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Sentiment Analysis and Urban Quality Inference using Machine Learning Algorithms

EMILY HO
MICHELLE SCHNEIDER
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
Qualitative interviews are conducted by researchers to gain a deeper understanding
of people’s opinions and perceptions about a specific topic. The analysis of such
textual data is an iterative process and often time-consuming. To help researchers
obtain an overview of the data and improve their coding process, the objective of
this thesis was to investigate how state-of-art techniques can be used to classify sen-
timent and semantic orientation from qualitative interviews transcribed in Swedish.
The results demonstrate that the implemented deep learning techniques, BERT and
NER, are a possible and promising solution to achieve the stated goal. For the
sentiment analysis, the Swedish BERT model KB-BERT was used to perform a
multi-class classification task on a text sentence level into the three different classes:
positive, negative, and neutral. For the semantic analysis, NER and String Search
were used to perform multi-label classification to match domain-related topics to
the sentence. The models were trained and/or evaluated on partially annotated
datasets. Nevertheless, an important factor to consider is that these deep learning
models are heavily data-driven and would need accurately annotated domain-specific
data to reveal their full potential.

Keywords: Natural Language Processing, Machine Learning, Deep Neural Networks,
Transformers, BERT, NER, Text Classification, Urban Planning, Qualitative Re-
search, Interviews.
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1
Introduction

Natural language processing (NLP) refers to the use of computational tools and
techniques to understand, learn and produce human languages for different tasks
or applications. In particular, along with rapid developments in machine learning
(ML) and artificial intelligence (AI), applications of NLP include machine transla-
tion, speech-to-speech translation, identifying sentiments in reviews etc [3]. As such,
a fundamental task within NLP is text classification. Text classification can use un-
supervised, semi-supervised or supervised methods to label a certain entity, e.g. a
word or sentence, into predefined classes. Within text classification, there are several
approaches for example multi-class and multi-label classification that uses different
techniques. Those can be rule-based or ML and deep learning (DL) methods. One
important area within text classification and NLP is the analysis of sentiments and
semantics of different texts [4, 5]. Sentiment analysis describes the investigation of
a text-based on its polarity. This can be positive, negative, or neutral and therefore
mirrors the emotions and opinions of the author. In comparison, semantic analysis
extracts the main topics that have been said. Both sentiment and semantic analysis
are used in a wide range of domains. This thesis will focus on its application in the
field of urban planning.

Urban planning of cities considers the ecological, social, and economic aspects of
city living. More specifically, a part of urban planning is to understand the percep-
tion of urban places by the residents in the city. One way to investigate this is by
conducting and analysing qualitative interviews to gain a deeper understanding of
people’s attitudes and perceptions (sentiment) about a specific topic (semantic).

In this master’s thesis, a collaboration with the Architecture and Civil Engineering
Department of Chalmers (ACE), here also addressed as end-users, was formed to
investigate the perception of different areas within Metropolitan Gothenburg. Inter-
views with more than 400 people were conducted to gather qualitative data to study
how residents perceive their neighbourhoods. To help the end-user gain an overview
of the interview data, visualisations such as tree maps and word clouds are used to
show word frequencies. However, these methods do not consider the relationship
between people, places and themes. Therefore, this paper will mainly focus on ex-
tracting the sentiment and semantic context from Swedish transcribed interviews
using text classification technologies, such as Bidirectional Encoder Representations
from Transformers (BERT), Named Entity Recognition (NER) and String Search,
in the domain of urban qualities.
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1. Introduction

1.1 Aim
The primary goal of this master’s thesis is to analyse the data from the interviews
using statistical and/or ML-/ DL- algorithms. The results will be used to improve
the understanding of the urban quality of the areas within Metropolitan Gothen-
burg. Hence, it is important to identify the sentiments and semantics within the
interviews. In this respect, the overarching research problem can be stated as follows:

How can state-of-art techniques be adjusted and applied to classify
sentiment and semantic orientation from qualitative interviews, in

order to provide city planners and researchers with an accurate
overview of the data?

This in turn will be split up into the following sub-questions:

1) Which state-of-art algorithms can be adopted and what are the pros and cons?

2) How can we visualise the semantic and sentiment analysis of interview data?

1.2 Limitations and Challenges
Since the raw data is in Swedish, our project will be limited to models trained in
Swedish. Furthermore, the given dataset for sentiment analysis is not labelled, which
makes it difficult to evaluate correctly. One solution was to create a semi-supervised
dataset that had to be manually annotated. The annotations were done by several
people, which increases the overall human error in the analysis as annotations can
be subjective. The annotation of the sentiment is based on the written text and
therefore linguistic expressions such as sarcasm or irony can be more difficult to
detect. Also, for the semantic analysis only the test set was annotated into some
of the predefined labels and therefore was only used for evaluation instead of model
training. Overall for both analyses, annotating more or the entire dataset would be
too time-consuming and beyond the time frame given for the scope of this thesis.

1.3 Thesis outline
In this thesis, Chapter 2 presents the general background information needed to
understand the methodology used. First, general knowledge about urban planning
is provided, highlighting its importance. Following is an introduction to text classi-
fication, which introduces different approaches to conduct sentiment and semantic
analysis in its subsection. The approach chosen for this thesis is explained in detail
in Section 2.5. Subsequently, Chapter 3 presents the implemented methodology step
by step. Here, the dataset and the pre-processing steps are explained along with the
description of the implementation of the final models. After, the results obtained
are exhibited in Chapter 4, followed by the discussion and conclusion in Chapter 5.
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2
Background

This chapter starts by illustrating the general overview of the importance of urban
planning in Section 2.1. In Section 2.2, key concepts within text classification are
described, and the study of sentiment and semantic analysis are explored and ex-
plained in Sections 2.3 and 2.4. Lastly, Section 2.5 gives an in-depth explanation of
the architecture of the DL models along with a short explanation of the evaluation
metrics used.

2.1 Urban Planning
The urban population has been growing rapidly around the world, where around 55%
of the world’s population lives in urban areas today. It is estimated that by 2050,
this figure will increase to approximately 68% [6]. Already since 1950, the urban
population has grown from 751 million to 4.2 billion people in 2018 [6]. This mass
movement of the population from rural to urban areas and the resulting physical
changes to the urban settings is often referred to as urbanisation [7]. Urbanisation
has long been associated with positive effects such as reducing poverty, fostering
human and technological development, and being the heart of economic growth in
many nations. However, with the shift of the population from rural to urban areas,
there is an increased need to build sustainable cities and public services such as
transportation, waste management, housing, energy systems, and other infrastruc-
ture solutions. Many cities face challenges and increased pressure to ensure access to
the above-mentioned infrastructure, as well as basic services such as employment,
education, healthcare and a safe environment [6, 7, 8, 9]. This influx of humans
could, for example, form the basis for inequality, poverty, environmental hazards
such as pollution, road traffic, and communicable and non-communicable diseases.
etc. [7]. Consequently, to compensate for the adverse effects of urbanisation, the
sustainable development of cities depends greatly on integrated policies and good
governance to improve the social, economic and environmental aspects of urbanisa-
tion [6, 8].

Studies have shown that urban planning positively contributes to the health and
well-being of the urban population, improving the quality of urban living [10, 11].
Especially policies that regulate land use, connectivity, density, transport, and green
infrastructure have been shown to be instrumental in improving health outcomes [9].
For example, in Sweden, green areas play the role of both air cleaners and noise re-
ducers, while also creating meeting places for residents. Moreover, reducing car
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2. Background

traffic in the city centres and building in favour of bikes and pedestrians has led
to better health amongst the residents [8, 12]. Accordingly, understanding that the
environment and spatial planning is an integral factor of health, and is imperative
in both the conceptualisation of policy development and its solutions [9, 11, 12]. As
Carmichael et al. [9] describe, the environment in which people spend their lives
has a profound impact on their physical, mental, social, and economic well-being.

One way to support the policies and governance in creating healthy urban living
in the local communities is to understand the resident’s perception of their neigh-
bourhood. Uncovering neighbourhood satisfaction and discovering the reasons why
residents move, their desires and intentions to relocate is one method to inform
the planning process of the neighbourhoods [12, 13]. Research into the residents’
perception of their neighbourhoods has thereby facilitated the development of more
informed public policies with the aim to improve each individual’s life satisfaction
and also the community’s well-being [14].

2.2 Text Classification
Text classification is a fundamental task within the study of NLP, especially with the
recent advancements in NLP and text mining along with the increasing amount of
digital text documents available. Text classification refers to the task of classifying
written text or documents into predefined categories and can be seen as a multi-
disciplinary field that covers computational linguistics, NLP, ML, and AI [15, 16].
Classical examples of text classification include, but are not limited to, topic la-
belling, sentiment analysis, NER, and news classification. Here, the common goal is
to predict a predefined label for a given text, although the labels differ depending
on the domain [17].

Text classification has not only been gaining traction in the scientific community
but also within the business realm with the development of real-world applications
that can leverage these text classification methods [17, 18, 19]. For example, text
classification can improve capabilities within antispam systems, bot and fraud de-
tection, and commercial document classification, as well as be used in recommenda-
tion systems by filtering what is shown to customers by excluding different features
[15, 19, 20].

One research area in which text classification has become popular is in the social
sciences and qualitative research methods, where computational social sciences have
emerged as a field of study to support the analysis of the growing data sets [21, 22].
More specifically, ML techniques have been used to assist in the analysis of qualita-
tive data by qualitative coding [21]. Qualitative research methods are often used in
social sciences to probe the social environment of humans by discovering attitudes
and beliefs on a specific topic through interviews, focus groups, and observations
[23]. Once transcribed, the descriptive data will need to be analysed in order to
derive meaningful insights and infer conclusions. This is usually done through qual-
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2. Background

itative coding, where descriptive or inferential labels are assigned to fragments of
data in a systematic order. Such coding may assist in theory development, where the
hypothesis and theories are constructed based on the patterns and shared charac-
teristics of the coded data [21]. However, performing such manual coding is usually
labour-intensive and time-consuming, especially in the era of big data [21, 22, 23].
As social scientists only sample and code a small part of the data, their analysis
can be seen to be incomplete because inconsistencies in their theories may arise as
a large part of their data are still unexplored [21]. Consequently, text classifica-
tion methods can also be applied to assist in the identification and extraction of
attitudes, opinions, and topics from these interview transcripts [22, 23].

2.2.1 Types of Text Classification
In general, text classification can be divided into different groups, such as multi-class
or multi-label, depending on how many classes or labels are assigned to each text.
Multi-class text classification systems assigns only one class from a set of more than
two classes to each sample of text. Multi-label classification, on the other hand,
assigns one or more classes from a set of classes to each sample of text [24].

2.2.2 Computational Methods in Text Classification
In the context of text analysis, there are different levels of granularity; document,
paragraph, or sentence level [18]. The algorithms used for text classification systems
would predict the relevant classes for either a full document, a single paragraph, or a
single sentence. For sentiment analysis, there is another level of granularity, namely
aspect-based. Document and sentence level for sentiment analysis focuses on the
general polarity of each, such as whether the document or sentence expresses a pos-
itive, negative, or neutral stance. In comparison, aspect-based sentiment analysis
focuses on the specific object the opinion is about [16, 20].

There are two main methodologies used for text analysis of different granularity; a)
rule-based, and b) ML- and DL-based [16, 25]:

a) Rule-based: Rule-based systems are based solely on predetermined rules set by
the model architect or language experts in this case. The classifier would be made
up of a set of human-coded rules that would classify the data into one or multi-
ple classes. In terms of sentiment analysis, the classifier would rely on a sentiment
lexicon built on a set of word units and their sentiment tag of neutral, positive or
negative [25, 26]. A naive method would thus be to count the opinionated words
in the text based on the dictionary. If there are more positive than negative words,
the overall sentiment would be positive, and vice versa.

b) ML- and DL-based: In contrast to rule-based methods, ML and DL are data-
driven and rely on algorithms and statistical models. They learn patterns from
past data to automatically make predictions for a given set of unseen data. There
are three different approaches in which ML can be performed; supervised, unsu-
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2. Background

pervised, and semi-supervised learning. Supervised learning is performed with the
target value or label, and thus requires an annotated corpus on which the models
train to learn the patterns for classification. Unsupervised learning, in contrast, is
performed without a target value, which means that the model tries to make sense
of the data by extracting the undiscovered patterns on its own. Semi-supervised
learning then uses a small amount of labelled data to train models that would sup-
port the prediction of the larger set of unlabelled data [26].

Within the scope of this thesis, the focus will be placed on DL models that will
be used for the task of sentiment and semantic analysis. A more detailed technical
explanation of the specific DL methods implemented is found in Section 2.5.

2.2.3 Text Representation
When using text as input to the many ML and DL algorithms, it is important to pre-
process and clean the text from any noise that may be present. For example, most
raw text and documents would include unnecessary words such as stop words, slang,
punctuations, or even misspellings that may have an adverse effect on the model
performance [18]. The following is an explanation of text pre-processing steps that
are relevant for this use case :

Lemmatisation: Lemmatising is the process of extracting the most basic word
form (lemma) from each word [18]. This is done by replacing or removing the suffix,
prefix, infix, or other inflexions of the word in question [18]. For instance, for the
word ’moved’, the lemma would be ’move’. Similarly, for Swedish, the lemma for the
word ’flyttat’ is ’flytta’ [27]. Lemmatising words is also important for capturing the
context of the word, and thus the overall meaning of the sentence [28]. For instance
for the word ’leaves’, the lemma would either be ’leave’ or ’leaf ’, depending on the
context.

Tokenisation: Tokenisation is a method that separates a piece of text into smaller
elements called tokens [18]. This step is a fundamental part of the pre-processing
method as many NLP algorithms require the text input to be tokenised in order to
be used, as it can then be transformed into a numerical data structure as the suit-
able input for the algorithms. Moreover, tokenisation is important in understanding
which words are present in the piece of text since the meaning and context of a piece
of text can be analysed through the words present in the text and also through the
sequence of those words [18].

2.3 Sentiment Analysis
Sentiment analysis is a common example of multi-class text classification where writ-
ten text is classified based on the expressed attitude, feelings, or opinions towards
a certain entity [16, 29, 30, 31]. These subjective expressions are often categorised
into positive, negative, or neutral classes. Sentiment analysis can be seen to be

6



2. Background

one of the most prolific research areas within computer science today [29]. This
can be attributed to the growing availability of the opinions of the general public
online on objects, brands, topics, ideas, or even products, which has been enabled
by the evolution of Web technology [29, 31]. These opinions may be available in the
form of blogs, social networks, and online forums as well as reviews on websites and
e-commerce sites [18, 29]. As a result, the opportunity to capture these opinions
has increased the interest in many different domains such as products and services,
health care, financial services and politics [30, 31, 32]. For instance, research has
revealed that sentiment analysis can be used to predict sales revenue for businesses
or even the stock market fluctuations and trading strategies [33, 34, 35, 36].

Initial research within sentiment analysis first started off with rule-based systems,
whereas the trend has moved on to using ML and now DL methods [37, 38]. A large
number of articles have been published using traditional ML methods such as Naïve
Bayes, Support Vector Machine, Decision Trees and Random Forests, and K-nearest
Neighbour, with Support Vector Machine being the most successful model performed
on this task [18, 37]. However, a major challenge with rule-based approaches and
traditional ML models is that features are hand-crafted, where feature engineer-
ing and feature extraction are the most time-consuming process. The advantage of
DL neural networks, on the other hand, is that they can automatically learn the
features from the data [37, 38, 39]. Especially with the increasing amount of data
generated, traditional ML-based models are inferior to DL models. The DL models
can be trained to learn more key features from large-scale training data with multi-
ple layers, automatically capturing complex and non-linear patterns in the data [37].

Some of the most popular DL models applied in sentiment analysis are Convolu-
tional Neutral Network (CNN), Recursive Neural Network (RNN) including Long
Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU), Bi-directional Long
Short-Term Memory (Bi-LSTM), and transformer-based networks [15, 17, 37]. As
text classification tasks can also be considered sequential modelling tasks, RNNs
are more frequently used compared to CNNs due to their ability to learn sequential
associations, which is an important feature when dealing with semantic analysis of
text [15, 18]. LSTM and Bi-LSTM models, which are based on RNN architectures,
are capable of capturing long-term dependencies, taking into account the preceding
and succeeding contexts in a text passage, and making achievements in the academic
field [15]. Several studies even suggest the use of hybrid models for sentiment analy-
sis, where a combination of DL models has performed better than individual models
[39]. The hybrid model of CNN-LSTM has achieved 91% accuracy in detecting the
fine-grained polarity of IMDB and Amazon reviews outperforming traditional DL
and ML techniques [40].

However, most recently, the state-of-the-art techniques used for sentiment analysis
are the transformer models [1, 17]. Transformer models process all words simul-
taneously rather than sequentially. Yet, it is able to ensure that the same word
has different representations depending on its position in the sentence, and it can
also learn the dependencies between words due to the self-attention mechanism [17].
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Using this approach, transformers have been shown to produce better results, while
at the same time being less time-consuming due to their ability to parallelise in
training [17, 39].

Although there is extensive research conducted within sentiment analysis, the ma-
jority of them have been modelled using English corpora [30, 37]. This results in a
shortage of resources and tools, such as non-English datasets and benchmarks, mak-
ing it difficult to build good sentiment classifiers for other languages such as Swedish
[30, 38]. To mitigate these issues, studies have tried to leverage English sentiment
analysis systems by translating a non-English corpus into English and then using
existing classifiers to annotate the corpus [30]. However, this may induce errors due
to the different linguistic and language differences. For example, unlike English,
negative Swedish sentiment is most often written in definite forms using ’the’, while
positive sentiments are expressed more frequently in indefinite forms such as ’a’ [41].

Not only is the modelling language important, but research has also shown that
sentiment classification is highly sensitive to the domain, the specific topic and the
context of the training data. As Liu [30] explains, words and the language constructs
used for expressing opinions can differ in different domains. The same word in one
domain may depict a positive sentiment, whilst for another domain may be negative.
For example, the word ’easy’ in the domain of electronics might be positive ’The
camera is easy to use’ while it might be negative in the domain of movies ’The end
of the movie was easy to guess’ [42].

This domain-transfer problem is also a challenge to be addressed for this thesis as
sentiment analysis on interview transcripts is less researched, more so in Swedish
and urban planning.

2.4 Semantic Analysis
The goal of semantic analysis is to explore the meaning of human language. In the
field of NLP, this involves evaluating and representing words and word relationships
and investigating their meaning as an element. The aim here is to give the model
the same word interpretation as humans have and to extract the context [43, 44].
To understand the meaning of sentences, there are two tasks involved in semantic
analysis: Word Sense Disambiguation and Relationship Extraction [45].

Word Sense Disambiguation describes the ability of a model to identify the ambi-
guity of words. Human language is often associated with ambiguities, which means
that a word can have different meanings depending on the context [46]. The follow-
ing sentences will show an example:

(a) I can hear bass sounds.
(b) They like grilled bass.
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Here the word bass is used in two different contexts and thus has different meanings:
one refers to low-frequency sounds whereas the other refers to a specific type of fish.
For a human, this is easy to deduce, but for a computer, it is a challenge. To pro-
cess the context of texts, a computer must transform unstructured text information
accordingly and feed it into clear data structures, which in turn must be analysed
to detect the subliminal word connections and meanings [46].

The second task within Semantic Analysis is Relationship Extraction. The task here
is to recognise different entities within a sentence and to extract their relationship
to each other [47]. To understand it more clearly following example is given:

Gothenburg is in Sweden.

Here, the relationship extraction would notice that the city: Gothenburg is within
the country: Sweden and that those two words are related to each other. As with
Word Sense Disambiguation, it is relatively easy for a human to recognise the links
between the city and the country, but to teach this to a computer, the marked en-
tities and the context of the whole sentence must be used [47].

Depending on the desired result, semantic analysis can be used in different ways.
One of the most common techniques is text extraction, which includes keyword
extraction and entity extraction [45]. The aim of keyword extraction is to detect
certain keywords within a document that are explicitly mentioned in the text [48, 49].
Here, keywords are a series of one or more words that represent the main content
of a document in a condensed form [50]. The latter technique, entity extraction,
attempts to identify all entities contained in a document. One method that comes
into focus is Named Entity Recognition (NER), which is often used for semantic
text extraction and is described in more detail in Section 2.4.1 below [51].

For the semantic analysis in this thesis, entity extraction is an approach that will
be investigated within the urban planning domain.

2.4.1 Named Entity Recognition
NER is a task within NLP and semantic analysis where the objective is to detect
and classify named entities in text [52]. A named entity refers to a word or a series
of words that identifies an item with similar attributes from a collection of other
items, such as the name of an organisation [53, 54]. For instance, Chalmers is a
named entity of the entity type organisation. NER is then the process of recognis-
ing the names of the pre-defined semantic entities [53]. Examples of named entity
types are person, location, organisation, dates, and times [52, 53, 54]. Depending
on the domain of interest, these named entity types may vary. For example, in the
medical domain, drug and disease names may rather be seen as entities [54]. Basic
NER models typically distinguish between a small set of entity types and usually,
one type per named entity. However, recently, NER tasks are able to consider a
larger set of 100 or more distinct entity types, where a named entity may also be
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assigned to multiple types [52, 53]. Extraction of such information from text has
been seen to be an essential pre-processing step for a number of downstream NLP
applications such as Automatic Text Summarisation, Question Answering, Machine
Translation, Information Retrieval etc. [53, 54, 55]. In terms of this thesis and use-
case, understanding which areas of Gothenburg and Housing-related organisations
have been mentioned in the interviews are of interest. As such, NER can be used
to detect the named entities of organisations and locations.

Similar to other text classification models mentioned in Section 2.2.2, the algorithms
proposed in the NER models can be classified into two different methods; rule-based
and ML- and DL-based computational methods [55, 56]. Rule-based approaches are
mainly based on semantic and syntactic rules to identify the entities and thus work
well when the lexicon and rules are exhaustive [53]. As the rules are able to capture
domain-specific properties of the language the models are able to obtain sufficient
accuracy [54]. Quimbaya et al. [57] proposed a rule-based system for electronic
health records to extract named entities such as diagnosis and treatment using a
dictionary lookup. However, a drawback of such rule-based systems is that they
can rarely be transferred to other domains or languages [53, 54]. Moreover, they
are quite expensive as these models require human expertise within the domain
and/or language [54]. Thus, recent NER models rely on the ML- and DL-based al-
gorithms and approaches that can overcome the drawbacks of the earlier models [54].

The DL systems employed for the NER tasks in recent years have been found to
yield substantial improvements [55]. Compared to the traditional ML algorithms
based on heavy feature-engineering, the DL models have shown effectiveness with
their ability to automatically detect useful features through nonlinear processing
and ability to consider long-term dependencies [55, 56]. In particular, studies have
shown that transformer-based models such as BERT, RoBERTa and XLNet, can
outperform non-transformer-based models such as RNN, CNN, LSTM and other
hybrid models as Bi-LSTM-CNN-CRF models within the NER task [52].

Additionally, there are many factors that may affect the performance of the NER
models. For example, the language or domain in which the task is performed as
well as the number of entity types to be identified [54]. Lack of resources such as a
large and high-quality annotated dataset for certain languages and domains makes
the NER task more challenging [53, 54]. Without the annotated data as input for
training or evaluation, it may be difficult to classify a named entity correctly, es-
pecially when the text is ambiguous [53, 54]. For example, Apple may refer to an
organisation as well as a common noun. Thus, many languages that are resource-
poor may resort to the rule-based and traditional ML algorithms to execute the
NER tasks [56]. The approach in which NER technique to use depends strongly on
the availability of the labelled and annotated language resource [54, 56]. Especially
for DL methods, a large data set is generally required for training the model [56].
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2.5 Transformer

To understand the theory of the DL model used in this thesis the following Section
gives an introduction to the transformer method. Here, the overall architecture
of the transformer will be explained followed by a detailed description of its main
components: self-attention and multi-head. In addition, the specific transformer
model BERT, which was implemented for this thesis, is presented.
As mentioned in Section 2.3, the current state-of-the-art models used in text classi-
fication are transformer models. Transformers, introduced by Vaswani et al. [1], is a
non-recurrent model based on the self-attention concept that creates dependencies
between input and output globally. The main reasons the self-attention mechanisms
are preferred are due to computational complexity, parallelisation, and the ability
to learn long-range dependencies between words, which are all essential for building
contextualised word embeddings [58]. The transformers’ structure is built mainly of
an encoder-decoder architecture where each component consists of so-called trans-
former blocks. In the original paper presented by Vaswani et al. [1], it consists of
a stack of six transformer blocks but Alammar highlights that this number can be
adjusted [59]. Additionally, the transformer blocks can be stacked on top of each
other since the input and the output of each block have the same size [1]. Figure
2.1 represents the model architecture with an example of a transformer block in the
encoder (left) and decoder (right) components.

Figure 2.1: Transformer Architecture for one Transformer Block, each based on
Vaswani et al. [1].
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Encoder

Within each transformer block in the encoder component, there are two main mod-
ules: a multi-head self-attention layer, which is the key technology of the transformer
model and will be further described in Sections 2.5.1 and 2.5.2, and a fully connected
feed-forward layer [60]. Additionally, residual connections and normalisation layers
are applied to both of the modules to improve the learning and training rate [61].

As it can be seen in Figure 2.1, the overall transformer process begins by converting
the input sequence into embeddings - this step happens only in the very bottom
encoder. Since transformer models do not contain any convolution or recurrent
methods they have to add positional encoding to use the input sequence properly.
Positional encoding is an added vector that keeps the information about the token’s
position within an input sequence and therefore has the same dimension as the em-
bedded data [1]. From there, the residual connection is applied to the input data,
which will be further processed in the first multi-head self-attention layer. Residual
connections add the inputs of the lower layer to the generated self-attention out-
put without having gone through the intermediate steps. This summation is then
processed in the normalisation layer. Here, the mean and standard deviation of the
input data to be normalised will be calculated. Then the mean is subtracted from
the element in the input and divided by the standard deviation. The output of the
normalisation layer can be further processed in the feed-forward layer or in the next
transformer block [60]. Since the transformer blocks are stacked on each other, the
created encoder output is used as input for the next encoder module; this process
repeats till the sequence arrives at the last encoder block. The final output of the en-
coder stack represents the context that will be processed in the decoder module [59].

The transformer architecture makes it possible to apply parallelisation since em-
beddings can pass through the encoder layer almost individually. Few dependencies
consist of the self-attention layer, but in the feed-forward layer, each embedding will
be processed separately. Using parallelisation in the transformers leads to faster
training times compared to recurrent encoder-decoder models [59, 60].

Decoder

The decoder architecture, shown in the right part of Figure 2.1, works similar to the
encoder. In the original construction, it consists of a stack of six decoder blocks.
Positional encoding is also added to the decoder input sequence to follow the or-
der of the tokens [59]. The main difference between the encoder and decoder side
comes with a third sub-layer. In addition to the general multi-head self-attention
and feed-forward layer, a modified attention layer is implemented at the beginning
of each decoder stack. Modification is done by masking. Since the whole input
sequence is fed into the decoder structure, masking is used to prevent the model to
gain knowledge of words that comes after the word currently processed at position i.
This is done by setting the values of the following words to −∞ [60]. Additionally,
the embedding of the generated encoder output is moved by one position, which
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in combination with masking ensures that the prediction for the word at position i
consists of known words at position smaller than i [1].

After the input sequence passed through all decoder steps, it reaches the linear layer
which creates words out of the decoder output. This layer can be described as a
fully connected neural network that resizes the decoder output vector into a much
larger vector called logits. Usually, the logits vector size is equal to the dimension of
the vocabulary. Finally, the softmax layer converts the scores from the logit vector
into probabilities where all values are positive and add up to 1. The word that will
be chosen as output for this timestamp is the cell with the highest value [59].

2.5.1 Self-Attention
The self-attention layer is used by the transformer to comprehend the relevance of
other words in relation to the word that is currently processed [59]. For this purpose,
a score is calculated that indicates how much attention other words receive when a
word is encoded.

It does so, by first, creating three different matrices: Query (Q), Key (K) and Value
(V), where Q, K, V ∈ Rm×n and m represents the number of tokens and n represents
the embedding dimension. Q and the matrix of the current focus, while K represents
the previous input that is compared to Q, and V is used to calculate the outcome
of Q [60]. The matrices are generated by multiplying the embedding matrix (X),
where each row represents one word from the input sentence, with the respective
weight matrix (W), which is trained during the training process, so that [59]:

Q = XW Q; K = XW K ; V = XW V

In a second step, each word of the input sequence is scored against the word of
attention. This is achieved by taking the dot product Q times K. The outcome is
divided by the square root of K’s dimension, and softmax is applied to normalise.
Afterwards, the result is multiplied with V to maintain the values of words that the
model should focus on. Finally, the weighting values are summed, giving the output
of the self-attention layer [59, 60].

output = softmax(QKT

√
dk

)V

2.5.2 Multi head
As seen in Figure 2.1, the multi-head attention is the actual self-attention layer. It
copies the procedure of single self-attention, described in the previous Section and
performs it several times. To be precise, eight different self-attention heads i, each
with its own random assigned Query, Key and Value matrices W Q

i , W K
i , W V

i , are
executed in parallel [59, 60].
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In general, multi-head is used to improve the model’s capacity to focus on multiple
positions in the input sequence, with the differently weighted parameters supporting
the learning process to target different word relations. Overall, this procedure allows
for a more detailed illustration of the word relationships. Processing eight self-
attention layer in parallel ends up with eight different weighted matrices for one
input sequence. Since the feed-forward layer expects only one input, the results
have to be combined. This happens by concatenating and multiplying them with
another weight matrix W O which was developed in conjunction with the model [60].

2.5.3 BERT
BERT stands for Bidirectional Encoder Representations from transformers and is a
language model that was introduced by Google researchers Devlin et al. in 2018 [2].
As the name implies, its purpose is to understand the meaning of words on both
left and right sides of the sentence. The model is based on the multi-layer encoder
architecture of the transformer model described in Section 2.5.

The BERT model comes with two different architectural sizes, which are in principle
larger than the original encoder block: BERTBASE is a model consisting of a total of
12 transformer Encoder Blocks with 12 self-attention heads and a feed-forward net-
work size of 768. BERTLARGE is a more comprehensive model which has an overall
24 transformer Encoder blocks, 16 self-attention heads and a network size of 1024 [2].

Input Representation

To forward the input text into the first encoder stack, three different embeddings
per token must be generated.

The first embedding is the tokeniser, which splits the input into word pieces. This
ensures that unknown words can be broken down and therefore be recognised and
further processed by the model. For example, the English word playing will be di-
vided into [play] and [##ing]. Additionally, the tokeniser adds the following special
tokens to the embedding [2]: [CLS], [SEP], [PAD]. The classification token [CLS] is
used to mark the start of each input sequence. The separation token [SEP] oper-
ates as a delimiter between sentences and marks the end of the sequence. Since all
input sequences must have the same length, paddings tokens [PAD] are appended
to shorter sentences.

The second additional embedding layer is called segment embedding. It helps the
model to recognise where the separation tokens are placed to identify to which sen-
tence and context the word of focus belongs. For that, the separation token saves
the information for every token whether it belongs, e.g., to sentence A or sentence
B. If the input sequence consists of a single sentence, the segmentation token will
be the same for all tokens.

The last embedding layer is the positional embedding and is identical to the one
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described in the transformer section. As mentioned there, it supports the model by
saving the information of relative position within an input sequence of each token.
Finally, all three embeddings are summed up and generate the final embedding that
can be further processed in the model. Figure 2.2 visualise the described steps.

Figure 2.2: BERT input representation [2].

Pre-training
Because BERT has bidirectional connections, it would theoretically allow the word
being predicted to recognise itself. Thus, it would render the process of prediction
irrelevant, as the model can simply access the word it is looking for through the var-
ious connections without generating a learning factor. A solution to this problem
is Masked Language Modelling (MLM), which is one of the two pre-training tasks
used in the BERT model.

MLM masks the target words using the [MASK] token and uses the remaining ones
as a context. This forces the model to rely on the meaning of the surrounding
words and use them as the main source for prediction. For this process, 15% of
the input tokens are determined as the target word. Once the words have been
selected, the model runs through three different processes. In the example below,
step (1) is used in 80% of the iterations, the token is replaced by the mask token. In
step (2) another 10% replaces the token with a randomly chosen word, whereas the
target word is visible to the model in the remaining 10%, as seen in step (3). The un-
derlying goal of masking is to achieve generalisation of the model’s predictive ability.

Example:
(1) The moon looks so bright, today -> The [mask] looks so bright, today
(2) The moon looks so bright, today -> The cat looks so bright, today
(3) The moon looks so bright, today -> The moon looks so bright, today

The second pre-training task is the so-called Next Sentence Prediction (NSP). As
one can deduce from its name, the goal here is to determine which sentence follows
the one in focus. Through this task, the model learns to recognise the relationships
between different sentences in a better sense. A binary classifier task is posed to
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detect whether sentence B directly follows sentence A or not. Given that this is a
binary task, pairs of sentences are used as input. As with MLM, the model passes
through various iterations. In 50% of the cases, sentence B follows sentence A, in
the remaining 50%, a sentence from the corpus is chosen at random.

2.6 Evaluation Matrices
In order to assess the efficiency of ML and DL models, accuracy, precision, recall,
and the F1-score are commonly used as measurements in text classification, both for
sentiment and semantic processes [62, 63]. This Section will explain the mentioned
measurements in more detail.

The confusion matrix, as seen in Table 2.1, describes the performance of a model
and introduces four different classification results. In this table, the predicted values
are compared with the actual values for more precise comparison. The results True
Positive (TP) and True Negative (TN) describe the correctly predicted classes for the
actual positive or negative labels. False Positive (FP), on the contrary, indicates
when the model predicts an actual negative element as positive. A similar thing
happens with False Negative (FN), here an actually positive element is declared as
negative [64].

Actual Positive Actual Negative

Predicted
Positive TP FP

Predicted
Negative FN TN

Table 2.1: Confusion Matrix

Based on the Confusion matrix, accuracy, precision, recall and F1-score can be de-
rived:

Accuracy describes how many elements were correctly predicted compared to the to-
tal number of elements. It takes the number of elements of the correctly classified ele-
ments (TP+TN) and divides it by the total number of elements (TP+TN+FP+FN).

accuracy = TP + TN

TP + FP + TN + FN
(2.1)

Precision describes how many elements the model has correctly classified as positive
(TP) compared to the total amount of correctly and incorrectly predicted elements
assigned to that class (TP+FP).

precision = TP

TP + FP
(2.2)
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Recall describes how many elements the model has correctly classified as positive
(TP) compared to the total number of elements present in the respective label
(TP+FN). Thus, the value indicates the percentage of labels found by the model.
Usually, data that achieves a high recall score ends up with a low precision Score
and vice versa.

recall = TP

TP + FN
(2.3)

F1-score is the harmonic mean between recall and precision and thus balances both
results and gives a result between 0 and 1. F1-score can be a good guide to unbal-
anced data distribution, as each label is given a weight based on its support, i.e.,
the number of instances within the target label [64]. The recall and precision scores
are multiplied by each other and by two and then divided by the common addition.

F1-score = 2 ∗ precision ∗ recall

precision + recall
(2.4)

Macro Based Evaluation
In addition to the evaluation metrics mentioned above, there is an averaging method
that can be applied to precision, recall and F1-Score, which are of interest in multi-
label classification: macro average [65].

Macro average treats all given classes equally. Here, the predictions (TP, FP, TN,
FN) are taken and the respective metric is calculated, then the results are added
and divided by the number of classes [65].

Macro F1-score = 1
N

N∑
i=0

F1-scorei (2.5)
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3
Methods

In this Chapter, the general workflow of this thesis is explained. Firstly, Section
3.1 starts with a description of the dataset and moves on to explain the data pre-
processing, cleaning methods, and the annotation process. The Sections 3.2 and 3.3
present the experimental setup for sentiment and semantic analysis before each step
of the implementation of the models is detailed, respectively.

3.1 Dataset
The datasets used for the text classification tasks consisted of interview documents
along with semantic classes and labels provided by the ACE department. There
were in total 447 interview documents, where 245 documents (55%) were in the
format of interview Transcripts and the other 202 documents (45%) were in a written
Summary format. The list of semantic class target labels was also provided to check
whether these sentences mentioned any of these target labels. The list consisted
of eight semantic classes that included labels describing names of housing-related
organisations, names of all neighbourhoods in Gothenburg, names of housing units,
objects belonging to the neighbourhood, physical components within a unit, and
rooms of a unit.

3.1.1 Data Pre-processing
In order to train the model using the raw interview documents and labels, they were
first cleaned and pre-processed to make them suitable for the models.

3.1.1.1 Text Inputs

For the interview documents, the documents were first received in the format of Mi-
crosoft Word documents and had to be transformed into the Python string format
for modelling. As sentiment and semantic classification were performed on the sen-
tence level, each document was also split into individual sentences in string format.
The following explains in detail the complete pre-processing method:

Firstly, the interview documents were manually checked and labelled according to
whether they were in a Transcript or a Summary format as the cleaning would differ
depending on the format. These labels were saved in the metadata .csv file and later
parsed as a DataFrame object in Python. An example of an interview Transcript
and Summary can be found in Appendix A.1 and Appendix A.2. It was important
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to separate the two formats because different models would be trained separately
on them as Transcripts uses a first-person narrative while Summary a third-person
narrative. Next, all the documents were converted from Microsoft Word documents
to text documents (.txt files) containing plain text in the form of lines only using
the docx2txt package from the Python Package Index (PyPI) [66].

Once in text format, the cleaning step for each document followed:

1) parentheses ’()’, hard brackets ’[]’, and any text in between were removed. This
is because the information within the parenthesis and brackets were placeholders for
laughter or inaudible words.
2) The text made up of unicode characters was then normalised using
unicode.normalize() function.
3) The text was then divided into separate lines using the splitlines() function,
and empty lines and tabs were also removed simultaneously.

This cleaning step was performed for both the interview Transcripts and the Sum-
maries. Each document was saved in its corresponding dictionary with the key-value
pair of interview ID and interview text. The following parts will explain the next
cleaning step for the respective formats:

Interview Transcripts
During the manual check, it was found that an interview transcript only included re-
sponses to a questionnaire sent to interviewees before the interview. This particular
document was removed from the datasets. For the rest of the interview Transcripts,
the first few lines of documents started off with information about the interview,
such as date, time and place, transcription notes and descriptions, the initials and
full name of the interviewer and interviewee IDs, before the actual main body of
what each speaker said. This descriptive information was also removed as only the
words of each speaker are of interest for the modelling.

However, inconsistencies between the main body text were also found. Most tran-
scribers (170 of 245 Transcripts) included the initials of both the interviewer and the
interviewee ID before the speaker’s words. 65 documents only included the initials of
the interviewer whilst ten documents had the speaker identifier omitted completely.
Since it was important to keep track of who the speaker was and what they said,
the latter two groups of documents were modified to include the speaker identifiers.
The ten documents without speaker identifiers were manually altered and labelled
by the authors of this thesis, while the others were automatically changed. Lastly,
each interview was saved into a dictionary consisting of two lists; the order of speaker
and the corresponding sentences split by line.
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Summary of interview
Through the manual check, it was discovered that two Summaries included the in-
terviewer or transcriber’s personal comments such as "Min dator ville inte spara
filen så texten försvann direkt efter jag skrivit" and "Kanske ska tas bort eftersom
den är så kort?" which translates into "My computer did not want to save the file so
the text disappeared." and "Remove because it is so short?" respectively. Therefore,
these two Summaries were removed.

For the other interviews that were transcribed as Summaries, the first few lines of
descriptive information about the interview were also removed, similar to the inter-
view Transcripts. Some Summaries also included the responses to a questionnaire
at the end of the text. These lines of text were also removed by searching for lines
that start with "Svar på enkät", "Enkätfrågor", or "Enkätsvar", which all roughly
translates into "Questionnaire responses".

In total after cleaning and preprocessing, there are 444 interview documents, 244
Transcripts, and 200 Summaries, consisting of 43,110 and 5,354 individual sentences,
respectively.

3.1.1.2 Semantic Class Labels

The semantic class labels provided were a collection of semantic classes with an array
of labels under them. There were in total eight different classes provided at the start,
where two of the classes were supplementary lists of existing ones. The supplemen-
tary list was therefore merged with the original list to create a fully comprehensive
one. For example, for the class rooms of a housing unit, there were two lists; one
’room_scale’ including a set of rooms of a unit, and another ’room_scale_extra’
including names of other possible rooms. As both lists consist of rooms in a unit,
these two were merged. After merging supplementary lists, there were finally six
different semantic classes; housing-related organisations (org), neighbourhoods in
Gothenburg (nbr_scale), housing units (unit_scale), objects belonging to the neigh-
bourhood (nbr_sub), physical components within a unit (unit_sub), and rooms of
a unit (room_scale).

As labels can appear in different grammatical forms in the text, the labels for four of
the semantic classes were lemmatised using the Stanza Python NLP package [27].
The example below illustrates the lemmatisation process conducted for this thesis.
Here, both sentences refer to the kitchen, although the actual word is presented
differently ("köket", "kök"). If the labels were not lemmatised, the class would have
to include both "köket" and "kök", but now with only "kök", limiting the number of
label instances in each semantic class.

Example:
1) Jag gillar köket.
2) Jag tycker att mitt kök är stort.
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The two semantic classes that were not lemmatised were org and nbr_scale. This
is because the labels under these classes were the names of organisations and neigh-
bourhoods. Since the original name wants to be caught, lemmatisation was not
needed.

In the final step of this pre-processing, all duplicate labels were removed for each of
the six classes using the python set() function.

In total there were six semantic classes and a total of 190 semantic class labels;
7 for housing related organisations (org), 119 for neighbourhoods in Gothenburg
(nbr_scale), 10 for housing units (unit_scale), 12 for objects belonging to the neigh-
bourhood (nbr_sub), 27 for physical components within a unit (unit_sub), and 15
for rooms of a unit (room_scale).

3.1.2 Annotation Process
For both the semantic and sentiment analysis, the original dataset was unlabelled.
This meant that each sentence did not have a target label for the topic discussed,
such as the neighbourhood, or a target label for sentiment if the opinion was neg-
ative, positive or neutral. The following part will explain how the labelling was
performed for the different analyses.

Sentiment Analysis
For sentiment analysis, as a semi-supervised dataset was needed for the training
and evaluation of the DL methods, manual annotation had to be performed. The
annotation was done in Google Excel Sheets by the authors of this master thesis.
In the process, ten documents from the interviews were divided into their sentences.
Of these ten documents, four are from the category Summaries and six from the
category Transcripts. The annotation was done in a two-phase principle:

After each document was divided into individual sentences, each annotator clas-
sified each sentence into one of the three classes: positive, neutral, and negative.
Thus, each sentence was initially assigned to two independent classes, one by each
annotator. It should be mentioned that Swedish is the mother tongue of one of
the annotators, whereas the second currently has basic knowledge. In this case, a
translator platform was used to assist.

In the second step, the sentences that showed discrepancies were filtered. These
were discussed by both annotators and a label was agreed upon. For the sentences
that were classified the same by both annotators, that specific class became the final
label automatically.

The reasoning for each label annotation was based on a few created rules: Overall, it
was decided that sentences that mention a rent increase will be marked as negative.
Rent reductions due to a move or similar are marked as positive. It was also decided
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that flats or rooms described as large should be marked as positive, small ones as
negative, with the exception that the interviewee explicitly mentions that he or she
would like to move to a smaller flat. Furthermore, it was recognised that energy
efficiency is an important issue. Statements in favour of an energy-efficient flat were
marked as positive, while neutral or negative statements were marked with the re-
spective label. Sentences that addressed social aspects were also marked according
to certain rules. Relocation due to closer proximity to family was considered posi-
tive, as was a communicative neighbourhood. If a neighbourhood appeared unsafe,
this was certainly marked as negative. Questions were also raised about the com-
munication of the renovation on the part of the housing companies. If respondents
felt that they were sufficiently informed, this appeared positive. If the respondents
could not reach the companies at times or were unhappy with the opening hours,
this was recorded as negative.

On the other hand, there were some sentences that made the annotation difficult due
to different sentiments within one sentence. See the following example in Swedish,
the original language, and then translated into English:

"Gillar området och trivs men det var verkligen grannarna som sabbade alltihopa."

"Like the area and enjoy it but it was the neighbours who ruined everything."

As can be seen here, the sentence contains, for human understanding, two different
statements and opinions. Since the fundamental aim of this thesis is to preserve the
perception of the areas in the city, the neighbours have been subordinated in this
example, and thus the sentence has been considered positive. It was deliberately
decided against a neutral and thus balancing opinion of the sentence, as otherwise,
the sentence would have drowned in the final visualisation, although it contains im-
portant opinions. Thus, either a positive or negative classification would be more
appropriate here.

Semantic Analysis
As the models used for semantic analysis were unsupervised pre-trained learning
models, a labelled dataset was not needed for training, but rather for the evaluation
of the models. To check whether the topics of interest for the end-user were detected,
the end-user themselves annotated a part of the test dataset, where the set was
skimmed and the most concise labels were extracted. Additionally, the end-users
provided a full list of target labels in case the annotated set did not cover all the
labels that were of interest. This full list can be seen in Appendix A.3.
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3.1.3 Final Dataset
After pre-processing and annotation, the entire dataset can be divided into an-
notated and non-annotated data, see Table 3.1. The latter has an overall 47,818
sentences where the majority (89.10%) belongs to the category Transcripts and
a smaller amount of 5,212 sentences (10.90%) to Summaries. For the annotated
dataset, it consisted of 705 sentences, where 561 (79.60%) belong to Transcripts and
144 (20.40%) to Summaries.

For both training and evaluating steps, the models used only the annotated dataset,
as such, the labelled set was split into a training and test set. As seen in Table
3.2, within the category Summary, 89 sentences (61.81%) belong to the training set
and 55 sentences (38.19%) to the test set. Within the category Transcripts of 561
sentences, 475 (84.67%) belong to the training and 86 (15.33%) to the test set. The
distribution of the training and test dataset compared to the full dataset for the
Summary and Transcript can be seen in Figure 3.1 and 3.2.

Annotated Non-annotated Total

Summary 144 5,212 5,326

Transcripts 561 42,606 43,167

Total 705 47,818 48,493

Table 3.1: Final Dataset of Annotated and Non-annotated Sentences.

Training Set Test Set Total

Summary 89 55 144

Transcripts 475 86 561

Total 564 141 705

Table 3.2: Training and Test Set for Summary and Transcript Category.
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Figure 3.1: Data distribution for
Summaries.

Figure 3.2: Data distribution for
Transcripts.

Sentiment Analysis
In the annotated dataset for sentiment analysis, 705 sentences were assigned one
label. Overall, it contains a total amount of 112 positive, 424 neutral, and 169
negative sentences, as seen in Figure 3.3. More specifically, the Summary dataset
contains 43 positive and almost the same amount of neutral and negative sentences
(51 neutral, 50 negatives). Due to the fact that the Transcript dataset is larger, the
amount of sentences is also bigger here: it has a total of 69 positive, 373 neutral and
119 negative sentences.

Figure 3.3: Data split into Transcripts and Summaries.

As mentioned earlier, the annotated dataset can be split into training and test sets,
both for Summary and Transcript. For the category Summary, the training set
shows 20 positive, 35 neutral, and 34 negative sentences; an almost similar distri-
bution can be found in the test set with 23 positive and 16 neutral and negative
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sentences each. Details can be seen in Figure 3.4. Within the category Transcripts,
the total dataset contains 12% of positive sentences while negative reaches around
20% and the majority lies within the neutral labels at 66.49%, as can be seen in
Figure 3.5.

Figure 3.4: Sentiment data distribution for Summaries.

Figure 3.5: Sentiment data distribution for Transcripts.

The annotated training dataset was also separated into two different levels of diffi-
culty, Datasetsimple and Datasetcomplex, to train and validate the final model in the
later process. These steps will be explained in more detail in Section 3.2.2. The
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Datasetsimple, includes those labels that contained opinion matches from the first
annotation step, and the Datasetcomplex, consists only of those sentences that were
filtered and finally classified in the second step. Out of the total 705 annotated sen-
tences, 595 sentences (84.40%) can be found in Datasetsimple, while a disagreement
on 110 sentences (15.60%) belongs to Datasetcomplex. Figure 3.6 illustrates a more
detailed division into positive, neutral, and negative.

Figure 3.6: Two different complexities of Dataset created from Rounds of Anno-
tation

Semantic Analysis
As the semantic models were unsupervised and did not require any training, the
annotations were applied only to the test set. That is, only 55 Summary and 86
Transcript sentences were labelled by the end-user. A total of 190 semantic class
labels, divided into six different classes, were provided, where a sentence could be
labelled with either no or more than one label from a different or the same class.
Table 3.3 illustrates the distribution of annotated labels per semantic class for both
the Summary and the Transcript datasets.

For an overview of the semantic class labels provided, an exhaustive list of the seman-
tic class target labels can be found in the Appendix A.3. In general, the nbr_scale
class has the most amount of labels with 62.6% and 119 labels. The second biggest
class is unit_sub which has 14.2% and 27 labels. nbr_sub with 6.3% and 12 labels
belongs to one of the smaller classes. roomscale has 15 labels (7.9%), almost similar
to unit_scale with 10 labels and 5.3%. The smallest class is org which contains 10
labels (3.7%), see Figure 3.7.
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Summary Transcript Total

nbr_scale 7 13 20

org 2 1 3

nbr_sub 8 5 13

room_scale 3 9 12

unit_scale 20 14 34

unit_sub 7 25 32

Total 47 67 114

Table 3.3: Semantic Annotated Labels

Figure 3.7: Semantic class distribution

To summarise the final dataset, the data used for text input can be divided into
annotated and non-annotated data, where the first makes almost 1.5% of the total
sum of sentences. Additionally, the sets were divided into two categories: Transcripts
and Summary, as seen in Figure 3.3. From here, each category is further divided
into test and train sets. Independent from this, specifically the sentiment analysis,
the Datasetcomplex and Datasetsimple were created, where the latter is used as the
first training set and the former as the additional dataset used for hyperparameter-
tuning. For the sentiment analysis, the annotations consisted of a positive, negative
or neutral label. On the other hand, for the semantic analysis, 190 labels were
provided, where none or multiple labels could be assigned to each sentence in the
dataset.
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3.2 Sentiment Model
In this Section, the implementation of the sentiment model will be discussed. A
multi-class text classification model for sentiment analysis was implemented using
a pre-trained BERT that was fine-tuned to suit the domain. A modified version of
the text classifier by Tran [67] was implemented to fit multi-class classification. To
highlight, in this thesis the model is implemented individually once on the Summary
and once on the Transcript side.

Since the approach of this thesis follows a semi-supervised methodology and in that
overall only 1.5% of the data is annotated, additional approaches had to be applied
to ensure an accurate outcome. For this reason, a voting ensemble classifier was
created with the aim of better performance compared to a single classifier. As the
name suggests, a voting ensemble chooses the label based on the outcome of the
soft majority of classifier predictions, i.e. each model predicts a probability for each
class. These are accumulated and the highest value in one of the classes is selected.

Regarding the technical setup, the experiments and models were carried out on
Jupyter Notebooks on the Google Colaboratory platform with an NVIDIA Tesla
K80 GPU and 12GB of RAM.

3.2.1 Pre-trained BERT Models
The pre-trained Bert model used in this thesis was a language-specific BERT model
for Swedish ("KB-BERT") developed by the KBLab at the National Library of Swe-
den (KB) [68]. The KB-BERT was pre-trained on around 15-20GB of text includ-
ing approximately 260M sentences and 3400M tokens from diverse sources such as
digitised newspapers, official reports, legal e-deposits, social media and Swedish
Wikipedia articles [68].

The specific model used for pre-training was the bert-base-swedish-cased (v1)
model, a BERT trained with the same hyperparameters as presented by Google.
This model includes 12 encoder layers, 768 hidden layer sizes of the feed-forward
network, and 12 attention heads with around 50K vocabulary size. It is also cased,
meaning that there is no change to the input text. The other alternative would be
uncased where the model processes each word as lower case tokens.

3.2.2 Implementation
Here a view of the sentiment model implementation is given. A graphically visuali-
sation can be seen in Figure 3.8.
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Figure 3.8: Visualisation of Model Process

Model 1
For loading the pre-trained KB-BERT model to Python, the Hugging Face’s Trans-
formers API was used as recommended by KB. Hugging Face is an open-source and
platform provider for NLP technologies made by and available to the community,
providing thousands of pre-trained models to perform tasks with text, vision, and
audio [69].

The training data used for each of the Summary and Transcript categories were the
respective Datasetsimple, consisting of only agreed labels from the annotators. This
training set was split into a training and validation set of 90% training and 10%
validation. For the Summary set, a random split was used, while for the Transcripts
a stratified split was implemented due to the large imbalance of classes for the Tran-
script set, as seen in Section 3.1.3.

To apply pre-trained KB-BERT, the training and validation datasets had to be to-
kenised, as described in Section 2.5.3 explaining the input representation of text to
BERT. For tokenisation, the same tokeniser provided by KB-BERT as the model has
a fixed vocabulary and a specific way of handling out-of-vocabulary words. These
were loaded using the class and method AutoTokenizer and from_pretrained()
from Hugging Face Transformers. The method encode_plus was then used to 1)
split text into tokens, 2) add special tokens [CLS], [SEP] and [PAD] to each sen-
tence, 3) convert tokens into indexes of the existing tokeniser vocabulary, 4) pad
and truncate the sentence to a constant length, specified as the maximum length for
input sequence, and lastly 5) create the attention mask. Since using the maximum
length for the input sequence of 512 tokens would have been computationally ex-
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pensive, the number was updated to 194 tokens. This number was found by finding
the longest sentence input sequence from both the Summary and Transcript dataset.

Once the training and validation sets were tokenised, they were passed into the
multi-class BERT classifier (Model 1) with a pre-trained KB-BERT model to extract
the last hidden layer and then a single-hidden-layer feed-forward neural network as
the classifier. For the fine-tuning of the weights and learning rate of the model,
an AdamW optimiser was created, where the weight decay and learning rate were
optimised separately. Additionally, the warmup linear optimiser schedule was used,
where a higher learning rate is set for the initial stages of learning but over time
decreases linearly in order to reach optimum better. At each epoch, the training
performance was measured using the validation dataset with Accuracy and Loss as
the defining metric.

Fine-tuning
Model 1 was also fine-tuned based on Datasetcomplex. This dataset was also tokenised
accordingly as explained in the Section above. Different numbers of epochs, batch
sizes, and learning rates were investigated. Based on the original BERT model [2],
the recommended fine-tuning values were as follows:

Batch size: 16, 32
Learning rate (Adam): 5e-5, 3e-5, 2e-5
Number of epochs: 2, 3, 4

Except for the number of epochs, the hyperparameters followed the original paper.
A set of random combinations of these hyperparameters was chosen as an exhaus-
tive search would have been too time-consuming and not in the scope of technical
possibilities when using Google Colaboratory.

Model 2 - Ensemble Classifier
Once Model 1 was fine-tuned according to the best hyperparameters, it was trained
again on the full dataset consisting of Datasetsimple and Datasetcomplex. See Figure
3.8 for illustration.

As mentioned above, an ensemble classifier, Model 2, was implemented to improve
reliability, especially with the low number of annotations. Therefore, three different
BERT models, Model 2.A, 2.B, and 2.C, based on Model 1 was created using differ-
ent seeds to control randomness and reproducibility. The predicted label was then
determined by the soft majority vote of the three classifiers. The predicted labels
and sentences were then each saved in a list.

To further improve the reliability, Model 2 was trained again on another retrospec-
tively annotated dataset. This dataset was created from the non-annotated dataset,
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where Model 2 was used to predict the full unlabelled set for both Summary and
Transcripts. Then, the sentences on which the three classifiers did not agree were
further checked manually by the authors. Due to the time constraint of this thesis,
only a partial part of the disagreed labels were annotated by the authors using the
same procedures as explained in Section 3.1.2. These later became the retrospec-
tively annotated dataset that was further used to train each of the three classifiers
in Model 2.

3.2.3 Evaluation
Once the fine-tuning and training of the model is completed, the next step is to eval-
uate the multi-class sentiment model. The different metrics used for evaluation were
precision, recall, (macro) F1-score, and Accuracy which are based on the confusion
matrix. More specifically, for the Summaries a weighted average of the F1-score was
used, while for the Transcripts a macro F1-score was applied for evaluation. These
metrics were calculated using the Python sklearn.metrics library. The explana-
tion of each metric can be found in Section 2.6.

In addition to the mathematical evaluation methods, a qualitative evaluation will be
conducted. Since this project is tailored to the end-users needs, they have to evaluate
it over a period of time with different datasets to properly judge the application
approach. Thus, due to the scope of this thesis, only mathematical evaluation will
be discussed.

3.3 Semantic Model
To discover the semantics, the topics the interview documents mentions, two dif-
ferent models were used, NER and a naive String Search. The NER model was
implemented using a pre-trained DL model, while String Search followed a string
matching algorithm to find if a string is found within a larger piece of string or text.
The String Search was implemented as a complement to the NER. The technical
setup is the same as the semantic analysis, where the experiments and models were
carried out on Jupyter Notebooks on the Google Colaboratory platform with an
NVIDIA Tesla K80 GPU and 12GB of RAM.
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3.3.1 Pre-trained Models
NER BERT Model
The pre-trained NER model used was a Swedish BERT model fine-tuned for NER
for Swedish, also developed by KBLAB at KB, the National Library of Sweden
[68]. This model was trained on the Stockholm-Umeå Corpus (SUC) 3.0 dataset
from 2012, which is composed of a collection of Swedish text with approximately
one million tokens and 74,000 sentences [70]. The specific model used was the
bert-base-swedish-cased-ner model, with the same parameters as the BERT
model used for the sentiment analysis. That is 12 encoder layers, 768 hidden layer
sizes of the feed-forward network, and 12 attention heads with around 50K vocabu-
lary size. The model was cased and also trained with whole word masking. For the
NER tagging, eight different entity types were applied, time (TME), organisations
(ORG), personal names (PRS), locations (LOC ), events (EVN ), work art (WRK ),
and measures (MSR), and objects (OBJ ).

3.3.2 Implementation
NER
For NER, the model was loaded using the NER pipeline from HuggingFace. The
model was then used to classify each sentence into different tags. For this use-case
and thesis, only the entity types location (LOC) and organisation (ORG) are of
interest. Therefore, if the sentence contained tokens that were tagged with LOC
and ORG, these were saved in a dictionary with key-value pair of sentence index
numbers and then the individual tokens as values.

String Search
In order to extract the semantic class labels, which were introduced in Section 3.1.1.2,
from the text, a String Search was implemented. The aim of the String Search is,
as can be deduced from the name, to search for certain strings within a text and to
output both the word and the index position. In this work, the String Search was
carried out separately for each class and thus a total of six times.

First, to capture the lemmatised labels of ’unit_sub’,’unit_scale’,’nbr_sub’, and
’room_scale’ in the text, the input text also had to be lemmatised. For the two
other classes (’org’, ’nbr_scale’), the original text was inserted.

Two inputs are entered into the String Search: a list of the labels of interest and a
list of sentences to be analysed. Both input text and labels were also lower cased
so that the word format matches. If the label was found in the sentence, matched
by the string, the index of the position of the sentence in the list, as well as the
label, was saved. Similar to the NER output, these were saved into a dictionary
with key-value pair of sentence index numbers and then the individual tokens as
values.
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3.3.3 Evaluation
In order to evaluate the performance of the NER and String Search model, the given
partially annotated dataset introduced in Section 3.1.3 was used as the target value.
Due to this, only Accuracy is considered in this thematic context. If the target word
is in the word list extracted by the model, the model performance is considered
successful.
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4
Results

This chapter includes a comprehensive explanation of the results obtained by the
different developed classifiers for sentiment and semantic analysis. First, in Section
4.1 performance results from the Sentiment Model are presented from both the
hyperparameter tuning and the predictions on the unlabelled dataset and the final
test set. Then, in Section 4.2, the model performance for the semantic analysis is
described. Lastly, Section 4.3 presents a visualisation of the predicted labels for
both the semantic and sentiment models of the Summary set.

4.1 Sentiment Analysis

4.1.1 Hyperparameter Tuning
For both Summary and Transcripts datasets, Model 1 was hyperparameter tuned
based on their respective Datasetcomplex. The results of the hyperparameters that
were examined can be found in table 4.1. It can be seen that for the Summary
category, the highest F1-score, 0.55, occurs at epoch = 10 and learning rate = 2e-5.
In comparison, it can be seen that for Transcript interviews the highest macro F1-
score, 0.56, occurs at epoch = 10 and learning rate = 5e-5. These best performing
hyperparamenters were then used for three classifiers in Model 2.

Hyperparameters Summary Transcript

epoch learning rate F1 macro F1

10 5e-5 0.51 0.56

10 3e-5 0.44 0.52

10 2e-5 0.55 0.50

8 5e-5 0.44 0.48

8 2e-5 0.45 0.53

4 5e-5 0.51 0.50

4 2e-5 0.40 0.45

Table 4.1: Hyperparameter Tuning Results.

35



4. Results

4.1.2 Prediction of Unlabelled Dataset
Table 4.2 depicts the number of instances that the three classifiers within the Model
2 agreed or disagreed on for the unlabelled dataset.

Summary Transcript Total (%)

Agreed

Negative 1,484 5,654 7,138

Neutral 2,325 26,501 23,826

Positive 997 3,420 4,417

Total 4,786 35,575 40,361 (84.41%)

Disagreed Total 426 7031 7,457 (15.59%)

Grand Total 5,212 42,606 47,818 (100.00%)

Table 4.2: Model Agreements on Unlabelled Set.

Out of the disagreed labels, 301 sentences of the Summary category, and 401 sen-
tences of the Transcript category were annotated again by the authors. Tables 4.3
and 4.4 then show the sentiment classes originally predicted from Model 2 compared
to the new human annotations. These, annotated sentences were retrospectively
used for training the Model 2 again, as explained in the implementation of the se-
mantic model in Section 3.2.2.

Table 4.3 shows that within the Summary interviews, the model was able to cor-
rectly assign 45.45% (50 of 110) as actual negative sentences. In the neutral class,
17.74% (11 of 62) were correctly classified and in the positive class, 27 of 129 sen-
tences (20.93%). Most predicted positive sentences were classified by the model as
neutral, whereas most neutral sentences were labelled as positive. The majority of
negative sentences were assigned to the correct class and performed the best among
the classes.

Model 2

Negative (%) Neutral (%) Positive (%) Total

A
nn

ot
at

or
s Negative 50 (45.45%) 42 18 110

Neutral 15 11 (17.74%) 36 62

Positive 44 58 27 (20.93%) 129

Total 109 111 81 301

Table 4.3: Summary Annotation Results.

Table 4.4 presents the results for the interview Transcripts. It can be seen that of a
total of 93 actually negative sentences, 55 (59.14%) were added to the correct class.
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More than half (57.39%) of the neutral sentences could also be correctly classified.
The same holds for the positive class, where 41 of 78 (52.56%) positive sentences
were correctly classified. It is also noticeable that in the Transcript interviews the
highest number of predictions were made in the respective correct class. Overall,
the negative class performed the best.

Model 2

Negative (%) Neutral (%) Positive (%) Total

A
nn

ot
at

or
s Negative 55 (59.14%) 26 12 93

Neutral 60 132 (57.39%) 38 230

Positive 13 24 41 (52.56%) 78

Total 128 182 91 401

Table 4.4: Transcript Annotation Results.

4.1.3 Evaluation on the Test set
This Section presents the results of the predictions on the test set for the Sum-
mary and Transcript categories made by Model 2 without and with training on the
retrospective annotations. The results are illustrated in a confusion matrix and clas-
sification report for each category and model.

4.1.3.1 Model 2 - without Retrospective Annotated Training

The tables in this Section showcase the performance of Model 2 without the training
of the retrospective annotations from the unlabelled dataset.

To start off, the Summary dataset had an accuracy and weighted F1-score of 0.60
and 0.61, respectively, for the multi-class classification as seen in Table 4.5. More
precisely in terms of accuracy, the model classified the neutral class the best, where
it classified 62.50% of total neutral labels correctly. The positive and negative classes
had a smaller accuracy score of 60.87% and 56.25% each. This is illustrated in Table
4.6. On the other hand, the positive class had a higher precision score (0.82) which
contributed to the highest F1-score of the classes at 0.70. There was a distinct
difference in F1-score compared to the negative and neutral classes each had a low
score of 0.53 and 0.56, due to the low precision of those classes.
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Precision Recall F1 Amount

Negative 0.50 0.56 0.53 16

Neutral 0.50 0.62 0.56 16

Positive 0.82 0.61 0.70 23

Accuracy 0.60 55

Macro Avg 0.61 0.60 0.59 55

Weighted Avg 0.64 0.60 0.61 55

Table 4.5: Summary Classification Report without Retrospective Annotations.

Predicted

Negative (%) Neutral (%) Positive (%) Total

A
ct

ua
l Negative 9 (56.25%) 5 2 16

Neutral 5 10 (62.50%) 1 16

Positive 4 5 14 (60.87%) 23

Total 18 20 17 55

Table 4.6: Summary Test Set Confusion Matrix without Retrospective Annota-
tions.

For the Transcript test set, Model 2 had an overall accuracy of 0.87 and a macro
F1-score of 0.82 (Table 4.7). The neutral sentiment class can be seen to perform the
best with the highest score for accuracy, precision and recall at 0.92, 0.94 and 0.93,
respectively. Correspondingly, the other two sentiment classes also exhibited good
performance scores. In table 4.8, with regard to the accuracy, the negative class
had a score of 80.00%, where 16 out of 20 classes were correctly predicted, while the
positive class had a score of 75.00% (9 of 12 correct predictions).
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Precision Recall F1 Amount

Negative 0.80 0.80 0.80 20

Neutral 0.94 0.93 0.93 54

Positive 0.69 0.75 0.72 12

Accuracy 0.87 86

Macro Avg 0.81 0.83 0.82 86

Weighted Avg 0.88 0.87 0.87 86

Table 4.7: Transcript Classification Report without Retrospective Annotations.

Predicted

Negative (%) Neutral (%) Positive (%) Total

A
ct

ua
l Negative 16 (80.00%) 2 2 20

Neutral 2 50 (92.60%) 2 54

Positive 2 1 9 (75.00%) 12

Total 20 53 13 86

Table 4.8: Transcript Test Set Confusion Matrix without Retrospective Annota-
tions.

4.1.3.2 Model 2 - with Retrospective Annotated training

First, Table 4.9 and Table 4.10 presents the confusion matrix and the corresponding
classification report for the predictions on the Summary dataset. It can be seen that
the model predicted the neutral most accurately. 75.00% were correctly classified in
the neutral class, while positive and negative classes were correctly assigned 69.56%
and 50.00% of the labels, respectively. However, the F1-score was the highest for
the positive class at 0.73, as it had both a high precision and recall performance.
There is, however, a rather negligible difference between the macro and weighted
average of the different scores as the classes were balanced. Overall, the model had
an accuracy performance of 0.65 and a weighted F1-score of 0.65.
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Predicted

Negative (%) Neutral (%) Positive (%) Total
A

ct
ua

l Negative 8 (50.00%) 5 3 16

Neutral 2 12 (75.00%) 2 16

Positive 3 4 16 (69.56%) 23

Total 13 21 21 55

Table 4.9: Summary Test Set Confusion Matrix.

Precision Recall F1 Amount

Negative 0.62 0.50 0.55 16

Neutral 0.57 0.75 0.65 16

Positive 0.76 0.70 0.73 23

Accuracy 0.65 55

Macro Avg 0.65 0.65 0.64 55

Weighted Avg 0.66 0.65 0.65 55

Table 4.10: Summary Classification Report.

Table 4.11 and Table 4.12 depicts the performance of Model 2 on the Transcript test
set, where it can be seen that the overall accuracy of the model was 0.85 while the
macro F1-score was 0.80. More specifically, from the total of 86 sentences, 13 out
of 20 sentences (65.00%) could be correctly classified in the negative class. Also in
the neutral class, the model shows good values: here the majority (96.30%) could
be predicted correctly and therefore performs among the classes the best. In the
positive class, 9 of 12 sentences (75.00%) were correctly assigned. The F1-score
was also the highest for the neutral class at 0.92. However, it should also be noted
that there is a significant difference between the weighted and macro average of the
F1-score, where the class imbalance plays a considerable role in this output.
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Predicted

Negative (%) Neutral (%) Positive (%) Total
A

ct
ua

l Negative 13 (65.00%) 5 2 20

Neutral 0 52 (96.30%) 2 54

Positive 1 2 9 (75.00%) 12

Total 14 59 13 86

Table 4.11: Transcript Test Set Confusion Matrix.

Precision Recall F1 Amount

Negative 0.93 0.65 0.76 20

Neutral 0.88 0.96 0.92 54

Positive 0.69 0.75 0.72 12

Accuracy 0.85 86

Macro Avg 0.83 0.79 0.80 86

Weighted Avg 0.87 0.86 0.86 86

Table 4.12: Transcript Classification Report.

4.2 Semantic Analysis
In this section, the results of the test set of semantic methods (NER and String
Search) are presented. Table 4.13 shows the results of the Summary and Table 4.14,
the results of the Transcripts. It must be emphasised, that in these results only
those labels that were marked in the annotated set are investigated. Table 4.15
shows the number of all labels found per class compared to the annotation.

In Table 4.13 it can be seen that for the Summary interviews the highest value of
NER is in the ’org’ category (0.86%). String search, on the other hand, achieved
an accuracy value of 1 in three (nbr_scale, org, room_scale) of the six classes. The
lowest value is in the category ’unit_sub’ with an accuracy of 0.71%.

Table 4.14 shows that for the Transcript interviews, NER could achieve an accuracy
value of 1 in the category ’org’. The String Search method could only achieve this
result in the categories (org, room_scale) twice in the Transcripts. The lowest value
for the string search is also in the unit_sub category with a value of 0.76%.

As described in the introduction of this section, Table 4.15 shows the comparison
between the annotated labels and the total number of labels that NER and the
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Accuracy Predicted Actual Labels

N
ER

nbr_scale 0.86 6 7

org 0.50 1 2
St

rin
g

Se
ar

ch

nbr_scale 1.00 7 7

org 1.00 2 2

nbr_sub 0.75 6 8

room_scale 1.00 3 3

unit_scale 0.95 19 20

unit_sub 0.71 5 7

Table 4.13: Summary Semantic Results.

Accuracy Predicted Actual Labels

N
ER

nbr_scale 0.69 9 13

org 1.00 1 1

St
rin

g
Se

ar
ch

nbr_scale 0.77 10 13

org 1.00 1 1

nbr_sub 0.80 4 5

room_scale 1.00 9 9

unit_scale 0.93 13 14

unit_sub 0.76 19 25

Table 4.14: Transcript Semantic Results.

string search method could find. As seen, the models may have found more labels
than were actually annotated. The bold numbers highlight the number of additional
labels found by the model. NER was able to find more labels in both categories in
the Transcripts, while in the Summaries more labels were found in one category
(nbr_scale).

The String Search method was extracting additional labels in four classes (org,
room_scale, unit_scale, unit_sub) in the Summaries, whereas in the Transcripts it
found extra labels in only three classes (org, nbr_sub, unit_scale). In total, both
models found more labels than originally given. In the Summary dataset, NER
recorded a +1 label and in the Transcripts +6. String Search detected in the total
of six different classes +19 additional labels in the Summaries and +23 additional
in the Transcripts. The biggest increase in labels happened with the String Search
method for both interviews in the class ’unit_scale’ (+10 Summary, +14 Transcript).
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Summary Transcripts

Actual Model Actual Model
N

ER
nbr_scale 7 9 13 18

org 2 1 1 2

Total 9 10 (+1) 14 20 (+6)

St
rin

g
Se

ar
ch

nbr_scale 7 7 13 11

org 2 3 1 6

nbr_sub 8 7 5 17

room_scale 3 7 9 4

unit_scale 20 30 14 28

unit_sub 7 12 25 24

Total 47 66 (+19) 67 90 (+23)

Table 4.15: Difference between Labels of Model and given Dataset.

4.3 Visualisation for End-Users
As mentioned in the Introduction, the ACE department, also the end-users, could
use tree maps and word clouds for visualising the interview data. This however
did not take into consideration the semantic and sentiment relationship between
people, places and themes. With the predicted semantic and sentiment labels from
the models implemented, the results can be used to help the end-user to investigate
these relationships by transforming the results into visualisation.

Firstly, to clarify, the end-user can be divided into reference and stakeholder groups.
The stakeholders are those who will use the models in their work, while the refer-
ence group consists of members that contribute to the thesis outcome and make sure
that the stakeholder’s needs are satisfied. Therefore, when creating the visualisa-
tions, workshops were facilitated with the reference group to align the expectations
and technical possibilities. A final workshop with the stakeholders will be planned
to explain how to use the visualisation results in depth.

First Draft

In Figure 4.1, a first draft of the visualisation for a selected Summary is shown.
Here, the x-axis represents the number of sentences within the interview. The vi-
sualisation of the semantic models can be seen in the left y-axis and the bar chart.
The stacked bars reflect how many labels of the respective topic were found in which
sentence. The predicted sentiment can be read from the line shown and from the
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right y-axis. A value of -1 represents a negative semantic, 0 a neutral and 1 a positive
one. The visualisation was implemented by using the Python matplotlib library
and graphical decisions, such as colours, where made by the matplotlib stylesheet
’ggplot’.

For example, in the presented figure, it can be seen that numerous labels from the
class unit_scale were found in many sentences. For example, it can be seen that
sentence number nine contains three different classes and a total of four labels. Fur-
thermore, it can be seen that the neutral sentiment class occurs rather little and
positive and negative are represented equally.

Figure 4.1: Draft visualisation

An example of the semantic and sentiment labels found for the sentences can be
seen in Table 4.16 below.

Semantic Labels Sentiment
Labels Sentence

Wiselgrensplatsen,
Centrala Göte-
borg

Positive
Läget är guld, bara fem minuter till Wieselgren-
splatsen och sen ytterligare några minuter in till
centrala Göteborg.

Table 4.16: Model Prediction Results.
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Final Visualisation

After taking into consideration continuous feedback given by the reference group,
the final visualisation of the relationship between the semantic and sentiment ori-
entation and the text is given below in Figure 4.2.

Figure 4.2: Final visualisation

Here, in Figure 4.2, the final visualisation for the same Summary as the draft vi-
sualisation is illustrated. The semantic classes and the number of labels mentioned
within each class and sentence are now shown as a heatmap instead, where the darker
the colour, the more instances of this class’ labels have been mentioned. The colour
bar at the bottom of the graph further describes this range of minimum and the
maximum number of labels found per class per sentence. The x-axis still represents
the number of sentences within the interview, and the right y-axis the Sentiment.
However, the labels of the right y-axis have now been changed to positive, neu-
tral and negative. This visualisation can then take into consideration the difference
between the number of labels as it is scaled based on the colour now. From the
draft visualisation, if some sentences had significantly more labels than others, the
’smaller’ sentence would be drowned out as the graph is not scaled.

This visualisation was implemented by using the Python visualisation libraries
matplotlib and seaborn.

Examples of visualisation for other interview samples can be found in Appendix A.4
and A.5.
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5
Conclusion

In this chapter, first, the methods and results applied in this thesis will be discussed.
Furthermore, the research questions proposed in Section 1.1 will be addressed and
answered in Section 5.2 as well as a discussion of future work.

5.1 Discussion
Two models were developed to classify the sentiment and semantic orientation from
qualitative interviews. This section presents a discussion of the results of the indi-
vidual models.

5.1.1 Assumptions
First and foremost, in regards to the interview dataset provided by the ACE, dif-
ferent assumptions were made for the cleaning and pre-processing of the dataset
as this could have had a significant impact on the training and evaluation of the
models. The main assumption was that all the transcribed interviews contain only
Swedish words. Through a quick manual check when annotating and processing the
datasets, only fully Swedish interviews were found. However, not all 444 interviews
were examined in detail, therefore, in reality, there may have been some interviews
containing English words or are conducted in English. This concerns both the in-
terview datasets that are transcribed as Transcripts and when interview Summaries
contain direct quotes of the interviewees. This may in particular affect the perfor-
mance of the sentiment DL models, as the retrospective annotated dataset may have
included non-Swedish words and fed into the model for training again, which may
not have been accurate.

Another assumption of the dataset is that there is no slang in the different datasets.
This assumption however mainly concerns the semantic model where the String
Search method was performed, as the different semantic target labels did not take
into account their "slang" version.

As mentioned in the methodology, during the pre-processing of the dataset incon-
sistencies in how the interviews were transcribed were found within each Summary
and Transcript dataset. The implementation of the pre-processing and cleaning of
the text was based on the manual check that was performed. It was assumed that
the deviations that were found were the only actual differences between the text and
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that the text would only be structured in these specific ways, but there may have
been some instances where the variances were missed.

Additionally, in terms of the Sentiment model, since the real sentiment target values
were not generated by professional annotators, a key assumption is that the three
derivative classifiers within the Model 2 could be seen as substitutes for annotators.
This is further emphasised in Table 4.2 and Figure 3.6. The three derivative models
agreed on 84.41% and disagreed on 15.59% of the labels, similarly, the two authors
of this paper agreed on 84.40% and disagreed on 15.60%. It can therefore be argued
that the reliability of the three models can be equivalent to humans.

5.1.2 Sentiment Analysis
Table 5.1 presents a Summary of the model performance in terms of accuracy and
F1-score for the different sentiment models. As the final evaluation score of the
models, the Transcript model performed the best with an accuracy of 0.85 and F1-
score of 0.80. The Summary model, on the other hand, only had an accuracy and
F1-score of 0.65. It can also be seen that the final Transcript model performed
worse after adding in the retrospective annotations while the final Summary model
performed better with more annotations. These differences in performance could be
attributed to the amount and class distribution of the datasets used for fine-tuning
and evaluating the models.

Retrospective Annotations

Without With

Accuracy F1-score Accuracy F1-score

Summary 0.60 0.61 0.65 0.65

Transcript 0.87 0.82 0.85 0.80

Table 5.1: Metric Comparison for Sentiment Models.

To further explain, the class distribution of negative, neutral, and positive of the
annotated dataset can be seen to be significantly different for the Summary and
Transcript models. As illustrated in Figure 3.3, the Summary dataset has a bal-
anced distribution between the negative, neutral and positive classes, whilst the
Transcript dataset mainly consists of the neutral class at 66.49%. For that reason,
the weighted average is looked at when evaluating the F1-scores for the Summary,
while the macro F1-score is inspected for Transcripts. This is because all classes are
equally important, no matter the number of instances per class, as such the macro
F1 is used for Transcripts and weighted for Summary. This is further emphasised
in the Classification Reports of the test sets for both models and training datasets
(with or without the Retrospective annotations). There is a negligible difference
between the macro averaged F1-score and the weighted average F1-score for the
Summary datasets, as seen in Table 4.6 and Table 4.9, and therefore, the class dis-
tribution does not have a big impact on the results. On the other hand, as seen in
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the Classification Reports for the Transcript class in Tables 4.8 and 4.11, there is
around a 4-7% difference between the macro and weighted average for the precision,
recall and F1-score. This stresses that the model classifies sentences that belong to
the classes with a larger distribution with higher confidence. In this case, the model
is highly biased towards the neutral class. The neutral class had the highest F1-score
and the highest precision and recall score, at 0.93 and 0.92 for both training sets.

The class distribution may also have an effect on the performance of the models for
the data sets with and without the retrospective annotations. As stated earlier, from
Table 5.1, the Summary model performed better with the additional annotations.
However, the Transcript model performed worse. Referring here to Table 4.11, this
was attributed to the model now predicting five actual negative sentences as neutral,
resulting in a lower precision for the neutral and lower recall for the negative class.
In comparison to Table 4.7 only two actual negatives were predicted as neutral. It
can be argued that with more training instances in the neutral class, the model will
overfit towards the majority class and thus predict the instances as the neutral class.
Consequently, more annotations may not always lead to better results. This also
highlights a weakness of the DL models, where it is a black box and one cannot fully
understand how they predict.

In supervised learning for ML and DL models, the quality and quantity of the target
labels are also important to consider, as the models will learn based on the target
labels provided. In this thesis, for both the Summary and Transcript dataset, the
annotated set does not even reach 2-3% of the total data, as illustrated in Figures
3.1 and 3.2. Moreover, the performance of the sentiment models is all based on the
annotations from the authors as the target value. The annotation process could
thus have influenced the evaluation results. It should be emphasised that the au-
thors do not have the expertise within qualitative coding for social sciences and are
not linguistic experts. Therefore, the validity of the model can be questioned. On
the other hand, in this use-case, whether the model actually performs well or not
depends on the end-user.

5.1.3 Semantic Analysis
For the semantic analysis, a list with a total of 190 labels was provided, which can
be divided into six different classes. In addition, the test set, which contains 141
sentences, was annotated with corresponding labels. Theoretically, each set could
contain between zero and 190 labels, resulting in a total of between zero and 26,790
labels. Since the annotated data set does not represent complete target values, but
merely serves as a sample value, the validity of the results is open to discussion.
Nevertheless, they provide informative insights into the performance of the models,
which are discussed in more detail below.
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Comparing the performance of NER and String Search, it should be noted that only
the classes nbr_scale and org can be compared. This is because NER is only used
to identify the entities LOC and ORG which are the nbr_scale and org semantic
classes, as mentioned in Section 3.3.2. For the Summary Category, Table 4.13 shows
that String Search has an accuracy of 1 in both classes, whereas NER does not reach
this target value. The highest value is 0.86 in the nbr_scale class, whereas in the org
class just half the value of String Search was achieved (0.5 NER, 1 String Search).
The accuracy score may exaggerate its reflection of the poor performance as in terms
of the count of labels, NER did not manage to identify only one label in each class.
However, it can still be concluded that with the given data, String Search performs
better than NER.

Table 4.14 for the Transcripts shows a performance change for NER. Those classes
that performed poorly in the Summaries (org) now have an ideal value of accuracy
= 1. This score has also remained the same for String Search. At the same time,
the value in the previously stronger class (nbr_scale) for NER drops to a value of
0.69. Although the value of String Search in the class nbr_scale also drops, this
model shows an overall higher accuracy value. It can therefore be assumed that
String Search also outperforms NER in the Transcript category.

Possible reasons why NER performed worse than String Search in both interview
categories in the nbr_scale class could be due to the tokenisation of the words by
NER. A thorough investigation revealed that NER divides the word ’centrala Göte-
borg’ into two individual tokens, ’centrala’ and ’Göteborg’. Since the given label is
seen as a single token, the two would not match. As a result, it would be marked
as a missing word and thus lower the accuracy. This could also be the reason why
the evaluation value in the nbr_scale class is significantly lower in the Transcripts
than in the Summaries. In the Summaries, 7 actual labels are given, 6 of which were
found by the model and thus achieved an accuracy value of 0.86. The Transcripts
have an additional four nbr_scale labels and thus a total of 13, of which only 9 were
found and so the accuracy value dropped to 0.69. A possible reason could be that
the additional four words are those that were split up by the model and thus could
not be found.

In general, looking at the overall amount labels that the models found in Table 4.15,
both NER and String Search were able to identify additional labels in the test set.
In the Summary category, NER finds +2 labels in the nbr_scale class, while String
Search finds no additional labels in the same class. On the other hand, in the org
category, NER found one value less than actually given, while String Search finds a
+1 label. Similar performance can be seen in the Transcripts. Here as well, NER
finds more additional labels in nbr_scale and less in org compared to String Search,
whereas it is the other way round for String Search (nbr_scale -2, org +5). Possible
reasons why NER performs worse in org than String Search could be that research
has shown that NER does not recognise the organisation ’Poseidon’. Based on this,
it can be assumed that the word is simply not included in the vocabulary, as in this
case, it is a very specific local company in Gothenburg rather than being part of the
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general scope of a vocabulary. It is interesting to see here that both models perform
differently in the classes and can thus complement each other well.

To conclude this section of the discussion, although NER performs worse overall
than String Search in terms of accuracy for both Summaries and Transcripts for
the given labels, it performs better than String Search when it comes to finding
additional labels for the nbr_scale class. Additionally, Table 4.15 shows that both
models complement each other well when it comes to finding additional information.
It should also be mentioned that the NER has not been fine-tuned and therefore
has potential for improvement, but this would require a data set that has been fully
annotated with the relevant NER tags of the respective domain. Nevertheless, the
results show that String Search serves as a good backbone for not missing additional
labels.

5.2 Conclusion
To conclude, as stated in the Aim in Section 1.1, the original aim of this thesis was
to analyse the interview data provided by the ACE using statistical, ML and/or DL
technologies based on their sentiment and semantics. The following conclusion will
thus be addressed through the research questions presented in Section 1.1. For this
purpose, the sub-questions are answered first, from which the answer to the main
research question can be derived.

Sub-question: 1) Which state-of-art algorithms can be adopted and
what are the pros and cons?

For the semantic analysis of this thesis, BERT was implemented (see Chapter 3) and
its performance was investigated in Chapter 4. One advantage of BERT and the
introduced Hugging Face library is that numerous pre-trained models are available.
However, due to the fact that the data in this thesis used the Swedish language, it
limits the number of options. Although pre-trained models can be used very well in
their original state, a lot of annotated data is needed to fine-tune and adapt them
to the domain. As shown in Section 3.1.2, this, in turn, requires qualified staff and
concrete rules, as obstacles can arise in label annotation. The model is only as reli-
able as the annotators of the target labels. A similar problem occurs when using the
NER method. Again, a fully detailed annotated dataset is needed to fit the model
to the domain. However, as discussed in Section 3.3.3 it was not possible within the
scope of this thesis. In addition, the String Search method was implemented, which
serves as a backbone to NER and whose performance was discussed in Section 5.1.2
of Chapter 5.

To answer the sub-question finally, in this thesis we have shown that the implemen-
tation of BERT, NER and the String Search is one successful way to extract the
sentiment and semantics from interview data.
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Sub-question 2) How can we visualise the semantic and sentiment
analysis of interview data?

The answer to this sub-question is given in Section 4.3. As requested by the end-user,
the sentiment and semantics are visualised for each individual interview. Generally,
it can be stated that all information is presented within one image. For the technical
implementation, the Python library matplotlib was used.

Research Question: How can state-of-art techniques be adjusted and
applied to classify sentiment and semantic orientation from
qualitative interviews, in order to provide city planners and

researchers with an accurate overview of the data?

Accordingly, the answer to the final research question is partially included in sub-
question 1 and 2. Overall, to implement state-of-art techniques to classify sentiment
and semantic orientation from qualitative interviews, it is important to adapt the
model accordingly to the given data. This happens through steps such as data pre-
processing and cleaning, model fine-tuning, and proper evaluation. An important
factor in the performance of the models is based on the given dataset, as DL models
are heavily data-driven. Specifically, accurate target values are needed to properly
fine-tune. In this thesis, for the sentiment model and semantic NER model, BERT
was used as the core algorithm to train the models. Additionally, due to missing
real semantic target values, String Search was implemented in the semantic model
as a backbone method.

5.2.1 Future Work
In terms of future work, in this project, there are some areas of improvement that
can be made on the dataset as well as the individual sentiment and semantic analysis.

Firstly, the main reason why interviews were conducted to uncover the perception is
to avoid excluding certain demographics. An alternative approach would have been
to only include data from online sources, such as social media. However, this would
lead to social and economic exclusion. For example, this would assume that every
person in the urban area would have digital access as well as the know-how of using
digital products. Nevertheless, adding online data could be a course of action that
can be further investigated.

Second, a proper and larger annotated dataset for both sentiment and semantic clas-
sifiers would most probably increase the training and evaluation performance. That
is, using expert knowledge to annotate and label the dataset would decrease the
overall human error that was created in this project. To continue the investigation
on a sentence level, the data has to be split accordingly. Furthermore, each sentence
should be labelled with the respective sentiment (negative, positive, neutral) and
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the semantic labels (house, room, etc.) if they occur within the text.

Third, when creating this annotated dataset, it is also important to take into con-
sideration the way the interview documents are transcribed. As mentioned in the
Data Pre-processing and also Assumptions Sections, the interview data obtained
did not follow a strict format making the cleaning and pre-processing of the data
more complex and tedious. Therefore, for future work, it may be good to consider
transcribing the interviews in a standard format, so that all are transcribed in the
same uniform way whether it is done by one or more people. This way, the data
could be more structured and informative for both the analysis and use in different
ML and DL techniques. With less variation and assumptions made about the un-
derlying interview data, the reliability and validity of the results could also be seen
to increase.

Fourth, as mentioned in the discussion, the semantic NER models could be fine-
tuned if there is data that would allow for training in this specific domain. For
example, by including the other semantic classes such as nbr_sub, room_scale,
unit_scale and unit_sub. However, this data would need to be annotated on a
word-level, where each mention of the entity has to be tagged in the sentence.

Fifth, for the sentiment analysis, Transcript training and test set could contain a
more equal distributed data. Although an appropriate evaluation metric such as
the macro F1 was used to assess the results of the classes equally, the model tends
to overfit towards the largest sentiment class and therefore might affect the result
more than assumed.

Sixth, the sentiment model is currently only based on one specific pre-trained BERT
model, the KB-BERT. Other pre-trained BERT models on the Swedish corpus could
be investigated and used for further exploration.

Lastly, another area for investigation would be to fine-grade the analysis from a
sentence to a word level. Here, one could research the word relationship to other
words, for example, using aspect-based sentiment analysis and also perform word
sense disambiguation. However, this would mean that a more specific and correctly
labelled dataset would be needed where targets and other grammatical indicators
are annotated for the full text.

53



5. Conclusion

54



Bibliography

[1] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in neural
information processing systems, vol. 30, 2017.

[2] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of
deep bidirectional transformers for language understanding,” arXiv preprint
arXiv:1810.04805, 2018.

[3] J. Hirschberg and C. D. Manning, “Advances in natural language processing,”
Science, vol. 349, no. 6245, pp. 261–266, 2015.

[4] H. Zhang, W. Gan, and B. Jiang, “Machine learning and lexicon based methods
for sentiment classification: A survey,” in 2014 11th web information system
and application conference, pp. 262–265, IEEE, 2014.

[5] S. Minaee, N. Kalchbrenner, E. Cambria, N. Nikzad, M. Chenaghlu, and J. Gao,
“Deep learning–based text classification: a comprehensive review,” ACM Com-
puting Surveys (CSUR), vol. 54, no. 3, pp. 1–40, 2021.

[6] “68% of the world population projected to live in urban areas by
2050, says un | un desa department of economic and social af-
fairs.” https://www.un.org/development/desa/en/news/population/
2018-revision-of-world-urbanization-prospects.html, May 2018.

[7] M. A. Kuddus, E. Tynan, and E. McBryde, “Urbanization: a problem for the
rich and the poor?,” Public health reviews, vol. 41, no. 1, pp. 1–4, 2020.

[8] “Urban planning.” https://smartcitysweden.com/focus-areas/
urban-planning/, May 2021.

[9] L. Carmichael, T. G. Townshend, T. B. Fischer, K. Lock, C. Petrokofsky,
A. Sheppard, D. Sweeting, and F. Ogilvie, “Urban planning as an enabler
of urban health: challenges and good practice in england following the 2012
planning and public health reforms,” Land use policy, vol. 84, pp. 154–162,
2019.

[10] M. Selim, “The effects of planned urban development on the comfort of healthy
urban living,” in 2021 Third International Sustainability and Resilience Con-
ference: Climate Change, pp. 286–292, IEEE, 2021.

[11] H. Barton and M. Grant, “Urban planning for healthy cities,” Journal of urban
health, vol. 90, no. 1, pp. 129–141, 2013.

[12] B. Giles-Corti, A. Vernez-Moudon, R. Reis, G. Turrell, A. L. Dannenberg,
H. Badland, S. Foster, M. Lowe, J. F. Sallis, M. Stevenson, et al., “City planning
and population health: a global challenge,” The lancet, vol. 388, no. 10062,
pp. 2912–2924, 2016.

55

https://www.un.org/development/desa/en/news/population/2018-revision-of-world-urbanization-prospects.html
https://www.un.org/development/desa/en/news/population/2018-revision-of-world-urbanization-prospects.html
https://smartcitysweden.com/focus-areas/urban-planning/
https://smartcitysweden.com/focus-areas/urban-planning/


Bibliography

[13] H. S. Andersen, “Why do residents want to leave deprived neighbourhoods?
the importance of residents’ subjective evaluations of their neighbourhood and
its reputation,” Journal of Housing and the Built Environment, vol. 23, no. 2,
pp. 79–101, 2008.

[14] C. L. Ambrey, C. M. Fleming, and M. Manning, “Perception or reality, what
matters most when it comes to crime in your neighbourhood?,” Social indicators
research, vol. 119, no. 2, pp. 877–896, 2014.

[15] G. Liu and J. Guo, “Bidirectional lstm with attention mechanism and convo-
lutional layer for text classification,” Neurocomputing, vol. 337, pp. 325–338,
2019.

[16] Q. T. Ain, M. Ali, A. Riaz, A. Noureen, M. Kamran, B. Hayat, and A. Rehman,
“Sentiment analysis using deep learning techniques: a review,” Int J Adv Com-
put Sci Appl, vol. 8, no. 6, p. 424, 2017.

[17] A. Gasparetto, M. Marcuzzo, A. Zangari, and A. Albarelli, “A survey on text
classification algorithms: From text to predictions,” Information, vol. 13, no. 2,
p. 83, 2022.

[18] K. Kowsari, K. Jafari Meimandi, M. Heidarysafa, S. Mendu, L. Barnes, and
D. Brown, “Text classification algorithms: A survey,” Information, vol. 10,
no. 4, p. 150, 2019.

[19] J. Howard and S. Ruder, “Universal language model fine-tuning for text classi-
fication,” arXiv preprint arXiv:1801.06146, 2018.

[20] S. Poria, E. Cambria, and A. Gelbukh, “Aspect extraction for opinion mining
with a deep convolutional neural network,” Knowledge-Based Systems, vol. 108,
pp. 42–49, 2016.

[21] N.-C. Chen, M. Drouhard, R. Kocielnik, J. Suh, and C. R. Aragon, “Using ma-
chine learning to support qualitative coding in social science: Shifting the focus
to ambiguity,” ACM Transactions on Interactive Intelligent Systems (TiiS),
vol. 8, no. 2, pp. 1–20, 2018.

[22] M. Parmar, B. Maturi, J. M. Dutt, and H. Phate, “Sentiment analysis on in-
terview transcripts: An application of nlp for quantitative analysis,” in 2018
International Conference on Advances in Computing, Communications and In-
formatics (ICACCI), pp. 1063–1068, IEEE, 2018.

[23] M. Rambocas, J. Gama, et al., “Marketing research: The role of sentiment
analysis,” tech. rep., Universidade do Porto, Faculdade de Economia do Porto,
2013.

[24] G. Tsoumakas and I. Katakis, “Multi-label classification: An overview,” In-
ternational Journal of Data Warehousing and Mining (IJDWM), vol. 3, no. 3,
pp. 1–13, 2007.

[25] C. S. Khoo and S. B. Johnkhan, “Lexicon-based sentiment analysis: Compar-
ative evaluation of six sentiment lexicons,” Journal of Information Science,
vol. 44, no. 4, pp. 491–511, 2018.

[26] A. Abirami and V. Gayathri, “A survey on sentiment analysis methods and
approach,” in 2016 Eighth International Conference on Advanced Computing
(ICoAC), pp. 72–76, IEEE, 2017.

56



Bibliography

[27] P. Qi, Y. Zhang, Y. Zhang, J. Bolton, and C. D. Manning, “Stanza: A python
natural language processing toolkit for many human languages,” arXiv preprint
arXiv:2003.07082, 2020.

[28] D. Khyani, B. Siddhartha, N. Niveditha, and B. Divya, “An interpretation of
lemmatization and stemming in natural language processing,” Shanghai Ligong
Daxue Xuebao/Journal of University of Shanghai for Science and Technology,
vol. 22, pp. 350–357, 2020.

[29] H. H. Do, P. Prasad, A. Maag, and A. Alsadoon, “Deep learning for aspect-
based sentiment analysis: a comparative review,” Expert Systems with Appli-
cations, vol. 118, pp. 272–299, 2019.

[30] B. Liu, “Sentiment analysis and opinion mining,” Synthesis lectures on human
language technologies, vol. 5, no. 1, pp. 1–167, 2012.

[31] Sonia, “Opinion mining techniques and its applications: A review,” in Proceed-
ings of First International Conference on Computing, Communications, and
Cyber-Security (IC4S 2019) (P. K. Singh, W. Pawłowski, S. Tanwar, N. Ku-
mar, J. J. P. C. Rodrigues, and M. S. Obaidat, eds.), (Singapore), pp. 549–559,
Springer Singapore, 2020.

[32] T. A. Rana and Y.-N. Cheah, “Aspect extraction in sentiment analysis: com-
parative analysis and survey,” Artificial Intelligence Review, vol. 46, no. 4,
pp. 459–483, 2016.

[33] Y. Liu, X. Huang, A. An, and X. Yu, “Arsa: a sentiment-aware model for
predicting sales performance using blogs,” in Proceedings of the 30th annual
international ACM SIGIR conference on Research and development in infor-
mation retrieval, pp. 607–614, 2007.

[34] M. Joshi, D. Das, K. Gimpel, and N. A. Smith, “Movie reviews and revenues:
An experiment in text regression,” in Human language technologies: The 2010
annual conference of the North American chapter of the Association for Com-
putational Linguistics, pp. 293–296, 2010.

[35] S. Asur and B. A. Huberman, “Predicting the future with social media,” in 2010
IEEE/WIC/ACM international conference on web intelligence and intelligent
agent technology, vol. 1, pp. 492–499, IEEE, 2010.

[36] W. Zhang and S. Skiena, “Trading strategies to exploit blog and news senti-
ment,” in Fourth international aAAI conference on weblogs and social media,
2010.

[37] A. Yadav and D. K. Vishwakarma, “Sentiment analysis using deep learning
architectures: a review,” Artificial Intelligence Review, vol. 53, no. 6, pp. 4335–
4385, 2020.

[38] R. Catelli, S. Pelosi, and M. Esposito, “Lexicon-based vs. bert-based sentiment
analysis: A comparative study in italian,” Electronics, vol. 11, no. 3, p. 374,
2022.

[39] S. T. Kokab, S. Asghar, and S. Naz, “Transformer-based deep learning models
for the sentiment analysis of social media data,” Array, p. 100157, 2022.

[40] A. U. Rehman, A. K. Malik, B. Raza, and W. Ali, “A hybrid cnn-lstm model
for improving accuracy of movie reviews sentiment analysis,” Multimedia Tools
and Applications, vol. 78, no. 18, pp. 26597–26613, 2019.

[41] N. Palm, “Sentiment classification of swedish twitter data,” 2019.

57



Bibliography

[42] F. Wu and Y. Huang, “Sentiment domain adaptation with multiple sources,” in
Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 301–310, 2016.

[43] J. Brownlee, Deep learning for natural language processing: develop deep learn-
ing models for your natural language problems. Machine Learning Mastery,
2017.

[44] S. A. Salloum, R. Khan, and K. Shaalan, “A survey of semantic analysis ap-
proaches,” in The International Conference on Artificial Intelligence and Com-
puter Vision, pp. 61–70, Springer, 2020.

[45] G. for Geeks, “Understanding semantic analysis – nlp,” 2021.
[46] R. Navigli, “Word sense disambiguation: A survey,” ACM computing surveys

(CSUR), vol. 41, no. 2, pp. 1–69, 2009.
[47] J. Leng and P. Jiang, “A deep learning approach for relationship extraction

from interaction context in social manufacturing paradigm,” Knowledge-Based
Systems, vol. 100, pp. 188–199, 2016.

[48] J. Huang, “Ce standard documents keyword extraction and comparison between
different machinelearning methods,” 2018.

[49] S. Beliga, “Keyword extraction: a review of methods and approaches,” Univer-
sity of Rijeka, Department of Informatics, Rijeka, vol. 1, no. 9, 2014.

[50] S. Rose, D. Engel, N. Cramer, and W. Cowley, “Automatic keyword extraction
from individual documents,” Text mining: applications and theory, vol. 1, pp. 1–
20, 2010.

[51] S. Ghannay, A. Caubriere, Y. Esteve, A. Laurent, and E. Morin, “End-to-end
named entity extraction from speech,” arXiv preprint arXiv:1805.12045, 2018.

[52] C. Lothritz, K. Allix, L. Veiber, T. F. Bissyandé, and J. Klein, “Evaluating
pretrained transformer-based models on the task of fine-grained named entity
recognition,” in Proceedings of the 28th International Conference on Computa-
tional Linguistics, pp. 3750–3760, 2020.

[53] J. Li, A. Sun, J. Han, and C. Li, “A survey on deep learning for named entity
recognition,” IEEE Transactions on Knowledge and Data Engineering, vol. 34,
no. 1, pp. 50–70, 2020.

[54] A. Goyal, V. Gupta, and M. Kumar, “Recent named entity recognition and clas-
sification techniques: a systematic review,” Computer Science Review, vol. 29,
pp. 21–43, 2018.

[55] V. Yadav and S. Bethard, “A survey on recent advances in named entity recog-
nition from deep learning models,” arXiv preprint arXiv:1910.11470, 2019.

[56] P. Sun, X. Yang, X. Zhao, and Z. Wang, “An overview of named entity recogni-
tion,” in 2018 International Conference on Asian Language Processing (IALP),
pp. 273–278, IEEE, 2018.

[57] A. P. Quimbaya, A. S. Múnera, R. A. G. Rivera, J. C. D. Rodríguez, O. M. M.
Velandia, A. A. G. Peña, and C. Labbé, “Named entity recognition over elec-
tronic health records through a combined dictionary-based approach,” Procedia
Computer Science, vol. 100, pp. 55–61, 2016.

[58] K. Mishev, A. Gjorgjevikj, I. Vodenska, L. T. Chitkushev, and D. Trajanov,
“Evaluation of sentiment analysis in finance: from lexicons to transformers,”
IEEE access, vol. 8, pp. 131662–131682, 2020.

58



Bibliography

[59] J. Alammar, “The illustrated transformer,” 2018.
[60] D. Jurafsky and J. H. Martin, “Speech & language processing,” 2021.
[61] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-

nition,” in Proceedings of the IEEE conference on computer vision and pattern
recognition, pp. 770–778, 2016.

[62] A. Hassan and A. Mahmood, “Convolutional recurrent deep learning model for
sentence classification,” IEEE Access, vol. 6, pp. 13949–13957, 2018.

[63] Z. Cao, S. Li, Y. Liu, W. Li, and H. Ji, “A novel neural topic model and
its supervised extension,” in Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 29, 2015.

[64] A. Géron, Hands-on machine learning with Scikit-Learn, Keras, and Tensor-
Flow: Concepts, tools, and techniques to build intelligent systems. " O’Reilly
Media, Inc.", 2019.

[65] Z. C. Lipton, C. Elkan, and B. Narayanaswamy, “Thresholding classifiers to
maximize f1 score,” arXiv preprint arXiv:1402.1892, 2014.

[66] “Python package index - pypi.” https://pypi.org/.
[67] C. Tran, “Tutorial: Fine-tuning bert for sentiment analysis - by skim ai.” https:

//skimai.com/fine-tuning-bert-for-sentiment-analysis/, Dec 2020.
[68] M. Malmsten, L. Börjeson, and C. Haffenden, “Playing with words at

the national library of sweden–making a swedish bert,” arXiv preprint
arXiv:2007.01658, 2020.

[69] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac,
T. Rault, R. Louf, M. Funtowicz, et al., “Huggingface’s transformers: State-of-
the-art natural language processing,” arXiv preprint arXiv:1910.03771, 2019.

[70] S. University and U. University, “Stockholm-umeå corpus 3.0.” https://
spraakbanken.gu.se/en/resources/suc3, 2012.

59

https://pypi.org/
https://skimai.com/fine-tuning-bert-for-sentiment-analysis/
https://skimai.com/fine-tuning-bert-for-sentiment-analysis/
https://spraakbanken.gu.se/en/resources/suc3
https://spraakbanken.gu.se/en/resources/suc3


Bibliography

60



A
Appendix

A.1 Example of Interview Transcript
Telefonintervju med PXXX 2021-05-11
Samtalets längd: 6 minuter
Intervjuare: XYZ
Ljudfil finns

XYZ: Varför valde du att flytta från Träskilsgatan?
För att jag köpt ett hus
XYZ: Bor du ensam eller är det flera i hushållet?
Jag bor själv.
XYZ: Har det något med renoveringen att göra att du flytta just nu?
Jag vet inte vad det är för renovering du pratar om.
XYZ: På Träskilsgatan har de väl bytt fönster eller håller på att byta fönster, och
sedan ska man göra en stamrenovering och renovera badrummen.
Det visste jag faktiskt inte.
XYZ: Det är ganska stort. Det kan hända att de har börjat i en ände och inte
hunnit kommit dit där du bor ännu.
Ok det fick jag ingen information om när jag bodde där.
XYZ: Så du har redan flyttat?
Ja.
XYZ: Får jag lov att fråga vart du köpt hus någonstans?
Varberg.
XYZ: Så då är det jobb och andra saker som har bytts också då?
Jag jobbar fortfarande i Göteborg.
XYZ: Jag förstår. Det blir pendling i stället.
Ja det kan man säga.
XYZ: Då vet du inte om man skulle göra något för att spara energi när man ren-
overade vid Träskilsgatan.
Nej jag flyttade i slutet på februari och då hade jag inte hört något om fönster eller
stambyte. Den lägenheten som jag bodde i var ganska nedgången. Jag vet ingenting
om renoveringarna tyvärr.
XYZ: Hur stor var lägenheten som du flyttade ifrån?
Den var 52 någonting kvadratmeter.
XYZ: En tvåa. Har du större nu när du har köpt hus?
XYZ: Är det högre kostnader nu än vad det var innan?
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Ja det är högre kostnader nu än det var innan. Det var ganska billig hyra där på
Träskilsgatan.
XYZ: Är det någonting du kommer sakna från träskilsgatan?
Nej det tror jag inte. Läget var ju bra, men annars tror jag inte att jag kommer
sakna något.
XYZ: Vi brukar ställa lite demografiska frågor till vår studie. Har du möjlighet att
svara på hur gammal du är, vilken sysselsättning du har och din utbildningsnivå?
Jag är 35 år gammal. Anställd på heltid. Har gått gymnasiet och eftergymnasial
yrkesutbildning.
XYZ: Var utbildningen 1,5 år eller 3?
Den var 1,5.
XYZ: Var det någon anledning till att du flyttade till Varberg? Hade du några
kontakter där redan eller var det där du hittade något som verkade trevligt?
Jag tycker det är fint i Varberg och det är trevligt att vara nära naturen.
XYZ: Jag ska inte störa dig mycket mer för du kände inte till renoveringen så mycket.
Du är helt anonym i denna studie och har fått nummer 441. Vi har bara din gamla
adress här och vet inte om du vill att vi skickar dig någon information om vår studie.
I så fall behöver jag en ny postadress eller möjligtvis en e-postadress.
Nej jag är inte intresserad faktiskt om jag ska vara ärlig.
XYZ: Förstår det eftersom vi mest fokuserar på de som flyttar på grund av ren-
overingen. Det är intressant för vi har fått ett antal adresser och då behöver vi veta
de olika anledningarna till att folk flyttar.
Vad finns det för mål med detta?
XYZ: Det finns en debatt om att hyresgäster känner sig bortträngda när det ren-
overas.
För att det blir dyrare då eller?
XYZ: Exakt. För att det blir dyrare, men också andra anledningar som exempelvis
störningar. Vi har en del sådana också som flyttar bara därför. Jag får tacka dig
för att du tog dig tid att svara på detta och önska dig lycka till i det nya boendet.
Ja tack ska du ha.
XYZ: Ha det fint!
Hej.

A.2 Example of Interview Summary
PXX 181029

Telefonintervju då personen är avflyttad och inte har bott i lägenheten på ett år.

PXX bor i Västerås sedan ett år tillbaka och har under tiden hyrt ut lägenheten till
vänner. De behövde den dock inte längre och därför säger hon upp den.

Hon skaffade lägenheten i Frölunda 2012. Hon hade då köat länge, i mer än fem
år, och tycker att hon hade tur som fick den. Hon var den första tiden i köandet
student men hade sen fått jobb och inkkomst och tror att det spelade in i att hon
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fick den.

Hon tyckte mycket om lägenheten, en trea på 68 m2. Läget nära Frölunda torg var
bra, en stor omsluten innergård gjorde det lugnt och tyst. Det känns nära till allt,
både med buss och spårvagn.

Från början bodde hon där med sin sambo, men när det tog slut behöll hon lä-
genheten. Nu har hon flyttat till Västerås och flyttat in till sin nye kille i en ägd
lägenhet och bildat familj. Hon kommer inte att flytta tillbaka till Göteborg. Kost-
naden är ungefär densamma för det nya boendet som för det gamla.

I lägenheten har hon tapetserat om det lilla sovrummet och bett Bostadsbolaget att
tapetsera det stora. Det var slitet. Lägenheten var annars inte renoverad så länge
hon bodde där och när hon pratat med andra i huset har det inte varit renoverat på
många år. Hon har hört att det ska renoveras, kanske kök och bad, men det är ok-
lart när det ska hända. Hon är positiv till renoveringen. Det behöver fräschas upp.
Vissa har renoverat själva menar hon, de som har råd och inte orkar vänta på att
allt renoveras. Tittar man på bottenplan kan man se att vissa har renoverat köken t
ex. Annars har Bostadsbolaget bara renoverat om man bett om något särskilt eller
om det har blivit något fel, t ex vattenläckor. Hon har inte hört det pratas om oro
för högre hyror i samband med renovering.

Bostadsbolaget har funkat jättebra, särskilt kvartersvärden. De har alltid ställt upp.

Området känns tryggt. Hållplatserna efter Frölunda torg åker man helst inte efter
att det blivit mörkt och går inte ensam där på kvällen.

A.3 Semantic Class Labels
Housing related organisations (org):
[’BB’, ’Bostadsbolaget’, ’Västra Linden’, ’Gravlunds’, ’Familjebostäder’, ’Poseidon’, ’Vester-
staden’]

Physical components within a unit (unit_sub):
[’frys’, ’fasad’, ’spis’, ’bovärd’, ’kakel’, ’hiss’, ’balkong’, ’tap’, ’värme’, ’ventilation’, ’trap-
phus’, ’halvtrappa’, ’golv’, ’kökslucka’, ’kyl’, ’fläkt’, ’varmvatten’, ’vägg’, ’hyresgäst’, ’kyl-
skåp’, ’fönster’, ’energihushålla’, ’golv’, ’stambyte’, ’garage’, ’bricka’, ’rör’]

Housing units (unit_scale):
[’bostadsrätt’, ’kolonistuga’, ’hus’, ’bottenplan’, ’byggnad’, ’lägenhet’, ’lägenhetshus’, ’provlä-
genhet’, ’rum’, ’hyresrätt’ ]

Objects belonging to the neighbourhood (nbr_sub):
[’natur’, ’promenera’, ’underhållning’, ’fasad’, ’kollektivtrafik’, ’bus’, ’kollektiv’, ’grann’,
’utemiljö’, ’hunddagmatte’, ’förskola’, ’grusgång’]
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Rooms of a unit (room_scale):
[’matrum’, ’stam’, ’badrum’, ’sovrum’, ’källare’, ’garderob’, ’tvättstuga’, ’vardagsrum’,
’kök’, ’hall’, ’trapphus’, ’balkong’, ’miljörum’, ’rum’, ’vind’]

Neighbourhoods in Gothenburg (nbr_scale):
[’Stigberget’, ’Skärgården’, ’Kvillebäcken’, ’Frölunda Torg’, ’Vasastaden’, ’Kaverös’, ’Annedal’,
’Smörslottsgatan’, ’Länsmansgården’, ’Grimmered’, ’Linnarhult’, ’Hisingen’, ’Eriksbo’,
’Kannebäck’, ’Grevegården’, ’Hjällbo’, ’Svartedalen’, ’Långedrag’, ’Skattegården’, ’Gam-
lestaden’, ’Centrala Göteborg’, ’Södra Kortedala’, ’Näverlursgatan’, ’Sanna’, ’Brunnsbo’,
’Tuve’, ’Kärralund’, ’Järnbrott’, ’Gårdstensberget’, ’Beväringsgatan’, ’Inom Vallgraven’,
’Vårmånadsgatan’, ’Lunden’, ’Mölndal’, ’Ramberget’, ’Slättadamm’, ’Norra Kortedala’,
’Tofta’, ’Olskroken’, ’Majorna’, ’Askim’, ’Lundby’, ’Skogome’, ’Överås’, ’Bratthammar’,
’Kalendervägen’, ’Östra Bergsjön’, ’Redbergslid’, ’Västra Bergsjön’, ’Bergum’, ’Johan-
neberg’, ’Säve’, ’Björlanda’, ’Kärra’, ’Högsbohöjd’, ’Södra Biskopsgården’, ’Jättesten’,
’Näset’, ’Skår’, ’Hovås’, ’Björkekärr’, ’Kyrkby’, ’Masthugget’, ’Hammarkullen’, ’Norra
Biskopsgården’, ’Arendal’, ’Landala’, ’Agnesberg’, ’Torpa’, ’Stampen’, ’Doktor Westrings
gata’, ’Husargatan’, ’Kville’, ’Eketrägatan’, ’Krokslätt’, ’Guldheden’, ’Hjuvik’, ’Nolered’,
’Skanstorget’, ’Haga’, ’Långängen’, ’Kortedala’, ’Bagaregården’, ’Änggården’, ’Skåne’,
’Flatås’, ’Ängås’, ’Gunnilse’, ’Kungsladugård’, ’Gårdsten’, ’Lorensberg’, ’Billdal’, ’Olivedal’,
’Lövgärdet’, ’Utby’, ’Jättestensgatan’, ’Ruddalen’, ’Rambergsstaden’, ’Guldringen’, ’Högsbo’,
’Kärrdalen’, ’Fiskebäck’, ’Kallebäck’, ’Angereds Centrum’, ’Kyrkbyn’, ’Rödbo’, ’Heden’,
’Hagen’, ’Skälltorp’, ’Eriksberg’, ’Lindholmen’, ’Backa’, ’Rannebergen’, ’Skäpplandsgatan’,
’Wieselgrensplatsen’, ’Kålltorp’, ’Härlanda’, ’Önnered’, ’Högsbotorp’]

A.4 Additional Visualisations of Interview Docu-
ments

Figure A.1: Heatmap for Summary Version B
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Figure A.2: Heatmap for Interview

A.5 Descriptive Analysis of Semantic Class La-
bels

Figure A.3: Label Distribution for Summary Version B

Figure A.4: Label Distribution for Interview
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