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Abstract

Onemain goal of this thesis is to study constructivemodels of type theorywith
one univalent universe that interpret types by “presheaves” of groupoids.

A starting point is the fact that the groupoid model can be defined in a con-
structive metatheory. Therefore, its definition relativizes to presheaf models
over arbitrary small index categories. This way we obtain what we call “na-
ive” presheaf groupoid models of type theory with one univalent universe and
propositional truncation.

These naive presheaf groupoid models of univalent type theory can for
instance be used to refute the principle of excluded middle. However, they
seem inadequate for using univalent type theory as an internal language for
groupoids varying over a category.

One inadequacy of these models is that levelwise surjections in general fail
to be internally surjective in that the propositional truncations of their fibres
are not contractible. The reason for this failure is that propositional truncation
in these models captures global rather than levelwise inhabitation of a type.

To resolve the inadequacies of these models we refine their interpretation
of types. The interpretation of types in the refined models will be restricted
to presheaves of groupoids that satisfy a non-trivial patch condition to account
for levelwise inhabited propositions being forced to be contractible.

That patch condition can be expressed as having an algebra structure for a
particular kind of lex modality which we call a descent data operation. Such a
lex modality is in particular a strictly functorial operation on types and terms
that preserves unit and dependent sum types up to isomorphism.

In this thesis we develop the notion of descent data operation as an exten-
sion of type theory. In particular, we show that its algebras are closed under
type formers so that they can be used in an internal model construction. We
apply this construction to the concrete descent data operation on the naive
presheaf groupoid models. Finally, we show that a map in the resulting mod-
els is indeed internally surjective if and only if it is levelwise surjective.
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Introduction

Onemain goal of this thesis is to study constructivemodels of type theorywith
one univalent universe that interpret types by “presheaves” of groupoids.

In this introduction we give some intuition behind the notion of presheaf
as a variable collection, recall the truth- and set-valued presheaf models of
intuitionistic logic and type theory, and outline the contents and contribution
of this thesis.

1 Presheaves as variable collections

The notion of presheaf can be seen as any kind of object that varies with re-
spect to a parameter.

We restrict our attention to collections and, more specifically, groupoids
because groupoids form a relatively simple model of Martin-Löf type theory
with a univalent universe. We also consider truth values and sets because
truth- and set-valued presheaf models are well-established and groupoids can
be seen as generalized sets, which in turn can be seen as generalized truth
values.

We assume a parameter to be given by a preorder or, more generally, a
category. This way a parameter does not only specify what its instances are
but also in what ways any two of its instances may be related. It is those
relations that put constraints on how an object may vary with respect to the
parameter.

As a first example of variable collections and their parameters, consider
how the knowledge of the truth of a proposition may vary with what else we
know in a particular state [51]. Knowledge states 𝑤, 𝑣 are naturally preordered
by 𝑤 ≥ 𝑣 expressing that 𝑤 includes the knowledge of 𝑣. Further knowledge
does not lead to contradictions of truth nor do we ever forget knowledge so
if the proposition is known to be true at 𝑣 then it will still be known to be
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2 INTRODUCTION

true at 𝑤 ≥ 𝑣. As a second example, consider how the collection and iden-
tity of objects may vary with the extent of the “domain” on which a kind of
object can be defined or exist. A collection of (sub)domains 𝑈 , 𝑉 is naturally
partially ordered by inclusion 𝑈 ⊆ 𝑉 . Objects defined, existent or identified
on a domain 𝑉 are in particular defined, existent or identified on any subdo-
main 𝑈 ⊆ 𝑉 . As a third and final example, consider how the collection of ob-
jects that constitute a complex structure may vary with what kind of “shapes”
we are looking for in the given structure. Shapes and transformations between
them naturally constitute a category such as the category 𝑠, 𝑡 ∶ 𝑉 ⇉ 𝐸 [53]
specifying two shapes 𝑉 and 𝐸 together with two ways 𝑠 and 𝑡 (for “vertex”,
“edge”, “source” and “target”, respectively) of the shape 𝑉 appearing in the
shape 𝐸, the category of simplices [27], or the category of cubes [47]. Any ob-
ject of shape 𝑇 can be transformed into objects of shapes 𝑆 that appear in the
shape 𝑇 via transformations 𝑓 ∶ 𝑆 → 𝑇 . For instance, an edge in a variable
set that varies over 𝑉 ⇉ 𝐸, i.e. a (directed) graph, can be transformed into a
vertex by picking either its source or its target.

An 𝒮 -valued presheaf 𝐴 is a contravariant functor from a category 𝒞 in-
to a category 𝒮 of objects. In the examples the preorders and categories of
parameter instances 𝑋 indeed naturally act contravariantly on families of ob-
jects 𝐴(𝑋)—the notion 𝒮 of object is either truth values or sets in the examples.

A concept might be more naturally formalized as a presheaf than as a con-
stant object. In the examples, for instance, we might not know whether some-
thing is true or false or we might prefer not to assume that something is either
true or false, there might be no canonical choice of domain on which to study
a certain kind of object, or we might prefer to build up and analyze complex
structures in terms of simpler ones.

On the other hand, working with (the illusion of) a constant object is often
simpler becausewe do not have to keep track of parameters and the constraints
they impose. This way of working can also be more conceptual because it
can expose structure that is independent of a particular notion of parameter,
parameter instance and encoding of variable objects.

Type theories make it possible to work with presheaves in a fixed context
as if they were constant objects. This capability of type theory to be used as
a (convenient) language for presheaves leads us to a logical interest in pre-
sheaves to be used as a rich source of models for type theory—rich because of
the generality of the notion of parameter. Since—by a soundness theorem—
principles that are not valid for presheaves cannot be derived in type theory
without imposing further principles, presheaves or rather their parameters
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provide countermodels to such principles. We will recall a few examples of
applications of that sort now.

2 Set-valued presheaf semantics
The first logical application of presheaf semantics is Kripke [51]’s semantics
of intuitionistic propositional logic (IPL). In this semantics, formulas are inter-
preted as variable truth values. More precisely, formulas 𝜙 denote truth-valued
presheaves over a preorder 𝒫 , i.e. families of truth values 𝜙(𝑋) indexed by
𝑋 ∶ 𝒫 such that 𝜙(𝑋) implies 𝜙(𝑌 ) whenever 𝑌 ≥ 𝑋. Equivalently, a vari-
able truth value can be encoded as an upwards-closed subset of parameters,
i.e. a subset 𝜙 ⊆ {𝑋 ∶ 𝒫 } such that 𝑋 ∈ 𝜙 implies 𝑌 ∈ 𝜙 whenever 𝑌 ≥ 𝑋.
Note that variable truth values would not be able to detect the difference be-
tween transformations 𝑓 , 𝑔 ∶ 𝑌 → 𝑋 and this is why—for the semantics
of IPL —we restrict our attention to parameters that are given by a preorder.
The interpretations of the logical operations then need to maintain the up-
wards closure or monotonicity of truth. For instance, for the negation ¬𝜙 to
be true at 𝑋 the proposition 𝜙 must not become true at any 𝑌 ≥ 𝑋. The non-
constructive principle of excluded middle (𝜙 ∨ ¬𝜙) is thereby refuted by the
presheaf semantics of IPL because a proposition that is not true (as opposed
to being false) at 𝑋 might become true at some 𝑌 ≥ 𝑋, in which case neither
the proposition nor its negation are true at 𝑋.

The second logical application of presheaf semantics is Kripke [51]’s im-
mediate extension of his semantics to intuitionistic first-order logic (IFOL). In
anticipation of presheaf models of type theory, we assume IFOL to be typed
and to include an identity relation symbol Id𝐴 for each type 𝐴 of individu-
als. In Kripke semantics of IFOL, types 𝐴 are interpreted as variable sets and
formulas 𝜙, which can now mention free variables ranging over individuals,
are interpreted as variable families of truth values, which can be seen as truth
values varying not only with respect to the given parameter but also with re-
spect to instantiations of the free variables. More precisely, types 𝐴 denote
set-valued presheaves over a category 𝒞 , i.e. families of sets 𝐴(𝑋) and func-
tions 𝐴(𝑋) → 𝐴(𝑌 ), 𝑎 ↦ 𝑎|𝑓 indexed by 𝑋 ∶ 𝒞 and 𝑓 ∶ 𝑌 → 𝑋 subject to
functoriality laws, and formulas 𝜙 in a context Γ (a product of types) denote
truth-valued presheaves over the category ∫ Γ of elements of (the presheaf
denoted by) Γ, i.e. families of truth values 𝜙(𝛾) indexed by 𝛾 ∈ Γ(𝑋) such
that 𝜙(𝛾) implies 𝜙(𝛾|𝑓) for all 𝑓 ∶ 𝑌 → 𝑋. Equivalently, a variable fam-
ily 𝜙 of truth values over a variable set Γ can be encoded as a family of sub-
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sets 𝜙(𝑋) ⊆ Γ(𝑋) such that 𝛾 ∈ 𝜙(𝑋) implies 𝛾|𝑓 ∈ 𝜙(𝑌 ) for all 𝑓 ∶ 𝑌 → 𝑋.
For instance, the identity relation Id𝐴(𝑡, 𝑢) for terms 𝑡 and 𝑢 of type 𝐴 in con-
text Γ is defined to be true at 𝛾 ∈ Γ(𝑋) if and only if 𝑡 and 𝑢 denote equal
elements at 𝛾 , i.e. 𝑡(𝛾) = 𝑢(𝛾). The identity of terms 𝑡 and 𝑢 is a particular
formula for which decidability (Id(𝑡, 𝑢) ∨ ¬Id(𝑡, 𝑢)) is refuted by the presheaf
semantics of IFOL because elements that are not identified (as opposed to be-
ing distinct) at 𝑋 might become identified by some 𝑓 ∶ 𝑌 → 𝑋, in which case
𝑡 and 𝑢 are neither identical nor distinct at 𝑋.

Presheaf models extend to intuitionistic higher-order logic (HOL) [75, 54]
because set-valued presheaves are also closed under function types 𝐴 ⇒ 𝐵
and truth values form a presheaf Ω such that families of truth values over
𝐴 correspond to maps 𝐴 ⇒ Ω. Ignoring predicativity issues, the type Ω is
interpreted at 𝑋 by the set of subsets 𝑝 ⊆ {(𝑌 ∶ 𝒞 , 𝑓 ∶ 𝑌 → 𝑋)} such that
𝑓 ∈ 𝑝 implies 𝑓 ∘ 𝑔 ∈ 𝑝 for every 𝑔 ∶ 𝑍 → 𝑌 . For each map 𝑝 ∶ Γ → Ω we
have the family of truth values [𝑝](𝛾) ∶⇔ id𝑋 ∈ 𝑝(𝛾) indexed by 𝛾 ∈ Γ(𝑋).
The presheaf semantics forHOL validates propositional extensionality (([𝑝] ⇒
[𝑞]) ∧ ([𝑞] ⇒ [𝑝]) ⇒ IdΩ(𝑝, 𝑞)) and refutes various choice principles.

Martin-Löf type theory (MLTT) can also be interpreted in presheaves [39].
Types, which can now dependent on other types, are interpreted as variable
families of sets. More precisely, (dependent) types 𝐴 in a context Γ denote set-
valued presheaves over the category ∫ Γ, i.e. families of sets 𝐴(𝛾) and func-
tions 𝐴(𝛾) → 𝐴(𝛾|𝑓), 𝑎 ↦ 𝛾|𝑓 indexed by 𝛾 ∈ Γ(𝑋) and 𝑓 ∶ 𝑌 → 𝑋 subject
to functoriality laws. For instance, the identity type for terms 𝑡 and 𝑢 is inter-
preted by the family of subsingletons Id(𝑡, 𝑢)(𝛾) ≔ {0 | 𝑡(𝛾) = 𝑢(𝛾)} indexed
by 𝛾 ∈ Γ(𝑋). It follows that identity types validate equality reflection (given
Γ ⊢ 𝑝 ∶ Id𝐴(𝑡, 𝑢) we have Γ ⊢ 𝑡 = 𝑢 ∶ 𝐴) so that, in fact, presheaves form a
model of extensional MLTT.

The model of MLTT in presheaves covers a universe type [40]. Universe
types U can be used to define and quantify over types of structures because
dependent types over 𝐴 correspond to functions 𝐴 ⇒ U. Universe types can
thus be seen as generalizing types of truth values and their interpretation in
presheaves is indeed analogous with sets in place of truth values. Ignoring
size issues, the type U is interpreted at 𝑋 by the set of presheaves 𝑝 over the
slice category 𝒞 /𝑋 over 𝑋, i.e. families of sets 𝑃 (𝑓) and functions 𝑃 (𝑓) →
𝑃 (𝑓 ∘ 𝑔), 𝑝 ↦ 𝑝|𝑔 indexed by 𝑓 ∶ 𝑌 → 𝑋 and 𝑔 ∶ 𝑍 → 𝑌 . For each map
𝑃 ∶ Γ → U we have the family of sets El(𝑃 )(𝛾) ≔ 𝑃 (𝛾)(id𝑋) indexed by
𝛾 ∈ Γ(𝑋).

Besides the logical applications of providing complete semantics and inde-
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pendence results, presheaves model various applications in computer science
such as normalization by evaluation [19, 4, 5, 23], higher-order abstract syn-
tax [30, 38, 28], homotopy type theory [49], cubical type theory [17], parame-
tricity [7, 10, 67], guarded recursion [11, 59, 52], and directed homotopy type
theory [84].

In contrast to the extensionality principle validated by the type Ω of truth
values, bijective types 𝑃 , 𝑄 ∶ U are not identified by Id(𝑃 , 𝑄) in the presheaf
model of MLTT.

On the other hand,MLTTwith a universe type that satisfies an extension-
ality principle corresponding to extensionality of propositions can be inter-
preted in groupoids [42, 41]. In this model, closed types 𝐴 are interpreted as
(constant) sets of points 𝑎, 𝑏 ∈ 𝐴 together with (constant) families of sets of
paths 𝛼 ∶ 𝑎 ⥲ 𝑏 equipped with a groupoid structure. The points of a groupoid
are thought of as the elements of a type and the paths as the identifications
between those elements. The identity type for terms 𝑡 and 𝑢 of type 𝐴 is then
interpreted by the set Id(𝑡, 𝑢) ≔ {𝛼 ∶ 𝑡 ⥲ 𝑢} of paths 𝛼 between 𝑡 and 𝑢. This
way the groupoid model refutes the principle of uniqueness of identity proofs
(∏𝑥,𝑦∶𝐴 ∏𝑝,𝑞∶Id(𝑥,𝑦) Id(𝑝, 𝑞) for arbitrary types 𝐴)—for instance, for the group-
oid ℤ/2ℤ with a single point • and a single non-trivial loop 𝑖 (𝑖 ≠ id• and,
necessarily, 𝑖 ⋅ 𝑖 = id•) the principle would say 𝑖 = id• in contradiction to the
non-triviality [42, 41]. The universe type can now be interpreted by the group-
oid whose points are sets and whose paths are bijections. This way bijective
sets (and, more generally, isomorphic structures) get identified in the groupoid
model in the sense that the canonical maps IdU(𝑀, 𝑁) → Iso(El(𝑀), El(𝑁))
are equivalences, i.e. the interpretation of U validates Voevodsky’s univalence
axiom. Observe that the universe type denotes a particular groupoid that is
not a set because two sets 𝑀 and 𝑁 ∶ U can be in bijection in several distinct
ways—for instance, the two-element set Bool = {0, 1} ∶ U is in bijection with
itself not only via the identity function but also via the distinct swap function
defined by ¬0 = 1 and ¬1 = 0 [41].

In contrast to the presheaf models of MLTT, the groupoid model satisfies
the axiom of choice and the law of excluded middle if and only if they hold in
the metatheory.

It is natural at this point to combine presheaf and groupoid models. For
instance, we can obtain models of MLTT that validate the univalence axiom
(for one universe) and refute classical principles in this way.
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3 Towards groupoid-valued presheaf models

The groupoid model can be constructed in a constructive metatheory. In fact,
it can be constructed in extensional MLTT [41]. Since extensional MLTT
can be interpreted in presheaves we obtain a model of (intensional) MLTT
in groupoid-valued functors. More precisely, in this model a type 𝐴 is inter-
preted by a family of groupoids 𝐴(𝑋) and functors 𝐴(𝑓) ∶ 𝐴(𝑋) → 𝐴(𝑌 )
indexed by 𝑋 ∶ 𝒞 and 𝑓 ∶ 𝑌 → 𝑋 subject to functoriality laws. In par-
ticular, the interpretation of a type not only specifies a variable set of ele-
ments 𝑎, 𝑏 ∈ 𝐴(𝑋) together with restrictions 𝑎|𝑓 ∈ 𝐴(𝑌 ) but also a variable
family of sets of identifications 𝛼 ∶ 𝑎 ⥲ 𝑏 between those elements together
with restrictions 𝛼|𝑓 ∶ 𝑎|𝑓 ⥲ 𝑏|𝑓 . For instance, a type 𝐴 over the group-
oid ℤ/2ℤ is given by a single groupoid 𝐴 together with a single non-trivial
action 𝐴 → 𝐴, 𝑎 ↦ 𝑎|𝑖 satisfying 𝑎|𝑖|𝑖 = 𝑎 for all points 𝑎 ∈ 𝐴 and similarly
for paths.

The resulting model—which we will refer to as the naive groupoid-val-
ued presheaf model—validates the univalence axiom. Moreover, it refutes the
axiom of choice and the law of excluded middle whenever the set-valued pre-
sheaf model of the metatheory does. However, it can also exhibit two (related)
features that are perhaps unexpected.

Firstly, the naive groupoid-valued presheaf model can have strictly more
(homotopy) sets than the corresponding set-valued presheaf model, even up
to equivalence and classically. More precisely, a type 𝐴 in the naive presheaf
model, i.e. a groupoid-valued functor, can be checked to be a homotopy set [69]
if and only if any two elements 𝑎 and 𝑏 ∈ 𝐴(𝑋) are identified in at most one
way 𝑎 ⥲ 𝑏. Define a groupoid-valued functor 𝐴 to be a strict set or discrete if
and only if any two elements 𝑎 and 𝑏 ∈ 𝐴(𝑋) are identified by 𝛼 ∶ 𝑎 ⥲ 𝑏 only
if 𝑏 = 𝑎 and 𝛼 = id𝑎. Then it turns out that there are index categories 𝒞 such
that the naive presheaf model over 𝒞 has types that are homotopy sets but that
are not equivalent to any set-valued presheaf considered as a discrete type. For
instance, take the homotopy set 𝐿 over ℤ/2ℤ which has a single path 𝜆 ∶ 𝑠 ⥲ 𝑡
between two distinct points 𝑠 and 𝑡 and whose action −|𝑖 ∶ 𝐿 → 𝐿 swaps the
points and reverses the path. No map 𝑚 ∶ 𝐿 → 𝑃 to any discrete type 𝑃
over ℤ/2ℤ is invertible. The reason is that there can be no map to 𝐿 from
a type with an action that has a fixed point but any map 𝑚 ∶ 𝐿 → 𝑃 to a
discrete type 𝑃 implies the existence of a fixed point 𝑝0 ∈ 𝑃 . Indeed, if 𝑃
is discrete then the path 𝑚(𝜆) ∶ 𝑚(𝑠) ⥲ 𝑚(𝑡) must be the identity and hence
𝑚(𝑠)|𝑖 = 𝑚(𝑠|𝑖) = 𝑚(𝑡) = 𝑚(𝑠) by naturality and definition of the action on 𝐿
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so that 𝑝0 ≔ 𝑚(𝑠) is a fixed point. Now, if there was any map 𝑚′ ∶ 𝑃 → 𝐿
then 𝑚′(𝑝0) would be a fixed point by naturality. However, neither 𝑠 nor 𝑡 is a
(strict) fixed point of the action on 𝐿 so that there can be no map 𝑃 → 𝐿 and,
in particular, 𝑚 ∶ 𝐿 → 𝑃 cannot be invertible. Note that 𝑠 and 𝑡 are homotopy
fixed points in the sense that 𝜆 is a path 𝑠|𝑖 ⥲ 𝑠 that satisfies a coherence
condition called the cocycle condition, and similarly for 𝑡.

Secondly, levelwise invertible maps 𝑚 ∶ 𝐴 → 𝐵, i.e. maps such that each
functor 𝑚(𝑋) ∶ 𝐴(𝑋) → 𝐵(𝑋) is invertible, in general fail to have an in-
verse 𝐵 → 𝐴 in the naive presheaf models. Consider again the example 𝐿
of a homotopy set over ℤ/2ℤ that is not equivalent to any strict set. The u-
nique map from the type 𝐿 to the unit type 1 is levelwise invertible because
the groupoid 𝐿 (at the only level •) is contractible. However, as we saw, this
map cannot be invertible since the unit type is a strict set. In particular, the
point 𝑐 ∈ 𝐿 given by the levelwise inverse 1 → 𝐿 cannot satisfy the strict
naturality equation 𝑐|𝑖 = 𝑐.

These two features of the naive presheaf models are related as follows.
Since in the constant groupoid model types are1 homotopy sets if and only
if they are equivalent to a constant set considered as a discrete groupoid, in
the naive presheaf models the homotopy sets are exactly those types that are
levelwise equivalent to strict sets. The discrepancy between the homotopy and
strict notions of set in the naive presheaf models over some index categories
can thus be seen as an instance of the failure of invertibility of levelwise in-
vertible maps.

The naive notion of type in a model of groupoid-valued functors can be re-
fined in such a way that a map between types is indeed invertible if (and only
if) it is levelwise invertible. The resulting refined groupoid-valued presheaf
model then has up to equivalence the same sets and propositions as the cor-
responding set- and truth-valued presheaf models. This parallels the fact that
up to isomorphism the propositions in a set-valued presheaf model of IFOL or
HOL are exactly the propositions in the corresponding truth-valued presheaf
model of IPL.

The refined notion of type can be characterized inside the naive presheaf
model using a particular strict left-exact modality [70, 74] that maps a type 𝐴—
strictly functorially—to the type 𝐷(𝐴) of “virtual” elements or descent data
families of elements, i.e. pseudonatural (as opposed to strictly natural) families
of elements 𝑎(𝑋) ∈ 𝐴(𝑋) together with identifications 𝑎(𝑓) ∶ 𝑎(𝑋)|𝑓 ⥲ 𝑎(𝑌 )

1Classical reasoning is required to construct an inverse to the quotient map from a homo-
topy set to the discrete groupoid of connected components.
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for each 𝑓 ∶ 𝑌 → 𝑋 subject to the cocycle condition 𝑎(𝑓)|𝑔 ⋅ 𝑎(𝑔) = 𝑎(𝑓 ∘
𝑔). There is then a canonical inclusion map 𝐴 → 𝐷(𝐴) of “actual” elements
and, as we hinted at above, for an arbitrary type 𝐴 this inclusion map is not
invertible—it can even happen that 𝐷(𝐴) is inhabited when 𝐴 is not. Types for
which the canonical map 𝐴 → 𝐷(𝐴) is invertible are called modal. Types of
the form 𝐷(𝐴) and discrete types such as inductive types are modal, and maps
between modal types are invertible if and only if they are levelwise invertible.

The construction of the refined presheaf model is an instance of the general
fact that the modal types with respect to a left-exact modality form a new
model of MLTT with a univalent universe [70]. This internal construction of
new models using left-exact modalities in the setting of MLTT corresponds to
the internal construction of new (complete) Heyting algebras using nuclei and
new elementary toposes using left-exact idempotent monads in the setting of
IPL (IFOL) and HOL, respectively.

Two questions that arise from the construction of the refined groupoid-val-
ued presheaf models are how they relate to the model structure in groupoid-
valued functors of Bordg [12] and how they can be generalized to groupoid-
valued sheaf models of MLTT with (higher) inductive types. Versions of the
descent data operation used to construct the refined groupoid-valued presheaf
models were used in Coquand, Mannaa and Ruch [20] to construct sheaf mod-
els of MLTT with one univalent universe and (higher) inductive types over
two special cases of sites. This construction has been extended to a hierar-
chy of univalent universes and (higher) inductive types over arbitrary sites in
Coquand, Ruch and Sattler [22].

4 Outline and contribution
This thesis is split into two parts. The first part develops the notion of de-
scent data operation. The second part applies the theory developed in the first
part to the construction of the refined groupoid-valued presheaf model. In the
first part we work inside type theory extended with an abstract descent data
operation. In the second part we work inside constructive set theory.

We begin the first part of this thesis by studying the notion of lex oper-
ation. This notion is defined as an extension of MLTT without assuming a
notion of identity type. Lex operations act on types and terms in a way stable
under substitution as well as preserving dependent sum and unit types up to
isomorphism. Lex operations are automatically pointed as endofunctors. In
the presence of identity types lex operations are shown to preserve finite ho-
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motopy limits and equivalences, and the notions of modality and modal type
for pointed endofunctors are defined. We show that a lex operation is a (lex)
modality if and only if it maps types to modal types and inverts the map of
the pointedness structure. A descent data operation is defined to be a lex op-
eration that is a lex modality. The universe of modal types with respect to a
descent data operation is shown to be modal. Inductive types are usually not
modal and applying the modality produces a “homotopy” inductive type that
satisfies the computation rules only up to homotopy. We end the first part by
showing how higher inductive types can be used to model (higher) inductive
types with strict computation rules in the internal model [70] of modal types.

We begin the second part of this thesis by recalling the categories with
families (cwf) presentation of MLTT [25, 39] as a generalized algebraic the-
ory [15]. We give a presentation of lex and descent data operations in the
same style, and show that pointed pseudoendomorphisms [48] of cwfs induce
lex operations. Next we reformulate the groupoid model in an elementary way
and with a primitive notion of “paths over paths”2 inspired by the relational
models of Martin-Löf [64], Tonelli [79] and Hofmann [37]. Either formula-
tion of the groupoid model is constructive but the reformulation depends on a
type of extensional propositions that are strictly closed under dependent sum
and product types. The metatheory of the groupoid model can be taken to be
extensional MLTT. After showing that types of extensional propositions can
be lifted to the (set-valued) presheaf model of extensional MLTT we describe
the naive groupoid-valued presheaf model. We then discuss the refutation of
the principle of excluded middle by this model in a few simple cases of index
categories. We also observe the perhaps surprising fact that the principle is
even refuted in cases where (classically) the corresponding set-valued presheaf
model validates it. In those cases the naive presheaf model contains homoto-
py propositions that are not equivalent to any strict proposition. In the last
chapter we construct the refined groupoid-valued presheaf model by show-
ing that sending a presheaf to the presheaf of descent data is a descent data
operation. We show that the modal types for this descent data operation sup-
port propositional truncation and that levelwise equivalences between them
are invertible. We conclude with a description of what descent data look like
and how the descent data operation “completes” groupoid-valued presheaves

2The notion of dependent paths 𝑎 ⥲𝜇 𝑎′ over paths 𝜇 ∶ 𝛾 ⥲ 𝛾′ in Γ can be derived for the
original encoding [40] of families of groupoids as functors Γ → Gpd. However, this involves
a choice between non-dependent paths 𝑎 ⥲ 𝜇− 𝑎′ in the fibre over 𝛾 and paths 𝜇+ 𝑎 ⥲ 𝑎′ in
the fibre over 𝛾′. Here, 𝜇− 𝑎′ and 𝜇+ 𝑎 denote the transports of 𝑎′ and 𝑎 along 𝜇, respectively.
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under virtual elements in a few simple cases of index categories.
Themain contribution of this thesis is the construction of the refined group-

oid-valued presheaf model of type theory with one univalent universe and
propositional truncation in a constructive metatheory. This model construc-
tion consists in defining the concrete descent data operation on the naive
groupoid-valued presheaf model, instantiating the internal model construc-
tion from an abstract descent data operation, and showing that the resulting
refined model supports propositional truncation. The notion of descent data
operation has appeared in Coquand, Ruch and Sattler [22], the naive group-
oid-valued presheaf model has appeared in Coquand, Mannaa and Ruch [20],
and the internal model construction is essentially taken from Quirin [70].



Part I

Lex operation in type theory
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Chapter 1

Introduction

Many constructions of new toposes from old ones can be formulated in terms
of (co)algebras for finite limit-preserving endofunctors, also called left exact
or simply lex. Recall that a (co)algebra for an endofunctor 𝐹 is given by an
underlying object 𝐴 together with a structure map 𝐹 (𝐴) → 𝐴 (or 𝐴 → 𝐹 (𝐴),
respectively). If 𝐹 is a (co)monad, then the structure map is required to satisfy
(co)unit and (co)associativity laws.

If a monad on a topos is lex and idempotent, then the category of its alge-
bras is again a topos, and if a comonad on a topos is lex (actually, preservation
of pullbacks suffices [44, Remark A4.2.3]), then the category of its coalgebras
is again a topos. See Wraith [86] for the statements and the references there
to Kock and Wraith [50] for proofs.

Examples of constructions of toposes that can be formulated in this way
include presheaves on an internal category [57, 44], and hence sheaves on an
internal site and the slice over any object, as well as the gluing along a lex
functor [87].

We are interested in constructing newmodels of type theory from old ones.
To that end we introduce the notion of lex operation that generalizes the no-
tion of lex functor from topos theory to type theory and study some of its
properties.

The notion of lex operation can be defined in basic dependent type the-
ory using only unit, pair and function types. If we further assume identity
types and function extensionality, then any lex operation automatically acts
on homotopies, and preserves both equivalences and finite homotopy limits.

Lex operations are automatically pointed, i.e. any lex operation 𝐹 comes
equipped with a natural transformation 𝜂 ∶ Id → 𝐹 . We can then ask a giv-

13
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en lex operation 𝐹 to be idempotent in the sense that both 𝐹 𝜂𝐴 and 𝜂𝐹 𝐴 ∶
𝐹 (𝐴) → 𝐹 (𝐹 (𝐴)) are equivalences for all types 𝐴. A lex operation that is
idempotent will be called a descent data operation. For a given descent data
operation 𝐷 we can define the property of a given type being a (homotopy)
pointed algebra for 𝐷. An algebra for a descent data operation will also be
called a patch algebra. If we further assume a univalent universe then its sub-
universe of algebras is itself an algebra. If certain higher inductive types exist
then algebras support (higher) inductive types. In fact, a lex operation is idem-
potent if and only if it defines a lex modality in the sense of Rijke, Shulman
and Spitters [74] so that its algebras or modal types are also closed under unit,
pair, function and identity types. As a result, the algebras for a descent data
operation form a new model of type theory [70].

Examples of lex operations include exponentiation 𝑋 ↦ 𝑋𝑇 by a fixed
type 𝑇 . If 𝑇 is a (homotopy) proposition, then the lex operation it defines is
idempotent. Exponentiation by a proposition is also called an open modali-
ty [74, Example 1.7] and includes the identity lex operation by exponentiation
with the unit type. A type is a sheaf if and only if it is modal for all the dense
or connected propositions induced by a site or a nucleus. Note that here mo-
dalities are used to characterize a subclass of types we might be interested in
rather than for programming or expressing logical statements.

In this part of the thesis we work in type theory. As usual, we leave con-
texts implicit so that by a type 𝐴 we mean a type 𝐴 in some context Γ which
we omit, and we refer to a type 𝑃 in the extended context Γ.𝐴 as a type fam-
ily over 𝐴 or a family of types 𝑃 (𝑎) indexed by 𝑎 ∶ 𝐴. A similar convention
applies to elements 𝑎 of a type 𝐴 (in some context Γ) and sections 𝑝 of a type
family 𝑃 over 𝐴, that is families of elements 𝑝(𝑎) ∶ 𝑃 (𝑎) indexed by 𝑎 ∶ 𝐴.
Reindexing of a type family 𝑃 over 𝐴 along a map 𝑓 ∶ 𝐴′ → 𝐴 to the type
family (𝑃 (𝑓(𝑎′)))𝑎′∶𝐴′ over 𝐴′ by substitution will sometimes be denoted by
𝑃 𝑓 . Similarly, 𝑝𝑓 will denote the section of 𝑃 𝑓 obtained by reindexing a
section 𝑝 of 𝑃 .



Chapter 2

Lex operation

In this chapter we investigate the properties of functors in type theory that
act not only on types but also on families of types and that preserve both unit
and dependent sum types. Such functors will be called lex operations.

Examples of lex operations include exponentiation 𝑋 ↦ 𝑋𝑅 by a fixed
type 𝑅, in particular the functors Match𝑐 that send a type 𝑋 to its type 𝑋[𝑐]

of matching families on a cover 𝑐 ∶ J, where [𝑐] denotes the proposition cor-
responding to 𝑐 seen as an element of the type of propositions Ω.

The notion of lex operation can be defined in type theory without assum-
ing a notion of identity type and we begin this chapter by investigating the
properties of lex operations in that setting in Section 2.1. In the presence of
identity types lex operations satisfy additional properties, which we investi-
gate in Section 2.2.

2.1 Definition of lex operation
Definition 1. A strict functor 𝐹 is given by two operations:

1. a type 𝐹0(𝐴) for each type 𝐴
2. a map 𝐹1(𝑓 ) ∶ 𝐹0(𝐴) → 𝐹0(𝐵) for each map 𝑓 ∶ 𝐴 → 𝐵

such that the two functoriality equations

1. 𝐹1(id𝐴) = id𝐹0(𝐴) and
2. 𝐹1(𝑔 ∘ 𝑓) = 𝐹1(𝑔) ∘ 𝐹1(𝑓 )

hold.

15
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Note that the two functoriality equalities are strict. In fact, the definition
of a functor does not refer to identity types at all.

Example 1. Let 𝑅 be a type, then the operation 𝐹 (𝐴) = (𝑅 → 𝐴) on types can be
extended to a functor by 𝐹 (𝑓) = λ𝑑∶𝑅→𝐴λ𝑟∶𝑅𝑓(𝑑(𝑟)); this is the definition of the
underlying functor of the so-called reader monad for environments of type 𝑅 [45].

Definition 2. An action of a functor 𝐹 on families of types is given by two
operations:

1. a family 𝐹0(𝑃 ) over 𝐹0(𝐴) for each family 𝑃 over some type 𝐴
2. a section 𝐹1(𝑝) of 𝐹0(𝑃 ) for each section 𝑝 of some family 𝑃

such that they commute with reindexing in the sense that the equations

1. 𝐹0(𝑃 𝑓) = 𝐹0(𝑃 )𝐹1(𝑓 ) and
2. 𝐹1(𝑝𝑓) = 𝐹1(𝑝)𝐹1(𝑓 )

hold for all maps 𝑓 ∶ 𝐴′ → 𝐴.

As in Definition 1, the equalities for an action of a functor on families are
strict.

As in Example 1, we will usually omit the subscripts and just write 𝐹 (𝐴)
and 𝐹 (𝑓) as well as 𝐹 (𝑃 ) and 𝐹 (𝑝).

Example 2. The exponentiation functor 𝐹 can be expanded with an action on
families of types as follows:

𝐹 (𝑃 ) = (∏𝑟∶𝑅 𝑃 (𝑑(𝑟)))𝑑∶𝑅→𝐴

𝐹 (𝑝) = (λ𝑟∶𝑅𝑝(𝑑(𝑟)))𝑑∶𝑅→𝐴

Recall that a (Tarski) universe [61, 63, 39, Section 2.1.6] is given by a type U
together with a decoding operation from elements 𝑎 ∶ U to types El 𝑎, and that
a type 𝐴 is called U-small if there is an element 𝑎 ∶ U such that 𝐴 = El 𝑎.

We say that the action of a functor on (families of) types preserves U-small-
ness if it restricts to a universe U in the following sense.

Definition 3. Let U be a universe, then a functor 𝐹 preserves U-small types
if there is a map 𝐹0 ∶ U → U that reflects the type operation 𝐹0, i.e. for
each 𝑎 ∶ U there is 𝐹0(𝑎) ∶ U such that 𝐹0(El 𝑎) = El𝐹0(𝑎).
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Definition 4. Let U be a universe, then an action of a functor 𝐹 on families of
types preserves U-small families if it preserves U-small types (Definition 3) and

there is a map ̂̃𝐹0 ∶ (𝐴 → U) → (𝐹0(𝐴) → U) for each type 𝐴 that reflects the

family operation 𝐹0, i.e. for each 𝑝 ∶ 𝐴 → U there is ̂̃𝐹0(𝑝) ∶ 𝐹0(𝐴) → U such

that 𝐹0(El 𝑝) = El ̂̃𝐹0(𝑝) and ̂̃𝐹0(𝑝 ∘ 𝑓) = ̂̃𝐹0(𝑝) ∘ 𝐹1(𝑓 ).

As before, the equalities for preservation of smallness are strict. Moreover,
note that the index type 𝐴 of a U-small family 𝑝 is not required to be U-small
itself.

Example 3. The running example of exponentiation by a type𝑅 preservesU-small
types and families whenever 𝑅 is U-small. This is because we assume universes
to reflect function types, i.e. we assume a map ∏̂ such that ∏El 𝑟 El 𝑝 = El(∏̂𝑟 𝑝),
and hence ∏𝑅 𝑃 is U-small if 𝑅 and 𝑃 are.

Let 𝐹 be a functor with an action on families of types, then for each fam-
ily 𝑃 over 𝐴 the canonical map

𝑠𝑃 ∶ 𝐹 (∑
𝑥∶𝐴

𝑃 (𝑥)) → ∑
𝑥∶𝐹 (𝐴)

𝐹 (𝑃 )(𝑥)

is defined as the pairing of the map π1 = 𝐹 (fst) and the section π2 = 𝐹 (snd).
The map 𝑠𝑃 is a map over 𝐹 (𝐴) in the sense that the diagram

𝐹 (∑𝑥∶𝐴 𝑃 (𝑥)) ∑𝑥∶𝐹 (𝐴) 𝐹 (𝑃 )(𝑥)

𝐹 (𝐴)
π1

𝑠𝑃

fst

commutes strictly.

Definition 5. A lex operation is given by a functor 𝐹 with an action on families
of types such that the canonical maps

1. 𝐹 (Unit) → Unit and

2. 𝐹 (∑𝑥∶𝐴 𝑃 (𝑥)) → ∑𝑥∶𝐹 (𝐴) 𝐹 (𝑃 )(𝑥) for each family 𝑃 over 𝐴

are (strict) isomorphisms.
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Given a lex operation 𝐹 , the inverses of the canonical maps induce ele-
ments

1. ⊤ ∶ 𝐹 (Unit) and
2. ⟨𝑡, 𝑢⟩ ∶ 𝐹 (∑𝑥∶𝐴 𝑃 (𝑥)) for each 𝑡 ∶ 𝐹 (𝐴) and 𝑢 ∶ 𝐹 (𝑃 )(𝑡)

which satisfy the strict equations

1. ⊤ = 𝑡 for each 𝑡 ∶ 𝐹 (Unit),
2. π1⟨𝑡, 𝑢⟩ = 𝑡,
3. π2⟨𝑡, 𝑢⟩ = 𝑢, and
4. ⟨π1𝑡,π2𝑡⟩ = 𝑡 for each 𝑡 ∶ 𝐹 (∑𝑥∶𝐴 𝑃 (𝑥)).

so that 𝐹 (Unit) and 𝐹 (∑𝑥∶𝐴 𝑃 (𝑥)) have the structure of a unit type and a
dependent sum type (of the family 𝐹 (𝑃 ) over 𝐹 (𝐴)), respectively.

Example 4. We have seen that exponentiation by a type 𝑅 is functorial and acts
on families of types. That exponentiation preserves unit types, i.e. (𝑅 → Unit) ≅
Unit, follows from the η laws for function and unit types, and the fact that it also
preserves dependent sum types, i.e.

(𝑅 → ∑
𝑥∶𝐴

𝑃 (𝑥)) ≅ ∑
𝑑∶𝑅→𝐴

∏
𝑟∶𝑅

𝑃 (𝑑(𝑟)),

is an instance of the type-theoretic axiom of choice [63, 60].

Proposition 1. The identity map Id is a lex operation, and the composite map 𝐺∘
𝐹 is a lex operation whenever 𝐺 and 𝐹 are lex operations.

Proof. We only discuss the preservation of dependent sum types by the com-
posite 𝐺 ∘ 𝐹 of two lex operations 𝐺 and 𝐹 . The canonical morphism 𝑠𝐺𝐹 ,𝑃 is
an isomorphism because it factors as follows:

𝐺(𝐹 (∑𝑥∶𝐴 𝑃 (𝑥))) ∑𝑥∶𝐺(𝐹 (𝐴)) 𝐺(𝐹 (𝑃 ))(𝑥)

𝐺(∑𝑥∶𝐹 (𝐴) 𝐹 (𝑃 )(𝑥))

𝑠𝐺𝐹 ,𝑃

≅
𝐺(𝑠𝐹 ,𝑃 )

≅
𝑠 𝐺,𝐹 (𝑃 )

by the universal property of ∑𝑥∶𝐺(𝐹 (𝐴)) 𝐺(𝐹 (𝑃 ))(𝑥) and the assumption that
𝐺 and 𝐹 are lex operations.
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Proposition 2. Let 𝐹 be a functor. If 𝐹 preserves terminal objects, then 𝐹 is
pointed. Moreover, the natural transformation 𝜂 ∶ Id → 𝐹 is uniquely de-
termined in that case by 𝜂𝐴(𝑎) = 𝐹 ( ̂𝑎)(⊤) where ̂𝑎 = const𝑎 = λ𝑥∶Unit𝑎 and
⊤ = 𝜂Unit(tt) ∶ 𝐹 (Unit).1

Proof. Any natural transformation 𝜂 ∶ Id → 𝐹 is uniquely determined by the
component 𝜂Unit ∶ Unit → 𝐹 (Unit), that is the element 𝜂Unit(tt). Indeed, for
each 𝑎 ∶ 𝐴 we have

𝜂𝐴(𝑎) = 𝜂𝐴(const𝑎(tt)) = 𝐹 (const𝑎)(𝜂Unit(tt))

by naturality. Moreover, the assignment 𝑎 ↦ 𝐹 (const𝑎)(𝜂Unit(tt)) is natural
because for each 𝑓 ∶ 𝐵 → 𝐴 and 𝑏 ∶ 𝐵 we have

𝐹 (const𝑓(𝑏))(𝜂Unit(tt)) = 𝐹 (𝑓)(𝐹 (const𝑏)(𝜂Unit(tt)))

In conclusion, if a functor 𝐹 preserves terminal objects, then there is exactly
one natural transformation Id → 𝐹 up to strict equality.

In anticipation of their role in the presence of identity types and to avoid
introducing another terminology like display map [77, 68, 43] only for the
course of this section, we will start calling a map 𝑝 ∶ 𝑇 → 𝐴 that is isomor-
phic to the projection map fst𝑃 ∶ ∑𝑥∶𝐴 𝑃 (𝑥) → 𝐴 for some family 𝑃 over 𝐴
a fibration [31, 8] even though we do not assume a notion of equivalence of
types at this point. We will refer to the pair (𝑃 , 𝑠) of a family 𝑃 and an iso-
morphism 𝑠 ∶ 𝑇 ⥲ ∑𝑥∶𝐴 𝑃 (𝑥) from 𝑝 to fst𝑃 over 𝐴 as a fibration structure
on the map 𝑝 ∶ 𝑇 → 𝐴.

The properties of fibrations we are interested in at this point are the ex-
istence of pullbacks along arbitrary maps 𝑓 ∶ 𝐴′ → 𝐴 as well as the closure
under composition and pullbacks. These properties correspond to the fact that
one can take the maps that are isomorphic to projection maps to be the class
of fibrations of a fibration category [13] or clan [46, Definition 1.1.1] associated
to the type theory. [8, Theorem 3.2.5]

A functor (between categories with a notion of fibration, like the fibra-
tion category or clan associated to a type theory) that preserves terminal ob-
jects, fibrations and pullbacks of fibrations corresponds to the notion of clan
morphism [46, Definition 1.1.8] with the significant difference that preserva-
tion of fibrations is not merely a property of a functor here because being a
fibration is not a property of but given by a fibration structure (𝑃𝑓 , 𝑠𝑓 ) on a

1We owe this observation to Dan Licata.
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map 𝑓 ∶ 𝐵 → 𝐴. What we will show in the remainder of this section is that
lex operations can be seen as endomorphisms on the associated clan.

Proposition 3. Let 𝐹 be a lex operation and (𝑓 , 𝑃𝑓 , 𝑠𝑓 ) a fibration, then 𝐹 (𝑓)
has a fibration structure given by 𝑠𝑃𝑓 ∘ 𝐹 (𝑠𝑓 ) ∶ 𝐹 (𝐵) → ∑𝑥∶𝐹 (𝐴) 𝐹 (𝑃𝑓 ).

Proof. Since functors preserve commuting diagrams and in particular isomor-
phisms, the isomorphism 𝑠𝐹 (𝑓) = 𝑠𝑃𝑓 ∘ 𝐹 (𝑠𝑓 ) is a fibration structure for the
map 𝐹 (𝑓) ∶ 𝐹 (𝐵) → 𝐹 (𝐴).

We recall from Avigad, Kapulkin and Lumsdaine [8] that canonical pull-
backs of fibrations, i.e. maps isomorphic to a projection map, indeed exist and
are again fibrations:

Proposition 4. Let (𝑓 , 𝑃𝑓 , 𝑠𝑓 ) be a fibration over 𝐴 and 𝑔 ∶ 𝐴′ → 𝐴 any map,
then the projection map ∑𝑥∶𝐴′ 𝑃𝑓 (𝑔(𝑥)) → 𝐴′, which has a fibration structure,
together with the map

𝑔∗ ∶ ∑
𝑥∶𝐴′

𝑃𝑓 (𝑔(𝑥)) → 𝐵 (𝑎′, 𝑝) ↦ 𝑠−1
𝑓 (𝑔(𝑎′), 𝑝)

is a pullback of 𝑓 along 𝑔, that is the square

∑𝑥∶𝐴′ 𝑃𝑓 (𝑔(𝑥)) 𝐵

𝐴′ 𝐴
fst

𝑔∗

𝑓
𝑔

Diagram 1: Base change

is a pullback square. Moreover, the equations

1. id∗
𝐴 = 𝑠−1

𝑓 and
2. (𝑔 ∘ ℎ)∗ = 𝑔∗ ∘ ℎ∗

hold.

Proof. See Avigad, Kapulkin and Lumsdaine [8, Lemmas 3.2.7 and 3.2.9] for
the existence of pullbacks of projections and the preservation of projections
under pullbacks.
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It immediately follows that lex operations preserve pullbacks of fibrations
and binary products.

Proposition 5. Let 𝐹 be a lex operation and (𝑝, 𝑞) a pullback of a fibration (𝑓 ,
𝑃𝑓 , 𝑠𝑓 ) along a map 𝑔 ∶ 𝐴′ → 𝐴, then (𝐹 (𝑝), 𝐹 (𝑞)) is a pullback of 𝐹 (𝑓)
along 𝐹 (𝑔).

Proof. Without loss of generality, we can assume 𝑓 = fst, 𝑃𝑓 = ∑𝑥∶𝐴 𝑃 (𝑥)
and 𝑠𝑓 = id for some family 𝑃 over 𝐴. We show that the structure isomor-
phism 𝑠𝑃 𝑔 of the image of the canonical pullback of 𝑓 along 𝑔 is the canonical
cone morphism from 𝐹 (fst) and 𝑠𝑃 ∘ 𝐹 (𝑔∗) to fst𝐹 (𝑃 )𝐹 (𝑔) and 𝐹 (𝑔)∗. Since

𝐹 (𝑃 𝑔) = 𝐹 (𝑃 )𝐹 (𝑔) we have that 𝑠𝐹 (𝑃 𝑔) has the right type and fst𝐹 (𝑃 )𝐹 (𝑔) ∘
𝑠𝑃 𝑔 = 𝐹 (fst). To show 𝐹 (𝑔)∗ ∘ 𝑠𝐹 (𝑃 𝑔) = 𝑠𝑃 ∘ 𝐹 (𝑔∗) we note:

𝐹 (snd𝑃 ) ∘ 𝐹 (𝑔∗) = 𝐹 (snd𝑃 ∘ 𝑔∗) = 𝐹 (snd𝑃 𝑔)

Let 𝐹 be a functor which preserves terminal objects and acts on families,
then for a family 𝑃 over some type 𝐴 and an element 𝑎 ∶ 𝐴 the map

𝑓𝑃 ,𝑎 ∶ 𝐹 (𝑃 (𝑎)) → 𝐹 (𝑃 )(𝜂𝐴(𝑎)) 𝑥 ↦ π2(𝐹 ((𝑎, −))(𝑥)) (2.1)

factors the map

̃𝜂𝑃 ,𝑎 ∶ 𝑃 (𝑎) → 𝐹 (𝑃 )(𝜂𝐴(𝑎)) 𝑝 ↦ π2(𝜂∑𝑥∶𝐴 𝑃 (𝑥)((𝑎, 𝑝))) (2.2)

through 𝜂𝑃 (𝑎) ∶ 𝑃 (𝑎) → 𝐹 (𝑃 (𝑎)).
From the preservation of pullbacks (and the unit type) it follows that lex

operations preserve fibres of families in the following sense.

Lemma 6. Let 𝐹 be a lex operation, then 𝐹 preserves (strict) fibres in the sense
that the map

𝑓𝑃 ,𝑎 ∶ 𝐹 (𝑃 (𝑎)) → 𝐹 (𝑃 )(𝜂𝐴(𝑎))
from Equation 2.1 is an isomorphism. In particular, 𝐹 preserves constant families
in the sense that in the case of 𝑃 (𝑥) = 𝐵 for all 𝑥 ∶ Unit and 𝑎 = tt this says
that the map

𝑓𝐵 ∶ 𝐹 (𝐵) → 𝐹 ((𝐵)𝑥∶Unit)(⊤) 𝑥 ↦ π2(𝐹 ((tt, −))(𝑥)) (2.3)

is an isomorphism.
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Proof. For each 𝑥 ∶ 𝐹 (𝑃 (𝑎)) we have

π2(𝐹 ((𝑎, −))(𝑥)) = π2(𝐹 ( ̂𝑎∗)(𝐹 ((tt, −))(𝑥))) = π2(𝐹 ((tt, −))(𝑥)),
and both𝐹 ((tt, −)) ∶ 𝐹 (𝑃 (𝑎)) → 𝐹 (∑𝑥∶Unit 𝑃 (𝑎)) and π2 ∶ 𝐹 (∑𝑥∶Unit 𝑃 (𝑎)) →
𝐹 ((𝑃 (𝑎))𝑥∶Unit)(⊤) = 𝐹 (𝑃 ̂𝑎)(⊤) = 𝐹 (𝑃 )(𝜂𝐴(𝑎)) are isomorphisms.

We recall that the binary product 𝐴 × 𝐵 of types 𝐴 and 𝐵 can be defined
either as a choice of pullback of the constant fibration ∑𝑥∶Unit 𝐵 → Unit along
the terminal map 𝐴 → Unit, which is how it is done in Joyal [46] for instance,
or as the dependent sum ∑𝑥∶𝐴 𝐵 of the constant family (𝐵)𝑥∶𝐴, which is how
it is usually done in type theory [63].

Proposition 7. Let 𝐹 be a lex operation, then

1. 𝐹 (𝑇 ) is a terminal object whenever 𝑇 is a terminal object, and
2. (𝐹 (𝑝), 𝐹 (𝑞)) is a product of 𝐹 (𝐴) and 𝐹 (𝐵) whenever (𝑝, 𝑞) is a product
of 𝐴 and 𝐵.

Concretely, the inverse of !𝐹 (Unit) ∶ 𝐹 (Unit) → Unit is given by 𝑥 ↦ ⊤ and
the inverse of (𝐹 (fst), 𝐹 (snd)) ∶ 𝐹 (𝐴 × 𝐵) → 𝐹 (𝐴) × 𝐹 (𝐵) is given by (𝑥, 𝑦) ↦
⟨𝑥, 𝑓𝐵(𝑦)⟩. ⊤ and ⟨−, −⟩ are defined below Definition 5, and 𝑓𝐵 is defined in
Equation 2.3.

Proof. It is clear that 𝐹 preserves terminal objects because being a terminal
object is invariant under isomorphism, 𝐹 preserves isomorphisms and 𝐹 pre-
serves the unit type (the canonical terminal object) by definition.

For a proof of the preservation of binary products given the preservation
of pullbacks of fibrations (Proposition 5) see Joyal [46, Proposition 1.1.10].

The notion of a lex operation is also implicitly used in Coquand and Paulin
[21] for a description of the notion of inductive type; a (generalized) induct-
ive type 𝐴 is given by a family of lex operations 𝐹 𝑖 indexed by some type 𝐼 ,
a family of maps intro𝑖 ∶ 𝐹 𝑖(𝐴) → 𝐴 (corresponding to the introduction
rules), and a section elim𝑃 ,𝑑 of each dependent type 𝑃 over 𝐴 with a family of
maps 𝑑𝑖 ∶ ∑𝑥∶𝐹 𝑖(𝐴) 𝐹 𝑖(𝑃 )(𝑥) → 𝑃 (intro𝑖𝑥) (corresponding to the elimination
rule) such that the strict equalities elim𝑃 ,𝑑(intro𝑖𝑥) = 𝑑𝑖(𝑥)(𝐹 𝑖(elim𝑃 ,𝑑)(𝑥))
are satisfied for each 𝑖 ∶ 𝐼 and 𝑥 ∶ 𝐹 𝑖(𝐴).

Having defined the notion of functor in type theory and when a functor
is a lex operation, we continue in the next section with a justification of the
attribute lex by showing that in the presence of identity types and function
extensionality lex operations preserve equivalences, identity types, and finite
homotopy limits.
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2.2 In the presence of identity types
From this moment on we assume identity types and function extensionality in
our type theory.

This section is dedicated to showing that in this setting lex operations (see
Definition 5) preserve equivalences, identity types, and finite homotopy limits.

With identity types at hand, we can now give the motivation for thinking
of projection maps as fibrations: Gambino and Garner [31] showed that every
map 𝑓 ∶ 𝐴 → 𝐵 can be factored as 𝑖𝑓 ∶ 𝐴 → ∑𝑥∶𝐵 fib𝑓 (𝑥), 𝑎 ↦ (𝑓(𝑎), 𝑎, refl)
followed by the fibration ∑𝑥∶𝐵 fib𝑓 (𝑥) → 𝐵 such that 𝑖𝑓 has the left lifting
property against all fibrations, which we recall from Gambino and Garner [31]
in the special case of 𝑓 = id𝐴:

Lemma 8. The function refl ∶ 𝐴 → ∑𝐴×𝐴 Id𝐴 has the left lifting property
against all fibrations.

Proof. See Gambino and Garner [31, Lemma 11] for a proof.

Towards the goal of this section, we will first show that functors as de-
fined in Definition 1 always preserve equivalences by showing that they act
on homotopies.

We recall the method of homotopy induction from the HoTT book [69],
which is equivalent to function extensionality and corresponds to path induc-
tion at function type.

Theorem 9. Let 𝑃 be a family of types 𝑃 (𝑓 , 𝑔, 𝐻) indexed by functions 𝑓 , 𝑔 ∶
𝐴 → 𝐵 and homotopies 𝐻 ∶ 𝑓 ∼ 𝑔 for some types 𝐴 and 𝐵. Given a section 𝑏 ∶
∏𝑓∶𝐴→𝐵 𝑃 (𝑓 , 𝑓 , hrefl𝑓 ), there exists a section 𝑠 ∶ ∏𝑓,𝑔∶𝐴→𝐵,𝐻∶𝑓∼𝑔 𝑃 (𝑓 , 𝑔, 𝐻)
together with paths 𝑠(hrefl𝑓 ) ≡ 𝑏(𝑓) for each function 𝑓 ∶ 𝐴 → 𝐵.

Proof. See Corollary 5.8.6 in [69] for a proof.

Proposition 10. Let 𝐹 be a (pointed) functor and 𝐻 ∶ 𝑓 ∼ 𝑔 a homotopy, then
there is a homotopy 𝐹2(𝐻) ∶ 𝐹1(𝑓 ) ∼ 𝐹1(𝑔) such that

𝐹2(hrefl𝑓 ) ≡ hrefl𝐹1(𝑓 )
(𝐹2(𝐻) ∘ 𝜂 ≡ ap𝜂 ∘ 𝐻)

Proof. By homotopy induction it suffices to consider the case 𝐻 = hrefl𝑓 . In
this case we need to construct a homotopy 𝐻′ ∶ 𝐹1(𝑓 ) ∼ 𝐹1(𝑓 ) together with
a path 𝐻′ ∘ 𝜂𝐴 ≡ ap𝜂𝐵

∘ hrefl𝑓 for each function 𝑓 ∶ 𝐴 → 𝐵, but the constant
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function hrefl𝐹1(𝑓 ) = λ𝑥∶𝐹0(𝐴)refl𝐹1(𝑓 )(𝑥) is such a homotopy between 𝐹1(𝑓 )
and itself such that there is a path hrefl𝐹1(𝑓 )(𝜂𝐴(𝑎)) = refl𝜂𝐵(𝑓 (𝑎)) ≡ ap𝜂𝐵

refl𝑓(𝑎)
for each 𝑎 ∶ 𝐴. Therefore, there is a section 𝐹2(𝐻) of 𝐹1(𝑓 ) ∼ 𝐹1(𝑔) over 𝑓 ,
𝑔 ∶ 𝐴 → 𝐵 and 𝐻 ∶ 𝑓 ∼ 𝑔 such that 𝐹2(hrefl𝑓 ) ≡ hrefl𝐹1(𝑓 ) and 𝐹2(𝐻) ∘ 𝜂𝐴 ≡
ap𝜂𝐵

∘ 𝐻 .

Note that the previous proposition only says that functors preserve the
identity homotopy hrefl𝑓 ∶ 𝑓 ∼ 𝑓 at each function 𝑓 ∶ 𝐴 → 𝐵 up to path
equality.

Proposition 11. Let 𝐹 be a functor and 𝑓 ∶ 𝐴 → 𝐵 an equivalence, then 𝐹 (𝑓) ∶
𝐹 (𝐴) → 𝐹 (𝐵) is an equivalence.

Proof. Let 𝑔 ∶ 𝐵 → 𝐴 be a homotopy inverse of 𝑓 with 𝐻 ∶ 𝑔 ∘ 𝑓 ∼ id𝐴
and 𝐼 ∶ 𝑓 ∘ 𝑔 ∼ id𝐵 , then we have homotopies 𝐹 (𝑔) ∘ 𝐹 (𝑓) ∼ id𝐹 (𝐴) and
𝐹 (𝑓) ∘ 𝐹 (𝑔) ∼ id𝐹 (𝐵) by Proposition 10, that is a homotopy inverse of 𝐹 (𝑓) ∶
𝐹 (𝐴) → 𝐹 (𝐵).

Remark 1. The assumption of function extensionality is strictly necessary to
prove that lex operations preserve equivalences.

For the running example 𝐴 ↦ (𝑅 → 𝐴) of a lex operation preservation
of equivalences unfolds to postcomposition (𝑅 → 𝐴) → (𝑅 → 𝐵) with any
equivalence 𝑓 ∶ 𝐴 → 𝐵 for any pair of types 𝐴 and 𝐵 being an equivalence.

If exponentiation by a type 𝑅 preserves equivalences then for all functions 𝑔
and 𝑔′ ∶ 𝑅 → 𝐶 we have that 𝑔 ∼ 𝑔′ implies 𝑔 ≡ 𝑔′ by applying the as-
sumption to the equivalence ∑𝑐∶𝐶 ∑𝑐′∶𝐶 𝑐 ≡ 𝑐′ → 𝐶, (𝑐, 𝑐′, 𝑝) ↦ 𝑐. In fact,
we have that for all dependent functions 𝑔 and 𝑔′ ∶ ∏𝑟∶𝑅 𝐶(𝑟) with a homoto-
py 𝑔 ∼ 𝑔′ there is a path 𝑔 ≡ 𝑔′. This is enough to prove contractibility of the
type ∑ℎ′∶∏𝑟∶𝑅 𝑃 (𝑟) ℎ ∼ ℎ′ for each function ℎ ∶ ∏𝑟∶𝑅 𝑃 (𝑟) and hence function
extensionality. [69, Exercise 2.16, Theorem 5.8.4]

That lex operations not only preserve fibrations (see Proposition 3) but also
equivalences (since all functors do) means that they correspond to endomor-
phisms on the fibration category [13] that Avigad, Kapulkin and Lumsdaine [8,
Theorem 3.2.5] associate to the type theory.

The preservation of fibrations and equivalences implies the preservation
of (families of) contractible types by lex operations:

Corollary 12. Let 𝐹 be a lex operation and 𝑃 (𝑥) a family of contractible types
over 𝑥 ∶ 𝐴, then 𝐹 (𝑃 )(𝑥) is a family of contractible types over 𝑥 ∶ 𝐹 (𝐴).
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Proof. 𝐹 (𝑃 ) is a family of contractible types if and only if the first projec-
tion fst𝐹 (𝑃 ) ∶ ∑𝑥∶𝐹 (𝐴) 𝐹 (𝑃 )(𝑥) → 𝐹 (𝐴) is an equivalence, but fst𝐹 (𝑃 ) is iso-
morphic to 𝐹 (fst𝑃 ) ∶ 𝐹 (∑𝑥∶𝐴 𝑃 (𝑥)) → 𝐹 (𝐴), which is an equivalence by the
assumption that 𝑃 is a family of contractible types and the proposition that
𝐹 as a functor preserves equivalences. Therefore, fst𝐹 (𝑃 ) is an equivalence by
2–out–of–3.

We now show that lex operations preserve a notion of identity type where
the computation rule is only required to hold up to path equality. We recall its
definition from the HoTT book [69]:

Definition 6. An identity system over a type 𝐴 is given by a family 𝐼(𝑎, 𝑏)
indexed by 𝑎, 𝑏 ∶ 𝐴 together with a section 𝑟 ∶ ∏𝑎∶𝐴 𝑅(𝑎, 𝑎) such that for
every family 𝐶(𝑎, 𝑏, 𝑝) indexed by 𝑎, 𝑏 ∶ 𝐴, 𝑝 ∶ 𝐼(𝑎, 𝑏) and section 𝑐 ∶
∏𝑎∶𝐴 𝐶(𝑎, 𝑎, 𝑟(𝑎)) there is a section 𝑙(𝑐) ∶ ∏𝑎,𝑏∶𝐴,𝑝∶𝐼(𝑎,𝑏) 𝐶(𝑎, 𝑏, 𝑝) together
with a homotopy 𝐿(𝑐) ∶ ∏𝑎∶𝐴 𝑙(𝑐, 𝑎, 𝑎, 𝑟(𝑎)) ≡ 𝑐(𝑎).

Note that being an identity system (over a type 𝐴) is a homotopy property
of the tuple (𝐼, 𝑟), and that the family Id𝐴 together with the section refl𝐴 ∶
∏𝑥∶𝐴 Id𝐴(𝑥, 𝑥) indeed is an identity system over 𝐴.

There is exactly one identity system up to equivalence, any two identity
systems are equivalent. Given an identity system (𝐼, 𝑟), denote the inverses of
the transport maps 𝑡𝑎,𝑏 ∶ Id𝐴(𝑎, 𝑏) → 𝐼(𝑎, 𝑏) (cf. Theorem 5.8.4 (iv) in [69]) for
each 𝑎, 𝑏 ∶ 𝐴 by

𝑡−1
𝑎,𝑏 ∶ 𝐼(𝑎, 𝑏) → Id𝐴(𝑎, 𝑏). (2.4)

Note that there is a path 𝑡−1
𝑎,𝑎(𝑟(𝑎)) ≡ refl𝑎 for each 𝑎 ∶ 𝐴 because by defini-

tion 𝑡𝑎,𝑎(refl𝑎) = 𝑟(𝑎) for all 𝑎 ∶ 𝐴.

Proposition 13. Let𝐹 be a lex operation, then for every type𝐴 the family𝐹 (Id𝐴)
together with the section 𝐹 (refl𝐴) is an identity system (see Definition 6) over the
type 𝐹 (𝐴).

Proof. By Theorem 5.8.4 in [69] it suffices to show that for any 𝑥 ∶ 𝐹 (𝐴), the
type ∑𝑦∶𝐹 (𝐴) 𝐹 (Id𝐴)⟨𝑥, 𝑦⟩ is contractible. This follows from Corollary 12 and
the fact that Id𝐴 together with refl𝐴 is an identity system.

Together with the preservation of finite products (see Proposition 7) the
preservation of identity types implies the preservation of all finite homotopy
limits by lex operations, in particular homotopy pullbacks whose definition
we recall from Wellen [85, Definition 3.2.1]:
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Definition 7. A homotopy 𝐻 ∶ 𝑓 ∘ 𝑝 ∼ 𝑔 ∘ 𝑞 ∶ 𝑃 → 𝐶 is a homotopy pullback
of 𝑓 ∶ 𝐴 → 𝐶 along 𝑔 ∶ 𝐵 → 𝐶 if the comparison map gap𝐻 ∶ 𝑃 → 𝑃 (𝑓 , 𝑔)
into the canonical homotopy pullback 𝑃 (𝑓 , 𝑔) = ∑𝑥∶𝐴,𝑦∶𝐵 𝑓(𝑥) ≡ 𝑔(𝑦) is an
equivalence.

The previous definition of homotopy pullback is independent of the choice
of identity system for the canonical homotopy pullback:

Lemma 14. Let (𝐼, 𝑟) be an identity system over a type 𝐶 , then a homotopy 𝐻 ∶
𝑓 ∘ 𝑝 ∼ 𝑔 ∘ 𝑞 ∶ 𝑃 → 𝐶 is a homotopy pullback if and only if the comparison
map

𝑔𝐻 ∶ 𝑃 → ∑
𝑥∶𝐴,𝑦∶𝐵

𝐼(𝑓(𝑥), 𝑔(𝑦)) (2.5)

induced by 𝐻 and 𝑡𝑎,𝑏 ∶ Id𝐴(𝑎, 𝑏) → 𝐼(𝑎, 𝑏) (see Equation 2.4) is an equivalence.

Proof. By definition, themap 𝑔𝐻 factors through the canonical homotopy pull-
back as the composite

𝑃 𝑃 (𝑓 , 𝑔) = ∑𝑥∶𝐴,𝑦∶𝐵 𝑓(𝑥) ≡ 𝑔(𝑦) ∑𝑥∶𝐴,𝑦∶𝐵 𝐼(𝑓(𝑥), 𝑔(𝑦))gap𝐻
≃

total(𝑡)

and, hence, 𝑔𝐻 is an equivalence if and only if gap𝐻 is an equivalence by 2–
out–of–3, i.e. 𝑔𝐻 is an equivalence if and only if 𝐻 is a homotopy pullback.

Preservation of identity types in the sense of Proposition 13 by a functor
(not necessarily a lex operation) induces an action on homotopies

𝑓 ∼ 𝑔 → 𝐹 (𝑓) ∼ 𝐹 (𝑔)

which in the case of lex operations coincides with the one from Proposition 10
up to path equality:

Lemma 15. Let 𝐹 be a lex operation, then for every homotopy 𝐻 ∶ 𝑓 ∼ 𝑔 there
are paths 𝐹2(𝐻)(𝑥) ≡ 𝑡−1(𝐹 (𝐻)(𝑥)) (see Equation 2.4) for 𝑥 ∶ 𝐹 (𝐴).

Proof. By homotopy induction it suffices to consider the cases 𝐻 = hrefl𝑓
and give paths 𝐹2(hrefl𝑓 )(𝑥) ≡ 𝑡−1(𝐹 (hrefl𝑓 )(𝑥)) for 𝑥 ∶ 𝐹 (𝐴), which we
have because by Proposition 10 and the remark below Equation 2.4 both sides
of the equation are path equal to refl𝐹 (𝑓)(𝑥).

Proposition 16. Let 𝐹 be a lex operation. If 𝐻 ∶ 𝑓 ∘ 𝑝 ∼ 𝑔 ∘ 𝑞 is a homotopy
pullback of 𝑓 ∶ 𝐴 → 𝐵 along 𝑔 ∶ 𝐵 → 𝐶 , then 𝐹2(𝐻) ∶ 𝐹1(𝑓 ) ∘ 𝐹1(𝑝) ∼
𝐹1(𝑔) ∘ 𝐹1(𝑞) is a homotopy pullback of 𝐹1(𝑓 ) ∶ 𝐹0(𝐴) → 𝐹0(𝐶) along 𝐹1(𝑔) ∶
𝐹0(𝐵) → 𝐹0(𝐶).
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Proof. The map gap𝐻 ∶ 𝑃 → 𝑃 (𝑓 , 𝑔) is an equivalence by assumption and
hence 𝐹 (gap𝐻 ) ∶ 𝐹 (𝑃 ) → 𝐹 (𝑃 (𝑓 , 𝑔)) is an equivalence by Proposition 11.
𝐹 (Id𝐶 ) and 𝐹 (refl𝐶 ) form an identity system over 𝐹 (𝐶) by Proposition 13 and
the canonicalmap 𝑢 ∶ 𝐹 (𝑃 (𝑓 , 𝑔)) → ∑𝑥∶𝐹 (𝐴),𝑦∶𝐹 (𝐵) 𝐹 (Id𝐶 )⟨𝐹 (𝑓)(𝑥), 𝐹 (𝑔)(𝑦)⟩
is an isomorphism because 𝐹 preserves strict pullbacks (see Proposition 5).
From this it follows that 𝑔𝐹2(𝐻) ∼ 𝑢∘𝐹 (gap𝐻 ) (see Lemma 15) is an equivalence
by 2–out–of–3 and hence 𝐹2(𝐻) is a homotopy pullback by Lemma 14.

Corollary 17. For 𝐹 a lex operation, if 𝑝 and 𝑞 are a homotopy pullback (in the
sense that 𝐻 = hrefl is a homotopy pullback) of 𝑓 and 𝑔, then 𝐹1(𝑝) and 𝐹1(𝑞)
are a homotopy pullback of 𝐹1(𝑓 ) and 𝐹1(𝑔).

Proof. 𝐹 preserves strictly commuting diagrams because it is a functor, and the
identity homotopy hrefl by Proposition 10, so by Proposition 16 the homotopy
𝐹2(hrefl) ≡ hrefl is a homotopy pullback of 𝐹1(𝑝) and 𝐹1(𝑞).

Corollary 18. For 𝐹 a lex operation and 𝑓 ∶ 𝐴 → 𝐵 an arbitrary function,
the gap map 𝐹 (fib𝑓 (𝑏)) → fib𝐹 (𝑓)(𝜂𝐵(𝑏)) is an equivalence for each 𝑏 ∶ 𝐵.
Moreover, the gap map factorizes the fibre map fib𝑓 (𝑏) → fib𝐹 (𝑓)(𝜂𝐵(𝑏)) through
𝜂fib𝑓 (𝑏) ∶ fib𝑓 (𝑏) → 𝐹 (fib𝑓 (𝑏)).

Proof. The fibre of 𝑓 over 𝑏 is a homotopy pullback of the constant func-
tion ̂𝑏 = const𝑏 ∶ Unit → 𝐵 along 𝑓 such that the gap maps 𝑋 → fib𝑓 (𝑏)
strictly commute with the projections:

fib𝑓 (𝑏) Unit

𝐴 𝐵
fst

⌟
!

�̂�
𝑓

Diagram 2: The fibre of a map over a point is the homotopy pullback of the
constant map along the map.

By preservation of homotopy pullbacks (see Proposition 16) 𝐹2(snd) ∶ 𝐹 (𝑓) ∘
𝐹 (fst) ∼ 𝐹 ( ̂𝑏) ∘ 𝐹 (!) is a homotopy pullback, and by preservation of the unit
type and Wellen [85, Lemma 3.2.3 (d)] also the outer square, where 𝐹 ( ̂𝑏) and
𝐹 (!) are replaced by the strictly isomorphic 𝜂𝐵(𝑏) = 𝜂𝐵 ∘ ̂𝑏 = 𝐹 ( ̂𝑏) ∘ 𝜂Unit and
! = ! ∘ 𝐹 (!), respectively, is a homotopy pullback:
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𝐹 (fib𝑓 (𝑏)) 𝐹 (Unit) Unit

𝐹 (𝐴) 𝐹 (𝐵) 𝐵

⌟ 𝜂Unit

≅

�̂�

𝜂𝐵

We hence have two homotopy pullback squares over the same cospan and an
equivalence between them (the unique map from 𝐹 (fib𝑓 (𝑏)) to fib𝐹 (𝑓)(𝜂𝐵(𝑏))
such that whiskering the inner square yields the outer square is an equivalence
by Rijke [73, Lemma 10.2.3]):

𝐹 (fib𝑓 (𝑏))

fib𝐹 (𝑓)(𝜂𝐵(𝑏)) Unit

𝐹 (𝐴) 𝐹 (𝐵)

≃

⌟
𝜂𝐵(𝑏)

𝐹 (𝑓)

Corollary 19. Let 𝐹 be a lex operation and 𝑃 (𝑥) a family of mere propositions
over 𝑥 ∶ 𝐴, then 𝐹 (𝑃 )(𝑥) is a family of mere propositions over 𝑥 ∶ 𝐹 (𝐴).

Proof. 𝐹 (𝑃 ) is a family of mere propositions if and only if fst ∶ ∑𝐹 (𝐴) 𝐹 (𝑃 ) →
𝐹 (𝐴) is an embedding, or, equivalently, if the diagram

∑𝐹 (𝐴) 𝐹 (𝑃 ) ∑𝐹 (𝐴) 𝐹 (𝑃 )

∑𝐹 (𝐴) 𝐹 (𝑃 ) 𝐹 (𝐴)
fst

fst

is a homotopy pullback. Now, this diagram is (isomorphic to) the image of the
diagram

∑𝐴 𝑃 ∑𝐴 𝑃

∑𝐴 𝑃 𝐴
fst

fst
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which is a homotopy pullback because fst ∶ ∑𝐴 𝑃 → 𝐴 is an embedding by
assumption. Since 𝐹 preserves homotopy pullbacks by Corollary 17, the claim
follows.

It turns out that our running example of a lex operation does not just pre-
serve families of types of homotopy level 𝑛 < 0 but of arbitrary homotopy
level:

Example 5. Let 𝑅 be any type, then the lex operation 𝐹 given by 𝐹 (𝐴) = (𝑅 →
𝐴) does not only preserve families of contractible types and families of mere pro-
positions but 𝐹 preserves families of 𝑛-truncated types 𝑃 (𝑥) for every 𝑛 ⩾ −2:
𝐹 (𝑃 )(𝑑) = ∏𝑟∶𝑅 𝑃 (𝑑(𝑟)) is 𝑛-truncated for each 𝑑 ∶ 𝐹 (𝐴) whenever 𝑃 (𝑥) is
𝑛-truncated for each 𝑥 ∶ 𝐴. [69, Theorem 7.1.9]

However, we do not have a proof (or disproof) that lex operations preserve
families of 𝑛-truncated types for arbitrary 𝑛 ⩾ −2 in general.
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Chapter 3

Descent data operation

In the previous chapter we looked at functorial operations on (families of)
types and defined the notion of lex operation. We then showed that lex oper-
ations preserve finite products and pullbacks of fibrations as well as equiva-
lences and finite homotopy limits (in the presence of identity types and func-
tion extensionality).

In this chapter we look at lex operations that are lex modalities in the sense
of Rijke, Shulman and Spitters [74]. The interest in lex modalities lies in them
giving rise to new models of type theory [70]. The resulting notion is that of
a descent data operation.

We show that the algebras or modal types of a descent data operation are
closed under dependent sums, and if the descent data operation acts on a uni-
valent universe then they support a (univalent) universe. Moreover, we show
that if certain higher inductive types exist then the submodel of modal types
induced by a descent data operation supports (higher) inductive types.

3.1 Definition of descent data operation
Definition 8. A descent data operation is given by a lex operation 𝐷 such that

1. the function 𝜂𝐷(𝐴) ∶ 𝐷(𝐴) → 𝐷(𝐷(𝐴)) is an equivalence, and

2. the function 𝐷(𝜂𝐴) ∶ 𝐷(𝐴) → 𝐷(𝐷(𝐴)) is an equivalence

for each type 𝐴.

Definition 9. A type 𝐴 is called modal with respect to a descent data opera-
tion 𝐷 if the function 𝜂𝐴 ∶ 𝐴 → 𝐷(𝐴) is an equivalence.

31
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We write isModal(𝐴) for isEquiv(𝜂𝐴), which is a mere proposition. In par-
ticular, by the definition of a descent data operation, we have isModal(𝐷(𝐴))
for any type 𝐴.

Lemma 20. Let 𝐷 be a descent data operation and 𝑓 , 𝑔 ∶ 𝐷(𝐴) → 𝐵 parallel
functions into a modal type 𝐵, then 𝑓 ∘ 𝜂𝐴 ∼ 𝑔 ∘ 𝜂𝐴 implies 𝑓 ∼ 𝑔.

Proof. Since, by assumption, 𝜂𝐵 is an equivalence, it suffices to show that 𝜂𝐵 ∘
𝑓 ∼ 𝜂𝐵 ∘𝑔, which is the same as showing that 𝐷(𝑓)∘𝜂𝐷(𝐴) ∼ 𝐷(𝑔)∘𝜂𝐷(𝐴). But,
since 𝜂𝐷(𝐴) is an equivalence, it actually suffices to show that 𝐷(𝑓) ∼ 𝐷(𝑔).
Now, the assumption 𝑓 ∘ 𝜂𝐴 ∼ 𝑔 ∘ 𝜂𝐴 implies 𝐷(𝑓) ∘ 𝐷(𝜂𝐴) ∼ 𝐷(𝑔) ∘ 𝐷(𝜂𝐴) and,
hence, 𝐷(𝑓) ∼ 𝐷(𝑔) because 𝐷(𝜂𝐴) is an equivalence.

Lemma 21. Let 𝐷 be a descent data operation, then there is a homotopy

𝑤𝐴 ∶ 𝜂𝐷(𝐴) ∼ 𝐷(𝜂𝐴)

for each type 𝐴.

Proof. Note that 𝐷(𝐷(𝐴)) is modal and that 𝜂𝐷(𝐴) ∘𝜂𝐴 = 𝐷(𝜂𝐴)∘𝜂𝐴. Therefore,
the conclusion 𝜂𝐷(𝐴) ∼ 𝐷(𝜂𝐴) follows by Lemma 20.

Definition 10. A patch algebra for a descent data operation 𝐷 is given by a
type 𝐴 together with a patching structure:

1. a function patch ∶ 𝐷(𝐴) → 𝐴, and
2. a homotopy linv ∶ patch ∘ 𝜂𝐴 ∼ id𝐴.

Note that the type isPA(𝐴) of patching structures on a type 𝐴 is the same as
the type leftInv(𝜂𝐴) of homotopy left inverses of the function 𝜂𝐴 ∶ 𝐴 → 𝐷(𝐴).
Lemma 22. Let 𝐷 be a descent data operation, then isPA(𝐴) is logically equiva-
lent to isModal(𝐴) for each type 𝐴.

Proof. isModal(𝐴) is logically equivalent to having an (left and right) inverse.
It is therefore immediate that isModal(𝐴) implies isPA(𝐴). In the other direc-
tion, assume a function patch ∶ 𝐷(𝐴) → 𝐴 such that patch ∘ 𝜂𝐴 ∼ id𝐴. It
suffices to show that also 𝜂𝐴 ∘ patch ∼ id𝐷(𝐴). This is the same as showing
that 𝐷(patch) ∘ 𝜂𝐷(𝐴) ∼ 𝐷(id𝐴). By Lemma 21 we have 𝐷(patch) ∘ 𝜂𝐷(𝐴) ∼
𝐷(patch) ∘ 𝐷(𝜂𝐴) and, by assumption, we have 𝐷(patch) ∘ 𝐷(𝜂𝐴) ∼ 𝐷(id𝐴). In
conclusion, we have 𝐷(patch) ∘ 𝜂𝐷(𝐴) ∼ 𝐷(id𝐴) and hence, using the assump-
tion that patch is a left inverse of 𝜂𝐴, we have that 𝐴 is modal.
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Corollary 23. Let 𝐷 be a descent data operation, then isPA(𝐴) is a mere propo-
sition for each type 𝐴.

Proof. For showing that isPA(𝐴) is a mere proposition, it suffices to show that
isPA(𝐴) implies isContr(isPA(𝐴)). [69, Exercise 3.5] Now, assume isPA(𝐴).
Then we have isModal(𝐴) by Lemma 22, which is the same as isEquiv(𝜂𝐴). In
turn, this implies that leftInv(𝜂𝐴) is contractible [69, Lemma 4.2.9], which is
the same as isContr(isPA(𝐴)).

Corollary 24. Let 𝐷 be a descent data operation, then the two types isPA(𝐴)
and isModal(𝐴) are equivalent for each type 𝐴.

Proof. The types isPA(𝐴) and isModal(𝐴) = isEquiv(𝜂𝐴) are logically equiva-
lent mere propositions by the previous two lemmas.

Proposition 25. Let 𝐷 be a descent data operation, 𝐴 a type and 𝐵 a modal type,
then precomposition with 𝜂𝐴 is an equivalence between the types 𝐷(𝐴) → 𝐵 and
𝐴 → 𝐵.

Proof. Let patch ∶ 𝐷(𝐵) → 𝐵 be a patch function for the modal type 𝐵. We
show that (𝐴 → 𝐵) → (𝐷(𝐴) → 𝐵), 𝑓 ↦ patch ∘ 𝐷(𝑓) is an inverse of
𝑔 ↦ 𝑔 ∘ 𝜂𝐴 by using the homotopy 𝜂𝐷(𝐴) ∼ 𝐷(𝜂𝐴) from Lemma 21: For a
function 𝑔 ∶ 𝐷(𝐴) → 𝐵 we have patch ∘ 𝐷(𝑔 ∘ 𝜂𝐴) ∼ patch ∘ 𝐷(𝑔) ∘ 𝜂𝐷(𝐴) ∼
patch ∘ 𝜂𝐵 ∘ 𝑔 ∼ 𝑔, and for a function 𝑓 ∶ 𝐴 → 𝐵 we have patch ∘ 𝐷(𝑓) ∘ 𝜂𝐴 ∼
patch ∘ 𝜂𝐵 ∘ 𝑓 ∼ 𝑓 .

Definition 11. A dependent patch algebra over a patch algebra (𝐴, patch, linv)
for a descent data operation 𝐷 is given by a dependent type 𝑃 over 𝐴 together
with a dependent patching structure:

1. p̃atch ∶ ∏𝑥∶𝐷(𝐴)(�̃�(𝑃 )(𝑥) → 𝑃 (patch(𝑥))), and
2. l̃inv ∶ ∏𝑥∶𝐴,𝑦∶𝑃 (𝑥) p̃atch(𝜂(𝑥), ̃𝜂(𝑦)) ≡linv(𝑥) 𝑦

where ̃𝜂 is the map 𝑃 (𝑥) → �̃�(𝑃 )(𝜂(𝑥)) from Equation 2.2.

Lemma 26. Let (𝑃 , p̃atch, l̃inv) be a dependent patch algebra over a patch alge-
bra (𝐴, patch, linv) for a descent data operation 𝐷, then the total type ∑𝑥∶𝐴 𝑃 (𝑥)
has a patching structure.
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Proof. The type

∑
p̃atch∶∏𝑥∶𝐷(𝐴)(�̃�(𝑃 )(𝑥)→𝑃 (patch𝐴(𝑥)))

∏
𝑥∶𝐴,𝑦∶𝑃 (𝑥)

p̃atch(𝜂(𝑥), ̃𝜂(𝑦)) ≡linv𝐴(𝑥) 𝑦

of dependent patching structures on 𝑃 is isomorphic to the type

∑
p̃atch∶∏𝑧∶𝐷(∑𝑥∶𝐴 𝑃 (𝑥))→𝑃 (patch𝐴(π1𝑧))

∏
𝑧∶∑𝑥∶𝐴 𝑃 (𝑥)

p̃atch(𝜂(𝑧)) ≡linv𝐴(fst 𝑧) snd 𝑧

which implies the type

∑
patch∶∏𝑧∶𝐷(∑𝑥∶𝐴 𝑃 (𝑥))→∑𝑥∶𝐴 𝑃 (𝑥)

∏
𝑧∶∑𝑥∶𝐴 𝑃 (𝑥)

patch(𝜂(𝑧)) ≡ 𝑧

of patching structures on ∑𝑥∶𝐴 𝑃 (𝑥). [69, Theorem 2.7.2]

Lemma 27. Let𝐷 be a descent data operation, (𝐴, patch𝐴, linv𝐴) a patch algebra,
and (𝑃 (𝑎), patch𝑃 (𝑎), linv𝑃 (𝑎)) a family of patch algebras indexed by 𝑎 ∶ 𝐴, then
the dependent type 𝑃 has a dependent patching structure over (𝐴, patch𝐴, linv𝐴).

Proof. We need to construct an element of the type

∑
p̃atch∶∏𝑥∶𝐷(𝐴)(�̃�(𝑃 )(𝑥)→𝑃 (patch𝐴(𝑥)))

∏
𝑎∶𝐴,𝑦∶𝑃 (𝑎)

p̃atch(𝜂𝐴(𝑎), ̃𝜂(𝑦)) ≡linv𝐴(𝑎) 𝑦

= ∑
p̃atch∶∏𝑥∶𝐷(𝐴)(�̃�(𝑃 )(𝑥)→𝑃 (patch𝐴(𝑥)))

𝜑(p̃atch ∘ 𝜂𝐴)

where 𝜑(𝑓) = ∏𝑎∶𝐴,𝑦∶𝑃 (𝑎) 𝑓(𝑎, ̃𝜂(𝑦)) ≡linv𝐴(𝑎) 𝑦.
By Lemma 22, since 𝐴 is a patch algebra, 𝜂𝐴 and hence also precomposition

∏
𝑥∶𝐷(𝐴)

(�̃�(𝑃 )(𝑥) → 𝑃 (patch𝐴(𝑥))) → ∏
𝑎∶𝐴

(�̃�(𝑃 )(𝜂(𝑎)) → 𝑃 (patch𝐴(𝜂(𝑎))))

with 𝜂𝐴 is an equivalence. [69, Lemma 4.2.8] This means that the above type
is equivalent to the type

∑
𝑓∶∏𝑎∶𝐴(�̃�(𝑃 )(𝜂(𝑎))→𝑃 (patch𝐴(𝜂(𝑎))))

∏
𝑎∶𝐴,𝑦∶𝑃 (𝑎)

𝑓(𝑎, ̃𝜂(𝑦)) ≡linv𝐴(𝑎) 𝑦
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which by type-theoretic choice is isomorphic to the type

∏
𝑎∶𝐴

∑
𝑔∶�̃�(𝑃 )(𝜂(𝑎))→𝑃 (patch𝐴(𝜂(𝑎))))

∏
𝑦∶𝑃 (𝑎)

𝑔( ̃𝜂(𝑦)) ≡linv𝐴(𝑎) 𝑦

= ∏
𝑎∶𝐴

∑
𝑔∶�̃�(𝑃 )(𝜂(𝑎))→𝑃 (patch𝐴(𝜂(𝑎))))

∏
𝑦∶𝑃 (𝑎)

tp𝑃 (linv𝐴(𝑎), 𝑔( ̃𝜂(𝑦))) ≡ 𝑦

= ∏
𝑎∶𝐴

∑
𝑔∶�̃�(𝑃 )(𝜂(𝑎))→𝑃 (patch𝐴(𝜂(𝑎))))

𝜓(tp𝑃 (linv𝐴(𝑎)) ∘ 𝑔)

where 𝜓(ℎ) = ∏𝑦∶𝑃 (𝑎) ℎ( ̃𝜂(𝑦)) ≡ 𝑦.
Since transport is an equivalence [69, Example 2.4.9], again, also

tp𝑃 (linv𝐴(𝑎)) ∘ − ∶ [�̃�(𝑃 )(𝜂(𝑎)) → 𝑃 (patch𝐴(𝜂(𝑎)))] → [�̃�(𝑃 )(𝜂(𝑎)) → 𝑃 (𝑎)]

is an equivalence and the above type is equivalent to the type

∏
𝑎∶𝐴

∑
ℎ∶�̃�(𝑃 )(𝜂(𝑎))→𝑃 (𝑎)

ℎ( ̃𝜂(𝑦)) ≡ 𝑦

By Lemma 6, there is an isomorphism 𝑖 ∶ 𝐷(𝑃 (𝑎)) ≅ �̃�(𝑃 )(𝜂(𝑎)) such that
𝑖 ∘ 𝜂𝑃 (𝑎) = ̃𝜂𝑃 (𝑎) for each 𝑎 ∶ 𝐴. Thus, the last type is isomorphic to the type

∏
𝑎∶𝐴

∑
patch∶𝐷(𝑃 (𝑎))→𝑃 (𝑎)

∏
𝑦∶𝑃 (𝑎)

patch(𝜂(𝑦)) ≡ 𝑦

of families of patching structures. In conclusion, there is an equivalence be-
tween the type of dependent patching structures on the dependent type 𝑃 and
the type of families of patching structures on the family of types 𝑃 (𝑎).

Corollary 28. Let 𝐷 be a descent data operation and 𝑃 a dependent type over
some type 𝐴, then ∑𝑥∶𝐴 𝑃 (𝑥) has a patching structure if the types 𝐴 and 𝑃 (𝑎)
for 𝑎 ∶ 𝐴 have.

Proof. Immediate from the previous two lemmas.

In summary, we have that a lex operation is a descent data operation if and
only if it is a modality:

Definition 12. A modality 𝑀 is given by

1. a type isModal(𝐴) for each type 𝐴
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2. a type 𝑀(𝐴) for each type 𝐴
3. a map 𝜂𝐴 ∶ 𝐴 → 𝑀(𝐴) for each type 𝐴

such that

1. isProp(isModal(𝐴))

2. isModal(𝐴) if Equiv(𝐴, 𝐵) and isModal(𝐵)

3. isModal(𝑀(𝐴)) for each type 𝐴

4. isEquiv(𝑀(𝐴) → 𝐵, 𝐴 → 𝐵, − ∘ 𝜂𝐴) if isModal(𝐵)

5. isModal(∑𝑥∶𝐴 𝑃 (𝑥)) if isModal(𝐴) and isModal(𝑃 (𝑎)) for all 𝑎 ∶ 𝐴

Amodality as in Definition 12 does not act on a universe type but on types
and is called a judgemental modality in Rijke, Shulman and Spitters [74].

Proposition 29. Let 𝐷 be a descent data operation, then the family of mere pro-
positions isPA together with the modal operator 𝐷 and the modal unit 𝜂 is a lex
modality.

Proof. The triple (isPA, 𝐷, 𝜂) is a Σ-closed reflective subuniverse because we
have isProp(isPA(𝐴)) by Corollary 23, isPA(𝐷(𝐴)) by definition of a descent
data operation, isEquiv(−∘𝜂𝐴) by Proposition 25, and isPA(∑𝑥∶𝐴 𝑃 (𝑥)) when-
ever isPA(𝐴) and isPA(𝑃 (𝑎)) for each 𝑎 ∶ 𝐴 by Corollary 28. The triple is a
lex modality because it is a Σ-closed reflective subuniverse and pullback-pre-
serving by Proposition 5.

Proposition 30. Let 𝐹 be a lex operation. If (isPA, 𝐹 , 𝜂) is a modality, then 𝐹 is
a descent data operation.

Proof. We need to show that 𝜂𝐹 (𝐴) and 𝐹 (𝜂𝐴) are equivalences between 𝐹 (𝐴)
and 𝐹 (𝐹 (𝐴)), which are both modal by assumption. Actually, the two maps
are path equal because their precompositions with 𝜂𝐴 are (even definitionally)
equal by naturality and precomposition with 𝜂𝐴 is an equivalence by assump-
tion, so that it suffices to show that say 𝜂𝐹 (𝐴) is an equivalence. Indeed, the
unique map rec(id𝐹 (𝐴)) ∶ 𝐹 (𝐹 (𝐴)) → 𝐹 (𝐴) such that rec(id𝐹 (𝐴)) ∘ 𝜂𝐹 (𝐴) is
path equal to id𝐹 (𝐴) is also a right inverse of 𝜂𝐹 (𝐴) because the precomposi-
tions of 𝜂𝐹 (𝐴) ∘ rec(id𝐹 (𝐴)) and id𝐹 (𝐹 (𝐴)) with 𝜂𝐹 (𝐴) are path equal.



3.2. DESCENT DATA OPERATION ON A UNIVERSE 37

3.2 Descent data operation on a universe

From now on we assume a univalent universe U in our type theory. The goal
of this section is to show that if a descent data operation 𝐷 preserves small
types (see Definition 3) then the subuniverse

U𝐷 = ∑
𝑥∶U

isModal(𝑥)

of modal types (see Definition 9) has a patching structure.
As a result, the internal model of modal types with respect to a descent data

operation 𝐷 will support a univalent universe whenever 𝐷 preserves small
types.

The subuniverse U𝐷 is indeed univalent when U is:

Lemma 31. Let𝐷 be a descent data operation, then the typeU𝐷 classifies families
of 𝐷-modal U-small types and is univalent.

Proof. This holds for any predicate 𝑃 on a univalent universe U, in particular
for 𝑃 = isModal, and is immediate by the assumption that any two elements
of 𝑃 (𝐴) for 𝐴 ∶ U are propositionally equal.

Proposition 32. Let 𝐷 be a descent data operation that preserves types in a uni-
valent universe U, then the subuniverse U𝐷 has a patching structure.

Proof. We have a function 𝐿 ∶ 𝐷(U𝐷) → U𝐷 such that fib𝐷(fst)(𝑥) ≃ El𝐷 𝐿(𝑥)
for all 𝑥 ∶ 𝐷(U𝐷) because 𝐷(fst) ∶ 𝐷(Ũ𝐷) → 𝐷(U𝐷) has (modal) U-small
fibres by the assumption that 𝐷 preserves small types. Moreover, we have
fib𝐷(fst)(𝜂(𝑎)) ≃ 𝐷(fibfst(𝑎)) ≃ 𝐷(El𝐷 𝑎) ≃ El𝐷 𝑎 for all 𝑎 ∶ U𝐷. Thus, we
have El𝐷 𝐿(𝜂(𝑎)) ≃ El𝐷 𝑎 and, by univalence, 𝐿(𝜂(𝑎)) ≡ 𝑎 for all 𝑎 ∶ U𝐷. In
conclusion, 𝐿 is a patching function for U𝐷.

Corollary 33. Let 𝐷 be a descent data operation that preserves types in a uni-
valent universe U, then isModal(U𝐷).

Proof. Immediate by Lemma 22 and the proposition.
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3.3 On modal inductive types

We have seen that the modal types with respect to a descent data operation 𝐷
are closed under the basic type formers (closure under unit, dependent product
and identity types follows [70, 74] from 𝐷 being a lex modality) and support
univalent universes (whenever 𝐷 preserves small types).

The goal of this section is to show that certain higher inductive types sat-
isfy the rules for (higher) inductive types with respect to modal types.

3.3.1 Natural numbers patch algebra

Let 𝐷 be a descent data operation.
While it is possible to show that, for instance, the (modal) type 𝐷(Nat) is

a homotopy initial natural numbers algebra with respect to modal types, we
cannot show that it satisfies the computation rules strictly.

In the case of non-recursive inductive types like, for instance, binary sums,
the types 𝐷(𝐴 + 𝐵) can be shown to be a sum type of 𝐷(𝐴) and 𝐷(𝐵) (satis-
fying the computation rules strictly) if the modality that 𝐷 gives rise to (see
Proposition 29) is strict in the sense that each − ∘ 𝜂𝐴 is a strict retraction. [70]

In this subsection we show that a higher inductive type Nat𝐷 with three
point constructors and one path constructor:

zero ∶ Nat𝐷
succ ∶ Nat𝐷 → Nat𝐷

patch ∶ 𝐷(Nat𝐷) → Nat𝐷
linv ∶ ∏

𝑛∶Nat𝐷

patch(𝜂(𝑛)) ≡Nat𝐷 𝑛

is a natural numbers type with respect to modal types (if it exists).
The assumption that Nat𝐷 is a higher inductive type generated by the

given constructor implies that we also assume eliminators elim𝑃 ,𝑧,𝑠,p̃atch,l̃inv ∶
∏𝑛∶Nat𝐷

𝑃 (𝑛) satisfying the strict computation rules

elim𝑃 ,𝑧,𝑠,p̃atch,l̃inv(zero) = 𝑧
elim𝑃 ,𝑧,𝑠,p̃atch,l̃inv(succ(𝑛)) = 𝑠(𝑛, elim𝑃 ,𝑧,𝑠,p̃atch,l̃inv(𝑛))
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for any dependent type 𝑃 over Nat𝐷 together with

𝑧 ∶ 𝑃 (zero)
𝑠 ∶ ∏

𝑛∶Nat𝐷

(𝑃 (𝑛) → 𝑃 (succ(𝑛)))

p̃atch ∶ ∏
𝑥∶𝐷(Nat𝐷)

(�̃�(𝑃 )(𝑥) → 𝑃 (patch(𝑥)))

l̃inv ∶ ∏
𝑛∶Nat𝐷,𝑦∶𝑃 (𝑛)

p̃atch(𝜂(𝑛), ̃𝜂(𝑦)) ≡linv(𝑛) 𝑦

Note that we do not require Nat𝐷 to satisfy any particular equations or
come with any particular paths for the cases elim(patch(𝑥)) ∶ 𝑃 (patch(𝑥))
and elim(linv(𝑛)) ∶ elim(patch(𝜂(𝑛))) ≡linv(𝑛) elim(𝑛). However, we can prove

them path equal to p̃atch(𝑥, �̃�(elim)(𝑥)) and l̃inv(𝑛, elim(𝑛)), respectively.
Lemma 34. Nat𝐷 has a patching structure.

Proof. As witnessed by the constructors patch and linv.

Observe that, by definition, Nat𝐷 can be eliminated into dependent types
that have a dependent natural numbers algebra structure as well as a depen-
dent patch algebra structure over (Nat𝐷, patch, linv). We use Lemma 27 to
eliminate Nat𝐷 into dependent types with a dependent natural numbers alge-
bra structure and whose fibres have a patching structure:

Proposition 35. Let (𝑃 (𝑛), patch𝑃 (𝑛), linv𝑃 (𝑛)) be a family of patch algebras in-
dexed by 𝑛 ∶ Nat𝐷 together with

𝑧 ∶ 𝑃 (zero)
𝑠 ∶ ∏

𝑛∶Nat𝐷

(𝑃 (𝑛) → 𝑃 (succ(𝑛)))

then there exists a section elim ∶ ∏𝑛∶Nat𝐷
𝑃 (𝑛) such that the equations

1. elim(zero) = 𝑧, and
2. elim(succ(𝑛)) = 𝑠(𝑛, elim(𝑛)) for all 𝑛 ∶ Nat𝐷

hold strictly.

Proof. Using Lemma 27 we construct a dependent patching structure on 𝑃
over the patch algebra (Nat𝐷, patch, linv). Then, by definition of the higher
inductive type Nat𝐷 there is a section ∏𝑛∶Nat𝐷

𝑃 (𝑛) as required.
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3.3.2 Propositional truncation patch algebra
As an example of a higher inductive type, we state a proposition for proposi-
tional truncation analogous to Proposition 35 for natural numbers.

Let 𝐴 be a type and ‖𝐴‖𝐷 be a higher inductive type with two point con-
structors and two path constructors:

inc ∶ 𝐴 → ‖𝐴‖𝐷

squash ∶ ∏
𝑥,𝑦∶‖𝐴‖𝐷

𝑥 ≡‖𝐴‖𝐷 𝑦

patch ∶ 𝐷(‖𝐴‖𝐷) → ‖𝐴‖𝐷

linv ∶ ∏
𝑥∶‖𝐴‖𝐷

patch(𝜂(𝑥)) ≡‖𝐴‖𝐷 𝑥

Note that, by virtue of being a mere proposition, the constructor patch
would yield a patching function for ‖𝐴‖𝐷 even without requiring the path
constructor linv. Indeed, squash(patch(𝜂(𝑥)), 𝑥) is a path of the same type
as linv(𝑥). However, we assume the path constructor linv to emphasize the
general pattern of modal (higher) inductive types. In either case, note that
‖𝐴‖𝐷 has a patching structure irrespective of any patching structure on 𝐴.

Also note that, as for Nat𝐷, we do not require the eliminator for ‖𝐴‖𝐷,
whose rule we have omitted, to satisfy any computation rules for the con-
structors patch and linv.

Proposition 36. Let (𝑃 (𝑥), patch𝑃 (𝑥), linv𝑃 (𝑥)) be a family of patch algebras in-
dexed by 𝑥 ∶ ‖𝐴‖𝐷 together with

𝑖 ∶ ∏
𝑎∶𝐴

𝑃 (inc(𝑎))

𝑠 ∶ ∏
𝑥,𝑦∶‖𝐴‖𝐷

∏
𝑝∶𝑃 (𝑥),𝑞∶𝑃 (𝑦)

𝑝 ≡squash(𝑥,𝑦) 𝑞

then there exists a section elim ∶ ∏𝑥∶‖𝐴‖𝐷
𝑃 (𝑥) such that the equations

1. elim(inc(𝑎)) = 𝑖(𝑎) for all 𝑎 ∶ 𝐴, and
2. elim(squash(𝑥, 𝑦)) = 𝑠(𝑥, 𝑦, elim(𝑥), elim(𝑦)) for all 𝑥, 𝑦 ∶ ‖𝐴‖𝐷

hold strictly.

Proof. We construct a dependent patching structure (p̃atch, l̃inv) on 𝑃 over the
patch algebra (‖𝐴‖𝐷, patch, linv) using Lemma 27, and then use the eliminator
for ‖𝐴‖𝐷 to construct a section elim ∶ ∏𝑥∶‖𝐴‖𝐷

𝑃 (𝑥) as required.
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This concludes the first part of the thesis. In the second part we present a
particular model of type theory that supports a univalent universe and comes
equipped with a descent data operation. We then use the result of this part to
obtain a new model of univalent type theory with a single univalent universe.
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Part II

Groupoid-valued presheaf
models of type theory
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Chapter 4

Categories with families

Type theory has a convenient syntax for reasoning and programming inform-
ally. Importantly, type theory can also be presented as a (generalized) alge-
braic theory by moving frommetasubstitution and named variables to explicit
substitutions and de Bruijn indices. By virtue of the algebraic presentation us-
ing only sorts, (first-order) operations and equations, type theory has an ele-
mentary model theory and universal results like the existence of initial models
apply.

We begin this chapter by recalling the notion of generalized algebraic the-
ory [15] (without sort equations). Examples of generalized algebraic theories
include the theory of small categories and even the theory of small categories
with finite limits. Then we recall the presentation of type theory as a gener-
alized algebraic theory [25, 39] and extensions by operations and equations
corresponding to extra type structure. In particular, a universe type structure
can be axiomatized in this way, but we will also give an equivalent higher-or-
der definition that will be convenient to employ in model constructions.

The notion of homomorphism betweenmodels of type theory presented as
a generalized algebraic theory was generalized by Kaposi, Huber and Sattler
[48] to preserve the basic substitution structure strictly but the structure de-
fined by universal properties (like context extension and extra type structure)
only up to canonical isomorphism. The resulting notion of pseudomorphism
was used to generalize the gluing construction from topos theory to type the-
ory [48].

We conclude this chapter by presenting the notions of lex operation and
descent data operation from Chapters 2 and 3 as extensions of the generalized
algebraic theory of type theory. We can then show that pointed pseudoen-

45
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domorphisms induce lex operations and that they give rise to submodels of
modal types when they are idempotent.

4.1 Generalized algebraic theories
The metatheory of this work is a constructive set theory with a countable hi-
erarchy of inaccessible sets (𝒰𝑖)𝑖∈ℕ [71] as axiomatized in the system CZF
by Aczel [2]. In particular, we work without the law of excluded middle and
without the axiom of choice. The sets 𝒰𝑖 play the role of Grothendieck uni-
verses [78, 58] in classical set theory and will be called set-theoretic universes
in order to distinguish them from the universes of the object theory.

The notion of model of type theory we consider is that of the generalized
algebraic theory (GAT, Cartmell [15]) of categories with families (cwf, Dybjer
[25]). The reason why these two notions of model should coincide is that the
GAT of cwfs can be seen as a name-free version of type theory with explicit
substitutions [65].

The notion of GAT is a generalization of the notion of many-sorted alge-
braic theory [35] where the sorts may vary over or depend on a context of
variables each with a specified sort; it can also be seen as a notion of type
theory without binders and without operations on types but with arbitrary
equational axioms for types and terms.

The algebraic presentation of type theory is of a more restricted form of
GAT than originally introduced by Cartmell [15] where the equational axioms
are only between terms of the GAT.

A GAT (of the restricted form without axioms for types) is hence given by

1. a set of sort symbols each with the context it varies over or depends on,

2. a set of operator symbols each with the context of its arguments and the
sort of its result, and

3. a set of term equations each with the context of the two terms it equates
and their type.

The significance of an algebraic presentation of type theory is that such a
presentation is itself a mathematical object and comes with a precise notion of
model, which, moreover, is amenable to general algebraic techniques.

As in the case ofmany-sorted algebraic theories, the specific syntactic form
of a GAT, namely first-order expressions and equational axioms, determine
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1. what a set-theoretic model of that GAT is, and 2. what a homomorphism
between two models is.

When defining algebraic structures, instead of giving their axiomatization
as a GAT and defining a structure of their kind to be a model of that GAT, we
will usually leave the GAT to be inferred from the definition of its models.

The typical and first example of a mathematical structure that is axiomat-
ized by a GAT which falls outside the fragment of many-sorted algebraic the-
ories is that of a (small) category with its partial composition operation:

Definition 13. A small category 𝒞 is given by

1. a set Obj of objects, and
2. a family assigning sets Hom(𝑋, 𝑌 ) ofmorphisms to 𝑋, 𝑌 ∈ Obj, which
we also denote by 𝑋 → 𝑌

together with operations assigning

1. identity morphisms id𝑋 ∈ 𝑋 → 𝑋 to 𝑋 ∈ Obj, and
2. composite morphisms 𝑔 ∘ 𝑓 ∈ 𝑋 → 𝑍 to 𝑔 ∈ 𝑌 → 𝑍 and 𝑓 ∈ 𝑋 → 𝑌

such that the equations

1. 𝑓 ∘ id𝑋 = 𝑓 and id𝑌 ∘ 𝑓 = 𝑓 (left and right unity), and
2. (ℎ ∘ 𝑔) ∘ 𝑓 = ℎ ∘ (𝑔 ∘ 𝑓) (associativity)

are satisfied.

The definition of the structure of a small category can be seen as an un-
folding of the definition of a model of the GAT of small categories:

Definition 14. The GAT of small categories is given by two sort symbols:

1. O
2. H(𝑋, 𝑌 ) for 𝑋, 𝑌 ∶ O,

two operator symbols:

1. i(𝑋) ∶ H(𝑋, 𝑋) for 𝑋 ∶ O
2. c(𝑋, 𝑌 , 𝑍, 𝑔, 𝑓 ) ∶ H(𝑋, 𝑍) for 𝑋, 𝑌 , 𝑍 ∶ O, 𝑔 ∶ H(𝑌 , 𝑍), 𝑓 ∶
H(𝑋, 𝑌 )

and three term equations:
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1. c(𝑋, 𝑋, 𝑌 , 𝑓 , i(𝑋)) = 𝑓 for 𝑋, 𝑌 ∶ O, 𝑓 ∶ H(𝑋, 𝑌 )
2. c(𝑋, 𝑌 , 𝑌 , i(𝑌 ), 𝑓 ) = 𝑓 for 𝑋, 𝑌 ∶ O, 𝑓 ∶ H(𝑋, 𝑌 )
3. c(𝑋, 𝑌 , 𝑍′, c(𝑌 , 𝑍, 𝑍′, ℎ, 𝑔), 𝑓 ) = c(𝑋, 𝑍, 𝑍′, ℎ, c(𝑋, 𝑌 , 𝑍, 𝑔, 𝑓 )) for

𝑋, 𝑌 , 𝑍 ∶ O, ℎ ∶ H(𝑍, 𝑍′), 𝑔 ∶ H(𝑌 , 𝑍), 𝑓 ∶ H(𝑋, 𝑌 )

Definition 14 spells out the whole context of each symbol and each equa-
tion, although, for instance, the first three arguments of the quinary operator
symbol c can be inferred from the types of its other two arguments. For the
sake of readability or conciseness, we often leave inferrable arguments implicit
and do not mention them in our notation.

Typical examples of mathematical structures that are axiomatized in a way
that does not fit into the framework of GATs are those of topological spaces and
locales because they involve higher-order sorts (the sort of opens) or infinitary
operations (the join operation).

Extensions of the GAT of small categories that are relevant for the algebraic
presentation of type theory are that of presheaves:

Definition 15. A presheaf 𝑃 over a small category 𝒞 is given by an additional
family assigning

sets 𝑃 (𝑋) of elements over 𝑋 to 𝑋 ∈ Obj

and a third operation assigning

restrictions 𝑥|𝑓 ∈ 𝑃 (𝑌 ) to 𝑓 ∈ 𝑌 → 𝑋 and 𝑥 ∈ 𝑃 (𝑋)

such that the two additional equations

1. 𝑥|id𝑋 = 𝑥, and
2. 𝑥|(𝑓 ∘ 𝑔) = (𝑥|𝑓)|𝑔

satisfied.

and that of terminal objects:

Definition 16. A terminal object structure 1 on a small category 𝒞 is given by
two more operations

1. picking the terminal object 1 ∈ Obj, and
2. assigning terminal morphisms !𝑋 ∈ 𝑋 → 1 to 𝑋 ∈ Obj
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such that the two additional equations

1. !1 = id1, and
2. !𝑌 ∘ 𝑓 = !𝑋

are satisfied.

Note that the usual category-theoretic definition of a terminal object by
its universal property is not purely equational and that a morphism between
small categories with a terminal object in the category-theoretic sense is not
required to map one choice of a terminal object to the other but instead it is
only required to map any object satisfying the universal property to anoth-
er. Small categories with Cartesian products and equalizers can also be ax-
iomatized purely equationally and similar remarks about (homo)morphisms
between categories with that extra property (structure) apply, in particular a
homomorphism between small categories with finite limits as models of the
corresponding GAT is required to preserve the choice of limit for each (finite)
diagram strictly.

4.2 Type theory as an algebraic theory
We now recall the algebraic presentation of type theory by the GAT of cwfs
as originally introduced by Dybjer [25]:

Definition 17. A category with families is given by

1. a set Ctx of contexts,
2. a family of sets Sub(Δ, Γ) of substitutions from context Δ to context Γ,
3. a family of sets Ty(Γ) of types in context Γ, and
4. a family of sets Tm(Γ, 𝐴) of terms of type 𝐴 in context Γ

together with ten operations assigning

1. identity substitutions idΓ ∈ Sub(Γ, Γ) to Γ ∈ Ctx,
2. composite substitutions 𝜎 ∘ 𝜏 ∈ Sub(Ε, Γ) to 𝜎 ∈ Sub(Δ, Γ) and 𝜏 ∈
Sub(Ε, Δ),

3. terminal context [] ∈ Ctx,
4. terminal substitutions ⟨⟩Γ ∈ Sub(Γ, []) to Γ ∈ Ctx,
5. substituted types 𝐴𝜎 ∈ Ty(Δ) to 𝜎 ∈ Sub(Δ, Γ) and 𝐴 ∈ Ty(Γ),
6. substituted terms 𝑡𝜎 ∈ Tm(Δ, 𝐴𝜎) to 𝜎 ∈ Sub(Δ, Γ) and 𝑡 ∈ Tm(Γ, 𝐴),
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7. extended contexts Γ.𝐴 ∈ Ctx to Γ ∈ Ctx and 𝐴 ∈ Ty(Γ),
8. display substitutions p𝐴 ∈ Sub(Γ.𝐴, Γ) to 𝐴 ∈ Ty(Γ),
9. variable terms q𝐴 ∈ Tm(Γ.𝐴, 𝐴p𝐴) to 𝐴 ∈ Ty(Γ), and
10. pairing substitutions ⟨𝜎, 𝑡⟩ ∈ Sub(Δ, Γ.𝐴) to 𝜎 ∈ Sub(Δ, Γ) and 𝑡 ∈
Tm(Δ, 𝐴𝜎)

such that the three composition structure equations

1. 𝜎 ∘ idΔ = 𝜎,
2. idΓ ∘ 𝜎 = 𝜎, and
3. (𝜎 ∘ 𝜏) ∘ 𝜐 = 𝜎 ∘ (𝜏 ∘ 𝜐),

the two terminal context structure equations

1. ⟨⟩[] = id[], and
2. ⟨⟩Γ ∘ 𝜎 = ⟨⟩Δ,

the four substitution structure equations

1. 𝐴idΓ = 𝐴,
2. 𝐴(𝜎 ∘ 𝜏) = (𝐴𝜎)𝜏 ,
3. 𝑡idΓ = 𝑡, and
4. 𝑡(𝜎 ∘ 𝜏) = (𝑡𝜎)𝜏 ,

and the four comprehension structure equations

1. p𝐴 ∘ ⟨𝜎, 𝑡⟩ = 𝜎,
2. q𝐴⟨𝜎, 𝑡⟩ = 𝑡,
3. ⟨p𝐴, q𝐴⟩ = idΓ.𝐴, and
4. ⟨𝜎 ∘ 𝜏, 𝑡𝜏⟩ = ⟨𝜎, 𝑡⟩ ∘ 𝜏

are satisfied.

Note that there are two distinct notions of context involved here: 1. the
contexts of the types and terms of the GAT of cwfs in contrast to 2. the terms
of the sort Ctx, as well as two distinct notions of type: 1. the types of the GAT
in contrast to 2. the terms of the sort Ty, and, finally, two distinct notions of
term: 1. the terms of the GAT in contrast to 2. the terms of the sort Tm.

Note also that the argument 𝐴 of the operation ⟨𝜎, 𝑡⟩ is in general not
actually inferrable from the types of the arguments 𝜎 and 𝑡 because the oper-
ation 𝐴𝜎 is in general not injective, but leaving it implicit nonetheless in our
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notation should not lead to confusion —wewill not mention this kind of issues
anymore below.

Lastly, note that the cwf axioms are of the restricted form where no equa-
tions between the types of the GAT are postulated.

The definition of a cwf can also be organized in the following way: The
set Ctx together with the family Sub, the operation [] and the composition
structure is the same as a small category 𝒞 with a terminal object; the fam-
ily Ty together with the operation 𝐴𝜎 is the same as a presheaf 𝑈 over 𝒞 ;
since a presheaf over the category of elements of a presheaf 𝑄 is equivalently
a presheaf over 𝑄, the family Tm together with the operation 𝑡𝜎, which is the
same as a presheaf over the category ∫𝑈 of elements of 𝑈 , corresponds to a
presheaf 𝑈 over 𝑈 , that is a natural transformation 𝑝 ∶ 𝑈 → 𝑈 of presheaves.
As observed by Fiore [29] and Awodey [9], the comprehension structure of a
cwf can then be captured by saying that 𝑝 is representable, which means that
its pullbacks along generalized elements with representable domain are rep-
resentable.

The notion of cwf is closely related to the notion of category with attri-
butes [14, 66, 68] where the display substitutions p𝐴 instead of having pull-
backs satisfy a comprehension schema [55]. Indeed, what the comprehension
structure gives us for 𝜎 ∈ Sub(Δ, Γ) and 𝐴 ∈ Ty(Γ) is both a natural bijec-
tion between the sets Tm(Δ, 𝐴𝜎) of terms of type 𝐴𝜎 and SubΓ(𝜎, p𝐴) = {𝜏 ∈
Sub(Δ, Γ.𝐴) | p𝐴 ∘ 𝜏 = 𝜎} of morphisms from 𝜎 to p𝐴 over Γ, and a Cartesian
morphism from p𝐴𝜎 to p𝐴 over 𝜎.

We now introduce notation for two derived substitution operations assign-
ing

1. ⟨𝜎⟩ = ⟨𝜎 ∘ p𝐴𝜎 , q𝐴𝜎⟩ ∈ Sub(Δ.𝐴𝜎, Γ.𝐴) to 𝜎 ∈ Sub(Δ, Γ), and
2. [𝑎] = ⟨idΓ, 𝑎⟩ ∈ Sub(Γ, Γ.𝐴) to 𝑎 ∈ Ty(Γ, 𝐴).

From the equations for the operation ⟨𝜎, 𝑡⟩ we can then show that the de-
rived operations ⟨𝜎⟩ and [𝑎] satisfy the following equations:

1. p𝐴 ∘ [𝑎] = idΓ
2. q𝐴[𝑎] = 𝑎
3. [𝑎] ∘ 𝜎 = ⟨𝜎⟩ ∘ [𝑎𝜎]
4. p𝐴 ∘ ⟨𝜎⟩ = 𝜎 ∘ p𝐴𝜎
5. q𝐴⟨𝜎⟩ = q𝐴𝜎
6. ⟨𝜎 ∘ 𝜏⟩ = ⟨𝜎⟩ ∘ ⟨𝜏⟩
7. ⟨p𝐴⟩ ∘ [q𝐴] = idΓ.𝐴
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For instance, we have [𝑎] ∘ 𝜎 = ⟨idΓ, 𝑎⟩ ∘ 𝜎 by definition, ⟨idΓ, 𝑎⟩ ∘ 𝜎 =
⟨idΓ ∘ 𝜎, 𝑎𝜎⟩ by the equation ⟨𝜎, 𝑡⟩ ∘ 𝜏 = ⟨𝜎 ∘ 𝜏, 𝑡𝜏⟩, ⟨idΓ ∘ 𝜎, 𝑎𝜎⟩ = ⟨𝜎 ∘ idΔ, 𝑎𝜎⟩
by left and right unity, ⟨𝜎 ∘ idΔ, 𝑎𝜎⟩ = ⟨(𝜎 ∘ p𝐴𝜎) ∘ ⟨idΔ, 𝑎𝜎⟩, q𝐴𝜎⟨idΔ, 𝑎𝜎⟩⟩ by
associativity and the equations p𝐴 ∘ ⟨𝜎, 𝑡⟩ = 𝜎 and q𝐴⟨𝜎, 𝑡⟩ = 𝑡, and, hence,
in conclusion, [𝑎] ∘ 𝜎 = ⟨𝜎⟩ ∘ [𝑎𝜎] by another application of the equation
⟨𝜎, 𝑡⟩ ∘ 𝜏 = ⟨𝜎 ∘ 𝜏, 𝑡𝜏⟩ and the definitions.

More generally, given 𝐵 ∈ Ty(Γ.𝐴) and 𝑏 ∈ Tm(Γ, 𝐵[𝑎]), we can then
write [𝑎, 𝑏] for ⟨[𝑎], 𝑏⟩ ∈ Sub(Γ, Γ.𝐴.𝐵), and given 𝐶 ∈ Ty(Γ.𝐴.𝐵) and 𝑐 ∈
Tm(Γ, 𝐶[𝑎, 𝑏]), we can write [𝑎, 𝑏, 𝑐] for ⟨[𝑎, 𝑏], 𝑐⟩ ∈ Sub(Γ, Γ.𝐴.𝐵.𝐶) etc. so
that p𝑖 ∘ [𝑎𝑛, …, 𝑎0] = [𝑎𝑛, …, 𝑎𝑖] and (qp𝑖)[𝑎𝑛, …, 𝑎0] = 𝑎𝑖.

In fact, we could define another GAT with ⟨𝜎⟩ and [𝑎] as primitive oper-
ations and their equations as axioms, and instead derive the operation ⟨𝜎, 𝑡⟩
with its equations by setting ⟨𝜎, 𝑡⟩ = ⟨𝜎⟩[𝑡]. That GAT, which would essen-
tially be the one defined by Ehrhard [26], would be equivalent to the GAT of
cwfs as defined in Definition 17 because the operation ⟨𝜎, 𝑡⟩ (and hence the op-
erations ⟨𝜎⟩ and [𝑎]) is uniquely determined. This illustrates that the choice of
operations and axioms for presenting type theory algebraically is not canon-
ical.

Next, we define extra structure a cwf might carry and which corresponds
to the additional type and term formers present in intensional intuitionistic
type theory [61, 62] and homotopy type theory [69].

Note that this extra structure can be axiomatized as an extension of the
GAT of cwfs without introducing new sorts, that is by only introducing new
operations and term equations for those new operations. In fact, the new op-
erations do not introduce new elements of the sort Ctx but act only on the
sorts Ty and Tm.

Definition 18. A unit type structure on a cwf is given by two operations:

1. Unit ∈ Ty([])
2. tt ∈ Tm([],Unit)

satisfying the equation
𝑡 = tt⟨⟩Γ

for 𝑡 ∈ Tm(Γ,Unit⟨⟩Γ).

Definition 18 corresponds to the “pragmatist”, “negative” or “record” type
view [6, 33, 88] on the unit type, where an element is uniquely determined by
its behaviour under the canonical eliminations (of which there are none here).
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Definition 19. A Σ type structure on a cwf is given by four operations:

1. Σ𝐴𝐵 ∈ Ty(Γ) for 𝐴 ∈ Ty(Γ) and 𝐵 ∈ Ty(Γ.𝐴)
2. (𝑎, 𝑏) ∈ Tm(Γ,Σ𝐴𝐵) for 𝑎 ∈ Tm(Γ, 𝐴) and 𝑏 ∈ Tm(Γ, 𝐵[𝑎])
3. fst𝑝 ∈ Tm(Γ, 𝐴) for 𝑝 ∈ Tm(Γ,Σ𝐴𝐵)
4. snd𝑝 ∈ Tm(Γ, 𝐵[fst𝑝]) for 𝑝 ∈ Tm(Γ,Σ𝐴𝐵)

satisfying the equations

1. (Σ𝐴𝐵)𝜎 = Σ𝐴𝜎𝐵⟨𝜎⟩.
2. (𝑎, 𝑏)𝜎 = (𝑎𝜎, 𝑏𝜎),
3. (fst𝑝)𝜎 = fst 𝑝𝜎,
4. (snd𝑝)𝜎 = snd 𝑝𝜎,
5. fst(𝑎, 𝑏) = 𝑎,
6. snd(𝑎, 𝑏) = 𝑏, and
7. 𝑝 = (fst𝑝, snd𝑝).

If a cwf has a unit and Σ type structure, then the categories Ty(Γ) of types
and functions in context Γ have a terminal context and comprehension struc-
ture which is preserved by the substitution functors Ty(𝜎) ∶ Ty(Γ) → Ty(Δ)
for 𝜎 ∈ Sub(Δ, Γ). The converse that a cwf has a unit and Σ type structure
if the categories Ty(Γ) have terminal context and comprehension structure
which is preserved by substitution holds as well. The resulting cwf and mor-
phisms of cwfs are denoted by 𝒞Γ and 𝒞𝜎 , respectively. They will be used to
characterize a lex operation structure on 𝒞 as a (family of) pseudomorphisms
on the (family of) cwfs 𝒞Γ.

Definition 20. A Π type structure on a cwf is given by three operations:

1. Π𝐴𝐵 ∈ Ty(Γ) for 𝐴 ∈ Ty(Γ) and 𝐵 ∈ Ty(Γ.𝐴)
2. λ𝑏 ∈ Tm(Γ,Π𝐴𝐵) for 𝑏 ∈ Tm(Γ.𝐴, 𝐵)
3. app(𝑡, 𝑎) ∈ Tm(Γ.𝐵[𝑎]) for 𝑡 ∈ Tm(Γ,Π𝐴𝐵) and 𝑎 ∈ Tm(Γ, 𝐴)

satisfying the equations

1. (Π𝐴𝐵)𝜎 = Π𝐴𝜎𝐵⟨𝜎⟩,
2. (λ𝑏)𝜎 = λ 𝑏⟨𝜎⟩,
3. app(𝑡, 𝑎)𝜎 = app(𝑡𝜎, 𝑎𝜎),
4. app(λ𝑏, 𝑎) = 𝑏[𝑎], and
5. 𝑡 = λ app(𝑡p𝐴 q𝐴).
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Let 𝒞 be a cwf with Π type structure. As usual, write 𝐴 → 𝐵 ∈ Ty(Γ) for
Π𝐴𝐵p𝐴 when 𝐵 ∈ Ty(Γ). Note that the sets Tm(Γ, 𝐴′ → 𝐴) and Tm(Γ,Π𝐴𝐵)
are in bijection with the sets Sub𝒞Γ(𝐴′, 𝐴) and Tm𝒞Γ(𝐴, 𝐵), respectively, so
that a Π type structure provides us with (a family of) internal homs on the
categories Ty(Γ). A natural family of endofunctors on Ty(Γ) for each Γ ∈ Ctx
will automatically be a family of internal functors in that case. Moreover, the
functors will be pointed in the presence of a unit type structure.

Definition 21. An identity type structure on a cwf is given by three operations:

1. Id𝐴(𝑎, 𝑏) ∈ Ty(Γ) for 𝐴 ∈ Ty(Γ), 𝑎 ∈ Tm(Γ, 𝐴) and 𝑏 ∈ Tm(Γ, 𝐴)
2. refl𝑎 ∈ Tm(Γ, Id𝐴(𝑎, 𝑎)) for 𝑎 ∈ Tm(Γ, 𝐴)
3. J(𝑎, 𝑑, 𝑏, 𝑝) ∈ Tm(Γ, 𝐶[𝑏, 𝑝]) for 𝑎 ∈ Tm(Γ, 𝐴),
𝐶 ∈ Ty(Γ.𝐴.Id𝐴p𝐴(𝑎p𝐴, q𝐴)),
𝑑 ∈ Tm(Γ, 𝐶[𝑎, refl𝑎]),
𝑏 ∈ Tm(Γ, 𝐴) and
𝑝 ∈ Tm(Γ, Id𝐴(𝑎, 𝑏))

satisfying the equations

1. Id𝐴(𝑎, 𝑏)𝜎 = Id𝐴𝜎(𝑎𝜎, 𝑏𝜎),
2. refl𝑎𝜎 = refl𝑎𝜎 ,
3. J(𝑎, 𝑑, 𝑏, 𝑝)𝜎 = J(𝑎𝜎, 𝑑𝜎, 𝑏𝜎, 𝑝𝜎), and
4. J(𝑎, 𝑑, 𝑎, refl𝑎) = 𝑑.

Definition 22. An empty type structure on a cwf is given by two operations:

1. Empty ∈ Ty([])
2. elim(𝐶, 𝑒) ∈ Tm(Γ, 𝐶[𝑒]) for 𝐶 ∈ Ty(Γ.Empty⟨⟩Γ) and

𝑒 ∈ Tm(Γ,Empty⟨⟩Γ)

satisfying the equation
elim(𝑒)𝜎 = elim(𝑒𝜎).

Note that, unlike for other elimination term operations, we do not drop the
type argument𝐶 in the term operation elim(𝐶, 𝑒) because there is no argument
sort in which it is even mentioned.
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This definition corresponds to the “verificationist”, “positive” or “data” type
view [6, 33, 88] on the empty type, where functions are determined by their
behaviour on the canonical introductions (of which there are none here) but
not necessarily uniquely so.

Definition 23. A Booleans type structure on a cwf is given by four operations:

1. Bool ∈ Ty([])
2. true ∈ Tm([],Bool)
3. false ∈ Tm([],Bool)
4. elim(𝑐0, 𝑐1, 𝑏) ∈ Tm(Γ, 𝐶[𝑏]) for 𝑐0 ∈ Tm(Γ, 𝐶[true⟨⟩Γ]),
𝑐1 ∈ Tm(Γ, 𝐶[false⟨⟩Γ]) and
𝑏 ∈ Tm(Γ,Bool⟨⟩Γ)

satisfying the equations

1. elim(𝑐0, 𝑐1, 𝑏)𝜎 = elim(𝑐0𝜎, 𝑐1𝜎, 𝑏𝜎),
2. elim(𝑐0, 𝑐1, true⟨⟩) = 𝑐0, and
3. elim(𝑐0, 𝑐1, false⟨⟩) = 𝑐1.

Definition 24. A natural numbers type structure on a cwf is given by four op-
erations:

1. Nat ∈ Ty([])
2. zero ∈ Tm([],Nat)
3. succ(𝑛) ∈ Tm(Γ,Nat⟨⟩Γ) for 𝑛 ∈ Tm(Γ,Nat⟨⟩Γ)
4. elim(𝑐0, 𝑐1, 𝑛) ∈ Tm(Γ, 𝐶[𝑛]) for 𝑐0 ∈ Tm(Γ, 𝐶[zero⟨⟩Γ]),
𝑐1 ∈ Tm(Γ.Nat⟨⟩Γ.𝐶, 𝐶[succ(qNat⟨⟩Γ)]p𝐶 ) and
𝑛 ∈ Tm(Γ,Nat⟨⟩Γ)

satisfying the equations

1. succ(𝑛)𝜎 = succ(𝑛𝜎),
2. elim(𝑐0, 𝑐1, 𝑛)𝜎 = elim(𝑐0𝜎, 𝑐1⟨⟨𝜎⟩⟩, 𝑛𝜎),
3. elim(𝑐0, 𝑐1, zero⟨⟩) = 𝑐0, and
4. elim(𝑐0, 𝑐1, succ(𝑛)) = 𝑐1[elim(𝑐0, 𝑐1, 𝑛)].

Definition 25. A T-universe type structure on a cwf with unit, Π, Σ, identity,
empty, Booleans and natural numbers type structures is given by nine opera-
tions:
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1. U ∈ Ty([])
2. El 𝑎 ∈ Ty(Γ) for 𝑎 ∈ Tm(Γ,U⟨⟩)
3. Ûnit ∈ Tm([],U), π̂(𝑎, 𝑏), σ̂(𝑎, 𝑏), Îd(𝑎, 𝑥, 𝑦) ∈ Tm(Γ,U⟨⟩), Êmpty,
B̂ool, N̂at ∈ Tm([],U) for 𝑎 ∈ Tm(Γ,U⟨⟩), 𝑥, 𝑦 ∈ Tm(Γ,El 𝑎) and
𝑏 ∈ Tm(Γ.El 𝑎,U⟨⟩)

satisfying the equations

1. (El 𝑎)𝜎 = El 𝑎𝜎,
2. π̂(𝑎, 𝑏)𝜎 = π̂(𝑎𝜎, 𝑏⟨𝜎⟩),
3. σ̂(𝑎, 𝑏)𝜎 = σ̂(𝑎𝜎, 𝑏⟨𝜎⟩),
4. Îd(𝑎, 𝑥, 𝑦)𝜎 = Îd(𝑎𝜎, 𝑥𝜎, 𝑦𝜎),
5. El Ûnit = Unit,
6. El π̂(𝑎 𝑏) = ΠEl 𝑎El 𝑏,
7. El σ̂(𝑎 𝑏) = ΣEl 𝑎El 𝑏,
8. El Îd(𝑎 𝑥 𝑦) = IdEl 𝑎(𝑥, 𝑦),
9. El Êmpty = Empty,
10. El B̂ool = Bool, and
11. El N̂at = Nat.

This definition of a cwf with a universe type corresponds to type theory
with a Tarski-style universe [61, 63, 39, Section 2.1.6].

When constructing a cwf with a T-universe type structure it can be conve-
nient (because of the reduced number of operations) to construct the following
structure which defines a universe type to be a universal type with respect to
a set of small types instead:

Definition 26. A V-universe type structure on a cwf with unit, Π, Σ, identity,
empty type, Booleans type and natural numbers type structures is given by

a subset ty(Γ) ⊆ Ty(Γ) of small types for Γ ∈ Ctx

and three operations

1. a type U ∈ Ty([])
2. a small type El 𝑎 ∈ ty(Γ) for every code 𝑎 ∈ Tm(Γ,U⟨⟩Γ)
3. a code In𝐴 ∈ Tm(Γ,U⟨⟩Γ) for every small type 𝐴 ∈ ty(Γ)

such that
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1. 𝐴𝜎 ∈ ty(Δ) whenever 𝐴 ∈ ty(Γ),
2. (El 𝑎)𝜎 = El 𝑎𝜎,
3. (In𝐴)𝜎 = In𝐴𝜎,
4. El(In𝐴) = 𝐴,
5. In(El 𝑎) = 𝑎,
6. Unit ∈ ty([]),
7. Π𝐴𝐵 ∈ ty(Γ) whenever 𝐴 ∈ ty(Γ) and 𝐵 ∈ ty(Γ.𝐴),
8. Σ𝐴𝐵 ∈ ty(Γ) whenever 𝐴 ∈ ty(Γ) and 𝐵 ∈ ty(Γ.𝐴),
9. Id𝐴(𝑎, 𝑏) ∈ ty(Γ) whenever 𝐴 ∈ ty(Γ),
10. Empty ∈ ty([]),
11. Bool ∈ ty([]), and
12. Nat ∈ ty([]).

Note that this definition does not fit into the framework of GATs because
it talks about a “subsort” ty(Γ) ⊆ Ty(Γ) and operations having more than one
sort.

This definition of a universe type structure corresponds to a type theory
with a universe type like in Voevodsky [83] which differs from the universe
type in Martin-Löf [61, 62] in that there is a rule to derive the equality judge-
ment 𝑎 = 𝑏 from the premise El 𝑎 = El 𝑏.

Proposition 37. A cwf with a V-universe type structure has a T-universe type
structure.

Proof. Define the coding operations of a T-universe type structure (see Defi-
nition 25) by setting π̂(𝑎, 𝑏) = In(ΠEl 𝑎El 𝑏) etc.

Proposition 38. A cwf with a T-universe type structure where the decoding op-
eration is injective has a V-universe type structure.

Proof. Given a cwf with a universe type structure where El 𝑎 is injective, that is
𝑎 = 𝑏 whenever El 𝑎 = El 𝑏, we can define a universe structure (Definition 26)
by taking ty(Γ) = {El 𝑎 ∈ Ty(Γ) | 𝑎 ∈ Tm(Γ,U⟨⟩Γ)} and In(El 𝑎) = 𝑎, which
is well-defined by the injectivity assumption, so that ΠEl 𝑎El 𝑏 ∈ ty(Γ) because
ΠEl 𝑎El 𝑏 = El π̂(𝑎 𝑏) etc.

Definition 27. A propositional truncation type structure on a cwf with identity
type structure is given by four operations:

1. ‖𝐴‖ ∈ Ty(Γ) for 𝐴 ∈ Ty(Γ)
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2. inc(𝑎) ∈ Tm(Γ, ‖𝐴‖) for 𝑎 ∈ Tm(Γ, 𝐴)
3. squash(𝑡, 𝑢) ∈ Tm(Γ, Id‖𝐴‖(𝑡, 𝑢)) for 𝑡, 𝑢 ∈ Tm(Γ, ‖𝐴‖)
4. rec(𝑐, 𝑝, 𝑡) ∈ Tm(Γ, 𝐶) for 𝐶 ∈ Ty(Γ),
𝑐 ∈ Tm(Γ.𝐴, 𝐶p),
𝑝 ∈ Tm(Γ.𝐶.𝐶p, Id𝐶p2(qp1, qp0)) and
𝑡 ∈ Tm(Γ, ‖𝐴‖)

satisfying the equations

1. ‖𝐴‖𝜎 = ‖𝐴𝜎‖,
2. inc(𝑎)𝜎 = inc(𝑎𝜎),
3. squash(𝑡, 𝑢)𝜎 = squash(𝑡𝜎, 𝑢𝜎),
4. rec(𝑐, 𝑝, 𝑡)𝜎 = rec(𝑐⟨𝜎⟩, 𝑝⟨⟨𝜎⟩⟩, 𝑡𝜎), and
5. rec(𝑐, 𝑝, inc(𝑎)) = 𝑐[𝑎].

Usually, a universe type reflects all the basic types and is closed under all
type formers, but this is not always the case in all models as we will see with
propositional truncation and a univalent universe in the groupoid model. Note
that, in order to avoid a paradox [32, 62], for a universe type to reflect or be
closed under a universe typemeans for it to contain a “smaller” universe rather
than itself.

4.3 Lex and descent data operation structure
Weend this chapter by extending theGAT of cwfswith operations correspond-
ing to a lex operation (Definition 5) and a descent data operation (Definition 8),
and building a new cwf from a cwf which supports them.

Recall that a descent data operation is a lex operation that is a modality
and that a lex operation is an operation on types, type families and functions
that preserves both unit and dependent sum types, commutes with reindexing
and is functorial. Thus, a lex operation structure is in particular given by an
underlying functor structure:

Definition 28. An internal functor structure on a cwf with Π type structure is
given by:

1. 𝐹0(𝐴) ∈ Ty(Γ) for 𝐴 ∈ Ty(Γ)
2. 𝐹1(𝑡) ∈ Tm(Γ, 𝐹0(𝐴) → 𝐹0(𝐵)) for 𝑡 ∈ Tm(Γ, 𝐴 → 𝐵)
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satisfying the stability equations

1. 𝐹0(𝐴)𝜎 = 𝐹0(𝐴𝜎) and
2. 𝐹1(𝑡)𝜎 = 𝐹1(𝑡𝜎),

as well as the functoriality equations

1. 𝐹1(id𝐴) = id𝐹0(𝐴) and
2. 𝐹1(𝑢 ∘ 𝑡) = 𝐹1(𝑢) ∘ 𝐹1(𝑡).

This is essentially Definition 1 with explicit contexts and (stability) axioms
expressing that constructions in type theory are invariant under substitution.

We can then show that an internal functor structure on a cwf is the same
as a family of endofunctors on the categories of types and functions so that,
as noted after Definition 1, the use of the Π type structure in this definition is
inessential:

Proposition 39. Let𝒞 be a cwf with Π type structure, then a family of operations

1. 𝐹0(Γ) ∶ Ty(Γ) → Ty(Γ) and
2. 𝐹1(𝐴, 𝐵) ∶ Tm(Γ, 𝐴 → 𝐵) → Tm(Γ, 𝐹0(Γ, 𝐴) → 𝐹0(Γ, 𝐵))

for Γ ∈ Ctx, 𝐴, 𝐵 ∈ Ty(Γ) is an internal functor structure on 𝒞 if and only if it
is a natural family of endofunctors 𝐹Γ ∶ Ty(Γ) → Ty(Γ), that is Ty(𝜎) ∘ 𝐹Γ =
𝐹Δ ∘ Ty(𝜎) for 𝜎 ∈ Sub(Δ, Γ).

Proof. Unfolding definitions.

Recall that when a cwf 𝒞 has a unit and Σ type structure, the catego-
ries Ty(Γ) of types and functions canonically extend to the cwfs 𝒞Γ. We can
then observe that to extend an internal functor structure on 𝒞 to a lex oper-
ation structure is the same as giving a pseudomorphism of cwfs structure on
the corresponding family of functors 𝐹Γ ∶ 𝒞Γ → 𝒞Γ.

Definition 29. A lex operation structure on an internal functor structure 𝐹 on
a cwf with unit, Σ and Π type structure is given by:

1. 𝐹0(𝐵) ∈ Ty(Γ.𝐹0(𝐴)) for 𝐵 ∈ Ty(Γ.𝐴)
2. 𝐹1(𝑏) ∈ Tm(Γ.𝐹0(𝐴), 𝐹0(𝐵)) for 𝑏 ∈ Tm(Γ.𝐴, 𝐵)

such that the equations
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1. 𝐹0(𝐵)⟨𝜎⟩ = 𝐹0(𝐵⟨𝜎⟩)
2. 𝐹1(𝑏)⟨𝜎⟩ = 𝐹1(𝑏⟨𝜎⟩)

as well as the equations

1. 𝐹0(𝐵)⟨Γ.𝐹1(𝑡)⟩ = 𝐹0(𝐵⟨Γ.𝑡⟩)
2. 𝐹1(𝑏)⟨Γ.𝐹1(𝑡)⟩ = 𝐹1(𝑏⟨Γ.𝑡⟩)

are satisfied and the canonical comparison functions 𝑢 ∈ Tm(Γ, 𝐹0(Unit) →
Unit) and 𝑝(𝐵) ∈ Tm(Γ, 𝐹0(Σ𝐴𝐵) → Σ𝐹0(𝐴)𝐹0(𝐵)) are isomorphisms, respec-
tively, that is additionally a lex operation structure is given by

1. ⊤ ∈ Tm(Γ, 𝐹0(Unit))
2. ⟨𝑎, 𝑏⟩ ∈ Tm(Γ, 𝐹0(Σ𝐴𝐵)) for 𝑎 ∈ Tm(Γ, 𝐹0(𝐴)) and

𝑏 ∈ Tm(Γ, 𝐹0(𝐵)[𝑎])

such that the equations

1. ⊤ = 𝑡 for 𝑡 ∈ Tm(Γ, 𝐹0(Unit))
2. π1⟨𝑎, 𝑏⟩ = 𝑎 and π2⟨𝑎, 𝑏⟩ = 𝑏
3. ⟨π1𝑝,π2𝑝⟩ = 𝑝 for 𝑝 ∈ Tm(Γ, 𝐹0(Σ𝐴𝐵)),

where π1 and π2 denote the projections of 𝑝(𝐵), are satisfied.

We recall the notion of pseudomorphism of cwfs from Kaposi, Huber and
Sattler [48]:

Definition 30. Let 𝒞 and 𝒟 be cwfs. A pseudomorphism structure on a func-
tor 𝐹 from 𝒞 to 𝒟 is given by

1. 𝐹0(𝐴) ∈ Ty𝒟 (𝐹0(Γ)) for 𝐴 ∈ Ty𝒞 (Γ)
2. 𝐹1(𝑡) ∈ Tm𝒟 (𝐹0(Γ), 𝐹0(𝐴)) for 𝑡 ∈ Tm𝒞 (Γ, 𝐴)

such that the equations

1. 𝐹0(𝐴𝜎) = 𝐹0(𝐴)𝐹1(𝜎)
2. 𝐹1(𝑡𝜎) = 𝐹1(𝑡)𝐹1(𝜎)

are satisfied and the comprehension structure is preserved up to isomorphism
in the sense that the canonical substitutions 𝑛 ∈ Sub𝒟 (𝐹0([]), []) and 𝑝(𝐴) ∈
Sub𝒟 (𝐹0(Γ.𝐴), 𝐹0(Γ).𝐹0(𝐴)) are isomorphisms, that is additionally a pseudo-
morphism is given by
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1. 𝑡 ∈ Sub𝒟 ([], 𝐹0([]))
2. 𝑠(𝐴) ∈ Sub𝒟 (𝐹0(Γ).𝐹0(𝐴), 𝐹0(Γ.𝐴)) for 𝐴 ∈ Ty𝒞 (Γ)

such that the equations

1. 𝑛 ∘ 𝑡 = id[]
2. 𝑡 ∘ 𝑛 = id𝐹0([])
3. 𝑝(𝐴) ∘ 𝑠(𝐴) = id𝐹0(Γ).𝐹0(𝐴)
4. 𝑠(𝐴) ∘ 𝑝(𝐴) = id𝐹0(Γ.𝐴)

are satisfied.

Note that homomorphisms of cwfs as models of the GAT of cwfs are ex-
actly the pseudomorphisms 𝐹 of cwfs for which the canonical substitutions
Sub𝒟 (𝐹0([]), []) and Sub𝒟 (𝐹0(Γ.𝐴), 𝐹0(Γ).𝐹0(𝐴)) are the respective identity
substitutions. Those pseudomorphisms are also called strict morphisms.

Also note that a pseudomorphism is in particular an internal functor p-
reserving context extension but not necessarily the context in the sense that
𝐹0(𝐴) need not be the identity functor. If we think of a cwf structure as a
displayed fibration (that is discrete and comes with a displayed functor corre-
sponding to the comprehension structure) then we can think of a pseudomor-
phism as a displayed Cartesian functor (that preserves the comprehension (and
terminal context) structure).

Proposition 40. The identity map Id𝒞 for a cwf 𝒞 and the composite map 𝐺 ∘ 𝐹
for pseudomorphisms 𝐺 ∶ 𝒟 → ℰ and 𝐹 ∶ 𝒞 → 𝒟 are pseudomorphisms, and
hence pseudomorphisms form a category.

Proof. By the identity and composite map wemean the identity and composite
functions on the data of a cwf.

It is clear that the identity and composite maps are homomorphisms with
respect to the composition and substitution structure of a cwf. What remains
to be shown is that they preserve the comprehension structure weakly.

The unique substitution Sub(ℰ, 𝐺0(𝐹0([])), []) is an isomorphism because
it is necessarily equal to the composite of the isomorphisms 𝐺0(𝐹0([])) →
𝐺0([]) and 𝐺0([]) → []. Similarly, the canonical substitution 𝐺0(𝐹0(Γ.𝐴)) →
𝐺0(𝐹0(Γ)).𝐺0(𝐹0(𝐴)) is the composite of the isomorphisms 𝐺0(𝐹0(Γ.𝐴)) →
𝐺0(𝐹0(Γ).𝐹0(𝐴)) and 𝐺0(𝐹0(Γ).𝐹0(𝐴)) → 𝐺0(𝐹0(Γ)).𝐺0(𝐹0(𝐴)).

Proposition 41. Let 𝒞 be a cwf with unit, Σ, and Π type structures. For each
Γ ∈ Ctx, denote the induced cwf whose set of contexts is Ty(Γ) by 𝒞Γ, and, for
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each 𝜎 ∈ Sub(Δ, Γ), denote the induced pseudomorphism𝒞Γ → 𝒞Δ whose action
on contexts is substitution Ty(Γ) → Ty(Δ) by 𝒞𝜎 . Then, a family of operations

1. 𝐹0(Γ) ∶ Ty(Γ) → Ty(Γ),
2. 𝐹1(𝐴′, 𝐴) ∶ Tm(Γ, 𝐴′ → 𝐴) → Tm(Γ, 𝐹0(Γ, 𝐴′) → 𝐹0(Γ, 𝐴′)),
3. 𝐹0(𝐴) ∶ Ty(Γ.𝐴) → Ty(Γ.𝐹0(Γ, 𝐴)), and
4. 𝐹1(𝐵) ∶ Tm(Γ.𝐴, 𝐵) → Tm(Γ.𝐹0(Γ, 𝐴), 𝐹0(𝐴, 𝐵))

is a lex operation structure on 𝒞 if and only if it is a natural family of pseudo-
morphisms 𝐹Γ ∶ 𝒞Γ → 𝒞Γ, that is 𝒞𝜎 ∘ 𝐹Γ = 𝐹Δ ∘ 𝒞𝜎 for 𝜎 ∈ Sub(Δ, Γ).

Proof. Unfolding definitions.

Definition 31. Let 𝐹 and 𝐺 be pseudomorphisms between cwfs 𝒞 and 𝒟 . A
natural transformation 𝜂 ∶ 𝐹 ⇒ 𝐺 between 𝐹 and 𝐺 is given by

𝜂Γ ∈ Sub(𝐹0(Γ), 𝐺0(Γ)) for Γ ∈ Ctx

such that the equation

𝐺1(𝜎) ∘ 𝜂Γ = 𝜂Δ ∘ 𝐹1(𝜎)

is satisfied for 𝜎 ∈ Sub(Δ, Γ).

The descent data operation we will consider in Section 7.1 more naturally
arises as a pseudoendomorphism and the following corollary will be conve-
nient to obtain the induced lex operation to which we can apply the develop-
ment in Chapters 2 and 3:

Corollary 42. Let 𝒞 be a cwf with unit and Σ type structures. Given a pseudo-
endomorphism 𝐹 ∶ 𝒞 → 𝒞 and a natural transformation 𝜂 ∶ Id𝒞 → 𝐹 , the
family of pseudoendomorphisms

𝒞𝜂Γ ∘ 𝐹0(Γ) ∶ 𝒞Γ → 𝒞Γ for Γ ∈ Ctx

induces a lex operation structure on 𝒞 .

Proof. 𝐹 induces the family of pseudomorphisms 𝐹0(Γ) from 𝒞Γ to 𝒞𝐹0(Γ), 𝜂
the family of pseudomorphisms 𝒞𝜂Γ from 𝒞𝐹0(Γ) to 𝒞Γ, and families of pseu-
domorphisms are closed under componentwise composition. Apply Proposi-
tion 41.
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When the closed types correspond exactly to the contexts, which is called
democracy in Clairambault and Dybjer [16], then conversely lex operations
induce pseudomorphisms, but we will not need this.

Definition 32. Let 𝒞 and 𝒟 be cwfs with injective universe type structure. A
pseudomorphism 𝐹 from 𝒞 to 𝒟 preserves small types if 𝐹0(El 𝑎) is small for
𝑎 ∈ Tm𝒞 (Γ,U), that is there exists a (unique) 𝑓(𝑎) ∈ Tm𝒟 (𝐹0(Γ),U) such that
El 𝑓(𝑎) = 𝐹0(El 𝑎) for 𝑎 ∈ Tm𝒞 (Γ,U).

Definition 33. A descent data operation structure on a cwf 𝒞 with unit, Σ, Π
and identity type structure is given by a smallness-preserving lex operation
structure 𝐷 on 𝒞 together with:

1. a path 𝑤𝐴 between 𝐷1(𝜂𝐴) and 𝜂𝐷0(𝐴)
2. a function patch𝐷0(𝐴) from 𝐷0(𝐷0(𝐴)) to 𝐷0(𝐴)
3. a homotopy linv𝐷0(𝐴) between patch𝐷0(𝐷0(𝐴)) ∘ 𝜂𝐷0(𝐴) and id𝐷0(𝐴)

for 𝐴 ∈ Ty(Γ) such that the equations

1. 𝑤𝐴𝜎 = 𝑤𝐴𝜎
2. patch𝐷0(𝐴)𝜎 = patch𝐷0(𝐴)𝜎
3. linv𝐷0(𝐴)𝜎 = linv𝐷0(𝐴)𝜎

are satisfied.

4.4 Submodel of modal types
Given a descent data operation structure 𝐷 on a cwf 𝒞 we build a new cwf 𝒞𝐷
with the same underlying category of substitutions as 𝒞 but with types in
context Γ instead given by types equipped with patching structures:

Definition 34. A patching structure on a type 𝐴 ∈ Ty(Γ) with respect to a
descent data operation structure 𝐷 is given by

1. a function patch𝐴 ∈ Tm(Γ, 𝐷0(𝐴) → 𝐴)
2. a homotopy linv𝐴 ∈ Tm(Γ, patch𝐴 ∘ 𝜂𝐴 ∼ id𝐴)



64 CHAPTER 4. CATEGORIES WITH FAMILIES

Note that the types 𝐷0(𝐴) ∈ Ty𝒞 (Γ) have a patching structure by the
definition of a descent data operation structure. Also recall that a patching
structure on a type is essentially unique. (Corollary 23)

We will call a type together with a patching structure a patch algebra. We
will usually use the same notation for elements of Ty𝒞𝐷

(Γ), i.e. patch alge-
bras, as for elements of Ty𝒞 (Γ), but sometimes also the notation |𝐴| to clearly
distinguish the underlying type from the patch algebra 𝐴.

The terms of a patch algebra 𝐴 ∈ Ty𝒞𝐷
(Γ) are given by the terms of its

underlying type, that is Tm𝒞𝐷(Γ, 𝐴) = Tm𝒞 (Γ, |𝐴|).
By the stability equations for the underlying internal functor structure,

the substitutions patch𝐴𝜎 and linv𝐴𝜎 of a patching structure for 𝐴 by 𝜎 ∈
Sub(Δ, Γ) is a patching structure for 𝐴𝜎 so that componentwise substitution
induces a substitution structure on 𝒞𝐷.

The display substitution and variable term of a type with a patching struc-
ture is taken to be the display substitution and variable term of the underlying
type and this determines a comprehension structure on 𝒞𝐷.

Note that to build the basic cwf structure 𝒞𝐷 we are only using the under-
lying internal (pointed) functor structure of 𝐷.

We can interpret the type-theoretic proofs in Part I as patching structures
for unit, Σ, Π, and identity types (these make use of the lex operation struc-
ture) as well as univalent universe types (this makes use of the descent data
operation structure) so that we have the following proposition:

Proposition 43. A cwf 𝒞 with a descent data operation structure 𝐷 gives rise to
a cwf 𝒞𝐷 with unit, Σ, Π, identity, and univalent universe type structures as well
as a strict pseudomorphism 𝐴 ↦ |𝐴| from 𝒞𝐷 to 𝒞 which is the identity functor
on the composition structure.

Moreover, 𝒞𝐷 of Proposition 43 supports a natural numbers type if 𝒞 sup-
ports a natural numbers patch algebra (cf. Subsection 3.3.1):

Definition 35. A natural numbers patch algebra structure on a cwf with a de-
scent data operation structure 𝐷 is given by six operations:

1. Nat𝐷(Γ) ∈ Ty(Γ) for each Γ ∈ Ctx
2. zero𝐷(Γ) ∈ Tm(Γ,Nat𝐷) for each Γ ∈ Ctx
3. succ𝐷(𝑛) ∈ Tm(Γ,Nat𝐷) for each 𝑛 ∈ Tm(Γ,Nat𝐷)
4. patch𝐷(𝑥) ∈ Tm(Γ,Nat𝐷) for each 𝑥 ∈ Tm(Γ, 𝐷0(Nat𝐷))
5. linv𝐷(𝑛) ∈ Tm(Γ, Id(patch𝐷(𝜂(𝑛)), 𝑛)) for each 𝑛 ∈ Tm(Γ,Nat𝐷)
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6. elim(𝑧, 𝑠, p̃atch, l̃inv, 𝑛) ∈ Tm(Γ, 𝐶[𝑛]) for each 𝐶 ∈ Ty(Γ.Nat𝐷),
𝑧 ∈ Tm(Γ, 𝐶[zero𝐷]),
𝑠 ∈ Tm(Γ,Π𝑛∶Nat𝐷(𝐶 → 𝐶[succ𝐷(𝑛)])),
p̃atch ∈ Tm(Γ,Π𝑥∶𝐷0(Nat𝐷)(�̃�0(𝐶) → 𝐶[patch𝐷(𝑥)])),
l̃inv ∈ Tm(Γ,Π𝑛∶Nat𝐷,𝑐∶𝐶 Id𝐶,linv𝐷(𝑛)(p̃atch(𝜂(𝑛), ̃𝜂(𝑛, 𝑐)), 𝑐)),
𝑛 ∈ Tm(Γ,Nat𝐷)

satisfying the equations

1. Nat𝐷(Γ)𝜎 = Nat𝐷(Δ),
2. zero𝐷(Γ)𝜎 = zero𝐷(Δ),
3. succ𝐷(𝑛)𝜎 = succ𝐷(𝑛𝜎),
4. patch𝐷(𝑥)𝜎 = patch𝐷(𝑥𝜎),
5. linv𝐷(𝑛)𝜎 = linv𝐷(𝑛𝜎),
6. elim(𝑧, 𝑠, p̃atch, l̃inv, 𝑛)𝜎 = elim(𝑧𝜎, 𝑠𝜎, p̃atch𝜎, l̃inv𝜎, 𝑛𝜎),
7. elim(𝑧, 𝑠, p̃atch, l̃inv, zero𝐷) = 𝑧, and
8. elim(𝑧, 𝑠, p̃atch, l̃inv, succ𝐷(𝑛)) = 𝑠(𝑛, elim(𝑧, 𝑠, p̃atch, l̃inv, 𝑛)).

Proposition 44. Let 𝒞 be a cwf with a descent data operation 𝐷 and a natural
numbers patch algebra structure, then the cwf 𝒞𝐷 has a natural numbers type
structure.

Proof. Since, by definition, Nat𝐷 has a patch algebra structure that is stable
under substitution, we have Nat(Γ) ∈ Ty𝒞𝐷

(Γ) for each context Γ such that
Nat(Γ)𝜎 = Nat(Δ). Moreover, since the terms of a patch algebra 𝐴 ∈ Ty𝒞𝐷

(Γ)
are defined to be the terms of its underlying type |𝐹 | ∈ Ty𝒞 (Γ), that is
Tm𝒞𝐷(Γ, 𝐴) = Tm𝒞 (Γ, |𝐴|) for each 𝐴 ∈ Ty𝒞𝐷

(Γ), we also have zero(Γ) ∈
Tm𝒞𝐷(Γ,Nat) for each context Γ such that zero(Γ)𝜎 = zero(Δ) and succ(𝑛) ∈
Tm𝒞𝐷(Γ,Nat) for each 𝑛 ∈ Tm𝒞𝐷(Γ,Nat) such that succ(𝑛)𝜎 = succ(𝑛𝜎).

What remains to be shown for Nat to be a natural numbers type structure
on𝒞𝐷 is thatwe have elim(𝑧, 𝑠, 𝑛) ∈ Tm𝒞𝐷(Γ, 𝐶[𝑛]) for each𝐶 ∈ Ty𝒞𝐷

(Γ.Nat)
and 𝑛 ∈ Tm𝒞𝐷(Γ,Nat), 𝑧 ∈ Tm𝒞𝐷(Γ, 𝐶[zero]) and 𝑠 ∈ Tm𝒞𝐷(Γ,Π𝑛∶Nat(𝐶 →
𝐶[succ(𝑛)])) such that elim(𝑧, 𝑠, 𝑛)𝜎 = elim(𝑧𝜎, 𝑠𝜎, 𝑛𝜎), elim(𝑧, 𝑠, zero) = 𝑧
and elim(𝑧, 𝑠, succ(𝑛)) = 𝑠(elim(𝑧, 𝑠, 𝑛)). Apply Proposition 35.

And similarly for propositional truncation:

Definition 36. A propositional truncation patch algebra structure on a cwf with
a descent data operation structure 𝐷 is given by six operations:
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1. ‖𝐴‖𝐷 ∈ Ty(Γ) for 𝐴 ∈ Ty(Γ)
2. inc(𝑎) ∈ Tm(Γ, ‖𝐴‖𝐷) for 𝑎 ∈ Tm(Γ, 𝐴)
3. squash(𝑥, 𝑦) ∈ Tm(Γ, Id(𝑥, 𝑦)) for 𝑥, 𝑦 ∈ Tm(Γ, ‖𝐴‖𝐷)
4. patch(𝑥) ∈ Tm(Γ, ‖𝐴‖𝐷) for 𝑥 ∈ Tm(Γ, 𝐷(‖𝐴‖𝐷))
5. linv(𝑥) ∈ Tm(Γ, Id(patch(𝜂(𝑥)), 𝑥)) for 𝑥 ∈ Tm(Γ, ‖𝐴‖𝐷)
6. elim(𝑖, 𝑠, p̃atch, l̃inv, 𝑥) ∈ Tm(Γ, 𝐶[𝑥]) for 𝐶 ∈ Ty(Γ.‖𝐴‖𝐷),
𝑖 ∈ Tm(Γ.𝐴, 𝐶[inc]),
𝑠 ∈ Tm(Γ.‖𝐴‖𝐷.𝐶.‖𝐴‖𝐷p2.𝐶⟨p2⟩, Idsquash(qp3,qp1)(qp2, qp0)),
p̃atch ∈ Tm(Γ.𝐷(‖𝐴‖𝐷).�̃�(𝐶), 𝐶⟨Γ.patch⟩p),
l̃inv ∈ Tm(Γ.‖𝐴‖𝐷, Id𝐶 (patch(𝜂(qp0)), qp0)),
𝑥 ∈ Tm(Γ, ‖𝐴‖𝐷)

satisfying the equations

1. ‖𝐴‖𝐷𝜎 = ‖𝐴𝜎‖𝐷,
2. inc(𝑎)𝜎 = inc(𝑎𝜎),
3. squash(𝑥, 𝑦)𝜎 = squash(𝑥𝜎, 𝑦𝜎),
4. patch(𝑥)𝜎 = patch(𝑥𝜎),
5. linv(𝑥)𝜎 = linv(𝑥𝜎),
6. elim(𝑖, 𝑠, p̃atch, l̃inv, 𝑥)𝜎 = elim(𝑖⟨𝜎⟩, 𝑠⟨⟨⟨⟨𝜎⟩⟩⟩⟩, p̃atch⟨⟨𝜎⟩⟩, l̃inv⟨𝜎⟩,

𝑥𝜎),
7. elim(𝑖, 𝑠, p̃atch, l̃inv, inc(𝑎)) = 𝑖(𝑎), and
8. elim(𝑖, 𝑠, p̃atch, l̃inv, squash(𝑥, 𝑦)) = 𝑠(elim(𝑖, 𝑠, p̃atch, l̃inv, 𝑥), elim(𝑖,

𝑠, p̃atch, l̃inv, 𝑦)).

Proposition 45. Let 𝒞 be a cwf with a descent data operation 𝐷 and a propo-
sitional truncation patch algebra structure, then the cwf 𝒞𝐷 has a propositional
truncation structure.

Proof. By Definition 36, the assignment of patch algebras ‖𝐴‖ = (‖|𝐴|‖𝐷,
patch, linv) ∈ Ty𝒞𝐷

(Γ) to 𝐴 ∈ Ty𝒞𝐷
(Γ) is stable under substitution, that is

‖𝐴‖𝜎 = ‖𝐴𝜎‖. By Proposition 36 it has an eliminator elim into 𝐵 ∈ Ty𝒞𝐷
(Γ)

that are mere propositions. It follows that (‖𝐴‖, inc, squash, elim) is a propo-
sitional truncation for each 𝐴, that is 𝒞𝐷 has a propositional truncation struc-
ture.



Chapter 5

Groupoid model

Hofmann and Streicher [42, 41] answered the question of uniqueness of iden-
tity proofs negatively by constructing a model of intensional type theory in
which there is a type 𝑇0 with elements 𝑡, 𝑢 of 𝑇0 and 𝑝, 𝑞 of Id𝑇0(𝑡, 𝑢) such that
there is no element of IdId𝑇0 (𝑡,𝑢)(𝑝, 𝑞). In fact, the identity type Id(𝑝, 𝑞) is empty,
i.e. the type Id(𝑝, 𝑞) → ⊥ is inhabited, and hence 𝑇0 is not a (homotopy) set,
i.e. the type isSet(𝑇0) → ⊥ is inhabited.

Themodel of Hofmann and Streicher also shows that type theory identifies
isomorphic structures in the sense that if Σ is some algebraic signature, 𝐴 and
𝐵 are two isomorphic Σ-structures (in the set-theoretic model of type theory),
and 𝑃 is a predicate on Σ-structures expressed using the language of type
theory then 𝐴 satisfies 𝑃 if and only if 𝐵 satisfies 𝑃 .

Actually, the universe U is an example of a type 𝑇0 that is not a homo-
topy set in the model of Hofmann and Streicher, i.e. their model inhabits the
type isSet(U) → ⊥. Moreover, one can construct a proof of this in type the-
ory extended with an axiom that asserts that the canonical maps IdU(𝐴, 𝐵) →
Equiv(𝐴, 𝐵) are equivalences [41]. This axiom is validated in the model [41]
and entails that the isomorphic Σ-structures 𝐴 and 𝐵 are identified as elements
of the type UΣ of Σ-structures. The invariance of type-theoretic predicates un-
der isomorphism can then be proved using transport.

The model of Hofmann and Streicher interprets contexts as categories in
which every morphism is invertible (groupoids), type families 𝐴 ∈ Ty(Γ) as
functors 𝐴 ∶ Γ → Gpd, and terms 𝑡 ∈ Tm(Γ, 𝐴) as sections 𝑡 ∶ Γ → Γ.𝐴 of
the projection p𝐴 ∶ Γ.𝐴 → Γ. Identity types Id𝐴 have as points the paths in
𝐴. The functors 𝐴(𝑔) ∶ 𝐴(𝛾) → 𝐴(𝛾′) over paths 𝑔 ∶ 𝛾 ⥲ 𝛾′ ∶ Γ interpret the
eliminator J for identity types and the functor law 𝐴(id𝛾 ) = Id𝐴(𝛾) is needed to

67
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validate its computation law J(𝑑, 𝑎, refl) = 𝑑. The universe type U has (small)
discrete groupoids as points and isomorphisms between them as paths.

Inspired by the setoidmodel of type theory formulatedwith heterogeneous
equivalence relations as in Martin-Löf [64], Tonelli [79] and Hofmann [37], in
this chapter we recall the groupoid model in a slightly different formulation.
Seeing groupoids as proof-relevant setoids with coherence laws for the con-
gruence proofs, contexts are interpreted as groupoids and type families are
interpreted as displayed categories [3] fibred in groupoids, in particular a type
family specifies a family of sets 𝐴(𝑔, 𝑎, 𝑎′) of paths over paths 𝑔 ∶ 𝛾 ⥲ 𝛾′ ∶ Γ.

The displayed categories formulation allows for both a simplification of
definitions involving dependent paths (when compared to the formulation
based on functors) and a strict model (when compared to a formulation based
on categories fibred in groupoids).

However, there arises an issue with the strictness of the universe, the
law El(Π𝐴𝐵) = ΠEl(𝐴)El(𝐵) for small types 𝐴, 𝐵 ∶ U for instance. The is-
sue is solved by assuming subsingletons 𝑃 ⊆ 1 = {0} to be closed under
dependent products and sums, in particular ∏𝑥∈𝑋 𝑃 (𝑥) ⊆ 1 for any set 𝑋 and
family 𝑃 of subsingletons 𝑃 (𝑥) ⊆ 1 for 𝑥 ∈ 𝑋. An encoding of functions that
has this property was devised by Aczel [1] to interpret a type of impredicative
and proof-irrelevant propositions in set theory.

We stress the groupoid model’s constructive and elementary nature, which
wewill make use of in Chapter 6 to relativize the groupoidmodel to presheaves
over an arbitrary base category.

5.1 Basic cwf structure
Recall from Definition 17 in Chapter 4 that a cwf is given by a 1. composition
structure on the sets of contexts and substitutions, 2. a substitution structure
on the sets of types and terms, and 3. a comprehension structure relating types
and terms to substitutions. We organize the presentation of the groupoid mod-
el accordingly.

The elements of the sets of contexts and types in the groupoid model are
structures, namely groupoids and families of groupoids. Correspondingly, the
universe type structure on the groupoid model is given by a structure of struc-
tures. Since we need a universe in order to define a set of all structures of
some kind, let 𝒱 be an arbitrary but fixed set-theoretic universe. In addition
to that, since we need a universe in 𝒱 in order to define a set in 𝒱 of all
𝒱 -small structures of a certain kind, let 𝒰 be a set-theoretic universe that is
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an element of 𝒱 . This means that the construction of the groupoid model is
parameterized by two set-theoretic universes.

5.1.1 Contexts and substitutions
We start the construction of the groupoid model by giving the interpretations
of the sort symbols Ctx and Sub.

Definition 37. A context Γ is given by

1. a 𝒱 -small set of points, which we denote by Pt(Γ) or Γ, and
2. a family assigning 𝒱 -small sets of paths to 𝛾 , 𝛾′ ∈ Γ, which we denote
by Path(Γ, 𝛾, 𝛾′) or 𝛾 ⥲ 𝛾′

together with operations assigning

1. identity paths id𝛾 ∈ 𝛾 ⥲ 𝛾 to 𝛾 ∈ Γ,
2. composite paths 𝜇 · 𝜇′ ∈ 𝛾 ⥲ 𝛾″ to 𝜇 ∈ 𝛾 ⥲ 𝛾′ and 𝜇′ ∈ 𝛾′ ⥲ 𝛾″, and
3. inverse paths 𝜇−1 ∈ 𝛾′ ⥲ 𝛾 to 𝜇 ∈ 𝛾 ⥲ 𝛾′

such that the equations

1. id𝛾 · 𝜇 = 𝜇 and 𝜇 · id𝛾′ = 𝜇 (left and right unity),
2. (𝜇 · 𝜇′) · 𝜇″ = 𝜇 · (𝜇′ · 𝜇″) (associativity), and
3. 𝜇−1 · 𝜇 = id𝛾′ and 𝜇 · 𝜇−1 = id𝛾 (left and right invertibility)

are satisfied.

Note that, like for groups, the identity and inverse operations are uniquely
determined by the axioms, but we include them to emphasize the algebraic
nature of the definition. A context in the groupoid model is hence the same as
a 𝒱 -small groupoid, that is a 𝒱 -small category in which every morphism is
invertible.

Definition 38. A substitution 𝜎 between contexts Δ and Γ is given by opera-
tions assigning

1. 𝜎(𝛿) ∈ Γ to 𝛿 ∈ Δ, and
2. 𝜎(𝜈) ∈ 𝜎(𝛿) ⥲ 𝜎(𝛿′) to 𝜈 ∈ 𝛿 ⥲ 𝛿′

such that the equations

1. 𝜎(id𝛿) = id𝜎(𝛿),
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2. 𝜎(𝜈 · 𝜈′) = 𝜎(𝜈) · 𝜎(𝜈′), and
3. 𝜎(𝜈−1) = 𝜎(𝜈)−1

are satisfied.

Note that, like for homomorphisms of monoids, the inverse preservation
equation is derivable because the property of being an inverse is preserved
whenever identity and composite preservation hold, and inverses are unique-
ly determined. In fact, like for homomorphisms of groups, even the identity
preservation equation is derivable. However, we include the equation to em-
phasize that the definition of a substitution matches the notion of homomor-
phism between contexts seen as algebraic structures with two sorts and three
operations. A substitution in the groupoid model is hence the same as a func-
tor.

Proposition 46. The operation 𝜎 ∘ 𝜏 ∈ Sub(Ε, Γ) defined by

1. (𝜎 ∘ 𝜏)(𝜀) = 𝜎(𝜏(𝜀)) for 𝜀 ∈ Ε, and
2. (𝜎 ∘ 𝜏)(𝜊) = 𝜎(𝜏(𝜊)) for 𝜊 ∈ 𝜀 ⥲ 𝜀′

for 𝜎 ∈ Sub(Δ, Γ) and 𝜏 ∈ Sub(Ε, Δ) is associative and has units.

Proof. Just like for functors between categories and homomorphisms between
algebraic structures.

Proposition 47. The element [] ∈ Ctx defined by

1. Pt = {0}, and
2. Path(𝑥, 𝑦) = {0} for 𝑥, 𝑦 ∈ Pt

is a terminal context.

Proof. Just like for categories and algebraic structures.

5.1.2 Types and terms
We continue the construction of the groupoid model by giving the interpreta-
tions of the (dependent) sort symbols Ty and Tm.

Definition 39. A type 𝐴 in context Γ is given by families assigning

1. 𝒱 -small sets of points over 𝛾 to 𝛾 ∈ Γ, which we denote by Pt(𝐴, 𝛾) or
𝐴(𝛾), and
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2. 𝒱 -small sets of paths over 𝜇 to 𝜇 ∈ 𝛾 ⥲ 𝛾′, 𝑎 ∈ 𝐴(𝛾), 𝑎′ ∈ 𝐴(𝛾′),
which we denote by Path(𝐴, 𝜇, 𝑎, 𝑎′) or 𝑎 ⥲𝜇 𝑎′

together with operations assigning

1. identity paths id𝑎 ∈ 𝑎 ⥲id𝛾 𝑎 to 𝑎 ∈ 𝐴(𝛾),
2. composite paths 𝛼 · 𝛼′ ∈ 𝑎 ⥲𝜇·𝜇′ 𝑎″ to 𝛼 ∈ 𝑎 ⥲𝜇 𝑎′ and 𝛼′ ∈ 𝑎′ ⥲𝜇′

𝑎″,
3. inverse paths 𝛼−1 ∈ 𝑎′ ⥲𝜇−1 𝑎 to 𝛼 ∈ 𝑎 ⥲𝜇 𝑎′, and
4. transports 𝜇+ 𝑎 ∈ 𝐴(𝛾′) and lifts 𝜇→ 𝑎 ∈ 𝑎 ⥲𝜇 𝜇+ 𝑎 to 𝜇 ∈ 𝛾 ⥲ 𝛾′

and 𝑎 ∈ 𝐴(𝛾)

such that the equations

1. id𝑎 · 𝛼 = 𝛼 and 𝛼 · id𝑎′ = 𝛼 (left and right unity),
2. (𝛼 · 𝛼′) · 𝛼″ = 𝛼 · (𝛼′ · 𝛼″) (associativity),
3. 𝛼−1 · 𝛼 = id𝑎′ and 𝛼 · 𝛼−1 = id𝑎 (left and right invertibility),
4. id+

𝛾 𝑎 = 𝑎 and id𝛾
→ 𝑎 = id𝑎 (normality), and

5. (𝜇 · 𝜇′)+ 𝑎 = 𝜇′+ (𝜇+ 𝑎) and (𝜇 · 𝜇′)→ 𝑎 = 𝜇→ 𝑎 · 𝜇′→ (𝜇+ 𝑎) (splitness)

are satisfied.

Note that, as for contexts, the identity and inverse operations are uniquely
determined.

We can think of a type in context Γ in the groupoid model as a displayed
category over Γ [3] in which every morphism is invertible together with a split
(op-)lifting operation.

For a point 𝛾 ∈ Γ, the set Path(𝐴, id𝛾 , 𝑎0, 𝑎1) of vertical paths over 𝛾 is
also denoted by 𝑎0 ⥲𝛾 𝑎1 and, by abuse of notation, the fibre category of
𝐴 over 𝛾 whose objects are the points over 𝛾 and whose morphisms are the
vertical paths over 𝛾 is also denoted by 𝐴(𝛾). The operations of the dual lifting
structure induced by the invertibility of the paths in Γ is denoted by 𝜇− 𝑎′ ∈
𝐴(𝛾) and 𝜇← 𝑎′ ∈ 𝜇− 𝑎′ ⥲𝜇 𝑎′ for 𝑎′ ∈ 𝐴(𝛾′) and 𝜇 ∈ 𝛾 ⥲ 𝛾′.

A type 𝐴 ∈ Ty(Γ) will be called small if it is 𝒰-small and set-like: all point
sets 𝐴(𝛾) ∈ 𝒰 and path sets 𝐴(𝜇, 𝑎, 𝑎′) are in 𝒰 , and 𝐴(𝜇, 𝑎, 𝑎′) ⊆ {0} and
the transports 𝜇+ 𝑎 along paths 𝜇 ∶ 𝛾 ⥲ 𝛾′ are the unique points 𝑎′ ∈ 𝐴(𝛾′)
such that there is a (necessarily unique) path 𝑎 ⥲𝜇 𝑎′. Note that small types
are in particular discrete [36, 76], i.e. we have 𝑎′ = 𝑎 and 𝛼 = id𝑎 for all
vertical paths 𝛼 ∶ 𝑎 ⥲𝛾 𝑎′. It follows immediately that the subsets ty(Γ) ⊆
Ty(Γ) of small types are closed under substitution and we will see that they
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are also closed under Π, Σ, and identity types. Moreover, two small types are
the same whenever their point sets and transport operations coincide. As a
result, we will see that small types are classified by the type of (𝒰-small) sets
and bijections between them.

Definition 40. A term 𝑡 of type 𝐴 in context Γ is given by operations assigning

1. 𝑡(𝛾) ∈ 𝐴(𝛾) to 𝛾 ∈ Γ, and
2. 𝑡(𝜇) ∈ 𝑡(𝛾) ⥲𝜇 𝑡(𝛾′) to 𝜇 ∈ 𝛾 ⥲ 𝛾′

such that the equations

1. 𝑡(id𝛾 ) = id𝑡(𝛾),
2. 𝑡(𝜇 · 𝜇′) = 𝑡(𝜇) · 𝑡(𝜇′), and
3. 𝑡(𝜇−1) = 𝑡(𝜇)−1

hold.

Note that, as for substitutions, the equations 𝑡(id𝛾 ) = id𝑡(𝛾) and 𝑡(𝜇−1) =
𝑡(𝜇)−1 are actually derivable. Also note that we do not require the equation
𝑡(𝜇) = 𝜇→ 𝑡(𝛾) to hold.

Proposition 48. The operations 𝐴𝜎 ∈ Ty(Δ) and 𝑡𝜎 ∈ Tm(Δ, 𝐴𝜎) defined by

1. Pt(𝐴𝜎, 𝛿) = Pt(𝐴, 𝜎(𝛿)), and
2. Path(𝐴𝜎, 𝜈, 𝑎, 𝑎′) = Path(𝐴, 𝜎(𝜈), 𝑎, 𝑎′),

and

1. 𝑡𝜎(𝛿) = 𝑡(𝜎(𝛿)), and
2. 𝑡𝜎(𝜈) = 𝑡(𝜎(𝜈))

for 𝜎 ∈ Sub(Δ, Γ), 𝐴 ∈ Ty(Γ), and 𝑡 ∈ Tm(Γ, 𝐴) are functorial in 𝜎, that is −idΓ
is equal to the identity function and −(𝜎 ∘ 𝜏) is equal to the composite function
−𝜏 ∘ −𝜎.

Proof. Unfolding the definitions.

Before we continue the construction of the groupoid model by giving the
comprehension structure, we define some derived structure on types that will
be used for the Π type structure andwhich draws a connection to other notions
of type in a model of groupoids.
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Bifibration structure The derived structure can be seen to be induced by
the fact that the notion of type in the groupoid model is a special case of the
notion of (op-)fibration [72, 82, 76] where every morphism is (op-)Cartesian.
This is the case simply because paths in a type — in particular the lifts — are
invertible by definition so that for 𝛼 ∈ 𝑎 ⥲𝜇 𝑎′ and 𝛼′ ∈ 𝑎 ⥲𝜇·𝜇′ 𝑎″ the
composite path 𝛼−1 · 𝛼′ ∈ 𝑎′ ⥲𝜇′ 𝑎″ is the unique path such that the triangle

𝑎 𝑎′ 𝑎″

∼
𝛼′

∼
𝛼

Diagram 3: Paths in a type in the groupoid model are op-Cartesian

commutes. The Cartesianness of an arbitrary path 𝛼 can be seen analogously.

Transport functor structure For 𝜇 ∈ 𝛾 ⥲ 𝛾′, the lifts 𝜇→ 𝑎 ∈ 𝑎 ⥲𝜇 𝜇+ 𝑎
for 𝑎 ∈ 𝐴(𝛾) seen as op-Cartesian morphisms give rise to a canonical functor
𝐴(𝜇) ∶ 𝐴(𝛾) → 𝐴(𝛾′) mapping 𝑎 ∈ 𝐴(𝛾) to the transport 𝜇+ 𝑎 ∈ 𝐴(𝛾′) and
𝛼 ∈ 𝑎0 ⥲𝛾 𝑎1 to the unique vertical path 𝜇+ 𝛼 ∈ 𝜇+ 𝑎0 ⥲𝛾′ 𝜇+ 𝑎1 which
makes the square

𝑎0 𝜇+ 𝑎0

𝑎1 𝜇+ 𝑎1

∼𝛼

∼
𝜇→ 𝑎0

∼
𝜇→ 𝑎1

Diagram 4: Transport in a type in the groupoid model is functorial

commute. Note that this assignment of 𝜇+ 𝛼 to 𝛼 ∈ 𝑎0 ⥲𝛾 𝑎1 is functorial
because id𝜇+ 𝑎 makes the square for id𝑎 commute and 𝜇+ 𝛼0 · 𝜇+ 𝛼1 makes the
square for 𝛼0 · 𝛼1 commute so that by uniqueness we get 𝜇+ id𝑎 = id𝜇+ 𝑎 and
𝜇+ (𝛼0 · 𝛼1) = 𝜇+ 𝛼0 · 𝜇+ 𝛼1.

The assignment of the canonical functors 𝐴(𝜇) ∶ 𝐴(𝛾) → 𝐴(𝛾′) just de-
fined to 𝜇 ∈ 𝛾 ⥲ 𝛾′ is functorial because the lift operation is (normal and) split
by definition. The mapping of types over Γ to groupoid-valued functors on Γ
recovers the notion of type in the original formulation of the groupoid mod-
el [41].

Giraud–Conduché structure For 𝜇 ∈ 𝛾 ⥲ 𝛾′ and 𝜇′ ∈ 𝛾 ⥲ 𝛾′, the
lifts 𝜇→ 𝑎 ∈ 𝑎 ⥲𝜇 𝜇+ 𝑎 for 𝑎 ∈ 𝐴(𝛾) seen as op-Cartesian morphisms give
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rise to canonical factorizations left(𝜇, 𝜇′, 𝜓) · right(𝜇, 𝜇′, 𝜓) = 𝜓 of paths 𝜓 ∈
𝑎 ⥲𝜇·𝜇′ 𝑎″ given by left(𝜇, 𝜇′, 𝜓) = 𝜇→ 𝑎 and the unique path right(𝜇, 𝜇′, 𝜓) ∈
𝜇+ 𝑎 ⥲𝜇′ 𝑎″ which makes the triangle

𝑎 𝜇+ 𝑎 𝑎″

∼
𝜓

∼
left(𝜇,𝜇′,𝜓)

Diagram 5: Paths over a composite path in a type in the groupoid model can be
factored

commute.
The notion of type in the groupoid model is a special case of the notion

of Giraud–Conduché fibration [34, 18] where every pair of factorizations is
isomorphic. Given any factorization 𝛼 · 𝛼′ = 𝜓 of 𝜓 into morphisms 𝛼 ∈
𝑎 ⥲𝜇 𝑎′ and 𝛼′ ∈ 𝑎′ ⥲𝜇′ 𝑎″ there is a vertical path such that the diagram

𝜇+ 𝑎

𝑎 𝑎″

𝑎′

∼
right(𝜇,𝜇′,𝜓)

∼
left(𝜇,𝜇′,𝜓)

∼
𝛼

∼
𝛼′

commutes.

5.1.3 Comprehension structure
We end the construction of the basic cwf structure of the groupoid model by
giving the interpretations of the operation symbols Γ.𝐴, p𝐴, q𝐴, and ⟨𝜎, 𝑡⟩.

Proposition 49. For 𝐴 ∈ Ty(Γ), define Γ.𝐴 as the total category of 𝐴, p𝐴 ∈
Sub(Γ.𝐴, Γ) as its forgetful functor, and q𝐴 ∈ Tm(Γ.𝐴, 𝐴p𝐴) by

1. q𝐴(𝛾, 𝑎) = 𝑎, and
2. q𝐴(𝜇, 𝛼) = 𝛼

Then, the operation ⟨𝜎, 𝑡⟩ ∈ Sub(Δ, Γ.𝐴) defined by

1. ⟨𝜎, 𝑡⟩(𝛿) = (𝜎(𝛿), 𝑡(𝛿)) for 𝛿 ∈ Δ, and
2. ⟨𝜎, 𝑡⟩(𝜈) = (𝜎(𝜈), 𝑡(𝜈)) for 𝜈 ∈ 𝛿 ⥲ 𝛿′
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for 𝜎 ∈ Sub(Δ, Γ) and 𝑡 ∈ Tm(Δ, 𝐴𝜎) produces the unique substitution 𝜏 ∈
Sub(Δ, Γ.𝐴) such that p𝐴 ∘ 𝜏 = 𝜎 and q𝐴𝜏 = 𝑡.

Proof. By definition of (the components of) Γ.𝐴 as a dependent sum, and p𝐴
and q𝐴 its projections.

This completes the description of the basic cwf structure of the groupoid
model.

5.2 Extra type structure

5.2.1 Encoding of functions and pairs in the metatheory
When embedding sets in (discrete) groupoids we need to make a choice of
how to represent the unique path between any pair of points. In principle,
that choice is arbitrary as long as the embedding preserves Π and Σ types or,
in other words, as long as that choice is preserved by Π and Σ. From this it
follows that, in order for small types to be closed under Π and Σ types, we
need to be careful what exactly we pick as the sets ∏𝑖∈𝐼 𝑋(𝑖) and ∑𝑖∈𝐼 𝑋(𝑖)
of dependent functions and pairs in our metatheory since they will be used to
define the path sets of Π and Σ types (see Subsections 5.2.2 and 5.2.3) and small
types are required to have path sets that are subsets of 1 = {0}.

Aczel [1] shows how to encode functions (rather than as functional rela-
tions) in such a way that the collection P(1) = {𝑋 | 𝑋 ⊆ 1} of all subsets of 1
is closed under dependent products indexed by arbitrary sets.

Without assuming P(1) to exist as a set, we can use the function encoding
of Aczel [1] to show that the set 𝒫 = {𝑥 ∈ 𝒰 | 𝑥 ⊆ 1} of 𝒰-small subsets of
1 is closed under dependent products indexed by 𝒰-small sets:

Lemma 50. Let 𝐼 be a set and 𝑋 be a family of sets 𝑋(𝑖) indexed by 𝑖 ∈ 𝐼 , then
the set

∏
𝑖∈𝐼

𝑋(𝑖) ≔ {𝐹 ⊆ 𝐼 × ⋃
𝑖∈𝐼,𝑥∈𝑋(𝑖)

𝑥 | ∀𝑖 ∈ 𝐼. app(𝐹 , 𝑖) ∈ 𝑋(𝑖)}

together with the function app(𝐹 , 𝑖) ≔ {𝑧 ∈ ⋃𝑖∈𝐼,𝑥∈𝑋(𝑖) 𝑥 | (𝑖, 𝑧) ∈ 𝐹 } is a
dependent product of 𝑋 such that

1. 𝐼 ∈ 𝒰 and 𝑋(𝑖) ∈ 𝒰 for all 𝑖 ∈ 𝐼 implies ∏𝑖∈𝐼 𝑋(𝑖) ∈ 𝒰 , and
2. 𝑋(𝑖) ⊆ 1 for all 𝑖 ∈ 𝐼 implies ∏𝑖∈𝐼 𝑋(𝑖) ⊆ 1.
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Property 1 holds for any set-theoretic universe, in particular 𝒱 is also
closed under these dependent products.

The encoding of pairs such that 𝒫 is closed under dependent sums can be
reduced to that of functions:

Lemma 51. Let 𝐼 be a set and 𝑋 a family of sets 𝑋(𝑖) indexed by 𝑖 ∈ 𝐼 , then for
𝐶(0) ≔ 𝐼 and 𝐶(1) ≔ ⋃𝑖∈𝐼 𝑋(𝑖) the set

∑
𝑖∈𝐼

𝑋(𝑖) ≔ {𝑃 ∈ ∏𝑧∈2
𝐶(𝑧) | fst(𝑃 ) ∈ 𝐼 ∧ snd(𝑃 ) ∈ 𝑋(fst(𝑃 ))}

(note that the condition fst(𝑃 ) ∈ 𝐼 is technically redundant) together with the
functions fst(𝑃 ) ≔ app(𝑃 , 0) and snd(𝑃 ) ≔ app(𝑃 , 1) is a dependent sum of 𝑋
such that

1. 𝐼 ∈ 𝒰 and 𝑋(𝑖) ∈ 𝒰 for all 𝑖 ∈ 𝐼 implies ∑𝑖∈𝐼 𝑋(𝑖) ∈ 𝒰 , and

2. 𝐼 ⊆ 1 and 𝑋(𝑖) ⊆ 1 for all 𝑖 ∈ 𝐼 implies ∑𝑖∈𝐼 𝑋(𝑖) ⊆ 1.

Proof. Since small sets and subsingletons are closed under union, 𝐶 is in 𝒰 if
𝐼 and 𝑋 are, and likewise 𝐶(0) and 𝐶(1) are subsets of 1 if 𝐼 and 𝑋(𝑖) for all
𝑖 ∈ 𝐼 are, so that 1 and 2 hold by Lemma 50.

As for dependent products, any set-theoretic universe, including 𝒱 , is
closed under these dependent sums.

We remark that, while essential for the encoding of Aczel [1], for our use of
𝒫 to embed sets in small types it is inessential what singleton preciselywe take
elements 𝑋 ∈ 𝒫 to be subsets of, only that it is some fixed singleton so that
two elements are equal whenever they are (logically) equivalent. Furthermore,
we will not depend on 𝒫 containing all 𝒰-subsingletons but (in addition to
closure under dependent products and sums) closure under the (extensional)
identity type, i.e. the sets {0 | 𝑚 = 𝑚′} for any given 𝑚, 𝑚′ ∈ 𝑀 ∈ 𝒰 , would
suffice. Note that these closure properties seem essential for a groupoid to
strictly classify a subset of groupoid families as defined in Definition 39.

5.2.2 Σ type structure
We define the Σ type structure on the groupoid model by giving the interpret-
ations of the operation symbols Σ𝐴𝐵, (𝑎, 𝑏), fst 𝑝 and snd 𝑝.

Let 𝐴 be a type in a context Γ and 𝐵 a type in the context Γ.𝐴.
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We begin with the definition of the type Σ𝐴𝐵 ∈ Ty(Γ). We define the set of
points over 𝛾 ∈ Γ as (Σ𝐴𝐵)(𝛾) = ∑𝑎∈𝐴(𝛾) 𝐵(𝛾, 𝑎) and the sets of paths over 𝜇 ∈
𝛾 ⥲ 𝛾′ as (Σ𝐴𝐵)(𝜇, (𝑎, 𝑏), (𝑎′, 𝑏′)) = ∑𝛼∈𝐴(𝜇,𝑎,𝑎′) 𝐵((𝜇, 𝛼), 𝑏, 𝑏′). Note that
Σ𝐴𝐵 is set-like if both 𝐴 and 𝐵 are because then ∑𝛼∈𝐴(𝜇,𝑎,𝑎′) 𝐵((𝜇, 𝛼), 𝑏, 𝑏′) ⊆
1, and first 𝑎′ and 𝛼 and then 𝑏′ and 𝛽 are uniquely determined by 𝑎 and 𝑏 by the
discreteness of 𝐴 and 𝐵. The composition, invertibility and lifting structures
on the points and paths are then given componentwise. The naturality of the
operation Σ𝐴𝐵 with respect to the type substitution operation can be verified
by unfolding the definitions.

If 𝐴 and 𝐵 are 𝒰-small then Σ𝐴𝐵 is too. If they are moreover set-like then
Σ𝐴𝐵 is too because 𝒫 is closed under dependent sums and it can be checked
that Σ𝐴𝐵 is discrete when 𝐴 and 𝐵 are. In particular, Σ𝐴𝐵 is small if 𝐴 and 𝐵
are.

We continue with the definitions of the terms (𝑎, 𝑏), fst 𝑝 and snd 𝑝. Given
terms 𝑎 ∈ Tm(Γ, 𝐴) and 𝑏 ∈ Tm(Γ, 𝐵[𝑎]), define the term (𝑎, 𝑏) ∈ Tm(Γ,Σ𝐴𝐵)
by (𝑎, 𝑏)(𝛾) = (𝑎(𝛾), 𝑏(𝛾)) and (𝑎, 𝑏)(𝜇) = (𝑎(𝜇), 𝑏(𝜇)). Given a term 𝑝 ∈
Tm(Γ,Σ𝐴𝐵), define the terms fst 𝑝 ∈ Tm(Γ, 𝐴) and snd 𝑝 ∈ Tm(Γ, 𝐵[fst 𝑝])
by fst 𝑝(𝛾) = π1 𝑝(𝛾) and fst 𝑝(𝜇) = π1 𝑝(𝜇), and snd 𝑝(𝛾) = π2 𝑝(𝛾) and
snd 𝑝(𝜇) = π2 𝑝(𝜇). These definitions satisfy the preservation equations of
terms because the terms 𝑎, 𝑏, and 𝑝 do. The naturality of the operations (𝑎, 𝑏),
fst 𝑝, and snd 𝑝 with respect to the term substitution operation as well as the
β and η equations fst (𝑎, 𝑏) = 𝑎, snd (𝑎, 𝑏) and 𝑝 = (fst 𝑝, snd 𝑝) can be verified
by unfolding the definitions.

5.2.3 Π type structure
We define the Π type structure on the cwf constructed at the beginning of this
chapter by giving the interpretations of the operation symbols Π𝐴𝐵, λ 𝑏 and
app(𝑡, 𝑢).

Let 𝐴 be a type in a context Γ and 𝐵 a type in the context Γ.𝐴. We begin
with the definition of the type Π𝐴𝐵 ∈ Ty(Γ).

A point 𝑠 ∈ (Π𝐴𝐵)(𝛾) over 𝛾 ∈ Γ is given by operations assigning

1. 𝑠(𝑎) ∈ 𝐵(𝛾, 𝑎) to 𝑎 ∈ 𝐴(𝛾), and
2. 𝑠(𝛼) ∈ 𝑠(𝑎) ⥲(id𝛾 ,𝛼) 𝑠(𝑎′) to 𝛼 ∈ 𝑎 ⥲𝛾 𝑎′

such that the preservation equations

1. 𝑠(id𝑎) = id𝑠(𝑎), and
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2. 𝑠(𝛼0 · 𝛼1) = 𝑠(𝛼0) · 𝑠(𝛼1)

hold. Seeing 𝛾 as a substitution 𝛾 ∈ Sub([], Γ), the set (Π𝐴𝐵)(𝛾) is hence the
same as the set Tm(𝐴(𝛾), 𝐵⟨𝛾⟩) of terms of type 𝐵⟨𝛾⟩ in context 𝐴(𝛾).

A path 𝜔 ∈ 𝑠 ⥲𝜇 𝑠′ over 𝜇 ∈ 𝛾 ⥲ 𝛾′ is given by an operation assigning

𝜔(𝛼) ∈ 𝑠(𝑎) ⥲(𝜇,𝛼) 𝑠′(𝑎′)

to 𝛼 ∈ 𝑎 ⥲𝜇 𝑎′ such that the naturality equations

1. 𝑠(𝛼0) · 𝜔(𝛼) = 𝜔(𝛼0 · 𝛼) for vertical paths 𝛼0 over 𝛾 , and
2. 𝜔(𝛼) · 𝑠(𝛼′

0) = 𝜔(𝛼 · 𝛼′
0) for vertical paths 𝛼′

0 over 𝛾′

are satisfied.
Note that Π𝐴𝐵 is set-likewhen𝐵 is since then Path(𝐵, (𝜇, 𝛼), 𝑠(𝑎), 𝑠′(𝑎′)) ⊆

1 and hence Path(Π𝐴𝐵, 𝜇, 𝑠, 𝑠′) ⊆ ∏𝛼∈𝑎⥲𝜇𝑎′ Path(𝐵, (𝜇, 𝛼), 𝑠(𝑎), 𝑠′(𝑎′)) ⊆ 1;
the condition that for 𝜔 ∈ 𝑠 ⥲𝛾 𝑠′ and 𝜔′ ∈ 𝑠 ⥲𝛾 𝑠″ we have 𝑠″ = 𝑠′ (and
𝜔′ = 𝜔) by discreteness of 𝐵 can also be checked easily.

Let us define the composition structure on Π𝐴𝐵. For paths 𝜔 ∈ 𝑠 ⥲𝜇 𝑠′

and 𝜔′ ∈ 𝑠′ ⥲𝜇′ 𝑠″, using the canonical factorization given by the Giraud–
Conduché structure (Subsection 5.1.2), define the composite path 𝜔 · 𝜔′ ∈
𝑠 ⥲𝜇·𝜇′ 𝑠″ by (𝜔·𝜔′)(𝛼) = 𝜔(left(𝜇, 𝜇′, 𝛼))·𝜔′(right(𝜇, 𝜇′, 𝛼)) for 𝛼 ∈ 𝑎 ⥲𝜇·𝜇′

𝑎″.
The definition of the composite path is independent of the chosen factor-

ization:

Lemma 52. For 𝜔 ∈ 𝑠 ⥲𝜇 𝑠′, 𝜔′ ∈ 𝑠′ ⥲𝜇′ 𝑠″ and 𝛼 ∈ 𝑎 ⥲𝜇 𝑎′, 𝛼′ ∈ 𝑎′ ⥲𝜇′

𝑎″, the equation (𝜔 · 𝜔′)(𝛼 · 𝛼′) = 𝜔(𝛼) · 𝜔(𝛼′) holds.

Proof. Using the Giraud–Conduché structure (Subsection 5.1.2), the canonical
factorization is isomorphic to the given one, that is there is a vertical path 𝛼′

0
over 𝛾′ such that left(𝜇, 𝜇′, 𝛼 · 𝛼′) · 𝛼′

0 = 𝛼 and 𝛼′
0 · 𝛼′ = right(𝜇, 𝜇′, 𝛼 · 𝛼′).

Thus, by definition of the composite path 𝜔 · 𝜔′ and naturality of the paths 𝜔
and 𝜔′, we have

(𝜔 · 𝜔′)(𝛼 · 𝛼′) = 𝜔(left(𝜇, 𝜇′, 𝛼 · 𝛼′)) · 𝜔′(right(𝜇, 𝜇′, 𝛼 · 𝛼′))
= 𝜔(left(𝜇, 𝜇′, 𝛼 · 𝛼′)) · 𝑠′(𝛼′

0) · 𝜔′(𝛼′)
= 𝜔(𝛼) · 𝜔′(𝛼′)
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The definition of the composite path is natural: First, notice that, using the
Giraud–Conduché structure, it suffices to check (𝜔 ·𝜔′)(𝛼0 ·𝛼 ·𝛼′) = 𝑠(𝛼0) · (𝜔 ·
𝜔′)(𝛼 · 𝛼′) for a vertical path 𝛼0 over 𝛾 , a path 𝛼 over 𝜇, and a path 𝛼′ over 𝜇′.
Then, using the key observation, we have (𝜔·𝜔′)(𝛼0 ·𝛼 ·𝛼′) = 𝜔(𝛼0 ·𝛼) ·𝜔′(𝛼′).
And, by naturality of paths and another application of the key observation, we
have (𝜔 · 𝜔′)(𝛼0 · 𝛼 · 𝛼′) = 𝑠(𝛼0) · 𝜔(𝛼 · 𝛼′). Naturality on the right is analogous.

The composition operation is associative: Notice again that, using the
Giraud–Conduché structure, it suffices to check (𝜔 · (𝜔′ · 𝜔″))(𝛼 · 𝛼′ · 𝛼″) =
((𝜔·𝜔′) ·𝜔″)(𝛼 ·𝛼′ ·𝛼″) for paths 𝛼, 𝛼′, and 𝛼″ over 𝜇, 𝜇′, and 𝜇″, respectively,
but this follows from the key observation and associativity of composition in
𝐴 and 𝐵.

The composition operation has units: The definition of the unit path id𝑠 ∈
𝑠 ⥲𝛾 𝑠 by id𝑠(𝛼) = 𝑠(𝛼) is natural because the point 𝑠 preserves composition,
and id𝑠 is indeed a unit because (id𝑠 ·𝜔)(𝛼0 ·𝛼) = 𝑠(𝛼0) ·𝜔(𝛼) = 𝜔(𝛼0 ·𝛼). Unity
on the right is analogous.

Lastly, the composition operation has inverses: The definition of the in-
verse path 𝜔−1 ∈ 𝑠′ ⥲𝜇−1 𝑠 by 𝜔−1(𝛼) = 𝜔(𝛼−1)−1 is natural because we have
𝜔((𝛼0 · 𝛼)−1) · 𝑠(𝛼0) = 𝜔(𝛼−1) and hence 𝜔−1(𝛼0 · 𝛼) = 𝑠(𝛼0) · 𝜔−1(𝛼), and
analogously on the right; and, 𝜔−1 is indeed an inverse of 𝜔 because we have
𝑠(𝛼 · 𝛼′) · 𝜔(𝛼′−1) = 𝜔(𝛼) and hence (𝜔 · 𝜔−1)(𝛼 · 𝛼′) = 𝑠(𝛼 · 𝛼′). Invertibility
on the right is analogous.

Let us define the lifting structure on Π𝐴𝐵. For a point 𝑠 ∈ (Π𝐴𝐵)(𝛾) and a
path 𝜇 ∈ 𝛾 ⥲ 𝛾′, define the transport 𝜇+ 𝑠 ∈ (Π𝐴𝐵)(𝛾′) by

1. (𝜇+ 𝑠)(𝑎′) = 𝜇+ 𝑠(𝜇− 𝑎′) for 𝑎′ ∈ 𝐴(𝛾′), and
2. (𝜇+ 𝑠)(𝛼′) = 𝜇+ 𝑠(𝜇− 𝛼′) for 𝛼′ ∈ 𝑎′

0 ⥲𝛾′ 𝑎′
1

where we write 𝜇+ 𝑏 ∈ 𝐵(𝛾′, 𝜇+ 𝑎) and 𝜇+ 𝛽 ∈ 𝜇+ 𝑏 ⥲(id𝛾′ ,𝜇+ 𝛼) 𝜇+ 𝑏′ for the

components π2(𝜇+ (𝑎, 𝑏)) and π2(𝜇+ (𝛼, 𝛽)), respectively, when 𝑏 ∈ 𝐵(𝛾, 𝑎)
and 𝛽 ∈ 𝑏 ⥲(id𝛾 ,𝛼) 𝑏′. This definition is functorial because 𝜇+ 𝛽 is.

The transports 𝜇+ 𝑏 of points 𝑏 over 𝛾 along 𝜇 are the endpoints of the
associated lifts 𝜇→ 𝑏 = π2(𝜇→ (𝑎, 𝑏)) ∈ 𝑏 ⥲(𝜇,𝜇→ 𝛼) 𝜇+ 𝑏.

The lift 𝜇→ 𝑠 ∈ 𝑠 ⥲𝜇 𝜇+ 𝑠 is uniquely determined by (𝜇→ 𝑠)(𝜇← 𝑎′) =
𝜇→ 𝑠(𝜇− 𝑎′) for 𝑎′ ∈ 𝐴(𝛾′) because we can make the following observation:

Lemma 53. Let 𝑠 ∈ (Π𝐴𝐵)(𝛾) and 𝑠′ ∈ (Π𝐴𝐵)(𝛾′). Given an arbitrary family
𝜔𝑎 ∈ 𝑠(𝑎) ⥲(𝜇,𝜇→ 𝑎) 𝑠′(𝜇+ 𝑎) for 𝑎 ∈ 𝐴(𝛾), there is a unique path 𝜔 ∈ 𝑠 ⥲𝜇 𝑠′

such that 𝜔(𝜇→ 𝑎) = 𝜔𝑎 for every 𝑎 ∈ 𝐴(𝛾).
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Proof. For 𝛼 ∈ 𝑎 ⥲𝜇 𝑎′, by the bifibration structure (5.1.2), there exists a
unique vertical path 𝜇↓ 𝛼 over 𝛾′ such that 𝜇→ 𝑎 · 𝜇↓ 𝛼 = 𝛼 and we define
𝜔(𝛼) = 𝜔𝑎 · 𝑠′(𝜇↓ 𝛼) ∈ 𝑠(𝑎) ⥲(𝜇,𝛼) 𝑠′(𝑎′). This definition is natural because

𝜔(𝛼 · 𝛼′
0) = 𝜔𝑎 · 𝑠′(𝜇↓ (𝛼 · 𝛼′

0)) = 𝜔𝑎 · 𝑠′(𝜇↓ 𝛼 · 𝛼′
0) = 𝜔(𝛼) · 𝑠′(𝛼′

0)

for vertical paths 𝛼′
0 over 𝛾′.

We can then verify the normality and splitness equations for the lifting
structure because they are satisfied by 𝜇+ 𝑏, 𝜇+ 𝛽 and 𝜇→ 𝑏.

The naturality of the operation Π𝐴𝐵 ∈ Ty(Γ) with respect to the type
substitution operation can be verified by unfolding the definitions.

If 𝐴 and 𝐵 are 𝒰-small then Π𝐴𝐵 is too. If 𝐵 is moreover set-like then Π𝐴𝐵
is too because 𝒫 is closed under dependent products indexed by 𝒰-small sets
and it can be checked that Π𝐴𝐵 is discrete when 𝐵 is. In particular, Π𝐴𝐵 is
small if 𝐴 and 𝐵 are.

We end the construction of the Π type structure on the groupoid model by
giving the interpretations of the operation symbols λ and app.

Given 𝑏 ∈ Tm(Γ.𝐴, 𝐵), define λ 𝑏 ∈ Tm(Γ,Π𝐴𝐵) by

1. (λ 𝑏)(𝛾)(𝑎) = 𝑏(𝛾, 𝑎),
2. (λ 𝑏)(𝛾)(𝛼) = 𝑏(id𝛾 , 𝛼), and
3. (λ 𝑏)(𝜇)(𝛼) = 𝑏(𝜇, 𝛼).

This definition satisfies the preservation equations of points in Π𝐴𝐵 and terms
in the groupoid model because 𝑏 satisfies them and the composition structure
on Γ.𝐴 is defined componentwise.

Given 𝑡 ∈ Tm(Γ,Π𝐴𝐵) and 𝑎 ∈ Tm(Γ, 𝐴), define app(𝑡, 𝑎) ∈ Tm(Γ, 𝐵[𝑎])
by

1. app(𝑡, 𝑎)(𝛾) = 𝑡(𝛾)(𝑎(𝛾)), and
2. app(𝑡, 𝑎)(𝜇) = 𝑡(𝜇)(𝑎(𝜇)).

This definition satisfies the preservation equations because 𝑡 and 𝑎 satisfy
them.

The naturality of the operations λ 𝑏 and app(𝑡, 𝑎) with respect to the term
substitution operation as well as the β and η equations app(λ 𝑏, 𝑎) = 𝑏[𝑎]
and 𝑡 = λ app(𝑡p𝐴 q𝐴) can be verified by unfolding the definitions.
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5.2.4 Identity type structure
We define the operation Id𝐴 ∈ Ty(Γ.(𝐴 × 𝐴)), where 𝐴 × 𝐴 denotes the type
Σ𝐴𝐴p𝐴, as the set-like family given by the sets Id𝐴(𝛾, 𝑎, 𝑎′) = 𝐴(id𝛾 , 𝑎, 𝑎′) and
the sets Id𝐴((𝜇, 𝛼, 𝛼′), 𝛼0, 𝛼1) = {0 | 𝛼0 · 𝛼′ = 𝛼 · 𝛼1}. Given 𝛼0 ∈ Id𝐴(𝛾, 𝑎0, 𝑎1)
and 𝛼 ∈ 𝑎0 ⥲𝜇 𝑎′

0 and 𝛼′ ∈ 𝑎1 ⥲𝜇 𝑎′
1 we have (𝑔, 𝛼, 𝛼′)+ 𝛼0 = 𝛼−1 · 𝛼0 · 𝛼′ in

Id𝐴(𝛾′, 𝑎′
0, 𝑎′

1). We can then check that Id𝐴 is stable under substitution.
For each term 𝑎 ∈ Tm(Γ, 𝐴) we define the term refl𝑎 ∈ Tm(Γ, Id𝐴(𝑎, 𝑎))

by refl𝑎(𝛾) = id𝑎(𝛾). This definition is stable under substitution.
Since Id𝐴 is set-like by construction (for any 𝐴), note that the paths

(𝜇, (𝛼, 𝛼′), 𝑥) ∈ Path(Γ.(𝐴 × 𝐴).Id𝐴, (𝛾, (𝑎, 𝑏), 𝑝), (𝛾′, (𝑎′, 𝑏′), 𝑝′))

are determined by the components 𝜇 and (𝛼, 𝛼′). So, for each family 𝐶 ∈
Ty(Γ.(𝐴 × 𝐴).Id𝐴), terms 𝑎, 𝑏 ∈ Tm(Γ, 𝐴), 𝑑 ∈ Tm(Γ, 𝐶((𝑎, 𝑎), refl𝑎)), and
𝑝 ∈ Tm(Γ, Id𝐴(𝑎, 𝑏)) we can define the term J(𝑑, 𝑝) ∈ Tm(Γ, 𝐶((𝑎, 𝑏), 𝑝)) by
assigning

1. J(𝑑, 𝑝)(𝛾) = (id𝛾 , (id𝑎(𝛾), 𝑝(𝛾)))+ 𝑑(𝛾) to 𝛾 ∈ Γ, and
2. J(𝑑, 𝑝)(𝜇) = (id𝛾 , (id𝑎(𝛾), 𝑝(𝛾)))↓ (𝑑(𝜇) · (id𝛾′ , (id𝑎(𝛾′), 𝑝(𝛾′)))→ 𝑑(𝛾′)) to

𝜇 ∈ 𝛾 ⥲ 𝛾′

This definition is stable under substitution and we can verify the β equa-
tion J(𝑑, refl𝑎) = 𝑑 by unfolding the definitions.

If 𝐴 is 𝒰-small then Id𝐴 is too. Moreover, Id𝐴 is set-like by construction
so that Id𝐴 is small whenever 𝐴 is.

Let 𝐴 ∈ Ty(Γ). Call 𝐴 a (homotopy) proposition if the type isProp(𝐴) =
Π𝑥,𝑦∶𝐴Id(𝑥, 𝑦) [69, Definition 3.3.1] has a section. Say that 𝐴 is codiscrete if for
all points 𝑎 and 𝑎′ ∈ 𝐴(𝛾) there exists a unique path 𝑎 ⥲𝛾 𝑎′. In fact, if 𝐴
is codiscrete then for all 𝜇 ∶ 𝛾 ⥲ 𝛾′, 𝑎 ∈ 𝐴(𝛾) and 𝑎′ ∈ 𝐴(𝛾′) there exists a
unique path 𝑎 ⥲𝜇 𝑎′. Say that 𝐴 is a strict proposition if all vertical paths are
constant, i.e. for all paths 𝛼 ∶ 𝑎 ⥲𝛾 𝑎′ we have 𝑎′ = 𝑎 and 𝛼 = id𝑎.

We end this subsection with the following pointwise characterization of
homotopy propositions as the codiscrete types, and classically the types that
are equivalent to strict propositions.

Lemma 54. If 𝐴 ∈ Ty(Γ) is codiscrete then 𝐴 is a homotopy proposition. The
converse holds as well.

Proof. Let 𝐴 ∈ Ty(Γ) be codiscrete. This means that we have a (unique)
path 𝑝(𝛾, 𝑎, 𝑎′) ∶ 𝑎 ⥲𝛾 𝑎′ for each 𝛾 ∈ Γ, 𝑎, 𝑎′ ∈ 𝐴(𝛾). This extends
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to a section 𝑝 of isProp(𝐴) since by discreteness of Id it suffices to check
𝑝(𝛾, 𝑎0, 𝑎′

0) ⥲𝜇,𝛼,𝛼′ 𝑝(𝛾′, 𝑎1, 𝑎′
1) for all 𝜇 ∶ 𝛾 ⥲ 𝛾′, 𝛼 ∶ 𝑎0 ⥲𝜇 𝑎1 and

𝛼′ ∶ 𝑎′
0 ⥲𝜇 𝑎′

1. But we have 𝑝(𝛾, 𝑎0, 𝑎′
0) · 𝛼′ = 𝛼 · 𝑝(𝛾′, 𝑎1, 𝑎′

1) ∶ 𝑎0 ⥲𝜇 𝑎′
1 by

codiscreteness of 𝐴.
Conversely, if 𝐴 ∈ Ty(Γ) is a homotopy proposition then we have in par-

ticular a section of isSet(𝐴) [69, Lemma 3.3.4] and thus by discreteness of Id
the path sets 𝐴(𝛾, 𝑎, 𝑎′) are singletons, i.e. 𝐴 is codiscrete.

Lemma 55. In a classical metatheory, if 𝐴 ∈ Ty(Γ) is a homotopy proposition
then 𝐴 is equivalent to a strict proposition.

Proof. Let 𝐴 ∈ Ty(Γ). Define a strict proposition 𝐶(𝐴) ∈ Ty(Γ) by 𝐶(𝐴)(𝛾) =
{0 | ∃𝑎. 𝑎 ∈ 𝐴(𝛾)}. We show that, in a classical metatheory, the unique
map 𝑐 ∶ 𝐴 → 𝐶(𝐴) is invertible when 𝐴 is a homotopy proposition. Let 𝐴 be
a homotopy proposition, and hence codiscrete by Lemma 54. By an applica-
tion of the axiom of choice there is a function 𝑐′ ∶ ∏𝛾∈Γ,𝑥∈{0 | ∃𝑎. 𝑎∈𝐴(𝛾)} 𝐴(𝛾),
which extends to a map 𝑐′ ∶ 𝐶(𝐴) → 𝐴 by codiscreteness of 𝐴. The maps 𝑐′ ∶
𝐶(𝐴) → 𝐴 and 𝑐 ∶ 𝐴 → 𝐶(𝐴) are inverses because 𝐴 and 𝐶(𝐴) are homotopy
propositions [69, Lemma 3.3.3].

The converse of this lemma holds because, even in a constructive metathe-
ory, being a homotopy proposition is invariant under equivalence [69, Corol-
lary 7.1.5].

The statement can be generalized to the fact that, in a classical metatheory,
if 𝐴 ∈ Ty(Γ) is a homotopy set then 𝐴 is equivalent to the discrete type that
identifies points in the same connected component.

5.2.5 Booleans and natural numbers type structures
The set-like types Bool ∈ Ty([]) and Nat ∈ Ty([]) are given by taking the
sets 2 = {0, 1} of Booleans and ℕ of natural numbers, respectively, as the set
of points.

We have Bool ∈ ty([]) and Nat ∈ ty([]) because they are set-like by con-
struction and 𝒰-small because the sets 2 and ℕ are.

The operations true and false ∈ Tm([],Bool) as well as zero ∈ Tm([],Nat)
and succ(𝑛) ∈ Tm(Γ,Nat⟨⟩) for 𝑛 ∈ Tm(Γ,Nat⟨⟩) are given by the correspond-
ing set-theoretic operations. The operations elim(𝑐0, 𝑐1, 𝑏) ∈ Tm(Γ, 𝐶[𝑏])
and elim(𝑑0, 𝑑1, 𝑛) ∈ Tm(Γ, 𝐷[𝑛]) are defined by induction on 𝑏(𝛾) ∈ Bool = 2
and 𝑛(𝛾) ∈ Nat = ℕ for 𝛾 ∈ Γ, respectively. The equations for stability under
substitution and computation hold by definition.
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5.2.6 Propositional truncation type structure
Let 𝐴 ∈ Ty(Γ). We define ‖𝐴‖ ∈ Ty(Γ) by ‖𝐴‖(𝛾) = 𝐴(𝛾) and ‖𝐴‖(𝜇, 𝑎, 𝑎′) =
{0}. The transport of 𝑎 ∈ 𝐴(𝛾) over 𝜇 ∶ 𝛾 ⥲ 𝛾′ is defined as in 𝐴. The group-
oid and lifting structure are then trivial. It follows directly that the substitution
law ‖𝐴𝜎‖ = ‖𝐴‖𝜎 holds.

We define inc(𝑎) ∈ Tm(Γ, ‖𝐴‖) for 𝑎 ∈ Tm(Γ, 𝐴) by inc(𝑎)(𝛾) = 𝑎(𝛾). The
action on paths is trivial and inc(𝑎𝜎) = inc(𝑎)𝜎 follows immediately. It is also
trivial to define squash(𝑡, 𝑢) ∈ Tm(Γ, Id‖𝐴‖(𝑡, 𝑢)) and check squash(𝑡𝜎, 𝑢𝜎) =
squash(𝑡, 𝑢)𝜎 for 𝑡 and 𝑢 ∈ Tm(Γ, ‖𝐴‖).

Let 𝐶 ∈ Ty(Γ), 𝑝 ∈ Tm(Γ, isProp(𝐶)) and 𝑐 ∈ Tm(Γ.𝐴, 𝐶p). We define
rec(𝑐, 𝑝, 𝑡) ∈ Tm(Γ, 𝐶) for 𝑡 ∈ Tm(Γ, ‖𝐴‖) by rec(𝑐, 𝑝, 𝑡)(𝛾) = 𝑐(𝛾, 𝑡(𝛾)). The
action on paths is trivial because the existence of 𝑝 implies that 𝐶 is codiscrete,
i.e. 𝐶(𝜇, 𝑥, 𝑦) is a singleton for all 𝑥 ∈ 𝐶(𝛾) and 𝑦 ∈ 𝐶(𝛾′). The computation
law rec(𝑐, 𝑝, inc(𝑎)) = 𝑐[𝑎] follows immediately.

We end with the observation that the set-like types satisfy the axiom of
choice constructively, in particular the axiom of countable choice is validated
constructively. We also observe that the argument used in [69, Theorem 10.1.14]
to prove Diaconescu’s theorem [24] that choice implies the principle of ex-
cluded middle does not apply because the set-like types are not closed under
suspension for a similar reason that they are not closed under propositional
truncation. It is therefore that having choice for families indexed by set-like
types constructively does not contradict the fact that the groupoid model does
not validate the law of excluded middle unless it also holds in the metatheory.

5.2.7 Universe type structure
We have seen that the subsets ty(Γ) of small types in context Γ are closed
under the operations Π𝐴𝐵, Σ𝐴𝐵 and Id𝐴. To give a universe type structure via
Proposition 37 it remains to construct a universal small family El ∈ Ty([].U)
in the sense of Definition 26.

Define the closed type U ∈ Ty([]) by the point set U = 𝒰 and the path
set U(𝑀, 𝑁) = {𝑘 ∈ 𝑀 → 𝑁 | 𝑘 bijection} for each pair of 𝒰-small sets 𝑀
and 𝑁 . The composition operation defined by 𝑘 · 𝑘′ = 𝑘′ ∘ 𝑘 is associative, and
has both units and inverses. The lifting structure is trivial because U is closed.

Define the 𝒰-small and set-like family El ∈ Ty([].U) over U by the point
set El(𝑀) = 𝑀 for each 𝒰-small set 𝑀 , the path set El(𝑀)(𝑘, 𝑚, 𝑛) = {0 | 𝑛 =
𝑘(𝑚)} for each bijection 𝑘 ∶ 𝑀 → 𝑁 and pair of elements 𝑚 ∈ 𝑀 and 𝑛 ∈ 𝑁 ,
and the transport operation 𝑘+ 𝑚 = 𝑘(𝑚), which is functorial because the iden-
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tity and composite paths in U are given by the identity functions and function
composition. The composition structure and lift operation are trivial because
El is set-like.

Proposition 56. The operation In(𝐴) ∈ Tm(Γ,U⟨⟩Γ) for 𝐴 ∈ ty(Γ) defined by
1. In(𝐴)(𝛾) = 𝐴(𝛾), and
2. In(𝐴)(𝜇) = {𝑎 ↦ 𝜇+ 𝑎}, which is bijective because 𝜇+ is an isomor-
phism,

produces the unique term 𝑎 ∈ Tm(Γ,U⟨⟩Γ) such that El(𝑎) = 𝐴, in particular we
have In(𝐴𝜎) = In(𝐴)𝜎 and In(El 𝑎) = 𝑎 for 𝑎 ∈ Tm(Γ,U⟨⟩Γ).

Proof. Using the fact that set-like type families are equal if and only if their
point sets and transport operations are equal.

This concludes the description of the cwf structure of the groupoid model:

Theorem 57. Groupoids form a cwf with unit, Σ, Π, identity, univalent universe,
and propositional truncation type structures.

5.3 Towards a groupoid-valued presheaf model
To conclude this chapter, we observe that like [37, 41] the original presentation
of the groupoid model the presentation above can be constructed in (a mod-
el of) type theory with a universe 𝒱 that contains both a universe 𝒰 and a
universe 𝒫 of propositions such that identity types satisfy equality reflection:

𝑝 ∶ Id𝐴(𝑎, 𝑏)
𝑎 = 𝑏 ∶ 𝐴

Furthermore, we require the universe 𝒫 to contain the unit type, to be closed
under identity types of types in 𝒰 as well as dependent products of families
indexed by types in 𝒰 , and to satisfy propositional extensionality:

Unit ∶ 𝒫
𝐴 ∶ 𝒰

Id𝐴(𝑎, 𝑏) ∶ 𝒫
𝐴 ∶ 𝒰 𝑃 ∶ 𝐴 → 𝒫

Π𝐴𝑃 ∶ 𝒫

𝑃 , 𝑄 ∶ 𝒫 𝑓 ∶ 𝑃 → 𝑄 𝑔 ∶ 𝑄 → 𝑃
propext(𝑓 , 𝑔) ∶ Id𝒫 (𝑃 , 𝑄)
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Recall that equality reflection implies uniqueness of identity proofs and
function extensionality. Moreover, note that propositional extensionality im-
plies that types in 𝒫 are in fact propositions.

𝒱 is used to define the sorts of the cwf structure, and 𝒰 and 𝒫 to give the
universe structure. The closure and extensionality properties are crucial for
the strictness of the universe structure.

To obtain the groupoidmodel as presented abovewe can interpret this type
theory in sets by assuming two set-theoretic universes 𝒱 and 𝒰 , encoding
functions as in Aczel [1] and setting 𝒫 ≔ {𝑥 ∈ 𝒰 | ∀𝑦 ∈ 𝒱 . 𝑦 ∈ 𝑥 ⟹
𝑦 ∈ 1}. Importantly, we can also interpret this type theory in presheaves
because the usual lifting of the type structure [39, 40] preserves the properties
we identify here. In this way we end up with a groupoid-valued presheaf
model of intensional type theory, which we present in the next chapter.

A similar universe of propositions structure (strictly closed under certain
function and pair spaces) is required in Licata et al. [56, Figure 2] and can
be constructed in Licata et al.’s intended presheaf model by lifting Aczel [1]’s
particular encoding of dependent functions.
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Chapter 6

A naive groupoid-valued
presheaf model

The groupoid model of intensional type theory validates the axiom of count-
able choice regardless of whether the axiom holds in the metatheory, which
can be taken to be extensional type theory. Countable choice can be shown
to be independent of higher-order logic [81] using sheaf models, and hence it
can be shown to be independent of extensional type theory. Towards extend-
ing this independence proof and others to univalent type theory we introduce
groupoid-valued presheaf models. However, we will not actually present an
extended independence proof for countable choice here but only for the law
of excluded middle since presheaves suffice for this [80].

We recalled the groupoid model of Hofmann and Streicher [41] in the pre-
vious chapter (albeit in a slightly different formulation) to stress its construc-
tive and elementary nature. The metatheory we employed can be interpreted
in presheaf models [39]. For this reason, we intuit the existence of groupoid-
valued presheaf models to be obtained by replacing sets by presheaves and
families of sets by families of presheaves throughout the construction of the
groupoid model.

Recall that a presheaf 𝑃 over a (small) category 𝒞 is given by a family
of sets 𝑃 (𝑋) for each object 𝑋 ∈ Obj(𝒞 ) together with restriction func-
tions −|𝑓 ∶ 𝑃 (𝑋) → 𝑃 (𝑌 ) for each morphism 𝑓 ∈ Hom𝒞 (𝑌 , 𝑋) satisfy-
ing the functoriality laws, that a family 𝑄 of presheaves over a presheaf 𝑃 is
given by a family of sets 𝑄(𝑝) for each 𝑝 ∈ 𝑃 (𝑋) together with restriction
functions −|𝑓 ∶ 𝑄(𝑝) → 𝑄(𝑝|𝑓) for each 𝑓 ∈ Hom𝒞 (𝑌 , 𝑋) functorial in 𝑓 ,
and that a section 𝑞 of such a family 𝑄 of presheaves is given by a family of

87
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elements 𝑞(𝑝) ∈ 𝑄(𝑝) for each 𝑝 ∈ 𝑃 (𝑋) natural in 𝑋.
A subtle feature of the reformulation of the groupoid model with a primi-

tive notion of dependent paths is that it relies on a universe 𝒫 of propositions
whose construction in the set model of the metatheory relies on an even more
subtle encoding of functions due to Aczel [1]. After showing that any set-the-
oretic universe of propositions can be lifted to presheaf models of extensional
type theory, we can compose the groupoid interpretation of intensional type
theory with the presheaf interpretation of extensional type theory to obtain a
naive groupoid-valued presheaf interpretation of intensional type theory.

Under the resulting interpretation a context Γ denotes a family of group-
oids Γ(𝑋) and functors Γ(𝑓) ∶ Γ(𝑋) → Γ(𝑌 ), and a type family 𝐴 over Γ de-
notes a family of groupoid families 𝐴(𝑋) over Γ(𝑋) and maps 𝐴(𝑓) ∶ 𝐴(𝑋) →
𝐴(𝑌 ) over Γ(𝑓) ∶ Γ(𝑋) → Γ(𝑌 ) that preserve the lifting structure strictly.
Note that this is equivalent to what we obtain by composition of the two in-
terpretations, namely a family of presheaves Γ1(𝛾, 𝛾′) of paths indexed by a
presheaf Γ0 of points 𝛾 and 𝛾′ in the case of contexts Γ—a presheaf of group-
oids is the same thing as a groupoid internal to a category of presheaves.

We end this chapter with the application of presheaf models to the law
of excluded middle. This leads us to the observation that due to the fact that
maps of presheaves are required to preserve the restriction structure strictly,
there are maps 𝜎 ∶ Δ → Γ between naive groupoid-valued presheaves that
are levelwise equivalences 𝜎(𝑋) ∶ Δ(𝑋) ⥲ Γ(𝑋) but that do not have an
inverseΓ → Δ. In otherwords, there are pairs of types (even propositions) that
look levelwise essentially the same in the sense of groupoid equivalence but
that are not essentially the same in the sense of naive groupoid-valued presheaf
equivalence. Note that this is in contrast to the fact that set-valued presheaves
are identified by an isomorphism once a map identifies them levelwise. We
refine the notion of groupoid-valued presheaf in Chapter 7 so that levelwise
equivalences between them are invertible.

6.1 Lifting of a universe of propositions

Let 𝒰 and 𝒱 be two fixed set-theoretic universes such that 𝒰 ∈ 𝒱 , 𝒫 the
set {𝑃 ∈ 𝒰 | ∀𝑥 ∈ 𝒰. 𝑥 ∈ 𝑃 ⟹ 𝑥 ∈ 1} of 𝒰-small subsets of the
singleton 1, and 𝒞 a 𝒰-small category. We denote the liftings [40] of the
set-theoretic universes 𝒫 , 𝒰 , and 𝒱 to presheaves over 𝒞 by 𝒫 , 𝒰 , and 𝒱 ,
respectively. Then, 𝒫 is a universe of propositions in the sense of Section 5.3
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because the type families it classifies, i.e. presheaves 𝑃 ∈ ∫̂ Γ such that 𝑃 (𝛾) ∈
𝒫 for all 𝛾 ∈ Γ(𝑋), do not only satisfy propositional extensionality but are
also closed under dependent products ∏̂ and sums ∑̂ of presheaf families:

Lemma 58. Let ∏ and ∑ be such that 𝒫 -small set families are closed under
them as in Lemmas 50 and 51, then 𝒫 -small presheaf families are closed under
∏̂ and ∑̂, i.e. if 𝐴 is 𝒰-small, 𝑃 is 𝒫 -small and 𝑄(𝑝) is 𝒫 -small for all 𝑝 ∶ 𝑃
then ∏̂𝐴𝑄 and ∑̂𝑃 𝑄 are 𝒫 -small.

Proof. Since (∏̂𝐴𝐵)(𝛾) ⊆ ∏𝑌 ∶𝒞 ,𝑓∶𝑌 →𝑋,𝑎∈𝐴(𝛾|𝑓) 𝐵(𝛾|𝑓 , 𝑎) by the usual con-
struction of dependent products of presheaf families using dependent products
of set families, we have that ∏̂𝐴𝑄 is 𝒫 -small by Lemma 50. Similarly, since
(∑̂𝐴𝐵)(𝛾) = ∑𝑎∈𝐴(𝛾) 𝐵(𝛾, 𝑎) by the usual construction of dependent sums of

presheaf families using dependent sums of set families, we have that ∑̂𝑃 𝑄 is
𝒫 -small by Lemma 51.

In the following subsections, with the descriptions of the groupoid and pre-
sheaf models in mind, we give a description of the groupoid-valuedmodel over
𝒞 . This can be seen as an unfolding of the composition of the interpretation
of intensional type theory in groupoids with the interpretation of extensional
type theory in presheaves that interprets the universe of propositions as the
presheaf 𝒫 .

6.2 Basic cwf structure

6.2.1 Contexts and substitutions

A context Γ ∈ Ctx is given by a family of 𝒱 -small sets Γ(𝑋) of points for
each object 𝑋 ∈ Obj together with a functorial family of restriction func-
tions −|𝑓 ∶ Γ(𝑋) → Γ(𝑌 ) for each morphism 𝑓 ∈ Hom(𝑌 , 𝑋), a family
of 𝒱 -small sets Γ(𝛾, 𝛾′) of paths for each pair of points 𝛾 and 𝛾′ ∈ Γ(𝑋)
together with a functorial family of restriction functions −|𝑓 ∶ Γ(𝛾, 𝛾′) →
Γ(𝛾|𝑓 , 𝛾′|𝑓 ) for each 𝑓 ∈ Hom(𝑌 , 𝑋), a natural and associative composition
operation 𝜇 · 𝜇′ ∈ Γ(𝛾, 𝛾″) on paths 𝜇 ∈ Γ(𝛾, 𝛾′) and 𝜇′ ∈ Γ(𝛾′, 𝛾″), a natural
inverse operation 𝜇−1 ∈ Γ(𝛾′, 𝛾) on paths 𝜇 ∈ Γ(𝛾, 𝛾′), and a natural family of
identity paths id𝛾 ∈ Γ(𝛾, 𝛾) for each point 𝛾 ∈ Γ(𝑋).
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Note that a context Γ can also be seen as a functorial family of group-
oids Γ(𝑋) and functors Γ(𝑓) ∶ Γ(𝑋) → Γ(𝑌 ), i.e. a contravariant functor from
𝒞 to the category of 𝒱 -small groupoids.

As before, we will also write 𝜇 ∶ 𝛾 ⥲ 𝛾′ for 𝜇 ∈ Γ(𝛾, 𝛾′).
A substitution 𝜎 ∈ Sub(Δ, Γ) is given by a pair of natural families of func-

tions 𝜎0(𝑋) ∶ Δ(𝑋) → Γ(𝑋) on points and 𝜎1(𝑋) ∶ Δ(𝛿, 𝛿′) → Γ(𝜎0(𝛿), 𝜎0(𝛿′))
on paths preserving the groupoid structure for each 𝑋 ∈ Obj.

A substitution 𝜎 ∈ Sub(Δ, Γ) can then also be seen as a natural transform-
ation between the contexts Δ and Γ seen as functors.

As before, we will also write 𝜎 ∶ Δ → Γ for 𝜎 ∈ Sub(Δ, Γ), and denote
𝜎0(𝛿) and 𝜎1(𝜈) by 𝜎(𝛿) and 𝜎(𝜈), respectively.

We use the composition structure on natural transformations to define a
composition structure on substitutions, and the terminal functor as the ter-
minal context [].

6.2.2 Types and terms

A type 𝐴 ∈ Ty(Γ) over a context Γ is given by a family of 𝒱 -small sets 𝐴(𝛾) of
points over each point 𝛾 ∈ Γ(𝑋) together with a functorial family of restriction
functions −|𝑓 ∶ 𝐴(𝛾) → 𝐴(𝛾|𝑓) for each morphism 𝑓 ∈ Hom(𝑌 , 𝑋), a family
of 𝒱 -small sets 𝐴(𝜇, 𝑎, 𝑎′) of paths over each path 𝜇 ∈ Γ(𝛾, 𝛾′) for each pair
of points 𝑎 ∈ 𝐴(𝛾) and 𝑎′ ∈ 𝐴(𝛾′) together with a functorial family of restric-
tion functions −|𝑓 ∶ 𝐴(𝜇, 𝑎, 𝑎′) → 𝐴(𝜇|𝑓 , 𝑎|𝑓 , 𝑎′|𝑓 ), a natural and associa-
tive composition operation 𝛼 · 𝛼′ ∈ 𝐴(𝜇 · 𝜇′, 𝑎, 𝑎″) on paths 𝛼 ∈ 𝐴(𝜇, 𝑎, 𝑎′)
and 𝛼′ ∈ 𝐴(𝜇′, 𝑎′, 𝑎″), a natural inverse operation 𝛼−1 ∈ 𝐴(𝜇−1, 𝑎′, 𝑎) on
paths 𝛼 ∈ 𝐴(𝜇, 𝑎, 𝑎′), a natural family of identity paths id𝑎 ∈ 𝐴(id𝛾 , 𝑎, 𝑎) for
each point 𝑎 ∈ 𝐴(𝛾), and natural and functorial families of transports 𝜇+ 𝑎 ∈
𝐴(𝛾′) and lifts 𝜇→ 𝑎 ∈ 𝐴(𝜇, 𝑎, 𝜇+ 𝑎) for each path 𝜇 ∈ Γ(𝛾, 𝛾′) and point 𝑎 ∈
𝐴(𝛾).

Note that a type 𝐴 over a context Γ can also be seen as a functorial family of
split displayed categories 𝐴(𝑋) fibred in groupoids over Γ(𝑋) seen as group-
oids and displayed functors 𝐴(𝑓) ∶ 𝐴(𝑋) →Γ(𝑓) 𝐴(𝑌 ) over Γ(𝑓) ∶ Γ(𝑋) →
Γ(𝑌 ) such that each 𝐴(𝑓) preserves the lifting structure.

We use the reindexing structure on displayed categories and displayed
functors along functors to define the functorial substitution operation 𝐴𝜎 on
types 𝐴 ∈ Ty(Γ) along substitutions 𝜎 ∈ Sub(Δ, Γ). It can be checked that
this preserves the lifting structure so that indeed 𝐴𝜎 ∈ Ty(Δ) is again a type.

As before, we will also write 𝛼 ∶ 𝑎 ⥲𝜇 𝑎′ for paths 𝛼 ∈ 𝐴(𝜇, 𝑎, 𝑎′), and
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𝛼 ∶ 𝑎 ⥲𝛾 𝑎′ for vertical paths 𝛼 ∈ 𝐴(id𝛾 , 𝑎, 𝑎′).
A type𝐴 ∈ Ty(Γ)will be called small if it is𝒰-small and set-like: 𝐴(𝛾) ∈ 𝒰

for all 𝛾 ∈ Γ(𝑋), 𝐴(𝜇, 𝑎, 𝑎′) ∈ 𝒫 ⊆ 𝒰 for all 𝜇 ∶ 𝛾 ⥲ 𝛾′, 𝑎 ∈ 𝐴(𝛾), 𝑎′ ∈ 𝐴(𝛾′),
and for all 𝑎 ∈ 𝐴(𝛾) it is the case that 𝜇+ 𝑎 ∈ 𝐴(𝛾′) is the unique point 𝑎′ ∈
𝐴(𝛾′) such that there is a path 𝛼 ∶ 𝑎 ⥲𝜇 𝑎′, which is necessarily unique. Note
that small types are discrete, i.e. we have 𝑎′ = 𝑎 and 𝛼 = id𝑎 for all vertical
paths 𝛼 ∶ 𝑎 ⥲𝛾 𝑎′. It follows immediately that the subsets ty(Γ) ⊆ Ty(Γ) of
small types over contexts Γ are closed under substitution and we will see that
they are also closed under Π, Σ and identity types once we have defined those.
Moreover, we will see that small types are classified by a type of (𝒰-small)
set-valued presheaves, which is the reason for the adjective “set-like”.

A term 𝑡 ∈ Tm(Γ, 𝐴) of a type 𝐴 over a context Γ is given by a natural
family of points 𝑡(𝛾) ∈ 𝐴(𝛾) over each point 𝛾 ∈ Γ(𝑋) and a natural and
functorial family of paths 𝑡(𝜇) ∈ 𝐴(𝜇, 𝑡(𝛾), 𝑡(𝛾′)) over each path 𝜇 ∈ 𝛾 ⥲ 𝛾′.
Note that terms are not required to be compatible with the lifting structure on
𝐴.

The substitution operation 𝑡𝜎 on terms 𝑡 ∈ Tm(Γ, 𝐴) along substitutions 𝜎 ∶
Δ → Γ is defined by 𝑡𝜎(𝛿) = 𝑡(𝜎(𝛿)) for 𝛿 ∈ Δ(𝑋) and 𝑡𝜎(𝜈) = 𝑡(𝜎(𝜈)) for
𝜈 ∶ 𝛿 ⥲ 𝛿′. It can be checked that this indeed defines a term 𝑡𝜎 ∈ Tm(Δ, 𝐴𝜎)
and that it is functorial.

6.2.3 Comprehension structure

The extended context Γ.𝐴 for 𝐴 ∈ Ty(Γ) is defined by Γ.𝐴(𝑋) = ∑𝛾∈Γ(𝑋) 𝐴(𝛾)
for 𝑋 ∈ Obj and Γ.𝐴((𝛾, 𝑎), (𝛾′, 𝑎′)) = ∑𝜇∈Γ(𝛾,𝛾′) 𝐴(𝜇, 𝑎, 𝑎′) for each 𝛾 , 𝛾′ ∈
Γ(𝑋), 𝑎 ∈ 𝐴(𝛾), 𝑎′ ∈ 𝐴(𝛾′) together with componentwise restriction and
composition structures. It can be checked that this indeed defines a con-
text Γ.𝐴 ∈ Ctx.

The display substitution p𝐴 ∈ Sub(Γ.𝐴, Γ), the variable term q𝐴 ∈ Tm(Γ.𝐴,
𝐴p𝐴), and the pairing substitution ⟨𝜎, 𝑡⟩ ∈ Sub(Δ, Γ.𝐴) for 𝜎 ∶ Δ → Γ and
𝑡 ∈ Tm(Δ, 𝐴𝜎) are defined by p𝐴(𝛾, 𝑎) = 𝛾 and p𝐴(𝜇, 𝛼) = 𝜇, q𝐴(𝛾, 𝑎) =
𝑎 and q𝐴(𝜇, 𝛼) = 𝛼, and ⟨𝜎, 𝑡⟩(𝛿) = (𝜎(𝛿), 𝑡(𝛿)) and ⟨𝜎, 𝑡⟩(𝜈) = (𝜎(𝜈), 𝑡(𝜈)),
respectively. It can be checked that these satisfy the laws of a comprehension
structure.

This concludes the description of the basic cwf structure of the groupoid-
valued presheaf model. Next, we describe additional type structure.
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6.3 Extra type structure

6.3.1 Σ type structure
The operation Σ𝐴𝐵 for 𝐴 ∈ Ty(Γ) and 𝐵 ∈ 𝑇 𝑦(Γ.𝐴) is given by taking
pairs (𝑎, 𝑏) of points 𝑎 ∈ 𝐴(𝛾) and 𝑏 ∈ 𝐵(𝛾, 𝑎) as the points over 𝛾 ∈ Γ(𝑋),
pairs (𝛼, 𝛽) of paths 𝛼 ∶ 𝑎 ⥲𝜇 𝑎′ and 𝛽 ∶ 𝑏 ⥲(𝜇,𝛼) 𝑏′ as the paths from (𝑎, 𝑏)
to (𝑎′, 𝑏′) over 𝜇 ∶ 𝛾 ⥲ 𝛾′, and defining the presheaf, groupoid and lifting
structures componentwise. The substitution law (Σ𝐴𝐵)𝜎 = Σ𝐴𝜎𝐵⟨𝜎⟩ follows
then directly, and it can be checked that this indeed defines a type over the
context Γ.

Since the set universes 𝒰 and 𝒫 are closed under dependent sums, it is
the case that Σ𝐴𝐵 is small whenever 𝐴 and 𝐵 are.

The operations fst(𝑝) and snd(𝑝) for 𝑝 ∈ Tm(Γ,Σ𝐴𝐵), and (𝑎, 𝑏) for 𝑎 ∈
Tm(Γ, 𝐴) and 𝑏 ∈ Tm(Γ, 𝐵[𝑎]) are defined pointwise by the corresponding
operations for dependent sums of set families. The substitution, computation
(fst(𝑎, 𝑏) = 𝑎, snd(𝑎, 𝑏) = 𝑏) and extensionality (𝑝 = (fst(𝑝), snd(𝑝))) laws
follow then directly, and it can be checked that these indeed define terms of
type 𝐴, 𝐵[fst(𝑝)] and Σ𝐴𝐵, respectively.

6.3.2 Π type structure
We give the operation Π𝐴𝐵 for 𝐴 ∈ Ty(Γ) and 𝐵 ∈ Ty(Γ.𝐴). The points 𝑠
over 𝛾 ∈ Γ(𝑋) are given by pairs (𝑠0, 𝑠1) of natural families of points 𝑠0(𝑓 , 𝑎) ∈
𝐵(𝛾|𝑓 , 𝑎) and paths 𝑠1(𝑓 , 𝛼) ∶ 𝑠0(𝑓 , 𝑎) ⥲(id𝛾|𝑓 ,𝛼) 𝑠0(𝑓 , 𝑎′) for 𝑓 ∈ Hom(𝑌 , 𝑋),
𝑎 and 𝑎′ ∈ 𝐴(𝛾|𝑓), and 𝛼 ∶ 𝑎 ⥲𝛾|𝑓 𝑎′ such that 𝑠1 preserves the groupoid
structure:

1. 𝑠0(𝑓 ∘ 𝑔, 𝑎|𝑔) = 𝑠0(𝑓 , 𝑎)|𝑔
2. 𝑠1(𝑓 ∘ 𝑔, 𝛼|𝑔) = 𝑠1(𝑓 , 𝛼)|𝑔
3. 𝑠1(𝑓 , id𝑎) = id𝑠0(𝑓 ,𝑎)
4. 𝑠1(𝑓 , 𝛼 · 𝛼′) = 𝑠1(𝑓 , 𝛼) · 𝑠1(𝑓 , 𝛼′)

We will denote 𝑠0(𝑓 , 𝑎) and 𝑠1(𝑓 , 𝛼) also by 𝑠(𝑓 , 𝑎) and 𝑠(𝑓 , 𝛼), respectively.
The paths 𝜔 from 𝑠 to 𝑠′ over 𝜇 ∶ 𝛾 ⥲ 𝛾′ are given by a natural family of
paths 𝜔(𝑓 , 𝛼) ∶ 𝑠(𝑓, 𝑎) ⥲(𝜇|𝑓 ,𝛼) 𝑠′

(𝑓, 𝑎′) for each 𝛼 ∶ 𝑎 ⥲𝜇|𝑓 𝑎′ such that the
following naturality laws hold:

1. 𝜔(𝑓 , 𝛼0 · 𝛼) = 𝑠(𝑓 , 𝛼0) · 𝜔(𝑓 , 𝛼)
2. 𝜔(𝑓 , 𝛼 · 𝛼′

0) = 𝜔(𝑓 , 𝛼) · 𝑠′(𝑓 , 𝑎′
0)
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The restriction of points and paths along morphisms 𝑓 ∈ Hom(𝑌 , 𝑋) is given
by restricting the families to the morphisms 𝑓 ∘ 𝑔 for 𝑔 ∈ Hom(𝑍, 𝑌 ). The
groupoid structure is given pointwise using the fact that paths 𝑎 ⥲𝜇·𝜇′ 𝑎″ can
always be factored as paths 𝑎 ⥲𝜇 𝑎′ and 𝑎′ ⥲𝜇′ 𝑎″ for some 𝑎′ ∈ 𝐴(𝛾′) and
which factorization 𝛼 · 𝛼′ is chosen to define (𝜔 · 𝜔′)(𝛼 · 𝛼′) = 𝜔(𝛼) · 𝜔′(𝛼′)
is irrelevant. The lifting structure is also given pointwise using the fact that
paths 𝜇 ∶ 𝛾 ⥲ 𝛾′ cannot just be lifted to paths 𝜇→ 𝑎 ∶ 𝑎 ⥲𝜇 𝜇+ 𝑎 for 𝑎 ∈
𝐴(𝛾) but also to paths 𝜇← 𝑎′ ∶ 𝜇− 𝑎′ ⥲𝜇 𝑎′ for 𝑎′ ∈ 𝐴(𝛾′). We refer to the
construction of the groupoid model for further details. It can be checked that
the substitution law (Π𝐴𝐵)𝜎 = Π𝐴𝜎𝐵⟨𝜎⟩ holds and that this indeed defines a
type over the context Γ.

Since the index category 𝒞 is assumed to be 𝒰-small, the set universe 𝒰
is closed under dependent products and sums, and the set universe 𝒫 of pro-
positions is closed under dependent products for 𝒫 -small families indexed by
𝒰-small sets, it is the case that Π𝐴𝐵 is small whenever 𝐴 and 𝐵 are.

The operations app(𝑡, 𝑢) and λ 𝑏 for 𝑡 ∈ Tm(Γ,Π𝐴𝐵), 𝑢 ∈ Tm(Γ, 𝐴), and
𝑏 ∈ Tm(Γ.𝐴, 𝐵) are defined by app(𝑡, 𝑢)(𝛾) = 𝑡(𝛾, id𝑋 , 𝑢(𝛾)) and app(𝑡, 𝑢)(𝜇) =
𝑡(𝜇, id𝑋 , 𝑢(𝜇)), and (λ 𝑏)(𝛾, 𝑓 , 𝑎) = 𝑏(𝛾|𝑓 , 𝑎) and (λ 𝑏)(𝜇, 𝑓 , 𝛼) = 𝑏(𝜇|𝑓 , 𝛼).
It can be checked that the substitution, computation and extensionality laws
hold and that these indeed define terms of type 𝐵[𝑢] and Π𝐴𝐵, respectively.

6.3.3 Identity type structure

The operation Id𝐴(𝑡, 𝑢) for 𝐴 ∈ Ty(Γ) and 𝑡, 𝑢 ∈ Tm(Γ, 𝐴) is defined by taking
vertical paths 𝛼 ∶ 𝑡(𝛾) ⥲𝛾 𝑢(𝛾) as the points over 𝛾 ∈ Γ(𝑋), taking 0 ∈ 𝒫 as
the unique path from 𝛼 to 𝛼′ over 𝜇 ∶ 𝛾 ⥲ 𝛾′ whenever 𝑡(𝜇) · 𝛼′ = 𝛼 · 𝑢(𝜇),
and defining the restriction of points by the restriction of paths in 𝐴. Since the
path sets are subsingletons by construction, in order to define the restriction of
paths it suffices to observe that 𝑡(𝜇|𝑓) · 𝛼′|𝑓 = 𝛼|𝑓 · 𝑢(𝜇|𝑓) whenever there is
a path 𝛼 ⥲𝜇 𝛼′, in order to define the groupoid structure it suffices to observe
that 𝑡(𝜇·𝜇′)·𝛼″ = 𝛼·𝑢(𝜇·𝜇′) whenever there are paths 𝛼 ⥲𝜇 𝛼′ and 𝛼′ ⥲𝜇′ 𝛼″,
and in order to define the lifting structure it suffices to observe that there is a
unique path 𝜇+ 𝛼 such that 𝑡(𝜇) · 𝜇+ 𝛼 = 𝛼 · 𝑢(𝜇) for each 𝛼 ∶ 𝑡(𝛾) ⥲𝛾 𝑢(𝛾).
The substitution law Id𝐴(𝑡, 𝑢)𝜎 = Id𝐴𝜎(𝑡𝜎, 𝑢𝜎) and that this indeed defines a
type over the context Γ follow then directly.

The operations refl𝑡 for 𝑡 ∈ Tm(Γ, 𝐴), and J(𝑑, 𝑝) for 𝑡 and 𝑢 ∈ Tm(Γ, 𝐴),
𝐶 ∈ Ty(Γ.𝐴.Id𝐴p(𝑡p, q)), 𝑑 ∈ Tm(Γ, 𝐶[𝑡, refl𝑡]) and 𝑝 ∈ Tm(Γ, Id𝐴(𝑡, 𝑢))
are defined by refl𝑡(𝛾) = id𝑡(𝛾), and J(𝑑, 𝑝)(𝛾) = 𝜈+ 𝑑(𝛾) and J(𝑑, 𝑝)(𝜇) =
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𝜈+ 𝑑(𝜇) where 𝜈 = (𝜇, 𝑡(𝜇) · 𝑝(𝛾′), 0) = (𝜇, 𝑝(𝛾) · 𝑢(𝜇), 0) ∶ (𝛾, 𝑡(𝛾), id𝛾 ) ⥲
(𝛾′, 𝑢(𝛾′), 𝑝(𝛾′)). It can be checked that the substitution and computation laws
hold and that these indeed define terms of type Id𝐴(𝑡, 𝑡) and 𝐶[𝑢, 𝑝], respec-
tively.

The type Id𝐴(𝑡, 𝑢) is set-like by construction for any type 𝐴 and small if 𝐴
is 𝒰-small, in particular whenever 𝐴 is small.

Using the (Π and) identity type structure we can define the type isProp(𝐴)
expressing that 𝐴 is proof-irrelevant up to path equality, also called a homo-
topy proposition. We observe the following sufficient condition for isProp(𝐴)
to be inhabited in the model for some type 𝐴:

Lemma 59. Let 𝐴 ∈ Ty(Γ) be codiscrete, i.e. such that 𝐴(𝛾) is a propositional
groupoid for each 𝛾 ∈ Γ(𝑋), then 𝐴 is a homotopy proposition, i.e. we have a
section of isProp(𝐴) ∈ Ty(Γ). The converse holds as well.

Proof. By assumption we have a path 𝑝(𝛾, 𝑎1, 𝑎2) ∈ 𝑎1 ⥲𝛾 𝑎2 for each 𝛾 ∈
Γ(𝑋), 𝑎1, 𝑎2 ∈ 𝐴(𝛾) such that 𝛼 = 𝑝(𝛾, 𝑎1, 𝑎2) for all 𝛼 ∶ 𝑎1 ⥲𝛾 𝑎2. To con-
struct a section of isProp(𝐴) (using 𝑝) it suffices to show that 𝑝(𝛾, 𝑎1, 𝑎2)|𝑓 =
𝑝(𝛾|𝑓 , 𝑎1|𝑓 , 𝑎2|𝑓 ), but this we have by assumption.

The converse holds as well because if there is a section of isProp(𝐴) then
there is also a section of isSet(𝐴) and hence the path sets 𝐴(𝜇, 𝑎, 𝑎′), which are
in bijection with 𝐴(id𝛾 , 𝑎, 𝜇− 𝑎′) = Id𝐴(𝛾, 𝑎, 𝜇− 𝑎′), are singletons.

Corollary 60. Let 𝐴 ∈ Ty(Γ) be levelwise a proposition, i.e. such that each
𝐴(𝑋) ∈ Ty(Γ(𝑋)) is a proposition, then 𝐴 is a homotopy proposition, i.e. we
have a section of isProp(𝐴) ∈ Ty(Γ). The converse holds as well.

Proof. The assumption implies that 𝐴 is pointwise a proposition using Lem-
ma 54 so that we can conclude by Lemma 59. Similarly for the converse.

6.3.4 Booleans and natural numbers type structures
The set-like constant types Bool ∈ Ty([]) and Nat ∈ Ty([]) are given by taking
the sets 2 = {0, 1} of Booleans and ℕ of natural numbers, respectively, as the
set of points over 𝑥 ∈ [](𝑋).

We have Bool ∈ ty([]) and Nat ∈ ty([]) because they are set-like by con-
struction and 𝒰-small because the sets 2 and ℕ are.

The operations true and false ∈ Tm([],Bool) as well as zero ∈ Tm([],Nat)
and succ(𝑛) ∈ Tm(Γ,Nat⟨⟩) for 𝑛 ∈ Tm(Γ,Nat⟨⟩) are given levelwise by
the corresponding set-theoretic operations. The operations elim(𝑐0, 𝑐1, 𝑏) ∈
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Tm(Γ, 𝐶[𝑏]) and elim(𝑑0, 𝑑1, 𝑛) ∈ Tm(Γ, 𝐷[𝑛]) are defined levelwise by induc-
tion on 𝑏(𝛾) ∈ Bool(𝑋) = 2 and 𝑛(𝛾) ∈ Nat(𝑋) = ℕ for 𝛾 ∈ Γ(𝑋), respec-
tively. The equations for stability under substitution and computation hold by
definition.

6.3.5 Propositional truncation type structure

The operation ‖𝐴‖ on types 𝐴 ∈ Ty(Γ) is given by taking the same points as 𝐴,
taking 0 ∈ 𝒫 as the unique path from any 𝑎 to any 𝑎′ over any 𝜇 ∶ 𝛾 ⥲ 𝛾′, and
defining the restriction and transport operations on points as in 𝐴. Since the
path sets are singletons by construction, the restriction, groupoid and lifting
operations are trivial. The substitution law ‖𝐴‖𝜎 = ‖𝐴𝜎‖ and this indeed
defines a type follow then directly.

Since ‖𝐴‖ is codiscrete by construction for any type 𝐴 and inhabitation
of isProp(𝐶) implies that 𝐶 is codiscrete by Corollary 60 for any type 𝐶 ,
in order to define the operations inc(𝑎) ∈ Tm(Γ, ‖𝐴‖) for 𝑎 ∈ Tm(Γ, 𝐴)
and rec(𝑐, 𝑝, 𝑡) ∈ Tm(Γ, 𝐶) for 𝑐 ∈ Tm(Γ.𝐴, 𝐶p), 𝑝 ∈ Tm(Γ, isProp(𝐶)),
and 𝑡 ∈ Tm(Γ, ‖𝐴‖) it suffices to give and check their actions inc(𝑎)(𝛾) =
𝑎(𝛾) and rec(𝑐, 𝑝, 𝑡)(𝛾) = 𝑐(𝛾, 𝑡(𝛾)) on points, and the definition of the opera-
tion squash(𝑡, 𝑢) ∈ Tm(Γ, Id‖𝐴‖(𝑡, 𝑢)) for 𝑡, 𝑢 ∈ ‖𝐴‖ is trivial because all path
sets are uniquely inhabited, in particular all path equations hold. The compu-
tation law for rec on the constructor inc follows directly.

Like in the groupoid model, type families 𝐵 ∈ Ty(Γ.𝐴) indexed by discrete
types 𝐴 ∈ Ty(Γ) satisfy the axiom of choice in the sense that the function
types Π𝐴‖𝐵‖ → ‖Π𝐴𝐵‖ are inhabited in the model for discrete 𝐴. In par-
ticular, the axiom of countable choice is validated by the model regardless of
whether the axiom holds in its metatheory.

Note that, while ‖𝐴‖ has 𝒫 -small path sets by construction for any type 𝐴
and is 𝒰-small whenever 𝐴 is, ‖𝐴‖ is in general not small regardless of wheth-
er 𝐴 is because it will usually not be discrete. In particular, the universe type
structure which we describe next is not closed under propositional trunca-
tion. For a similar reason the universe type structure could be shown not to
be closed under the suspension used in [69, Theorem 10.1.14] to prove Diaco-
nescu’s theorem [24] that choice implies the principle of excluded middle, and
in fact could not possibly be as we will see with the application of this model
construction to the principle of excluded middle at the end of this chapter.
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6.3.6 Universe type structure

We give a universe structure (Definition 26) that classifies small types (see
Subsection 6.2.2).

The operation U(Γ) for Γ ∈ Ctx is defined by taking 𝒰-small presheaves 𝑃
over 𝑋, i.e. pairs of families of 𝒰-small sets 𝑃 (𝑓) for 𝑌 ∈ Obj and 𝑓 ∈
Hom(𝑌 , 𝑋) and functorial families of functions −|𝑔 ∶ 𝑃 (𝑓) → 𝑃 (𝑓 ∘𝑔) for 𝑔 ∈
Hom(𝑍, 𝑌 ), as the points over 𝛾 ∈ Γ(𝑋) and natural isomorphisms 𝜄 ∶ 𝑃 → 𝑄,
i.e. natural families of bijections 𝜄(𝑓 ) ∶ 𝑃 (𝑓) → 𝑄(𝑓) for 𝑓 ∈ Hom(𝑌 , 𝑋), as
the paths from 𝑃 to 𝑄 over 𝜇 ∶ 𝛾 ⥲ 𝛾′. The restriction of points and paths
along 𝑓 ∈ Hom(𝑌 , 𝑋) is given by restricting the underlying families to the
morphisms 𝑓 ∘ 𝑔 for 𝑔 ∈ Hom(𝑍, 𝑌 ). The groupoid structure is given by the
composition structure on natural transformations and the lifting structure is
given by the identity. The substitution law U(Γ)𝜎 = U(Δ) and that this indeed
defines a type over the context Γ follow then directly.

The operation El(𝑎) for 𝑎 ∈ Tm(Γ,U) is defined by taking the evaluation
of the presheaf 𝑎(𝛾) at id𝑋 ∈ Hom(𝑋, 𝑋) as the set of points over 𝛾 ∈ Γ and
taking {0 | 𝑞 = 𝑎(𝜇, 𝑝)} as the set of paths from 𝑝 ∈ El(𝑎)(𝛾) = 𝑎(𝛾, id𝑋)
to 𝑞 ∈ El(𝑎)(𝛾′) = 𝑎(𝛾′, id𝑋) over 𝜇 ∶ 𝛾 ⥲ 𝛾′. The restriction of points
along 𝑓 ∈ Hom(𝑌 , 𝑋) is given by the functions −|𝑓 ∶ 𝑎(𝛾, id𝑋) → 𝑎(𝛾, 𝑓 ) =
(𝑎(𝛾)|𝑓 )(id𝑌 ) = 𝑎(𝛾|𝑓 , id𝑌 ). For the restriction of paths it suffices to check
that 𝑞|𝑓 = 𝑎(𝜇|𝑓 , 𝑝|𝑓 ) whenever 𝑞 = 𝑎(𝜇, 𝑝), for the groupoid structure it
suffices to check that 𝑝 = 𝑎(id𝛾 , 𝑝) and 𝑟 = 𝑎(𝜇 · 𝜇′)(𝑝) whenever 𝑞 = 𝑎(𝜇, 𝑝)
and 𝑟 = 𝑎(𝜇′, 𝑞) for some 𝑞 ∈ 𝑎(𝛾′, id𝑋), and for the lifting structure it suf-
fices to observe that 𝑎(𝜇, 𝑝) is the unique 𝑞 ∈ 𝑎(𝛾′, id𝑋) such that 𝑝 ⥲𝜇 𝑞.
Note that this indeed defines a small type over the context Γ. The substitution
law El(𝑎𝜎) = El(𝑎)𝜎 follows directly.

The operation In(𝐴) for small types 𝐴 ∈ ty(Γ) is defined by In(𝐴)(𝛾, 𝑓 ) =
𝐴(𝛾|𝑓) and In(𝐴)(𝜇, 𝑓 ) ∶ 𝑎 ↦ (𝜇|𝑓)+ 𝑎. It can be checked that this indeed
defines a term of type U and in fact the unique term 𝑎 ∈ Tm(Γ,U) such that
El(𝑎) = In(𝐴). In particular, the substitution law In(𝐴𝜎) = In(𝐴)𝜎 holds since
it holds for El.

In summary, U (together with El) classifies small types and hence defines
a universe type structure by Proposition 37.

This concludes the description of the cwf structure of the naive groupoid-
valued presheaf model:

Theorem 61. Groupoid-valued presheaves form a cwf with unit, Σ, Π, identity,
univalent universe, and propositional truncation type structures.
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6.4 Examples of presheaf models: The law of
excluded middle

Hofmann and Streicher [41] devised the groupoid model to refute the unique-
ness of identity proofs. Another logical principle one might consider is the
law of excluded middle (LEM). While the groupoid model validates this prin-
ciple whenever its metatheory does, there are index categories such that the
(groupoid-valued) presheaf models over them refute LEM.

Before we give a concrete countermodel, let us recall that in type theory
the principle can be formulated as follows. [69, Equation 3.4.1]

𝐿𝐸𝑀 ≔ ∏
𝑃 ∶HProp

𝑃 + ¬𝑃

Note that the quantification over mere propositions is essential because, like in
anymodel with a univalent universe U [69, Corollary 3.2.7], the type ∏𝐴∶U 𝐴+
¬𝐴 is empty in the groupoid model. The issue vanishes when we consider the
type ∏𝐴∶U‖𝐴 + ¬𝐴‖ instead, which is indeed equivalent to LEM.

Now, to show that LEM is independent of type theory with a univalent
universe, we can consider the groupoid-valued presheaf model over the index
category

𝒞 ∶ 0 1

Over the preorder 𝒞 there is even the closed proposition

𝑃 ∶ Empty Unit

such that the proposition 𝑃 + ¬𝑃 is not inhabited simply because the group-
oids 𝑃 (0) = Empty and ¬𝑃 (0) ⥲ Empty have no points at all, and since
isProp(𝑃 ) we have ¬𝐿𝐸𝑀 in the groupoid-valued presheaf model over 𝒞 .

For another example, consider the index category

𝒟 ∶ • 𝑒

with 𝑒 ≠ id and 𝑒 ∘ 𝑒 = 𝑒. Over the monoid 𝒟 we have 𝑃 + ¬𝑃 for closed and
strict propositions 𝑃 if our metatheory satisfies the law of excluded middle
because then the groupoid 𝑃 (•) is either empty or has a point which is nec-
essarily fixed by the monoid action. In fact, we have 𝐴 + ¬𝐴 for all closed
types 𝐴 over 𝒟 if we can decide whether arbitrary groupoids 𝐴(•) have a
point 𝑎 because then the point 𝑎|𝑒 is fixed by idempotency of 𝑒. However, we
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also have ¬𝐿𝐸𝑀 in the groupoid-valued presheaf model over 𝒟 because the
proposition

𝑄∶ Empty Unit

in the representable context 𝑌 , i.e. 𝑌 (•) = Hom(•, •) with composition as the
action, has no section because the groupoids 𝑄(id) = Empty and ¬𝑄(id) ⥲
Empty have no points.

These two counterexamples already exist in the set-valued presheaf mod-
els. As a counterexample that is a closed proposition in a situation where all
set-valued propositions satisfy LEM, consider the groupoid-valued presheaf

𝑅∶ 0 1∼

given by the interval on which the group

ℰ ∶ • 𝑖

with 𝑖 ≠ id and 𝑖 ∘ 𝑖 = id acts by reversal. The presheaf 𝑅 can also be de-
scribed as the propositional truncation ‖𝑌 ‖ of the representable presheaf 𝑌
over ℰ . To summarize this last counterexample, there is an index category ℰ
such that the groupoid-valued presheaf model over ℰ refutes LEM while the
corresponding set-valued model satisfies LEM if we have it in the metatheory.
Another perspective on this counterexample is that in the groupoid-valued
presheaf models we described in this chapter there might be more proposi-
tions (even up to equivalence) than in the corresponding set-valued models.
The failure of homotopy propositions being equivalent to strict propositions
in general is an instance of the failure of levelwise equivalences being invert-
ible in general. In the next chapter we will consider a refined notion of type
for groupoid-valued presheaves so that two types are equivalent if and only if
they are levelwise equivalent.



Chapter 7

A refined groupoid-valued
presheaf model

The goal of this chapter is to apply the theory of descent data operations from
Part I to the problem of constructing a model of type theory that combines
the two generalizations 1. from constant sets to variable sets, or presheaves,
due to Hofmann, and 2. from sets to groupoids due to Hofmann and Strei-
cher. Such a combination can be seen either as a generalization from variable
sets to variable groupoids, or as a generalization from constant groupoids to
variable groupoids. Variable groupoids occur in practice and once we show
that they form a model we can use the language of type theory to carry out
constructions and reason about them. The resulting model will support a uni-
valent universe (of variable sets) and propositional truncation as well as refute
classical principles like the law of excluded middle.

In the previous chapter (Chapter 6) we made a first attempt at constructing
a model in which types are interpreted by variable groupoids. That attempt
succeeded in constructing amodel that supports the desired type structure and
refutes the law of excluded middle. However, we also noted various related
shortcomings that suggest that the attempt did not succeed in constructing
a model that represents variable groupoids as they occur in practice. More
specifically, the attempt resulted in a model (the naive groupoid-valued pre-
sheaf model) with types 𝐶 that are levelwise contractible but do not satisfy
isContr(𝐶), maps 𝑠 ∶ 𝐴 → 𝐵 that are levelwise surjective but do not satisfy
isSurj(𝑠), as well as maps 𝑒 ∶ 𝐴 → 𝐵 that are levelwise invertible but do not
satisfy isEquiv(𝑒).

In this chapter we refine the naive groupoid-valued presheaf model from

99
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the previous chapter in order to remedy its shortcomings. The refinement
will force properties (like being contractible, surjective, or invertible) to be
true whenever they are levelwise true in a way that preserves the desired type
structure. We carry out this refinement by applying the theory of descent
data operations from Part I. First, in Propositions 62 and 65 we construct a
descent data operation 𝐷 (see Definition 33 in Chapter 4) on the naive group-
oid-valued presheaf model. Then, in Theorem 67we apply Proposition 43 from
Chapter 4 to obtain a new model of type theory with one univalent universe
(the refined groupoid-valued presheaf model) in which types are interpreted
by groupoid-valued presheaves that are modal with respect to the descent data
operation 𝐷 (see Definition 34 in Chapter 4). Lastly, in Corollaries 68 to 70 we
show that types and maps in the refined groupoid-valued presheaf model are
contractible, surjective, or invertible if and only if they are levelwise contract-
ible, surjective, or invertible, respectively.

The descent data operation 𝐷 we use to refine the naive groupoid-valued
presheaf model arises as follows. The failure of contractibility, surjectivity,
and invertibility to be true globally in general once they are true levelwise
can be traced back to the existence of “virtual” elements for which no “actu-
al” element exists. An actual element 𝑎 of a groupoid-valued presheaf 𝐴 in
context Γ is given by a family of elements 𝑎(𝛾) ∶ 𝐴(𝛾) for each 𝛾 ∶ Γ(𝑋) (as
well as paths 𝑎(𝜇) ∶ 𝑎(𝛾) ⥲𝜇 𝑎(𝛾′) over each 𝜇 ∶ 𝛾 ⥲ 𝛾′, which we ignore
for the moment) such that the naturality conditions 𝑎(𝛾)|𝑓 = 𝑎(𝛾|𝑓 ) for each
𝑓 ∶ 𝑌 → 𝑋 hold strictly. On the other hand, for a virtual element 𝑏 of 𝐴
given by a family of elements 𝑏(𝛾) ∶ 𝐴(𝛾) the naturality conditions hold only
up to coherent paths in the sense that a virtual element 𝑏 comes equipped with
paths 𝑏(𝛾, 𝑓 ) ∶ 𝑏(𝛾)|𝑓 ⥲ 𝑏(𝛾|𝑓) such that 𝑏(𝛾, 𝑓 )|𝑔 ⋅ 𝑏(𝛾|𝑓 , 𝑔) = 𝑏(𝛾, 𝑓𝑔).
If a groupoid-valued presheaf 𝐶 is levelwise contractible then it is “inhab-
ited” by a virtual element, if a map 𝑠 ∶ 𝐴 → 𝐵 of groupoid-valued is level-
wise surjective then its fibres are merely inhabited virtual elements, and if a
map 𝑒 ∶ 𝐴 → 𝐵 is levelwise invertible then its fibres are inhabited virtu-
al elements. Therefore, when groupoid-valued presheaves are closed under
virtual elements 𝐶 is globally inhabited, the fibres of 𝑠 are globally merely
inhabited, and the fibres of 𝑒 are globally inhabited. Now, the virtual ele-
ments of a groupoid-valued presheaf 𝐴 form a groupoid-valued presheaf 𝐷(𝐴)
with a canonical map 𝜂𝐴 ∶ 𝐴 → 𝐷(𝐴) that embeds actual elements as virtu-
al elements. So, it is the groupoid-valued presheaves 𝐷(𝐶), 𝐷(‖fib(𝑠, 𝑏)‖),
and 𝐷(fib(𝑒, 𝑏)) that become inhabited for a levelwise contractible 𝐶 , a level-
wise surjective 𝑠, and a levelwise invertible 𝑒, respectively. A groupoid-valued
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presheaf 𝐴 is closed under virtual elements if this map 𝜂𝐴 is invertible by a
map patch𝐴 ∶ 𝐷(𝐴) → 𝐴 that produces for each virtual element 𝑏 an actual
element 𝑎 such that 𝜂𝐴(𝑎) ⥲ 𝑏. In particular, if 𝐶 , 𝐴, and 𝐵 are closed under
virtual elements then 𝐶 is actually contractible, 𝑠 is actually surjective, and
𝑒 is actually invertible. This is why in the refined groupoid-valued presheaf
model, where all types are modal, i.e. closed under virtual elements, levelwise
properties hold globally.

7.1 Groupoid-valued cobar operation
In this section we explicitly construct the pseudoendomorphism 𝐷 on the cwf
of groupoid-valued presheaves from Chapter 6, and show that the lex opera-
tion induced by 𝐷 is a descent data operation, in particular a lex modality. As
a result, we will obtain a new cwf of groupoid-valued presheaves (the refined
model) in Theorem 67 below. In the next section we will also show that the
refined model supports Booleans, natural numbers, and propositional trunca-
tion type structures, and that in the refined model contractibility, surjectivity,
and invertibility are levelwise properties.

From now on we will refer to (families of) groupoid-valued presheaves as
defined in Chapter 6 simply as (families of) presheaves.

Given a presheaf Γ, define the presheaf 𝐷(Γ) by taking as points 𝑑 ∈
𝐷(Γ)(𝑋) families of points 𝑑(𝑓) ∈ Γ(𝑌 ) and paths 𝑑(𝑓 , 𝑓 ′) ∶ 𝑑(𝑓)|𝑓 ′ ⥲
𝑑(𝑓𝑓 ′) indexed bymorphism 𝑓 ∶ 𝑌 → 𝑋, 𝑓 ′ ∶ 𝑍 → 𝑌 such that 𝑑(𝑓 , 𝑓 ′)|𝑓 ″·
𝑑(𝑓𝑓 ′, 𝑓 ″) = 𝑑(𝑓 , 𝑓 ′𝑓 ″), and as paths 𝜔 ∶ 𝑑 ⥲ 𝑑′ families of paths 𝜔(𝑓) ∶
𝑑(𝑓) ⥲ 𝑑′(𝑓 ) indexed by 𝑓 ∶ 𝑌 → 𝑋 such that 𝜔(𝑓)|𝑓 ′ · 𝑑′(𝑓 , 𝑓 ′) =
𝑑(𝑓 , 𝑓 ′) · 𝜔(𝑓𝑓 ′). The restriction of 𝑑 and 𝜔 ∶ 𝑑 ⥲ 𝑑′ along 𝑓 ∶ 𝑌 → 𝑋
from 𝐷(Γ)(𝑋) to 𝐷(Γ)(𝑌 ) is ((𝑑(𝑓 ∘ 𝑔))𝑔, (𝑑(𝑓 ∘ 𝑔, 𝑔′))𝑔,𝑔′) and (𝜔(𝑓 ∘ 𝑔))𝑔 ,
respectively, which can be checked to be functorial in 𝑓 . The groupoid struc-
ture on each 𝐷(Γ)(𝑋) is defined componentwise and it can be checked that
the restriction maps preserve it.

Next, define the natural transformation 𝜂Γ ∶ Γ → 𝐷(Γ) by mapping
points 𝛾 and paths 𝜇 ∶ 𝛾 ⥲ 𝛾′ to ((𝛾|𝑓 )𝑓 , (id𝛾|𝑓𝑓 ′)𝑓,𝑓 ′) and (𝜇|𝑓)𝑓 , respec-
tively.

And, define the functors 𝜖Γ(𝑋) ∶ 𝐷(Γ)(𝑋) → Γ(𝑋) by mapping points 𝑑
and paths 𝜔 ∶ 𝑑 ⥲ 𝑑′ to 𝑑(id𝑋) and 𝜔(id𝑋), respectively. We have id𝛾 ∶
𝛾 ⥲ 𝜖Γ(𝜂Γ(𝛾)) natural in 𝛾 and (𝑑(id𝑋 , 𝑓 ))𝑓 ∶ 𝜂Γ(𝜖Γ(𝑑)) ⥲ 𝑑 natural in 𝑑 so
that 𝜂Γ ∶ Γ → 𝐷(Γ) is levelwise an equivalence with levelwise (homotopy)
inverses 𝜖Γ(𝑋).
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Given a natural transformation 𝜎 ∶ Δ → Γ, define the natural trans-
formation 𝐷(𝜎) ∶ 𝐷(Δ) → 𝐷(Γ) by mapping points 𝑑 and paths 𝜔 ∶ 𝑑 ⥲
𝑑′ to ((𝜎(𝑑(𝑓)))𝑓 , (𝜎(𝑑(𝑓 , 𝑓 ′)))𝑓,𝑓 ′) and (𝜎(𝜔(𝑓)))𝑓 , respectively. The map-
ping 𝜎 ↦ 𝐷(𝜎) is functorial so that we have a functor 𝐷 ∶ Ctx → Ctx on the
category of contexts of the groupoid-valued presheaf model.

The family of natural transformations 𝜂Γ ∶ Γ → 𝐷(Γ) is itself natural in Γ,
i.e. 𝐷(𝜎) ∘ 𝜂Δ = 𝜂Γ ∘ 𝜎, because natural transformations 𝜎 ∶ Δ → Γ preserve
identity paths and commute with restriction; in other words, we have a natural
transformation 𝜂 ∶ Id → 𝐷.

Given a family 𝐴 ∈ Ty(Γ) of groupoid-valued presheaves, define the fam-
ily �̃�(𝐴) ∈ Ty(𝐷(Γ)) whose points 𝑒 ∈ �̃�(𝐴)(𝑑) are given by a family of
points 𝑒(𝑓) ∈ 𝐴(𝑑(𝑓)) and a family of paths 𝑒(𝑓 , 𝑓 ′) ∶ 𝑒(𝑓)|𝑓 ′ ⥲𝑑(𝑓 ,𝑓 ′)
𝑒(𝑓𝑓 ′) indexed by morphisms 𝑓 ∶ 𝑌 → 𝑋, 𝑓 ′ ∶ 𝑍 → 𝑌 , and whose
paths 𝜓 ∶ 𝑒 ⥲𝜔 𝑒′ are given by a family of paths 𝜓(𝑓) ∶ 𝑒(𝑓) ⥲𝜔(𝑓) 𝑒′(𝑓 )
such that 𝜓(𝑓)|𝑓 ′ · 𝑒′(𝑓 , 𝑓 ′) = 𝑒(𝑓 , 𝑓 ′) · 𝜓(𝑓𝑓 ′). The restriction along 𝑓 ∶
𝑌 → 𝑋 of 𝜓 ∶ 𝑒 ⥲𝜔 𝑒′ to (𝜓(𝑓 ∘ 𝑔))𝑔 ∶ ((𝑒(𝑓 ∘ 𝑔))𝑔, (𝑒(𝑓 ∘ 𝑔, 𝑔′))𝑔,𝑔′) ⥲𝜔|𝑓
((𝑒′(𝑓 ∘𝑔))𝑔, (𝑒′(𝑓 ∘𝑔, 𝑔′))𝑔,𝑔′) can be checked to be functorial in 𝑓 . The group-
oid and lifting structures are defined componentwise and it can be checked that
they are preserved by restriction. It can be checked that we have �̃�(𝐴𝜎) =
�̃�(𝐴)𝐷(𝜎). Moreover, it can be checked that we have �̃�(𝐴) ∈ ty(𝐷(Γ)) when-
ever 𝐴 ∈ ty(Γ), i.e. �̃� preserves (both discreteness and) set-likeness.

Given a section 𝑎 ∈ Tm(Γ, 𝐴) of 𝐴 ∈ Ty(Γ), define the section �̃�(𝑎) ∈
Tm(𝐷(Γ), �̃�(𝐴))whichmaps points 𝑑 ∈ 𝐷(Γ) to ((𝑎(𝑑(𝑓)))𝑓 , (𝑎(𝑑(𝑓 , 𝑓 ′)))𝑓,𝑓 ′)
and paths 𝜔 ∶ 𝑑 ⥲ 𝑑′ to (𝑎(𝜔(𝑓)))𝑓 . It can be checked that we have �̃�(𝑎𝜎) =
�̃�(𝑎)𝐷(𝜎).

Proposition 62. (𝐷, �̃�) is a (pointed) pseudomorphism from the cwf of group-
oid-valued presheaves to itself, and hence induces a lex operation structure by
Corollary 42 from Chapter 4.

Proof. We have already seen that 𝐷 ∶ Ctx → Ctx is a functor and that �̃�(Γ) ∶
Ty(Γ) → Ty(𝐷(Γ)) and �̃�(Γ, 𝐴) ∶ Tm(Γ, 𝐴) → Tm(𝐷(Γ), �̃�(𝐴)) commute
with substitution.

The unique natural transformation 𝐷([]) → [] is an isomorphism because
we have 𝑑(𝑓) = 0, 𝑑(𝑓 , 𝑓 ′) = 0 and 𝜔(𝑓) = 0 for all 𝑑 ∈ 𝐷([])(𝑋), 𝜔 ∶ 𝑑 ⥲
𝑑′, 𝑓 ∶ 𝑌 → 𝑋, 𝑓 ′ ∶ 𝑍 → 𝑌 .

For a family 𝐴 ∈ Ty(Γ), the canonical substitution 𝑠𝐴 = ⟨𝐷(p𝐴), �̃�(q𝐴)⟩ ∶
𝐷(Γ.𝐴) → 𝐷(Γ).�̃�(𝐴) is an isomorphism whose inverse at level 𝑋 is giv-
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en by 𝑠−1
𝐴 (𝑑, 𝑒)(𝑓 ) = (𝑑(𝑓), 𝑒(𝑓 )), 𝑠−1

𝐴 (𝑑, 𝑒)(𝑓 , 𝑓 ′) = (𝑑(𝑓 , 𝑓 ′), 𝑒(𝑓 , 𝑓 ′)) and
𝑠−1

𝐴 (𝜔, 𝜓)(𝑓) = (𝜔(𝑓), 𝜓(𝑓)).

We denote the actions 𝐴 ↦ �̃�(𝐴)𝜂Γ on types Ty(Γ) and 𝑚 ↦ �̃�(𝑚)𝑠𝐴⟨𝜂Γ⟩
from maps Tm(Γ.𝐴, 𝐵p) to maps Tm(Γ.𝐷(𝐴), 𝐷(𝐵)p) of the induced lex op-
eration structure also by 𝐷, like the corresponding actions on contexts and
substitutions.

Lemma 63. If 𝐴 ∈ Ty(Γ) is levelwise contractible, then �̃�(𝐴) ∈ Ty(𝐷(Γ)) and
hence 𝐷(𝐴) ∈ Ty(Γ) are contractible.

Proof. Assume 𝐴 ∈ Ty(Γ) levelwise contractible, i.e. 𝐴(𝑋) ∈ Ty(Γ(𝑋)) con-
tractible for each 𝑋. Then, 𝐴 is in particular levelwise a mere proposition and
in fact a mere proposition by Corollary 60. Since 𝐷 is a lex operation by Prop-
osition 62 and lex operations preserve families of mere propositions by Corol-
lary 19, also �̃�(𝐴) is a mere proposition. Now for �̃�(𝐴) to be contractible it
remains to show that it is inhabited. Since each 𝐴(𝑋) is contractible, we have
a family of points 𝑎(𝛾) ∈ 𝐴(𝛾) for each 𝛾 ∈ Γ(𝑋), but not necessarily 𝑎(𝛾|𝑓 ) =
𝑎(𝛾)|𝑓 . We define 𝑎0 ∈ Tm(𝐷(Γ), �̃�(𝐴)) by setting 𝑎0(𝑑)(𝑓 ) = 𝑎(𝑑(𝑓)), let-
ting 𝑎0(𝑑)(𝑓 , 𝑓 ′) be the unique path 𝑎0(𝑑)(𝑓 )|𝑓 ′ ⥲ 𝑎0(𝑑)(𝑓𝑓 ′) and letting
𝑎0(𝜔)(𝑓) be the unique path 𝑎0(𝑑)(𝑓 ) ⥲𝜔 𝑎0(𝑑′)(𝑓 ). 𝐷(𝐴) = �̃�(𝐴)𝜂Γ is con-
tractible because being contractible is preserved by substitution.

Lemma 64. LetΓ andΔ be groupoid-valued presheaves and 𝜎 ∶ Δ → Γ a natural
transformation that is levelwise an equivalence, i.e. 𝜎(𝑋) ∶ Δ(𝑋) → Γ(𝑋) is an
equivalence for each level 𝑋, then the natural transformation 𝐷(𝜎) ∶ 𝐷(Δ) →
𝐷(Γ) is an equivalence.

Proof. Assume 𝜎 ∶ Δ → Γ levelwise an equivalence, i.e. fib(𝜎(𝑋)) ∈ Ty(Γ(𝑋))
contractible for each 𝑋. Then, fib(𝜎) ∈ Ty(Γ) is levelwise contractible be-
cause evaluation at 𝑋 commutes with dependent sum and identity types and
application, i.e. fib(𝜎)(𝑋) = fib(𝜎(𝑋)) for all 𝑋. Thus, �̃�(fib(𝜎)) ∈ Ty(𝐷(Γ))
is contractible by Lemma 63. Since 𝐷 is a lex operation by Proposition 62
and lex operations preserve terminal objects and homotopy pullbacks by Pro-
positions 5 and 7, �̃�(fib(𝜎)) is equivalent to fib(𝐷(𝜎)). It follows that also
fib(𝐷(𝜎)) ∈ Ty(𝐷(Γ)) is contractible and hence that 𝐷(𝜎) ∶ 𝐷(Δ) → 𝐷(Γ) is
an equivalence.

Proposition 65. The lex operation induced by the (pointed) pseudoendomor-
phism (𝐷, �̃�) is a descent data operation.
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Proof. 𝐷(𝜂Γ) ∶ 𝐷(Γ) → 𝐷(𝐷(Γ)) is an equivalence by Lemma 64 because each
𝜂Γ(𝑋) ∶ Γ(𝑋) → 𝐷(Γ)(𝑋) gets inverted by 𝜖Γ(𝑋). Thus, 𝜂𝐷(Γ) ∶ 𝐷(Γ) →
𝐷(𝐷(Γ)) is also an equivalence because ℎ(𝑑)(𝑓 )(𝑔) = 𝑑(𝑓 , 𝑔) ∶ 𝑑(𝑓)|𝑔 ⥲
𝑑(𝑓𝑔) defines a homotopy ℎ ∶ 𝐷(𝜂Γ) ∼ 𝜂𝐷(Γ).

Now that we have constructed a descent data operation 𝐷 we can apply
Proposition 43 from Chapter 4 to obtain a new model of type theory. And we
will do that in Theorem 67 below. The resulting refined groupoid-valued pre-
sheaf model supports unit, Σ, Π, identity, and univalent universe types because
the naive model (the model on which the descent data operation 𝐷 is defined)
supports them. We construct Booleans, natural numbers, and propositional
truncation type structures directly.

Let 𝐴 ∈ Ty(Γ) be a family of presheaves. An element of Tm(Γ, isPA(𝐴)) is
then given by a map patch𝐴 ∶ 𝐷(𝐴) → 𝐴 together with a homotopy linv𝐴 ∶
∏𝑎∶𝐴 Id(patch𝐴(𝜂𝐴(𝑎)), 𝑎) witnessing that patch𝐴 is a left inverse (and in fact
an inverse) of the embedding 𝜂𝐴 ∶ 𝐴 → 𝐷(𝐴). We call such an element a
patching structure on 𝐴 and the triple (𝐴, patch𝐴, linv𝐴) a patch algebra. Recall
that having a patch structure is equivalent to 𝐴 being 𝐷-modal, i.e. there being
an element of Tm(Γ, isModal𝐷(𝐴)).

7.2 Inductive type structures

Let 𝐼 be a (higher) inductive type (like a coproduct 𝐴 + 𝐵, the natural num-
bers Nat, or a propositional truncation ‖𝐴‖) in the naive presheaf model. The
type 𝐷(𝐼) can be shown to support the introduction and elimination principles
of 𝐼 with respect to 𝐷-modal types 𝐴 using the unit 𝐼 → 𝐷(𝐼) and the equiv-
alence ∏𝑑∶𝐷(𝐼) 𝐴(𝑥) → ∏𝑖∶𝐼 𝐴(𝜂(𝑖)). However, the elimination principle for
𝐷(𝐼) satisfies the computation rules of 𝐼 not strictly but only up to homotopy.

7.2.1 Booleans and natural numbers type structures

In this subsection we show that the refined model of presheaves with patch-
ing structure supports Booleans and natural numbers type structures. Recall
from Subsection 6.3.4 in Chapter 6 that the Booleans and natural numbers
type structures on the naive model of arbitrary presheaves are given by the
constant presheaves Bool and Nat for the sets 2 = {0, 1} and ℕ, respectively.
Constant presheaves like these and, more generally, discrete presheaves, i.e.
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presheaves 𝐴 ∈ Ty(Γ) such that 𝑎′ = 𝑎 and 𝛼 = id𝑎 for all 𝛾 ∈ Γ(𝑋) and
𝛼 ∶ 𝑎 ⥲id𝛾 𝑎′, have a patching structure:

Proposition 66. Let 𝐴 ∈ Ty(Γ) be a discrete presheaf, i.e. a presheaf such that
𝑎′ = 𝑎 and 𝛼 = id𝑎 for all 𝛼 ∈ 𝐴(id𝛾 , 𝑎, 𝑎′), then 𝐴 has a patching structure.

Proof. For 𝛾 ∈ Γ(𝑋) and 𝑒 ∈ 𝐷(𝐴)(𝛾) we have 𝑒(𝑓) = id+
𝛾|𝑓 (𝑒(id)|𝑓 ) = 𝑒(id)|𝑓

for all 𝑓 ∶ 𝑌 → 𝑋 and hence 𝑒 = 𝜂𝐴(𝑒(id)).

7.2.2 Propositional truncation type structure
Let 𝐴 ∈ Ty(Γ) be a family of groupoid-valued presheaves (not necessarily a
patch algebra). Define a new codiscrete family ‖𝐴‖ ∈ Ty(Γ) whose points
over 𝛾 ∈ Γ(𝑋) are either inc 𝑎 for 𝑎 ∈ 𝐴(𝛾) or patch𝜙 for 𝜙 an arbitrary
family of points 𝜙(𝑓) ∈ 𝐴(𝛾|𝑓) indexed by 𝑓 ∈ 𝑌 → 𝑋 (no naturality con-
ditions, neither strict nor pseudo). The restriction of points inc 𝑎 is as in 𝐴,
and the restriction of points patch𝜙 is given by reindexing. Defining ‖𝐴‖ as
a codiscrete family means that there is a unique path 𝜏𝑡,𝑡′ between any pair of
points 𝑡 ∈ ‖𝐴‖(𝛾) and 𝑡′ ∈ ‖𝐴‖(𝛾′) over any path 𝜇 ∶ 𝛾 ⥲ 𝛾′ in Γ(𝑋) by
setting ‖𝐴‖(𝜇, 𝑢, 𝑢′) ≔ {0}. The codiscreteness of ‖𝐴‖ also means that the
composition and restriction structures on paths is uniquely determined.

We define the term inc(𝑎) ∈ Tm(Γ, ‖𝐴‖) for 𝑎 ∈ Tm(Γ, 𝐴) by inc(𝑎)(𝛾) =
inc 𝑎(𝛾). The action of inc(𝑎) on paths 𝜇 ∶ 𝛾 ⥲ 𝛾′ is again uniquely deter-
mined, and so is the term squash(𝑡, 𝑢) ∈ Tm(Γ, Id(𝑡, 𝑢)) for 𝑡, 𝑢 ∈ Tm(Γ, ‖𝐴‖).

Let 𝐶 ∈ Ty(Γ) be a homotopy proposition and patch𝐶 ∈ Tm(Γ.𝐷(𝐶), 𝐶p)
a patching function for 𝐶 (the proof that patch𝐶 inverts 𝜂𝐶 ∈ Tm(Γ.𝐶, 𝐷(𝐶)p)
is uniquely determined and will not be needed), and a map 𝑖 ∈ Tm(Γ.𝐴, 𝐶).
We define elim(𝑖, 𝑡) ∈ Tm(Γ, 𝐶) for 𝑡 ∈ Tm(Γ, ‖𝐴‖) by elim(𝑖, 𝑡)(𝛾) = 𝑖(𝛾, 𝑎)
if 𝑡(𝛾) = inc 𝑎) and elim(𝑖, 𝑡)(𝛾) = patch𝐶 (𝛾, 𝑑) if 𝑡(𝛾) = patch𝜙 where the de-
scent datum 𝑑 is given by 𝑑(𝑓) = 𝑖(𝛾|𝑓 , 𝜙(𝑓)) (the coherence paths 𝑑(𝑓 , 𝑓 ′)
between 𝑑(𝑓)|𝑓 ′ and 𝑑(𝑓𝑓 ′) in 𝐶(𝛾|𝑓𝑓 ′) are uniquely determined). The ac-
tion of elim(𝑖, 𝑡) on paths 𝜇 ∶ 𝛾 ⥲ 𝛾′ is again uniquely determined.

By definition we have elim(𝑖, inc 𝑎) = 𝑖[𝑎].
We define a patching structure on ‖𝐴‖, i.e. a homotopy inverse to the

embedding 𝜂𝐴 ∶ ‖𝐴‖ → 𝐷(‖𝐴‖). Since ‖𝐴‖ and 𝐷(‖𝐴‖) are homotopy
propositions, it suffices to give just a map patch‖𝐴‖ ∶ 𝐷(‖𝐴‖) → ‖𝐴‖ and
it even suffices to give it on points. Indeed, ‖𝐴‖ is a homotopy proposi-
tion by construction and 𝐷 preserves homotopy propositions by Corollary 19
from Chapter 2. Let 𝛾 ∈ Γ(𝑋) and 𝑑 ∈ 𝐷(‖𝐴‖)(𝛾), i.e. 𝑑(𝑓) ∈ ‖𝐴‖(𝛾|𝑓)
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and 𝑑(𝑓 , 𝑓 ′) ∶ 𝑑(𝑓)|𝑓 ′ ⥲ 𝑑(𝑓𝑓 ′) such that 𝑑(𝑓 , 𝑓 ′)|𝑓 ″ ; 𝑑(𝑓𝑓 ′, 𝑓 ″) =
𝑑(𝑓 , 𝑓 ′𝑓 ″). Set patch‖𝐴‖(𝛾, 𝑑) ≔ patch(𝜓) where 𝜓(𝑓) = 𝑎 if 𝑑(𝑓) = inc 𝑎
and 𝜓(𝑓) = 𝜙(𝑓)(id) if 𝑑(𝑓) = patch𝜙.

Theorem 67. Groupoid-valued presheaves together with a patching structure
form a cwf with unit, Σ, Π, identity, univalent universe, Booleans, natural num-
bers, and propositional truncation type structures.

Proof. A presheaf with a patching structure is exactly a presheaf that is mod-
al with respect to the descent data operation 𝐷. Apply Proposition 43 from
Chapter 4 to Theorem 61 from Chapter 6 (groupoid-valued presheaves form a
model, namely the naive groupoid-valued presheaf model) and Proposition 65
above to obtain the cwf with unit, Σ, Π, identity, and univalent universe type
structure. The Booleans, natural numbers, and propositional truncation type
structures we defined in Section 7.2.

7.3 Levelwise properties
In this section we show that in the refined groupoid-valued presheaf model
contractibility, surjectivity and invertibility hold globally if and only if they
hold levelwise.

The following corollary of Lemma 63 says that propositions with a patch-
ing structure are inhabited if (and only if) they are levelwise inhabited.

Corollary 68. Let 𝐴 ∈ Ty(Γ) be a family of groupoid-valued presheaves that
are (homotopy) propositions and have patching structures, then for any family
of points 𝑎𝛾 ∶ 𝐴(𝛾) indexed by 𝛾 ∶ Γ(𝑋) there is a section 𝑎 ∈ Tm(Γ, 𝐴).
Equivalently, a family 𝐴 ∈ Ty(Γ) of presheaves with a patching structure is
contractible if (and only if) it is levelwise contractible.

Proof. The assumption says that 𝐴 is levelwise contractible, i.e. the group-
oids 𝐴(𝛾) are contractible for all 𝛾 ∶ Γ(𝑋). By Lemma 63 the family 𝐷(𝐴) ∈
Ty(Γ) of presheaves is contractible, and using the patching structure we get
that 𝐴 is contractible.

Call a map internally surjective if the propositional truncations of its fi-
bres are contractible. The following corollary says that maps between patch
algebras are internally surjective if (and only if) they are levelwise surjective.
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Corollary 69. Let Δ and Γ be groupoid-valued presheaves with a patching struc-
ture, and 𝜎 ∶ Δ → Γ a map between them, then for any family of points 𝛿𝛾 ∶
Δ(𝑋) and paths 𝜈𝛾 ∶ 𝜎(𝛿𝛾 ) ⥲ 𝛾 indexed by 𝛾 ∶ Γ(𝑋) there is a section of
isSurj(𝜎) = ∏𝛾∶Γ‖∑𝛿∶Δ 𝜎(𝛿) ≡ 𝛾‖.

Proof. The assumption says that the groupoids ‖∑𝛿∶Δ(𝑋) 𝜎(𝛿) ≡ 𝛾‖ are con-
tractible for all 𝛾 ∶ Γ(𝑋), i.e. the presheaves isSurj(𝜎)(𝛾) are levelwise con-
tractible for all 𝛾 ∶ Γ. Note that Theorem 67 in particular says that presheaves
with a patching structure are closed under identity, dependent sum and prop-
ositional truncation types. Hence, we can apply Corollary 68 to get a section
of isSurj(𝜎)(𝛾) for all 𝛾 ∶ Γ. We get a section of isSurj(𝜎) because contractible
types are closed under dependent product types.

Call a map 𝜎 ∶ Δ → Γ an epimorphism if maps 𝜏 and 𝜏′ ∶ Γ → Θ are
homotopic whenever their composites 𝜏 ∘ 𝜎 and 𝜏′ ∘ 𝜎 ∶ Δ → Θ with 𝜎 are.
In a classical metatheory Corollary 69 implies that maps between patch alge-
bras are internally surjective if and only if they are epimorphisms. Indeed, the
principle of excluded middle implies that epimorphisms 𝜎 ∶ Δ → Γ have non-
empty fibres, and the axiom of choice asserts the existence of a family of points
in the fibres so that we can apply the corollary to get a section of isSurj(𝜎)
whenever Δ and Γ have patching structures. In particular, in a classical meta-
theory epimorphisms between set-valued presheaves seen as discrete group-
oid-valued presheaves, which have a patching structure by Proposition 66, are
internally surjective.

Corollary 70. Let Γ and Δ be groupoid-valued presheaves with patching struc-
ture, then a natural transformation 𝜎 ∶ Δ → Γ is an equivalence if and only if
it is levelwise an equivalence.

Proof. AssumeΓ andΔ patch algebras, i.e. 𝜂Γ ∶ Γ → 𝐷(Γ) and 𝜂Δ ∶ Δ → 𝐷(Δ)
equivalences. The “only if” direction is immediate. In the other direction,
if 𝜎 ∶ Δ → Γ is levelwise an equivalence, then 𝐷(𝜎) ∶ 𝐷(Δ) → 𝐷(Γ) is
an equivalence by Lemma 64, 𝜂Γ ∘ 𝜎 = 𝐷(𝜎) ∘ 𝜂Δ is an equivalence because
𝜂Δ ∶ Δ → 𝐷(Δ) is an equivalence by assumption, and finally 𝜎 ∶ Δ → Γ is an
equivalence because also 𝜂Γ is an equivalence by assumption.

Corollary 71. Let Γ be a groupoid-valued presheaf with a patching structure. In
a classical metatheory, if Γ is a homotopy proposition then Γ is equivalent to a
strict proposition.



108 CHAPTER 7. A REFINED GROUPOID-VALUED PRESHEAF MODEL

Proof. Apply Lemma 55 from Chapter 5 levelwise to obtain a family of subsin-
gletons 𝐶(Γ(𝑋)) and equivalences 𝑐(𝑋) ∶ Γ(𝑋) ⥲ 𝐶(Γ(𝑋)). The subsingle-
tons assemble to a strict proposition 𝐶(Γ) and the equivalences to a natural
transformation 𝑐 ∶ Γ → 𝐶(Γ) which is levelwise an equivalence and hence an
equivalence by Corollary 70.

7.3.1 Remarks
We end with a few observations.

Firstly, we observe that (closed) 𝐷-modal types 𝑃 can be thought of as
stacks for the trivial topology (and hence 𝐷 as stackification) because the
points of 𝐷(𝑃 )(𝑋) are descent data 𝑑 satisfying the cocycle condition for 𝑃 on
the trivial cover of 𝑋, and the left and right inverse laws for a patching struc-
ture 𝑝 ∶ 𝐷(𝑃 ) → 𝑃 say that 𝑝(𝑑) ∈ 𝑃 (𝑋) is the unique element 𝑝0 ∈ 𝑃 (𝑋)
up to isomorphism such that there are coherent paths 𝑝0|𝑓 ⥲ 𝑑(𝑓). For more
general sites we can also characterize the homotopy sheaves using a lex oper-
ation but it seems that we would need quotient inductive–inductive types to
define stackification and, more generally, model higher inductive types.

Secondly, we observe that over the group ℤ/2ℤ (with addition) the 𝐷-mod-
al types can also be thought of as fibrations in the injective model structure
on groupoid-valued presheaves over ℤ/2ℤ. Bordg [12] shows that injective
fibrations are another notion of type in groupoid-valued presheaves that can
be used to model intensional type theory with one univalent universe. A nat-
ural transformation Δ → Γ over ℤ/2ℤ is an injective fibration if and only if it
lifts against the following two trivial cofibrations [12, Proposition 5.3.5]:

𝑆(1) ∶ 0 0 ̆I ∶ 0 1

𝑆(I) ∶ 0 1 0 1 ▿ ∶ 0 1

2

∼

∼ ∼

∼

∼

∼

The action on 𝑆(1) → 𝑆(I) swaps the left and right injections, and the action
on ̆I → ▿ reverses the interval 0 ⥲ 1 while keeping the point 2 fixed. Lifting
problems for 𝑆(1) → 𝑆(I) encode a point 𝑎 ∈ 𝐴(𝛾) over the starting point
of a path 𝜇 ∶ 𝛾 ⥲ 𝛾′ in a context Γ and are solved by the lifting structure
of any type 𝐴 ∈ Ty(Γ) in the model presented here (modal or not). Lifting
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problems for ̆I → ▿ encode points 𝑒 ∈ �̃�(𝐴) over a point 𝑑 ∈ 𝐷(Γ) with
a patch 𝜔 ∶ 𝑑 ⥲ 𝜂Γ(𝛾) and solutions are given by a patching structure for
𝐴. Note, however, that there are index categories 𝒞 like the monoid ℕ (with
addition) such that not all 𝐷-modal types lift against all trivial cofibrations of
the injective model structure on groupoid-valued presheaves over 𝒞 .

Lastly, we look at the presheaves 𝐷(𝑃 ) for a few concrete index catego-
ries 𝒞 .

7.4 Examples of the cobar operation

7.4.1 Over the preorder ℕ

In this subsection we consider ℕ together with the usual order ⩽ as the base
category 𝒞 .

0 1 2 ⋯

Diagram 6: The preorder ℕ as a category

In this case, a presheaf 𝐴 is a family of groupoids 𝐴(𝑛) with restriction
functors 𝐴(𝑛) → 𝐴(𝑚), 𝑎 ↦ 𝑎|𝑚 for all 𝑛 ⩾ 𝑚.

𝐴(0) 𝐴(1) 𝐴(2) ⋯

An element of 𝐷(𝐴)(𝑛) is given by a family of elements 𝑎(𝑚) ∈ 𝐴(𝑚) and
paths 𝑎(𝑚, 𝑙) ∈ 𝐴(𝑎(𝑚)|𝑙, 𝑎(𝑙)) such that 𝑎(𝑚, 𝑙)|𝑘 · 𝑎(𝑙, 𝑘) = 𝑎(𝑚, 𝑘) for all
𝑛 ⩾ 𝑚 ⩾ 𝑙 ⩾ 𝑘.

A global element of 𝐴 is a family of elements 𝑎(𝑛) ∈ 𝐴(𝑛) such that
𝑎(𝑛)|𝑚 = 𝑎(𝑚).

A global element of 𝐷(𝐴) is given by a family of elements 𝑎(𝑛) ∈ 𝐴(𝑛) and
paths 𝑎(𝑛, 𝑚) ∈ 𝐴(𝑎(𝑛)|𝑚, 𝑎(𝑚)) such that 𝑎(𝑛, 𝑚)|𝑙 · 𝑎(𝑚, 𝑙) = 𝑎(𝑛, 𝑙).

We construct a presheaf 𝑃 such that 𝐷(𝑃 ) has a global element while 𝑃
does not. 𝑃 is constructed as a family of codiscrete groupoids such that 𝑃 (𝑛)
is a full subgroupoid of 𝑃 (𝑚) for all 𝑛 ⩾ 𝑚. We take 𝑃 (𝑛) to be the codiscrete
groupoid on ℕ⩾𝑛 = {𝑛, 𝑛 + 1, 𝑛 + 2, …} and the restriction functor from 𝑃 (𝑛)
to 𝑃 (𝑚) the inclusion of 𝑃 (𝑛) into 𝑃 (𝑚).
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𝑃 (0) ∶ 0 1 2 3 ⋯

𝑃 (1) ∶ 1 2 3 ⋯

𝑃 (2) ∶ 2 3 ⋯

Aglobal element of 𝑃 would be given by an 𝑥 ∈ ℕ such that 𝑥 is an element
in 𝑃 (𝑛) for all 𝑛 ∈ ℕ. However, no such 𝑥 exists because for any 𝑥 there is an
index 𝑛𝑥 ∈ ℕ such that 𝑥 ∉ 𝑃 (𝑛𝑥), in fact 𝑥 ∉ 𝑃 (𝑚) for all 𝑚 ⩾ 𝑛𝑥. Therefore,
𝑃 does not have a global element. A global element of 𝐷(𝑃 ) on the other hand
is given by any family of elements 𝑥(𝑛) ∈ ℕ because for any 𝑛 ⩾ 𝑚 there is a
unique path from 𝑥(𝑛)|𝑚 = 𝑥(𝑛) to 𝑥(𝑚) in the codiscrete groupoid 𝑃 (𝑚) on
ℕ⩾𝑚. We get the following result.

Proposition 72. There is an empty presheaf 𝑃 such that 𝐷(𝑃 ) is inhabited.

Definition 41. An empty presheaf is a presheaf that is not inhabited by a global
element.

From this result it follows that 𝑃 is an example of a presheaf such that 𝜂 is
not an equivalence and a presheaf such that 𝑃 + ¬𝑃 is not inhabited because
𝐴 + 𝐵 is inhabited only if either 𝐴 or 𝐵 is. In fact, neither 𝑃 ∨ ¬𝑃 is inhabited
because in groupoid-valued presheaves ‖𝐴‖ is inhabited only if 𝐴 is already.

Another observation we can make about 𝑃 is that it is pointwise contract-
ible but not as a presheaf in the sense of there being an equivalence between
1 and 𝑃 , which we summarize as follows.

Proposition 73. Over the preorder ℕ, being contractible is not given pointwise.

More generally, we can say the following.

Proposition 74. Over the preorderℕ, being an equivalence is not given pointwise.

Proof. The terminal map 𝑃 → 1 is pointwise an equivalence because each
𝑃 (𝑛) → 1 is an equivalence because each 𝑃 (𝑛) is codiscrete. However, the
terminal map 𝑃 → 1 is not an equivalence because there is not even any map
1 → 𝑃 .
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7.4.2 Over the group ℤ/2ℤ

In this subsection we consider ℤ/2ℤ together with the usual addition + as the
base category 𝒞 with a single object.

•

𝑖

Diagram 7: The group ℤ/2ℤ as a category, the walking involution category

Consider the presheaf 𝑃 given by the walking isomorphism

0 1
𝑝

with a single path 𝑝 from 0 to 1 and the swap action

𝑃 𝑃

0 1

1 0

−·𝑖

𝑝 𝑝−1

that inverts 𝑝; the points 0 and 1 can be seen as the walking “homoto-
py” fixed point in the sense that they are fixed by the action up to a path; 𝑃
is “represented” by • in the sense that it is the groupoid of elements of the
representable presheaf together with the restriction action:

id 𝑖

𝑖 id

𝑖 𝑖−1∘𝑖∘𝑖=𝑖
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In general, a presheaf over ℤ/2ℤ is given by a groupoid 𝐺 with an isomor-
phism 𝐺 → 𝐺, 𝑔 ↦ 𝑔 · 𝑖 that is idempotent: (𝑔 · 𝑖) · 𝑖 = 𝑔 (functoriality). A
map from (𝐺, ·) to (𝐻, ·) is given by a functor 𝑓 ∶ 𝐺 → 𝐻 that respects these
actions: 𝑓(𝑔 · 𝑖) = 𝑓(𝑔) · 𝑖 (equivariance).

The presheaf 𝑃 is pointwise codiscrete in the sense that the underlying
functor of the terminal map

𝑃 1!

is an equivalence (of groupoids). However, the terminal map is not an
equivalence because there are no candidate maps for an inverse map in the
opposite direction. In other words, 𝑃 has no global elements 1 𝑃𝑥

despite the underlying groupoid of 𝑃 being inhabited. Indeed, the only pos-
sible images of the point • ∈ 1 are 𝑥(•) = 0 and 𝑥(•) = 1 but neither choice is
equivariant:

𝑥(• · 𝑖) = 𝑥(•) = 0 ≠ 1 = 0 · 𝑖 = 𝑥(•) · 𝑖
𝑥(• · 𝑖) = 𝑥(•) = 1 ≠ 0 = 1 · 𝑖 = 𝑥(•) · 𝑖

(The action on the terminal category 1 is the trivial one.) In fact, the global
elements of any presheaf 𝐴 are exactly the elements 𝑎 ∈ 𝐴 that are fixed
with respect to the action on 𝐴 because the point • ∈ 1 is a fixed point and
fixed points necessarily need to be preserved by maps. Actually, pointwise
codiscrete presheaves are codiscrete not just only if they are globally inhabited
but exactly when they are globally inhabited. This is the case because any
functor between codiscrete groupoids is an equivalence with any functor in
the opposite direction as an inverse, i. e. the underlying functor of the terminal
map from a pointwise codiscrete presheaf is an equivalence with any element
as an inverse, and pointwise inverse maps between presheaves are inverses.

We record the observations about 𝑃 as the following two facts.

Proposition 75. Over ℤ/2ℤ pointwise codiscrete presheaves are not necessarily
codiscrete.

Corollary 76. Over ℤ/2ℤ maps that are pointwise equivalences are not neces-
sarily equivalences.

The presheaf 𝑃 is also considered by Bordg [12] as an example of a pre-
sheaf that is not injectively fibrant; in other words, the terminal map 𝑃 → 1
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is an example of a pointwise fibrant map that is not injectively fibrant [12,
Remark 3.2].

Another way to analyze the situation is by looking at the presheaves 𝐷(𝐴)
whose elements are triples (𝑎, 𝑎′, 𝛼 ∶ 𝑎 · 𝑖 ≅ 𝑎′) and paths are pairs (𝜔1 ∶ 𝑎 ≅
𝑏, 𝜔2 ∶ 𝑎′ ≅ 𝑏′) such that 𝜔1𝑖 · 𝛽 = 𝛼 · 𝜔2 which are taken to (𝑎′, 𝑎, 𝛼−1 · 𝑖)
and (𝜔2, 𝜔1), respectively, by the action, and the maps 𝜂𝐴 ∶ 𝐴 → 𝐷(𝐴), 𝑎 ↦
(𝑎, 𝑎 · 𝑖, id).

The elements of 𝐷(𝐷(𝐴)) are given by elements 𝑑 = (𝑎, 𝑎′, 𝛼) and 𝑑′ =
(𝑏, 𝑏′, 𝛽) of 𝐷(𝐴) and paths 𝜔1 ∶ 𝑎′ ≅ 𝑏 and 𝜔2 ∶ 𝑎 ≅ 𝑏′ in 𝐴 such that
𝜔1𝑖 · 𝛽 = 𝛼−1𝑖 · 𝜔2, that is 𝜔 = (𝜔1, 𝜔2) ∶ 𝑑𝑖 ≅ 𝑑′. The map 𝜇𝐴 ∶ 𝐷(𝐷(𝐴)) →
𝐷(𝐴) is given by (𝑑, 𝑑′, 𝜔) ↦ (𝑎, 𝑏, 𝛼 · 𝜔1) (𝛼 · 𝜔1 = 𝜔2𝑖 · 𝛽−1𝑖).

In the concrete case of 𝑃 we have

(0, 1, id) (1, 1, 𝑝) (1, 0, id) (1, 1, 𝑝)

(1, 0, id) (0, 0, 𝑝−1) (0, 1, id) (0, 0, 𝑝−1)

𝐷(𝑃 ) −·𝑖 𝐷(𝑃 )

(𝑝,𝑝−1)

(𝑝,id)

(𝑝−1,𝑝−1) (𝑝−1,𝑝)

(id,𝑝)

(𝑝−1,𝑝−1)

(𝑝−1,id) (id,𝑝−1)

with two fixed points (0, 0, 𝑝−1) and (1, 1, 𝑝) so that there is no map in the
opposite direction 𝐷(𝑃 ) → 𝑃 because 𝑃 does not have any. Also, if there was
a map 𝐷(𝑃 ) → 𝑃 then 𝑃 would be codiscrete, which it is not, because 𝐷(𝑃 )
is globally inhabited. In general, 𝐷(𝐴) is globally inhabited exactly if 𝐴 has an
element 𝑎 with a path 𝛼 ∶ 𝑎 · 𝑖 ≅ 𝑎 such that 𝛼 · 𝑖 = 𝛼−1 and this happens if 𝐴 is
pointwise codiscrete because then 𝐴 is locally inhabited and for any element
𝑎 ∈ 𝐴 the unique path • ∶ 𝑎 · 𝑖 ≅ 𝑎 satisfies • · 𝑖 = •−1 by uniqueness.

Proposition 77. Over ℤ/2ℤ a pointwise codiscrete presheaf 𝐴 is codiscrete if and
only if 𝜂𝐴 is an equivalence, for which it is enough to have a map 𝐷(𝐴) → 𝐴.

7.4.3 Over the walking arrow
In this subsection we consider 2 together with the usual order ⩽ as the base
category 𝒞 .
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0 1!

Diagram 8: The walking arrow category

In this case, a presheaf is given by a (vertical) groupoid functor 𝐴(1) →
𝐴(0), 𝑎 ↦ 𝑎0, a map is given by a pair of (horizontal) groupoid functors 𝛼(1) ∶
𝐴(1) → 𝐵(1) and 𝛼(0) ∶ 𝐴(0) → 𝐵(0) such that 𝛼(0)(𝑎0) = 𝛼(1)(𝑎)0, and
a cell is given by a pair of natural transformations 𝑛(1) ∶ 𝛼(1) → 𝛽(1) and
𝑛(0) ∶ 𝛼(0) → 𝛽(0) such that 𝑛(0)(𝑎0) = 𝑛(1)(𝑎)0.

A presheaf is globally inhabited if and only if it is locally inhabited at the
terminal object of the base category. In particular, pointwise codiscrete objects
are globally inhabited and hence codiscrete because any pair of maps between
pointwise codiscrete objects is an equivalence.

Proposition 78. Over the walking arrow, pointwise contractible closed types are
contractible.

However, this does not remain true for bundles over arbitrary objects: The
(discrete) groupoid bundle

𝑎𝛾1 𝑎𝛾2 𝛾1 𝛾2

𝐴(1) Γ(1)

is inhabited but the presheaf bundle

0 𝑎𝛾1 𝑎𝛾2 𝛾 𝛾

1 𝑎𝛾1 𝑎𝛾2 𝛾1 𝛾2

𝐴 Γ

is not inhabited because the unique section of 𝐴(1) → Γ(1) cannot be ex-
tended to a map Γ → 𝐴 because either choice at 𝛾 ∈ Γ(0) will break naturality.
In fact, the presheaf bundle 𝐴 → Γ is even a pointwise contractible type (the
path lifting is trivial because Γ has no non-trivial paths) so that we can make
the following observation.
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Proposition 79. Over the walking arrow, pointwise contractible types are not
necessarily contractible.

Another way to look at pointwise contractible types is as maps of closed
types that are pointwise equivalences. So, the map Γ.𝐴 → Γ is pointwise an
equivalence without having an inverse Γ → Γ.𝐴 (note that inverses need not
be sections in general but in this particular case the groupoids at 1 are discrete).

Proposition 80. Over the walking arrow, pointwise invertible maps are not nec-
essarily equivalences.

What happens in this particular example is that 𝜂𝐴 is not an equivalence.
An element of 𝐷(𝐴) over 𝛾1 ∈ Γ(1) is given by a triple (𝑎(1) ∈ 𝐴𝛾1 , 𝑎(0) ∈
𝐴𝛾10, 𝛼 ∶ 𝑎(1)0 ≅ 𝑎(0)), and over 𝛾0 ∈ Γ(0) by a single element 𝑎(0) ∈ 𝐴𝛾0 ; a
path over 𝑔1 ∶ 𝛾1 ≅ 𝛾′

1 is given by a pair (𝛼(1) ∶ 𝑎(1) ≅𝑔1 𝑎′(1), 𝛼(0) ∶ 𝑎(0) ≅𝑔10
𝑎(0)) such that 𝛼(1)0 · 𝛼′ = 𝛼 · 𝛼(0), and over 𝑔0 ∶ 𝛾0 ≅ 𝛾′

0 by a single path
𝛼(0) ∶ 𝑎(0) ≅𝑔0 𝑎′(0).

In the particular example above 𝐷(𝐴) looks as follows.

0 𝑎𝛾1 𝑎𝛾2 𝑎𝛾1 𝑎𝛾2 𝛾 𝛾

1 𝑎𝛾1 (𝑎𝛾1 , 𝑎𝛾2) (𝑎𝛾2 , 𝑎𝛾1) 𝑎𝛾2 𝛾1 𝛾2

𝐷(𝐴) Γ

𝛼 𝛼−1 𝛼

(id,𝛼) (id,𝛼)

Thus, 𝐷(𝐴) is globally inhabited by, for instance,

0 𝛾 𝛾 𝑎𝛾1 𝑎𝛾1

1 𝛾1 𝛾2 𝑎𝛾1 (𝑎𝛾2 , 𝑎𝛾1)

Γ 𝐷(𝐴)
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so there cannot be a map from 𝐷(𝐴) to 𝐴 because, as we saw, the latter is
not globally inhabited. In fact, if there was amap then 𝐴 would be contractible:

Proposition 81. Over the walking arrow, if 𝐴 is a pointwise contractible type
over Γ and there is a map 𝑝𝐴 ∶ 𝐷(𝐴) → 𝐴 then 𝐴 is contractible.

Proof. If 𝐴 is pointwise contractible then for each 𝛾 ∈ Γ there is an element
𝑎(𝛾) ∈ 𝐴(𝛾) and for each 𝛾1 ∈ Γ(1) there is a path 𝛼(𝛾1) ∶ 𝑎(𝛾1)0 ≅ 𝑎(𝛾10)
so that we can define a section 𝑑 of 𝐷(𝐴) by 𝑑(𝛾1) = (𝑎(𝛾1), 𝑎(𝛾1!), 𝛼(𝛾1))
and 𝑑(𝛾0) = 𝑎(𝛾0) (the action 𝑑(𝑔) on paths 𝑔 ∶ 𝛾 ≅ 𝛾′ is trivial because
𝐷(𝐴)𝑔(𝑑(𝛾), 𝑑(𝛾′)) is a singleton).

Now, if there is a map 𝑝𝐴 ∶ 𝐷(𝐴) → 𝐴, then we have the section 𝑝𝐴 ∘ 𝑑 ∶
Γ → 𝐴 and a homotopy to the section Γ.𝐴 → 𝐴p because the path sets of 𝐴
are singletons, that is 𝐴 is contractible.

and, indeed, 𝜂𝐴 would be an equivalence:

Proposition 82. Over the walking arrow, if 𝐴 is a contractible type over Γ then
𝜂𝐴 ∶ 𝐴 → 𝐷(𝐴) is an equivalence.

Proof. Since 𝐴 is contractible, any map 𝑝𝐴 ∶ 𝐷(𝐴) → 𝐴 will be a left inverse,
whose existence is sufficient for 𝜂𝐴 to be an equivalence, and such amap exists.

Note that 𝜂Γ ∶ Γ → 𝐷(Γ) is an equivalence because (strictly) 𝐷(Γ) ≅ Γ
(also by an application of Proposition 84 below) and that if 𝜂𝐴 ∶ 𝐴 → 𝐷(𝐴)
was an equivalence then 𝐴 → Γ would be an equivalence, which, as observed
earlier, it is not.

Proposition 83. Over the walking arrow, if 𝜂𝐴 ∶ 𝐴 → 𝐷(𝐴) and 𝜂𝐵 ∶ 𝐵 →
𝐷(𝐵) are equivalences and 𝑓 ∶ 𝐴 → 𝐵 is pointwise an equivalence then 𝑓 is
invertible.

Proposition 78 says that the following presheaf 𝐴 is codiscrete and hence
Proposition 82 says that 𝜂𝐴 is an equivalence.

0 𝑎 𝑎′

1 𝑎

𝐴

𝛼



7.4. EXAMPLES OF THE COBAR OPERATION 117

The underlying groupoid functor 𝐴(1) → 𝐴(0) is not a fibration because 𝑎
cannot be lifted along 𝛼 simply because the fibre over 𝑎′ is empty. However,
the converse holds.

Proposition 84. Any cloven fibration 𝐴(1) → 𝐴(0), 𝑎 ↦ 𝑎0 is the underlying
functor of a presheaf 𝐴 such that 𝜂𝐴 ∶ 𝐴 → 𝐷(𝐴) is an equivalence.

Proof. Assume a (possibly non-strict) lifting structure on 𝐴(1) → 𝐴(0) and
construct a map 𝑝𝐴 ∶ 𝐷(𝐴) → 𝐴 by mapping elements (𝑎(1), 𝑎(0), 𝛼) and
paths (𝛼(1), 𝛼(0)) at 1 to the chosen solutions 𝛼+ 𝑎(1) and (𝛼, 𝛼′)+ 𝛼(1) of their
lifting problems

𝑎(1)0 𝑎(0)

𝑎′(1)0 𝑎′(0)

𝑎(1) 𝛼+ 𝑎(1)

𝑎′(1) 𝛼′+ 𝑎′(1)

𝛼

0 𝛼(1)0
𝛼′

𝛼(0)

1 𝛼(1) (𝛼,𝛼′)+ 𝛼(1)

and elements 𝑎(0) and paths 𝛼(0) at 0 to themselves. This mapping is func-
torial because it can be checked that id𝛼+ 𝑎(1) and (𝛼, 𝛼′)+ 𝛼(1) ∘ (𝛼′, 𝛼″)+ 𝛼′(1)
are solutions and it is both natural and a left inverse of 𝜂𝐴 ∶ 𝐴 → 𝐷(𝐴) by
construction.

The last two observations suggest that there are two different model struc-
tures on the arrow category ⃖⃖⃖⃖⃖⃗Gpd both in which equivalences are given point-
wise.

7.4.4 Over the walking idempotent
In this subsection we consider 2 together with the usual multiplication · as the
base category 𝒞 with a single object.

•

𝑒

Diagram 9: The walking idempotent category
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In this case, a presheaf 𝐴 is given by an idempotent groupoid action 𝐴 →
𝐴, 𝑎 ↦ 𝑎𝑒: 𝑎𝑒𝑒 = 𝑎𝑒; a map 𝑓 ∶ 𝐴 → 𝐵 is given by an equivariant groupoid
functor: 𝑓(𝑎𝑒) = 𝑓(𝑎)𝑒.

An element (𝑎(𝑓), 𝑎(𝑓 , 𝑔))𝑓,𝑔 of 𝐷(𝐴) is uniquely determined by the two
elements 𝑎(id) and 𝑎(𝑒) and the path 𝑎(id, 𝑒) ∈ 𝐴(𝑎(id)𝑒, 𝑎(𝑒)) in 𝐴 subject to
no conditions.

1. 𝑎(𝑓 , id) = 𝑎(𝑓 , idid) = 𝑎(𝑓 , id)id · 𝑎(𝑓 id, id) = 𝑎(𝑓 , id) · 𝑎(𝑓 , id), and
2. 𝑎(id, 𝑒)𝑒 · 𝑎(𝑒, 𝑒) = 𝑎(id, 𝑒)𝑒 · 𝑎(id𝑒, 𝑒) = 𝑎(id, 𝑒𝑒) = 𝑎(id, 𝑒).

Pointwise codiscrete groupoid-valued presheaves are codiscrete if and only
if they are globally inhabited. Over the base category under consideration,
any non-empty object 𝐴 is globally inhabited because the global inhabitants
of presheaves indexed by a monoid are exactly the fixed points of the monoid
action on 𝐴 and for any element 𝑥 ∈ 𝐴 its restriction 𝑥𝑒 ∈ 𝐴 is fixed by the
action because 𝑒 is the only non-trivial monoid element and an idempotent
in the case under consideration. However, this does not remain true in the
general case of types in context. The following type (with trivial lifting because
its context Γ has no non-trivial paths) is pointwise codiscrete but does not have
a section

𝑎𝛾1 𝑎𝛾2 𝛾1 𝛾2

𝑎′
𝛾1 𝑎′

𝛾2 𝛾 𝛾

𝐴 Γ

because any section 𝑡 ∶ Γ → 𝐴 of 𝐴 → Γ would need to map 𝛾1 to 𝑡(𝛾1) =
𝑎𝛾1 and 𝛾2 to 𝑡(𝛾2) = 𝑎𝛾2 but then 𝑎′

𝛾1 = 𝑡(𝛾1)𝑒 = 𝑡(𝛾) = 𝑡(𝛾2)𝑒 = 𝑎′
𝛾2 , which is a

contradiction. In conclusion,

Proposition 85. Over the walking idempotent, pointwise contractible types are
not necessarily contractible.

Corollary 86. Over the walking idempotent, pointwise invertible maps are not
necessarily equivalences.



7.4. EXAMPLES OF THE COBAR OPERATION 119

Proof. Consider the map 𝐴 → 1⟨⟩ for Γ ⊢ 𝐴 the counterexample considered
in the proof of Proposition 85.

Proposition 87. Over the walking idempotent, closed types whose underlying
groupoid is codiscrete are contractible.
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Conclusion

In this thesis we have constructed two groupoid-valued presheaf models (over
an arbitrary index category 𝒞 ) of univalent type theory with a single universe.

The first model is called the naive groupoid-valued presheaf model. It is
constructed by translating univalent type theory into extensional type theory
extended with a universe of (strict) propositions. This translation is essentially
the groupoid model construction by Hofmann and Streicher [42, 41].

The second model is called the refined groupoid-valued presheaf model. It
is constructed by translating univalent type theory into univalent type theory
extended with a descent data operation. This translation, which uses ideas
from Quirin [70], Coquand, Mannaa and Ruch [20] and Rijke, Shulman and
Spitters [74], is presented in this thesis.

In the naive groupoid-valued presheaf model types are interpreted by pre-
sheaf groupoids. A presheaf groupoid 𝑃 is a family of groupoids 𝑃 (𝑋) with
restriction functors 𝑃 (𝑓) ∶ 𝑃 (𝑋) → 𝑃 (𝑌 ) indexed by objects 𝑋, 𝑌 ∶ 𝒞 and
morphisms 𝑓 ∶ 𝑌 → 𝑋 such that the equations 𝑃 (id𝑋) = Id𝑃 (𝑋) and 𝑃 (𝑓 ∘
𝑔) = 𝑃 (𝑔) ∘ 𝑃 (𝑓) hold strictly. The naive groupoid-valued presheaf mod-
el is obtained by constructing the groupoid model internal to the set-valued
presheaf model (over 𝒞 ) of extensional type theory. This model is deficient
because over 𝒞 = ℤ/2ℤ, for instance, we do not get the expected notion of
surjective maps between presheaves: For the unique map 𝑠0 from the pre-
sheaf 𝑃0 = {0, 1} with the “swap” action into the terminal presheaf 1, which
we expect to be surjective because the unique element of 1 has both elements
of 𝑃0 in its preimage, the type isSurj(𝑠0) = ∏𝑥∶1‖fib(𝑠0, 𝑥)‖ is not inhabited.
In other words, the naive groupoid-valued presheaf model is deficient because
levelwise surjective maps 𝑠 ∶ 𝑃 → 𝑄 (like 𝑠0 ∶ 𝑃0 → 1) might not be (intern-
ally) surjective in the sense of isSurj(𝑠). Levelwise surjectivity of a map 𝑠 gives
us that the type isSurj(𝑠) is levelwise inhabited and since this type is a homoto-
py proposition levelwise surjectivity gives us a virtual element of isSurj(𝑠). A
virtual element 𝑝 of a presheaf 𝑃 is like a strict element (𝑝(𝑓 ) ∈ 𝑃 (𝑌 ))𝑓∶𝑌 →𝑋
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except that the strict equalities 𝑝|(𝑓𝑔) = (𝑝|𝑓)|𝑔 are replaced by (coherent)
paths 𝑝|(𝑓𝑔) ⥲ (𝑝|𝑓)|𝑔. In these terms, the deficiency of the naive group-
oid-valued presheaf model can be formulated as virtual elements of presheaf
groupoids possibly not corresponding to strict elements. It is resolved by the
refined groupoid-valued presheaf model.

In the refined groupoid-valued presheaf model types are interpreted by
presheaf groupoids equipped with a patching structure. A patching structure
allows virtual elements to be strictified. Having a patching structure can be
expressed as being modal with respect to a so-called descent data operation
that sends a presheaf groupoid to its presheaf of virtual elements. The refined
groupoid-valued presheaf model is then obtained by constructing the submod-
el of modal types with respect to this descent data operation. Note that the
construction of the submodel of modal types is completely general in that it
can be carried out for an arbitrary model of univalent type theory equipped
with a descent data operation.

A natural next goal is to construct groupoid-valued sheaf models (over
arbitrary sites, i.e. index categories equipped with a Grothendieck topology)
of univalent type theorywith a single universe. They can be used [20] to refute
Markov’s principle and the axiom of countable choice.

Generalizing the models of Coquand, Mannaa and Ruch [20] to arbitrary
sites does not seem possible because over an arbitrary site the set-valued sheaf
of Booleans, for instance, does not eliminate into arbitrary groupoid-valued
sheaves in such a way that the computation rules hold strictly. A type of
Booleans that eliminates strictly into groupoid-valued sheaves would need to
have elements that are identified by paths with but not strictly equal to canon-
ical elements. Those elements are precisely the patch elements that would be
identified strictly with canonical elements in a set-valued sheaf. What should
be possible, however, is to construct a model where the universe does not
contain a code for the type of Booleans but only for an equivalent type. The
reason why the universe in a groupoid-valued sheaf model would not contain
a code for the type of Booleans is the same why the universe in the groupoid-
valued presheaf model does not contain codes for higher inductive types, for
instance it is not closed under propositional truncation. Another issue with
constructive groupoid-valued sheaf models over arbitrary sites is that quotient
inductive types seem to be required in the metatheory to interpret W-types.

The issues of universes not being closed under inductive types and quotient
inductive types being needed in the metatheory go away [22] when consider-
ing cubical- instead of groupoid-valued models. The models of Coquand, Ruch
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and Sattler [22] moreover support a hierarchy of univalent universes instead
of just a single one. The cubical-valued sheaf model is constructed using a
variation of the technique used for the refined groupoid-valued presheaf mod-
el presented in this thesis: First a constructive model of univalent type theory
(a cubical model in this case) is relativized to an index category, then the cu-
bical-valued presheaf model is constructed as the submodel of modal types
with respect to a descent data operation, and finally the cubical-valued sheaf
model is constructed as the submodel of modal types with respect to a family
of descent data operations.

The crucial step in the construction of the cubical-valued sheafmodel is the
second one, that is the construction of the cubical-valued presheaf model from
the descent data operation 𝐷 that sends a presheaf cubical set to its presheaf
of virtual elements. Once the presheaf model has been constructed, the sheaf
model for a Grothendieck topology on the index category can be constructed
internal to it. The presheaf model comes equipped with a family of (strict)
propositions [𝑐] indexed by the preorder J of covers 𝑐 ∶ J that the Grothen-
dieck topology specifies. A descent datum on a cover 𝑐 for a presheaf 𝐴, i.e. a
𝐷-modal presheaf cubical set 𝐴, can then be expressed as a function [𝑐] → 𝐴.
For each 𝑐 ∶ J, the operation 𝐷𝑐 that sends a presheaf 𝐴 to its presheaf of
descent data [𝑐] → 𝐴 on 𝑐 is a descent data operation because exponentiation
by any proposition is. Therefore, as we have seen, the unit type is 𝐷𝑐-modal
for each 𝑐 ∶ J, and the types that are modal for all covers are closed under
dependent product, dependent sum, and identity types. Call a type J-modal if
it is 𝐷𝑐-modal for all 𝑐 ∶ J. To show that a subuniverse UJ of J-modal types is
itself J-modal Coquand, Ruch and Sattler [22] use a slightly different argument
than for the subuniverses of 𝐷-modal types. Instead of defining a descent data
operation whose modal types are the J-modal ones, the construction proceeds
by showing that each 𝐷𝑐 preserves1 J-modal types. Patching structures on
UJ for each 𝐷𝑐 can then be defined in essentially the same way as for a sub-
universe of modal types for a single descent data operation. Up to this point,
the present construction could also be carried out to obtain a groupoid-valued
sheaf model of univalent type theory with a single univalent universe. How-
ever, the higher inductive types in the relativized cubical model that Coquand,
Ruch and Sattler [22] use to model inductive types in the sheaf model would
not be contained in the universe and might not exist constructively in the
groupoid-valued case, as mentioned above.

1To show that each 𝐷𝑐 preserves J-modal types it is crucial that 𝑐0 ≤ 𝑐1 in the preorder J
of covers implies [𝑐0] → [𝑐1], and that for any two covers 𝑐1 and 𝑐2 there exists 𝑐0 ≤ 𝑐1, 𝑐2.
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