
 

Understanding the genetic 
architecture of fatty liver 

disease 
 

 

 

Oveis Jamialahmadi 

 

 

 

Department of Molecular and Clinical Medicine 

Institute of Medicine 

Sahlgrenska Academy, University of Gothenburg 
 

 

 

 

 

 

 

Gothenburg 2023 



 

 

 

Cover illustration: Oveis Jamialahmadi 

 

 

 

 

 

 

 

 

 

 

 

 

 

Understanding the genetic architecture of fatty liver disease 
© Oveis Jamialahmadi 2023 
oveis.jamialahmadi@wlab.gu.se 
 
ISBN 978-91-8069-035-5 (PRINT)  
ISBN 978-91-8069-036-2 (PDF) 
http://hdl.handle.net/2077/73763 
 
Printed in Borås, Sweden 2023 
Printed by Stema Specialtryck AB 
  

 

 

 

 

To my family 

 

 

 

 

 

 

 

 

 

 

“I then understood that all forms of knowledge which do not unite these 
conditions (imperviousness to doubt) do not deserve any confidence, because 
they are not beyond the reach of doubt, and what is not impregnable to doubt 
cannot constitute certitude.” 

 

Ghazali (1058-1111 CE), The Deliverance from Error. 

  

Trycksak
3041 0234

SV
ANENMÄRKET

Trycksak
3041 0234

SV
ANENMÄRKET



 

 

 

Cover illustration: Oveis Jamialahmadi 

 

 

 

 

 

 

 

 

 

 

 

 

 

Understanding the genetic architecture of fatty liver disease 
© Oveis Jamialahmadi 2023 
oveis.jamialahmadi@wlab.gu.se 
 
ISBN 978-91-8069-035-5 (PRINT)  
ISBN 978-91-8069-036-2 (PDF) 
http://hdl.handle.net/2077/73763 
 
Printed in Borås, Sweden 2023 
Printed by Stema Specialtryck AB 
  

 

 

 

 

To my family 

 

 

 

 

 

 

 

 

 

 

“I then understood that all forms of knowledge which do not unite these 
conditions (imperviousness to doubt) do not deserve any confidence, because 
they are not beyond the reach of doubt, and what is not impregnable to doubt 
cannot constitute certitude.” 

 

Ghazali (1058-1111 CE), The Deliverance from Error. 

  



 

 

  
Understanding the genetic architecture 

of fatty liver disease 

Oveis Jamialahmadi 

Department of Molecular and Clinical Medicine, Institute of Medicine 
Sahlgrenska Academy, University of Gothenburg 

Gothenburg, Sweden 

ABSTRACT 
Non-alcoholic fatty liver disease (NAFLD) is currently the most common 
chronic liver disease, ranging from simple steatosis to more severe conditions, 
namely non-alcoholic steatohepatitis (NASH), liver fibrosis, cirrhosis, and 
hepatocellular carcinoma (HCC). NAFLD has a strong genetic component, and 
its heritability depends on environmental factors and ethnicity. So far, genome-
wide association studies were able to explain only a small fraction of its 
heritability, indicating the presence of missing heritability. Moreover, despite 
more than 20% of the general population and more than 70% of individuals with 
obesity have fatty liver, only a minority of individuals will progress to end stage 
liver disease. In the first study, we used polygenic risk scores (PRS) based on 
5 known common genetic determinants of NAFLD to stratify the risk of HCC 
in individuals with dysmetabolism. We showed the ability of our PRS to 
predict the full spectrum of NAFLD and HCC both in high-risk individuals and 
in the general population. Additionally, we demonstrated a causal association 
between genetic predisposition to hepatic steatosis and HCC using a 
Mendelian Randomization approach. In the second study, we performed an 
exome-wide association study of alanine aminotransferase (ALT), a biomarker 
of liver fat and damage, to identify other genetic determinants of fatty liver 
disease. We found two missense variants on GPAM and APOE genes, robustly 
associated with liver fat content and chronic liver disease. Finally, in the third 
study, we performed a gene-environment-wide interaction study (GEWIS) of 
ALT to evaluate the role of gene-environment interactions in fatty liver disease 
susceptibility and to identify new genetic determinant of NAFLD. We found a 
new locus interacting with body mass index (BMI), the strongest 
environmental risk factor for NAFLD, associated with liver fat and chronic 
liver disease, but not with ALT. 

In conclusion, these findings strongly support a causal relationship between 
liver fat accumulation and severe liver disease. Moreover, new genetic 
determinants of fatty liver identified by our analyses may be used for risk 
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stratification of advanced liver disease and HCC, and exploited as potential 
drug targets. 
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SAMMANFATTNING PÅ SVENSKA 
Icke-alkoholrelaterad fettleversjukdom (NAFLD) är för närvarande den 
vanligaste kroniska leversjukdomen, vilken inkluderar allt från enkel steatos 
till svårare tillstånd såsom icke-alkoholrelaterad steatohepatit (NASH), 
leverfibros, cirros och hepatocellulärt karcinom (HCC). NAFLD har en stark 
genetisk komponent och dess ärftlighet beror på miljöfaktorer och etnicitet. 
Hittills har genomomfattande associationsstudier (GWAS) bara kunnat 
förklara en liten del av dess ärftlighet vilket innebär att en stor del av 
ärftligheten är okänd. Trots att mer än 20 % av befolkningen och mer än 70 % 
av individerna med fetma har fettlever, kommer endast en minoritet av dessa 
att utveckla slutstadiet av leversjukdom. I den första studien använde vi 
polygena riskpoäng (PRS) baserade på 5 etablerade genetiska determinatorer 
för NAFLD för att stratifiera risken för HCC hos individer med metabolt 
syndrom. Vi visade förmågan hos vår PRS att förutsäga hela spektrumet av 
NAFLD och HCC både hos högriskindivider och befolkningen som helhet. 
Dessutom visade vi ett orsakssamband mellan genetisk predisposition för 
leversteatos och HCC med hjälp av en mendelsk randomiseringsmetod. I den 
andra studien utförde vi en exomomfattande associationsstudie av 
alaninaminotransferas (ALT), en biomarkör för leverfett och leverskador för 
att identifiera andra genetiska determinatorer för fettleversjukdom. Vi hittade 
två missense-varianter på GPAM- och APOE-gener, starkt associerade med 
mängden leverfett och kronisk leversjukdom. I den tredje studien utförde vi en 
gen-miljöomfattande interaktionsstudie (GEWIS) av ALT för att utvärdera 
rollen av gen-miljöinteraktioner och dess koppling till fettleversjukdomar och 
för att identifiera ny genetisk determinant för NAFLD. Vi hittade ett nytt lokus 
som interagerar med body mass index (BMI), den starkaste miljöriskfaktorn 
för NAFLD som är associerad med leverfett och kronisk leversjukdom, men 
inte med ALT. 

Sammanfattningsvis stöder dessa upptäckter starkt ett orsakssamband mellan 
ackumulering av leverfett och allvarlig leversjukdom. Dessutom kan de nya 
genetiska determinanterna för fettlever som identifierats av våra analyser 
användas för riskstratifiering av avancerad leversjukdom och HCC, samt 
utnyttjas som potentiella läkemedelsmål. 
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1 INTRODUCTION 
Aim of this thesis is to provide a better understanding of the genetic structure 
of fatty liver disease (FLD), and further examines the applicability of genetic 
modulators of FLD to stratify the risk of progression to hepatocellular 
carcinoma (HCC). The thesis consists of three studies in which well-known 
genetic modulators of FLD were used to evaluate a causal relationship between 
liver fat content and HCC1. Furthermore, novel genetic modulators of FLD 
were discovered using both exome-wide association and genome-BMI-wide 
interaction approaches on alanine aminotransferase (ALT)2. 

 

1.1 NON-ALCOHOLIC FATTY LIVER DISEASE 
Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver 
disease in developed countries with a bidirectional association with various 
features of metabolic syndrome3. It has been estimated that NAFLD affects 
around 21-33% of the global population, and the burden is expected to 
deteriorate in parallel with the global prevalence of type 2 diabetes, obesity 
and metabolic syndrome, which in turn may progress to end-stage liver disease 
and HCC4. While a minority of individuals with NAFLD (~10%) may further 
develop liver-related complications, the risk stratification of these individuals 
among NAFLD population remains an important challenge3. 

NAFLD is described by the accumulation of triglycerides in the form of lipid 
droplets in more than 5% of hepatocytes (steatosis) and in the absence of other 
secondary causes, including excessive alcohol intake, viral hepatitis, 
steatogenic medications, or hereditary liver diseases5-7. NAFLD covers a broad 
spectrum of disorders, including simple steatosis (with or without mild 
inflammation), non-alcoholic steatohepatitis (NASH), characterized by lobular 
inflammation and hepatocellular injury due to ballooning, liver fibrosis 
(collagen deposition), cirrhosis (advanced fibrosis) and HCC (Figure 1)3, 8, 9. 
NAFLD is a heterogenous condition, and therefore, there exists a high 
interindividual variability in the disease progression and response to treatment. 
Nonetheless, recent advances in genomics and metabolomics have shed some 
light on different aspects of the disease3. 

While the natural course of NAFLD is bidirectional and depends on the disease 
activity and fibrosis stage, advanced fibrosis (stages 3 and 4) is the main 
prognostic feature of all-cause and liver-related mortality and events3, 10. 
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Nonetheless, cardiovascular disease and extrahepatic malignancies are still the 
leading causes of death in NAFLD patients, most probably due to coexisting 
metabolic comorbidities between NAFLD and cardiovascular disease11. 

Figure 1. The disease spectrum of fatty liver disease. Images are courtesy of Professor 
Luca Valenti, University of Milan, Italy. Abbreviations: NASH, non-alcoholic 
steatohepatitis. 

 

1.1.1 EPIDEMIOLOGY 
The global prevalence of NAFLD in 2016 was 25.2%, and varied from 13.5% 
to 31.8% in Africa and Middle East, respectively. Obesity, type 2 diabetes, 
hyperlipidemia, metabolic syndrome and hypertension are among the main 
metabolic comorbidities associated with the disease12. Notably, around 43-
64% of individuals with type 2 diabetes and 80% with obesity are diagnosed 
with NAFLD3. Of note, approximately 20% of individuals with NAFLD are 
lean (body mass index, BMI < 25 kg/m2), and around 40% are non-obese (BMI 
< 30 kg/m2)13. 

Moreover, NASH prevalence among NAFLD patients with available biopsy 
varies from 20% to 59%, of whom ~10-29% develop cirrhosis over 1-4 
decades, and between 4 to 27% of NASH-induced cirrhotic patients develop 
HCC. Hence, regular screening and surveillance for HCC are recommended in 
individuals with NASH-related cirrhosis7, 12, 14. In addition, while there are a 
large number of non-cirrhotic NAFLD patients who develop HCC, they are not 
yet included in routine HCC screening guidelines due to lower incidence rate 
as compared to NASH-related cirrhosis14. 

The expected increase in NAFLD and NASH prevalence due to an increase in 
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childhood obesity worldwide on the other hand, further underscore health-care 
and economic burden of fatty liver disease3, 5, 14, 15. 
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sensitive to small amounts of liver fat contents. It has been shown that MRI-
PDFF is more sensitive and accurate than both CAP and histologically 
determined steatosis grade, and well correlated with measurements from 
magnetic resonance spectroscopy (MRS)16, 17. 

Conventionally, liver biopsy has been the gold standard technique to detect 
histological aspects of NAFLD. However, this approach suffers from 
limitations, such as sampling bias, intra-/inter-observer variability and 
invasiveness18. Nonetheless, liver biopsy is the ultimate necessity when the 
extent of hepatic fibrosis or presence of cirrhosis cannot be clearly deduced 
from non-invasive methods5. 
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Nonetheless, cardiovascular disease and extrahepatic malignancies are still the 
leading causes of death in NAFLD patients, most probably due to coexisting 
metabolic comorbidities between NAFLD and cardiovascular disease11. 

Figure 1. The disease spectrum of fatty liver disease. Images are courtesy of Professor 
Luca Valenti, University of Milan, Italy. Abbreviations: NASH, non-alcoholic 
steatohepatitis. 
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1.1.3 ENVIRONMENTAL RISK FACTORS OF NAFLD 
Obesity, insulin resistance, type 2 diabetes, metabolic syndrome, familial 
disorders (e.g. hypobetalipoproteinemia or lipodystrophy), dietary habits, lack 
of exercise, socioeconomic factors, smoking and alcohol consumption are 
among the main risk factors and environmental triggers predisposing to 
NAFLD19-22. 

Obesity (visceral) is a major risk factor for different features of metabolic 
syndrome, and is defined by BMI, where BMI greater than or equal 25 and 30 
denote overweight and obesity, respectively. However, there are ongoing 
debates on better accuracy of waist circumference in measuring the visceral 
obesity20. 

It has been also shown that alcohol consumption (even moderately) and obesity 
synergistically increase NAFLD risk (i.e. dual etiology fatty liver disease)19. 
Furthermore, the crosstalk between liver and gut may also contribute to 
metabolic aberrations in NAFLD, as evidenced by studies reporting changes 
in gut microbiota compositions in NAFLD patients. An increase in the 
intestinal permeability (leaky gut) due to the impaired intestinal barrier 
function may aggravate the inflammation through bacteria-produced 
metabolites such as short-chain fatty acids or lipopolysaccharides3, 5, 23. 

It should also be noted that, NAFLD is a complex disorder with both genetic 
and environmental components; however, the exact contribution of each 
component is unknown and may be influenced by ethnicity, geography and the 
interplay between these components (gene-environment interactions)19, 22, 24. 
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1.2 GENOME-WIDE ASSOCIATION STUDIES 
Complex traits and disorders, such as diabetes or NAFLD, are influenced by 
numerous genetic variants and environmental factors, as opposed to Mendelian 
disorders with single genetic defects25. Since sequencing the human reference 
genome in 2003, genome-wide association studies (GWAS) have been the 
standard hypothesis-free tools to examine the association between millions of 
single nucleotide polymorphisms (SNPs) across the entire genome and 
biological phenotypes, especially complex traits (Figure 2). To date, more than 
3,700 genome-wide association studies (GWAS) have detected more than 
50,000 genome-wide significant (P < 5E-8) genetic variants26-30. These 
findings have shaped our understanding of genetic architecture of several 
complex traits and their genetic susceptibility28. 

 

Figure 2. An example of GWAS of a polygenic trait (average diameter of very-low-
density lipoprotein (VLDL) particles) in the UK Biobank study. Y-axis shows -log10 of 
p-values for the association of each common SNP with VLDL diameter, and X-axis 
represents the physical position in base pair on chromosomes. Dashed line shows the 
genome-wide significant threshold of 5E-8. Top loci have been marked with their 
nearest coding gene symbols. 

While GWAS have already detected multiple well-replicated loci, they still 
cannot fully explain the “missing heritability” observed in complex traits, that 
is, identified common SNPs explain only a fraction of heritability of familial 
clustering and often have small effects on the trait under study25, 31. Despite this 
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fact, several drugs approved by US Food and Drug Administration target genes 
with common variants of modest effects, which may warrant the continuation 
of GWAS with larger sample sizes28. For instance, genetic loci on genes 
targeted by thiazolidinediones (for type 2 diabetes) or statins (lipid lowering 
medications) account for less than 1% of the trait variation32. In addition to the 
importance of GWAS in identifying potential drug targets or trait-associated 
loci, findings from GWAS provide invaluable resources for causal inference 
using Mendelian Randomization and estimation of SNP heritability28, 33.  

Mere SNP-trait associations cannot directly pinpoint the underlying 
mechanisms or genes related to the phenotypic variations, and hence the direct 
biological implications of GWAS findings may not be straightforward28. More 
than 90% of disease-associated genetic variants are found in non-coding 
regions, and only around 1/3 of genes targeted by causal variants are the nearest 
gene to the top GWAS hits25, 28. One striking example is the association of 
intronic variants at FTO locus with obesity, which was originally thought to be 
the gene responsible for the observed effect on obesity. However, follow-up 
studies showed that indeed this locus interacts with Irx3 promoter (thousands 
of kb away) in a mouse model. This was later confirmed by showing the 
association between the intronic locus and IRX3 expression in human brain 
samples25. 

Fine-mapping of multiple SNP-trait associations using either frequentist or 
Bayesian approaches can potentially narrow down the multiple associations to 
a fewer set of putative causal variants (i.e. credible set)25, 29. Moreover, 
combining GWAS signals with expression quantitative trait loci (eQTL) data 
via colocalization can potentially identify genes (eGene) which their mRNA 
levels are influenced by genetic variations from GWAS25, 29, 34. However, it is 
worth noting that dissecting the functional impact of variants with small effect 
sizes is extremely challenging, converging to Fisher’s “infinitesimal model” of 
infinite causal variants with unidentifiable functional effects on the trait. 
Hence, eGenes of variants with small effects have a small contribution to the 
disease etiology35. 

Despite the numerous achievements of GWA studies so far, their applicability 
can be more extended by increasing sample size (e.g. at population level), deep 
phenotyping, and covering other neglected ethnicities. Moreover, gene-gene 
and gene-environment interactions may aid in discovering more undetected 
associations28, 31. 

One important limitation of GWAS is multiple comparison problem, which 
necessitates stringent thresholds. The GWAS significance threshold 
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commonly used is based on the Bonferroni correction of 1 million independent 
tests (i.e. 5E-8 with a false positive rate of 5%)28. This stringent threshold in 
practice limits the ability of most GWAS to explain the heritability of many 
traits31. Increasing sample size (e.g. by employing large consortia), or reducing 
the number of tests (e.g. by taking a candidate gene approach or selecting only 
putative loss-of-function variants) can to some extent mitigate this issue2, 28. 
Indeed, the conundrum of missing heritability can be partially explained by the 
hypothesis that many SNPs of modest effect sizes cannot reach the significance 
threshold31. Moreover, many traits are highly influenced by environmental risk 
factors; therefore, gene-gene and gene-environment interactions are expected 
to explain a proportion of the underlying heritability. However, one should not 
forget that due to shared environment or epistatic effects, many twin-based 
estimates of heritability may be biased28, 36. 

 

1.2.1 POLYGENIC RISK SCORES 
Genetic risk profiling was originally employed to identify at-risk individuals 
in familial diseases or Mendelian disorders, such as mutations in BRCA1 and 
BRCA2 genes in breast cancer, or mutations in CTFR in cystic fibrosis37. In 
addition, as alluded before, many genetic variants of small effect sizes have 
been discovered from GWA studies to be associated with a wide range of 
complex traits, and this number is expected to increase with population-based 
GWAS and meta-analyses. While the tiny effects of these variants suggest they 
cannot serve as risk predictive tools, these genetic variants can be combined 
for risk stratification or prognostic prediction purposes in form of polygenic 
risk scores (PRS), which reflect the genetic predisposition (probabilistic 
susceptibility) at an individual level37-39 (Figure 3). 

PRS are calculated by weighted (GWAS marginal effects) sum of risk alleles 
at several genetic loci40. So far, multiple algorithms have been developed to 
calculate PRS, aiming at inclusion of variants in terms of maximizing the 
explained phenotypic variance or disease discrimination38, 39. Individuals with 
high PRS can then benefit from personalized health management strategies or 
lifestyle modifications35, 40. There are already ongoing investigations on 
clinical applications of PRS for risk prediction and stratification. Notably, a 
longitudinal study of coronary artery disease in the UK Biobank has reported 
a superior performance of PRS in predicting the disease incidence compared 
to common clinical risk factors (e.g. age, sex, blood pressure, smoking, etc.). 
When extending these findings to 13 million middle-aged individuals from 
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UK, inclusion of PRS in the common risk prediction algorithm QRISK shifted 
around 500,000 individuals from low to high risk for statin prescription41. 

 

Figure 3. An example of PRS. A polygenic risk score for average diameter of VLDL 
particles in Europeans from UK Biobank was calculated from the GWAS depicted in 
Figure 2 after linkage disequilibrium (LD) clumping. Lower panel shows the 
distribution of the calculated polygenic score along with the quantile plot of 10 
quantiles of the score versus the mean of the trait (y-axis). 
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1.3 MENDELIAN RANDOMIZATION 
Observational epidemiological studies rarely can identify a causal relationship 
between an exposure (risk factor) and outcome due to the presence of several 
unmeasured confounders (distortion of exposure-outcome association because 
of common causes), reverse causality and other potential biases42, 43. The 
protective effect of antioxidant and vitamin supplements on cardiovascular 
disease is one example of such spurious causal inferences via observational 
studies44. Mendelian Randomization (MR) on the other hand employs genetic 
variants as instrumental variables (IVs) to examine the causal association 
between an exposure of interest and an outcome42, 45. Conceptually, MR relies 
on the Mendel’s second law, also called random assortment law, which states 
that the inheritance of one trait is independent of the others46. This random 
allocation of genetic variants at conception guards against the confounding 
biases in observational studies, and mimics randomized controlled trials 
(RCT)44. Furthermore, genetic variants are not influenced by disorders and 
therefore, are protected against reverse causation44. However, while genetic 
variants are generally free of confounding factors associated with 
observational studies, extra caution is required against introducing 
confounding via population stratification43. 

 

Figure 4. Schematic representation of directed acyclic graph (DAG) of MR analysis. 
Exposure X causes outcome Y with causal effect size of β, given that genetic variant G 
is a valid instrument associated with the exposure (γ), affects Y only through X, and 
does not associate with measured or unmeasured confounders (U). Dashed lines 
represent forbidden paths violating instrumental variable assumptions.  
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MR relies on three main assumptions (Figure 4) that genetic variants should 1) 
be robustly associated with the exposure (relevance), 2) influence the outcome 
only via the exposure (exclusion restriction), and 3) not share any common 
causes with the outcome (independence)42-45. 

Thanks to GWAS, several genetic instruments can be selected based on 
variants which robustly associate with the exposure of interest (e.g. P < 5E-8). 
Moreover, single variants can be combined as PRS to increase the statistical 
power. Nonetheless, it is always recommended to examine the relevance 
assumption via F-statistics (typically > 10) or other appropriate metrics such 
as proportion of variance explained (R2) to account for the sample size used in 
the MR study42, 44. Lack of genetic instrument-exposure strength in turn results 
in weak instrument bias, violating the so-called “NO Measurement Error 
(NOME)” assumption of MR, which assumes the association of genetic 
instruments-exposure are estimated with no measurement error47. 

While one important assumption of MR is exclusion restriction, many genetic 
variants may influence the outcome under investigation via pathways 
independent of exposure-outcome pathway (so-called horizontal pleiotropy). 
In such cases, where the genetic instruments show pleiotropic effects, the 
causal estimates can be biased44. Several approaches have been developed to 
tackle this issue including MR-Egger, mode- and median-based estimators48. 

The number of studies employing MR to study the causal relationships 
between modifiable exposures and disease outcomes has been growing 
increasingly, from 1 to 800 studies in 2003 and 2020, respectively. MR studies 
cover a wide range of applications such as clinical, socioeconomic or 
environmental, and include examples from the effect of IL-6 receptor blockage 
on COVID-19 to education/intelligence effect on Alzheimer’s disease risk44, 

49. 
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1.4 GENETIC SUSCEPTIBILITY TO NAFLD 
As discussed before, NAFLD is a complex trait with both genetic and 
environmental components. The estimated heritability (i.e. the amount of the 
phenotypic variance explained by genetic factors) of NAFLD based on twin 
studies and familial aggregation ranges from 20% to 70%, which in turn depends 
on the environmental factors, ethnicity or study design22, 24, 27. Moreover, in a 
recent twin study, the heritability (additive) of hepatic fat content measured by 
MRI-PDFF was estimated to be around 50%50. 

Estimated SNP-heritability (h2
g) of liver fat content measured by MRI-PDFF 

in the UK Biobank (for ~50,000 Europeans) is 17% (unpublished data). 
Although this estimate represents only common variants under an additive 
genetic model (narrow-sense), it suggests the presence of missing heritability, 
which as mentioned previously, can be explained by larger GWAS, rare variant 
(gene-based) analyses or exploring gene-gene or gene-environment 
interactions28, 31. Indeed, Stender et al. have shown the robust interaction of 
three genetic modulators of NAFLD, namely PNPLA3 I148M, TM6SF2 
E167K and GCKR P446L, and adiposity (BMI) in predicting the entire 
spectrum of NAFLD, ranging from steatosis to inflammation and cirrhosis51. 
Nevertheless, this study was limited to only few well-known common variants 
and did not examine the interaction effect at exome- or genome-wide level. 

 

1.4.1 COMMON GENETIC DETERMINANTS OF 
NAFLD 

GWAS have shaped our understanding of genetic architecture of NAFLD within 
the past decade by examining the association of millions of SNPs across the 
genome8, 27. So far, at least 6 genetic loci have been identified to be robustly 
associated with NAFLD susceptibility and progression, namely variants on 
patatin-like phospholipase domain-containing 3 (PNPLA3), transmembrane 6 
superfamily member 2 (TM6SF2), glucokinase regulator (GCKR), membrane 
bound O-acyltransferase domain-containing 7 (MBOAT7), Mitochondrial 
Amidoxime Reducing Component 1 (MARC1), and hydroxysteroid 17β- 
dehydrogenase (HSD17B13)8, 22, 24, 27, 52, 53. While the first 5 genes are involved 
in hepatic fat metabolism, the splice variant on HSD17B13 protects against liver 
fibrosis and HCC development, independently of liver fat accumulation24. 
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power. Nonetheless, it is always recommended to examine the relevance 
assumption via F-statistics (typically > 10) or other appropriate metrics such 
as proportion of variance explained (R2) to account for the sample size used in 
the MR study42, 44. Lack of genetic instrument-exposure strength in turn results 
in weak instrument bias, violating the so-called “NO Measurement Error 
(NOME)” assumption of MR, which assumes the association of genetic 
instruments-exposure are estimated with no measurement error47. 

While one important assumption of MR is exclusion restriction, many genetic 
variants may influence the outcome under investigation via pathways 
independent of exposure-outcome pathway (so-called horizontal pleiotropy). 
In such cases, where the genetic instruments show pleiotropic effects, the 
causal estimates can be biased44. Several approaches have been developed to 
tackle this issue including MR-Egger, mode- and median-based estimators48. 

The number of studies employing MR to study the causal relationships 
between modifiable exposures and disease outcomes has been growing 
increasingly, from 1 to 800 studies in 2003 and 2020, respectively. MR studies 
cover a wide range of applications such as clinical, socioeconomic or 
environmental, and include examples from the effect of IL-6 receptor blockage 
on COVID-19 to education/intelligence effect on Alzheimer’s disease risk44, 

49. 
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1.4 GENETIC SUSCEPTIBILITY TO NAFLD 
As discussed before, NAFLD is a complex trait with both genetic and 
environmental components. The estimated heritability (i.e. the amount of the 
phenotypic variance explained by genetic factors) of NAFLD based on twin 
studies and familial aggregation ranges from 20% to 70%, which in turn depends 
on the environmental factors, ethnicity or study design22, 24, 27. Moreover, in a 
recent twin study, the heritability (additive) of hepatic fat content measured by 
MRI-PDFF was estimated to be around 50%50. 

Estimated SNP-heritability (h2
g) of liver fat content measured by MRI-PDFF 

in the UK Biobank (for ~50,000 Europeans) is 17% (unpublished data). 
Although this estimate represents only common variants under an additive 
genetic model (narrow-sense), it suggests the presence of missing heritability, 
which as mentioned previously, can be explained by larger GWAS, rare variant 
(gene-based) analyses or exploring gene-gene or gene-environment 
interactions28, 31. Indeed, Stender et al. have shown the robust interaction of 
three genetic modulators of NAFLD, namely PNPLA3 I148M, TM6SF2 
E167K and GCKR P446L, and adiposity (BMI) in predicting the entire 
spectrum of NAFLD, ranging from steatosis to inflammation and cirrhosis51. 
Nevertheless, this study was limited to only few well-known common variants 
and did not examine the interaction effect at exome- or genome-wide level. 

 

1.4.1 COMMON GENETIC DETERMINANTS OF 
NAFLD 

GWAS have shaped our understanding of genetic architecture of NAFLD within 
the past decade by examining the association of millions of SNPs across the 
genome8, 27. So far, at least 6 genetic loci have been identified to be robustly 
associated with NAFLD susceptibility and progression, namely variants on 
patatin-like phospholipase domain-containing 3 (PNPLA3), transmembrane 6 
superfamily member 2 (TM6SF2), glucokinase regulator (GCKR), membrane 
bound O-acyltransferase domain-containing 7 (MBOAT7), Mitochondrial 
Amidoxime Reducing Component 1 (MARC1), and hydroxysteroid 17β- 
dehydrogenase (HSD17B13)8, 22, 24, 27, 52, 53. While the first 5 genes are involved 
in hepatic fat metabolism, the splice variant on HSD17B13 protects against liver 
fibrosis and HCC development, independently of liver fat accumulation24. 
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PNPLA3 

In 2008, the first NAFLD GWAS identified the most robust genetic 
determinant of fatty liver disease, namely PNPLA3 I148M (rs738409 C>G)54. 
This missense variant, which encodes for an isoleucine to methionine 
substitution at position 148, associates with the full spectrum of the disease 
and within different ethnicities (Europeans, Asians and Hispanics)27. PNPLA3 
is involved in remodeling of intracellular lipid droplets and has been shown to 
have acylglycerol O-acyltransferase and triacylglycerol lipase activity27. 
Additionally, it shows retinyl ester activity in hepatic stellate cells55. Unlike 
the wild-type PNPLA3, the mutant protein shows no lipase activity and evades 
degradation, which results in an accumulation on lipid droplets and interfering 
with triglycerides mobilization and turnover56. This in turn leads to 
sequestering gene identification-58 (CGI-58), a cofactor for triglycerides 
hydrolase activity of adipose triglyceride lipase (ATGL)57. In line with this, 
Pnpla3 silencing in I148M knock-in mice mitigated liver fat accumulation, 
inflammation and fibrosis in steatogenic-fed mice, suggesting pharmacological 
silencing of the mutant protein may be a potential therapeutic option58, 59. 

GCKR 

A GWAS on computed tomography (CT) measured steatosis in 2011 identified 
a missense variant on GCKR (rs1260326, P446L) to be associated with CT 
steatosis and histology based NAFLD52. The variant increases glucose influx 
by increasing the activity of glucokinase (GK), resulting in an elevated de novo 
lipogenesis (owing to an increase in synthesis of malonyl-CoA) and higher 
susceptibility to NAFLD22, 24, 27, 60. Nonetheless, the variant is associated with 
lower insulin resistance, conferring protection against diabetes22. 

TM6SF2 

An exome-wide association study in 2014 identified a missense variant on 
TM6SF2 (rs58542926 C>T) associated with higher liver fat content stored in 
intracellular lipid droplets, and resulting in lower expression at mRNA and 
protein level61. While the exact function of the protein is not clear, TM6SF2 is 
a membrane protein involved in lipoprotein secretion by modulating 
qualitative enrichment of VLDL triglyceride content24, 27. Therefore, the 
carriers of this mutation are at risk of NAFLD due to less lipidation and 
impaired VLDL secretion, diverting the lipid flux towards the synthesis of lipid 
droplets22, 24, 60. Conversely, by reducing the circulating lipoproteins, this 
variant confers protection against cardiovascular disease22, 24. 
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MBOAT7 

A GWAS in 2015 identified a missense variant (rs641738 C>T) at TMC4-
MBOAT7 locus conferring higher risk of alcohol-related liver cirrhosis62. One 
year later, the association of this variants was shown with different spectrum 
of NAFLD, namely increased liver fat content, severity of liver damage and 
liver fibrosis. It has also been shown that the variant in fact influences 
MBOAT7 expression levels, an endomembrane protein of six transmembrane 
domains, and not TMC463. The variant likely modulates the remodeling of 
phosphatidylinositol (PI) by incorporating arachidonic acid (a polyunsaturated 
fatty acid, PUFA) into lysophospholipids via Lands’ cycle in the liver24, 27, 63, 

64. Hence, a reduction in PI bound arachidonic acid results in accumulating of 
saturated PI and ensuing triglycerides synthesis24. Very recently, a large meta-
analysis of more than 1 million individuals further verified the association of 
this genetic variant with the presence and severity of NAFLD65. 

HSD17B13 

While all the identified common genetic variants increased the susceptibility 
to the disease, a protective splice donor variant on HSD17B13 
(rs72613567:TA, adenine insertion adjacent to the donor splice site) was 
discovered in an exome-wide association study of ALT in 2018. The variant 
was associated with a lower risk of chronic liver disease and protected against 
the steatosis progression towards NASH66. While the exact mechanisms by 
which this variant confers a protective effect are not clear yet, it has been 
suggested that the variant influences NAFLD through the retinol 
dehydrogenase activity of HSD17B13 in lipid droplets. Hence, the loss-of-
function variant results in a reduction in hepatic stellate cell activity, 
inflammation and fibrogenesis independently of the liver fat content24, 27, 60. 

MARC1 

Recently, a GWAS using UK Biobank data found a missense variant on 
MARC1 (rs2642438, A165T) protecting against all-cause cirrhosis and fatty 
liver53. While its physiological implications in NAFLD are not clear, a recent 
study has shown that the variant increases hepatic phosphatidylcholines, with 
a lipid profile similar to that of the HSD17B13 variant67. 
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Common genetic determinant of fatty liver and hepatic lipid metabolism 

It is important to note that genetic determinants predisposing to both alcoholic 
and non-alcoholic fatty liver are largely overlapping, suggesting the shared 
genetic architecture of these two conditions8, 22, 24, 64. Hence, both alcoholic and 
non-alcoholic fatty liver can be considered as different manifestations of the 
same condition, that is fatty liver disease (FLD)22. Furthermore, almost all the 
common variants with a robust association with NAFLD, are involved in lipid 
metabolism, including lipid trafficking, compartmentalization and remodeling 
(Figure 5)22, 24, 60. 

 

Figure 5. The metabolic pathways of common genetic determinants of NAFLD. The 
proteins have been shown based on their putative biological functions and their 
presumed contribution to the disease pathogenesis (created by Biorender).  

 

1.4.2 NAFLD: THE USE OF GENETICS IN 
CAUSALITY AND RISK STRATIFICATION 

While epidemiological studies have already suggested the association of 
obesity with cardiometabolic disorders and NAFLD, shedding light on causal 
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relationships between these traits is beyond the reach of observational 
studies27. As alluded before, MR tackles the limitations of observational 
studies, and is capable of inferring causal relationships between exposure-
outcome of interest using robust genetic instruments. Of note, an MR study has 
shown a causal association between BMI and liver enzyme levels, type 2 
diabetes and cardiovascular disease, using the most robust genetic determinant 
of obesity at FTO locus68. 

In another seminal MR study using a polygenic risk score of four genetic 
determinants of NAFLD (PNPLA3, TM6SF2, GCKR and MBOAT7), a causal 
association was found between liver fact content and liver inflammation, 
ballooning and fibrosis. These findings suggest a causal role of long-term 
accumulation of hepatic fat on NAFLD-related liver damage69. This in turn 
implies a fallacy in the notion of liver fat content being “benign”, since 
“simple” steatosis is a causal player in the progression towards chronic liver 
disease22. This adverse effect of liver fat accumulation on liver damage can be 
seen also at a population level (Figure 6, unpublished data), where liver fat 
content is tightly correlated with different spectra of the fatty liver disease and 
HCC. 

In addition, genetic determinants of NAFLD in form of PRS can potentially be 
used to delineate the heterogeneity of the disease by risk stratification, and to 
predict the disease progression27, 70. Compared to other biomarkers and 
predictors, genetic determinants represent a lifetime burden, and since their 
effects on the outcome are influenced by environmental factors, such as insulin 
resistance, obesity and lifestyle, they offer a reliable tool for liver disease 
screening70. Several examples of the use of PRS as non-invasive tools in risk 
stratification and long-term prediction of liver disease complications have been 
reported, including prediction of NAFLD progression towards NASH/fibrosis, 
clinical decision making, stratification of advanced fibrosis, and finding 
potential drug targets24, 70. Furthermore, it has been shown that common 
genetic variants can be integrated with clinical scores to improve the risk 
prediction for severe liver disease in individuals with an intermediate/high 
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predicted risk by clinical fibrosis scores, especially in those with metabolic risk 
factors71. 

 

Figure 6. Correlation between effect of common genetic modulators of liver fat content 
and fatty liver disease at a population level. Effects of genetic variants in 347,000 
unrelated Europeans from UK Biobank were estimated using a regression analysis 
adjusted for age, sex, body mass index and principal components of ancestry. R2 
indicates coefficient of determination between effect sizes. CLD, chronic liver disease; 
PDFF, proton density fat fraction; ALT, alanine aminotransferase. 
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2 AIMS 
The overall aim of this thesis was to further understand the genetic basis of 
fatty liver disease using population-based studies and cohorts of at-risk 
individuals. 

 

The aim of PAPER I was to exploit the main well-known genetic modulators 
of fatty liver disease to: 

• Stratify the risk of individuals to hepatocellular carcinoma 
(HCC).  

• Examine the causal relationship between non-alcoholic fatty 
liver disease and HCC. 

 

The aim of PAPER II was to identify new common genetic modulators of fatty 
liver disease to: 

• Better understand how heritability contributes to the fatty 
liver disease predisposition. 

• Examine the associations with MRI-derived hepatic fat 
content and chronic liver disease at a population level.  

• Replicate the associations with histologically proven fatty 
liver disease.  

 

The aim of PAPER III was to partially explain the missing heritability of fatty 
liver disease due to gene-environment interactions by: 

• Identifying common genetic variants with robust interaction 
with BMI in determining the ALT levels. 

• Examining the associations with MRI-derived hepatic fat 
content and chronic liver disease at a population level.  
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3 METHODOLOGICAL CONSIDERATIONS 
In this section, the general approaches used to perform GWA analyses, 
including statistical and computational considerations, sample and marker 
quality controls used for PAPER I, PAPER II, and PAPER III will be briefly 
discussed. Detailed description of methods and approaches for each paper can 
be found in the papers attached to this thesis. 

 

3.1  SUBJECTS 
The association studies in all papers were performed using one of the largest 
population-based biomedical databases: the UK Biobank. Other European-
based cohorts of at-risk individuals were used for replication of main findings 
in papers II and III. In paper I, the UK Biobank was utilized to show the 
generalizability of the findings at a population-level.  

 

3.1.1 UK BIOBANK 
The UK Biobank is a large population-based study comprising more than 
500,000 adult individuals aged between 40-69 years at recruitment, who 
visited 22 recruitment centers throughout the United Kingdom between 2006 
and 2014 (ukbiobank.ac.uk). The UK Biobank study received ethical approval 
from the National Research Ethics Service Committee North West Multi-
Centre Haydock (reference 16/NW/0274). Extensive phenotypic data includes 
hospital diagnoses, self-reported data based on questionnaires (e.g. lifestyle, 
socio-demographic, and health-related information), and physical 
measurements. Blood, saliva and urine samples for participants were also 
stored for genetic, metabolomic and proteomic analyses. Moreover, 
participants gave consent for follow-up using health-related records, such as 
cancer and death registries and inpatient hospital records72, 73. 

UK Biobank participants were genotyped using two similar arrays: the UK 
BiLEVE (~50,000 participants) or UK Biobank Axiom array (the remaining 
~450,000 participants) with more than 95% overlap. Following sample-
/marker-based quality controls, genotyped data were imputed based on the 
1000 Genomes Phase 3, UK10K haplotype, and Haplotype Reference 
Consortium (HRC) reference panels72. 
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3.1.2 SAMPLE QUALITY CONTROL 
While the UK Biobank is mostly composed of “White” individuals (self-
reported ethnic backgrounds), a proportion of participants (~6%) belonged to 
other non-European ethnicities. Furthermore, initially Bycroft et al. used 
principal component analysis (PCA) of directly genotyped participants to 
define a British subset within the broader group of “White” indiviuals72. Here, 
in order to widen the so-called “White British” subset (337,000 participants), 
we defined the European subset of the UK Biobank by adding individuals who 
self-reported as being “Irish” or “any other White background” to the “White 
British” subset. We next used the top 6 principal components (PCs) of ancestry 
originally calculated by the UK Biobank, and removed outliers as described 
below: 

𝑑𝑑𝑖𝑖 = ∑ (𝑃𝑃𝑃𝑃𝑖𝑖𝑖𝑖−𝑀𝑀𝑖𝑖)2
𝐸𝐸𝑖𝑖

6
𝑘𝑘=1   

Where Ek and Mk are the eigenvalue and mean of kth PC, calculated in the 
subset of “White British” individuals, respectively. PCik is the kth principal 
component of White individual i. The above formula is equivalent to drawing 
a six-dimensional ellipse centered among “White British” individuals74. Those 
individuals with a distance more than 7 standard deviation (in “White British” 
subset) were then excluded (di > 49), resulting in ~436,000 European 
individuals. In the original publication of the UK Biobank, along with multiple 
ensuing reports, a Bayesian outlier detection algorithm (implemented in R 
package aberrant) had been employed to select the largest cluster based on a 
number of top PCs72. Following this approach also resulted in a very similar 
set of European samples as detected by our approach, which was based on 
Neale group at the Broad Institute74. 

Further quality controls were applied based on information provided by the 
UK Biobank, and we further excluded individuals: 

1- With excessive relatives (more than 10 putative third-degree 
relatives) 

2- With a mismatch between the self-reported and genetically 
inferred gender 

3- Putative sex chromosome aneuploidy (individuals with sex 
chromosome configurations that are not either XX or XY) 

4- Who were identified by the UK Biobank as outliers based on 
heterozygosity and missingness (genotyping rate < 0.98). 
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heterozygosity and missingness (genotyping rate < 0.98). 
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5- With a withdrawn consent (accruing data updating regularly 
by the UK Biobank).  

Figure 7 shows the 6 top PCs of European subset defined here along with 
“white British” subset from the UK Biobank.  

 

Figure 7. Definition of European subset of UK Biobank using the top 6 genomic PCs. 
Each dot represents the PC score for each individual in UK Biobank for whom PCA 
was performed. Red and black denote European subset defined here and White British 
individuals originally identified by the UK Biobank, respectively.  

This set of European samples were used for GWAS when the association study 
method was adjusted for cryptic relatedness or population stratification by 
modeling the relatedness (kinship) matrix, either by mixed models 
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implemented in BOLT-LMM and SAIGE, or whole-genome regression 
approach implemented in REGENIE75-78 (see statistical analysis section). For 
single variant association studies in paper I and some analyses in papers II and 
III, we further removed related individuals using the pairwise kinship 
coefficients initially calculated by the UK Biobank using KING software72. 
The kinship coefficient (φ), the conventional measure of relatedness, is the 
probability of two randomly homologous alleles drawn from two individuals 
being identical by descent (IBD). The expected value of φ degrades by a factor 
of 0.5 per each degree of relatedness, with φ being zero for two unrelated 
individuals. For this purpose, the set of maximal unrelated individuals were 
identified, so that the minimum set individuals with third degree or closer 
relatives were excluded from each family network. This is equivalent to 
exclusion of individuals with a pairwise estimated coefficient ≥ 0.5(9/2) 72, 79.We 
first created graph objects for each family (set of related individuals) resulting 
in a total of 58,382 graph objects. Next, maximum subset of unrelated 
individuals per each family graph was determined by identifying the maximal 
cliques of complement family graphs using the Bron-Kerbosch algorithm80. 
This in turn is equivalent to identifying maximal set of independent vertices of 
a graph (i.e. unrelated individuals). In case of multiple independent sets per 
each family graph, the set comprising of individuals with minimum mean of 
genotype missing rate was picked. Figure 8 depicts an example of few 
configurations of family graphs within the UK Biobank. 

This resulted in further exclusion of approximately 69,000 related individuals 
resulting in the final set of 365,449 unrelated Europeans. Compared to the 
simpler approach of excluding of one individual from each pair of individuals 
with a kinship coefficient of ≥ 0.59/2, the maximal unrelated Europeans had 
7,833 more individuals resulting in a larger sample size. 
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Figure 8. An example of four family graphs in the UK Biobank. Each panel shows a 
different configuration, where individuals and relatedness were shown as vertices and 
edges of the graph, respectively. Blue colored individuals represent the maximal set of 
unrelated individuals per each family group. 

 

3.1.3 MARKER QUALITY CONTROL 
From approximately 97 million imputed variants, from HRC, UK10K, and 
1KG, we only kept common variants with a minor allele frequency (MAF) > 
0.01, imputation INFO score > 0.8, and Hardy–Weinberg equilibrium (HWE) 
P > 10-10. This resulted in a set of approximately 9,400,000 high quality 
common variants. This set of variants were used for GWA and genome-by-
BMI interaction studies in papers II and III.  
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For linear and logistic mixed models with both SAIGE and BOLT-LMM tools 
in paper II, a genetic relationship matrix (GRM) was required to adjust for 
cryptic relatedness and population stratification. To prepare a set of high-
quality variants for GRM, we used subset of directly genotyped variants after 
excluding the variants if falling in any of these categories: 

- Positioned on long-range linkage disequilibrium (LD) and 
major histocompatibility complex (MHC) regions 

-  Missingness > 0.01 
- MAF < 0.01 
- Hardy–Weinberg equilibrium (HWE) P < 10-15. 

Next, LD pruning with a windows size of 500,000 base pairs and pairwise r2 < 
0.1 was performed to keep only independent markers resulting in a final set of 
146,883 markers81. This set of high-quality markers was also used in paper III 
in the whole-genome regression approach implemented in REGENIE to 
capture the genetic component of the traits under study. 

 

3.2 STATISTICAL ANALYSES 
The main consideration concerning all the papers, in particular papers II and 
III, is the choice of proper statistical model to perform genetic association 
analyses. Depending on the trait under study, i.e. binary (e.g. hepatocellular 
carcinoma) or continuous (glucose levels), a linear or logistic regression model 
is often employed to test the association between genetic variants and the trait 
of interest, respectively. 

Moreover, we assumed an additive genetic model for both large-scale GWAS 
and single variant association analysis, meaning that the heterozygote effect is 
in between of the other two homozygotes (assuming autosomal bi-allelic 
variants). This was due to a couple of reasons, including simplicity, being the 
most widely employed genetic model in GWAS, and the fact that additive 
effects show the largest contribution to the risk of complex traits compared to 
other models (dominant, recessive or epistatic effects)82, 83.  

To adjust for possible confounders, we considered two components; first, 
physiologically relevant traits including age, sex and BMI, and second, the 
effect of population stratification and batch effects, which was accounted for 
by adjusting for genomic principal components and genotyping array batches, 
respectively.  
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The above-mentioned multiple (linear or logistic) regression models can be 
written as following generalized linear models: 

𝑓𝑓(𝜇𝜇𝑖𝑖) = 𝛼𝛼0 +  𝛼𝛼1𝑋𝑋𝑖𝑖 +  𝛽𝛽𝑔𝑔𝑖𝑖 

Where 𝑓𝑓(𝜇𝜇) is the link function and equals 𝜇𝜇 for continuous and logit(𝜇𝜇) for 
binary traits, with 𝜇𝜇 = 𝐸𝐸(𝑌𝑌), and Y being the trait under study. 𝛼𝛼0 is the 
intercept, 𝑋𝑋 matrix of covariates and 𝑔𝑔 ∈ {0,1,2} is the allele count for 
individual i under the additive model. This model implies that additional copy 
of one allele affects (increases or decreases) the mean (continuous) or log odds 
(of a binary trait) additively. Assuming a bi-allelic variant with A being the 
effect (or risk) allele and a being the alternate allele, one can code (aa, aA, AA) 
genotypes as (0, 1, 1) or (0, 0, 1) for dominant and receive models, respectively. 

 

3.2.1 MIXED MODELS  
Multiple regression models can suffer from the power issues because the model 
assumes independence between individuals; hence, population stratification 
and sample relatedness should be handled (i.e. restricting to unrelated samples 
of one specific ethnicity) prior to the analyses. This is especially the case for 
the UK Biobank study, where high relatedness (~30%) is present72. Linear 
mixed models (LMMs) and the recent implementation of generalized linear 
mixed models77, offer a greater power to discover new associations, and to 
better control the genotypic confounding effects, that is population 
stratification and cryptic relatedness84. This is achieved by including an 
additional random effect to model the correlation among individuals, and 
modeling (environmental) covariates as fixed-effects. Hence, under the 
standard infinitesimal model for a quantitative trait, we can write: 

𝑌𝑌 = 𝑋𝑋𝛼𝛼 +  𝐺𝐺𝑠𝑠𝛽𝛽𝑠𝑠 +  𝑔𝑔 +  𝜖𝜖 

𝑔𝑔~ 𝑁𝑁(0, 𝜎𝜎𝐴𝐴
2𝜓𝜓) 

𝜖𝜖~𝑁𝑁(0, 𝜎𝜎𝑒𝑒
2𝐼𝐼) 

Where 𝑋𝑋 and 𝛼𝛼 are the design matrix of covariates, and their corresponding 
(fixed) effect sizes, 𝐺𝐺𝑠𝑠 is allele count of genetic variant under study with 𝛽𝛽𝑠𝑠 
being its (fixed) effect size. 𝑔𝑔 is a random effect explaining the polygenic 
effect, where 𝜎𝜎𝐴𝐴

2 is additive genetic variance and 𝜓𝜓 is the genetic relatedness 
matrix (GRM) estimated from a set of high-quality genotyped markers (see 
3.1.3). 𝜖𝜖 is the vector of residuals, with a variance of 𝜎𝜎𝑒𝑒

2 (non-genetic variance 
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or environmental effect76), and 𝐼𝐼 is the identity matrix. In case of logistic mixed 
models, a logit link function replaces 𝑌𝑌, the vector of phenotype under test77: 

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝜇𝜇𝑖𝑖) = 𝑋𝑋𝑖𝑖𝛼𝛼 +  𝐺𝐺𝑠𝑠,𝑖𝑖𝛽𝛽𝑠𝑠 +  𝑙𝑙𝑖𝑖 

The computational bottleneck of above formulations is calculating the 
empirical kinship matrix (GRM), and then estimating the variance components 
(𝜎𝜎𝐴𝐴

2 and 𝜎𝜎𝑒𝑒
2). In paper II, we used BOLT-LMM and SAIGE for continuous and 

binary traits, respectively, due to their computational performance. Moreover, 
SAIGE offers saddle point approximation (SPA) to adjust test scores in case 
of imbalance case-control ratios, which is particularly useful when defining the 
disease outcome using electronic health records such as ICD-10 codes76, 77. 

 

3.2.2 WHOLE-GENOME REGRESSION MODEL 
Recently, inspired by mixed-models, a new machine-learning approach, 
REGENIE, was developed, which showed to be dramatically faster than other 
mixed-model competitors78. REGENIE implements Ridge regression to derive 
the polygenic basis of a trait, which can be used as another covariate to adjust 
for population and relatedness confounding effects. Moreover, REGENIE 
implements Firth’s penalized logistic regression to adjust for less common 
variants and imbalance case-control ratios, shown to have a better Type 1 error 
rate than SPA adjustment78. Since REGENIE allow to test gene-environment 
(GxE) interactions, we used it in paper III.  
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3.3 OTHER CONSIDERATIONS 
Confounding bias. Typically, the ratio of observed and theoretical median of 
test statistics under null, called genomic control (λGC), is used to assess the 
presence of confounders in GWAS summary statistics. Generally, large λGC 
values (> 1) suggest the presence of some confounding resulting in inflating 
test statistics (many significant findings) across the genome. This inflation in 
test statistics (in practice, -log10 of p-values are used instead of chi-square test 
statistics) can be visualized in a quantile-quantile (QQ) plot. Nevertheless, λGC 

cannot differentiate between true polygenicity (many associations across the 
genome) and confounding in large-scale GWAS. This problem however, can 
be handled via LD-score regression (LDSC) analysis, where the intercept of 
LDSC analysis indicates the confounding bias82  

Inference of proton density fat fraction. On the basis of an existing deep 
learning framework (https://github.com/tarolangner/mri-biometry) we used 
neck-to-knee body MRI images from a two-point Dixon technique to infer 
proton density fat fraction (PDFF)85, 86. Briefly, individuals were scanned with 
a Siemens MAGNETOM Aera 1.5-T MRI scanner using a 6-minute dual-echo 
Dixon Vibe protocol, providing a water and fat separated volumetric dataset 
covering neck to knees. A single multi-echo slice was further acquired to 
analyze the liver PDFF87. We slightly modified the original pipeline to 
parallelize the training and inference processes over ~50,000 MRI images. 

We used reference dataset of approximately 10,000 MRI-derived PDFF using 
gradient echo imaging protocol to train the ResNet-50 convolutional neural 
network (CNN)88 with a regression layer (Figure 9). Reference PDFF dataset 
was split into training (70%) and validation (30%) sets, and both coefficient of 
determination (R2 = 0.963) and mean absolute error (MAE = 0.632) on the 
validation set outperformed the previously trained model on a similar but 
smaller reference dataset. Furthermore, the inferred PDFF values were 
compared to two independent datasets which were released later by the UK 
Biobank; first, fat referenced (FR) PDFF available for ~16,000 individuals 
derived from IDEAL imaging protocol, and second, PDFF dataset on ~15,500 
individuals measured using a three-point Dixon technique89. The network was 
trained and validated under an NVIDIA RTX A6000 GPU in PyTorch, with 
default hyperparameters as in the original framework (e.g. batch size and initial 
learning rate with Adam optimizer). Although not shown here, we trained and 
validated the networks with the two above-mentioned independent datasets, 
since we speculated that this may enhance the predictive performance; 
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however, the results were comparable to the initial ground truth data we used 
to train the model. 

 

Figure 9. Schematic representation of training, validating and inference of liver fat 
content measured as PDFF in UK Biobank from neck-to-knee MRI images. 

 

Computational considerations. The overall statistical and computational 
processes, including sample and genetic quality controls, data handling and 
analysis were performed in MATLAB (Mathworks), with R, Python, Java and 
C++ shared libraries and wrappers whenever necessary. This was done by 
developing a toolbox, MAtlab GEnetics (MAGE) (unpublished) with several 
functionalities and wrappers, providing reproducible, high-performance 
(parallelized with hybrid CPU-GPU capability), and flexible data analysis 
pipelines. A number of these functionalities include: 

- Wrappers around PLINK, GCTA90, BOLT-LMM, SAIGE 
and REGENIE for quality control, handling of genetic data 
and GWA analysis. 

- Wrappers around annotation tools: VEP and SnpEff 91, fine-
mapping tools: PolyFun92, FINEMAP93 and SuSiE94, co-
localization: coloc95 (heavily parallelized with tabix 
supported), LDSC tool, pathway analysis: MAGMA96, 
Mendelian Randomization tools: MendelianRandomization97 
and TwoSampleMR98, multi-trait meta-analysis: MTAG99. 
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- APIs for gnomAD, Ensembl REST, Open Targets100, GWAS 
Catalog101, PhenoScanner102 and openGWAS98. 

Complex traits with multilevel inclusion/exclusion criteria can be defined 
easily in a matter of seconds, and association analyses can be performed either 
internally (with convenient stratification) or via available GWAS tool 
wrappers. This allowed us to write workflows similar to workflow description 
language (WDL) where a complete GWAS with downstream analyses can be 
run in parallel, without no manual interference.  
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4 RESULTS AND DISCUSSION 

4.1 PAPER I 
HCC is the major form of primary liver cancer and the second leading cause 
of cancer-related mortality worldwide, accounting for ~90% of primary liver 
cancer cases. Several lines of epidemiological evidence suggest the etiological 
role of NAFLD in the development of HCC103, 104. The global burden of 
NAFLD is expected to deteriorate in parallel with the global prevalence of type 
2 diabetes, obesity and metabolic syndrome, which in turn may progress to 
liver disease and HCC4, 15. Existing guidelines focus on HCC surveillance in 
those with cirrhotic NAFLD, and should be considered in patients with 
advanced fibrosis105. Yet, a reliable non-invasive biomarker to stratify the risk 
of HCC in individuals with dysmetabolism without severe fibrosis is still an 
unmet medical need. 

In this study, we exploited 5 well-known genetic modulators of fatty liver 
disease in order to stratify the risk of individuals to HCC, and further to unravel 
the causal relationship between NAFLD and HCC1. Hence, we used two PRS 
namely, PRS-HFC (PRS of hepatic fat content) calculated from genetic 
variants in PNPLA3, TM6SF2, MBOAT7 and GCKR, and PRS-5, which was 
further adjusted for HSD17B13. 

 

4.1.1 RESULTS OF PAPER I 
Causal relationship between hepatic fat and HCC. Instrumental variable 
regression analysis adjusted for age, sex, BMI and T2D suggested a causal 
association between NAFLD (two-sample Mendelian randomization 
framework) and HCC (PRS-HFC OR = 1.35, 1.18–1.58, P = 1E-5). This 
association remained significant after adjusting for severe fibrosis (P < 0.05); 
however, the causal effect size reduced by 37-41%. Mediation analysis further 
showed that almost half of PRS causal effect was mediated through severe liver 
fibrosis (P < 1E-16).  

PRS predict the full spectrum of NAFLD. PRS-HFC and PRS-5 were both 
associated with full spectrum of NAFLD and HCC. In NAFLD cohort, PRS 
were associated with an OR ~12 for severe liver fibrosis (P < 1E-27 for both) 
and 9 for HCC (P < 1E-13). While this association was still significant after 
adjusting for age, sex, BMI and T2D (P < 0.01), the association seemed not to 
be independent of severe liver fibrosis (P > 0.1). Similarly, in UK Biobank, 
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PRS were associated with liver cirrhosis (P < 1E-32, OR ~ 4) and HCC (P < 
1E-16, OR ~ 15). Furthermore, the association with HCC was independent of 
liver cirrhosis (P < 1E-7, OR ~ 6.5, adjusted for cirrhosis). Overall, the 
association of PRS-5 with severe liver disease and HCC was stronger than 
PRS-HFC in all the cohorts under study. 

Diagnostic accuracy for HCC. The area under the receiver-operating 
characteristic curve (AUROC) for HCC in NAFLD cohort was 0.64 and 0.65 
for PRS-HFC and PRS-5, respectively. Two similar optimal cut-off points of 
≥ 0.532 and ≥ 0.495 (PRS positive) were calculated for PRS-HFC and PRS-5, 
respectively. At these cut-offs, the sensitivity was 43% with an approximate 
80% specificity. When validating this cut-off in a population-based study (UK 
Biobank), both PRS had the similar AUROC (0.63) to that in NAFLD cohort, 
but with a lower sensitivity (27%) but higher specificity (90%). These metrics 
were higher in those with metabolic risk factors such as obesity and T2D 
(~40% sensitivity and 90% specificity). 

 

4.1.2 DISCUSSION TO PAPER I 
The principal aim of this study was to assess the capability of main common 
genetic modulators of fatty liver disease in form of weighted PRS to predict 
HCC development in both NAFLD-based and population-based cohorts. More 
importantly, the causal effect of genetic modulators of hepatic fat accumulation 
on HCC shown here suggests that therapies targeting liver fat content reduction 
may be beneficial to protect against HCC development. The PRS calculated 
here is based on a handful of known genetic markers of NAFLD, which can be 
coupled with other non-genetic risk predictors to further improve the 
diagnostic accuracy of HCC development. The positive likelihood ratio at 
optimal cut-offs also suggested 2 to 4-fold increase in odds of being at risk of 
developing HCC given a positive PRS. 

Another important aspect of this study was the focus not on severe liver fibrosis 
and cirrhosis, but on those individuals with NAFLD or other metabolic risk 
factors accounting for a larger proportion of the population. While compared 
to NASH-related cirrhosis14, this subgroup accounts for a minority of HCC 
cases and it is absent from current HCC screening programs since there exists 
no cost-effective tool to predict HCC risk among these individuals. 

We did not detect any horizontal pleiotropy in the causal association between 
genetic predisposition to NAFLD and HCC; therefore, there was no evidence 
showing that the genetic instruments influence HCC via another pathway 
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independent of hepatic fat. Nevertheless, we observed some heterogeneity 
suggesting either pleiotropy or model misspecification. This heterogeneity was 
mitigated after excluding GCKR variant, for which its protection against T2D 
was the putative source of heterogeneity, conferring mild protection against 
HCC while increasing the risk of NAFLD (hence, inconsistent with other 
genetic instruments and being an outlier). Furthermore, the association 
between the genetically determined NAFLD and HCC was partially mediated 
by severe fibrosis, consistent with HCC incidence in those without severe 
fibrosis or cirrhosis. 

The overall predictive performance of PRS in predicting HCC was moderate 
in our study (AUC = 0.65 in driving cohort) with a slightly better performance 
in those with T2D in the UK Biobank (AUC = 0.7). Nonetheless, genetic 
variants remain unchanged throughout the individual’s life span as opposed to 
other environmental risk factors and clinical biomarkers. Thus, such a genetic 
diagnostic tool can be used as an initial cost-effective step for HCC risk 
stratification. Unsurprisingly, positive likelihood ratios were larger in obese 
individuals from the UK Biobank consistently with a previous finding showing 
the presence of gene-BMI interactions in predicting NAFLD51. 
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4.2 PAPER II 
Fatty liver disease (FLD) is the most common cause of chronic liver disease, 
and is expected to become the leading cause of end-stage liver disease in the 
next decade15, 22. Despite the important role of environmental risk factors, 
hepatic fat content has a strong genetic component24. While previous genome- 
and exome-wide association studies identified several genetic determinants of 
FLD in PNPLA3, TM6SF2, GCKR, MBOAT7 and MARC1, they account only 
for a small fraction of the overall heritability of hepatic fat content, suggesting 
the presence of missing heritability27, 52-54, 61, 106. 

In an attempt to better understand the genetic architecture and predisposition 
to FLD, we aimed to detect other genetic predictors of this disease. Inspired by 
a previous discovery of a protein-truncating variant on HSD17B13 protecting 
against FLD, we performed an exome-wide association analysis of ALT, 
which is commonly related to hepatic fat and liver damage66, 107, 108. We 
restricted the study only to predicted loss-of-function (pLoF) and missense 
variants on the exome. We hypothesized that the putative deleterious effect on 
the protein function may increase the chance of finding new genetic loci 
associated with the target trait by both enriching for causal variants and 
reducing the number of examined variants109, 110. We began with exome-wide 
association study of ALT in Europeans from the UK Biobank and further 
replicated (internal replication) the significant loci with measured PDFF, and 
also in three independent cohorts (external replication). 

 

4.2.1 RESULTS OF PAPER II 
Exome-wide association analysis of ALT. Starting from an approximately 9 
million imputed common (MAF > 1%) and high-quality imputed (INFO score 
> 0.8) variants, annotation with VEP and SnpEff resulted in ~40,000 missense 
and loss-of-function variants (jointly called pLoF). Individuals with a 
measured PDFF were excluded before performing association analysis on 
ALT. Following LD clumping and conditional analysis, we identified 190 
independent genetic variants significantly associated with ALT levels 
(Bonferroni threshold of 1.47E-6) among which ~19% (36 variants) have been 
previously shown to be associated with different stages of fatty liver disease or 
lipoproteins. Moreover, gene-set enrichment analysis of genes with at least one 
significant association showed an overrepresentation of genes involved in 
metabolic liver diseases, lipid homeostasis and triglyceride metabolism. This 
set of genes was mostly expressed in liver and hepatocytes. 
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Association of independent variants with PDFF. We next examined the 
association of the 190 independent genetic variants with PDFF (n = 8930) in 
the UK Biobank using a linear mixed-model approach, and 8 variants remained 
significant after the Bonferroni correction. Among this set, 5 were well-known 
genetic modulators of FLD, namely variants on PNPLA3, TM6SF2, MARC1 
and MBOAT7/TMC4. We identified 3 new missense genetic variants in 
Apolipoprotein E (APOE, rs429358), Glycerol-3-phosphate acyltransferase 1, 
mitochondrial (GPAM, rs2792751) and olfactory receptor family 12 subfamily 
D member 2 (OR12D2, rs3128853) among which GPAM rs2792751 (P = 0.001 
and P = 0.051, respectively, encoding p.Val43Ile) and APOE rs429358 (P = 
0.003 and P = 0.014, respectively, encoding for p.Cys112Arg), but not 
OR12D2 rs3128853 were associated with chronic liver disease and cirrhosis. 
These two variants were also associated with circulating lipoprotein levels. 

Replication in external cohorts. We next examined the association of GPAM 
rs2792751 and APOE rs429358 with severity of liver steatosis in 3 independent 
cohorts comprising around 2600 Europeans with existing liver biopsy and at-
risk for FLD (from Italy, France and Finland). The association between 
severity of steatosis and each variant was tested using an ordinal logistic 
regression model adjusted for age, sex, BMI and allele count of PNPLA3 
rs738409. Meta-analysis of the associations from these cohorts was consistent 
with an association of both genetic variants with severity of steatosis (fixed-
effect OR = 1.21 P = 0.002 for GPAM rs2792751, and OR = 0.76 P = 0.002 
for APOE rs429358). We however were not able to observe any significant 
pooled association with liver inflammation, ballooning or fibrosis. 

Transcriptomic analysis. Gene-set enrichment analysis by examining the liver 
transcriptome from another independent cohort comprising of 125 obese 
Italian individuals, showed an upregulation of lipid metabolism and a down-
regulation of inflammation for GPAM rs2792751, with an opposite regulatory 
impact for APOE rs429358. Nevertheless, no significant difference was 
observed between carriers and non-carriers of both genetic variants, nor could 
we find any in silico deleterious effect on protein function. 

 

4.2.2 DISCUSSION TO PAPER II 
Here we reported a large-scale association study between pLoF variants and 
ALT levels in Europeans from the UK Biobank, and identified 190 
independent genetic loci, the largest set of missense and nonsense genetic 
predictors of ALT. LD score regression analysis further showed the 
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polygenicity of this trait, with an additive narrow-sense heritability of 13%. 
Almost 20% of independent genetic variants associated with ALT were 
reported to be associated with other spectra of FLD, with majority being 
associated also with lipoprotein levels. Since ALT is clinically regarded as a 
biomarker of hepatocellular damage108, this in turn suggests a tight connection 
between lipoprotein metabolism and liver damage. The enrichment of lipid 
handling processes with this set of genes, along with the causal link between 
hepatic fat content and advanced liver disease69, further support this notion. 

After examining the association between this set of 190 independent variants 
and MRI-PDFF, we identified two missense variants on APOE and GPAM, 
respectively protecting and predisposing to steatosis, chronic liver disease and 
cirrhosis at the population level. We further replicated the association with 
severity of steatosis in 3 European cohorts of individuals at-risk for fatty liver 
disease. We however, could not confirm any consistent association with 
inflammation, ballooning or fibrosis. Due to small effect size, this can be 
attributed to lower power of these cohorts to detect the association. 

The minor allele of rs2792751 GPAM (43Ile) was associated with higher 
hepatic fat content. GPAM (also known as GPAT1 located on outer membrane 
of mitochondria) catalyzes the committing step of glycerolipids synthesis by 
esterifying acyl-CoA activated fatty acids to glycerol-3-phosphate. In addition, 
GPAM is the important link between de novo lipogenesis and triglycerides 
synthesis, owing to a surplus in dietary carbohydrates in the liver111. Gpam 
knockout mice showed a reduced triglyceride content in the liver, while the 
opposite was observed when overexpressing this gene112, 113. When comparing 
the expression levels between carriers and non-carriers of this variant, we 
observed an upregulation in lipid catabolic pathways in liver, with no 
significant expression over genotypes. This may be regarded as a 
compensatory mechanism to the increase in hepatic triglycerides synthesis. 

On the other hand, APOE rs429358 was associated with a lower hepatic fat 
content, higher plasma LDL and triglycerides level. When comparing different 
genotypes of this variant, transcriptomic data showed a reduction in the 
biological processes related to lipids, without any changes in mRNA levels. 
ApoE is involved in lipoprotein metabolism and uptake of circulatory lipids 
into the liver, and liver is the main source of circulating ApoE (in VLDL or 
high-density lipoproteins, HDL)114. Moreover, the variant was robustly 
associated with increased risk of Alzheimer’s disease (main genetic risk 
variant) and dyslipidemia (consistent with our findings). Therefore, one 
possible hypothesis could be that the variant results in a loss-of-function 
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activity of ApoE, where the circulating lipoproteins cannot be taken up into the 
liver. 
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4.3 PAPER III 
Current GWAS have been able to find multiple associations between common 
variants and complex traits at the population level. The number of discovered 
signals is yet to be increased with effect sizes tend to be smaller as a result of 
greater power of large-scale studies. This situation seems to converge to 
Fisher’s “infinitesimal model” of infinite variants, each with a small effect on 
the target phenotype35. Nonetheless, these large sets of common variants still 
cannot fully explain the variance of many complex traits31. 

In addition, multiple traits are influenced by environmental exposures, where 
the interaction between genetic variants themselves or environment may 
explain a proportion of the underlying missing heritability28. In fact, Stender et 
al. have shown the robust interaction of three genetic modulators of NAFLD, 
namely PNPLA3 I148M, TM6SF2 E167K, and GCKR P446L and adiposity 
(BMI) in predicting the entire spectrum of NAFLD, ranging from steatosis to 
inflammation and cirrhosis51. Nevertheless, this study was limited to only few 
well-known common variants and did not examine the interaction effect at a 
genome-wide level. One of the main bottlenecks in estimating the gene-
environment interaction effects is that a considerably larger sample size is 
needed compared to main additive genetic effects in typical GWAS115. The 
availability of a population-based large-scale study such as the UK Biobank 
can potentially aid in discovering such interactions. Here, by taking a whole-
genome regression approach78, we aimed to detect gene-BMI interaction 
effects in predicting ALT levels, a marker of liver fat and damage, at a genome-
wide level. Similar to our previous study, we also examined the association of 
significant genetic markers with MRI-PDFF and other live-related traits in 
European individuals from the UK Biobank. 

 

4.3.1 RESULTS OF PAPER III1 
Gene-environment-wide interaction study (GEWIS) of ALT. we restricted 
our analysis to Europeans from the UK Biobank after excluding those with an 
existing MRI-PDFF measurement, available for approximately 40,000 
individuals. We used a whole-genome regression approach implemented in 
REGENIE software78 to estimate the interaction effects between 
approximately 9 million common variants (MAF > 1%) with high imputation 
                                                      
1 The findings of this study are still in manuscript form. Hence, the locus name of new 
finding has been replaced with [X] and its nearby gene with [Y]; however, the 
disclosed locus name can be found at the end of this thesis frame.  
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score (> 0.8) and BMI as the environmental exposure, in predicting ALT 
levels. Following LD clumping and conditional analysis, we identified 13 
significant genetic loci at a genome-wide level (< 5E-8), out of which 11 were 
new gene-BMI interacting loci, except for PNPLA3 and TM6SF2. One of these 
loci was not even associated with ALT (no interaction term in the model), and 
two only with a nominal significance (Pconditional > 5E-8). 

Fine-mapping of independent loci. After excluding the HLA-B locus on 
chromosome 6 due to its complex LD structure, we performed a functionally 
informed fine-mapping to determine the putative set of causal variants at each 
locus. Per-SNP heritability estimates from PolyFun tool were used as prior 
causal probabilities in two fine-mapping tools, sum of single effects (SuSiE) 
and FINEMAP92-94. For TRIB1 and TOR1B loci, the first 95% credible set (CS) 
contained only 1 putative causal variant with a posterior inclusion probability 
(PIP) or > 0.95 for both SuSiE and FINEMAP. The size of first CSs for other 
loci was varying between 3 to 65 variants, reflecting the uncertainty in 
determining the causal signals at some loci. The number of CSs also varied 
from 1 to 3, suggesting the presence of multiple causal variants at some loci116. 

The association with liver fat content. Eight out of 12 lead genetic variants on 
PNPLA3, TM6SF2, APOE, MARC1, TRIB1, COBLL1, GPAM and TOR1B had 
been shown by others2, 53, 54, 61, 117-120 and us to be associated with ALT levels 
and hepatic fat content. Based on this observation, we hypothesized that the 3 
new loci may be associated with hepatic fat content. After correcting for 
multiple testing problem, we observed a significant association at locus [X] 
(see the attached manuscript) with PDFF (Benjamini-Hochberg FDR P < 0.05). 
The lead variant at this locus was also present in the first 95% CS of fine-
mapped variants from GEWIS of ALT (r2 = 0.95). 

[X] locus, liver disease and other metabolic traits. The lead variant at this 
locus was also associated with higher risk of chronic liver disease and higher 
fat content, but not associated with ALT levels. It was also associated with an 
increase in triglycerides, LDL and cholesterol levels. To examine the effect of 
this locus on gene expression patterns of nearby genes, we performed a 
Bayesian co-localization between summary statistics from GEWI analysis and 
expression quantitative trait loci (eQTL) from 49 tissues from GTEx project 
processed by eQTL Catalogue95, 121, 122. At this locus, we observed a 
consistent evidence of colocalization between interaction effect and gene 
expression of [X] in the liver. 
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4.3.2 DISCUSSION TO PAPER III 
Here, we performed a gene-by-BMI wide association study of ALT levels in 
the UK Biobank and identified 13 interacting loci at a genome-wide level. 
Eight loci have already been reported to associate with liver fat content and 
ALT levels. Since the majority of interacting loci were reported to associate 
with fatty liver disease, we examined the association of newly identified loci 
with hepatic fat content (measured as MRI-PDFF). We found a new locus 
associated with hepatic fat content and chronic liver disease. In addition, we 
found another locus at COBLL1, which was very recently reported to be 
associated with fatty liver disease in a large-scale multiancestry study120.  

In fine-mapping of interacting loci different number of credible sets with 
varying number of putative causal variants were found. Specifically, while we 
could not find any association with liver fat content and chronic liver disease 
at DPM3 and GIPR loci, a missense variant at the latter had the highest PIP, 
suggesting being the causal variant for the observed interaction effect in the 
first credible set. Interestingly, the same variant has been shown to be the 
putative causal variant for glycemic and obesity-related traits123. 

The lead variant at [X] locus, was associated with an increase in triglycerides 
and LDL levels suggesting that the concomitant increase in hepatic fact content 
is probably due to an increase in triglycerides synthesis or lipoprotein secretion 
and not to retention. [Y], a major regulator of cholesterol homeostasis and bile 
acids biosynthesis, is also a nearby gene. While fine-mapping of interaction 
effects for this locus shows a down-stream variant near [Y] to have the largest 
PIP in the first CS, we detected a colocalization evidence between liver-
specific eQTL and interaction summary statistics only for [X], and not [Y]. 
Hence, it is possible that [Y] is the gene causing the effect observed on the 
hepatic fat content. Nonetheless, we observed a colocalization between hepatic 
fat content GWAS and GEWIS of ALT at this locus (not shown), suggesting 
that the causal signal for gene-BMI interaction of ALT most probably is the 
variant associating with hepatic fat content. 
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5 CONCLUSION AND FUTURE 
PERSPECTIVES 

The main objective of this thesis was to better understand the genetic basis of 
fatty liver disease by both exploring the polygenic diagnostic capability of 
common genetic modulators, and identifying other genetic components of this 
complex trait. We started by utilizing the current known genetic players of fatty 
liver disease in form of weighted PRS, to answer questions regarding the 
causality and predictive ability of such scores for HCC risk screening. 
Specifically, in paper I, we evaluated the ability of genetic predisposition to 
liver fat accumulation and NAFLD to predict HCC development in at-risk 
individuals and in the general population. We further determined the diagnostic 
accuracy of PRS thresholds to show the increased genetic risk of HCC. Our 
findings showed a causal link between hepatic fat accumulation and HCC, 
which may suggest therapies aiming at reducing liver fat may prove beneficial 
in preventing HCC22. Therefore, PRS can be a non-invasive tool to predict the 
risk of HCC in individuals with NAFLD and dysmetabolism, independently of 
severe liver fibrosis. Nonetheless, the poor to moderate performance of PRS in 
risk prediction necessitates further studies to incorporate PRS using whole 
GWAS summary statistics, or evaluate their combination with other metabolic 
risk factors and clinical scores. 

In paper II, we identified two new missense variants on GPAM and APOE 
robustly associated with liver damage and steatosis both at population level 
and in those at risk for liver disease. The majority of ALT associated loci 
(~80%) were novel, and most of those previously reported were associated 
with lipoproteins and lipid metabolism. In line with these findings and study 
design, in paper III, we attempted to examine the gene-environment 
interaction effects associated with fatty liver disease susceptibility. For this 
purpose, we conducted a gene-BMI association study in predicting ALT levels, 
which identified a new locus associated with chronic liver disease and hepatic 
fat content. Interestingly, this locus did not associate with ALT, and therefore, 
could not be detected via conventional GWA studies.  

One important key concept underlying all these studies is the presence of a 
tight relationship between liver damage, hepatic fat content and lipoprotein 
metabolism. With the availability of more complex models and wide range of 
genetic information, such as whole-exome/-genome sequencing data, one can 
potentially find yet more missing pieces of the heritability puzzle of fatty liver 
disease. 
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