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Abstract
Poverty eradication is an inexorable process in human growth [21], with poverty esti-
mation being the first and most important stage. Identifying strategies for poverty
reduction programs and distributing resources appropriately requires determining
the poverty levels of distinct places throughout the world. However, trustworthy
data on global economic livelihoods are scarce, particularly in poor countries, mak-
ing it difficult to provide programs and track and evaluate success. This is partly
since this information is gathered through time-consuming and costly door-to-door
surveys. Furthermore, survey data includes large gaps, especially in densely popu-
lated countries like India. Therefore, we use overhead satellite imagery that contains
characteristics that make it possible to estimate the region’s poverty level along with
the survey data. In this work, we develop deep learning models that can predict a re-
gion’s poverty level from both DHS survey data and overhead satellite images. This
study makes use of both daytime and nighttime imagery in different combinations
and analyzes the performance. Poverty prediction studies are mostly focused on
datasets from Africa, and very few studies have used a dataset from India. There-
fore, in this, thesis, we train a Single Frame model with two deep CNNs having
ResNet-18 architecture to predict the average cluster wealth index which is an in-
dicator of poverty given a satellite image of the cluster using DHS survey data and
satellite imagery.

Keywords: IWI index, Deep CNN, poverty, ResNet-18, Deep Learning, multispectral
images, nightlight images, India, health, and living standards.
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1
Introduction

Poverty is defined as a state or condition in which a person or a group lacks the
financial resources and requirements for a comfortable living [46]. Poverty-stricken
individuals and families may lack enough shelter, safe drinking water, nutritious
food, and medical services. When labour wages are insufficient to meet basic hu-
man needs, it leads to a high prevalence of illiteracy, poor healthcare, and a lack
of financial resources. Poverty has a significant impact on people’s health due to a
lack of adequate food, decent clothing, medical services, and sanitary living circum-
stances [40]. Poverty is associated with undesirable circumstances such as substan-
dard housing, homelessness, limited food and nutrition insecurity, poor child care,
lack of access to health care, dangerous neighborhoods, and overcrowded classrooms,
all of which harm children [19].
Widespread chronic poverty and less economic development than other countries are
the problems with the underdeveloped countries [12]. The phrase "underdeveloped
country" is unofficial, however, the United Nations classifies countries that qual-
ify as underdeveloped as developing countries or least-developed countries (LDCs)
[7]. India is one of the developing countries listed by the United Nations [1] and
home to 26% of the world’s poor population in 2012 [36]. Poverty reduction, more
work opportunities, and reduced income disparities are all critical conditions for
development[44]. The United Nations has defined 17 Sustainable Development Goals
(SDGs). The first goal is to eliminate extreme poverty for all people by 2030.
For years, international organizations like The World Bank and developing coun-
tries like India spent a significant amount of resources on poverty measurement and
analysis [20]. Measuring and analyzing the poverty level in various developing and
underdeveloped countries can help government and non-government organizations
to interpret which poverty reduction strategy has succeeded and which are not suc-
cessful. These developing and underdeveloped countries have a rapidly changing
economic situation [15]. Poverty measurement aids developing countries in evalu-
ating the efficacy of their programs and guiding their development plan. One of the
typically used indices for measuring the economic positions of households is wealth
indices. To measure the economic condition of a household, a scale called Interna-
tional Wealth Index (IWI) is used. IWI is a reliable and easy-to-understand metric
for comparing the economic condition of a household. It also helps to understand
the wealth distribution across the country. IWI ranges from 0 to 100, with 0 indicat-
ing households with no assets and the poorest housing quality and 100 representing
households with all assets and the best housing quality [47]. Demographic and
Health Surveys (DHS) help us to get a wide range of monitoring and impact evalu-
ation indicators nationally with help of representative household surveys [50]. DHS
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1. Introduction

survey provides IWI for all developing countries. DHS surveys for India from 2015
to 2016 are available. However, these surveys are not complete and are done only
for a small sample size of the country (30797 samples across India). To overcome
this limitation, AI can be used by researchers and policy-makers to get reliable data
on poverty and wealth in developing countries [55]. Technological innovations such
as machine learning-powered by the Big Data revolution has opened unimaginable
possibilities for government organization and countries for planning, analyzing, and
reviewing policy decisions, as well as directing humanitarian activities [30]. The
main objective of this thesis is to predict IWI for the missing areas using Deep
Learning and Satellite Images.
Poverty prediction through DL using satellite images is a less explored field compared
to survey-based predictions. Perez et al. [39] use CNN models trained on open-
source multi-spectral daytime satellite images of the African continent from the
Landsat 7. Jean et al. [30] had a different architecture, which is a CNN model pre-
trained on ImageNet to identify low-level image features such as edges and corners.
Then, CNN is fine-tuned to predict the nighttime light intensities corresponding to
input daytime satellite imagery. Further, they estimated cluster-level expenditures
or assets with ridge regression models trained on mean cluster-level values from the
survey data and corresponding image features extracted from daytime imagery by
CNN [30]. Yeh et al. [55] used publicly available multispectral satellite images, and
a DHS survey and created deep learning models to predict survey-based estimates of
asset wealth in over 20,000 African Villages. Pandey et al. [38] used a dataset from
India and developed multitask fully convolutional model to predict the material of
the roof, source of lighting, and source of drinking water from the satellite imagery
of a village. Then, a second model is built to predict the income levels (a direct
indicator of poverty) using the predicted developmental parameter outputs of the
first model.
Most of the studies on poverty prediction work with the data from Africa. India
also faces similar poverty problems, at least in some parts. Moreover, the gaps in
DHS data exist, especially in the remote areas of India. However, very few studies
have focused on the dataset from India. Therefore, in this study, we focus on the
prediction of the IWI index for the dataset from India. Our objective of this study is
to train models to predict the average cluster wealth index given a satellite image of
the cluster. The contributions of this thesis are three-fold. First, it develops four DL
models that can predict the IWI indices of missing regions in India, thereby filling
the gaps in the DHS survey data. Second, it evaluates the difference in performances
of these four models for two types of data splits. Third, it analyses the performance
of all four models and identifies the best among them for predicting the IWI of Indian
administrative units. We use two deep CNN models with ResNet-18 architecture,
where one is used for training multispectral images and the other one is for training
nightlight images. As a baseline, we have trained the model with only nightlight
images. We have also trained the ResNet-18 model with multispectral images and
multispectral together with nightlight images. For performance comparison, we
have split the data randomly into 5 folds according to the states, which are called
out-of-state splits and not according to states which are called in-state splits. For
evaluating the performance of the model, we have used metrics such as r2 and R2.

2
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Finally, we have also done a performance comparison of different models on different
types of data splits.
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2
Literature Review

This thesis studies the application of Deep Learning models, for predicting the health
and living standards of India. In order to provide the reader with the necessary
information needed to better understand the remainder of the thesis, this section
provides background information and describes the related works and state-of-the-
art poverty prediction using various DL models.

2.1 Benchmarks for monitoring the sustainable
development goals

SUSTAINBENCH is a collection of benchmarks for monitoring the sustainable de-
velopment goals with Machine Learning [54]. The Sustainable Development Goals
are a framework for a better, more sustainable future for everyone. Poverty, in-
equality, climate change, environmental degradation, peace, and justice are among
the worldwide concerns they address. Lack of ground data/survey data is one of the
major challenges toward progress in United Nations Sustainable Development Goals
(SDGs). The progress toward the SDGs is measured by censuses, surveys and civil
registration. However, these surveys and censuses are expensive, time-consuming
and are not conducted regularly. Yeh et al. [54] use these available survey data
and abundant, cheap data such as satellite imagery, social media posts, and/or mo-
bile phone activity to predict the gaps in the data. For using non-traditional data
sources that are cheap, globally available, and constantly updated to fill in data
gaps, ML algorithms tailored for monitoring SDGs are critical. The main contribu-
tions of this study are towards enabling machine learning to measure and achieve
the SDGs, establishing standard benchmarks for evaluating machine learning mod-
els, and building unique machine learning strategies where enhanced model perfor-
mance promotes progress toward the SDGs. However, the approach has the following
limitations. Ground surveys may not be totally replaced by machine learning al-
gorithms. Imperfect ML model predictions may induce biases that spread through
downstream policy decisions, resulting in detrimental societal consequences. Privacy
concerns may arise from the usage of survey data, high-resolution remote sensing
photos, and street-level images. In future work, the authors plan to expand datasets
and benchmarks as new data sources [54].
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2. Literature Review

2.2 Multi-Task Deep Learning for Predicting Poverty
from Satellite Images

Shailesh et al. [38] suggest a two-step technique for using satellite images to pre-
dict poverty in rural areas. In this study, data from the most populous state of
India, Uttar Pradesh, is collected from The 2011 Census of India. Further, Google
Geocoding API was queried to obtain coordinates of the centre of a village as well
as the box-bounding latitudes and longitudes(geocodes) from its address in the cen-
sus data. Then the Google Static Maps API is utilized to extract images for the
villages from the determined geocodes. First, the authors created a multitask fully
convolutional deep network capable of predicting roof material, illumination source,
and drinking water source from satellite pictures. Second, they measure poverty
using the predicted developmental statistics. The models were able to learn signifi-
cant features such as highways, water bodies, and farm areas using full-size satellite
imagery as input and without pre-trained weights, and attain near-optimal perfor-
mance. The performance of predicting income levels on the basis of the multi-task
model has an accuracy of 0.969. The multi-task fully convolutional model was able
to distinguish task-specific and independent feature representations, in addition to
speeding up the training process. The authors also observed that the model trained
on the predictions of the multi-task model performs close to the optimum model
(model trained on Census data, and significantly better than their baseline model
trained for majority class prediction.

2.3 Livelihood indicators from community-generated
street-level imagery

Measurement of the populace’s well-being is taken into account by the government
and other organizations while taking a decision. However, these measurements at a
large scale are expensive. So these measurements are often taken rarely in developing
countries. Lee et al. [32] propose an approach to measure these predict key livelihood
indicators which are less expensive, interpretable and scalable. Street-level imagery
is used as input to this approach, which is less expensive compared to ground-level
surveys. Lee et al. suggest two approaches in their studies. In the first approach,
multi-household cluster representations are detected from the informative images
from street-level imagery. In the second approach, the relationship between images is
captured by a graph-based approach. The study mainly focused on three indicators,
poverty, population, and women’s body mass index. The main contribution of the
study is that it provides a less expensive, effective and scalable approach than the
traditional surveying approach [32]. The study is validated by predicting indicators
of poverty, population, and health and its scalability by testing in two different
countries, India and Kenya.
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2.4 Economic well-being using satellite images
Measurements of human well-being at the local level are critical for governments to
make informed decisions about public service delivery and policy, for governmen-
tal and non-governmental organizations to target and evaluate livelihood programs,
and for the private sector to develop and deploy new products and services. How-
ever, data for measuring the accurate and comprehensive economic well-being of
many developing and underdeveloped countries are missing. Yeh et al. [55] in this
study uses a deep learning model to predict wealth assets in different countries in
Africa. ResNet-18 architecture is used for this study. The model uses two ResNet-18
architecture: one trained for night light images and the other for multispectral im-
ages. This approach outperforms the other approaches used in the literature, such
as scalar nightlights. However, the policy community finds CNN based approach
hard to adopt as the information CNN used for prediction is less interpretable com-
pared to the simpler approaches. As a future extension of this work, the authors
plan to improve the interpretability of deep learning models in this context and
develop approaches to navigate the performance-interpretability tradeoff. Further,
they also plan to improve the approach by the incorporation of higher-resolution
optical and radar imagery now becoming available at near-daily frequency, or in
combination with data from other passive sensors such as mobile phones or social
media platforms.

2.5 Combining satellite imagery and machine learn-
ing to predict poverty

In the developing as well as the underdeveloped world, reliable data on economic
livelihoods are limited, making it difficult to investigate these results and implement
policies to improve them [30]. For much of the developing world, data on crucial
indicators of economic development is scarce. This data gap is impeding efforts to
detect and analyze variance in these outcomes, as well as to effectively deliver assis-
tance to the most vulnerable locations. The lack of data on the African continent
is extremely limiting. Jean et al. propose a novel machine learning-based approach
for collecting socioeconomic data from high-resolution daylight satellite photos. We
then test our method in five African countries that have recently georeferenced local-
level data on economic outcomes. Although the method is successful in assessing
economic well-being at the cluster level, it is unable to examine the ability to distin-
guish disparities within clusters, since public-domain survey data assigns identical
coordinates to all households in a particular cluster to protect respondent privacy.

2.6 Transfer Learning from Deep Features for Re-
mote Sensing and Poverty Mapping

In developing an underdeveloped country, a lack of reliable data is a serious im-
pediment to long-term growth, food security, and disaster relief. Data on poverty
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are often limited, little covered, and time-consuming to gather. On the other hand,
remote sensing data such as high-resolution satellite images is becoming increasingly
accessible and affordable. Nevertheless, such data is very unstructured, and hence
there were no techniques for automatically extracting relevant insights to help guide
legislative decisions and humanitarian efforts. Xie et al. proposed a machine learn-
ing approach to extract large-scale socioeconomic indicators from high-resolution
satellite imagery [53]. However, the scarcity of training data made it difficult to
apply to CNNs. Therefore, Xie et al. introduced a novel transfer learning approach
for analyzing satellite imagery that leverages recent deep learning advances and
multiple data-rich proxy tasks to learn high-level feature representations of satellite
images. A major advantage of this approach is its generalizability, and therefore has
great potential to help solve global sustainability challenges.

2.7 Using machine learning tools for predicting
poverty in rural India

In this paper [48], To predict rural poverty on a state-by-state basis, Subash et al.
used satellite night light data and machine learning methods (Artificial Neural Net-
work). The authors used night light data as a predictor for the constructed model,
comparing it to per capita domestic product. The data used for this study was
gathered from the University of Michigan’s open access nightlight data. The ’India
Lights API’ collection contains data on rural nightlights for around 6,00,000 villages
across India over a 20-year span, from 1993 to 2013. The data was gathered from
satellite images of the world taken every night by the US Department of Defense’s
Defense Meteorological Satellite Program (DMSP). The authors also used available
data on rural poverty estimates at the state level. Further, they used data on GDP
to predict poverty at the state level, using the same algorithm used for predicting
poverty with night light data. Per capita income was calculated by dividing the
gross domestic product of a state by the population of the state, as the per capita
income can be used as benchmarking data. Due to the negative correlation relation
between income and poverty, it could also be used as a predictor of poverty. Authors
came to the conclusion that nightlight data is a stronger predictor of poverty than
per capita GDP.

All except one of the aforementioned studies focused on the African dataset. How-
ever, Africa is not the only developing country in the world. Therefore, our study
is conducted using an Indian dataset. Although India is a country unlike Africa,
the data points are more compared to the African dataset. The study which was
validated using the Indian dataset was using economic indicators other than IWI.
Further, the successful implementations of AI poverty prediction use a CNN model
and transfer learning approach. Hence, in our study, we make use of CNN as a
deep learning model for predicting the health and living standards of various parts
of India.

8



3
Background

This chapter presents the background that provides the foundation for this thesis
report. It helps to interpret and understand the results that are obtained. The
theory presented in this chapter is referred to in the discussion/conclusion part of
the report as well to show how the research connects to existing research.

3.1 Deep learning
Deep Learning (DL) is a subset of Machine Learning (ML). In DL, hierarchical
architectures are used to learn high-level abstractions from the data [24]. DL mod-
els were successful in various tasks such as image classification, object detection,
natural language processing and information retrieval [41]. For this study, we use
Convolutional Neural Networks and satellite images are given as input to the CNN
as shown in Fig 3.1 [14].

3.1.1 Convolutional Neural Networks (CNN)
Regular grid-like topology means that each node in data is connected with two
neighbours along one or more dimensions. Time series data and images are examples
of this kind of data. Time series data can be considered as a one-dimensional grid
with regular time intervals, and images can be considered as a two-dimensional grid
of pixels. CNN’s are a type of neural network which can process data with grid-like
topology [22]. Consequently, CNN has high performance in practical applications
[22]. The convolutional layer, non-linearity layer, pooling layer, and fully connected
layer are the layers of CNN. Pooling and non-linearity layers do not have parameters,
whereas convolutional and fully connected layers have parameters.[11]
The input image is transformed using a convolution layer to extract features from
it. The image is convolved with a kernel in this transformation. The output of this
convolution operation is called a feature map or activation map [2]. A kernel, also
known as a convolution matrix or convolution mask, is a small matrix that is smaller
in height and width than the image to be convolved. This kernel slides across the
image input’s height and breadth, computing the kernel’s and image’s dot product
at each spatial place.
The convolution layer is followed by a non-linear transformation. Non-linear trans-
formation can adjust or reduce the generated output. The major functions like
sigmoid function, tanh are used as activation functions. However, the most popular
function used recently is rectified linear activation function or ReLU [11]. The rec-
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3. Background

Figure 3.1: CNN illustration [14]

tified linear activation function (ReLU) is a piecewise linear function that outputs
the input directly if it is positive and zero otherwise [6].
The main aim of the pooling layer is to downsample, which reduces the complexity
for further layers [11]. After a convolution layer, a pooling layer is usually applied.
Pooling split images to rectangular subregions. Pooling is based upon the assump-
tion that changing the input by a little amount has no effect on the pooled outputs.
Max and average pooling are different kinds of pooling used. In max pooling, the
max value of the subregion is taken while in average pooling, the average value of
the subregion is taken. Max pooling provides better performance compared to min
or average pooling [2].
Fully connected layers are usually found towards the end of a CNN architecture.
Hence, each node in a fully connected layer is linked to every node in the previous
and subsequent layers. The vectorization of the features map created by the previous
layers is sent through a fully connected layer, which captures complicated interac-
tions between high-level features. This layer produces a one-dimensional feature
vector.
Fig 3.1 [14] illustrates that using the ReLU activation function, filters or feature
detectors are applied to the input image to build feature maps of activation maps.
Feature detectors or filters aid in the identification of various features in an im-
age, such as edges, vertical lines, horizontal lines, bends, and so on. A non-linear
transformation is applied after the convolution layer to limit the values of the gen-
erated output. The feature maps are then pooled to ensure translation invariance.
The features map generated by the pooling layer is vectorized and sent through a
fully connected layer, which captures complicated interactions between high-level
features. This layer produces a one-dimensional feature vector as its output.
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Figure 3.2: Filter applied to an input image

3.1.2 Back propagation algorithm
The back propagation algorithm is significantly important in training neural net-
works [28]. Neural networks have three main layers namely the input layer, hidden
layer and output layer [10]. The back propagation algorithm works its way back-
wards from the output layer to the input layer, calculating error gradients along the
way [28]. After computing the gradients of the cost function with respect to each
parameter (weights and biases) in the neural network, the algorithm uses these gra-
dients to update the value of each parameter in the network using a gradient descent
step towards the minimum. The Gradient is nothing but the weighted derivative
of the loss function [25]. It is used to update the weights in neural networks to
minimize the loss of function during back propagation. When we move backwards
with each layer during back propagation, the derivative or slope gets less and smaller
until it vanishes. During back propagation, an exploding gradient happens when the
derivatives or slope grow larger and larger as we go backwards with each layer. This
is the absolute opposite of the vanishing gradients’ problem.

3.1.3 Residual Networks (ResNets)
ResNet is one of the most powerful deep neural networks [33]. An increase in the
number of layers in a deep neural network leads to a vanishing/exploding gradient,
which will rapidly degrade the accuracy of the model [25]. This rapid degradation
of accuracy is not because of overfitting. Instead, it is caused when the gradient
becomes zero or too large. Thus, training deep neural networks is difficult. To solve
the problem of the vanishing/exploding gradient, residual networks are used. In
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Figure 3.3: Value of ReLU function

Figure 3.4: Max and average pooling

Residual Network, a technique called skip connections is used. In skip connection,
a few layers are skipped and connected directly to the output[26]. Shortcut connec-
tions are used by ResNet to significantly minimize the difficulty of training, resulting
in considerable improvements in both training and generalization error. The Deep
Learning community started to build deeper networks as they were able to achieve
high accuracy values since 2013. Deeper networks can also represent more compli-
cated properties, which improves the model’s robustness and performance. Adding
more layers, on the other hand, did not work for the researchers. The problem of
accuracy decline was discovered while training deeper networks. In other words,
adding more layers to the network either saturated the accuracy value or caused it
to drop suddenly. The vanishing gradient effect, which can only be seen in deeper
networks, was the cause of the accuracy decline.
The error is calculated, and gradient values are determined during the back propa-
gation stage. After the gradients are transmitted back to hidden layers, the weights
are modified. The gradient determination process is repeated until the input layer
is reached, after which it is sent back to the next concealed layer. As we get closer
to the bottom of the network, the gradient gets less and smaller. As a result, the
weights of the first layers will either update slowly or remain unchanged. In other
words, the network’s initial layers will not be able to learn successfully. As a result,
deep network training will not converge, and accuracy will begin to deteriorate or
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Figure 3.5: Fully Connected layer

saturate at a specific value. Although the vanishing gradient problem was solved
by employing normalized weight initialization, deeper network accuracy did not im-
prove.
Deep Residual Networks resemble networks that include convolution, pooling, ac-
tivation, and fully-connected layers piled one on top of the other. The identity
connection between the layers is the only construction that transforms the simple
network into a residual network. Fig 3.6 shows the identity connection as the curved
arrow originating from the input and sinking to the end of the residual block.

Figure 3.6: Residual Block

3.1.4 Ridge regression
The covariates (the columns of X) are super-collinear when the design matrix is
high-dimensional. In regression analysis, recall collinearity occurs when two (or
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more) factors are highly linearly connected. As a result, the parameter space’s space
spanned by super-collinear variables is a lower-dimensional subspace. It is (nearly)
difficult to disentangle the contributions of the various variables if the design matrix
X, which contains the collinear covariates as columns, is (close to) rank deficient.
The uncertainty about the covariate responsible for the variation explained in Y
is frequently reflected in the fit of the linear regression model to data by a large
error in the estimates of the regression parameters corresponding to the collinear
covariates, and, as a result, by large values of the estimates [35]. The first step
in ridge regression is to normalize the variables (both dependent and independent)
by dividing by their standard deviations and removing their means. This creates a
notation problem because we need to declare whether the variables in a formula are
standardized or not. All ridge regression computations are based on standardized
variables in terms of standardization. The final regression coefficients are rescaled
to their original scale when they are displayed. The ridge trace, on the other hand,
is on a standardized scale. The base of any regression machine learning model is the
standard regression equation, which is stated as:

Y = XB + e

3.1.5 Performance Evaluation Metrics
Performance Evaluation of a Deep Learning model is extremely important as it pro-
vides a more realistic measure of how the model will perform when deployed in a
production environment, which helps to avoid overfitting and keep the model simple.
A correlation is the quantitative measure of the association between observed and
predicted values, we use this metric for evaluating the performance of DL models.
A measure of an association between variables is called correlation in its broadest
definition. In correlated data, a change in one variable’s magnitude is linked to a
change in another variable’s magnitude, either in the same (positive correlation)
or opposite (negative correlation) direction. In this study, we use the coefficient
of determination and squared Pearson correlation coefficient metrics. The squared
Pearson correlation coefficient (r2) is used to identify patterns and is used to calcu-
late the effect of change in one variable when the other variable changes, whereas
the coefficient of determination (R2) is used to identify the strength of a model.
Therefore, the coefficient of determination (R2) is used to evaluate the performance
of the models in this study.

3.1.5.1 Coefficient of Determination

The coefficient of determination is a metric used to explain the amount of variabil-
ity of one factor that is caused by its relationship to another related factor. In
other words, the coefficient of determination measures the goodness-of-fit based on
explained variance [18][45]. The coefficient of determination, denoted by, R2 is typ-
ically used to evaluate regression models. The value of R2 can range from 0 to 1.
R2 with value 0 indicates the regression line does not fit the set of data points, and
R2 with value 1 indicates a perfect fit for the set of data points.
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Let the n values of a dataset marked by y1,..., yn each associated with a fitted (or
modeled, or predicted) value f1,...,fn.
Then the residuals will be ei = yi − fi (forming a vector e).
If ȳ is the mean of the observed data:

ȳ = 1
n

n∑
i=1

yi

then the variability of the data set can be measured with two sums of squares
formulas:

• The sum of squares of residuals, SSres = ∑
i(yi − fi)2 = ∑

i(ei)2

• The total sum of squares, SStot = ∑
i(yi − ȳ)2

Therefore,
R2 = 1 − SSres

SStot

3.1.5.2 Squared Pearson Correlation Coefficient

Pearson’s correlation coefficient, abbreviated as r, is a measure of the strength of
a linear relationship between two variables [13] [45]. A Pearson’s correlation is an
attempt to build a line of best fit through the data of two variables. The Pearson
correlation value, r, shows how far apart from all of these data points are from
the best-fit line. Pearson’s r can take values between -1 and 1. Squared Pearson
Correlation Coefficient is the squared value of r. The squared Pearson correlation
coefficient is usually not equal to the coefficient of determination (or r2 ̸= R2).
We can obtain a formula for rxy by substituting estimates of the covariances and
variances. Given paired data ((x1,y1), ....., (xn,yn) consisting of n pairs, rxy is defined
as:

rxy =
∑n

i=1(xi−x̄)(yi−ȳ)2
√∑n

i=1(xi−x̄)2
∑n

i=1(yi−ȳ)2

Squared Pearson Correlation Coefficient is obtained by squaring the rxy

r2
xy =

( ∑n

i=1(xi−x̄)(yi−ȳ)2
√∑n

i=1(xi−x̄)2
∑n

i=1(yi−ȳ)2

)2
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4
Methods

This chapter provides a detailed description of the methods used in developing the
deep learning models relevant to this study. It starts with an introduction to the
wealth index and DHS survey, followed by an exploration of the DHS survey and
preprocessing of satellite images. The model architecture and implementation of
various deep learning models are described in this chapter.

4.1 Deep Learning workflow
Figure 4.1 illustrates the nine stages of the deep learning workflow. Some stages
are data-oriented (e.g., data collection, data labelling, data cleaning) and others are
model-oriented (e.g., model training, model evaluation). There are many feedback
loops in the workflow. Typically, the model evaluation may loop back to any of the
previous stages.

Figure 4.1: Deep learning workflow

4.1.1 Data Collection
We have collected data from two different data sources for conducting the study,
namely DHS Program and Google Earth Engine. DHS survey data is tabular data
downloaded from the DHS Program website and satellite images are obtained from
Google Earth Engine.

4.1.1.1 Demographic and Health Surveys (DHS)

The DHS Program collects and shares various information about people such as in-
fant and child mortality, fertility, maternal health, child immunization, malnutrition
levels, HIV prevalence etc. [49]. The data thus collected is freely available and can
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be used for analysis purposes [51]. The program is funded by the United States
Agency for International Development since 1984 [49].
DHS surveys use nationally representative samples of childbearing-age women and,
more subsequently, males. The survey is conducted, and the results are reviewed by
national government agencies [49]. Each country’s specific demands were addressed
by adopting a core questionnaire. A list of the 44 nations that conduct DHSs was
supplied, together with details on the most recent year(s) of the survey and the
number of respondents. Questions on fertility and mortality, anthropometry, family
planning, maternity care, infant nutrition, vaccination, child illness, and AIDS were
included in the core questionnaire [3]. The surveys were beneficial in that they
provided a wide range of health and healthcare indicators. Continuous data quality
checks were performed to improve instruments, ensure qualified field people, use
contemporaneous data entering and editing, and provide feedback to interviewers
while the instrument was being administered in the field. After the fieldwork was
completed, the results were publicized rapidly, and tabulations were ready within
2-3 months [3]. Reporting and recall bias were among the flaws, especially for age or
other retrospective statistics based on the memory of a prior occurrence. Omissions
were not regarded as a severe issue [49].
The data collected from households can be used for analyzing the trend, planning
and monitoring development programs. In the late 1980s, the DHS project began
georeferencing cluster coordinate data, and in 2003, it began making georeferenced
GPS datasets available to the public [4]. To anonymize the data collected with
georeferencing, households in a cluster are changed to the same latitude/longitude.
Clusters in Urban areas are randomly displaced to two kilometres and clusters in
rural areas are displaced to five kilometres, and one per cent of randomly selected
clusters are displaced to ten kilometres [50]. International Wealth Index (IWI) is
one of the most extensively used wealth indices in surveys like DHS [47].

4.1.1.2 International Wealth Index (IWI)

The first comparable asset-based index of households is called as International
Wealth Index. This can be used to compare the economic status of households
in low and middle-income countries [47]. A questionnaire is used to collect informa-
tion about the IWI in a household. A questionnaire is prepared with data which
are easy to collect such as television, bicycle, type of water access and sanitation
facilities and materials used for housing construction [43]. Other reasons are also
considered while collecting the information on each of these items. For example,
diarrhoea among children is directly associated with floor type, water supply and
sanitation facilities of their households. Mass media health messages are received
through television and radio, hence this is considered in the questionnaire. Posses-
sion of a vehicle is related to emergency medical transportation. Multiple persons
sleeping in the same area and non-electrical source of lighting is linked to higher
transmission of respiratory illness[5]. If two or more households have the same IWI
value doesn’t mean that they have the same assets. It means that these households
have reached the same level of material satisfaction [47].
DHS surveys for India with a Geographic coordinate system (GPS) from 2015 to
2016 are available for download and analysis [50]. IWI score in this report stands
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for IWI mean value. Because, to anonymize the data collected with georeference,
households in a cluster are changed to the same latitude/longitude. Clusters in
Urban areas are randomly displaced to two kilometres and clusters in rural areas
are displaced to five kilometres, and one per cent of randomly selected clusters are
displaced to ten kilometres. Therefore, an IWI score at a specific place is certainly
not obtained. Fig 4.2 illustrates IWI scale, which ranges from 0 to 100 [9]. The
wealth asset index value of a household with all durables and the highest quality
housing and services is 100 and if its value is 0 if it lacks all the durables and has
the poorest housing and services.

Figure 4.2: International Wealth Index scale

4.1.1.3 DHS data

Since 1984, the Demographic Health Survey (DHS) program has been working with
governments to collect and share key information about people, their health, and
their health systems for national representation. Data is collected nationally through
various surveys on malaria, HIV/AIDS, child health, nutrition, fertility, etc. Wealth
indexes are also included in some of these surveys. The wealth index used in the DHS
survey is known as IWI (International Wealth Index). IWI can be used to measure
the economic well-being of a household. The IWI score is taken from the DHS survey,
where the score is calculated from the responses to a set of questions prepared by
DHS. Questions made by DHS are based on common assets of ownership, such as
if you have a television, a bicycle, the type of material used for the construction
of the house, the quality of water used in the house, the number of rooms in the
house, if the house is powered by electricity or not, and so on [55]. IWI ranges
from 0 to 100, where 0 indicates households with no assets and the poorest housing
quality, and 100 represents households with all assets and the best housing quality.
DHS surveys with georeferencing coordinates for the years 2015-2016 are available
for India, which can be downloaded directly from the website [50]. The data from
the DHS survey was downloaded for conducting this study, and we observed that
there are 30,798 household cluster points spread across India. Fig 4.3 illustrates the
DHS cluster points plotted on the map of India.

4.1.1.4 Administrative divisions of India: States and Union Territories

Names of administrative divisions vary greatly between continents. India, the
seventh-largest country in the world(in terms of area) consists of 28 states and
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Figure 4.3: 30,798 DHS points plotted on Indian’s Map.
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8 union territories, constituting a total of 36 entities. These states and union terri-
tories are further subdivided into districts and smaller administrative units. States
are formed based on linguistic lines [8]. DHS dataset of India has states which are
further divided into districts, sampling clusters and households. Typically, countries
in the DHS dataset are divided into clusters based on census reports. Clusters are a
group into which the population is divided. For example, for a rural area, a cluster
can be an entire village, part of a village or a group of small villages whereas for an
urban area, a cluster can be a building block, city block etc. Each cluster consists
of 20-30 households. Each household has a latitude and longitude co-ordinate as-
sociated with it. To anonymize the data collected with georeference, households in
a cluster are changed to the same latitude/longitude. Clusters in Urban areas are
randomly displaced to two kilometres and clusters in rural areas are displaced to
five kilometres, and one per cent of randomly selected clusters are displaced to ten
kilometres.

4.1.1.5 Satellite Imagery

Google Earth Engine (GEE) is a cloud computing platform that may be used to
process satellite images as well as other geographical and observational data. It
gives access to a big library of satellite imagery as well as the computing capacity
[23]. The entire remote sensing images from Landsat images and Sentinel-1 and
Sentinel-2 are used in GEE [23]. The project uses a DHS survey from 2015 to 2016
hence images from Landsat satellites 7, and 8 are used. The images collected from
these satellite has multispectral bands and has a spatial resolution of 30 m/pixel.
Nightlight Images (NL) are also used for the thesis. Figure 4.4 shows the bands in
a satellite imagery.

Figure 4.4: Satellite Image

Multi-spectral Images: Satellite images are stored as rasters [29]. These raster
images contain seven bands. These bands are called multispectral (MS) bands.
Multispectral bands consist of 7 bands which are RED, GREEN, BLUE, NIR (Near
Infrared), SWIR1 (Short wave Infrared 1), SWIR2 (Short wave Infrared 2), and
TEMP1 (Thermal). Multispectral imaging refers to spectral imaging methods that
provide images that correspond to at least a few spectral channels. All these bands
have a spatial resolution of 30 m/pixel. While some multispectral imaging devices
(also called multispectral cameras) are used on space satellites and aeroplanes, there
are also hand-held devices as well as imaging devices installed in industrial settings.
Multispectral cameras are frequently tailored to individual applications, especially
in terms of the spectral bands utilized.
Nightlight Images:
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Nightlight images are captured through Visible Infrared Imaging Radiometer Suite
(VIIRS) from 2015 to 2017 [55]. The use of remote sensing of nocturnal light emis-
sions provides a unique perspective on some of these human activities. The Visi-
ble Infrared Imaging Radiometer Suite (VIIRS) instruments aboard NASA/Suomi
NOAA’s National Polar-orbiting Partnership (Suomi NPP) and NOAA-20 satellites
provide global daily measurements of nocturnal visible and near-infrared (NIR) light
suitable for Earth system science and applications research. Data from the VIIRS
Day/Night Band (DNB) is used to estimate population, analyze electrification of ru-
ral areas, monitor disasters and conflict, and better understand the biological effects
of growing light pollution [37].

Using the Landsat archives available on Google Earth Engine, we obtained Landsat
surface reflectance and nighttime lights (nightlights) photos centred on each cluster
region [23]. We used 3-year median composite Landsat surface reflectance photos of
India collected by the Landsat 7 and Landsat 8 satellites. For compositing, we used
three years: 2015–17. Each composite is made by taking the average of all cloud-free
pixels available during three years. The use of three-year composites was motivated
by two factors. First, multi-year median compositing is a successful strategy for
gathering clean satellite data in similar applications 26; nevertheless, even with 1-
year compositing, we continued to see the significant influence of clouds in some
places due to defects in the cloud mask. For the images of our nightlights, we also
developed 3-year median composites for comparison. For the 2015–17 composites,
VIIRS pictures are used as nightlight images.

Both MS and NL pictures were processed in Google Earth Engine and exported as
255 x 255 tiles, which were then centre-cropped to 224 x 224, the input size of our
CNN architecture, covering 6.72 km on each side (30 m Landsat pixel size = 6.72
km). Fig 4.5 shows the normalized multispectral and nightlight bands of a satellite
image.

4.1.2 Data Labelling

We used a python API to export Landsat satellite image composites from Google
Earth Engine to Google cloud. The images are saved in gzipped TFRecord format
(*.tfrecord.gz). DHS surveys with latitude, longitude and IWI index are used to
download the satellite images. Satellite images for corresponding latitude and longi-
tudes are downloaded. The downloaded images contain metadata information such
as latitude, longitude and IWI. IWI is used as a label for each image, as our objective
is to fill the data gap by identifying the missing wealth indices for different regions
in the survey. The downloaded satellite images consume a significant amount of
storage space, and it is difficult to store them on a personal computer. Therefore,
these images are stored in a Google bucket, which is then transferred to SNIC for
further data preprocessing and analysis. In this thesis, we haven’t done explicit data
labelling, as the metadata of the image already had the labels embedded in it.
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Figure 4.5: Satellite Image with multispectral bands and
nightlight band

4.1.3 Data Cleaning
Our dataset consists of, 30789 cluster points from the DHS survey. We then verified
downloaded satellite images based on the GPS locations of samples in the DHS sur-
vey. This verification is performed to check if the fields in the TFRecords match with
the original CSV files generated through the DHS survey. As a part of data cleaning,
images with incomplete bands are removed for maintaining the input data quality.
After this, our dataset will have only the images will all seven bands required for
a multispectral image and one band required for a nightlight image. Consequently,
the total number of points is reduced from 30789 to 30787.

4.1.4 Dataset Preparation
To prepare the dataset, we split each monolithic TFRecord file exported from Google
Earth Engine into one file per record using a python script so that we can easily
shuffle the data. With the TFrecords in one monolithic file, it is impossible to
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shuffle the order. However, with splitting, we can shuffle the order of the files, which
allows us to approximate shuffling the data as we have access to the individual
TFRecords. With the increased number of splits, the better is the approximation
of shuffling the data. In this study, we have thousands of training examples saved,
and we want to repeatedly run them through a training process. Furthermore, for
each repetition of the training data (i.e. each epoch), we have to load the data in
completely random order. Splitting a monolithic TFRecords file into multiple files
has essentially 2 more advantages. The first advantage is that files can be spread
across multiple servers, processing several files from different servers in parallel will
optimize bandwidth usage (rather than processing one file from a single server).
This can improve performance significantly compared to processing the data from a
single server. The second advantage is that huge files can be difficult to manage: in
particular, transfers are much more likely to fail. Moreover, it’s harder to manipulate
subsets of the data when it’s all in a single large file. Finally, as we were using the
GCS bucket (Google Cloud bucket) the amount of throughput can be tremendously
increased by having multiple files and thus multiple streams and the TPU sit less
in the ideal state. Therefore, the splitting was performed and the single files per
record were used for further processing and analysis.

4.1.5 Data Exploration
In the data exploration stage, the DHS survey data, which is downloaded from the
DHS program website, is examined to detect the dirty data problems such as ill-
formatted data, missing data, duplicate data and erroneously parsed data. After
data examination, clusters without georeferencing coordinates are removed. Other
columns in the CSV file of the DHS survey are checked in detail to understand the
features relevant in the context of this study, and irrelevant columns are removed.
For instance, country code and continent are the same for all the entries as we have
taken the data for a single country, India. The month of the interview was also re-
moved, as it has no relevance in predicting IWI value. IWI_kurtosis, IWI_variance
and IWI_skewness were also removed as IWI_mean was a more meaningful label
in the context of poverty prediction. After analyzing the data, we found that the
ClusterID column was delivering the information contained in the RegionID column.
Therefore, we retained the ClusterID and removed RegionID. Thus, the final CSV
file obtained has columns such as ClusterID, Latitude, Longitude, Country_year,
Year and IWI_mean. This IWI_mean value is considered as the label IWI. Total
points in the DHS survey for India are plotted as a scatter-plot on the map of India.
Fig 4.3 illustrates the DHS cluster points plotted on the map of India. From the
figure, it can be observed that the minimum IWI value for India is around 4 and
the maximum is 81.
The total number of clusters per state is taken from the DHS survey. It can be noted
that Uttar Pradesh has got the highest count of clusters, 3950 and Lakshadweep
have got the lowest number of clusters, 32. Fig 4.6 shows the number of counts per
state.
Fig 4.7 shows a box-plot of IWI distribution in each state and the union territories.
From the box plot, it can be observed that Lakshadweep and Kerala have a mean
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Figure 4.6: Number of DHS survey points per state
population.

IWI score of 63. However, Kerala is a state and Lakshadweep is a union territory.
When we sort the IWI score state-wise, the state with the highest IWI score is
Kerala (67.3), followed by Goa (61.5) and Punjab (60.6). Union territory with the
highest IWI score is Lakshadweep (67.8) followed by Chandigarh (62.8) and New
Delhi (62.7). The lowest IWI score is for Bihar (32.08), followed by Jharkhand (35)
and Assam (38.2).
The total number of cluster points in the urban area is less than the clusters in the
rural area. The total number of cluster points in the urban area is 9185 and in the
rural area is 21602. Fig 4.8 shows the fraction of urban cluster points among the
various states of India. It should be noted that for most of the states’ the fraction
of urban cluster points is below 0.4. However, union territories like Chandigarh,
Daman and Diu, Lakshadweep, New Delhi and Puducherry has more urban area
compared to the states of India. One possible reason for this difference is that the
size of union territories is comparatively smaller than states in India.
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Figure 4.7: IWI distribution state wise

Fig 4.9 shows the satellite image for the location with a high IWI value. Fig 4.10
shows the satellite image for the location with a low IWI value.

4.1.6 Data Splitting
Households surveyed by DHS is grouped into clusters. Our goal is to train models
to predict the average cluster wealth-index with maximum accuracy given a satellite
image of the cluster. To train our models, we assign the clusters into training (train),
validation (val), and test (test) splits. However, we do not arbitrarily assign clusters
to splits because many clusters are located very close to each other such that their
satellite images overlap. If one cluster was put in train and a nearby cluster was
put into test, this may constitute "peaking" at the test set. This is not what we
want. Instead, we want our model to be generalizable, able to estimate the cluster
wealth-index in geographic regions that the model has not necessarily seen before.
Thus, we have to take special care that the satellite images between splits do not
overlap. We do this through 2 separate approaches: "out-of-state" and "in-state".
For "out-of-state" split, we assign an entire state to a split, so naturally there is no
overlap between splits. For "in-state" split, we allow different clusters within the
same state to be assigned to different splits, taking care that their satellite images
have no overlap.
Out-of-state Split:- In out of state split, the entire state is assigned to train, val
or test splits. Thus, all the points in a state will be included in one and only one
split, namely train, val or test split.
In-state Split:- For "in-state" splits, we allow different clusters within the same
state to be assigned to different splits, taking care that their satellite images have
no overlap. DBSCAN algorithm was used to group villages with overlapping satel-
lite images, then ordered the groups in decreasing order by the number of villages
per group, then greedily assigned each group to the fold with the fewest villages.
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Figure 4.8: Urban Fraction in Indian administrative units

Figure 4.9: Satellite Image with high IWI value. The
location is Puducherry (11.950013, 79.822952) and the IWI

score is 81

DBSCAN Algorithm In unsupervised learning, there won’t be any label associ-
ated with data points. Clustering is an unsupervised learning method to group data
with similar data points. DBSCAN algorithm is a clustering algorithm. DBSCAN
stands for density-based spatial clustering of applications with noise. Epsilon and
pinpoints are the two main parameters used in DBSCAN algorithm.

• Epsilon (ϵ) :- ϵ is used to specify the neighbourhood. That is if the distance
between two points is less than or equal to ϵ, these points are considered to be
in the same neighbourhood, otherwise considered as a different neighbourhood.

• minPoints(n) :- The smallest number of data points required to define a
cluster.

Steps of DBSCAN Algorithm
1. Classify the points.
2. Discard noise.
3. Assign cluster to a core point.
4. Color all the density connected points of a core point.
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Figure 4.10: Satellite Image with Low IWI value. The
location is Jharkhand (22.879873, 85.438171) and the IWI

score is 4.2

5. Color boundary points according to the nearest core point.
The algorithm begins by randomly selecting a point (x) (one record) from the dataset
and assigning it to cluster 1. In the next step, it counts the number of points located
with the epsilon (ϵ) distance from the point x. If the number of points counted is
greater than or equal to n i.e. minPoints, this point will be considered a core point,
and all of these neighbours will be pulled into the same cluster 1. In the next step,
it will look at each member in cluster 1 and will find the ϵ neighbours to the clus-
ter respectively. In some cases, some members of cluster one will have n or more
ϵ neighbours, in that case, it will enlarge cluster 1 by adding those neighbours to
cluster 1. Cluster 1 will continue to grow until there are no more examples to add.
In the latter scenario, it will select a point from the dataset that does not belong to
any cluster and place it in cluster 2. This will continue until all cases are assigned
to a cluster or designated as outliers.

For DHS survey data, we split the data into 5 folds for cross-validation. For the
DHS out-of-state split, we manually split the 36 states into 5 folds namely A, B, C,
D, and E. As described below, models were trained using cross-validation to select
optimal hyperparameters. Each model was trained on 3-folds, validated on the 4th
fold, and tested on the 5th fold. For DHS in-state split, we split the 30,787 points
into 5 folds such that there is no overlap in satellite images of the villages between
any fold, where the overlap is defined as any area (however small) that is present in
both images. For instance, both MS and NL images are 255 x 255 tiles, which are
then centre-cropped to 224 x 224, the input size of CNN architecture, covering 6.72
km on each side (30 m Landsat pixel size = 6.72 km). Thus, two or more images can
have a set of pixels common that comes at the intersection. If one of these images is
used for training and the others are used for testing, the model will see this common
set of pixels and therefore results in peaking. We used the DBSCAN algorithm to
group together villages with overlapping satellite images. We first sorted the groups
by the number of villages per group in decreasing order, and then greedily assigned
each group to the fold with the fewest villages.

4.1.7 Model Training
We have trained three models and all three of them make use of the CNN model
with ResNet-18 architecture. From the literature, we understood that most exist-
ing CNN models are designed to work with 3-channel RGB images and thus are
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not directly compatible with multi-band satellite images. Thus, we adapted the
existing architecture of ResNet to work on multi-band satellite images. We se-
lected ResNet-18 architecture v2, with preactivation [27], because of its balance
of compactness and high accuracy on the ImageNet image classification challenge
[42]. We used SNIC (Swedish National Infrastructure for Computing) which is a
national research infrastructure that provides large-scale high-performance comput-
ing resources, storage capacity, and better user assistance to Swedish researchers for
training and testing all the models.

4.1.7.1 Baseline model

Baseline models are used to establish a meaningful point of reference, which is
usually a model that is there in the state-of-the-art literature [52]. For this thesis,
we train a CNN model with ResNet-18 architecture having 18 layers on nightlight
images and evaluate the performance. This ResNet-18 trained on only nightlight
images is used as a baseline model. Thus, the performance from this model is
considered the baseline performance for the study. Fig 4.11 shows the architecture
of the baseline model used in the thesis.

Figure 4.11: Baseline Model - ResNet-18 trained only on
nightlight images

4.1.7.2 Deep CNN trained on Nightlight and Multispectral images

We train two deep CNN models apart from the baseline model. The first model
is a deep CNN model with ResNet-18 architecture trained on multispectral images
as shown in fig 4.12. As a second model, we trained a ResNet-18 architecture the
predict the IWI score. Unlike the baseline model and the first model, we use both
nightlight images and multispectral images as input to the ResNet-18 architecture.
The first convolution layer of our model is an alteration of the CNN model to
accommodate multispectral images and nightlight images. The final layer of the
model is also changed to get a single final scalar output. We have trained the
model with the Adam optimizer and with the mean squared error loss function.
The batch size is fixed as 64 for each epoch. Learning rate decay is set as 0.96
[55] and the model has trained 150 epochs for in-state and 200 epochs for out-of-
state splits. We have performed a grid search with different learning rates such as
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1e-2, 1e-3, 1e-4, 1e-5 and L2 weight regularization such as 1e-0, 1e-1, 1e-2, 1e-3
for obtaining the best combination. Furthermore, there are no bias terms in the
ResNet-18 architecture because each convolutional layer is preceded by a batch-
normalization layer. As a regularization technique, the model with the highest r2

(Pearson’s correlation coefficient) on the validation set across all epochs is used as
the final model for comparison. After the training, the best model is selected based
on the model’s performance on the validation fold. Fig 4.13 shows the ResNet-
18 architecture trained on both multispectral and nightlight images. The baseline
model (deep CNN trained on NL bands) and first model (deep CNN trained on MS
bands) are used for selecting optimal hyperparameters for the single-frame model.

Figure 4.12: ResNet-18 with only multispectral images as
input

Figure 4.13: ResNet-18 with both multispectral images
and Nightlight images as input
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4.1.7.3 Single frame model

Single frame model [34] is a combination of two deep CNNs with ResNet-18 ar-
chitectures. We use a single frame model as the final DL model for predicting
IWI in our study. Here, one CNN with ResNet-18 architecture is used for train-
ing multispectral images and the other CNN with the same ResNet-18 architecture
is used for training nightlight images. i.e, One ResNet-18 architecture is trained
on nightlight images and the other ResNet-18 on daylight images. In our case, the
single-frame model is a combination of our baseline model and ResNet-18 trained on
MS bands. This is different from the second model, deep CNN trained on nightlight
and multispectral images. Because we want to analyse and confirm whether these
two approaches result in the same performance or not. Since the number of bands
for the satellite images (eight bands) is different from normal images (three bands),
the first convolution layer of the CNN is modified, making it suitable to fit all the
eight bands of satellite images. Further, we also modify the final convolutional layer
to output a scalar for regression. Fig 4.14 illustrates the structure of the Single
Frame model. The images are augmented by random horizontal and vertical flips
to prevent overfitting. The brightness and contrast of the multispectral bands are
also subjected to random adjustments using the python library pillow.

Figure 4.14: Single Frame Model

4.1.8 Cross-Validation and Hyper Parameter Tuning
We trained five distinct models, each with a different test fold, for each of the
input band combinations MS, MS+NL, and NL. We split the entire dataset into
five folds, A, B, C, D and E. Three of the folds were used to train the models, with
the fourth serving as a validation set for early stopping and tweaking additional
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hyperparameters. We have performed a grid search with different learning rates
such as 1e-2, 1e-3, 1e-4, 1e-5 and L2 weight regularization such as 1e-0, 1e-1, 1e-
2, 1e-3 for obtaining the best combination. We used Adam optimizer with mean
squared-error loss function as it has faster computation time, and require fewer
parameters for tuning. We chose a mini batch size, 64 less than the total number of
samples, to reduce memory usage and for faster training. Learning rate decay is set
as 0.96 [55] and the model is trained 150 epochs for in-state and 200 epochs for out-
of-state splits. The number of epochs were selected randomly, as there are no hard
and fast rule for selecting the batch size and number of epochs. Since the ResNet-
18 architecture has a batch-normalization layer following each convolutional layer,
there are no bias terms. As a regularization technique, the model with the highest
r2 (Pearson’s correlation coefficient) on the validation set across all epochs is used
as the final model for comparison. i.e. we did the following steps, not necessarily in
the same order.

• Train on A, B and C, validate on D for selecting hyperparameters and test on
the remaining fold E.

• train on B, C and D, validate on E for selecting hyperparameters and test on
the remaining fold A.

• train on C, D and E, validate on A for selecting hyperparameters and test on
the remaining fold B.

• train on D, E and A, validate on B for selecting hyperparameters and test on
the remaining fold C.

• train on E, A, and B validate on C for selecting hyperparameters and test on
the remaining fold D.

Thus we have test results of all five folds and consequently test results for the entire
dataset. After the CNNs were trained, we used ridge regression with hold-one-group-
out cross-validation to fine-tune the final fully connected layer. We fine-tuned the
final layer individually for each test fold under the in-state split scenario, utilizing
data from all other folds. As a result, the CNNs’ convolutional layers essentially
saw data from four of the five folds, whereas the final layer saw data from every fold
except the test fold.
For optimal generalization performance on unseen data, cross-validation should be
used to tweak hyperparameters for machine learning models. Hold-one-group-out
cross-validation, on the other hand, is unreasonably time-consuming due to the
significant computer resources required to train deep neural networks (where in
our setting, each group is a state). Therefore, we utilized hold-one-fold-out cross-
validation to tune the regularization parameter for training the weights in the final
fully connected layer, and simply used hold-one-group-out cross-validation to tune
the hyperparameters for the body of the CNN.
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Model Evaluation which is the final step in the deep learning workflow is explained in
this chapter. Model Evaluation is organized as the performance of the three different
models the baseline model, deep CNN trained on MS and NL and the Single frame
model on inputs such as NL, MS, and MS+NL.

5.1 Performance of baseline model
For this study, we use deep CNN with ResNet-18 architecture having 18 layers
trained on nightlight images as a baseline model. The baseline model was chosen in
such a combination as most of the existing literature was using nightlight bands for
predicting economic well-being or poverty. We chose ResNet-18 architecture, as the
Single Frame model is a combination of 2 ResNet-18 architectures. Moreover, most
of the existing studies use nightlight bands for predicting poverty. Therefore, we
wanted to compare the results with one ResNet-18 trained with nightlight images.
The model is trained with different learning rates (1e-2, 1e-3, 1e-4, 1e-5). Five-fold
cross validation is performed on both in-state and out-of-state split and evaluated
using the metric r2, which is the squared Pearson’s coefficient of correlation. Table
5.1 shows the r2, R2, values of baseline model in various folds for out-of-state split,
and Table 5.2 shows the r2, R2, values of baseline model in various folds for in-state
split.
From the table 5.1, it can be seen that, the baseline model with out-of-state split
has r2 = 0.42 and R2 = 0.32. This means that the correlation between actual IWI
values and baseline predicted IWI values are 42% correlated for fold A. Further, the
strength of the model or goodness of fit of the baseline model is 0.32. i.e. the quality
of fit of baseline model on fold A is 0.32.

Table 5.1: Performance of baseline model with out-of-state split

Folds r2 R2

A 0.42 0.32
B 0.37 0.28
C 0.36 0.33
D 0.41 0.41
E 0.16 0.1

Mean 0.34 0.29
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From the table 5.2, it can be seen that, the baseline model with in-state split has r2 =
0.41 and R2 = 0.39. This means that the correlation between actual IWI values and
baseline predicted IWI values are 41% correlated for fold A. Further, the strength
of the model or goodness of fit of the baseline model is 0.39. i.e. the quality of fit of
the baseline model on fold A is 0.39. When we consider the mean performance value
for both types of splits, it can be seen that with an in-state split, we get a stronger
correlation between actual and predicted IWI values. Furthermore, the quality of
fit of the baseline model is better on in-state spit compared to the out-of-state split.

Table 5.2: Performance of baseline model with in-state split

Folds r2 R2

A 0.41 0.39
B 0.44 0.38
C 0.44 0.44
D 0.28 0.24
E 0.41 0.37

Mean 0.40 0.36

5.2 Performance of Deep CNN model trained on
MS and MS+NL bands

A Deep CNN model trained with only multispectral bands is the first model we
developed for performance comparison. Table 5.3 shows r2, R2, values of deep CNN
model in various folds for out-of-state split, and Table 5.4 shows the r2, R2, values
of deep CNN model in various folds for the in-state split.
From the table 5.3, it can be seen that, the model with out-of-state split has r2 =
0.50 and R2 = 0.48. This means that the correlation between actual IWI values and
model predicted IWI values are 50% correlated for fold A. Further, the strength of
the model or goodness of fit of the model is 0.48. i.e. the quality of fit of the model
on fold A is 0.48. The performance of this model is better than the baseline model.
From the table 5.4, it can be seen that, the model with in-state split has r2 =
0.60 and R2 = 0.60. This means that the correlation between actual IWI values and
predicted IWI values is 60% correlated for fold A. Further, the strength of the model
or goodness of fit of the model is 0.60. i.e. the quality of fit of the model on fold A
is 0.60. When we consider the mean performance value for both types of splits, it
can be seen that with an in-state split, we get a stronger correlation between actual
and predicted IWI values. Furthermore, the quality of fit of the model is better on
in-state spit compared to out-of-state split.
The second model is different from the baseline model in terms of the input given
to it. The input to the second model is both multispectral and nightlight images.
It can be observed that this model that has input MS and NL images has a better
performance compared to the baseline model on all the five folds for both in-state and
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Table 5.3: Performance of deep CNN model trained on MS bands with out-of-state
split

Folds r2 R2

A 0.50 0.48
B 0.48 0.39
C 0.48 0.48
D 0.39 0.34
E 0.37 0.18

Mean 0.44 0.37

Table 5.4: Performance of deep CNN model trained on MS bands with in-state
split

Folds r2 R2

A 0.60 0.60
B 0.59 0.60
C 0.56 0.56
D 0.56 0.56
E 0.55 0.49

Mean 0.57 0.56

out-of-state splits. However, it can be also observed that the model’s performance
on folds C and D are less compared to folds A, B and E. Table 5.5 shows the r2, R2,
values for five-folds with out-of-state split.
From the table 5.5, it can be seen that, the model with out-of-state split has r2 =
0.57 and R2 = 0.56. This means that the correlation between actual IWI values and
model predicted IWI values are 57% correlated for fold A. Further, the strength of
the model or goodness of fit of the model is 0.56. i.e. the quality of fit of the model
on fold A is 0.56. The performance of this model is also better than the baseline
model.
From the table 5.5, it can be observed that folds C and D have lower r2 values com-
pared to the other three folds. As the split was done manually without considering
the variance of data which could have resulted in the comparatively lower r2 values
for folds C and D. To overcome the discrepancy, we did an in-state split. For in-state
split, data is not split according to the states. Instead, data is split in such a way
that no neighbouring data points have an overlap. Further, we allowed different
clusters within the same state to be assigned to different splits, and extreme care
was taken to avoid overlap in the satellite images. To perform an in-state split, we
used the DBSCAN algorithm. Table 5.6 shows the r2, R2, values for five-folds with
in-state split.
From the table 5.6, it can be seen that, the model with in-state split has r2 = 0.62
and R2 = 0.62. This means that the correlation between actual IWI values and
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Table 5.5: Performance of Deep CNN model trained on MS+NL bands with out-
of-state split

Folds r2 R2

A 0.57 0.56
B 0.54 0.54
C 0.34 0.31
D 0.35 0.27
E 0.50 0.50

Mean 0.46 0.44

baseline predicted IWI values are 62% correlated for fold A. Further, the strength
of the model or goodness of fit of the model is 0.62. i.e. the quality of fit of the
baseline model on fold A is 0.62. When we consider the mean performance value
for both types of splits, it can be seen that with an in-state split, we get a stronger
correlation between actual and predicted IWI values. Furthermore, the quality of
fit of the model is better on in-state spit compared to out-of-state split.

Table 5.6: Performance of Deep CNN model trained on MS+NL bands with in-
state split

Folds r2 R2

A 0.62 0.62
B 0.59 0.59
C 0.57 0.57
D 0.57 0.57
E 0.55 0.50

Mean 0.58 0.57

Table 5.7 and 5.8 shows the mean values of r2 and R2 for baseline model and deep
CNN model trained on MS bands, MS+NL bands with out-of-state split and in-state
split respectively.

Table 5.7: Mean of performance metrics of models with out-of-state split

Model Mean r2 Mean R2

Baseline model 0.34 0.29
Deep CNN trained

on MS Bands 0.44 0.37

Deep CNN trained on MS and NL Bands 0.46 0.44

From the tables 5.7 and 5.8, it can be observed that the performance of the model on
the out-of-state split is extremely poor compared to the performance of the model
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Table 5.8: Mean of performance metrics of models with in-state split

Model Mean r2 Mean R2

Baseline model 0.40 0.36
Deep CNN trained

on MS Bands 0.57 0.56

Deep CNN trained on MS and NL Bands 0.58 0.57

on the in-state split. The reason for poorer performance may be due to the reason
that the out-of-state split was done manually without considering the geographical
and demographical distribution of states. To eliminate the problem of overfitting,
we have augmented the images with random horizontal and vertical flips. The non-
nightlights bands are also subject to random adjustments to brightness (up to 0.5
standard deviation change) and contrast (up to 25% change). Moreover, we did
an evaluation using held-out locations that the model did not use in training, an
approach that limits overfitting as well as replicates the real-world setting of making
predictions where ground data do not exist. Consequently, overfitting couldn’t be a
reason for the better performance of the in-state split. Therefore, the out-of-state
split is not considered from this point onwards. i.e. for the single-frame model,
we have used only the in-state split. Further, the deep CNN model trained on MS
bands (referred to as the first model) together with the baseline model (deep CNN
model trained on NL bands) is used for hyperparameter tuning.

5.3 Performance of Single Frame Model
The single-frame model is a combination of two deep CNN models. Two ResNet-18
models trained separately on the Landsat bands and nightlights bands, respectively,
and joined the models in their final fully connected layer. The first convolution layer
of ResNet-18 architecture is modified separately, to fit all the bands in the multi-
spectral image, as well as nightlight bands. The final convolutional layer is also
modified to output a scalar for regression, which is the IWI value. The results from
cross-validation and hyperparameter tuning are used as input to the Single Frame
model. i.e. we select the best combination of the fold, seed, keep and hyperparam-
eters such as learning rate and L2 weight regularization based on the performance
of the baseline (ResNet-18 with NL bands) and first deep CNN model (ResNet-18
with MS bands) on the validation fold. The following results are obtained for the
Single Frame model after evaluating the performance on the test set.

• r2, (weighted) squared Pearson correlation coefficient = 0.59
• R2, (weighted) coefficient of determination = 0.59

These results show that the quality of fit (R2) of a single frame model on the data is
0.59, which is higher compared to all the remaining models discussed in this thesis.
Further, the single-frame model explains 59% of IWI variance.
Fig 5.9 shows the consolidated performance of all the models discussed in this thesis,
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which can be used to compare the performances of different models on the in-state
split. Although all models are predictive of average cluster level IWI, the best
performance is delivered by the single-frame model, which explains 59% of IWI
variance.

Table 5.9: Consolidated Results from all four CNN models

Model R2 r2

Single Frame Model 0.594 0.592
ResNet -18 on MS & NL 0.588 0.587
ResNet -18 on MS 0.574 0.573
Baseline Model 0.457 0.456

For better visualization of predicted values and ground truth, model predictions are
plotted against ground truth asset wealth indices (IWI). The explained variance, r2

of the models, is marked with a black line.

(a) Deep CNN on NL (b) Deep CNN on MS

(c) Deep CNN on MS and NL (d) Single frame Model

Figure 5.1: Model predictions plotted against ground truth asset wealth indices
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5.4 Performance Comparison with related works
From table 5.10, it can be seen that all the models in the related work are used for
predicting different indicators of poverty/health conditions. Moreover, the datasets
used are also different across the studies. Two studies are using only few states in
India for training the model. The study by Pandey et al. describes a classification
model rather than a regression model. Further, the study by Chi et al. [16]
has trained a model on data from 56 low and middle income countries to predict
micro estimates of wealth. However, they have not tested their model on data
from India. Instead, they have built a linear regression model to predict the model
error. Therefore, comparing the performance of these models with our model is a bit
difficult. Nevertheless, if we simply consider the performance of a Single frame model
described in this thesis, we can see that the performance is not bad/poor compared
to any of the related works. As a result, the reported results should be regarded as
indicative of the proposed solution’s capabilities rather than the definitive maximum
performance of the models.

Table 5.10: Performance Comparison with related works

Study Dataset used States included
in dataset Performance

Subash et al. Nightlight data and GDP All states Predict rural poverty with
R2 = 0.56

Pandey et al. Census data and
satellite imagery One state - Uttar Pradesh Predict income category with

avg. classification accuracy 0.91

Daoud et al. Census data and
satellite imagery

Six states - Uttar Pradesh, West
Bengal, Bihar, Jharkhand,

Punjab and Haryana

Predict 93 health outcomes with R2 as
0.92 to 0.60 for 21 outcomes;
0.59 to 0.30 for 25 outcomes,

0.29 to 0.00 for 28 outcomes, and
19 outcomes had negative R2

Chi et al.

DHS Survey data,
satellite imagery,

mobile phone networks,
topographic maps,

deidentified connectivity
data from Facebook

All states
Predict residual from

wealth prediction model
with MSE = 0.50

Lee et al. DHS data and
street level imagery All states r2 = 0.56

Thesis DHS data and
satellite imagery All states r2 = 0.59 and R2 = 0.59

5.5 Hyper Parameter Tuning
All ResNet-18 models except the single-frame model discussed in this thesis are
trained with the Adam optimizer and a mean squared error loss function. The
batch size is 64, and the learning rate is decayed by a factor of 0.96 after each
epoch. The models are trained for 150 epochs (200 epochs for DHS out-of-country).
The final model for comparison is the one with the highest r2 on the validation set
across all epochs. This is a regularization approach that is similar to early stopping.
We performed a grid search over the learning rate (1e-2, 1e-3, 1e-4, 1e-5) and L2
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weight regularization (1e-0, 1e-1, 1e-2, 1e-3) hyperparameters to find the model
that performs the best on the validation fold. To prevent overfitting, the images
are augmented by random horizontal and vertical flips. The non-nightlight bands
are also subject to random adjustments to brightness (up to 0.5 standard deviation
change) and contrast (up to 25% change). On the other hand, our pipeline didn’t
include a post-hoc linear regressor for post-hoc calibration.
Many hyperparameters can influence the performance of a neural network during
training. Due to time restrictions, no systematic effort was undertaken to tweak
these parameters to improve the performance of the single-frame model discussed in
this thesis. As a result, the reported results should be regarded as indicative of the
proposed solution’s capabilities rather than the definitive maximum performance of
the models.
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Our work demonstrates that satellite imagery combined with DHS data can be
utilized to produce fairly accurate predictions about the international wealth index
(IWI) across India. Despite inaccuracies in the timing of satellite imagery and the
location of clusters in the training data, our model works well, and more precise data
in either of these dimensions is expected to improve model performance further. For
instance, to anonymize the DHS survey, clusters are randomly displaced, which
results in the shifting of cluster points. This shifting causes the inexactness of
location for the satellite images.
Notably, we show that our model’s predictive power declines when a model is trained
based on the out-of-state split, in which a model trained on a set of states is used
to estimate consumption or assets in another state. One of the possible reasons for
this declining performance is that the out-of-state split is done manually without
considering the geographical and demographical distribution of states. Differences
in economic and political institutions across states could be indirect determinants of
livelihoods across settings. For instance, larger states in India with more data points
typically have a lower IWI. Consequently, a model trained on larger states cannot
accurately predict the IWI of smaller states. In contrast, the in-state split always
yields good performance for all the models we tried in this study, suggesting that
our approach could be used to fill in the large data gaps resulting from poor survey
coverage in many Indian states. Further, our method uses only publicly available
data and so is straightforward and nearly costless.
Although our approach is nearly similar to the algorithm applied to the dataset from
Africa by Yeh et al., poverty prediction for the dataset from India based on satellite
imagery and DHS data has not been done before. To reiterate, all the models in the
related work are used to predict different indicators of poverty/health conditions.
Moreover, the datasets used are also different across the studies. Two studies are
using only a few states in India for training the model. Consequently, we don’t have
many performance benchmarks for comparison. Through our literature survey, we
found five papers that used data from India. However, two of them used census
data and satellite imagery, the third one by Subash et al. [48] was using nightlight
data and GDP to predict poverty, and the fourth by Lee et al. [31] was using DHS
data and street-level imageries for predicting poverty. The first study by Pandey et
al. [38] uses both census data and satellite imagery, but is not comparable with our
study. Because, they have only taken one state, whereas our study has considered the
data from the entire country. Besides, they have developed a classification model and
our study aims to predict the IWI index of missing places across India. The second
paper by Daoud et al. [17] implements a DL model with the data from six Indian
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states (constituting 30% of the Indian landmass) to predict 93 health outcomes out
of which they obtained R2 of 0.92 to 0.60 for 21 development outcomes; 0.59 to 0.30
for 25 outcomes; and 0.29 to 0.00 for 28 outcomes, and 19 outcomes had negative
R2. Although this model has a better R2 value for some health predictors, it cannot
be directly compared with our study, as this thesis has considered DHS data from
entire India and satellite images from Landsat-7 to predict IWI. The fourth paper
by Lee et al. [31] implements a DL model and obtains r2 of 0.56, which is less than
the performance obtained in this thesis. The final paper by Chi et al. [16] has
trained a model on data from 56 low and middle-income countries to predict micro
estimates of wealth. However, they have not tested their model on data from India.
Instead, they have built a linear regression model for predicting the model error
when tested on countries other than Togo, Kenya, and Nigeria.
Several studies have been conducted on the dataset from Africa. However, Africa
is a continent and India is a country. The DMSP band is not present in satellite
imagery of India, while it is there in the dataset from Africa. Further, the closest
study by Yeh et al. used the DHS survey as well as the LSMS survey, while in our
case, we had only the DHS survey. Furthermore, the dataset from Africa has data
from 2009-2017, whereas our study used data for the years 2016-17. New sources of
ground truth data, whether from more disaggregated surveys or novel crowdsourced
channels, could enable a better evaluation of our model.
Due to time constraints, we were not able to use the transfer learning approach
to predict the International wealth index (IWI). We assume that transfer learning
models might have yielded better performance compared to our approach. Further,
as training deep neural networks demand substantial computational resources, hold-
one-out cross-validation is extremely time-intensive, which made us move it to future
works. Finally, the results of our approach are not directly comparable to findings
from other small area estimate approaches like the results from the study by Pandey
et al.
We strongly believe that our approach could have broad application across many sci-
entific domains and may be immediately useful for inexpensively producing granular
data on other socioeconomic outcomes of interest to the international community,
such as the large set of indicators proposed for the United Nations Sustainable De-
velopment Goals (5). Further, our model can also be used to predict the child
mortality rate, maternal health, malnutrition, etc.
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The objective of this study was to train models to predict the average cluster wealth
index given a satellite image of the cluster. In the immediate future, increasing
amounts of high-resolution satellite imagery become available, and therefore IWI
predictions based on satellite imagery would be very helpful to both researchers and
policy-makers. Along with the increased popularity of DL models, the relevance
of the approach discussed in this study will also increase. Policy-makers and other
experts working with poverty prediction can make use of the predicted IWI values
for inexpensively producing granular data on other socioeconomic outcomes. We
have used two types of data splits, namely out-of-state split and in-state split, in
this study. Dataset splitting is performed with extreme care to avoid peaking.
We selected optimal hyperparameters after 5-fold cross-validation. Each model was
trained on 3-folds, validated on a 4th, and tested on a 5th fold. Hyperparameters for
DL models were tuned by cross-validation for optimal generalization performance
on unseen data. The single-frame model has the best performance compared to the
other two models. However, the single-frame model is only tested with an in-state
split, as the out-of-state split yielded poor performance on deep CNN trained on
MS and NL bands. Our results are not directly comparable to findings from other
small area estimate approaches. In future work, we plan to do an out-of-state split,
considering the geographical and demographical distribution of states. Further, we
would like to perform a hold-one-out cross-validation, which we couldn’t perform
due to time and computational resource constraints.
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