVE"
2. No further acceleration by the driver during the activation of the ACC
3. Length of intervention > 0.8 seconds
4. Acceleration by the driver during the time of CMbB intervention

When analyzing an outcome of an event, it is essential to consider what has
happened prior to the event. As the drivers can, if wanted, accelerate even further
than the ACC, it was verified that the drivers were not accelerating (further) by
themselves while ACC was activated. This increases the probability of resting the
feet behind the pedals. Thus, the probability of capturing undesired accelerations
due to body inertia from braking would be less.

Further, the length of intervention has an important impact on overriding an event.
Hence, it was ensured that the length of the intervention was long enough (more
than 0.8 seconds) to be felt by the driver.

Finally, as this investigation aims to measure how long it takes for the drivers to
react to a CMbB intervention, the events in which the driver has accelerated during
the intervention were selected. Having the reaction time of the driver considered,
depressing the accelerator after a certain time is a good indicator for measuring the
reaction time of the driver.

4.1.7 Investigating the overriding drivers’ reaction time
concerning the deceleration request impact

The deceleration power from the CMbB function can impact the drivers differently;
A harsh deceleration request, i.e., full-brake, is much more noticeable for the driver
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than a pre-brake. That said, considering how hard the CMbB has interfered is
essential and can result in different reactions from drivers.

Further, to better understand the driver’s behavior, one vital factor is the reaction
time. Therefore, it was mainly studied when and how drivers start interfering with
the system concerning different CMbB deceleration requests.

The information gathered from this investigation can help to have a better
understanding of how drivers are involved in the overriding process and how the
deceleration request has an impact on this involvement. This can be useful when
discussing improvements or new strategies.

This investigation has been carried out in three groups. In each group, different
periods have been measured. Figures 4.6 explain and demonstrate the time spans
for this investigation.

Figure 4.6: Created grouping of the overriding drivers’ reaction times concerning
the deceleration request.

In the first group, the time between the CMbB intervention and pressing the
accelerator pedal by the driver was measured. The second group measured the time
between a pressed accelerator pedal and the end of the intervention (i.e., override
by the driver). Finally, in the last group, the duration of the intervention, from
the start to the time overridden by the driver, was measured. In all three groups,
the comparison was made between the overriding drivers who (1) experienced a
full-brake versus (2) who had experienced a pre-brake followed by a full-brake from
the CMbB function.
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4.1.8 The maximum slope of accelerator pedal’s ratio
during the CMbB intervention

The term slope refers to the difference between the ratio (how much (in percentage)
the accelerator pedal is pressed) of the accelerator pedal in two sequential samples.
Figure 4.7 gives an illustration of the slope in the accelerator pedal. Depressing
the accelerator pedal by the driver is an indication of gaining speed. The higher
the slope, the harsher the pedal is pressed by the driver. This factor has been
investigated among three groups of drivers: Drivers who did not override, drivers
who overrode the intervention using strategy 1 and using strategy 2.

Figure 4.7: The pedal ratio shown in percentages, indicates the pressure by the
driver on the accelerator pedal. The numbers on the bottom row show the slope
(difference) between two sequential samples. The red circle shows the maximum
slope between all the calculated slopes.

The distribution of the maximum slope of the accelerator pedal for drivers who did
not override the CMbB intervention is projected in figure 4.8. The distribution for
the drivers who overrode the CMbB intervention with strategy 1 and with strategy
2 are projected in figures 4.9 and 4.10, accordingly.

Figure 4.8: Distribution of maximum accelerator slope reached by the drivers who
did not override the intervention.
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Figure 4.9: Distribution of maximum accelerator slope reached by the drivers who
overrode the intervention using strategy 1.

Figure 4.10: Distribution of maximum accelerator slope reached by the drivers
who overrode the intervention using strategy 2.
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Most drivers in the not overriding group either did not press the accelerator pedal
during the CMbB, or only performed a light depress on the pedal (less than 10%
change in the slope); As the figure 4.8 projects. While the majority of the drivers
who overrode the intervention using strategy 1 (79%) performed a sharp depress on
the accelerator pedal as shown in figure 4.9.

Furthermore, figure 4.10 shows almost 75% of the drivers who overrode the CMbB
using strategy 2 had a maximum slope of 10 to 40. It can be concluded that the
acceleration pedal slope can be used as an indicator for the drivers who intend to
override.
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4.2 Unsupervised machine learning for behavioral
analysis

4.2.1 Data pre-processing: the Summary dataset
As mentioned earlier, the Summary dataset is created based on the sensors’
data. Figure 4.11 shows an overview of the pipeline used to create the Summary
dataset. The Summary dataset is the data file that is fed into the first K-means
implementation. For the time series K-means, the Sensors datasets are used.

Figure 4.11: Pipeline to convert the sensors data into summary dataset.
Blue boxes represent data filtering processes. Gray boxes represent feature
reduction/increment processes.

1. Data Filtering

(a) Null values: 16 out of 49,850 events, contained null values. Considering
that they do not make a significant change in the total number of
observations (Lokesh 2021), they were dropped from the dataset.

(b) Discarding short-length events: Based on the investigation done during
the quantitative analysis and studies addressed in section 2.3 e.g., (Green
2000), the drivers don’t have a chance to react to the events shorter
than 0.8 seconds. Therefore, the events which have a CMbB length
of intervention shorter than this time have been discarded from this
dataset. After this filtering the number of rows in the Summary dataset
is reduced to 21,598 events.

2. Discarding irrelevant features, adding relevant features

(a) Discarding the irrelevant features to the driver behavior: The Summary
dataset contains many features that do not contribute to this project’s
goal. Therefore, the irrelevant columns to driver’s behavior are removed
from the dataset.

(b) Highly correlated features removal: A heat-map of correlations between
the columns has been created to remove redundant features. The
columns with high correlations (regardless of having positive or negative
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correlation) are not taken into consideration.

(c) Adding new behavioral features to the dataset: The Summary dataset
initially had 78 features, some of which are the results of the driver’s
behavior. However, not all the driver behaviors (specially the important
factors found in the descriptive analysis) were originally found in the
Summary dataset. Therefore, using the Sensors datasets, new features
have been created and added to the Summary dataset for each event.
The newly computed features could be beneficial in showing a pattern
among different behaviors in different groups. These new created features
are described below:

i. Override status: Shows how a CMbB intervention ended. It is a
categorical column that takes three values, NO for events in which
the driver did not override the CMbB. S1 and S2 if the driver
overrode the event using strategy 1 or strategy 2, accordingly.

ii. The maximum accelerator pedal’s ratio during the CMbB
intervention: Shows the maximum ratio of the acceleration pedal (in
percentage) reached by the driver, as a result of depressing the pedal.

iii. The maximum slope of accelerator pedal’s ratio during the CMbB
intervention: Represents the change of accelerator pedal ratio
between two sequential samples (see section 4.1.8 for calrification).

iv. Brake pedal interaction time: Shows the time it took the driver to
interact with the brake pedal after the CMbB starting point.

The number of remaining features is reduced to 28 columns after the
feature reduction/increment process. The list of features is provided in
appendix A.

(d) Data type modification: A large part of memory can be occupied due to
the implicitly of Python. Thus, the data types were adequately modified
to save a good amount of memory and boost the processing speed. For
example if only two digits are used to represent a value. the data type
changed from int64 which occupies eight bytes to int8 which occupies
only one byte.

4.2.2 Principal component data frame
The result of having seven principal components is approximately 86% variance ratio
of the Summary dataset. The feature’s with the majority of contribution in each
principal component is shown in table 4.1.
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Table 4.1: Features ratio as per principal component.

Component 1 Ratio
CMbBDecelRequestMax 92%

Component 2 Ratio
DriverDecelRequestMax 81%
SpeedReduction 30%

Component 3 Ratio
MaxPedalRatioDuringCMbB 75%
MaxSlopeAccrPedal 56%

Component 4 Ratio
TimeBrakingBeforeIntervention 94%

Component 5 Ratio
TimeBrakeOnset 65%
TimeBetweenCMbBEndAndDriverAcc 42%
LengthOfIntervention 30%

Component 6 Ratio
SpeedLimitRSI 77%
MaxSteeringAngle 36%
TimeBetweenCMbBEndAndDriverAcc 34%

Component 7 Ratio
TimeBetweenCMbBEndAndDriverAcc 72%
TimeBrakeOnset 44%
DriverBrakingAtCMbBStart 40%

4.2.3 Data I.I.D-ness
Most machine learning algorithms, supervised or unsupervised, assume the data is
independent and identically distributed (i.i.d). The two characteristics that make
the data i.i.d are:

• Independence: An event does not affect the occurrence of the next event.
That said, the observations are independent of each other.
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• Identically distributed: A dataset can be claimed identically distributed if the
samples come from the same distribution (Clauset 2011).

The events are divided based on six software versions. The most important features
of data (based on the PCA results) are chosen to be compared in different software
versions (V1 to V6). The chosen signals are the max slope acceleration pedal ratio
(56% of principle component 3), CMbB deceleration request max (92% of principle
component 1 and 81% of principal component 2), time between CMbB end and
driver acceleration (42% of principle component 5) and time brake onset (65% of
principle component 5 and 44% of principle component 7).

The comparison is carried out using the two-sample Kolmogorov-Smirnov test. The
null hypothesis is that the two given samples are from the same distribution. The
null hypothesis can be rejected by a p-value lower than the significance level (α)
using a 95% confidence interval. Meanwhile, the null hypothesis fails to be rejected
if the p-value is higher than α.

The tables below are the results of these comparisons.

Table 4.2: MaxSlopeAccrPedal

V1 V2 V3 V4 V5 V6
V1 - 0.811 0.678 0.822 0.374 0.948
V2 0.811 - 0.999 0.673 0.080 0.976
V3 0.678 0.999 - 0.387 0.057 0.954
V4 0.822 0.673 0.387 - 0.131 0.978
V5 0.374 0.080 0.057 0.131 - 0.675
V6 0.948 0.976 0.954 0.978 0.675 -

Table 4.3: CMbBDecelRequestMax

V1 V2 V3 V4 V5 V6
V1 - 0.068 0.266 0.034 0.194 0.397
V2 0.068 - 0.971 0.679 0.764 0.623
V3 0.266 0.971 - 0.490 0.810 0.632
V4 0.034 0.679 0.490 - 0.646 0.555
V5 0.194 0.764 0.810 0.646 - 0.923
V6 0.397 0.623 0.632 0.555 0.923 -
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Table 4.4: TimeBetweenCMbBEndAndDriverAcc

V1 V2 V3 V4 V5 V6
V1 - 0.113 0.094 0.733 0.250 0.730
V2 0.113 - 0.987 0.649 0.999 0.933
V3 0.094 0.987 - 0.289 0.930 0.942
V4 0.733 0.649 0.289 - 0.988 0.910
V5 0.250 0.999 0.930 0.988 - 0.970
V6 0.730 0.933 0.942 0.910 0.970 -

Table 4.5: TimeBrakeOnset

V1 V2 V3 V4 V5 V6
V1 - 0.586 0.411 0.595 0.791 0.735
V2 0.586 - 0.934 0.873 0.909 0.868
V3 0.411 0.934 - 0.491 0.983 0.923
V4 0.595 0.873 0.491 - 0.699 0.684
V5 0.791 0.909 0.983 0.699 - 0.896
V6 0.735 0.868 0.923 0.684 0.896 -

As the results in tables 4.2 to 4.5 show, the null hypothesis fails to be rejected as
the p-value in all the comparisons (except for one comparison in listing 4.3 (V1
vs. V4)) is higher than the significance level. Therefore, the distribution in the
compared signals in six different software versions is identical.

Additional comparison was made comparing the three years in which the data was
collected from using Quantile-Quantile (QQ) plots. In one year there can be more
than one software update. By comparing years with each other, we are comparing
multiple software versions.

As shown in figure 4.12, the Host speed at CMbB activation feature distribution is
compared within three years. As a result, it can be seen that they follow an almost
identical distribution. It can be observed that the distribution of the feature is the
same within the three years. Therefore, it can be concluded that the data has the
characteristic of being identically distributed. The vehicle’s speed feature is just a
representative of all other features used. The feature has been used more than any
other feature during the project. Therefore it is selected for the QQ plot analysis.
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Figure 4.12: QQ plots of the host speed compared in three years.

4.2.4 K-means
The unsupervised machine learning model applied to the Summary data is
K-means. Three clusters have been chosen based on the Stadion method addressed
in the Theory chapter. Centroids are initiated using K-means++. The number of
initiation is 20, and the maximum number of iterations in each initiation is 300.

Stadion was used to assure that the chosen number for k, results in stable clusters.
This metric shows the trade-off between the within cluster and between clusters
stability scores for the value of k, from 1 to 10. The score obtained for each k is
illustrated in table 4.6. Figure 4.13 shows the Stadion stability path. The plot shows
the growth of stability as a function of ϵ.

Table 4.6: Stadion-max score for k = 1 to 10.

k = 1 [0.28488226]
k = 2 [0. ]
k = 3 [0.29960903]
k = 4 [0.26545708]
k = 5 [0.14988901]
k = 6 [0.04547995]
k = 7 [0.08103329]
k = 8 [0.06439307]
k = 9 [0.08592891]
k = 10 [0.11595334]
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Figure 4.13: Stadion stability path to determine the number of clusters.

4.2.5 K-means clustering for time series data
K-means clustering for time series data has been implemented using the Senors
datasets to find different drivers’ behavior and answer the first research question.
This algorithm was implemented using the tslearn package. As mentioned earlier,
the driver behavior can be explained by acceleration/deceleration, braking, and
steering actions. Thus, to describe the driver behavior, four behavioral categories
are considered which are:

1. Accelerating behaviors

2. Acceleration slope

3. Steering behaviors

4. Braking behaviors

Accordingly, the optimal number of clusters and iterations chosen are 3 and 10.
The distance metric used to find similarities between sequences is the DTW.
Furthermore, the considered window size (w) is 5 and the LB Keogh is used to
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optimize the processing time.
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5
Results

This chapter demonstrates and discusses the results of the methodology discussed
in the previous chapter.

5.1 Descriptive analysis

5.1.1 The drivers who overrode the CMbB activation and
their distribution in the two different strategies

The drivers were splitted into two groups based on the two overriding strategies.
Table 5.1 demonstrates the distribution of the drivers in each strategy out of the
total of 5,996 overrode CMbB activation events.

Table 5.1: The distribution of the events in each overriding strategy

Number of events Distribution (%)
Strategy 1 277 4.6
Strategy 2 5746 95.4

Table 5.1 indicates that the majority of the drivers have overridden the CMbB
activation using the second strategy. This denotes that mostly the drivers were
driving in lower speed scenarios, e.g., in traffic jams, city traffic where the speed
limit is below 50 kph, were the ones who did an override.

5.1.2 Speed distributions
5.1.2.1 All vehicles experiencing the CMbB activation

The speed was monitored at one sample before the intervention of the CMbB
function. Figure 5.1 shows how the speed is distributed in intervals of 20 kph.
As shown below, the data is highly skewed right, which means the majority of
the events were when the drivers had lower speeds. The minimum and maximum
speeds observed were 1.01 kph and 224.88 kph, respectively. The percentages shown
at the bottom of each bin in figure 5.1 are the share of events in the corresponding
speed range based on the total number of events.
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Figure 5.1: The speed distribution of vehicles at the time of CMbB intervention.

As the box plot in figure 5.2 projects, 75% of the data have a speed lower than
40 kph. The median is at 24 kph and the vehicles with more than 74.25 kph are
considered outliers. The Interquartile range (IQR) is from 17 to 40 kph.

Figure 5.2: The box plot of vehicles’ speed, 0.2 seconds before activation of the
CMbB function.

5.1.2.2 Drivers overriding with strategy 1

Majority of the drivers overriding with strategy 1 have entered the CMbB
intervention with a speed below 60 kph. Figure 5.3 displays the vehicle speed
distribution of the drivers who overrode the CMbB intervention using strategy
1. The percentages shown at the bottom of each bin are the share of events
in the corresponding speed range based on the total number of events where
the driver overrode the CMbB using strategy 1. The distribution is skewed right
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while the first bin is lower than the second and third bins, where 62% of the data lie.

Figure 5.3: The speed distribution of vehicles at the CMbB intervention when the
driver has overridden the CMbB function with strategy 1.

5.1.2.3 Drivers overriding with strategy 2

The majority of the drivers overriding the CMbB using strategy 2, have entered
the CMbB intervention with a speed below 40 kph. In figure 5.4, the distribution
of overridden scenarios with strategy 2 is plotted. The percentages shown at
the bottom of each bin are the share of events in the corresponding speed range
based on the total number of events in which the driver overrode the CMbB using
strategy 2. The plot still follows the right-skewed pattern similar to the figure 5.3.
However, it is notable that 91% of the data are within the first two bins. Only 1%
of the vehicles had more than 60 kph, which clearly shows the use of this strategy
in lower-speed scenarios.

By comparing figures 5.3 and 5.4, it is concluded that the speed range for the
drivers overriding with strategy 1 is relatively higher than the drivers overriding
with strategy 2.
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Figure 5.4: The speed distribution of vehicles at the of the CMbB intervention
when the driver has overridden the CMbB function with strategy 2.

5.1.2.4 Stationary vehicles in strategy 1 and 2

By investigating the number of vehicles that have reached a stationary state during
the CMbB intervention and combining the founding of different speed distribution
in sections 5.2.2 and 5.2.3, it can be seen that the number of stopped vehicles in
strategy 2 is more than strategy 1.

Table 5.2 projects the distribution of the events in which the host vehicle
speed has been reduced to zero. In other words, the host vehicle became
motionless/stationary. For example, during a CMbB intervention, in strategy 1,
almost 25% of the vehicles reached a zero speed, while the ratio for strategy 2 is 66%.

It can be concluded that most of the events which are overridden with strategy 1
are in lower speed scenarios where it is more likely for the car to reach a stationary
state. On the other hand, the events overridden using strategy 2 are more likely to
be in higher speed scenarios, e.g., on highways, where reaching zero speed is not as
feasible.

Table 5.2: The ratio between two override strategies when the vehicle’s speed
becomes zero during the CMbB intervention.

Fully stopped (%) Did not stop (%)
Strategy 1 26.2 73.8
Strategy 2 61.6 38.4
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5.1.3 Impact of the FCW concerning overriding an
intervention

Figure 5.5 compares the distribution of the drivers who overrode the CMbB
activation and the drivers who did not, concerning the time they had between FCW
and the CMbB intervention. The x-axis displays the time (in seconds) between
the FCW and the start of the CMbB intervention. It can be observed that the
difference between these two is negative on some rare occasions. That implies that
the FCW in the sensor dataset was captured after the CMbB activation for its
corresponding event. However, it should be noted that this can be because of the
latency in the data recorder.

By looking at the two plots in figure 5.5, it can be noticed that the majority of the
drivers in both groups have received the FCW very close to or slightly after the
event (i.e., at the same time or 0.2 seconds after the event). A too early FCW can
increase false-positive warnings received by the driver. This can justify why 42% of
the drivers who overrode the intervention and 40% of the drivers who did not, have
received the FCW simultaneously as the CMbB activation. Comparing the plots, it
is clear that there is no significant difference between the two groups of overriding
and no overriding drivers.

Figure 5.5: Comparing the time between the FCW and the CMbB activation,
between the drivers who overrode and the drivers who did not override.
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A similar comparison as in figure 5.5 is conducted in figure 5.6. However, in this
comparison, the two groups were drivers who did an override using strategies 1 and
2. The two groups are following the same distribution approximately, except that
the drivers in strategy 1 have received an earlier FCW.

Figure 5.6: Comparing the number of samples in between the FCW and the CMbB
activation, between the drivers overriding with strategy 1 and the drivers overriding
with strategy 2

As the two distinct groups of the drivers who did an override and who did not
are following the same distribution regarding the timing between FCW and CMbB
activation (figure 5.5), it can be concluded that FCW’s timing is not affecting the
probability of overriding an event.

5.1.4 CMbB length of intervention
The investigation on the impact of the length of the intervention illustrates that
the drivers who overrode the CMbB intervention had a relatively longer length of
CMbB intervention. Considering the driver’s reaction time, it is justifiable that a
very short intervention will not give the driver the chance to react.

The distribution of the drivers in regards to the length of CMbB activation is shown
in figure . By looking at the first plot in figure 5.7, it can be seen that the drivers
who overrode the CMbB activation had a noticeably longer time of intervention.
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On the other hand, the second plot in figure 5.7 shows that the majority of the
non-overriding drivers experienced a very short intervention.

Figure 5.7: Comparing the length of intervention between the two group of
overrode versus not overridden events

A similar experiment was conducted and presented, comparing the overriding
strategies. Figure 5.8 illustrates how the length of intervention differs in strategies
one and two.

The first plot in figure 5.8 shows how the length of intervention is distributed
between the drivers overriding strategy one. The second plot in figure 5.8 shows
the same for the drivers overriding strategy two. Comparing the two plots in figure
5.8, if dropping the extremes in the strategy 1 group, both plots follow a relatively
normal distribution. No major difference can be seen between the two overriding
groups.

It can be concluded that the length of intervention should be long enough for the
driver to be able to acknowledge the car’s automatic decision to intervene. Also, it
should be noted that a very short CMbB cannot give the driver enough time to take
action.
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Figure 5.8: Comparing the length of intervention between the drivers overriding
with strategy 1 and the drivers overriding with strategy 2.

5.1.5 Reaction time
5.1.5.1 Adaptive cruise control

The investigation shows that the reaction time of both groups of drivers (i.e.,
overriding and no overriding drivers) did not significantly differ from each other
concerning the ACC involvement. Figure 5.9 shows the reaction times for the
drivers who had the ACC activated and did not overrode the CMbB intervention.
The majority of the drivers had reaction times between 1.8 to 2.4 seconds.

Figure 5.10 illustrates the distribution of the reaction times for the drivers who
had the ACC activated and overrode the CMbB intervention. The majority of the
drivers in this group had reaction times between 2.0 to 2.4 seconds.
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Figure 5.9: The reaction time of the non-overriding drivers when the ACC is
activated before the intervention.

Figure 5.10: The reaction time of the overriding drivers when the ACC is activated
before the intervention.

It can be concluded that no major difference was observed in the reaction times in
regards to the ACC activation, between the overriding and no overriding drivers.

5.1.6 The reaction time of the overriding drivers concerning
the impact of deceleration request

For this investigation, the group of drivers who have overridden the CMbB
intervention were selected. This investigation is divided into three subgroups
described in detail in section 4.1.7.

5.1.6.1 Time to press the acceleration pedal

The time it takes for the drivers to press the accelerator pedal from the start of
the intervention was measured and compared in two groups. Group one was the
drivers who experienced a harsher deceleration request (full-brake) from the CMbB
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function. Group two was the drivers who experienced a relatively lower impact
deceleration request (pre-brake), followed by a full-brake. This comparison makes
it possible to know when the human decides to interfere with the function.

It was seen that the distribution of reaction times in the first group is thinner than
in the second group, which means that the variation in reaction times is lower and
hence, more predictable in group one. On the other hand, the reaction time in the
second group varied more.

A box plot of these two groups separately is illustrated in figure 5.11. On the left
side, the box plot shows the distribution of drivers in group one. As it can be seen,
the lower range, the upper range and the median for this group is 1 second, 1.6
seconds and 1.4 seconds, respectively.

Figure 5.11: Reaction time of overriding drivers based on the type of deceleration
request received from the CMbB intervention.

The right-hand side box plot in figure 5.11 shows how the reaction time for group
two is distributed. It can be seen that this group has a higher range of variance in
reaction times. The lower range, the upper range and the median for this group are
1.2 seconds, 2 seconds and 1.6 seconds, respectively.

The average reaction time for the left-hand side box plot is 1.27 seconds while
for the right-hand-side is 1.57 seconds. The box plots are not capable of showing
the mean of a distribution, therefore these average reaction times are calculated
separately and is not presented in figure 5.11.

Considering the numbers shown in figure 5.11, it can be concluded that the
deceleration request impacts how fast the drivers react to the CMbB function. It
is essential to consider that due to the high deceleration request coming from a
full-brake, the reaction times captured in the first group may also be from a sudden
"panic" reaction to the function.
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5.1.6.2 Time to override from the acceleration pedal pressed

This investigation measures the time it takes for drivers to successfully override
the CMbB intervention from when the accelerator pedal is depressed. Figure 5.12
shows how the time between depressing the accelerator pedal by the driver and the
CMbB overrode differs concerning the type of deceleration request from the CMbB
function.

Figure 5.12: Time to override from when the accelerator pedal was pressed
comparing the impact of the deceleration request in overriding drivers.

It can be seen that the distribution of time in both groups is positively skewed
(i.e., skewed to the right) as the median is closer to the first quartile. However,
the left box plot shows that the time distribution between depressing the pedal
and overriding is thinner for the drivers who only received a full-brake. The time
to successfully override the function for the majority of the drivers in this group
lies between 0.2 seconds and 1.2 seconds while lying between 0.2 seconds and 1.5
seconds for the drivers who received a pre-brake before a full-brake.

A shorter time in this measurement can result from depressing the accelerator pedal
harsher, thus reaching the overriding threshold faster and overriding the intervention
faster. It can be concluded that the distribution in this investigation did not differ
significantly concerning the deceleration request impact. However, the drivers who
have received a full-brake have pressed the pedal harder and therefore overrode faster
than the other group.

5.1.6.3 Length of intervention in overriding drivers

The duration of the intervention was investigated among all the overriding drivers
comparing those receiving a full-brake and those receiving a pre-brake followed by
a full brake during the intervention. Figure 5.13 displays two box plots comparing
the mentioned two groups.

45



5. Results

This figure concludes the result of the two previous sub-sections (shown in figures
5.12 and 5.11), as it demonstrates the entire duration of the intervention. The time
from CMbB activation to the time overridden by the driver is calculated. The left
box plot shows the distribution of overriding drivers who experienced a full-brake.
The right box plot illustrates the overriding drivers who experienced a pre-brake
which was later followed by a full-brake.

It can be seen that the duration of the CMbB is shorter for the group shown on
the left box plot, with an approximate median of 0.3 seconds. The median for
the group on the right-hand side does not differ significantly, and it is about 0.4
seconds. Both groups have a positive skewness (i.e., skewed to the right).

In conclusion, the deceleration request does not significantly affect the length of
intervention among overriding drivers. However, most of the overriding drivers have
experienced an intervention longer than 1 second. This is justified by considering
the driver reaction time discussed in the Background chapter.

Figure 5.13: The length of intervention for overriding drivers who have experienced
different deceleration requests from the CMbB function.

5.2 Clustering results

5.2.1 Result of the K-means clustering on the PCA dataset
Three clusters were made as a result of the implementation of the K-means
algorithm. The categorization described previously in Methods (i.e., No overriding,
Overriding with strategy 1, and Overriding with strategy 2) is used to analyze the
clustering result. Table 5.3 shows the result of the cluster analysis.

The results from table 5.3 show that drivers using strategy 1 are significantly
different than those using strategy 2 and the no overriding group; As 99.23% of
drivers overriding with strategy 1 are in the first cluster. The remaining percentage
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Table 5.3: Distribution of each category in each cluster.

Cluster 1 (%) Cluster 2 (%) Cluster 3 (%)
Not overridden 6.06 62.03 31.90
Strategy 1 99.23 0.38 0.38
Strategy 2 29.45 47.55 22.98

of drivers overriding with strategy 2 are distributed in clusters 2 and 3.

The majority of the non-overriding drivers are in cluster 2 alongside the majority
of the drivers overriding using strategy 2. This suggests that drivers using strategy
2 to override the intervention may have similar driving behaviour with drivers who
do not override the intervention.

The drivers overriding with strategy 2 are distributed among the three clusters,
with the majority (47.55%) in cluster 2.

Thus, it can be concluded that drivers who have overridden the intervention using
strategy 1 behave entirely differently from other drivers. Furthermore, the drivers
who did not override or overrode using strategy 2 behave similarly.

5.2.2 Result of the time series K-means clustering
5.2.2.1 Acceleration pedal ratio

Three clusters are made as the result of the K-means clustering on the time series
data. 5.14.

Figure 5.14: The centroid of each cluster in the time series data for the acceleration
pedal ratio. The x-axis starts at the beginning of the event and ends at the end
of the event, while the CMbB intervention takes place approximately at the fourth
second on the x-axis.

The distribution of each group is presented in table 5.4. Almost half of the drivers
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who did not override the CMbB intervention are located in cluster 3, and the
remaining are evenly distributed in clusters 1 and 2.

Cluster 2 can represent the drivers who overrode the CMbB intervention using
strategy 1, as 78% of these drivers lay in cluster 2. The drivers who overrode
the CMbB function using strategy 2 have a 51% population in cluster 3, and the
remaining population is distributed almost evenly in clusters 1 and 2.

In conclusion, cluster 2 can be a good representative of overriding behavior, as
78% of overriding drivers using strategy 1 and 51% of drivers using strategy 2 are
within this cluster. Furthermore, it can be observed that the acceleration behavior
in overriding drivers starts to have a raise approximately after 0.8 seconds of the
intervention (i.e., at about 4.8 seconds of x-axis). By connecting this finding to
the driver reaction time studies addressed in Chapter 2, it can be justified why the
difference in acceleration behavior between the overriding and no overriding drivers
can be seen after 0.8 seconds of the intervention.

Moreover, by looking at the behaviors prior to the CMbB intervention, it can be seen
that the overriding drivers (cluster 2) have a stable accelerating behavior. This is an
additional indicator for assuring that the raise in the acceleration, after the CMbB
intervention, is intentional. Thus, it can be concluded that a stable acceleration
behavior prior to the event and a raise in the accelerating after the event is a good
indicator of overriding intention. Furthermore, the difference between the overriding
and non-overriding drivers starts to becomes explicit 1 second after the intervention.
This means to separate these two groups of drivers, one can look for capturing
differences even 1 second after the intervention.

Table 5.4: Distribution of each group in clusters.

Cluster 1 (%) Cluster 2 (%) Cluster 3 (%)
Not overridden 29 28 43
Strategy 1 15 78 7
Strategy 2 28 51 21

5.2.2.2 Acceleration slope

The three drivers group (i.e., no overriding, overriding with strategy 1, and
overriding with strategy 2) have been considered in this clustering. Most of the
overriding drivers are located in cluster 1 (75% of overriding drivers using strategy
1 and 55% of overriding drivers using strategy 2). Thus, cluster 1 can be considered
as representative of the overriding behavior. Cluster 3 mainly consists of the
non-overriding drivers and cluster 2 is almost blended between all groups.

The results of the three conducted clusters show that the slope of the acceleration
at the beginning of the series is almost similar between all the drivers. However, the
difference between the overriding drivers versus the non-overriding driver is visible
around 1.5 seconds after the intervention. By looking at figure 5.15, it can be seen
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that drivers in cluster 1 are reaching a higher slope 1.5 seconds after the intervention.

Furthermore, as the new strategy considers the acceleration slope, the findings from
this clustering results and the acceleration ratio clustering results can be beneficial
in setting a suitable time and threshold for activation of the new strategy.

Figure 5.15: The centroid of each cluster in the time series data for the acceleration
pedal slope. The x-axis starts at the beginning of the event and ends at the end
of the event, while the CMbB intervention takes place approximately at the fourth
second on the x-axis.

Table 5.5: Distribution of each group in clusters.

Cluster 1 (%) Cluster 2 (%) Cluster 3 (%)
Not overridden 27 37 36
Strategy 1 75 21 4
Strategy 2 55 34 11

5.2.2.3 Steering behaviors

The variable considered for studying the driver’s steering behavior is the steering
angle speed. The sensor’s value indicates how fast the driver turns the steering
wheel in any direction. The positive values represent the turn clockwise, and
the negative values represent the turn counter-clockwise. There is a considerable
difference observed between each cluster centroid before the intervention (at about
4.0 seconds of the x-axis), as shown in figure 5.16. However, the difference between
the clusters is not as substantial after the intervention.
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Figure 5.16: The centroid of each cluster in the time series data for the steering
angle speed. The x-axis starts at the beginning of the event and ends at the end of
the event. The CMbB intervention takes place approximately at the fourth second
on the x-axis.

As shown in the table 5.6 the driver groups (i.e., those who do not override,
those overriding with strategy 1, and those overriding with strategy 2) are almost
distributed among all the clusters. That said, no specific conclusion can be drawn
from clustering the steering behavior.

Table 5.6: Distribution of each group in the clusters.

Cluster 1 (%) Cluster 2 (%) Cluster 3 (%)
Not overridden 55 25 20
Strategy 1 57 19 24
Strategy 2 45 32 23

5.2.2.4 Braking behaviors

Drivers’ braking behavior is analyzed using the Driver deceleration request signal.
This signal shows how much deceleration is requested due to depressing the braking
pedal by the driver.

Figure 5.17 shows the time series clustering result on the mentioned signal in
which the y-axis shows the value of the deceleration request by the driver. The
braking behavior in the data has resulted in three clusters. In all three clusters, the
deceleration reaches its peak around 0.5 seconds after the intervention (i.e., on the
4.5 seconds of the x-axis). Cluster three has the higher deceleration request with
the peak at 6 m/s2. Clusters one and two have their peaks at approximately 3.5
and 1.5 m/s2, respectively.
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Figure 5.17: The centroid of each cluster in the time series data for the driver’s
deceleration request. The x-axis starts at the beginning of the event and ends at
the end of the event, while the CMbB intervention takes place approximately at the
fourth second on the x-axis.

Table 5.7 shows how the driver groups (i.e., those who do not override, those
overriding with strategy 1, and those overriding with strategy 2) are distributed
in each cluster. There is no significant difference among the driver groups in each
cluster as they are blended in all three clusters.

Table 5.7: Distribution of each group in clusters.

Cluster 1 (%) Cluster 2 (%) Cluster 3 (%)
Not overridden 11 29 60
Strategy 1 10 19 71
Strategy 2 12 26 62

5.3 New strategy
All strategies (i.e., strategies 1 and 2) get triggered in certain circumstances. For
example, strategy 1 gets triggered by accelerating to a certain threshold. The
criteria to activate the new strategy is based on the findings of the investigations
done in this thesis. The investigation shows that an excellent indicator to override
is a quick depress on the acceleration pedal (slope). However, there are cases the
driver presses the accelerator pedal accidentally. To overcome this issue, a period
is taken into account in which the driver’s interaction with the acceleration pedal
will have no impact. The mentioned period is equal to the average time needed for
a driver to take action after assessing a situation.

Assuming that the new suggested strategy was implemented on the cars, the total
number of CMbB interventions overridden by this strategy would be 379 events,
Out of which 59 and 109 events could also be overridden using strategies 1 and 2,
respectively.
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One can argue that half of the overrides triggered by the new strategy could also
be triggered with strategies 1 and 2. Although the argument is valid, the new
strategy allows the driver to override the undesired CMbB faster than the other
two strategies. Moreover, the new strategy covers some events where the driver
could not override the CMbB intervention.

To evaluate the performance of the new strategy, the events in each group (i.e.,
no overriding drivers, overriding with strategy 1, and overriding with strategy 2)
have been analyzed considering the reduction of needed time to override the CMbB
intervention. Table 5.8 provides an overview of how the new strategy can enhance
the current strategies considering the time it takes to override the intervention.

Table 5.8: The number of events could be overridden earlier by the new strategy
in different groups.

Number of events Average reduced time
(seconds)

Maximum reduced time
(seconds)

Not overridden 211 0.532 2.4
Strategy 1 59 0.484 2.8
Strategy 2 109 0.628 2.6

Table 5.8 shows that if the new strategy existed, 211 of the non-overridden events in
which the driver attempted to override, could be overridden. Furthermore, 59 events
that are overridden using strategy 1 and 109 that are overridden using strategy 2
could be overridden earlier using the new strategy. The table also provides how
quicker the new strategy can override the intervention on average. The last column
of the table shows the maximum reduction in overriding time that could be found
among all the events in each group.
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This chapter interprets and explains the key findings of this master thesis in the same
order as described in chapter 5, Results. The Discussion section of this chapter is
divided based on the methodology of the report. Furthermore, the answers to the
research questions are provided, followed by potential future work.

6.1 Descriptive statistics
At the beginning of this report, it was mentioned that the related researches on
the driver behavior suggest that the behavior can be grouped into three main
categories: (1) acceleration/deceleration, (2) steering, and (3) braking (Zfnebi et al.
2017). These categories were used in order to access the behavioral patterns of
drivers.

In addition to these three categories, as the humans are interacting with the
autonomous functions in the car, it is vital to consider the human reaction time.
The studies mentioned in chapter 2, such as the research conducted by Green (2000)
have concluded an approximate driver reaction time. Although these numbers are
based on many factors which makes it hard to report a single number, Green (2000)
states that the average reaction time in attentive drivers are 0.7 to 0.75 seconds.
In this thesis, two investigation were conducted on the reaction time. The first is
considering the effect of the ACC system on the reaction times of all the drivers
(see figures 5.10 and 5.9). The second is considering the overriding drivers and how
fast they press the accelerator pedal after the CMbB intervention (see figure 5.11).

The average reaction times reported in this thesis (1.27 and 1.56 seconds depending
on type of the CMbB deceleration request) are higher than the numbers reported
in studies such as Green (2000). This can be explained by considering that the
measurements in this report are calculated based on different criteria than the
addressed studies. In those studies, the reaction time is measured based on how fast
the driver detects and responds (by braking) to an incoming object on the road.
In this thesis, it was measured how fast the driver depresses the acceleration pedal
after the intervention. The latency in the signal recorder can also be considered
in our measurements. It is worth mentioning that, all these investigations are
measuring the time it takes for the drivers to interact with the vehicle’s pedals.

Furthermore, it was shown that the CMbB length of intervention is an important
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factor in giving the driver the possibility to override. Considering the driver
reaction time, the length of intervention should be long enough to be felt by the
drivers, and give them a chance to react to it.

Moreover, by looking at the acceleration behavior of all the drivers, it was observed
that the drivers who override the intervention tend to have a higher acceleration
slope. The term slope (see section 4.1.8) refers to the difference of the acceleration
pedal ratio in two sequential samples.

6.2 Unsupervised machine learning
Two unsupervised machine learning models have been used in this project: (1)
K-means clustering for the Summary data and (2) time series K-means on the Sensor
datasets.

6.2.1 K-means clustering
K-means was used on the summary dataset using PCA as a feature reduction
method. The Stadion stability trade-off introduced by Mourer et al. (2020) was
used for determining the number of clusters. Three clusters were presented by the
model. As mentioned at the beginning of chapter 4, the data has been split into
three groups: (1) No overriding, (2) Overriding with strategy 1, and (3) Overriding
with strategy 2. These three groups were used to analyze the result of each cluster.
The analysis showed that 99.23 % of the drivers overriding the intervention with
strategy 1 are located in one cluster and distinct from the other two groups (see
table 5.3) .

As the summary dataset has many features, PCA was used to reduce the data
dimensionality. As a result, seven principle components have been generated to
represent approximately 86% of the data. Although 86% of the original data is
covered in the principal components, using PCA comes with the cost of having less
interpretable result, as Björklund (2019) states.

6.2.2 Time series K-means clustering
The time series K-means clustering was implemented using DTW as the similarity
measure. The default similarity measure used in time-series clustering is the
Euclidean distance. By replacing the Euclidean distance with the DTW, it was
possible to capture the similarity between the sequences even if they were not
following the same timeline, thus improving the clustering results. K-means with
DTW were used on four different signals. The choice of these signals is based on
the studies conducted on driver behavior addressed earlier in this paper at section
2.2. (i.e., acceleration/deceleration, braking, steering) variables based on different
driver behaviors (Zfnebi et al. 2017).
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1. Acceleration pedal ratio: The time series K-means clustering on this
variable shows a quite distinct acceleration behavior between the drivers who
overrode the CMbB intervention and those who did not. The findings show
that changes in acceleration behavior are the best indicator for the overriding
intention (see figure 5.14).

2. Acceleration slope: The result of the time series K-means clustering on
this variable indicates that the overriding drivers have a higher acceleration
slope during the intervention, than the non-overriding drivers (see figure 5.15).

3. Steering angle speed & driver deceleration request: Unlike the previous
variables, the time series clustering was not able to identify distinct clusters
with interpretable differences between these two variables. The different
groups in the drivers (i.e., non-overriding, overriding with strategy 1, and
overriding with strategy 2) have the same distribution in the distinct clusters
as shown in table 5.6 and table 5.7.

6.3 The new strategy
The new strategy is not a replacement for the current strategies at VCC but
complementary to achieve a more efficient overriding function. Although it has
overlaying margins with the current strategies (i.e., strategies 1 and 2), it allows
22.5% of the overriding drivers who used strategy 1 to override faster with an
average of 0.484 seconds. In addition, it allows 1.9% of drivers who used strategy
2 to override earlier with an average of 0.628 seconds. This strategy can also let
2% of the non-overriding drivers (who attempted to override but failed) override
the CMbB intervention. A faster driver override will remove the brakes earlier and
allow the driver to carry higher momentum as the initial velocity of the vehicle has
not been significantly reduced.

6.3.1 Research questions
Question 1: What is the typical driver reaction to an activated AEB intervention?

All the drivers who experience the AEB activation are getting an FCW. It was
concluded that based on the type of data used in this master thesis, this warning
does not make a difference in the reaction time of the drivers, as it comes very
close to the event. Furthermore, the drivers who tend to override the intervention
(among the studied variables) are mostly reacting by pressing the accelerator pedal
on an average of 1.27 (when CMbB is requesting a full-brake) to 1.56 seconds
(when CMbB is pre-braking before full-braking) after the intervention. The answer
to this question is provided based on the main behavioral categories addressed in
this thesis (i.e., acceleration/deceleration, steering, and braking):

The time series clustering on the Sensor datasets shows that the acceleration is
significantly harsher in drivers who tend to override. Moreover, the drivers who
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override show a relatively more stable acceleration behavior prior to the intervention.

Time-series clustering on the steering behavior shows that all the drivers are
steering on a somewhat stable angle speed between -0.1 to 0.1 Rad/s after the
intervention. No difference between overriding and non-overriding drivers was
captured in this matter.

Time-series clustering on the braking behavior indicates that all the drivers start
to brake approximately 0.5 seconds after the intervention. The drivers are grouped
into three clusters based on how harshly they press the brake pedal. The first
group, second group, and the third group are braking on an average of 5, 3.5, and
1.5 m/s2, 0.5 seconds after the event, respectively. The model could not make any
clusters perfectly presenting the driver groups (i.e., non-overriding, overriding with
strategies 1 and 2).

Question 2: Can the existing override strategies at VCC be improved?

As there is no ground truth (i.e., labels) in the data indicating the intention to
override for the drivers, it was not possible to perfectly analyze the current strategies
at VCC. However, this thesis suggests a new strategy that can improve the already
existing strategies at VCC. The improvement is regarding the time it takes to
override the CMbB intervention. The new strategy uses the finding of the first
research question of this thesis to suggest a new trigger to override the static
threshold currently used at VCC. Furthermore, as this suggested strategy has a
new way to get triggered, it could detect the drivers who attempted to override and
could not override using the current strategies.

6.3.2 Future work
The data used in this project came from an older version of the VCC’s systems.
The data only consist of values from signals and vehicle statistics. Therefore, there
is no ground truth (i.e., labels) about the driver’s status or intention. Not having
a ground truth, such as images taken from the driver or the vehicle’s surroundings,
makes the evaluation process challenging for the analysis of current strategies and
the proposed new strategy. The methods and analysis used in this project could
have been more informative if implemented on data with ground truth.
The finding on the FCW function in this report are from a brief investigation as
the main focus of this project was the CMbB function. The results show that the
FCW function could be investigated in detail for a more efficient FCW strategy.

The new strategy proposed in this report could be investigated further with the
detailed data mentioned above. Since the new strategy triggers the driver override
earlier, it will remove the brakes earlier. This allows the driver to carry higher
momentum as the initial velocity of the vehicle has not been significantly reduced.
However, the amount of energy preserved depends on the type of engine. Therefore,
this statement can be further investigated and calculated to benchmark how much

56



6. Discussion & conclusion

kinetic energy is preserved.

Furthermore, the verification of the new strategy can be done in two ways: (1)
A study can be conducted using VCC’s test fleets, where the drivers and how
they interact with the system are studied. (2) This strategy can be implemented
on the cars but not activated; Whenever this new strategy could get triggered,
a new event log can be saved. The event logs can then be further analyzed by
VCC to confirm the efficiency of the new strategy. These logs can also be used
to find a suitable acceleration slope’s threshold for the activation of the new strategy.

Finally, having labeled data in which the labels are ground truth for the driver’s
intention to override, a supervised machine learning model can be used to make
predictions about driver overrides.
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A
Summary dataset features

1. VehicleIdentity
2. VehicleSpeedAtCMbBStart
3. RoadSpeedLimit
4. RelativeSpeedAtCMbBStart (Relative speed to the target vehicle)
5. TotalVehicleSpeedReduction
6. VehilceSpeedReductionByCMbB
7. LengthOfIntervention
8. PrebrakeComesFirst (If the intervention starts with a pre-break)
9. FullBrakeLength
10. Classification (True Positive, False Positive or Nuisance)
11. MaximumDecelerationRequestbyCMbB
12. DriverBrakingAtCMbBStart
13. MaximumDriverDecelerationRequest
14. MinimumAcceleration
15. TimeBrakingBeforeIntervention
16. MaximumSteeringAngle
17. SteeringAngleAtCMbBStart
18. SteeringAngleSpeedAtCMbBStart
19. TimeBetweenCMbBEndAndDriverAcceleration
20. CMbBStartIndex
21. CMbBEndtIndex
22. OverrideStatus
23. SeverityOfScenario
24. TimeBetweenCMbBStartAndMaximumDriverDecelRequest
25. DriverBehaviour (Annotated)
26. MaximumPedalRatioDuringCMbB
27. MaximumSlopeOfAccelerationPedal
28. TimeFromCMbBStartToDriverBrake
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