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Abstract

Chronic pain is a cause of suffering in a large share of the population and a leading
public health problem. Multimodal pain rehabilitation (MMR) is a multidisciplinary
rehabilitation method commonly used to treat chronic pain. In Sweden, MMR
providers contribute patient data to a national registry (the SQRP). A Bayesian
multivariate linear regression model was fitted on SQRP patient data from 2009-
2016 (n=8168) targetting patient health change from before to after treatment as
responses. The psychometric instruments MPI, SF-36, HADS and NRS were used
to measure health, with summarized versions of MPI and SF-36 being utilized.
Several significant effects were found, principally in that unemployment, low patient
belief in recovery and having constant, as opposed to periodic, pain had significant
negative effects on several responses. Additionally, the results of a previous study
on dimension reduction of the MPI instrument were replicated.
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1 Introduction

Chronic pain is a very common illness and a public health challenge. Estimates show
that approximately 20% of adults live with at least moderate chronic pain [Dah+18],
[Bre+06] with negative impacts on a wide range of health aspects, including sleep,
brain function, mood and mental health, cardiovascular health, sexual function and
overall quality of life [Fin11]. Lower back pain, which is a common form of chronic
pain, is the leading cause of years lived with disability worldwide [Wu+20].

Multimodal pain rehabilitation (MMR) is a treatment method that combines
physiotherapy, psychiatry and medicine in a rehabilitation program. There are
no universal criteria for what constitutes MMR, but common components are ed-
ucation on pain, coping skills, physical activity and training [Spi+18]. MMR is
consistent with the widely accepted biopsychosocial approach to pain, which is the
view that chronic pain is influenced by both biological, psychological and social
factors [Gat+07], and aims to target several of these factors for improvement via
multidisciplinary interventions.

While scientific evaluation of MMR points to it giving better long-term improve-
ment in many pain patient categories than other treatment methods [Sca+08], the
results vary between patients, and little research has been conducted on what causes
differing outcomes. The studies that exist often have small sample sizes or focus
only on patients with specific pain disorders [Roo+13], [Ang+10]. As MMR is a
costly form of intervention with limited availability, the ability to better predict
which patients will experience the greatest benefits from MMR would be useful in
prioritizing patients for treatment. In accordance with the biopsychosocial approach
to pain, it is important to account for outcomes in physical, social and psychological
health dimensions.

In Sweden, the Swedish Quality Registry for Pain Rehabilitation (SQRP) gath-
ers patient data from MMR treatment centers concerning background and socio-
economic factors, values for several psychometric instruments at baseline and values
for these instruments after treatment. The present study is a registry study based on
data from the SQRP that aims to identify significant predictors of several treatment
outcome dimensions, and to give estimates of effect sizes for these predictors.

The present study fits a Bayesian multivariate linear regression model on selected
regressors and responses with the goal of describing multifaceted health outcomes of
MMR treatment in chronic pain patients. The Bayesian framework allows explicit
accounting for model uncertainty which is important to quantify certainty in predic-
tions of treatment outcomes. The multivariate linear regression model leverages the
fact that outcomes in different health domains correlate to produce stronger predic-
tions than univariate models would. The posterior distribution of effect parameters
are described, including credible intervals, measures of effect size and significance,
and posterior predictive simulations for some example patients are given, demon-

1



strating the usefulness of the model in predicting treatment outcomes. The Bayesian
multivariate approach and the choices of regressors and responses distinguish this
model from a similar study conducted on SQRP data with the aim of finding pre-
dictors for treatment outcomes in chronic pain patients [Ger+16].

Health outcomes in chronic pain patients are not trivial to measure and describe,
and thus psychometric instruments are commonly utilized to measure health states.
One of the instruments that is used in the SQRP, the Multidimensional Pain In-
ventory (MPI), has been criticized for having some undesirable properties. One
proposed solution is to reduce the dimension of the instrument by transforming the
original 12 scales into 3 summary scales [MN11]. The present study replicates the
factor analysis results of [MN11] and utilizes the summarized MPI scales, among
other instruments, as outcome measures.

The present study is limited by only utilizing registry data and thus not having
a control group. Still, the findings can contribute to a better understanding of
predictors for treatment outcomes from multimodal pain rehabilitation.
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2 Theory

2.1 Chronic Pain and Multimodal Pain Rehabili-

tation

Pain is defined by the International Association for the Study of Pain (IASP) as ”an
unpleasant sensory and emotional experience associated with, or resembling that
associated with, actual or potential tissue damage” [Raj+20]. This definition is
to be adopted in the International Statistical Classification of Diseases and Related
Health Problems 11th revision (ICD-11), which is not yet in use in Sweden [WHO21].
Chronic pain is defined in the ICD-11 as pain that persists or recurs for longer than
three months [Nic+19]. The ICD-11 is used to classify medical conditions both
for clinical purposes and to give a unified standard of categorization for statistical
purposes.

Many medical conditions cause pain. Rheumatic disorders and migraines or
other headache disorders are common medical conditions the symptoms of which
include chronic pain. However, chronic pain can persist despite successful treatment
of the condition that initially caused it, or itself become a larger detriment to health
than any other condition. Chronic pain can also manifest without any other known
condition causing it. Therefore, chronic pain can be a patient’s main medical issue,
and patients can need treatment specifically for chronic pain. For these reasons,
classification of chronic pain has moved away from diagnosis oriented towards some
underlying disease towards viewing chronic pain as a condition of its own [Nic+19].

Chronic pain is understood through a biopsychosocial framework. Biological fac-
tors such as injury or disease are clearly common causes of pain, both acute and
chronic. Psychological factors, such as catastrophizing or ruminating thought pat-
terns, or avoidant behavior, can exacerbate chronic pain, as can social factors, such
as lack of social support or economic stress. Treatment methods that target only
one or some of these factors are less effective than multimodal treatment [SBU21].

Multimodal pain rehabilitation (MMR) is an interdisciplinary treatment method,
combining physiotherapy, psychiatry and medicine. The main aim of MMR is not to
remove pain completely, as pain is a part of normal human functioning, but rather
to reduce the negative impact of pain on patients’ lives. Reduction of irrelevant pain
or decreased pain sensitivity would be valuable to patients, but as this is difficult to
achieve in isolation, MMR takes a wider approach. In Sweden, MMR is only provided
to a patient after referral and evaluation. Due to limited availability of treatment and
high requirements on patient engagement and activity to reach a positive outcome,
MMR providers perform a selection of patients to receive treatment after an initial
evaluation.
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2.2 The Swedish Quality Registry for Pain Reha-

bilitation

The Swedish Quality Registry for Pain Rehabilitation (SQRP) is a national database
that gathers patient data from providers of multimodal pain rehabilitation in Swe-
den. The SQRP was started in 1998 by the Swedish Association for Rehabilitative
Medicine, a specialist organization within the Swedish Medical Association, with the
aim of describing patients in need of pain rehabilitation and treatment outcomes of
such rehabilitation. Data for the registry is supplied by pain rehabilitation teams
and units connected to the registry - as of 2021, every specialist provider of pain
rehabilitation in Sweden was connected to the registry, as well as 17 primary care
pain units. The registry holders estimate that during 2021, 85% of patients receiving
MMR in Sweden were entered into the registry [NRS22]. Yearly reports from the
period 2009-2016 do not provide such coverage estimates, but similar amounts of
patients were registered yearly during that period [NRS13].

Inclusion of patient data in the SQRP is based on receiving a referral to specialist
pain treatment. Not every patient that receives such a referral will be provided
treatment, but every patient that undergoes an evaluation for treatment with a
healthcare provider connected to the SQRP will fill in a form that is submitted to
the SQRP.

Each entry in the SQRP consists of the data gathered for one person during one
process of referral, evaluation and treatment. This means that an entry might only
contain the data gathered during evaluation, if the patient was not offered treatment
after evaluation. There might also be several entries for the same person, if a patient
receives multiple referrals to specialist pain treatment at different points in time.
This is not uncommon for sufferers of chronic pain.

The SQRP data is gathered at three points in time for each person - an initial
form is gathered as part of the patient’s evaluation for treatment, a concluding
form is gathered at the time of the conclusion of treatment, and a follow-up form is
gathered 12 months after the conclusion of treatment. All three forms contain the
same psychometric instruments, whereas the first form contains most background
questions and the conclusion and follow-up forms contain some evaluative questions.

The SQRP does not contain follow-up data for patients who did not undergo
treatment. This means that there is no natural way to compare health outcomes of
patients receiving treatment with chronic pain sufferers who did not receive treat-
ment.

The evaluation form contains many background variables, such as age, gender,
region of origin, education, employment status, self-reported pain duration, self-
reported pain severity and pain locations, and self-reported expectation of improve-
ment. The form also contains several psychometric instruments that are described
in detail in the next section. This form can vary somewhat between healthcare
providers and has changed over time, but a large set of background variables and
psychometric instruments are the same. An extensive description of the variables
included in the SQRP dataset is available in Appendix A.

The SQRP underwent a revision in 2016, which has caused data to be divided
into two epochs with some variety in the gathered data. The first epoch consists
of data from the period January 2009 to July 2016, and the second of data from
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August of 2016 onward. The present study was performed using data from the first
epoch.

The SQRP data contains a multitude of psychometric instruments measuring dif-
ferent outcomes. Some are mandatory inclusions in evaluation forms for all health-
care providers connected to the SQRP, while some are voluntary and not used by a
majority of treatment locations. In addition to the major instruments, the SQRP
contains an NRS (numeric rating scale) for pain during the past week, where pa-
tients report their pain on a scale of 0-10; and a pain location indicator instrument,
where patients can report in what parts of their body they experience pain. The
following list describes the major instruments briefly, focusing on the mandatory
instruments.

� HADS - Hospital Anxiety and Depression Scale. Used to indicate symptoms
of anxiety and depression. Contains two subscales, one for anxiety and one
for depression. Scores range from 0 to 21, with 21 indicating greatest risk of
anxiety or depression. [ZS83]

� SF36 - 36-item Short-Form Health Survey. Measures quality of life on eight
dimensions: Physical functioning, Role functioning/physical, Role function-
ing/emotional, Energy/fatigue, Emotional well-being, Social functioning, Pain,
and General health. Scores range from 0 to 100 with 100 indicating the best
health. [WS92]

� EQ-5D - EuroQoL 5 dimensions. Measures quality of life on five dimensions:
Mobility, Self-care, Usual activities, Pain/discomfort, and Anxiety/depression.
[RC01]

� MPI - Multidimensional pain inventory. Measures pain and how pain im-
pacts the patient’s life on many dimensions, including physical, mental, so-
cial and activity-related. Designed with 12 dimensions in three domains: the
physical/mental domain with dimensions Interference, Social support, Pain
severity, Perceived life control and Affective distress; the social domain, with
dimensions Solicitous responses from significant other, Distracting responses
and Negative responses; and the activity domain, with dimensions Household
Chores, Outdoor work, Activities away from home and Social activities. A
system of patient classification into three categories (adaptive coper, interper-
sonally distressed, dysfunctional) has been developed by the developers of the
instrument and the category assignment probabilities are given in SQRP data.
Scores range from 0 to 6. [KTR85]

� Voluntary instruments are CPAQ - Chronic Pain Acceptance Questionnaire,
measuring pain acceptance; Tampa Scale of Kinesiophobia, measuring kinesio-
phobia, i.e. fear of movement; LiSat-11 - Life Satisfaction Questionnaire with
11 items, measuring life satisfaction.

2.3 Mathematical and statistical methods

Some mathematical and statistical methods are used to evaluate data, investigate
the structure of correlation between the instruments, and propose and evaluate
predictive models.
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2.3.1 Psychometrics and factor analysis

The aim of psychometrics is to measure psychological properties of humans, such as
emotional well-being or level of extraversion. Unlike physical properties like height
or weight, there are no simple means of measuring such psychological properties,
and there might even be disagreement on their definition. Properties that cannot be
measured directly are called latent properties or constructs. Despite the difficulty in
constructing measures that approximate latent properties and that allow comparison
or mathematical manipulation, such measures may be of interest to researchers, for
instance when trying to determine whether treatments for psychological problems
are effective. Therefore, an instrument such as a test or questionnaire is created
based on relevant theory and expertise in such a way that one can assume that a
person’s result on the instrument is related to the latent property in that person. For
instance, if one wishes to evaluate patients on their level of anxiety, which is clearly
a latent property, one might construct a questionnaire on the extent to which they
experience symptoms of anxiety, with the assumption that patients with a greater
level of anxiety will experience more symptoms thereof.

Creating a useful psychometric instrument is a technical process where many
properties of the instrument must be ensured - an introduction to measurement the-
ory is available in e.g. [DB18]. The present study does not focus on measurement
theory, and will generally not go into detail regarding the creation and verification
of the instruments used in the SQRP. The exception is the question of construct
validity, that is, whether the instrument actually measures what it purports to mea-
sure. Several instruments in the SQRP contain many dimensions that are supposed
to reflect different latent properties, in order to capture the complexity of pain con-
ditions. However, it is not certain that different dimensions of some instrument
actually measure independent and distinct latent properties. One way of investigat-
ing construct validity in a multidimensional instrument is to use factor analysis.

Factor analysis aims to find structures in data that might not correspond to
the dimensions that are assumed in the design of the instrument. Given a set of
responses to some instrument, one can consider whether the responses seem to cor-
respond with the theory behind the instrument, in the sense that the dimensions
are independent and measure different latent properties. One can also consider the
question of whether the set of dimensions that are postulated in the instrument
best explain the variability that is observed in the data, or if some other set of
dimensions would better describe this variability. These questions can be attacked
mathematically using principal component analysis (PCA). The following exposi-
tion on PCA follows [Jol02]. Even though the concepts and goals of factor analysis
and PCA are closely related, there are differences in the theoretical assumptions
that are described well in chapter 7 of [Jol02]. As a consequence of the close rela-
tion of concepts, the terms principal component and factor will sometimes be used
interchangeably, specifically in the context of factor rotation.

PCA is a mathematical method that finds a basis for some data such that the
axes of the basis are orthogonal and the first axis lies along the axis of maximal
variance in the data, the second axis lies along the axis of maximal remaining vari-
ance orthogonal to the first axis, and so on. Formally, let x be a vector of p random
variables and Σ be the covariance matrix of x (for this derivation Σ is assumed to
be known, but for data with unknown covariance structure the derivation is similar
to the one below with Σ replaced by the sample covariance matrix). Letting αααt
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denote the transpose of ααα, the goal is to find some set of functions αααt
ix, i ∈ {1, ..., p}

such that

αααt
ix =

p∑
k=1

αikxk.

The αααi should be such that αααt
1x has maximal variance, αααt

2x is uncorrelated with αααt
1x

and has maximal variance, and so forth, such that αααt
kx has maximal variance and

is uncorrelated with αααt
1x,..., ααα

t
k−1x. Each αααt

ix is a new random variable, and the
kth such random variable, αααt

kx, is called the kth principal component. To obtain
the vectors αααt

i, the following procedure is used: consider first αααt
1, which maximizes

var(αααt
1x) = αααt

1Σααα1. Since Σ is positive semi-definite this maximum will not be
attained for finite ααα1, so impose the constraint αααt

1ααα1 = 1. To maximize αααt
1Σααα1

subject to this constraint, the method of Lagrange multipliers is used. Maximize
instead

αααt
1Σααα1 − λ(αααt

1ααα1 − 1)

where λ is a Lagrange multiplier. Differentiating this expression with respect to ααα1

and setting it equal to zero gives

Σααα1 − λααα1 = 0 ⇔
(Σ− λIp)ααα1 = 0

meaning λ is an eigenvalue of Σ and ααα1 is the corresponding eigenvector. To deter-
mine which eigenvector of Σ gives the maximum variance, note that the quantity
to be maximized is

αααt
1Σααα1 = αααt

1λααα1 = λ

so λ must be as large as possible, meaning ααα1 is the eigenvector corresponding to
the largest eigenvalue of Σ. Note also from this equality that the variance of αααt

1

is equal to the largest eigenvalue of Σ. In general, the kth principal component is
αααt

kx and its variance is λk, the kth largest eigenvalue of Σ. This is proved here for
k = 2, the proof for k ≥ 3 proceeds similarly. To find ααα2, a maximization of αααt

2Σααα2

is performed as before, but with the added constraint that cov(αααt
1x,ααα

t
2x) = 0. This

condition can be rephrased in several ways, as

cov(αααt
1x,ααα

t
2x) = αααt

1Σααα2 = αααt
2Σααα1 = αααt

2λ1ααα1.

Thus, any of the following equivalent conditions could be added to the maxi-
mization problem:

αααt
1Σααα2 = 0 αααt

2Σααα1 = 0

αααt
1ααα2 = 0 αααt

2ααα1 = 0

Choosing the last one of these, the new maximization problem becomes

αααt
2Σααα2 − λ(αααt

2ααα2 − 1)− ϕ(αααt
2ααα1)

where λ and ϕ are Lagrange multipliers. Differentiating this with respect to ααα2 and
setting to zero gives

Σααα2 − λααα2 − ϕααα1 = 0
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which, when multiplied by αααt
1 on the right gives

αααt
1Σααα2 − λαααt

1ααα2 − ϕαααt
1ααα1 = 0.

Here, the first two terms are 0 by the assumed constraints and αααt
1ααα1 = 1, so ϕ = 0.

Therefore, the maximization problem reduces to

Σααα2 − λααα2 = 0 ⇔
(Σ− λIp)ααα2 = 0

which means that λ is an eigenvalue of Σ and ααα2 is the corresponding eigenvector.
Since αααt

2Σααα2 is to be maximized, λ is the greatest eigenvalue of Σ subject to the
constraints. Note that unless Σ has repeated eigenvalues, λ ̸= λ1 since that would
imply ααα1 = ααα2, violating the constraint αααt

1ααα2 = 0. Thus, λ is the second largest
eigenvalue of Σ and ααα2 is the corresponding eigenvector. As stated above, one can
proceed similarly to derive further principal components αααt

3x, ...,ααα
t
px, where the kth

principal component will be the eigenvector of Σ corresponding to its kth eigenvalue
λk, with variance var(αααt

kx) = λk.
Given the above, principal component analysis reduces to finding the eigenvectors

of the (sample) covariance matrix of the random variables of interest. Therefore, one
can use the relative sizes of the eigenvalues to determine the relative amounts of the
total variance that is described by the corresponding eigenvectors. The principal
components ordered by size of eigenvalues are then an orthogonal basis for data
where the first basis component describes the largest possible amount of variance in
the data, followed by the second, and so on.

PCA is a powerful tool for dimension reduction and assessing construct validity.
If some multidimensional psychometric instrument is well-designed in the sense that
every dimension measures a unique construct that is uncorrelated with the other
dimensions, then no significant dimension reduction should be possible and all prin-
cipal components should describe similar amounts of variance. If, however, several
dimensions are correlated, a few principal components will describe a much larger
share of the variance, and dimension reduction will be possible.

In practical applications of PCA, it is common to normalize all data dimen-
sions before finding the eigenvectors of the sample covariance matrix. Otherwise,
dimensions with greater range will dominate over dimensions with smaller range.

There is no universal metric to assess what constitutes a ”large share” of total
variance, but PCA is often evaluated by a scree plot, a plot of the eigenvalues
of all principal components in descending order, where a clear elbow can indicate
that principal components above the elbow are significant and principal components
below it can be discarded. Such a plot can be seen in Figure 4.1. Another simple
evaluation tool is to consider principal components with eigenvalues greater than 1
to contribute a large share of variance.

For the purposes of interpretability, it can be of interest to rotate principal
components. Once a subset of principal components (or factors) that explains a
sufficiently large proportion of the variance has been selected, those factors can be
rotated to provide more interpretable loadings of original variables onto dimensions,
without affecting the amount of variance they explain as a basis. Usually, the goal
of such rotation is to make the loadings of the original variables onto the factors
either as close to or as far from zero as possible. Clearly, a factor that is just an

8



average of two well-understood dimensions is more interpretable than a factor that
consists of a small part of every dimensions in a multivariate model.

Factor rotations are either orthogonal or oblique. An orthogonal rotation pre-
serves the orthogonality of the factors, whereas an oblique rotation allows for non-
orthogonal factors. Depending on what assumptions on orthogonality of the latent
variables are made, either kind of rotation can be useful. There are many different
rotation procedures of either kind, based on different simplicity criteria. For the
purposes of this study, an oblique rotation known as Promin is used, see [Lor99].
The Promin rotation first obtains a simple target matrix using a weighted Varimax
rotation, meaning a rotated structure where each variable loads strongly onto very
few factors and have zero loadings onto the other factors, and where each factor is
loaded onto strongly by a few variables and have zero loadings from the other vari-
ables. Next, the distance between this target and an oblique rotation of the factors
is minimized using a Procrustes rotation. The details of the rotation and references
to the rotations used in Promin are given in [Lor99].

A construct validation procedure for a high-dimensional psychometric instru-
ment might thus be as follows. First, consider a set of measurements using some
multivariate instrument on some reasonable set of people. Then, perform PCA on
the measurements and reduce dimensionality if appropriate. Next, rotate the re-
maining principal components to increase interpretability. Finally, investigate how
the result correlates with the instrument’s design and theoretical knowledge in the
academic field the measurement is concerned with. It must be noted that PCA does
not assume or give rise to a model, but is merely a tool that describes properties
of the data - thus, a set of rotated principal components is not a replacement for
a theoretically sound model of some latent properties. However, if the data do not
correspond with the model, the model might be insufficient.

2.3.2 Bayesian inference

Bayesian statistical methods utilize prior knowledge about some phenomenon and
combine it with some evidence to update that knowledge. Bayesian inference is
useful when estimating parameters in some complicated model where the exact
distributions of the parameters are not known. Bayesian methods also allow more
precise quantification of the level of certainty in the obtained knowledge about the
studied object. In the present study, Bayesian methods are used to infer estimates
of regression coefficients and error distributions.

Bayesian inference rests on Bayes’ theorem. Given some model with a set of
parameters θ and some data X and letting π indicate probability, Bayes’ theorem
states that

π(θ|X) =
π(X|θ)π(θ)

π(X)
.

In words, the probability of the model conditional on the data (also known as the
posterior probability of the model) is equal to the probability of the data conditional
on the model (also known as the likelihood or evidence) multiplied by the uncondi-
tional probability of the model (also known as the prior probability of the model)
divided by the unconditional probability of the data. This theorem allows model
and parameter inference. By assuming that the likelihood follows some distribution
(e.g. multivariate normal with parameters provided by the model) inference can be
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made on the distributions of model parameters. For a linear regression problem,
these model parameters are regression coefficients and the distribution of the error.

This indicates the main philosophical difference between classical (or frequentist)
inference and Bayesian inference. In classical inference, the parameters one wishes to
infer are assumed to be fixed but unknown. In Bayesian inference, model parameters
are assumed to be uncertain, which allows the notion of a probability distribution for
the model parameters. Another large difference lies in the use of a prior distribution
in the Bayesian setting. In classical inference, any parameter estimates are derived
solely from the data, given some chosen model. In the Bayesian setting, since the
posterior distribution of a parameter is the product of the prior distribution and the
likelihood, any prior knowledge of the parameters can be explicitly incorporated into
the model and will affect the posterior distribution. If there is no prior knowledge
of the parameter distributions, or no wish to incorporate such knowledge into the
model, an uninformative prior can be used. This aims to minimize the role of the
prior distribution and ”let the data speak for themselves” [Gel13]. For example, an
uninformative prior for a location parameter might be the uniform distribution over
some wide interval. One might also assign equal probability to any real value for a
location parameter. This results in an improper prior, meaning it is not actually a
probability distribution as it integrates to ∞ rather than 1. Certain improper priors
can yield proper posterior distributions, making them useful as a way to express
minimal prior knowledge.

An important concept relating to the choice of a prior distribution is the notion
of conjugate distributions. This means that the prior and posterior distributions are
in the same probability distribution family, giving relatively simple closed-form ex-
pressions for the posterior distribution. This is desirable to improve interpretability
of results and to avoid posterior that can only be described by numerical integra-
tion. The existence of conjugate prior and posterior distributions depends on the
distribution of the likelihood, as the posterior is the product of the prior and the
likelihood.

In classical linear regression, the p-value of regression coefficients under a t-test
is commonly used to conclude which regressor variables are of importance. In the
Bayesian framework, there is no exact translation of the concept of the p-value.
Instead, to concisely evaluate certainty of effects, the probability of direction (PD)
and effect size estimates will be used in the present study. PD is defined as the share
of the posterior distribution of some parameter that shares a sign with the median,
and indicates the certainty associated with the most probable direction (positive or
negative) of the effect. If the entire posterior distribution of some parameter lies
above 0, PD will be 1, representing total certainty that the effect is positive. If,
on the contrary, the posterior distribution of some parameter is symmetric around
0, PD will be 0.5, representing total uncertainty in the directionality of the effect.
PD will vary between 0.5 and 1, and is closely correlated to the notion of p-value
[Mak+19]. An approximate translation between the two can be made by taking
ptwo−sided = 2 ∗ (1 − PD), meaning that a two-sided p-value of 0.05 corresponds
approximately to a PD of 0.975.

Bayesian inference allows the notion of a credible interval, which is similar to
the classical notion of a confidence interval, albeit with a different mathematical
justification and interpretation. In the classical framework, since parameters are
viewed as fixed but unknown and estimators are stochastic, the interpretation of a
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95% confidence interval for some parameter θ is that it is an interval whose bounds
L,U are random variables such that the probability

π(L < θ < U) = 0.95.

This means that if one repeatedly generates confidence intervals for θ, 95% of these
confidence intervals are expected to contain the true value of θ. In the Bayesian
framework, since parameters are viewed as uncertain, the notion of a confidence
interval does not work, and credible intervals are used instead. In Bayesian inference,
a posterior distribution for a parameter is generated using the procedure described
above. Given this posterior distribution, a 95% credible interval is an interval that
covers 95% of the posterior distribution, meaning there is a 95% probability that
the parameter falls within the credible interval. For any posterior distribution, a
95% credible interval can be selected in different ways, some of the most common
being the highest density interval, meaning the interval such that any point within
the interval has higher probability density than every point outside the interval (this
is also the narrowest possible interval), and the equal-tailed interval, meaning the
interval such that the probability of the parameter being greater than the upper
bound of the interval is equal to the probability of the parameter being smaller
than the lower bound. For unimodal and symmetric posterior distributions, these
intervals coincide.

The Bayesian framework allows the computation of a posterior predictive dis-
tribution given that a posterior distribution for some model parameters has been
computed. The posterior predictive distribution is the estimated distribution for an
unobserved data point, taking into account the level of uncertainty in the posterior
distribution. Formally, letting θ denote the set of parameters in the model (belong-
ing to some parameter space Θ), X denote the data and x̃ an unobserved data point,
the posterior predictive distribution of x̃ is

π(x̃|X) =

∫
Θ

π(x̃|θ,X)π(θ|X)dθ.

The posterior predictive distribution is very useful if the goal is to predict future
values stemming from the model, as it explicitly incorporates the level of uncertainty
in the estimated model. Out-of-sample prediction that simply plugs in the best
estimates of the model parameters will fail to take this uncertainty into account and
can thus give distributions that are too narrow.

2.3.3 Bayesian multivariate linear regression

Regression analysis is a class of methods that aims to describe the relationship
between some dependent variables (also called responses) and some independent
variables (also called regressors). Linear regression is the most common setting,
where the response is assumed to be some linear function of the regressors plus
some error term. Ordinary (multiple) linear regression only targets one dependent
variable at a time. If multiple responses are assumed to have correlated errors,
multivariate regression techniques can be used to take advantage of this correlation.
Regression analysis can be approached both from a Bayesian and a classical point
of view, and the present work will use the Bayesian approach, utilizing Bayesian
multivariate linear regression. An overview of the subject is available in e.g. [BT92].
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The following exposition of the theory follows the Wikipedia article on the subject
[Wik22].

Consider the regression problem

yi,1 =xt
iβββ1 + ϵi,1

...

yi,m =xt
iβββm + ϵi,m

where xt
i is a vector of k predictors for individual i out of n individuals, βββi are the

regression coefficients corresponding to the response variable yi and the set of errors
{ϵi,1, ..., ϵi,m} are correlated. This can be expressed compactly as

yt
i = xt

iB+ ϵiϵiϵi
t

where B denotes the (k,m) coefficient matrix

B =

[(
βββ1

)
. . .

(
βββm

)]
.

For an individual observation the noise vector ϵϵϵi has a multivariate normal distri-
bution: ϵϵϵ ∼ Nm(0,Σϵ) where Σϵ is some covariance matrix of the noise. The entire
regression problem can be written using matrices as

Y = XB+ E

where Y is an (n,m) matrix of all outcomes for all individuals, X is an (n, k)
design matrix and E is an (n,m) matrix of all errors for all individuals. The stan-
dard linear least squares solution to this regression problem is to estimate B as
(XtX)−1XtY. In the Bayesian framework the goal is instead to find some posterior
distribution for B and Σϵ.

In the sequel, vec denotes the vectorization operator

A =

a1,1 . . . a1,n
...

. . .
...

am,1 . . . am,n

⇒ vec(A) =


a1,1
. . .
am,1

a1,2
. . .
am,n


and ⊗ denotes the Kronecker product

A⊗B =

a1,1B . . . a1,nB
...

. . .
...

am,1B . . . am,nB


MNn,p denotes an (n, p)-dimensional Matrix Normal distribution. This distribu-

tion is related to the multivariate normal distribution in the following way:

X ∼ MNn,p(M,U,V) ⇔ vec(X) ∼ Nnp(vec(M),U⊗V).
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The density of the (n, p) matrix-variate normal distribution is

π(X|M,U,V) =
exp(−1

2
tr(V−1(X−M)tU−1(X−M)))

2π
np
2 |V|n2 |U| p2

where X and M are (n, p), U is (n, n) and V is (p, p).
A conjugate prior distribution for βββ = vec(B) is of the form

π(βββ,Σϵ) ∝ π(Σϵ)π(βββ|Σϵ),

where
π(Σϵ) ∼ W−1(V0, ν0)

and
π(βββ|Σϵ) ∼ N(βββ0,Σϵ ⊗ Λ−1

0 ).

whereV0, ν0, βββ0, Λ0 are some prior hyperparameters andW−1 is the inverse Wishart
distribution. Using this, a conjugate posterior can be found in the form:

π(βββ,Σϵ|Y,X) ∝π(Σϵ|Y,X)π(βββ|Σϵ,Y,X)

∝W−1(Vn, νn)MNn,m(Bn,Λ
−1
n ,Σϵ)

Furthermore, the posterior hyperparameters are given by

Vn =V0 + (Y−XBn)
t(Y−XBn) + (Bn −B0)

tΛ0(Bn −B0)

νn =ν0 + n

Bn =(XtX+ Λ0)
−1(XtY+ Λ0B0)

Λn =XtX+ Λ0

To create credible intervals for the regression coefficients, the marginal posterior
distribution of B is needed. This marginal posterior is a matrix-variate t distribu-
tion, denoted by Tn,p

π(B|Y) ∼ Tn,m(
(νn +m− 1)

2
,Bn,Λ

−1
n ,Vn).

The matrix-variate Tn,p distribution has the density

π(X|ν,M,U,V) =
Γp(

ν+n+p−1
2

)|In + (V−1(X−M)tU−1(X−M))|− ν+n+p−1
2

π
np
2 Γp(

ν+p−1
2

)|V|n2 |U| p2

where ν is a scalar, X and M are (n, p), U is (n, n) and V is (p, p).
Selection of the prior can be done in different ways. By specifying the prior

hyperparameters for the conjugate prior distribution any available information can
be used. It is also possible to specify an improper prior, attempting to reduce its
influence. One choice for improper prior, following [Mur07], can be obtained by
setting the prior hyperparameters

|V0| =0

ν0 =− 1

βββ0 =0

Λ0 =0
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giving the improper prior
π(βββ,Σϵ) ∝ |Σϵ|−(m+1)/2

which leads to a proper posterior and posterior hyperparameters according to the
above description.

2.3.4 Assessing multivariate normality of the error

Any regression model makes some assumptions about the relationship it seeks to
describe. It is important to investigate whether these assumptions hold. A standard
linear regression model assumes that responses consist of some linear function of the
predictors plus some error stemming from a normal distribution. This will lead to
model residuals being t-distributed (which converges in distribution to a normal
distribution as the number of degrees of freedom increases). To investigate whether
model residuals are distributed in this way, visualizing the residuals by plotting
them in histograms or scatter plots or making quantile-quantile (Q-Q) plots of the
residuals against the quantiles of their theoretical distribution are common tools.

In the multivariate case, these visualizations are not quite sufficient. In the model
proposed in 2.3.3 the errors are many-dimensional and assumed to follow a multivari-
ate normal distribution, meaning that model residuals will belong to a multivariate
t-distribution (converging in distribution to a multivariate normal distribution as
the number of degrees of freedom increases). Marginal plots of the residuals are
insufficient, as the marginal distributions of some multivariate distribution being
normal does not prove that the joint distribution is multivariate normal (though the
converse holds). Still, investigating marginal distributions is a common first step
as clear deviations from univariate normality in the marginal distributions indicate
that the joint distribution is not multivariate normal. Additionally, a multivariate
tool that can be used is a Q-Q plot where the squared Mahalanobis distance of
residuals is utilized [Tho02]. The Mahalanobis distance is a measure of distance of
some point in a multivariate space from the origin relative to the distribution of
interest, and can be seen as a multivariate generalization of the concept of mea-
suring distance from the mean of some distribution in standard deviations of that
distribution. The Mahalanobis distance of some point xi relative to a multivariate
probability distribution with mean vector µµµ and covariance matrix Σ is defined as

Ri =
√
(xi − µµµ)Σ−1(xi − µµµ)

and the squared Mahalanobis distance of points belonging to a multivariate normal
distribution is chi-square distributed with the number of degrees of freedom equal
to the dimensionality of the multivariate normal distribution.
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3 Method

3.1 Outline

In this section, the general medical and scientific goals of the study are translated
into specific mathematical problem formulations and goals, providing an outline of
the model in mathematical terms.

The goal of the study is to model health effects of the treatment based on some
background information of the patients. Such a model might be used to increase
the total beneficial effects of the treatment by allowing a better selection of patients
to treat based on the initial measurements, to identify and investigate unwanted
outcome discrepancies between patient categories, and to increase knowledge of how
multimodal pain rehabilitation affects the patients.

To attain the goal of the study, a selection of what outcomes to model and what
background information to use must be made. Given a selection of m different
outcomes to model and k background variables to be used in the model, let each
outcome measurement be represented by a point y ∈ Rm and each set of background
variables be represented by a point x ∈ Rk, such that the components of y correspond
to the dimensions of various psychometric instruments and the components of x
correspond to the various background variables. For each person there is one point
x giving that person’s background variables and (at most) a triplet (y0, y1, y2), giving
the values on the selected instruments before the treatment, immediately after the
treatment, and 12 months after the treatment.

The health effects of the treatment must be defined in terms of y, as some func-
tion B(y0, y1, y2), since (y0, y1, y2) are the only measurements that allow comparison
of health before and after the treatment. In principle, the function B could be any
function. Assuming it is some linear function will make optimization of the function
simple. As the outcome dimensions selected in this project are all commonly used
psychometric instruments in the context of pain research, designed and tested to
measure specific aspects of health accurately, it is reasonable to choose a function
B that does not transform the outcome dimensions non-linearly.

To model the health effects of the treatment before the treatment has occurred,
a model that can predict (y1, y2) with uncertainty based on x and y0 is required. Let
y1, y2 be predicted by f(x, y0) + e(x, y0) where f(x, y0) is the expected result after
the treatment and e(x, y0) is an error term, a random vector with expectation 0.
Then, using the linearity of B, the expected benefit of the treatment given (x, y0) is

E(B(y0, f(x, y0) + e(x, y0))) = B(x0, E(f(x, y0) + e(x, y0))) = B(y0, f(x, y0)).

Thus, the expected treatment benefit depends on f but not on e. The details of e
do matter for assessing uncertainty in the prediction.
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In principle, the function f could be non-linear and complex in different ways.
However, initial data analysis did not indicate any clear non-linear patterns or effects
that could be modelled. Thus, f was modelled as an affine function. Non-linearities
in the relationship between (x0, y0) and (y1, y2) could be accounted for by transfor-
mations of data.

The values of selected instruments after treatment y1, y2 might depend on x and
y0 in different ways from one another, which would need to be taken into account in
modelling. However, the initial data analysis did not indicate any major differences
between y1, y2, which is discussed further in Section 3.4.1. This led to the decision
to model the measured values in each time step as

y0 =γ + ϵ0

y1 =γ + δ + ϵ1

y2 =γ + δ + ϵ2

where γ denotes the level of the instrument before treatment, δ denotes the change
in the instrument due to treatment, and ϵi denotes the error in time step i. In this
setup, the differences between the second and third time step are random and have
no trend. Given this model, a natural choice for the function B is

B(y0, y1, y2) =
b(y1) + b(y2)

2
− b(y0)

=
b(γ + δ + ϵ1) + b(γ + δ + ϵ2)

2
− b(γ + ϵ0)

=b(δ) + b(
ϵ1 + ϵ2

2
− ϵ0)

for some linear function b (e.g. selecting some outcome dimension). This choice of
B isolates the treatment effect δ from γ and aims to minimize the impact of the
error by averaging ϵ1, ϵ2. As this B only depends on the average of y1, y2 rather than
their distinct values, this also led to the choice to use the observed average of these
values, y′, as response data, and let f(x, y0) + e(x, y0) predict y

′.
Now, the chosen B is a linear function depending only on the difference d =

y′ − y0, which gives the identity B(y0, f(x, y0)) = a · d, the dot product of d with
some vector a. If all instruments are assumed to contribute equally to the overall
health outcome, a can be set equal to the unit vector, but for the purposes of
the present study it will be of more interest to consider the vector d itself, as a
multivariate object. Depending on the perceived relative importance of different
instruments, a can be adjusted to give a number corresponding to a desired model
of total health outcome.

Next, an explicit f(x, y0) must be chosen. Since d is the object of interest, f is
defined in terms of f(x, y0) − y0, as this is the prediction using f of d. A general
formulation for affine f is

f(x)− y0 = Ax+By0 + c

for some matrices A,B and some vector c. However, the choice was made to exclude
the By0 term, as initial data analysis indicated that the errors were large compared
to the effects and that the By0 term would mostly capture the statistical behaviour
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of the error. This decision is discussed further in 3.4.1. Therefore, f(x) − y0 was
modelled as

f(x)− y0 = Ax+ c

for some matrix A and vector c. Now, maximizing health gains is a matter of
maximizing b(Ax+c) = bAx+bc given the vector b, i.e. maximize vx where v = bA.
To select the patients who will gain maximal health benefits from the treatment is
simply a matter of multiplying their background variables x with a vector v and
prioritizing those with the highest score.

It remains to produce A and c from the data. Bayesian inference is chosen as
a framework to make explicit any uncertainty in estimates of these parameters. As
the data is quite high-dimensional and noisy, explicit knowledge about parameter
uncertainty is important.

To specify an inference procedure, a noise model must be specified. The above
model is essentially a multivariate linear regression model. From the initial data
analysis, it seems like a reasonable initial assumption that noise is multivariate
normal and independent of y0, and in this case there is a theory to describe such a
model, a Bayesian multivariate normal linear regression model.

3.2 Variable selection

3.2.1 Responses

Since chronic pain is a multifaceted diagnosis and treatment does not aim to com-
pletely restore patients, but rather to manage symptoms, outcomes are not dichoto-
mous. The biopsychosocial approach to pain shows the importance of measuring
treatment outcomes not only in terms of physical pain but also in additional di-
mensions, but it is not immediately obvious which such outcomes are interesting to
measure. To establish a scientific standard of treatment outcome measures for pain
treatment, the Initiative on Methods, Measurement and Pain Assessment in Clin-
ical Trials (IMMPACT), which is composed of leading researchers in the field, has
recommended six outcome domains with several specific measures of each suggested
to use in clinical trials [Dwo+05]:

� Pain

– 11-point (0-10) numerical rating scale of pain intensity

– Usage of rescue analgesics

– Categorical rating of pain intensity (none, mild, moderate, severe) in
circumstances in which numerical ratings may be problematic

� Physical functioning (either one of two measures)

– Multidimensional Pain Inventory Interference scale

– Brief Pain Inventory interference items

� Emotional functioning (at least one of two measures)

– Beck Depression Inventory
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– Profile of Mood States

� Participant ratings of global improvement and satisfaction with treatment

– Patient Global Impression of Change

� Symptoms and adverse events

– Passive capture of spontaneously reported adverse events and symptoms
and use of open-ended prompts

� Participant disposition

– Detailed information regarding participant recruitment and progress through-
out the trial, including all information specified in the CONSORT guide-
lines

Of the specific measures recommended by IMMPACT, only the 11-point numerical
rating scale (NRS) of pain intensity and the Multidimensional Pain Inventory (MPI)
Interference scale are available in the SQRP data. Thus, several more outcome mea-
sures were used. Furthermore, even though they are not included in the IMMPACT
recommended domains, measures of quality of social life and activity were analyzed,
as they are readily available and of importance to quality of life of chronic pain
patients.

Note that the IMMPACT recommendations are older than the SQRP, and thus
the specific measures suggested by IMMPACT may have been replaced by other
instruments in the SQRP.

As described in Section 2.3.1, the instruments in the SQRP aim to measure la-
tent properties and it is not clear that the dimensions that are formulated for the
instruments correspond to actual latent properties. Although all of the mandatory
instruments in the SQRP are widely used, academic investigation of their psycho-
metric properties have given varying results. The SQRP instruments that were
described in 2.2 were considered for inclusion as outcome measures in the light of
previous research.

Though the MPI is prevalent in pain rehabilitation evaluation and one of its
dimensions is recommended in the IMMPACT guidelines, concerns have been raised
regarding its psychometric properties. One study found that a third of the study
participants were assigned different MPI profiles on retest though no treatment
had been administered [BJT04], and was unable to predict stability of MPI profile
assignment from other factors. This indicates that MPI profile change is a highly
noisy measure of patient improvement, even though other studies have found that
it correlates positively with positive treatment outcomes [NNS14]. Research on
the individual MPI scales indicate that several of these have insufficient range to
capture the full variation in the population [MN11]. A summarized version of the
MPI instrument that transforms the original 12 dimensions into 3 dimensions with
improved psychometric properties has been proposed. These summary dimensions
are derived through factor analysis, in a process which is described in Section 2.3.1
and which follows the paper by McKillop and Nielson.

The three proposed dimensions are described as ”Impairment”, being composed
mainly of the dimensions ”Pain severity”, ”Interference”, ”Life control” and ”Affec-
tive distress” in the original MPI; ”Social support”, being composed mainly of the
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dimensions ”Support”, ”Negative responses”, ”Solicitous responses” and ”Distract-
ing responses” in the original MPI; and ”Activity”, being composed mainly of the
dimensions ”Household chores”, ”Outdoor work”, ”Activities away from home” and
”Social activities” in the original MPI.

The NRS 11-point self-reported pain scale has been found to be reliable, valid
and clinically useful as a measure of pain [Far+01], [Eua+22].

The psychometric properties of the SF36 and HADS instruments on SQRP data
have been investigated in [LoM+19]. The focus of this investigation is to what
extent the several dimensions of those instruments actually measure unique latent
properties of the test-taker in a chronic pain setting. To exemplify the issue in
question: the SF36 has one dimension termed ”Physical functioning” and one termed
”Role limitations due to physical health”. One might ask whether those dimensions
are actually independent, or at most weakly correlated, in a test-taker. In general,
one might ask how many unique latent properties of a test-taker some instrument
actually measures, and what those properties might be. The paper comes to the
conclusion that the SF36 instrument, which has 8 dimensions, actually supports
two independent constructs on SQRP data: physical health and mental health.
This view of the SF36 has been put forth since shortly after the instrument was first
developed, and its original authors have developed summary scales corresponding
to these two separate constructs [War94].

Furthermore, [LoM+19] finds that the HADS instrument, which has 2 dimensions
termed ”Anxiety” and ”Depression”, only supports one general construct of overall
emotional distress on SQRP data. Other studies, however, have found that HADS
supports two constructs, in accordance with its design [GH09], [Her+03]. It also
concludes that the EQ-5D has low reliability on SQRP data and recommends against
using it.

The present study uses the three summarized MPI dimensions of McKillop and
Nielson, the two summarized SF-36 dimensions, the NRS 11-step self-reported pain
scale and the two original HADS dimensions. The selected outcome measures, their
encoded name in the study, and the outcome domains they correspond to are given
in Figure 3.1. Note that the IMMPACT-recommended domains of Participant rat-
ings of global improvement and satisfaction with treatment, Symptoms and adverse
events and Participant disposition are not included - this is due to a lack of variables
in the dataset corresponding to these domains. Two domains which are not included
in the IMMPACT recommendations are also listed, those being Social functioning
and Activity - this is due to the MPI - Social support and MPI - Activity dimen-
sions being readily available and seeming interesting, but not corresponding to an
IMMPACT domain.

The EQ-5D was wholly omitted, as a previous study recommended against us-
ing it. When the author of the present study conducted interviews with clinicians
working with pain rehabilitation, they were also critical of the EQ-5D and disputed
its clinical usefulness. Additionally, the EQ-5D did not provide measures for any
outcome domain that lacked alternatives, and was thus deemed superfluous.

The HADS scales were included as separate scales, despite previous results argu-
ing that they might only reflect one construct of mental well-being in chronic pain
patients. The potential advantage of reducing the two HADS dimensions to one, i.e.
better construct validity and dimension reduction, were deemed not to be worth the
loss of interpretability of the original scales.
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The SF-36 summarized physical and mental summary scales were included, as
these scales are interpretable according to the original design of the instrument and
seem to be better supported as constructs than the full 8 dimensions on the SQRP
dataset.

The three summarized MPI scales were included as these scales did not lose much
interpretability as compared to the original 12 dimensions and had been found to
have better psychometric properties than the full 12 dimensions [MN11]. Their
construct validity for the data used in the study was assessed, and the present study
replicates the results of the previous study on the SQRP dataset. The method of
this replication is described in Section 3.3.2 and its result in Section 4.1.

3.2.2 Response rescaling

The selected outcome measures vary in what direction on the scale denotes a positive
health outcome. For MPI - Impairment, NRS (self-reported level of pain during the
past week), HADS - Anxiety and HADS - Depression, higher scores indicate worse
health, whereas for MPI - Social support, MPI - Activity, SF36 - Physical summary
and SF36 - Mental summary, a higher score indicates better health. For ease of
interpretation, the scales were inverted such that a higher score indicates better
health in the present study, with the exception of visualizations of scores at baseline
in Figure 4.6.

The ranges of the selected responses also vary. MPI - Impairment, MPI - Social
support and MPI - Activity take values on a 0-6 scale, the SF-36 summary dimen-
sions take values on a 0-100 scale, the HADS dimensions take values on a 0-21-point
scale and the NRS takes values on a 0-10 scale. In order to make effect sizes com-
parable, standardized versions of all outcome scores were created by subtracting the
mean of the initial time step and dividing by the standard deviation of the initial
time step for every score in the respective outcome dimensions. Thus, for the stan-
dardized scores the initial mean was 0 and the initial standard deviation was 1 in
every dimension. The standardized scores were used to fit the regression model and
compute the posterior predictive distributions for individuals using the model, as
described in sections 4.3 and 4.4, to allow for easier comparison of effect sizes across
outcome dimensions.

3.2.3 Regressors

A set of background variables was selected to be included in the study as regressors.
The names of these variables and their coding in the database are displayed in
Figure 3.2. Regressors were selected to reflect common demographic data and the
character of the patient’s chronic pain condition. A potentially interesting set of
variables encoding the degree to which different pain mechanisms contributed to the
patient’s pain were omitted due to missingness over 50%.

Categorical regressors with more than two levels (Country of birth, Level of
education, Employment status) were re-encoded using dummy variables to indicate
the non-baseline levels of the variable, with the typical value being the baseline
in each case (Sweden for Country of birth, Upper secondary school for Level of
education, Employed for Employment status).
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Figure 3.1: Coding and outcome domain of outcome measures included in the study

Figure 3.2: Coding of background variables included in the study
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3.3 Data selection and preprocessing

Data was obtained from the SQRP. The obtained dataset is from the 2009-2016
epoch of SQRP data, containing 50 808 entries. Each entry consists of the forms
gathered from a patient during one process of referral, evaluation, and treatment,
as described in Section 2.2.

The dataset contains the filled-out forms of every person who has been evalu-
ated for potential treatment using multimodal pain rehabilitation with participating
healthcare providers. This means that many of the responses come from individuals
who were evaluated for, but weren’t offered, treatment, potentially several times, and
individuals who were offered treatment but didn’t complete it. These responses were
excluded from the analysis, leaving a dataset containing 19 607 sets of forms from
unique individuals who completed multimodal pain rehabilitation. This reduced
data set was obtained from Helene Svensdotter, who performed the data selection
as part of her Ph.D. work. Helene Svensdotter also performed some further data
pre-processing, such as re-encoding ”No answer” from a numeric code to an NA
variable and removing duplicate entries. From this dataset, a further reduction was
performed by omitting any response where the recorded dates of the three time steps
were chronologically inconsistent, such as the follow-up step happening before the
initial step. After this reduction, a set of 15 101 forms forms were left.

The reduced dataset was subdivided into a set of respondents who filled out the
forms in all three time steps and a set of respondents who did not respond in the
final time step, the 12-month follow-up. From these subsets, a further exclusion
was performed of any responses that were incomplete in any of the regressor or
response variables used for regression analysis. Thus, respondents who filled out
all relevant variables in the second form but did not fill out the third form at all
were included. These responses were included since the group who did not fill out
the third form had significantly worse values for all response variables except Social
support in the initial time step than the group who did fill out the third form, as
well as significantly lower mean increases in Impairment, SF36 - Physical health,
reported level of pain and HADS - Anxiety (the group who did not fill out the third
form did, however, have significantly higher mean Activity than those who did not).
These differences were evaluated using unequal variances t-tests for equal means,
the results of which are displayed in Figure 3.3, where responses with p < 0.05 are
highlighted in orange. Excluding this group entirely from analysis might lead to
overvaluation of the effect of treatment or other systematic errors. Recombining
the resulting subsets of complete responses gave a final analysis dataset with 8168
responses.

3.3.1 Treatment of missing values

The approach to handling missing values chosen in this study has potential disad-
vantages. Removing any incomplete response reduces the power of any statistical
test performed on the data as it decreases the size of the utilized sample. It also risks
introducing bias into any analysis performed on the data if the set of responses that
is removed is distributed differently in any variables that are considered in analysis
than the set of responses that remain. To investigate the risk of introducing bias,
unequal-variances t-tests were performed to find potential differences in means of
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(a) Initial values (b) Change from before treatment to after

Figure 3.3: Unequal variances t-tests for equal means of respondents who did or did
not fill out follow-up form

(a) Initial values (b) Change from before treatment to after

Figure 3.4: Unequal variances t-tests for equal means of included and excluded
responses

response variables between the responses that were kept and removed. These tests
were performed both for initial values, reported in table 3.4a, and changes from be-
fore treatment to after treatment, reported in table 3.4b. Responses with p < 0.05
are highlighted in orange. For these tests, raw response scores were used instead of
standardized values, but for ease of comparison responses were flipped such that a
greater value indicated better health.

Several significant differences between the included and excluded groups were
found. For the initial values, there were significant differences between included and
excluded responses for every response variable, and for every variable except SF36 -
Physical health, the included group had higher scores indicating better health. For
changes from before to after treatment, there were significant differences between
groups for Impairment, SF36 - Mental health, self-reported level of pain, HADS -
Anxiety and HADS - Depression, and for all of these responses the included group
improved more. Though many of the differences were significant, none of them
were very large, with every mean difference being smaller than 1

10
of the estimated

standard deviation of the included responses for that variable.

An alternative to excluding all non-complete responses would be to perform item
imputation, replacing missing values in relevant variables with a value determined
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by some method. Either approach to handling missing values has advantages and
disadvantages. Imputation will keep the utilized sample as large as possible, which
will give any performed test higher power. However, common methods of imputation
will cause other issues. Two common methods of imputation are mean substitution
and regression imputation. Mean substitution replaces any missing variable with the
sample mean for that variable, and regression substitution uses a regression model
estimated from the sample to predict a missing value using the non-missing values of
the response. These methods cause opposite problems: mean substitution tends to
reduce any sample correlations involving variables that are imputed, as the imputed
value is independent of any other variables in the same response. This can lead to
e.g. overestimation of uncertainty and underestimation of effect size in regression
analysis. Regression imputation, on the other hand, tends to artificially strengthen
confidence in any relationship that is observed in the sample.

3.3.2 MPI instrument summarization

In accordance with the procedure of [MN11], principal component analysis was per-
formed on the 12-dimensional MPI data in the initial time step. A scree plot was
used to decide on the number of components to keep. These principal components
were the rotated using a Promin rotation. The results are detailed in 4.1.

3.4 Modelling

3.4.1 Model assumptions

The three data points gathered from each individual in the dataset can be fitted
into several modelling approaches. These approaches all build on assumptions about
the way the treatment impacts the relevant outcome measures and how time after
completed treatment affects this impact.

In the present study, the outcome measures used are assumed to be noisy obser-
vations of some latent variables, such as abstract well-being or health, rather than
the only source of error being e.g. ticking the wrong box on the questionnaire. This
is relevant for modelling because it means there is some potentially large amount
of randomness to the measurements taken from each individual, and thus to the
change measured. An individual that is, by chance, having particularly little pain
on the day of initial measurement might report higher pain on the day of conclusion
of treatment simply due to chance, even if treatment has reduced average daily pain.
A consequence of this, especially if the errors are large compared to the effect of
treatment, is that a pattern of regression to the mean is to be expected in the data,
yielding a negative correlation between initial value and change in value. Those
patients who have a particularly large negative error in the first measurement will
tend to score higher in the second measurement, and vice versa, simply because it
is unlikely that a similarly extreme error will occur in consecutive measurements.
If the initial measurement is modelled as a regressor of the change in measurement,
this can lead to the spurious conclusion that this regressor is highly significant, even
if the effect is only a statistical artefact. On the other hand, the initial level of a
variable might have an actual effect on the change in measurement that would be
overlooked by excluding it from modelling. In the present study, baseline values
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of variables were not used as regressors, as the data was deemed so noisy and the
effects of the treatment so small on average that the statistical effects of the error
would likely dominate. The lack of a control group that did not receive treatment
precluded the use of a comparison to such a group to distinguish treatment effect
from error. Initial data analysis using simple linear regression on the marginal dis-
tributions of the responses indicated that baseline values indeed displayed negative
correlation with change in those values. A previous study using SQRP data utilized
baseline values as regressors, and reported significant effects of all baseline values on
the corresponding outcomes [Ger+16]. That study discusses that the effect might
be due to regression to the mean but does not investigate the possibility further.

A fundamental question that any model must take into account is whether to
use data from the conclusion of treatment or the 12-month follow-up. If the as-
sumption is made that there should be no systematic difference in some measure
between the conclusion of treatment and the 12-month follow-up, then the follow-
up data might be used as a second measurement of treatment effect, giving better
estimates of regression coefficients. On the other hand, if some change in measure
is assumed to occur during the 12-month period following treatment, that change
should be modelled explicitly. The difference in mean between the ”con” time step,
immediately after treatment, and the ”fol” time step, 12 months after treatment,
was tested using t tests with unequal variance. The results are reported in Fig-
ure 3.5. From these tests, there is no significant difference in the mean between
time steps for Impairment, Activity or HADS - Anxiety. The mean is significantly
larger in the con timestep for Social support, SF36 - mental summary and reported
level of pain, while it is significantly larger in the fol timestep for SF36 - Physical
summary and HADS - Depression. This indicates that while there are significant
differences between the time steps, they are not uniform in their direction, and for
some responses there seems to be no difference at all. It is not clear what gives rise
to this pattern of changes, and it could be investigated further, especially as to how
it impacts modelling of treatment outcomes. For the purposes of the present study,
these differences were deemed minor enough that no change to the described mod-
elling approach was necessary. This means that the response values in the regression
model were the values in the initial time step subtracted from the averages of the
values in the second and third time-step, for each dimension.

It should also be noted that the t-tests only test for equality of the first moment
of the distributions in the different time steps, and there might be other differences
that would impact modelling, e.g. greater variance in the fol time step, and that such
differences might also impact modelling. Initial data visualization did not provide
any reason to believe such differences existed, but more in-depth testing might be
useful.

3.4.2 Bayesian multivariate linear regression

Bayesian multivariate linear regression was implemented using the responses and
regressor described in sections 3.2.1 and 3.2.3 respectively, yielding a model with
16 regressors (including the intercept) and 8 responses. Uninformative priors were
assumed according to what is described in 2.3.3.

The posterior parameters were computed in R using a simulation approach. The
MixMatrix R package was used for its implementation of the distribution functions
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Figure 3.5: Unequal variances t-tests for equal means of responses in con and fol
time steps

and random samplers for the matrix normal and matrix t distributions [Geo21]. R
code was written to set up the design matrix X and response matrix Y and compute
the posterior hyperparameters. Then, 1000000 samples were simulated from the
marginal posterior distribution of B. The bayestestR package was used to describe
the posterior distribution, construct credible intervals and compute probability of
direction for all regression coefficients [MBL19].

To demonstrate the posterior predictive results of the model and to provide
illustrative examples, the posterior predictive distribution of treatment outcomes for
two example patients were simulated. The simulation was carried out by randomly
selecting one of the simulated marginal posterior distributions of B, multiplying the
vector of regressors for both individuals by it, simulating an error distribution from
the posterior distribution of Σϵ and then adding the simulated error to the previous
product. This process was carried out 100000 times.
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4 Results

4.1 MPI instrument summarization

The PCA gave similar results to that in the earlier work, with three dimensions
having eigenvalues clearly greater than 1 and the rest having eigenvalues clearly
smaller than 1, with a scree test indicating a three-factor solution, as displayed in
Figure 4.1. This three-factor solution accounted for 58% of total variance, very
close to the 60% of total variance explained by a three-factor solution in previous
work. After Promin rotation, this provided a set of loadings similar to that found in
[MN11], detailed in table 4.2, with similar correlations between dimensions, detailed
in table 4.3. Notably, the eigenvalues of PCA vectors as well as the loadings found
in the present work tended to be smaller in absolute terms than those found in
previous research, but the proportions of both the eigenvalues and the loadings were
very similar to those in previous research. As a system of principal components is
scale invariant, this has no bearing on the result, and comparisons of relative weights
of different factors can be performed by scaling the entire set of factor loadings by
some constant. The present work found greater negative correlation between the first
and third factor than McKillop and Nielson, and some very weakly loaded factors
have different signs in the present study, but the major patterns are consistent and
support the three-factor interpretation proposed in the previous study.

MPI data was converted to this three-dimensional setting as in [MN11]. An
Impairment score was calculated by averaging the MPI dimensions Pain Severity,
Interference, Life Control and Affective distress (after inverting the Life Control
dimension). A Social Support score was computed by averaging the MPI dimensions
Support, Negative Responses, Solicitous Responses and Distracting Responses (after
inverting the Negative Responses dimension). An Activity score was created by
averaging the MPI dimensions Household Chores, Outdoor Work, Activities Away
From Home and Social Activities. This provided three new dimensions with scores
ranging from 0 to 6, with a higher Impairment score indicating greater negative
impact of pain, and higher Social Support and Activity scores indicating a smaller
negative impact of pain. Descriptive statistics for these new dimensions are given
in Section 4.2, together with descriptives for other responses.

4.2 Exploratory analysis

A description of frequencies and, where applicable, distributions of regressors in
the dataset is given in figures 4.4 and 4.5. In the histograms over age and days
since pain debut, some extremely high values were omitted to make the figures more
readable. For age, 6 individuals over the age of 70 were omitted out of a total of
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Figure 4.1: Scree plot of PCA on MPI, initial time step.

Figure 4.2: Loadings of original MPI dimensions onto new factors. The greatest
absolute loading for each original dimension is bolded.
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Figure 4.3: Correlation matrix of the new MPI factors.

Figure 4.4: Frequency of regressors in the dataset

8168 individuals in the dataset, the most extreme of which was aged 87. For days
since pain debut, 8 individuals with more than 20000 days since pain debut were
omitted, the most extreme of which had 35010 days since their pain debut. Note
that the variable ini-N71 which describes the amount of visits with a doctor due
to pain the past year is not continuous but categorical with three levels: level 0
indicating 0-1 visits, level 1 indicating 2-3 visits and level 2 indicating 4 or more
visits.

The patients in the dataset were most commonly female (78.2%), born in Sweden
(85%) and employed (73%). It was much more common for them to have constant
pain, as opposed to pain being recurring (84.8% had constant pain).

Baseline levels of response variables are displayed in Figure 4.6. Note that in
this figure, the raw response values are used, meaning that better health is indicated
by high levels of Social support, Activity, SF36 - Physical summary, SF36 - Mental
summary; and low levels of Impairment, self-reported level of pain, HADS - Anxiety
and HADS - Depression.
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(a) Age (b) Days since pain debut

(c) Level of belief in recovery
(d) Number of visits with doctor due to pain
in the last year

Figure 4.5: Histograms and bar plots of non-categorical or multi-categorical regres-
sors in the dataset
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Figure 4.6: Baseline levels of response variables (scales not inverted)
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Observed changes in response variables, from the first time-step to the average of
the two last time-steps, are displayed in Figure 4.7. The changes in responses are all
unimodal and somewhat bell-shaped, though most of them display some skewness.
Note that in this figure and onward, some response values are reversed such that
better health is indicated by a higher value for all responses.

4.3 Regression model

Bayesian multivariate linear regression was performed according to Section 3.4.2.
The full results of this regression are displayed in Appendix B. In this section, re-
gressors that are significant in the sense of having probability of direction larger than
0.975 will be discussed. Statistics describing the posterior distribution of significant
regression coefficients are given in table 4.8. Note that intercepts are not included
in this table - intercepts were significant for all responses except for Social support.
As the regression model was fitted using standardized response values, as described
in Section 3.2.2, all effect sizes and credible intervals are to be interpreted such that
a score of 1 indicates a change equal to the standard deviation in the initial time
step of that dimension. Statistics for the posterior distributions of all effects and all
responses, using non-standardized response values, can be found in Appendix B.

For every response variable except Social support, the intercept had PD greater
than 0.9995, indicating great certainty in effect direction. Furthermore, for every re-
sponse except Social support, the mean estimated intercept was positive, indicating
improved health. For Social support, the mean estimated intercept was negative,
indicating worsening social support after treatment, but the PD for this estimate
was notably lower, at 0.9648, below the 5% significance threshold.

Note that due to the way categorical regressors are set up in the model, the
intercept corresponds to the mean estimated treatment effect on a man who is 0
years old, is born in Sweden, has upper secondary school education, is employed,
has gone 0 days since his pain debut, is highly confident that he will get better as a
result of treatment, has periodically recurring pain rather than constant pain, and
has sought medical aid for his pain at most once in the past year. Examples of the
model’s estimated treatment effect for several realistic patient types are given in
Section 4.4.

For Impairment, significant regressors were university education, unemployment,
days since pain debut, belief in recovery and constancy of pain. The strongest effects
were associated with a very low belief in recovery (the estimated effect of stating
the lowest belief in recovery was -0.212 points of change) and being unemployed
(estimated at -0.154 points of change).

No significant regressors were found for Social support.
For Activity, being unemployed and days since pain debut were significant re-

gressors.
For SF36 - Physical summary, being born in Europe outside of the Nordic coun-

tries or being born outside Europe, having at most elementary school education,
being unemployed and having low belief in recovery were significant regressors. The
strongest effects were associated with very low belief in recovery (-0.385 points of
change), being born in Europe outside the Nordic countries (-0.187 points of change)
and being unemployed (-0.179 points of change).

For SF36 - Mental summary, constancy of pain was the only significant regressor.
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Figure 4.7: Change in levels of response variables
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Figure 4.8: Posterior distribution statistics for significant regression coefficients
(standardized)

For self-reported pain during the past week, unemployment, low belief in recovery
and chronicity of pain were significant regressors. The strongest effect was associated
with very low belief in recovery (-0.295 points of change on a 10-point scale).

For HADS - Anxiety, age and chronicity of pain were significant regressors.

For HADS - Depression, gender and level of education were significant regressors.

For each response, there were one or more regressors with probability of direction
in the range of 0.9 to 0.975. This indicates effects where there is some evidence of an
effect, but where that evidence doesn’t reach the threshold of significance used in the
present study. These effects can have small or moderate influence on the predicted
treatment effect. Non-standardized statistics for these effect estimates can be found
in Appendix B.

The obtained model contains significant regressors for most responses. Impair-
ment, SF36 - Physical summary and Self-reported level of pain have the largest
amount of significant regressors and the greatest effect from them, whereas Activity,
SF36 - Mental summary, HADS - Anxiety and HADS - Depression have fewer signif-
icant regressors and a smaller effect, and Social support has no significant regressors.
This indicates that the effect of treatment on dimensions of emotional functioning or
mental health is more uniform across patients than its effect on physical functioning
and pain. This conclusion is reinforced by the example cases in Section 4.4, where
there is a very large difference in PD between best and worst cases for Impairment,
SF36 - Physical summary and Self-reported level of pain, and smaller differences for
other dimensions.

Certain regressors appeared more important than others by virtue of having sig-
nificant effect on more responses and those effects being stronger. Periodicity of
pain, unemployment and belief in improvement were regressors that had strong ef-
fects across several responses. These regressors differ in interesting ways. Periodicity
of pain is a medical fact, employment status is a social condition that cannot be
directly changed by treatment but can conceivably be changed in some other way,
and belief in improvement is a matter of attitude that could be directly addressed
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in treatment. The exact phrasing of the item concerning belief in improvement is,
”How convinced are you that you will be restored” (in Swedish: ”Hur övertygad är
du om att bli återställd?”), which is contrary to the scope of multimodal pain re-
habilitation being improved quality of life and ability to manage pain, not complete
restoration. Although this question is a useful predictor of treatment outcome, it is
poorly worded in the context of multimodal pain rehabilitation.

Several regressors had no significant effects. The number of visits with a doctor,
having ”Other” education, being a student or being outside the labor force, and
being born in a Nordic country other than Sweden, showed no significant effects for
any response. Gender and age only had significant effects on one response each, as
did having elemental school education. Having university education had a significant
effect on two responses. It is likely that a more parsimonious regression model could
give similarly powerful predictions as the present model by discarding some of the
non-significant regressors.

4.3.1 Social support

The Social support response produces results that are different in several ways from
other responses. It is the only response with a negative mean, and the only response
with no significant regressors. To understand why, it is instructive to investigate
the MPI items that contribute to Social support, most of which ask the respondent
to rate how often their ”significant other” (defined in the questionnaire as the other
person to whom the respondent feels closest) responds to them in different ways when
they are in pain, where helpful, supportive or distracting actions will contribute to
a higher Social support score and punishing actions will contribute to a lower score.
Any other items contributing to Social support asks the respondent to rate how the
pain interferes with their relationship to their significant other, their family, and
about the support they receive from them. As these things are at least partially
outside the control of the respondent, it seems reasonable that the treatment would
not have a large effect on them and that no regressor would have a significant effect.

It is interesting that the mean change in Social support is negative. In the exam-
ple cases in Section 4.4, both the best-case and worst-case patients were predicted
to have negative responses for Social support, although the prediction has fairly low
certainty regarding the effect direction. One reason might be that several test items
contributing to Social support are difficult to interpret in terms of unidimensional
health gains or losses, and might score lower as a result of improved health. For
instance, stating that a significant other often gets the patient pain medication will
contribute to a higher Social support score, but if a patient experiences less pain as
a result of treatment, the patient might have lesser need for pain medication and
thus not get it as often from their significant other, contributing to a lower Social
support score.

In other cases, it is not completely clear that behaviours from significant others
that contribute to a high Social support score are strictly beneficial from a health
standpoint. For instance, a significant other that tries to get the patient to rest
often will contribute to a high Social support score, as this is coded as a supportive
behaviour, but an important part of multimodal pain rehabilitation is to reduce fear
of movement and increase the level of activity.
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The lack of correlation between Social support and other responses means that
the model is unable to leverage other responses to give a better estimate for change in
Social support. This lack of correlation is interesting and somewhat surprising, as it
seems reasonable, for example, that getting less support and more punishment from
one’s significant other could have adverse effects on mental health. On the other
hand, the countervailing effects described above, where improved health lessens the
need for social support, might counteract any such effect.

Overall, Social support might not be suitable as an aggregated unidimensional
measure of health, but its components might be useful in a treatment setting where
a clinician can take the patient’s unique situation and complexity into account.

4.3.2 Assessing assumptions on data

The BMLR model requires an assumption on the distribution of the response data.
In the present work, the errors are assumed to stem from a multivariate normal
distribution. The marginal plots of response values in Figure 4.7 give some indication
that the response distributions are skewed. To more accurately assess whether
the multivariate normality assumption holds, a Q-Q plot of squared Mahalanobis
distances for each residual compared to their theoretical χ2 quantiles was created
and is displayed in Figure 4.9. From this figure, it is clear that the multivariate
residual distribution is heavy-tailed in the sense that points with great Mahalanobis
distance have a greater such distance than is expected from a multivariate normal
distribution. As residuals are assumed to follow a multivariate t-distribution, not a
multivariate normal distribution some heavy-tailedness is to be expected, but seeing
as the amount of data points is very high compared to the amount of dimensions,
the residuals should behave similarly to a multivariate normal distribution.

Marginal Q-Q plots of the responses are given in Figure 4.10. It is clear that
the marginal response distributions have heavy tails to different extents, the most
extreme being Activity and Social support, and with SF36 - Mental summary being
among the least extreme. Impairment and SF36 - Physical summary display clear
right-tailedness, meaning that those individuals who improve most in these responses
improve more than expected from a normal distribution.

Marginal normal Q-Q plots of residuals and scatterplots of fitted values against
residuals are given in Appendix C, in Figure C.2. These plots are similar to the Q-Q
plots for the data, again indicating heavy-tailedness in all responses and skewness
in several responses. For most residuals, the heavy-tailedness is so large that it
can scarcely be explained by the fact that residuals are expected to be t-distributed,
given the many degrees of freedom. The scatterplots of fitted values against residuals
in Figure C.1 show no clear signs of heteroskedasticity when accounting for the
varying amount of points at different levels of the fitted values.

Another assumption that is made in the present model choice is that the re-
sponses have correlated errors for an individual. Strictly speaking, the BMLR model
works even if all responses are uncorrelated, but there is no advantage gained from
the increased model complexity in this case, as opposed to modelling different re-
sponses as univariate. To investigate whether this assumption is reasonable, the
sample correlation for the responses is displayed in Figure 4.11. From this figure,
it is clear that most responses have moderate to strong correlation with several
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Figure 4.9: Q-Q plot of squared Mahalanobis distance of residuals against theoretical
quantiles

other responses, the main exception being Social support, which has no correlation
absolutely greater than 0.1 with any other response.

4.4 Examples and illustrations

The regression model shows that there are several significant predictors that affect
the expected outcome of the treatment in several dimensions. However, it is not
immediately interpretable how impactful these predictors are relative to the uncer-
tainty of the treatment outcome. In a classical linear regression model, a measure
such as the coefficient of determination R2 could be used to measure this impact,
but that measure does not work in the Bayesian setting.

To illustrate the size of the model effects relative to random error, the model’s
predictions in extreme examples were compared. Two patients from the data set
were chosen to represent a ”worst-case” and ”best-case” patient under the model.
To do this, the significant effects in the model were inspected and a profile of cate-
gorical regressors that would produce maximal or minimal estimated change in all
dimensions was obtained. The worst-case patient would be male, born in Europe
outside of the Nordic countries, have elementary school education, be unemployed,
have very low belief in improvement and have constant pain as opposed to periodic
pain. The best-case patient would be female, born in Sweden or another Nordic
country, have university education, not be unemployed, have very high belief in
improvement and have periodic pain as opposed to constant pain.

Two sets of patients fitting these criteria were obtained. There were 60 patients
in the dataset fitting the best-case criteria but only one fitting the worst-case criteria.
To select a final best-case example, the best-case candidate with the lowest number of
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Figure 4.10: Marginal normal Q-Q plots for responses
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Figure 4.11: Correlation between responses
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Figure 4.12: Posterior predictive distributions for all responses (standardized re-
sponses)

days since their pain debut was selected, since this variable had significant negative
effect on two results, whereas the other significant continuous variable, age, had a
significant negative effect on just one result.

Using these patients, the posterior predictive distributions for their treatment
outcomes were simulated by simulating coefficient values from the posterior distri-
bution of the coefficients and errors from the posterior distribution of the error.
100000 simulated values were obtained. The posterior predictive densities were esti-
mated from this simulation and are displayed in Figure 4.12. Medians, 95% credible
intervals and probability of direction for all responses are displayed in Figure 4.13.
This figure also contains the actual observed changes in responses for these patients,
in the column ”Result”. For the purposes of illustration the standardized response
measures were used rather than raw scores.

In these extreme cases, certain responses display a clear difference depending on
the case and others do not. The posterior predictive distribution for Social support
is very similar in both cases, with the medians of both distributions being slightly
negative, the 95% credible interval boundaries being very close and a slightly higher
probability of direction for the worst case (0.611 for the worst case as compared to
0.565 for the best case). The posterior predictive distributions for HAD-Anxiety,
HAD-Depression and Activity are also similar in both cases, with positive medians
in both cases but greater PD by about 0.1 for the best case. SF36-mental summary
displays a slightly larger distinction between cases, with positive medians in both
cases but a larger distinction between them, and PD of 0.577 in the worst case as
compared to 0.733 in the best case.
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Figure 4.13: Response statistics for example patients (standardized responses)

(a) Statistics for worst-case patient (b) Statistics for best-case patient

The differences are larger in the posterior predictive distributions for Impairment
and reported level of pain. Both medians are positive for both cases, but the PD
is larger by 0.197 for reported level of pain and 0.230 for Impairment, with large
differences in medians and 95% CI bounds. The difference is largest for SF36-
physical summary, which is the only response where the median in the worst and
best cases have different signs. The worst-case patient is expected to worsen by a
small amount after treatment with PD of 0.563, and the best-case patient is expected
to score better after treatment with PD of 0.793.

The fact that the treatment is not very likely to help worst-case patients is
interesting. A worst-case patient has a lower than 64% chance to see improvement in
any single response, and is expected to worsen in Social support and SF36 - Physical
summary. It should be noted that bad cases were not rare in the dataset, as for
some important regressors with significant negative effects across responses (belief
in recovery, periodicity of pain) the worst-case value was typical among respondents.
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5 Discussion

5.1 Limitations

An issue with the present study is the lack of a control group. As the SQRP only
contains initial data for patients who did not receive treatment, there is no way to
compare health outcomes for sufferers of chronic pain who received treatment with
those who did not. This leads to two main issues:

� Predicting which patients will receive the greatest benefits from treatment is
not possible without knowing what their health outcomes would be given no
treatment. Hypothetically, those patients who see the greatest improvement
from treatment could see similar improvement without treatment while those
who receive the least benefit from treatment could see greatly worsened health
without treatment. Without a control group, this is difficult to investigate.

� The lack of a control group makes it difficult to assess the effect of baseline
values for outcome measures on the change in those measures. Previous studies
indicate that baseline values of outcome measures have the largest effect of any
regressor in a regression model, but the uncertain interpretation of this effect
led to their exclusion in the present study. With a control group, it would
be possible to disentangle the effect of baseline values on the treatment result
from the effect of the error by comparing the treatment and control groups.

The issue of health outcomes in chronic pain patients who do not receive treatment
could be attacked by consulting the literature. However, a systematic review by the
Swedish agency for health technology assessment and assessment of social services
(SBU) found that while the literature indicates that patients undergoing multimodal
treatment improve in time, it cannot be ascertained whether this is a direct result
of the interventions or contingent on other factors [SBU21]. Thus, further study on
health outcomes of chronic pain sufferers who do not get treatment are necessary
before a model such as this can be used to predict what patients would receive the
largest benefits from the treatment.

5.2 Data preprocessing and modelling

In the course of data processing, several choices were made that could affect mod-
elling outcomes. No item imputation was performed, and incomplete responses were
dropped. This choice is likely to have biased the model results, since the excluded re-
sponses saw significantly worse results from treatment for most responses, as shown
in Section 3.3.1. The model thus likely overestimates the benefits of treatment
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slightly for some of the responses, and any conclusions drawn from the present study
should take this into consideration. Using some common item imputation methods,
as discussed in Section 3.3.1, would likely introduce other issues that might be harder
to account for, such as over- or underestimating the significance of the effects due to
performing regression on synthetic data. Still, attempting these methods, or more
sophisticated imputation methods, would be an interesting development of the mod-
elling approach of the present study. One such possibility would be to expand the
Bayesian framework of the model by utilizing a Gibbs sampling technique. During
simulation of the posterior, a Gibbs sampler could alternate between sampling miss-
ing values as they are predicted using the current model parameters, and simulating
from the posterior of the model using the full data.

The choice to use the average value of the two time steps after treatment as
the response value could be further investigated. To the author’s knowledge, no
research on whether treatment effects are permanent or change with time has been
performed, and it would be of great interest to gain insight into this. If there is in
fact some change with time, even if only for certain responses, this would make a
different method of choosing response values preferable. Such findings would also
be interesting in and of themselves, as long-term improvement is a highly desirable
result of the treatment.

From analysis of model residuals there is strong evidence that the true errors
in the data are not, in fact, normally distributed. Fitting a model assuming more
heavy-tailed error distributions, such as a multivariate t-distributed error, could
be of interest. For some outcomes, residual distributions appear to be particularly
right-tailed. In these cases, some transformation of the data could also be of interest.
Note that the fact that error distributions are more heavy-tailed than assumed is
unlikely to impact the direction of the estimated effects. However, it does impact
the level of certainty in the model.

In the model, most regressors are categorical but some are continuous. The
modelling approach carries an assumption that any one step of these categorical
regressors has equal effect to any other step. Particularly for the regressor ”Amount
of days since pain debut”, this might be an unfounded assumption, as it seems
reasonable that the difference between having had chronic pain for one or two years
would have a larger impact than the difference of having had chronic pain for 19 or
20 years. A logarithmic transformation of this regressor might have given a better
outcome. In general, investigating the possible existence of non-linear effects would
be a sensible next step after the current model.

5.3 Future research

One of the main features of the Bayesian statistical approach is the ability to en-
code pre-existing knowledge into prior distributions. The present study used unin-
formative priors, which is an attempt to minimize the influence of the prior on the
posterior distribution. This choice is not uncommon as a first step in investigating
data, but it is not necessarily ideal. Investigating the results of using different priors
and attempting to find reasonable proper priors could improve the confidence of the
model.

Many chronic pain studies ask questions regarding health economics, and thus
measure outcomes such as reduced sick leave expenses. As these outcomes are
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not, strictly speaking, health outcomes, the present study has disregarded them -
however, the modelling approach utilized in the present study is suitable in principle
for investigating questions of health economy. The simplest outcome measure to add
to the model to provide a health economic perspective would be sick leave status.

The present study has also not utilized sick leave status as a regressor. Sick leave
status could be an indicator of severity of illness, and could be an interesting factor
in explaining treatment outcomes. Of particular interest would be the interaction
between employment status and sick leave status, as being unemployed had a high
impact on treatment outcomes.

Finding a way to assess the health outcomes of untreated sufferers of chronic pain
would be of great interest. This would give the ability to make predictions of what
patients would see the greatest benefit from treatment, and thus make the model
usable as a decision aid in the clinical setting. It would also allow investigation
of whether baseline levels of outcome variables are, in fact, the most important
regressors, or whether such results merely indicate regression to the mean. The gold
standard way of obtaining the desired data would be a clinical trial, which would
likely have a smaller sample size and might thus be unsuitable for a highly complex
model. Investigating the registry data on those patients who were evaluated for
treatment several times but did not receive it might be a way to approximate health
outcomes of untreated sufferers of chronic pain, but this approach comes with issues
of representativity.

5.4 Conclusion

This study shows several significant effects on background variables on treatment
outcomes from MMR in various health dimensions for patients suffering from chronic
pain. Previous findings on dimension reduction of the MPI instrument are repli-
cated on a different and larger set of patients. The potential predictive power of
a model for treatment outcomes is demonstrated. For the purposes of prediction,
more knowledge is needed on health outcomes of chronic pain sufferers who do not
receive treatment.
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A Regression tables

This appendix contains lists of non-instrument variables in the SQRP. All psycho-
metric instruments that are included in the dataset are listed in Section 2.2 Some
questions may be omitted due to being purely technical or administrative in nature.
This appendix is based on a legacy variable list corresponding to the epoch of SQRP
data the study is based on. Due to the SQRP questionnaire changing over time,
even within an epoch, there is some mismatch between the variable list and the
dataset, meaning that some variables in the dataset may be omitted here (notably
age, which is present in the dataset).
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B Residual analysis - figures

This appendix contains tables with information on estimated regression coefficients.
Each table contains information on all regressors as they pertain to one partic-
ular response. For each regressor-response pair, the median estimated coefficient
is reported, as are the bounds of a 95% credible interval for the coefficient and
its probability of direction. Regressors with PD greater than 0.975 (corresponding
to significance at the 95% level) are highlighted in green, and regressors with PD
greater than 0.9 but lower than 0.975 are highlighted in yellow.
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Regression for Impairment Regression for Social support

Regression for Activity Regression for SF36 - Physical summary
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Regression for SF36 - Mental summary Regression for self-reported level of pain

Regression for HADS - Anxiety Regression for HADS - Depression
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C SQRP non-instrument variables

This appendix contains plots of residuals and normal Q-Q plots of residuals for all
responses.
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Figure C.1: Residuals of modelled responses
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Figure C.2: Marginal normal Q-Q plots for residuals of modelled responses
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