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Development of a DEM-FEM framework for infrastructure simulations
ANITA ULLRICH
Department of Physics
Fraunhofer-Chalmers Centre
Gothenburg University

Abstract
This thesis presents a coupling algorithm of the discrete element method (DEM)
and finite element method (FEM). The algorithm formulates an explicit coupling
of transient simulations of particle systems interacting with elastic bodies. To lay
a foundation for the requirements in terms of stability and temporal and spatial
resolution, the DEM and FEM methods are introduced. The coupling algorithm is
implemented in a Python framework, using the FCC in-house solvers Demify® and
LaStFEM. The combined tool is applied to three different main scenarios. As a first
case, the solver exchange of forces between the DEM and FEM solver is verified
using a fixed elastic beam simulation with uniform load, comparing the deflection
under the load of particles to an analytical condition. Second, the dynamic accuracy
and stability of the coupling method is proven on a simulation of a steel sheet
deflection under the load of particles flowing on the elastic object. The simulations
are compared to experimental results and show good agreement with a measured
sheet deflection. Finally, the coupled solver is used to simulate the interaction
between a timber sleeper and a rock particle ballast bed. The particles are in the
third case represented by a polyhedron particle model. The system is studied for
variations of both material properties as well as different simulation parameters.
The coupled solver is shown to capture dynamic effects in the ballast bed under a
dynamic load cycle. The simulation results are compared to experimental results
of the pressure distribution in the bed from the open literature and demonstrate
good qualitative and quantitative agreement with the experiments. The overall
performance of the different parts of the solver is presented and it is shown that the
developed tool is capable of simulating large scenarios with very good performance
on desktop computers with a single GPU.

Keywords: Discrete element method, Finite element method, DEM-FEM coupling,
railroad simulation, ballast material simulation.
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Notations

x := y x is defined as y
ẋ Time derivative of x
ẍ Second time derivative of x
DEM theory
v Translational velocity [m

s ]
ω Angular velocity [1

s ]
Fc Contact force [N]
Fg Gravitational force [N]
m Mass [kg]
I Moment of inertia [kg ·m2]
M Torque [Nm]
a Acceleration [m/s2]
Fnet Net force [N]
rds Dilation radius [m]
E Young’s modulus [Pa]
G Shear modulus [Pa]
ν Poisson’s ratio
F Force [N]
Fn,e Elastic normal force [N]
Fn,d Dissipative normal force [N]
Fn Normal force [N]
Ft,e Elastic tangential force [N]
Ft Tangential force [N]
µs Friction coefficient
θ Angle of repose [°]
Φ Mass flow rate [kg/s]
ρp Particle density [kg/m3]
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FEM theory
K Stiffness matrix
u Displacement vector
M Mass matrix
ε Strain tensor
σ Stress tensor
nd Space dimension, usually nd = 3 here
g, h Prescribed boundary displacements
f Point force boundary condition
n Normal vector
Ω Domain
Γ Boundary of Ω
S Solution space
V Variation space
v Test function from V
a(., .), (., .), (., .)Γ Symmetric bilinear form
e Unit vector
N Shape function
ρs Density [kg/m3]
C Damping matrix
α, β, γ Bossak-Newmark damping parameters
Coupling theory
T Triangle mesh
MF FEM object mesh
T F FEM surface triangle mesh
TD DEM triangle mesh
∆tF FEM timestep [s]
∆tD DEM timestep [s]
∆tC Coupling timestep [s]
PT Position of nodes of triangle mesh T
VT Velocity of nodes of triangle mesh T
AT Acceleration of nodes of triangle mesh T
FT Forces at nodes of triangle mesh T
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1
Introduction

The railroad is a significant part of the transport system and the amount of train
passengers in Sweden has approximately doubled since the 90’s. Sweden aims to
develop a climate neutral transport system until 2050, as elaborated by Tågoper-
atörerna [1]. A part of the plan is for instance the construction of new railroads
that withstand the load of faster express trains. These new railroads are to be an
addition to already existing ones such that the train traffic is separable by its speed.
This would allow for more efficient and time dense train traffic. According to Tåg-
operatörerna [1], twice the amount of railroads can lead to four times more trains
passing that section. However, construction and maintenance of railroad is cost and
resource intensive. Tågoperatörerna [1] factors in 12.5 billion SEK (1.2 billion €) to
execute the plans, including the construction of new railroads. Trafikverket [2] states
that they are responsible for 14,000 km of railroad in Sweden and the operating and
maintenance cost is circa 6 billion SEK per year. Above all, the construction and
maintenance of railroad infrastructure is expensive.

Rail

Sleeper

Ballast bed

Figure 1.1: Visualization of a railroad system, including the ballast bed, the rails
and the sleepers.

According to Naturvårdsverket [3], trains as a transport system only account for
0.3 % of the total traffic emissions and thus have the lowest emissions in Sweden.
In contrast, automotive vehicles account for 92.6 %, shipping for 4.2 % and flights
for 2.9 % of the total traffic emissions in Sweden in 2019. This emphasizes the im-
portance of railroad for a sustainable infrastructure. To extend the railway network
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1. Introduction

and improve existing railways capital is needed. These expenses could be reduced
with an optimized construction and maintenance.

In a ballast based railroad, the rails are clamped to sleepers which lie on a bed of
ballast particles, typically crushed rocks or gravel. An illustration of the different
components, including the nomenclature, is given in Figure 1.1. As the sleepers
rest on the ballast bed, the ballast material is of key importance to provide reliable
support for the sleepers, contribute to track stability and supply resilience and
damping [4]. Thus, the characteristics of the ballast bed have great influence on the
sleeper support and the ballast material is desired to be highly angular and have a
high shear strength [5, 6]. However, the characteristics of ballast material change
during its lifetime due to abrasion, which alters the mechanical characteristics of the
ballast material [7] or causes the ballast particles to break [8]. This can possibly lead
to settlement of the track [9]. Thus, regular ballast maintenance is needed, which
is time and cost expensive [4]. A better understanding of the mechanical behavior
of railroads, in particular the ballast bed, is key to better design and more efficient
maintenance.

As railroad construction comes with a high cost in technical and financial resources,
full-scale experimental setups are impractical. An alternative to experiments are
simulations which typically approximate the behavior of objects, by solving physical
equations numerically. A simulation framework of a railroad setup could offer the
opportunity to investigate for instance altered construction methods and can be
seen as a digital test bed to quickly try different variations in parameters as e.g.
the size distribution of the ballast material. Various parameters could be tested and
simulated faster and more cost efficiently than in real-world experiments.

The finite element method (FEM) is a simulation method to model structural ob-
jects and simulate deformations due to external loads. The discrete element method
(DEM) is commonly used to simulate the dynamics of a large particle population.
FEM is suitable to simulate the sleeper, whereas DEM can capture the mechanical
properties of the ballast material consisting of individual rocks. In this thesis, we
couple DEM and FEM to model the interaction of granular media with solid con-
tinua. Thus, we combine the strength of FEM to approximate the behavior of a
sleeper with the strength of DEM in resolving the physics within the ballast bed
to obtain a combined simulation method capturing the physics of the interaction
between ballast bed and sleeper.

1.1 DEM-FEM coupling
For the purpose of simulating the interaction between sleeper and ballast, we develop
a DEM-FEM coupling algorithm. In this section, we discuss the current state-of-art
of such frameworks.

As a DEM-FEM coupling is applicable on different types of problems suggesting
different coupling strategies, Stransky [10] suggested a classification of DEM-FEM
coupling types as:

2



1. Introduction

(a) Surface coupling (b) Volume coupling

(c) Multi-scale coupling (d) Contact coupling

Figure 1.2: Visualization of four different coupling types: Surface coupling (a),
volume coupling (b), multi-scale coupling (c) and contact coupling (d).

• Surface coupling (Figure 1.2a), which simulates a granular medium interacting
with a solid structure. The granular medium is simulated in the DEM domain
and the solid structure in the FEM domain. A ballast-sleeper interaction
exemplifies the surface coupling, as the ballast is purely modelled by DEM
and the sleeper purely by FEM.

• Volume coupling (Figure 1.2b) which is used for instance to simulate fractures
in solid structures. DEM and FEM model a shared structure. DEM is used
to simulate the structure near a fracture and FEM simulates the intact parts.
A brick wall is an example of a solid structure that can break. In case of
a fracture, the bricks break and fall as individual elements out of the wall
structure. Thus, the FEM object represents the wall in the example and DEM
simulates the bricks near the fraction area including the ones falling out of the
wall.

• Multi-scale coupling (Figure 1.2c), which simulates granular media under cir-
cumstances, where its properties on a macro-scale are similar to a continuum,
e.g. sand. A box of sand consists of millions of particles, but on a large scale
the sand can be seen as a continuous medium. Only when focusing on in-
dividual sand grains on a micro-scale perspective, the individual behavior is
visible. In this case, FEM is used to model the macro-scale behavior of the
medium and DEM models the micro-scale representing a detailed model of the
macro-scale.

3



1. Introduction

• Contact coupling (Figure 1.2d) is basically a pure FEM approach using the
contact detection similar to DEM. An example of a contact coupling is shot
peening where an object is shot on another object. The interaction physics
become only relevant as soon as the one hits the other, resulting in a contact.

For the simulation of a ballast-sleeper interaction, the surface coupling is most suit-
able. Thus, within this thesis we focus on the surface coupling.
The field of possible applications of a coupled solution is wide, which is also rep-
resented by the wide range of different applications in the literature. A coupling
method can generally be applied to any scenario of a solid structure interacting
with a granular medium.
In the following, we give an overview of other applications in literature using a DEM-
FEM surface coupling. Lu et al. [11] simulate particle dampers; Michael, Vogel, and
Peters [12] simulate the interaction of a tire on sand, as also done by Nakashima
and Oida [13] and Zeng et al. [14]; Zheng et al. [15] are concerned with simulating
conveyor belt dynamics; Liang and Ji [16] model the reentry of a capsule; Chung
et al. [17] investigate a granular sample under uni-axial compression.
Examples of a one-way coupling where only information is transferred from DEM
to FEM are Tu et al. [18] with shot peening simulations and Liming et al. [19] who
apply the coupling for the vibration of mining trucks based on particle damping.
Even though the multi-scale coupling is not considered further within this thesis, we
state some interesting examples. Such are the investigation of borehole instability
by Wu, Zhao, and Guo [20], modelling of roll compaction progresses by Mazor et al.
[21] and the study of three-body friction behavior by Wang et al. [22].
Some articles present validation and verification cases for coupling simulations. The
small validation case of a single sphere falling onto or rolling on a beam is presented
by Onate et al. [23], Meijaard [24] and Xu and Zhao [25]. Dratt and Katterfeld
[26] present a case for verification as well as a validation case with experimental
measurements.
The classification of a simulation case into verification or validation is not obvious.
Both cases presented by Dratt and Katterfeld [26] are further investigated in this
thesis and discussed as validation and verification cases. With verification we in-
tend to prove a correct functionality of the coupling algorithm implementation, i.e.
the correct data transfer from DEM to FEM. Of course, the reverse data transfer
from FEM to DEM is also part of verification, but not performed within the veri-
fication case of our choice. Thus, the later validation cases can also be interpreted
as verification of the coupling data transfer. With validation we rather describe a
successful comparison to experimental real-world data, which indicates that the here
developed coupling framework delivers qualitatively satisfactory approximations of
experimental results.

1.2 Simulation of railroad
The importance of models to understand the mechanical behavior within the railroad
ballast, especially considering the interaction between sleeper and ballast, was dis-
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cussed previously. In this section we give more insight into the existing modelling
approaches for railroad with a focus on simulations using a DEM-FEM coupling
framework.
According to Alabbasi and Hussein [4], many approaches with analytical models for
understanding the macroscopic behavior of the railroad ballast exist. Yet, analytical
models are limited and give no insight into the microscopic behavior.
Concerning numerical approaches, Alabbasi and Hussein [4] discuss the continuous
FEM and the discrete DEM simulation approach. An example of a pure FEM sim-
ulation is Sysyn et al. [27], that investigate the settlement of railway with ballast
voids. Due to the nature of FEM, it is a powerful tool to model the macroscopic
ballast behavior under different loading conditions, but cannot provide an under-
standing of the microscopic level. An example of a pure DEM simulation is Jing
et al. [28] who model the interaction between hanging sleepers and ballast. As
every particle is simulated with DEM, quantities can be evaluated and visualized
on a microscopic and a macroscopic level. However, DEM is limiting in a sense of
computational cost and memory usage, especially when considering long simulation
scenarios or the analysis of a full track under dynamic loading. The performance
of DEM can be improved significantly by computing on the GPU as the simulation
method is suitable for parallelization.
Similar approaches are given by Kaewunruen and Mirza [29] who model the interac-
tion between railway and a bridge with a hybrid discrete - finite element simulation.
Wang et al. [30] couple DEM and FEM as a multi-scale coupling to simulate high-
speed railways. Song et al. [31] perform laboratory experiments to investigate the
pressure distribution within the ballast bed under cyclic loading, as well as DEM-
FEM coupling simulations with comparison to their laboratory results. We choose
to replicate the experiments of Song et al. [31] within this thesis to apply the cou-
pling framework on railroad as well as for validation that the coupling is applicable
for railroad simulations.
More literature on laboratory experiments and measurements is given by Zhang
et al. [8] for the settlement of sleeper and track and the breakage of the ballast
material. Koike et al. [32] perform sleeper and track panel pullouts and investigate
the lateral resistance of sleepers.

1.3 Computational software at FCC
The Fraunhofer-Chalmers Centre (FCC) for industrial mathematics has developed
in-house simulation frameworks for DEM and FEM. The FEM solver LaStFEM is
implemented in C++ with a Python interface and designed for structural analysis.
The solver supports a range of material models for different discretization types.
LaStFEM provides a computational engine in the software suite IPS and in the
tolerance analysis software RD&T. LaStFEM is used for all FEM simulations within
this thesis.
Moreover, an in-house state-of-art explicit DEM solver Demify® in C++ with a
Python interface has been developed at FCC. The solver supports multiple particle
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representations, including spheres, multispheres and convex, non-convex and dilated
convex polyhedra. Demify® has been applied for large scale road infrastructure
research as seen in Quist, Hunger, and Jareteg [33] and Quist et al. [34]. Demify®
is used for all DEM simulations within this thesis.
Within this thesis we develop a coupling algorithm purely in Python using the
interfaces of both solvers. No development of the solvers themselves is performed
within this thesis.

1.4 Research questions
As a guidance to approach the task of developing a coupling algorithm with the
existing software Demify® and LaStFEM for the application of railroad simulations,
a set of research questions is formulated.
The first milestone in this thesis is the general development of a coupling framework
between the DEM and FEM solver. Thus, a first set of research questions is:

• How to develop a DEM-FEM coupling matching the current state-of-art in the
open literature?

• How is a stable and convergent scheme between the solvers formulated and
implemented?

• What are the temporal and spatial resolutions required to achieve convergent
solutions?

• What are the required algorithms to get sufficient performance in the coupling?
Once a functioning coupling algorithm is in place and validated, it is applied to
railroad simulations. Therefore, two additional research questions arise and are
investigated in this work:

• What questions concerning railroad ballast simulations with DEM-FEM cou-
plings are not answered yet by the current state-of-art?

• Can the influence of the shape of the particle be quantitatively characterized
to show the importance for ballast simulations and railroad construction?

In the open literature, examples of simulations of railroad with a DEM-FEM cou-
pling are available. However, no one else coupled FEM and DEM with complex
shaped particles, the cases found in literature are performed with spherical parti-
cles.
In addition, to our knowledge no work from the open literature actually measured
and disclosed the performance of the DEM-FEM coupling. The overall performance
of the coupled simulations are limited by the efficiency of the individual DEM and
FEM solvers. Nevertheless, the efficiency of the coupling algorithm itself determines
its practicality and applicability to large-scale simulation scenarios.
In relation to the dimension of railroad tracks, we simulate a smaller sub-system
of a ballast bed and sufficiently short time periods. Simulations of larger railroad
segments are possible, although not the primary focus of the current thesis. We are
here concerned with a segment of a ballast bed with one sleeper.

6



1. Introduction

1.5 Outline of the thesis
As the coupling framework is built upon a DEM and FEM solver, we first give an
introduction to the theory behind both simulation methods in chapter 2. Then,
we introduce the formulation of the surface coupling implementation in chapter 3.
In chapter 4 we compare the simulation of a fixed beam under constant uniformly
distributed load to the analytical condition. To validate the coupling formulation,
we reconstruct the experiment for a steel sheet under a material flow of wheat grains
in chapter 5 and compare to the experimental deflection results of the steel sheet.
Then, we simulate the interaction between a sleeper and a rock particle ballast bed
in chapter 6. Finally, we conclude our work in chapter 7 and discuss the research
questions as well as possible future work.
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2
Theoretical background of the

DEM-FEM coupling

In section 2.1 the concept of the discrete element method is further described. As
we do not only simulate with spherical particles, but also complex shaped particles,
we introduce the dilated polyhedron particle model in subsection 2.1.1. Then, the
contact model is explained in subsection 2.1.2 giving insight into the forces acting
between particles. In subsection 2.1.3 and subsection 2.1.4 we discuss the concept
of the angle of repose as well as mass flow rate that are two important calibration
quantities for DEM. Finally, we discuss the Rayleigh timestep in subsection 2.1.5
that gives an upper bound of a suitable choice of a timestep.
We give an interlude on the finite element method in section 2.2. As within this
thesis we are only concerned with FEM for elastic problems, we introduce terms
of the elasticity theory in subsection 2.2.1. We summarize the deduction of the
FEM equation system to solve for the static and dynamic case in subsection 2.2.2
and subsection 2.2.3, respectively. FEM meshes can be represented in different
ways and a representation for thin elements chosen in this thesis is discussed in
subsection 2.2.4. In subsection 2.2.5 we introduce the Bossak-Newmark damping
that we apply later on in practical results to achieve a stable numerical simulation.

2.1 Discrete Element Method
The history of the discrete element method goes back to 1979 when the first open
literature concerning DEM was published by Cundall and Strack [35] for the analysis
of rock mechanic problems. DEM simulates the physics of individual discrete rigid
objects with a fixed geometry over time. The particles modelled by the rigid ob-
jects are considered stiff bodies that do not deform under incoming forces, but only
move as a whole in space. All particles are tracked and updated individually over
time. The forces between objects and particles and between particles themselves
are resolved and computed. The resulting forces then determine the movement of
the particles. Following Zhu et al. [36], the governing equations of change for the
translational and angular velocity, respectively vi and ωi, of particle i are

miv̇i =
∑
j

Fc
ij + Fg

i , (2.1)

Iiω̇i =
∑
j

Mij, (2.2)
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2. Theoretical background of the DEM-FEM coupling

with mi and Ii mass and moment of inertia of particle i, Fc
ij and Mij contact force

and torque acting on particle i by particle or body j and Fg
i the gravitational force.

The given equations are solved by explicit integration in explicit DEM. Thus, the
positions of the next timestep are based on the previous particle position and the
acting forces at that timestep. In contrast, in implicit DEM the particle state of
the next timestep is included in the computation of the equation of motion. Thus,
implicit DEM accounts for a coupled contact network instead of solely the direct
contacts [37]. This leads to an increased stability and a larger timestep can be used
to solve the system [38]. However, to update the movement in implicit DEM a
system of equations needs to be solved, which is computationally more expensive
than solving two equations per particle as in explicit DEM. Another advantage of
the explicit DEM is that the equations 2.1 and 2.2 can be solved for each parti-
cle independently and thus are suitable for GPU computing. The DEM method
implemented in Demify® is explicit.

Equation 2.1 is based on Newton’s second law, stating that the net force Fnet has
the following relation to a particle’s mass m and acceleration a:

Fnet = ma. (2.3)

The velocity and position of the particle are then derived by integrating Equation 2.3
once or twice, respectively. Analogously, the angular velocity and orientation of the
particle is obtained by integrating Equation 2.2.

Algorithm 1 Pseudo-algorithm of a common explicit DEM.
1: Initialize particle population and objects.
2: while simulating do
3: Detect particle-particle and particle-object contacts.
4: Resolve and accumulate (contact) forces.
5: Update particle states (position, velocity, orientation, angular velocity).
6: end while
7: Post-process and analyze results.

In Algorithm 1, a pseudo-algorithm stating the common steps in an explicit DEM
simulation is given. Before simulating, a particle population needs to be initialized
as well as the objects that the particles interact with. In each iteration of a DEM
simulation the contact pairs must be detected. A contact pair can consist of two
particles or a particle and an object. For these contact pairs we resolve and accu-
mulate the contact forces as well as external forces such as gravity. After solving
the equations for the acceleration of the particle (here equations 2.1 and 2.2), the
particle states get updated. A particle state includes its position, velocity, orienta-
tion and angular velocity. The three steps of contact detection, force accumulation
and state update are repeated until the desired simulation time is reached. Then,
post-processing of the results is performed.

An efficient contact detection is required to narrow down the number of pairs that
the contact forces are computed for. The contact detection within this thesis is
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2. Theoretical background of the DEM-FEM coupling

performed with a bounding volume hierarchy (also known as BVH). When the in-
teraction pairs are identified, we can compute the contact forces as described in
subsection 2.1.2.

Only pairs that are sufficiently close to each other are detected as a contact pair. This
suggests that only particles and objects that are direct neighbors influence a specific
particle. However, the movement of particles is affected not only by neighboring
particles but also from particles far away through the propagation of disturbance
waves [36]. By choosing a numerical timestep small enough it is assumed that
the disturbance cannot propagate farther than to immediate neighbors. Thus, the
detection of pairs that are close to each other delivers a sufficient approximation of
the pairs influencing each other [35]. The upper bound of timesteps that fulfill this
criteria is often referred to as the critical timestep. One example of an upper bound
is given by the Rayleigh timestep as further described in subsection 2.1.5. Hence,
in DEM only the interaction forces and torques between immediate neighbouring
particles are resolved and timestep analyses are crucial to obtain correct simulation
results.

Many applications of DEM are concerned with non-spherical particles, but more
complex shaped ones as rocks, which can lead to better approximations of the
mechanical characteristics of the particle population. Although the simulation of
spheres is efficient and quite simple, their ideal shape may not capture the realistic
behavior of non-spherical particles and can lead to oversimplification due to rota-
tion. For instance, the spherical shape limits the capacity of the particles to model
interlocking [39].

There are different methods to represent a particle with a more complex shape than
spheres. Some of them are multi-sphere geometries [40], polyhedral geometries [41]
or dilated polyhedral geometries [42]. In this thesis we are concerned with the last
geometry type when simulating non-spherical particles. The formulation and the
applied force models of the dilated polyhedra within this thesis are following the
approach by Ji, Sun, and Yan [42] and a description is given in subsection 2.1.1.

2.1.1 Dilated polyhedra
Within our simulations we only consider dilated convex polyhedra. A polyhedron
is defined by a triangle mesh consistent of nodes that are connected by edges which
enclose triangular faces. A dilating sphere with radius rds is applied onto the poly-
hedron surface. In more detail, the center of the dilating sphere is swept over the
surface of the polyhedron and the sphere merges with the existing mesh at each
point. This is based on the classical concept of the Minkowski sum [43] as visualized
in Figure 2.1:

A⊕B = {x+ y | x ∈ A, y ∈ B}, (2.4)

for polyhedron A and sphere B. The resulting volume has a surface that describes
the dilated polyhedron with dilation radius rds. Thus, the polyhedron is smoothed
out with the sphere acting as a smoothing operator - similarly to a convolution
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2. Theoretical background of the DEM-FEM coupling

⊕ =

Figure 2.1: Visualization of the Minkowski sum concept for the case of a dilated
polyhedron. On the left, a convex polyhedron rock model is shown. Together with
the sphere displayed in the middle, a dilated polyhedron of the model results as
shown on the right.

- resulting in the dilated polyhedron. The higher the dilation radius chosen, the
smoother the dilated polyhedron gets.
The distance δij between two dilated polyhedra i and j is then given as

δij = ∆ij − rds,i − rds,j, (2.5)

with ∆ij the distance between the two polyhedra corresponding to i and j and
rds,i, rds,j the dilation radii of the dilated polyhedra i and j.

(a) A polyhedron rock model. (b) Dilated rock model with a dilation
radius of 10% of the characteristic length.

(c) Dilated rock model with a dilation
radius of 20% of the characteristic length.

Figure 2.2: Visualization of a polyhedron (Figure 2.2a) representing a rock and
its dilated version with different dilation radii of 10% (Figure 2.2b) and 20% (Fig-
ure 2.2c).

In Figure 2.2, a triangle mesh of a polyhedron representing a rock particle is visual-
ized (see Figure 2.2a) together with two dilated models of the same polyhedron with
different dilation radii. In Figure 2.2b, a dilation radius of 10% and in Figure 2.2c
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2. Theoretical background of the DEM-FEM coupling

a dilation radius of 20% is applied. The visualization demonstrates the effect of the
dilation operator on the sharpness of edges or corners.

2.1.2 Contact model
When a particle gets close to another particle or object, their movement might result
in a contact. Thereon, the contact is resolved in forces acting on the particles and
determining their further movement. How exactly the forces are computed depends
on the contact force model that is applied.

ci

cj

t

n
r

Figure 2.3: Visualization of a contact of two spheres with radius r together with
the normal vector n and tangent vector t of the contact point. The centers of the
two spheres are labelled as ci and cj.

A well-established model in DEM simulations is the theory of Hertz for the normal
interaction and the theory of Mindlin and Deresiewicz for the tangential interac-
tion, henceforth referred to as HMD model. The interaction can either be between
two spheres or between a sphere and a planar surface. In this model, the contact
is resolved into normal and tangential forces based on the normal and tangential
direction of the contact point as visualized in Figure 2.3.

As it is a common model, there are also many variants of the HMD model. For
modeling spheres we only consider the HMD model as it is stated in Thornton,
Cummins, and Cleary [44], which we recap in the following. First of all, we introduce
the normal elastic force that corresponds to the Hertz contact law [45] for elastic
spheres. Then, we elaborate the computation of the dissipative normal force, that
adds a damping term, as we consider inelastic spheres. In the case of elastic spheres,
the dissipative normal force would be zero, as in Thornton, Cummins, and Cleary
[46]. Finally, we follow the no-slip theory of Mindlin [47] to compute the tangential
force.

Let Ei, Gi, νi, Ri, ci be, respectively, the Young’s modulus, shear modulus, Poisson’s
ratio, radius and center of sphere i. Having two spheres interacting with each other,
labelled sphere i and j, the HMD model is assembled as follows.

The elastic normal force Fn,e of the interaction is

Fn,e = 4
3E
∗R1/2δ3/2, (2.6)
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2. Theoretical background of the DEM-FEM coupling

where the effective modulus E∗ is given by

1
E∗

= 1− ν2
i

Ei
+

1− ν2
j

Ej
(2.7)

and the effective radius R is computed as

R = RiRj

Ri +Rj

. (2.8)

Given the centers and radii, the indentation depth δ for sphere-sphere contacts is
given as

δ =

Ri +Rj − |cj − ci| if |cj − ci| < Ri +Rj,

0 otherwise.
(2.9)

Moreover, the dissipative normal force Fn,d is given as

Fn,d = 2γ
√
m∗knvn, (2.10)

where γ is the damping coefficient, m∗ is the effective mass of the particles, kn is
the normal spring stiffness and vn is the relative velocity in normal direction. The
effective mass is computed as

m∗ = mimj

mi +mj

, (2.11)

where mi,mj are the masses of the two spheres. The normal spring stiffness is
computed as

kn = 2E∗
√
Rδ. (2.12)

The total normal force Fn is then assembled as

Fn = Fn,e + Fn,d. (2.13)

The achieved normal force is the force of the current timestep n which we now denote
as F n

n and thus we can compute the normal force increment as

∆Fn = F n
n − F n−1

n , (2.14)

that is required to compute the tangential force.
Finally, let us state the computation of the tangential force. The elastic tangential
force Ft,e for timestep n is computed as

F n
t,e =


F n−1
t,e + knt ∆δ if ∆Fn ≥ 0,
F n−1
t,e

(
kn

t

kn−1
t

)
+ knt ∆δ otherwise,

(2.15)
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where kt is the tangential spring stiffness given as

kt = 8G∗
√
Rδ. (2.16)

The effective shear modulus G∗ is computed as

1
G∗

= 1− ν2
i

Gi

+
1− ν2

j

Gj

. (2.17)

Thus, the tangential force takes the form

Ft =

F n
t,e + 2µ

√
mktvt if Ft < µFn,

µFn otherwise,
(2.18)

where µ is the friction coefficient of the interaction. For a sphere-sphere interaction
µ is referred to as Coulomb friction.
Having specified the normal and tangential force of the contact model, they can be
added to the equation of change for the translational velocity (see Equation 2.1), as

Fc
ij = Fn + Ft. (2.19)

As motivated in subsection 2.1.1, we use complex shapes in the form of dilated
polyhedra at a later stage of our simulations. For these, we use a modified Hertz-
Mindlin contact model as it is stated by Ji, Sun, and Yan [42].
The normal contact force in this case takes the form

Fn = 2
√

2G
3(1− ν)rds

1/2δ
3/2
d , (2.20)

where rds is the dilation radius and δd is the overlap vector of the two interacting
particles. The tangential force at timestep n, then takes the form

F n
t = F n−1

t − kt∆t(vij − vij · n), (2.21)

where vij is the relative contact force of the two interacting dilating spheres i and
j, kt is the tangential contact stiffness and n is the normal vector. In this case, kt
takes the form

kt = 2 (G2(1− ν)|Fn|rds)1/3

2− ν (2.22)

and the relative contact force vij is given as

vij = vi − vj + ri × ωi − rj × ωj, (2.23)

with vi,ωi and ri the velocity, angular velocity and the distance between center and
contact point of sphere i. Finally, the tangential contact force can then be expressed
as

F n
t = min (|F n

t |, |µF n
n |) · t, (2.24)

where t is the unit vector in tangential direction.
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2.1.3 Angle of repose
The simulation model needs to be calibrated to the simulation case, including e.g.
the particle material properties. One example of a parameter that affects the re-
sulting contact force is the friction coefficient µ as introduced in Equation 2.18. A
quantity that is commonly measured to calibrate the friction coefficient is the so-
called angle of repose. It describes the steepest slope angle of a material heap on
a horizontal plane without the heap collapsing. In other words, the angle of repose
describes the maximum angle at which an object can be positioned on a tilting plane
without sliding down.
As stated by Al-Hashemi and Al-Amoudi [48], the relation between friction coeffi-
cient µ and angle of repose θ is given as:

tan(θ) = µ (2.25)

In section 5.3 the angle of repose is an important calibration quantity to approximate
the experimental results of a steel sheet under material flow.

2.1.4 Mass flow rate

Figure 2.4: Illustration of the measurement of the mass flow rate. The mass
flow rate of the spherical particles through the highlighted area is measured. The
particles move from above the area downwards.

A second example of a calibration quantity for DEM is the mass flow rate. It mea-
sures the amount of mass passing a specified 2D area per time unit. An illustration
of the mass flow rate measurement is given in Figure 2.4. The mass flow rate Φ is
computed as

Φ = ∆m
∆t , (2.26)
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where ∆t is a time interval and ∆m the mass of particles passing the area in that
time interval.

2.1.5 Rayleigh timestep
As we discussed before, the equations for explicit DEM are based on the assumption
of a small enough simulation timestep. Thus, the DEM simulation is only stable for
a timestep lower than a critical upper bound timestep. One concept of computing
an upper bound for the critical timestep is the Rayleigh timestep as presented by
Marigo and Stitt [49]. The Rayleigh timestep ∆tR is computed as

∆tR = πR

0.1631ν + 0.8766

√
ρp
G
, (2.27)

where R is the particle radius, ν the Poisson’s ratio of the particle material, G the
Shear modulus of the particle material and ρp the particle density.
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Stability study for different velocities

Rayleigh timestep
Velocity 0.1 [m/s]
Velocity 1.0 [m/s]
Velocity 10.0 [m/s]

Figure 2.5: Convergence study of Demify® for different velocities for simulation
of a single bouncing sphere. The Rayleigh timestep is included as vertical line.

In the computation of the Rayleigh timestep, no velocities are considered and it
thus gives a good approximation for static particle simulations. However, for very
dynamic cases with high velocities, the critical timestep is usually much lower than
the Rayleigh timestep.

This is exemplified in Figure 2.5 where a convergence study concerning the timestep
and the corresponding relative error for the DEMmethod implementation in Demify®
was performed for different velocities. In this example, a sphere with a radius of
0.01 m, Poisson’s ratio of 0.25, Young’s modulus of 1 GPa and density of 1,000 kg/m3
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bounces back from a wall and the velocity after the bounce is evaluated. For a low
velocity (0.1 m/s) of the sphere the relative error in the simulation of a bouncing
sphere for the Rayleigh timestep is sufficiently low with a magnitude of approxi-
mately 10−6. In contrast to that, for velocities with a higher magnitude (1 and
10 m/s), the relative error is quite large for the Rayleigh timestep and achieves a
similar error as for 0.1 m/s with a timestep size of 10−6 or 10−7, respectively. How-
ever, the Rayleigh timestep gives a first indication on a proper choice of a timestep
as a function of material properties and needs to be adjusted to the expected particle
velocities.

2.2 Finite Element Method for elastic problems
The finite element method is applied to solve partial differential equations (PDEs)
describing continuous physical phenomena on given domains that represent the ob-
ject of interest. The history of FEM starts back in 1956 when it was published in
the well-known paper of Turner et al. [50] and the interest in the method was high.
Especially for engineers FEM offered a possibility to handle the complex shapes of
real designs [51]. Nowadays, usually deformations of materials and components due
to loads or other acting forces are routinely analyzed with FEM.

Within this thesis, we only consider elastic problems and thus give a small overview
of the most important terms for the theory of FEM for elastic problems in subsec-
tion 2.2.1. Elastic problems can be classified either as static or dynamic problems.
Dynamic problems are solved with respect to a time increment and static problems
are solved for a steady-state solution of the problem. The applications of this thesis
are mainly dynamic problems which we also refer to as transient. In subsection 2.2.2
and subsection 2.2.3, we are concerned with deriving an expression for the stiffness
matrix for both the static and the dynamic problem.

We give a short introduction into the theory of FEM following Ottosen and Petterson
[52]. For simplicity we derive the systems of equations only for the linear elasticity
theory, although non-linear models are applied within this thesis.

A common system of equations for a static case is

Ku = F, (2.28)

where K is the global stiffness matrix, u is the displacement vector to be determined
and F are the external forces acting on our object mesh.

For dynamic problems, the acceleration of an object must be taken into considera-
tion, as this determines the velocity and position over time. Thus, a common system
of equations for a dynamic case is

Mü(t) + Ku(t) = F(t), (2.29)

where M is the global mass matrix. A general FEM algorithm is summarized in
Algorithm 2.
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Algorithm 2 Pseudo-algorithm of a common FEM procedure.
1: Gather stiffness matrix by establishing stiffness relations for each element which

depends on material properties and equilibrium conditions.
2: Assemble the system of equations:
3: Enforce compatibility as for instance a connected mesh.
4: Enforce equilibrium conditions at the nodal points.
5: Enforce boundary conditions on the system of equations.
6: Solve the system of equations.

2.2.1 Introduction to elasticity
Elastic problems are based on two physical quantities, stress and strain. While stress
is a measure of the internal forces that act within the continuous material itself,
strain describes a measure for the deformation of the material. Their mathematical
formulation is given in the following.

The strain ε in R3 is a tensor of rank two with components

ε =

εxx εxy εxz
εyx εyy εyz
εzx εzy εzz

 . (2.30)

The stress σ in R3 is a tensor of rank two with components

σ =

σxx σxy σxz
σyx σyy σyz
σzx σzy σzz

 , (2.31)

where the components σxx, σyy, σzz denote the normal stresses and the remaining
ones the shear stresses [52].

As stated in Hughes [53], the strain tensor can be expressed in terms of the displace-
ment vector: For higher dimension, let ui denote the displacement in dimension i.
Then the infinitesimal strain tensor εij is defined as

εij := εij (u) = ∂jui + ∂iuj
2 , (2.32)

for i, j ∈ {1, . . . , nd} for nd the space dimension, in our case nd = 3. As indicated,
we refer to the strain tensor from here on only as ε such that the dependence on
the displacement u is implicit.

The stress describes the internal forces within an object due to external forces which
then can cause deformations, i.e. strain. The stress-strain relation can be described
by the generalized Hooke’s law [52] as

σij =
nd∑
k,l=1

Cijklεkl, (2.33)
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where C denotes the fourth-order tensor of elastic moduli and i, j, k, l ∈ {1, . . . , nd}.
For better readability, we omit the sum over k, l in later equations and indicate it
by the indices k, l themselves. The strain energy function in multiple dimensions
then takes the form

wij =
∫

Cijklεkl d εij = 1
2Cijklεijεkl (2.34)

and is non-negative provided C is positive-definite.
For isotropic object materials, meaning that the material has no preferred orienta-
tions or directions, C is computed as

Cijkl = λδijδkl + µ (δikδjl + δilδjk) , (2.35)

with λ, µ the two independent Lamé constants and δ the Kronecker delta. The Lamé
constants are computed as follows:

µ = E

2(1 + ν) , λ = νE

(1 + ν)(1− 2ν) , (2.36)

for ν the material’s Poisson’s ratio and E its Young’s modulus. Finally, the stress-
strain relation for an isotropic elastic material is then given as

σij = Cijklεkl = λεkkδij + 2µεij. (2.37)

2.2.2 Elastostatics
Based on Equation 2.37, we can formulate a partial differential equation for an
elastic body in static equilibrium. Given a PDE system, we follow Hughes [53] to
deduce the final system of equations to solve as stated in Equation 2.28.
The equation system for elastostatics reads

∂jσij + fi = 0 in Ω for i, j = 1, . . . , nd, (2.38)
ui = gi on Γgi

for i = 1, . . . , nd, (2.39)
σijnj = hi on Γhi

, for i, j = 1, . . . , nd, (2.40)

where nj is the jth component of the normal vector, gi : Γgi
→ R, hi : Γhi

→ R are
the prescribed boundary displacements and

Γ = Γgi
∪ Γhi

∀i = 1, . . . , nd (2.41)

is the boundary of the domain Ω ⊂ Rnd and u : Ω→ R.
In our applications, we can interpret gi as clamp boundary conditions and hi as
the incoming point forces or pressures as boundary condition. The force vector
fi describes forces acting on the whole object and not only the boundary, most
commonly gravity.
Let us now formulate the weak form for the elastostatic problem given the strong
form in Equation 2.38 - Equation 2.40. To do so, we denote the solution space for
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dimension i as Si and the variation space for dimension i as Vi. All ui ∈ Si satisfy
boundary condition 2.39 and all vi ∈ Vi satisfy vi = 0 on Γgi

. Then, the weak
formulation is

nd∑
i,j=1

∫
Ω

∂jvi + ∂ivj
2 σij d Ω =

nd∑
i=1

∫
Ω
vifi d Ω +

nd∑
i=1

∫
Γhi

vihi d Γ. (2.42)

Let S = {u | ui ∈ Si} and V = {v | vi ∈ Vi}. Then, we can express the weak form
from Equation 2.42 with the symmetric bilinear form a and linear forms as

a(v,u) = (v, f) + (v,h)Γ (2.43)

where the bilinear form is defined as:

a(v,u) :=
nd∑
i,j=1

∫
Ω

∂jvi + ∂ivj
2 σij d Ω, (2.44)

and the linear forms as:

(v, f) :=
nd∑
i=1

∫
Ω
vifi d Ω, (2.45)

(v,h)Γ :=
nd∑
i=1

∫
Γhi

vihi d Γ. (2.46)

Note that the stress tensor σ is dependent on the displacement u, since the stress
tensor is defined through the strain tensor ε. In Equation 2.32 we introduced the
definition of the strain tensor based on the displacement. Thus, for clarity, Equa-
tion 2.44 can also be expressed as

a(v,u) =
nd∑
i,j=1

∫
Ω

∂jvi + ∂ivj
2 Cijkl

∂jui + ∂iuj
2 d Ω. (2.47)

Let now Sh and Vh be finite-dimensional approximations of S and V. Elements
vh ∈ Vh fulfill vhi = 0 on Γgi

and for elements of Sh the composition

uh = wh + gh (2.48)

holds for wh ∈ Vh and gh an approximation of the boundary condition, Equa-
tion 2.39. Utilizing the composition from above, we can express the Galerkin for-
mulation of the problem as: Given f ,g and h, find uh = wh + gh,uh ∈ Sh such that
for all vh ∈ Vh it holds

a(vh,wh) = (vh, f) + (vh,h)Γ − a(vh,gh). (2.49)

Now that we have the Galerkin formulation of the elastostatic problem, we can
rearrange it to define the stiffness matrix K. Let us denote the standard basis
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vectors of Rnd as {ei}nd
i=1. Then, the functions vh ∈ Sh and wh ∈ Vh can be

expressed as

vh =
nd∑
i=1

vhi ei, (2.50)

wh =
nd∑
i=1

whi ei. (2.51)

Let us denote the basis of the variation space as {NA}nn
A=1 ⊂ Vh for nn the number

of nodes in the object mesh. The basis functions NA are also referred to as shape
functions. Every variation function wh ∈ Vh can then be expressed uniquely in terms
of the basis of shape functions. To utilize the composition (see Equation 2.48) of
the displacement vector, let us divide the set of mesh nodes η (of size nn) into two
complementing subsets. Let ηgi

⊂ η be the set of nodes for which the displacement
vector fulfills the boundary condition from Equation 2.39. Thus, for the nodes in
ηgi

it holds uhi = gi. Then, ηcgi
:= η − ηgi

denotes the complement of ηgi
and let

us denote its size by nc ≤ nn. Thus, each uhi for i = 1, . . . , nd must be determined
for all nodes A in ηcgi

. Let us denote the nodal values of whi and ghi as diA and giA
respectively for i the space dimension index and A the node index. Then, we can
express whi and ghi in terms of nodal shape functions as

whi =
∑
A∈ηc

gi

NAdiA, (2.52)

ghi =
∑
A∈ηgi

NAgiA (2.53)

for i = 1, . . . , nd. With the new expressions of the functions, we can rewrite the
Galerkin Equation 2.49 as follows:

nd∑
j=1

∑
B∈ηc

gi

a (NAei, NBej) djB

= (NAei, f) + (NAei,h)Γ −
nd∑
j=1

∑
B∈ηgi

a (NAei, NBej) gjB,
(2.54)

for all A ∈ ηcgi
and i = 1, . . . , nd.

Let us denote the global node indices as P,Q = 1, . . . , nd · nc. Each global node
index P corresponds to a mesh node A ∈ ηcgi

and a dimension i ∈ {1, . . . , nd}.
Similarly, we have the convention that the global index Q corresponds to node B
and dimension j. The system of equations as in Equation 2.28 is then given as

Ku = F, (2.55)

with K ∈ Rnd·nc×nd·nc ,u ∈ Rnd·nc ,F ∈ Rnd·nc . The entries of K and F take the form:

KPQ = a (NAei, NBej) , (2.56)

FP = (NAei, f) + (NAei,h)Γ −
nd∑
j=1

∑
B∈ηgi

a (NAei, NBej) gjB. (2.57)
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2. Theoretical background of the DEM-FEM coupling

2.2.3 Elastodynamics
In the previous section we considered the equations for an elastic body in static
equilibrium. In this section, we deduce the equation system for an elastic body with
variation in time. The main difference between the equation systems of elastostatics
and elastodynamics is the addition of the mass matrix term [53]. When investigating
dynamic simulation cases, one needs to consider besides the displacement ui : Ω ×
(0, T ) → R also the velocities and accelerations u̇i, üi : Ω × (0, T ) → R, with
i = 1, . . . , nd. The initial displacement and velocity are given by the superscript 0
as u0

i : Ω→ R and u̇0
i : Ω→ R. The remaining data that we had before, now takes

the form

fi : Ω× (0, T )→ R, (2.58)
gi : Γgi

× (0, T )→ R, (2.59)
hi : Γhi

× (0, T )→ R. (2.60)

Additionally to the previous case, we now also consider the density of the object’s
material ρs : Ω→ R>0.
Then, the initial boundary value problem is given as

ρsüi = ∂jσij + fi on Ω× (0, T ) (2.61)
ui = gi on Γgi

× (0, T ) (2.62)
σijnj = hi on Γhi

× (0, T ) (2.63)
ui(x, 0) = u0

i (x) for x ∈ Ω (2.64)
u̇i(x, 0) = u̇0

i (x) for x ∈ Ω. (2.65)

where the stress tensor σ is as before and i, j = 1, . . . , nd. Equation 2.61 is the
equation of motion.
As before, we define the solution and variation space, in this case though with
consideration of the time t ∈ (0, T ). Let St be the solution space at time t and V
the variation space. Given the boundary and initial conditions f ,g,h,u0 and u̇0,
we want to find the solution of the displacement u(t) ∈ St such that for all test
functions v ∈ V the weak formulation

(v, ρsü) + a(v,u) = (v, f) + (v,h)Γ (2.66)

with initial conditions

(v, ρsu(0)) = (v, ρsu0) (2.67)
(v, ρsu̇(0)) = (v, ρsu̇0) (2.68)

is satisfied. The bilinear form and linear forms are defined as before, see Equa-
tion 2.44 - Equation 2.46.
Analogously to the static case, let us define the finite-dimensional space approxima-
tions Sht of St and Vh of V. For elements uh(t) ∈ Sht the composition

uh = wh + gh (2.69)
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2. Theoretical background of the DEM-FEM coupling

holds for wh ∈ Vh and gh an approximation of the boundary condition of Equa-
tion 2.62.
Given the composition of Equation 2.69 and the sum rule of derivatives, we get the
following semi-discrete Galerkin formulation: Given f ,g,h,u0 and u̇0, find uh =
wh + gh,uh ∈ Sht such that for all vh ∈ Vh it holds

(vh, ρsẅh) + a(vh,wh) = (vh, f) + (vh,h)Γ − (vh, ρsg̈h)− a(vh,gh) (2.70)

with

(vh, ρswh(0)) = (vh, ρsu0)− (vh, ρsgh(0)), (2.71)
(vh, ρsẇh(0)) = (vh, ρsu̇0)− (vh, ρsġh(0)). (2.72)

The formulation is semi-discrete as we only discretized the problem in space and
not yet in time. The time discretization is done by time integration. The time step
method used within this thesis for structural dynamics is a variant of the Newmark
method [54] which is implicit.
Following the arguments of the formulation of Equation 2.52 and Equation 2.53, we
can express vh and gh as

vhi (x, t) =
∑
A∈ηc

gi

NA(x)diA(t), (2.73)

ghi (x, t) =
∑
A∈ηgi

NA(x)giA(t), (2.74)

with diA(t) the nodal value of vhi and giA(t) the nodal value of ghi at time t. Then,
the equation system in matrix form reads

Md̈(t) + Kd(t) = F(t) (2.75)
d(0) = d0 (2.76)

ḋ(0) = ḋ0
. (2.77)

M is referred to as mass matrix.
The entries of K are as in Equation 2.56. The entries of M and F take the following
form:

MPQ = (NAei, ρsNBej) (2.78)
FP = (NAei, f) + (NAei,h)Γ −

∑
Q

(KPQgQ + MPQg̈Q) (2.79)

d0 and ḋ0 are given by

d0 = M−1D0, ḋ0 = M−1Ḋ0
, (2.80)

with

D0
P = (NAei, ρsu0

i )−
∑
Q

MPQgQ(0), (2.81)

Ḋ0
P = (NAei, ρsu̇0

i )−
∑
Q

MPQġQ(0). (2.82)
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2. Theoretical background of the DEM-FEM coupling

2.2.4 Shell elements
The system of equations we deduced for elasticity in the previous chapters, are
for volume mesh elements when nd = 3. Another type of 3D mesh elements are
shell elements which are faces, usually quadrilaterals or triangles. Given the shell
elements and a mesh thickness, the mesh can be extended to a volume with the
given thickness. An illustration of the volume resulting from a shell mesh is given
in Figure 2.6 where the original shell mesh is represented by the mid-surface mesh
with white filled nodes. The two newly created surfaces are referred to as reference
surface [51] and visualized as the smaller black nodes in Figure 2.6.

(a) Original mesh (b) Deformed mesh

Figure 2.6: Illustration of a shell element mesh with the original shell nodes as
mid-surface nodes (white filled nodes) and upper and lower reference surface nodes
(black nodes).

The system of equations is only solved for the mid-surface, which is the actual shell
element mesh. To deduce the positions of the reference surfaces after a deformation
as in Figure 2.6, the rotation of the original nodes are required as well as the position.
Together with the thickness, the new position of the node is uniquely determined.

2.2.5 Numerical damping
Damping methods can be introduced to prevent an algorithm from getting unstable.
Instabilities can occur for instance due to high frequencies or extreme forces. As
deduced in the previous sections, the system of equations for a dynamic case is given
as Equation 2.29. When damping is introduced, the system can take the following
form instead:

Mü(t) + Cu̇(t) + Ku(t) = F(t), (2.83)

for a damping matrix C.
A common damping method is the Rayleigh damping that defines the damping
matrix C as

C := ϑM + ξK, (2.84)

where ϑ, ξ are constants of proportionality.
The time stepping scheme with numerical damping applied within this thesis is the
extension of Newmark’s method as suggested by Bossak, see Wood, Bossak, and
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2. Theoretical background of the DEM-FEM coupling

Zienkiewicz [54]. We denote the three timestep parameters by α, β, γ. The Bossak-
Newmark damping algorithm then takes the form

un+1 = un + ∆tun + (∆t)2
(1

2 − β
)

ün + (∆t)2βün+1, (2.85)

u̇n+1 = u̇n + ∆t(1− γ)ün + ∆tγün+1 (2.86)

and the system of equations to solve for is

(1− α)Mün+1 + αMün + Cu̇n+1 + Kun = Fn+1, (2.87)

where the indices indicate the timestep, e.g. un = u(tn). We choose the parameters
β, γ in dependence of α as

γ = 0.5− α and β = 0.5γ + 0.01. (2.88)

The method with this parameter choice is unconditionally stable [54].
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3
DEM-FEM Coupling

The DEM-FEM coupling scheme combines DEM and FEM and enables commu-
nication between the two solvers. DEM simulates granular media and the forces
resulting from contacts between particles and the object of the FEM domain are
collected and transferred to FEM. FEM then simulates the object with the forces as
boundary conditions and the movement of the object is returned to DEM. The exact
order and variations of this scheme are discussed in section 3.1. After introducing
the general coupling scheme, we formulate the coupling algorithm for the scheme
more specifically in section 3.2. Then in section 3.3, we give some insights into im-
plementation details that are specific for the DEM and FEM software that we apply.
In section 3.4 we discuss the advantages and drawbacks of our coupling formulation
and finally conclude with a general workflow description for new simulation cases in
section 3.5.

3.1 Time scheme overview
To give a first overview of the coupling algorithm, we illustrate the different steps
along a timeline in Figure 3.1. In Figure 3.1a the just-in-time coupling scheme is
illustrated which is in general the first coupling approach within this thesis. The
predictive coupling illustrated in Figure 3.1b is a similar coupling approach with an
adaptation of the movement data handed over to DEM. That the data is not handed
over as obtained from FEM, but altered is marked with *.
The general setup for both coupling schemes is the same. There are three timelines
in total, the first timeline t for the general simulation time, a timeline tD for the
DEM solver time and timeline tF for the FEM solver. In total, the initial timestep
t0 and three full timesteps are visualized, t1, t2 and t3. At the initialization, we
transfer the FEM object’s triangle mesh to the DEM solver which is indicated with
the green arrow “Init object”.
In the just-in-time coupling each iteration consists of four steps. First, nD timesteps
are simulated in DEM. Then, the forces arising from contacts between object and
particles are accumulated and provided to the FEM solver. With the FEM solver
we simulate one timestep and hand over the object node’s positions, velocities and
accelerations to the DEM solver.
Similarly, each iteration of the predictive coupling consists of four steps. First of all,
one timestep is simulated with the FEM solver. The initial position of the object in
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(b) Illustration of the predictive coupling scheme. The * indicates that the object
movement data is altered before given to DEM.

Figure 3.1: Illustration of coupling schemes, inspired by [26].
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3. DEM-FEM Coupling

this iteration and the resulting one are combined to calculate a predictive velocity.
It describes the velocity of the object that is required at the start of this iteration
to arrive at its resulting position. Then, the position and velocity are provided to
the object in the DEM solver. With the DEM solver we simulate nD timesteps and
accumulate the contact forces acting onto the FEM object and hand them over to
the FEM solver.
Another variant of both the just-in-time coupling and predictive coupling is force
averaging. In more detail, the mean of the forces that act on the object over all nD
DEM timesteps is computed and given as boundary condition to FEM instead of
only the force of the last DEM timestep.

3.2 Detailed algorithm
In the last section we got an overview on how the coupling is executed, illustrated
over a timeline. To give a more detailed understanding, we introduce a pseudo-
algorithm in this section, with which we elaborate the individual steps.
We consider the just-in-time coupling first and then later on make some notes on
changes that occur when using the predictive coupling or force averaging instead.

Algorithm 3 Just-in-time coupling algorithm
Require: ∆tC ,∆tF ,∆tD, tT ,MF

1: Let nD := ∆tC/∆tD
2: TD ← T F

(
MF

)
3: Let ti, ti+1 := 0
4: while ti < tT do
5: Simulate nD steps in DEM timestep ∆tD
6: Transfer forces from DEM to FEM triangle mesh:

(FTF )i ← (FTD)i+1

7: Simulate one step in FEM with a timestep of ∆tF
8: Transfer object movement from FEM to DEM:

(PTD)i+1 ← (PTF )i+1

(VTD)i+1 ← (VTF )i+1

(ATD)i+1 ← (ATF )i+1

9: ti ← ti + ∆tC
10: end while

First of all, we define the different time steps. We denote the DEM timestep by ∆tD
and the FEM timestep by ∆tF , where the latter also defines the coupling timestep
∆tC . The FEM timestep must be a multiple of the DEM timestep. Thus, in total
we have these two requirements on the timestep choice:

∆tC := ∆tF (3.1)
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3. DEM-FEM Coupling

Let nD > 0 be a natural number. ∆tD is then required to fulfill

∆tF = nD ·∆tD. (3.2)

To start the coupling, the timesteps ∆tC ,∆tF and ∆tD and total simulation time tT
must be given as denoted in the requirements of Algorithm 3. Furthermore, a mesh
MF for the FEM object is required. In line 1 of Algorithm 3 we deduce the number
of DEM timesteps nD that are performed between each coupling step. We initialize
the DEM triangle mesh TD in line 2 by extracting the exterior surface triangulation
T F of MF .
At this point the actual coupled simulation starts and simulates until time tT . The
coupling and data exchange between the two solvers are performed after each cou-
pling timestep ∆tC . In line 5 the DEM solver simulates nD timesteps of size ∆tD
from the current time ti until the next time ti+1. TD is updated continuously and
thus moving during the DEM simulation based on its initial position, velocity and
acceleration.
We denote the force acting on the mesh TD caused by contacts with particles at
time ti by (FTD)i. After simulating DEM the forces (FTD)i+1 on the mesh at time
ti+1 are gathered and assigned in line 6 as boundary conditions onto the FEM object
by

(FTF )i ← (FTD)i+1 (3.3)

In line 7, one step is simulated with the FEM solver with a timestep of size ∆tF .
As the nodes’ positions, velocities and accelerations have been updated within the
FEM simulation, this information needs to be transferred to the DEM solver, which
is performed in line 8. Since at this point the FEM solver has arrived at time
ti+1, the positions (PTF )i+1, velocities (VTF )i+1, accelerations (ATF )i+1 of the FEM
surface triangulation at that time are assigned to (PTD)i+1 , (VTD)i+1 , (ATD)i+1 of
the DEM triangle mesh at that time.
Finally, the current time can be updated as done in line 9 and the coupling and
information exchange is completed for this iteration.
When considering the predictive coupling, the order of lines 5 - 8 changes to 7,
8, 5, 6. Thus, a coupling step starts with the execution of one FEM simulation
step. Instead of transferring the position, velocity and acceleration of the object, a
predictive velocity V0,1 is computed based on the initial position P0 and the resulting
position P1 of the object in this iteration. The predictive velocity is defined as

V0,1 := P1 −P0

∆tF (3.4)

Then, line 8 takes instead the form

(PTD)i ← (PTF )i , (3.5)

(VTD)i ←
(PTF )i+1 − (PTF )i

∆tF , (3.6)

(ATD)i ← 0. (3.7)
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This ensures that the object in DEM starts and ends at the exact same position as
the FEM object reducing the risk of diverging objects within the two solvers.
In the case of force averaging, the forces over the nD timesteps in line 5 need to be
summed up in order to compute the mean. Then, line 6 is changed to

FTF (ti)←
1
nD

nD∑
j=1

FTD(ti + j∆tD), (3.8)

with FTF (ti) := (FTF )i.

3.3 Implementation details
In the previous section we described the general coupling algorithm developed in this
thesis for general DEM and FEM solvers. Within this thesis we apply the FCC in-
house solvers Demify® and LaStFEM. The coupling algorithm is specifically adapted
to these solvers and some further explanation follows in this section on the details
of some operations.

3.3.1 Triangle mesh
The first step in the coupling algorithm is to transfer the exterior surface triangula-
tion from FEM to DEM. In DEM a flexible object is created based on the triangle
mesh geometry. The term flexible object describes a solid object whose positions,
velocities and accelerations for all nodes can be set individually during runtime.
Since several DEM timesteps are run before coupling to FEM, the positions between
the two meshes will slightly drift apart for the just-in-time coupling. Although
Demify® considers the velocity and acceleration to move the mesh during the DEM
simulation, the integration model slightly differs from the one implemented in LaSt-
FEM. This small difference will be corrected in the next coupling step when besides
velocity and acceleration also the position gets updated.
However, if the drift in positions gets too large, the correction in the position update
can cause an extreme overlap between the object and particles. This in turn can
result in extreme forces acting on the mesh, leading to instabilities. To avoid large
drifts in positions, numerical damping as explained in subsection 2.2.5 can be in-
troduced to prevent large accelerations. Another method to avoid drifting positions
is the usage of the predictive coupling, where no acceleration appears in the DEM
simulation and the velocities are prescribed to move the object to the exact position
of the FEM object.

3.3.2 Force transfer
As elaborated in subsection 2.1.2, contacts between particles and the flexible object
result in forces. These forces are accumulated by Demify® for each node of the
flexible object triangle mesh in each timestep. When coupling to FEM, the current
forces are transferred such that they apply on the FEM object.
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For volume element meshes, the forces can be transferred 1:1 as the exterior volume
nodes coincide with the exterior surface triangulation nodes. Thus, the forces are
applied as point force boundary conditions on the exterior nodes of MF .
However, for shell element meshes the force transfer is slightly more complex. In
subsection 2.2.4 we described the different structure of shell element meshes. Thus,
the force transfer onto the mesh nodes is adapted to that structure for shell elements.
Let ns,i, nm,i, nr,i be the original shell element, corresponding mid-surface and cor-
responding reference node. We refer to the nodes analogously as to the surfaces in
subsection 2.2.4. The force on the mid-surface node nm,i is then assembled as the
sum of the forces acting on the original shell element and reference node:

FTF |nm,i
= FTF |ns,i

+ FTF |nr,i
. (3.9)

3.4 Scheme discussion
The motivation why we choose the coupling algorithm as described in the previous
section is that it does not require changes in the solver cores at hand. All func-
tionalities needed are getters and setters of the object movement and forces that
are existent in both solvers. Any other manipulation as performed in the predictive
coupling or with force averaging does not affect the solvers.
However, there are also some drawbacks. We cannot parallelize the coupling algo-
rithm as data transfers are done between the different solver calls.
An option to optimize the coupling algorithm is the implementation of a predictor-
corrector method. This would include that for instance a prediction of the object’s
movement is computed by DEM, that is then corrected by the actual movement
obtained from the FEM simulation. Then, the prediction and correction can be
performed again, e.g. until convergence. This would increase the order of accuracy
of the coupling algorithm, but would lead to longer computation times.

3.5 Workflow
The workflow applied in this thesis for each new simulation case for the DEM-FEM
coupling is visualized in Figure 3.2. The process of setting up a simulation case,
running it and analyzing the results consists of several steps. The steps that are
performed within this thesis are highlighted as gray boxes. Steps that are performed
externally, meaning that only the result is given and used further within this thesis,
are highlighted as white boxes with a dashed border. The steps are structured in
four parts, specifically pre-processing, simulation preparation, DEM-FEM coupling
and post-processing.
During the pre-processing, we are concerned with gathering all geometries needed
for the specific simulation case. That process starts with the creation of CAD
geometries that describe the objects as for instance, a sleeper. After receiving the
CAD geometries, the ones meant for the DEM simulation - domain boundaries and
particle geometries - are converted to triangle meshes saved as STL files. The one
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Figure 3.2: Workflow for a case-specific coupled simulation. The steps performed
as contribution within this thesis are highlighted as gray boxes. Steps that are
covered externally are highlighted as white boxes with a dashed border.
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meant for the FEM simulation describing the FEM object is converted to a shell or
volume element mesh saved as an ABAQUS file. These files are then used in the next
step during the initialization to create the objects and particles in the corresponding
simulation environments.
The DEM and FEM solver are initialized via their Python interfaces during the stage
of simulation preparation. Another input besides the object and particle geometries
are the case specific simulation parameters that specify for instance material char-
acteristics, object motions or timestep sizes.
The actual simulation of the case is then performed by the coupling algorithm that
was described in detail through this section. During the coupling algorithm, the
DEM solver is called via the Python interface and simulates nD simulation steps
in C++ on the GPU utilizing CUDA. Similarly, the FEM solver is called via its
Python interface and performs a simulation step in C++ on the CPU. During each
coupling algorithm iteration, data is exchanged between the solvers covering the
force boundary condition and object movement update.
Finally, for each simulation case post-processing is performed. Already during the
coupling simulation, quantities of interest are computed, gathered and saved in a
CSV file. Examples of quantities of interest are the mass flow rate of particles, the
deflection of a FEM object or particle and object velocities and the list of quantities
of interest varies between different simulation cases. After completing a simulation,
the saved data is analyzed and visualized as animations or plots.

34



4
Beam with fixed ends under

constant load

In the previous chapter, we presented the formulation of the coupling algorithm.
The natural next step is to verify and validate our model. As a first verification, we
choose a case with a small amount of particles and a small-scale deflection to focus
on the data transfer of the interaction. More precisely, we simulate the case of a
fixed beam under constant load as presented by Dratt and Katterfeld [26]. Further
verification and validation against experimental data will be presented in a later
chapter.

4.1 Configuration and material specifications

Figure 4.1: Visualization of the deflection of a beam with fixed ends under constant
uniformly distributed load.

A set of spheres lie on top of a beam, as visualized in Figure 4.3. The spheres apply a
constant, approximately uniformly distributed load, causing a displacement with its
maximum at the center of the beam. The dimensions of the beam and the material
parameters are listed in Table 4.1. The beam has dimensions of 1, 000×100×100 mm
(L×W×H) and is discretized with an element size of 50 mm and simulated with
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4. Beam with fixed ends under constant load

Description Value Unit
Length 1,000 [mm]
Width 100 [mm]
Height 100 [mm]
Young’s modulus 210 [GPa]
Poisson’s ratio 0.3
Density 7,800 [kg/m3]

Table 4.1: Dimensions and material parameters of the simulated beam based on
the specifications of Dratt and Katterfeld [26].

material properties corresponding to mild steel. The total mass of the spheres is
51 kg which results in a pressure of 0.005 N

mm2 on the upper surface of the beam.

4.2 Analytical solution for beam deflection

ω

bL

Figure 4.2: Illustration of a beam with length bL under a constant uniformly
distributed load ω fixed at both ends.

In order to give an understanding of the maximal deflection, let us give the analytical
formula. First of all, we need to compute the pressure acting on the beam, depending
on the load mass and gravity. In this case, let us denote the total load mass as m,
the gravitational constant by gc and the length and width of the beam as bL, bW ,
respectively. Then, the pressure of the load P is given by

P = mgc
bLbW

. (4.1)

Following Budynas, Nisbett, et al. [55], let us denote the beam’s Young’s modulus
as E and the length, width and height of the beam as bL, bW , bH , respectively. Then,
the second moment of area I is

I = 1
12bW b

3
H (4.2)

and the distributed load ω = P · bW . Finally, the maximal deflection δmax of the
beam is computed as follows:

δmax = − ωb4
L

384EI . (4.3)
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4. Beam with fixed ends under constant load

Given the analytical solution, we can derive the maximal deflection of the beam
for a constant load of 51 kg and analogously for other loads. With a pressure of
5,000 N

m2 and a beam width of 0.1 m, the resulting uniform load is

ω = 500 N
m . (4.4)

The 2nd moment of area I in this case is

I = 1
120,000 m4 (4.5)

as the beam has a width and height of 0.1 m. The modulus of elasticity for mild
steel is 210 GPa and hence the resulting maximal deflection of the beam with 1 m
length is

δ0 = −7.4× 10−7 m. (4.6)

4.3 One-way coupling with quasi-static FEM
In this example we use a one-way coupling as the effect of the beam’s deflection on
the spheres is neglectable considering the size relation of the spheres to the maximal
deflection. As the load is constantly acting on the beam, this case is elastostatic and
thus, we use the static FEM solver to simulate the beam. Hence, we first simulate
some seconds with DEM to ensure that the spheres reach a steady-state, transfer
the acting forces on the beam to the FEM solver and then solve with FEM until we
find a solution.

4.4 Simulation results of beam deflection
The simulation results of the fixed beam under constant load are summarized in
Table 4.2 for two different masses, namely 51 kg and 72 kg. The simulations were
repeated 20 times, but the results showed no statistical variation, as expected for
this static case.

Error

Deflection [m] Absolute [m] Relative Mass [kg]
Pure FEM −7.06× 10−7 - - 51
Coupling −7.04× 10−7 2.74× 10−9 0.38 51
Pure FEM −9.97× 10−7 - - 72
Coupling −9.89× 10−7 8.52× 10−9 0.85 72

Table 4.2: Collection of deflection of pure FEM and coupled solution for a load of
51 kg and 72 kg and corresponding absolute and relative error from coupling results
to the finite element solution for the case of a beam with both ends fixed under a
constant load and an element size of 50 mm.
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4. Beam with fixed ends under constant load

As a reference for the computation of the error in the beam deflection we refer to the
finite element solution. This choice was done as the finite element solution converges
to a value only close to the analytical solution and the coupling can only be expected
to be as close as the finite element solution.
Dratt and Katterfeld [26] achieved a relative error of less than 1% for a mass of 51 kg
for an element size of 50 mm with their simulations. The here presented coupled
solution delivers similarly a relative error of less than 1% compared to the pure FEM
solution for all of the chosen mesh resolutions. In more detail, the coupled solution
has a relative error of 0.38 % as compared to the pure FEM solution for a mesh
element size of 50 mm.
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Figure 4.3: Plot of resulting maximal deflections of analytical, pure FEM and
coupling solution for different mesh resolutions and a load of 51 kg.

Comparing in general the analytical and the pure FEM solution, one can see that
they are close to each other. Furthermore, from the behavior of the maximal de-
flection for finer meshes as visible in Figure 4.3, one can conclude that the finite
element solution for the desired case of 51 kg converges to a value lower than the
analytical one.
In summary, the results of this simulation case show that the load from DEM par-
ticles to the FEM object is correctly transferred within the coupling algorithm.
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5
Deformation of fixed steel sheet

under material flow

For the validation of our model we choose to replicate the experiment of a fixed steel
sheet under a material flow. With this case we investigate the correctness of the
coupling algorithm for dynamic interactions between particles and objects.

5.1 Experiment description
As a reference for comparison, we rebuild the experiment performed by Dratt and
Katterfeld [26]. In the experiment, the upper chamber (the top see-through con-
tainer in Figure 5.1) is filled with wheat grains until a total mass of 6 kg is reached.
The bottom of the chamber consists of two hand-slides. The positions of the hand-
slides can be adjusted such that an outlet of a certain length occurs between them.
During the experiment the wheat grains fall through this outlet into the lower cham-
ber. A flap system is installed beneath the hand-slides which opens within 0.2 s at
the beginning of the experiment. As the flap system is located beneath the hand-
slides with a gap, there are particles, collecting and forming an initial bulk. Beneath
the upper chamber, there is the lower chamber (the bottom see-through container
in Figure 5.1) containing a frame that holds a thin steel sheet. The steel sheet is
fixed on its left side as illustrated in Figure 5.1. Once, the experiment starts, the
flap system opens, letting the initial bulk fall down and more particles are following
through the opening created by the hand-slides. Thus, there is a continuous (but
not necessarily constant) material flow until the upper chamber is mostly emptied.
Under the load of the material flow, the steel sheet deflects as visualized in Fig-
ure 5.1. In the experiment, a distance sensor was installed beneath the steel sheet,
allowing the deflection to be measured.
We replicate the experiment virtually with simulations with the same setup and
track approximately the same position of the steel sheet to measure its deflection.

5.2 Simulation parameter specifications
The bulk density and porosity of wheat are given and summarized in Table 5.1.
Using this information we can deduce the material density needed in the DEM
solver. The particle density ρp is then 1.2× 103 kg/m3. The particle diameters
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5. Deformation of fixed steel sheet under material flow

Upper chamber

Particles

Flap system

Handslide opening

Lower chamber

Steel sheet

Material flow

Figure 5.1: Simulation snapshot of the deflecting steel sheet under material flow of
particles with a spherical shape. The nomenclature of the case description is added
as annotations.

are distributed uniformly in the range [3, 5] mm. The simulation starts with the
generation of a total mass of 6 kg of wheat particles inside the upper chamber. In
our simulations that results in approximately 164,000 wheat particles.

The particles are inserted into the simulation randomly within the whole volume of
the upper chamber. They are then arranged on the bottom of the upper chamber
by the gravitational force. During particle generation the total mass is tracked and
the insertion is completed as soon as a total mass of 6 kg is reached. We let the
simulation continue for another short time period to ensure that the particles have
fallen down and reached a steady state. We save the state of the particles and access
it for all later simulations.

In Table 5.1 we summarize all parameters stated in [26]. We use the same parameters
as in the experiment as a starting point, but as described in later sections, we
also calibrate our model, which leads to some differences. Furthermore, we state
additional parameters in Table 5.2 that we need to specify in our simulation setup.
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5. Deformation of fixed steel sheet under material flow

Property Value Unit
Bulk density ρb 743 kg/m3

Porosity ε 0.4
Size distribution [3,5] mm
Particle-steel friction coefficient 0.22
Particle-frame friction coefficient 0.26
Total bulk material mass 6 kg
Coulomb friction 0.17
Particle Young’s modulus 100 MPa
Particle Poisson’s ratio 0.3
Falling height 360 mm
Outlet length 40 mm
Measurement position 60 mm
Flap opening duration 0.2 s
Thickness steel sheet 0.75 mm
Dimensions (L×W) steel sheet 340× 100 mm
Area (L×W) of clamp boundary on steel sheet 60× 100 mm
Steel Young’s modulus 185 GPa
Steel Poisson’s ratio 0.3
Steel material density 7,850 kg/m3

Element edge length 10 mm

Table 5.1: Collection of simulation parameters based on the values given by [26].

Property Value Unit
Particle density ρp 1,242 kg/m3

Particle restitution 0.4
Gap size 12 mm
Frame density 7,800 kg/m3

Frame Young’s modulus 100 MPa
Frame Poisson’s ratio 0.3

Table 5.2: Additional simulation parameters used in this thesis.

5.3 Simulation calibration to reach experimental
angle of repose and mass flow

We need to calibrate our model to approximate the experimental results. There are
two key values for calibration given:

• Angle of repose of 26°.

• Mass flow rate which is described for the experiment, but not explicitly given.

Note that the focus for calibration lies on the DEM simulation as both values men-
tioned above are dependent on the particle material, the amount of particles and
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5. Deformation of fixed steel sheet under material flow
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Figure 5.2: Angle of repose visualization for different Coulomb frictions. The
hatched area represents the final particle pile in the upper chamber for a Coulomb
friction of 0.17 as was reported in the experimental results. The different resulting
angles for Coulomb frictions of {0.17, 0.3, 0.6, 1.0, 1.5} are shown.

the initial bulk reservoir between hand-slides and flaps.
The Coulomb friction of the particle-particle interaction is a significant parameter
for the angle of repose. With the initial friction of 0.17 as stated in the original
paper, we only achieve an angle of repose of 15° which is lower than given in the
experiment description. Increasing the friction results in an increased angle of repose
although the increase flattens fast and converges to a value around 23°, as visible
in Figure 5.2. Thus, we simulate with a friction of 1.0 which results in an angle of
repose of 22° in our simulations.
Potentially a lower friction value could have been applied if the effect of rolling
friction was separately considered. That was not the case in the current simulations.
In the report of the original experiment, a description of the mass flow rate over
time is available. The main points are summarized here:

• Around t = 0.25 s the initial mass flow rate is significantly higher than at later
points due to an initial bulk material reservoir in gap between hand-slides and
flaps.

• At t = 0.42 s the mass flow rate is reduced suddenly as the initial reservoir
has fallen down and the flow stabilizes.

• During the time interval t ∈ [0.5, 1.5] s the mass flow rate is constant.
• After t = 2.0 s the mass flow rate reduces until t = 4.5 s as at this time most

of the material has fallen out of the upper chamber.
It is clear from the description, as well as the numerical studies performed for this
thesis, that the gap between hand-slides and flaps has a significant influence on the
achieved mass flow rate. As the gap size is not stated in the experimental setup
description, a parameter study is necessary to see which gap size approximates
the peak in the deflection of the steel sheet best. The result of such a parameter
study can be seen in Figure 5.3, where the mass flow rate over time for the coupled
simulation is visualized. The mass flow rate is measured for a gap size of 12 mm, at
the bottom of the flap system.
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Figure 5.3: Mass flow rate of the coupled simulation for a calibrated gap size of
12 mm between hand-slides and flaps for spherical particles.

As we measure the mass flow rate directly beneath the flap system, the characteristic
points appear earlier in our mass flow rate result than in the description from the
experimental one. The mass flow rate is - as explained in subsection 2.1.4 - measured
during a time interval and the interval length also influences on the mass flow rate
responds to changes in the mass flow.
Considering the four significant intervals as stated above, our resulting mass flow
rate depicts a qualitative replication of the description. In the beginning around
t = 0.25 s our initial mass flow rate has a peak, meaning that it is significantly
higher than directly after that due to the initial particle bulk. The mass flow rate
drops then suddenly at t = 0.3 s as the initial bulk has fallen down. In the interval
of t ∈ [0.3, 1.5] s the mass flow rate stabilizes and is roughly constant. Then, in the
final stage, the mass flow rate reduces further in a non-linear manner until most of
the material has fallen out at the end of the simulation.

5.4 Investigation of convergence and stability of
the dynamic coupling

Wemodel the thin steel sheet with shell elements and use a transient time integration
for the FEM simulation of it, as this case is of dynamic nature. Early investigations
of the simulation showed that the current case is more demanding for the coupling
algorithm and prone to instabilities for poorly chosen simulation parameters. A
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5. Deformation of fixed steel sheet under material flow

symptom of such instabilities were extreme forces acting on the steel sheet that
result in extreme deformations. The integration methods in the applied solvers
differ, but both are methods of at least first order. Thus, the choice of timestep
in both methods has influence on the accuracy. For relatively large timesteps as in
this simulation case, the results of the integration methods differ between the two
solvers such that the meshes are drifting slightly apart. The correction done in each
coupling timestep of the positions of the triangle mesh caused these extreme forces,
as suddenly many particles overlapped with the mesh.

To keep the position of the coupled flexible object aligned between both solvers, we
introduce numerical damping in the FEM simulation to dampen the accelerations.
As suggested in Wood, Bossak, and Zienkiewicz [54], we apply the Bossak-Newmark
damping method with parameters α = 0.1, β = 0.3 and γ = 0.6 to the FEM
simulation and achieve stable coupling results for a FEM timestep ∆tF ≤ 10−4 s.

As mentioned in section 2.1, the timestep must be chosen sufficiently small such
that the theory of DEM is applicable. In subsection 2.1.5 we introduced a measure
- the Rayleigh timestep - that can be seen as an upper bound of the DEM timestep.
Experiments showed that we need to choose the DEM timestep ∆tD ≤ 10−5 s to
achieve a stable DEM solution. Furthermore, we investigated if the solution is
converging further for smaller DEM timesteps, but it had no effect. As in this case
a maximal velocity of 3 m/s is achieved and the minimal particle radius is 3 mm,
we can deduce from Figure 2.5 that 10−5 s is a suitable timestep choice and that
the error should reduce for even smaller timesteps, but that a reduced error on this
scale might not give significant improvements on the simulation results.

We also studied other parameters, such as the mesh refinement and the Newmark
parameters, to further investigate the convergence and stability of our simulations.
But besides the introduction of damping and the FEM timestep, the other tested
parameters had no significant influence on the convergence or stability.

5.5 Simulation results of steel sheet deflection un-
der material flow

In Figure 5.4 a comparison of the steel sheet deflection between the experiment and
the coupling simulations for spherical particles is displayed. The peak of the curve
representing the axial deflection, when the mass flow is the highest, is matched by
our simulation. The abrupt back-bending of the steel sheet after the peak is also
approximated closely by the simulation. Furthermore, the steady-state period of
the deflection and the mass flow is depicted in our result. Only in the reducing
material flow, our results show a slightly different behavior in the deflection as the
back-bending happens delayed.

In conclusion, we match the original experiment well with the simulation as the most
significant key points are reproduced with qualitative and quantitative satisfactory
results.
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5. Deformation of fixed steel sheet under material flow
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Figure 5.4: Deflection of the steel sheet compared between the experiment of the
referenced paper (green) and the coupled simulation (red) for spherical particles.

5.6 Performance measurements
The coupling algorithm is based on an existing implementation of Demify® and
LaStFEM. Within the coupling algorithm few operations are performed in compar-
ison to the solvers, since we only transfer data and have no system of equations to
solve. Thus, we expect that the solvers account for a majority of the simulation
time. One aim for the performance of the coupling algorithm itself is that it takes
less time than each of the solvers.
In Table 5.3 the time measurements of the coupling algorithm applied on the steel
sheet under material flow are shown. The time measurement was performed on a
machine with a Xeon Gold 6134 CPU with a clock speed of 3.20 GHz, 8 cores and
192 GB of memory as well as a V100 GPU with 32 GB of memory. With 77 %,

Total time DEM FEM Coupling
116 89 (77 %) 21 (18 %) 6 (5 %)

Table 5.3: Performance measurement in minutes of the total time of the coupling
algorithm, separated in the pure DEM simulation, the pure FEM simulation and
operations specific for the coupling. The performance is measured for 86, 000 parti-
cles and 340 elements in the object discretization. The results are a mean computed
over 10 repetitions.
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5. Deformation of fixed steel sheet under material flow

the DEM simulation accounts for most of the total time. The time consumed by
the FEM simulation is 18 % of the total time. As we have more than 200 times
more particles than FEM elements, the number of degrees of freedom of the DEM
simulation outweighs the number of degrees of freedom of the FEM simulation.
Additionally, the DEM timestep is two powers smaller than the FEM timestep,
wherefore DEM solves for the degrees of freedom more often. Thus, it is justified
that DEM accounts for a majority of the time. In a simulation with the same number
of degrees of freedom we expect the FEM simulation to account for the majority of
the time as in contrast to DEM the equation system to solve is of a more implicit
nature. All coupling operations together have a simulation time of 5 %, which is the
shortest part of the simulation.
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6
Simulation of interaction between

a sleeper and a ballast bed

In section 1.2, we saw that DEM-FEM coupled simulations have been previously
applied for the simulation of railroad, specifically the interaction between ballast
material and sleeper. With the goal of developing a coupling algorithm for infras-
tructure simulations, we replicate the setup of the experiment by Song et al. [31].
Furthermore, we extend the simulation case to investigate the effects of different
simulation parameters, such as material properties, on the simulation results. Addi-
tionally, we investigate railroad simulation for complex shaped particles instead of
spherical particles.

6.1 Experiment description

Ballast bed

Timber sleeper

Rail positions

Figure 6.1: Visualization of a timber sleeper on top of rock particles inside a ballast
bed. The rail positions on the sleeper are highlighted in black.
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6. Simulation of interaction between a sleeper and a ballast bed

In the laboratory experiments performed by Song et al. [31], a bed with dimensions
3.2 × 1.0 × 0.8 m (L×W×H) was filled with railroad ballast material. After a
vibratory compaction, 5 pressure cells were placed at a depth of 0.13 m to measure
the pressure distribution within the ballast bed. Then, the ballast bed was leveled.
In the experiment the interaction for both steel and timber sleepers were investi-
gated. Within this thesis we constrain the simulations to timber sleepers. In the
experiment a timber sleeper with dimensions 2.5 × 0.2 × 0.18 m (L×W×H) was
positioned on top of the ballast bed as visualized in Figure 6.1. A load was applied
onto the sleeper at both rail positions following a prescribed pattern. An acceler-
ated version of the loading pattern with a lower maximal load that is applied in the
simulations is visualized in Figure 6.2. First, an increasing load from 0 to 220 kN is
applied, then a cyclic loading ranging from 4.4 to 44 kN with a frequency of 2 Hz
and finally the same increasing load as in the first step is applied. The pressure dis-
tribution within the ballast bed given by the sensor measurements is then evaluated
for different load levels. The load levels that we compare to are 44 and 132 kN of
the linear loading stage, both before and after cyclic loading.
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Figure 6.2: Loading pattern for railroad simulation based on Song et al. [31].

6.2 Simulation specifications
In the simulations we replicate the box holding a particle bed with a timber sleeper
on top. As the experiment was performed with rock-shaped particles, we choose
the dilated polyhedron model to simulate them. We investigate the results for two
different distributions of the characteristic particle size.
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Figure 6.3: Visualizations of a normal (a) and piece-wise constant (b) distributed
characteristic length of rock particles in a particle population.

The first size distribution is a normal distribution with mean 0.04 m and a standard
deviation of 0.01 m. Minimal and maximal sizes are given as 0.02 and 0.08 m,
respectively. The normal distribution is specified as to give a similar number of
particles as used for simulations on the system reported by Song et al. [31].

A second size distribution was used for the simulations with a distribution more
closely to the ballast aggregate gradation as presented for the experiments by Song
et al. [31], namely a piece-wise constant distribution as presented in Figure 6.3. Due
to the algorithm of the dilated polyhedron model, we restricted the lower bound
of the piece-wise constant distribution to 0.02 instead of 0.0048 m. The dilated
polyhedron model applied imposes a lower limit on the dilation radius under high
load conditions.

The process of creating the numerical experiment with a compacted particle bed,
sensors and the sleeper in place consists of several steps. The main steps are outlined
in Figure 6.4 as to give a better understanding of the simulation setup.

First, the rock particles are generated with the given size distributions and a dilation
radius rds corresponding to 10 % of the characteristic length and, after generation,
compaction is applied. After the first generation and compaction, all particles with
a mass center above 0.57 m are removed in order to place the pressure sensors in
the correct position.

Second, sensors represented by cuboid objects with a dimension of 0.22×0.22×0.1 m
are placed equidistantly on the bed. The middle sensor is positioned at the center
of the sleeper at an x coordinate of 1.6 m. The other four sensors are then placed
relative to the center one with a distance of 0.38 m to each other. This way, the
pressure can be measured at a depth of 0.13 m. After the sensors are positioned,
particles are generated again, compacted with a sinusoidal compaction pattern and
all the particles with a mass center above 0.8 m are removed. Note, that the sen-
sors are considered rigid objects and simulated purely with the DEM solver and a
dynamic motion corresponding to the forces from the surrounding particles.
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First generation, compact bed and
remove all particles above 0.57 m

Place sensors, generate more particles

Compact particle bed and remove all
particles above 0.8 m

Position sleeper on top of particle bed
by applying load on rail positions

Figure 6.4: Visualization of generation process of a simulation state.

50
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Property Value Unit
DEM timestep ∆tD 10−6 s
FEM timestep ∆tF 10−3 s
Particle density ρp 2,600 kg/m3

Particle-particle friction coefficient 0.6
Particle Young’s modulus 10 GPa
Particle Poisson’s ratio 0.27
Particle restitution 0.2
Sleeper density 800 kg/m3

Sleeper Young’s modulus 9 GPa
Sleeper dimensions (L×W×H) 2.5× 0.2× 0.18 m
Horizontal rail positions on sleeper [0.8825, 2.3175] m
Rail dimensions (L×W) 0.15× 0.2 m
Ballast bed dimensions (L×W×H) 3.2× 1.0× 0.8 m
Sensor dimensions (L×W×H) 0.22× 0.22× 0.1 m
Sensor distances 0.38 m

Table 6.1: Simulation parameters for the case of a timber sleeper under dynamic
loading as in [31].

Then, the timber sleeper is created above the particle bed and a first light load of
100 N is applied onto the sleeper to position it. Once the sleeper has settled on the
particle bed, the loading cycle starts as given in Figure 6.2 and is applied as pressure
boundary conditions at the positions of the rails onto the sleeper. The sleeper is
simulated with FEM.

6.3 Stability
As this is the first coupled simulation with complex shaped particles in this thesis,
a new investigation of the stability is required. For the particle shapes we use scans
of actual convex rocks to create a dilated polyhedron particle model.
A reasonable balance between the dilation radius and the elasticity of the particles
is required for the DEM simulation to be stable. In general, the smaller the dilation
radius, the higher modulus of elasticity is required to avoid too large overlaps. We
found that as a rule of thumb, a dilation radius of 10 % of the characteristic length
together with a modulus of elasticity of 10 GPa established valid contacts for this
case.
In a first draft, our simulations of the sleeper-ballast interaction with the coupling
algorithm revealed instabilities leading to too large reaction forces and thus unphys-
ical behavior of the sleeper. To increase the number of contacts of the sleeper itself
with the particle bed, we implemented a compaction scheme. A large plate object
moves with a sinus wave as visualized in Figure 6.5 from above down onto the parti-
cle bed. With this movement, the particle bed is compacted and a more even upper
surface is created offering more points of contact when interacting with the sleeper.
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A

Figure 6.5: Visualization of the compaction method for the ballast bed with a
large plane geometry moving from above down onto the particle bed with a sinus
wave movement pattern with amplitude A.
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Figure 6.6: Vertical position of sleeper representing its settlement for different
FEM timesteps with the predictive coupling scheme.

In the experiment, a vibratory compactor is applied for compaction.
Further parameters connected to the stability for this case is the FEM and DEM
timesteps, ∆tF and ∆tD respectively. In the early tests, we used similar timestep
settings as was applied for the steel sheet case in chapter 5, i.e. ∆tD = 10−5 s
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6. Simulation of interaction between a sleeper and a ballast bed

and ∆tF = 10−3 s. The motivation was that this simulation case is of a much less
dynamic nature than the steel sheet. However, the forces acting between ballast
and sleeper are high, requiring a smaller timestep to resolve the contacts properly.
Thus, a DEM timestep ∆tD ≤ 10−6 s is necessary. Additionally, a FEM timestep
∆tF ≤ 10−5 s is required for stability with the just-in-time coupling as for long
timesteps instabilities in the forces occured. A reason for the need of a smaller
timestep than for the steel sheet might be that the loading pattern applies high
forces that may be more extreme than the incoming material flow onto the steel
sheet.
However, for the predictive coupling the FEM timestep can be increased to 10−4 s.
In Figure 6.6 we visualize the sleeper settlement for different FEM timesteps for the
predictive coupling. It is unstable for a timestep of 5× 10−4 s, but for all timesteps
∆tF ≤ 10−4 s the simulation behaves similarly and stable. The increased stability of
the predictive coupling is expected as we predict the velocities such that the object
position during the coupling update is always the same between DEM and FEM
domain.

6.4 Parameter studies
In contrast to the simulations presented in chapter 5, there are no calibration quan-
tities besides the final pressure distribution to be compared to the experimental
results. Thus, we study a selection of parameters and their effect on the mentioned
pressure distributions. To further quantify the influence of different parameters, we
measure the effect as the settlement of the sleeper as its position in vertical direction
as well as the maximal strain for all sleeper elements. Note that all visualizations
of simulation quantities display the mean over 10 repetitions with the standard
deviation as pale band around the mean.

6.4.1 Time scale of loading pattern
The loading pattern in Figure 6.2 is an accelerated version of the one applied in the
experiment, i.e. 50 times faster. The acceleration was performed in order to shorten
the simulations. However, it should be numerically evaluated that speeding up the
loading pattern does not alter the conditions of the experiment. Thus, we study the
time scale to investigate the effect of the acceleration. This parameter specifies the
scaling in time of the loading pattern. For instance, with a time scale of 2.0 the
loading pattern is stretched to last 0.24 s instead of 0.12 s as for time scale 1.0.
In Figure 6.7 we present the settlement of the sleeper for time scales of 1.0, 2.0, 10.0
and 20.0. We stated earlier that the particle bed has a height of 0.8 m. In the plot
however, the sleeper starts with a vertical position of its bottom surface at 0.82 m.
This is due to the fact, that after the generation and compaction of the particle bed,
we remove all particles with a mass center above 0.8 m. Parts of particles then might
still be above the mentioned axial position as their mass center lies below. When
then positioning the sleeper, we place it with a first light load onto the particle bed
and with this possibly on top of those particles which stick out.
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Figure 6.7: Vertical position of sleeper representing its settlement for different
time scales. On the x axis the reference time for a scaling of 1.0 is given.

Figure 6.8: Maximal strain of all sleeper elements for different moduli of elasticity
of the sleeper material.
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A difference in our results is clearly visible for the different time scales. The standard
deviation gets smaller for a larger time scale indicating a statistical reliability of the
simulation. Similarly, the amplitude of the position change during the cyclic loading
(reference time 0.03−0.09) is lower and less varying for longer time scales. For a time
scale of 1.0 the amplitudes are noticeably different from cycle to cycle. Accelerating
a movement, can alter the physical characteristics of a case. Here, the results suggest
that with the accelerated movement the pressure is applied too fast on the sleeper
to maintain the inertia of the experiment. This suggests that the speed-up load
cycle leads to inertial affects in the bed and thus is not a valid approximation in
comparison to the experimental setup. However, the results for a time scale of 10.0
and 20.0 are similar, which indicates a convergence for increasing time scales. To
save computational time for the results presented further in the thesis, we conclude
that a time scale of 10.0 is sufficiently close to the expected limit for the original
time scale of 50.0.

6.4.2 Modulus of elasticity of sleeper material

To quantify the effect of the interaction on the sleeper, we view the maximal strain
within the sleeper during the load pattern. Strain is a quantity measuring how much
an object is compressed or stretched.

The maximal strain over all sleeper elements for different moduli of elasticity of the
sleeper material of 109, 1010, 1011 and 1012 Pa is visualized in Figure 6.8. Due to the
relation to the dilation radius a Young’s modulus of at least 1 GPa is required. A
reasonable modulus of elasticity for timber is 9 GPa and thus, the requirement due
to the dilation radius does not restrict the physical properties of the sleeper.

First of all, we want to point out that a linear correlation between strain and Young’s
modulus is depicted. During the load pattern the strain increases in all curves by a
factor of 200. Thus, the object experiences a deformation. However, the deformation
is small which indicates that the sleeper is not impaired from the interaction.

6.4.3 Ballast size distribution

The results of varying the size distribution of the particle population is given in
Figure 6.9 displaying the normal and piece-wise constant distribution as presented
before. A notable difference is that the sleeper starts at different heights after the
initial positioning. This is natural as we simulate with smaller particles in the piece-
wise constant distribution, and thus the particles are sticking out much less. The
amplitude of the sleeper movement during the cyclic loading pattern is more regular
and smaller for the piece-wise constant distribution. That indicates that the ballast
bed distributes the pressure more smoothly for smaller particles. It is reasonable
that the signal is smoother for smaller particles, since the distance between the
sensors and the sleeper is short.
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Figure 6.9: Vertical position of sleeper representing its settlement for normal and
piece-wise constant distributed ballast sizes.
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6.4.4 Ballast friction coefficient
As the friction coefficient influences the interlocking ability of the ballast bed, we
investigate the effect of changes in the friction coefficient.
In Figure 6.10 the strain derived from the sleeper settlement in relation to the
pressure acting on the sleeper is given. We investigate the pressure-strain relation
for frictions of 0.3, 0.6 and 0.9.
It is striking that the results for a friction of 0.3 are unphysical. The pressure for
this value is significantly higher than for the other values, leading to an increased
strain.
For increasing friction values, the simulation seems to get more stable. Additionally,
the maximal strain reduces for higher frictions. However, a friction of 0.9 is an
untypical value for rock materials.

6.4.5 Modulus of elasticity of ballast material
As elaborated earlier in this chapter, the dilated polyhedron model requires a suffi-
ciently high modulus of elasticity to avoid too large overlaps during contacts.
The settlement of the sleeper for varying the Young’s modulus of the particle ma-
terial is given in Figure 6.11. We consider a Young’s modulus of 10 GPa, as well
as half (5 GPa) and double (20 GPa) of it. However, no difference in the result is
noticeable for the chosen values.

6.4.6 Particle resolution
Lastly, we investigate the particle resolution. As elaborated, we apply the dilated
polyhedron model for convex particle geometry. Due to the convexity requirement
on the particle models, higher resolution particles have less sharp nodes and smaller
faces. Thus, the interaction is affected as well as the interlocking characteristics.
In Figure 6.12 the sleeper settlement for different particle resolutions with 10, 30
and 40 triangles is shown. The settlement increases clearly from a resolution of
10 triangles to the higher resolutions. However, no significant difference is visible
between 30 and 40 triangles. Additionally, we see similar effects as for a varying
friction. The less triangles, the higher is the friction for convex particle models,
which leads to less settlement in the particle bed.
With a smaller statistical variation, the results are also more stable for higher re-
solved particles, but again with no difference between 30 and 40 triangles. Hence, we
conclude that a resolution of 30 triangles of the simulated rock particles is sufficient

6.5 Simulation results of pressure distribution at
sensors within ballast bed

With the insights of the previous section, we choose to compare a simulation with
a parameter choice that promises the best results to the experimental pressure dis-
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Figure 6.11: Vertical position of sleeper representing its settlement for different
moduli of elasticity E.
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Figure 6.13: Simulation snapshot of the velocity distribution within a cross-section
of the ballast bed for a load of 44 kN onto the rail positions (highlighted in black)
on the sleeper.

tribution results given by Song et al. [31]. Thus, we simulate with a time scaling
of 10.0, a friction of 0.6, a modulus of elasticity of 1010 for the particle and sleeper
material, and a particle resolution of 30 triangles. Additionally, we choose to place
the sensors at a depth of 0.26 m beneath the ballast bed surface. In the experiment
they are positioned at a depth of 0.13 m, however in the corresponding simulation
performed by Song et al. [31], the pressure distribution is recreated by computing
the Cauchy stress tensor for a cuboid volume at the sensor position. As we only
measure the pressure onto our sensors from the top, it could be higher than the ac-
tual measured or recreated one. Thus, we also investigated a lower sensor position
that then measures the lower pressure distribution. For the lower positioned sensors
we achieve results of a good quantitative match with the experiments, whereas for
the original position, the measured pressure was higher for all five sensors.

A snapshot of the simulation with parameters stated above and the normal size
distribution is given in Figure 6.13. At the time of the snapshot a load of 44 kN is
applied onto the sleeper.

In Figure 6.14 the pressure distribution within the ballast bed given by the sensor
measurements for both size distributions is visualized. The solid lines represent the
experimental and the dashed ones our simulation results. As mentioned before, the
pressure distribution was evaluated and shared at two loads before and after cyclic
loading. The load of 44 kN is represented by triangles and 132 kN by circles. The
result before cyclic loading are to the left and after cyclic loading to the right. Our
results are clearly in the same quantitative range as the experimental results for
both size distributions.

Let us first discuss the results for the normal size distribution in Figure 6.14a. It is
visible, that some trends are represented by our data, e.g. the peak at the middle
sensor for a load of 132 kN before and after cyclic loading. Our results for sensors
2 and 4 for that load are close to the experimental measurement. However, we did
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Figure 6.14: Comparison of pressure distribution in the sensors of experimental
(solid) against simulation (dashed) results. The comparison is performed for two
load levels, namely 44 kN (triangle markers) and 132 kN (circular markers), both
before and after cyclic loading.
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# Particles Total time DEM FEM Coupling
83,000 25 10 (40 %) 10 (40 %) 5 (20 %)
300,000 43 28 (67 %) 10 (22 %) 5 (11 %)

Table 6.2: Performance measurement in minutes of the total time of the coupling
algorithm, separated in the pure DEM simulation, the pure FEM simulation and
operations specific for the coupling. The results are given as the mean over 10
repetitions.

not match the curvature of the lower load of 44 kN and our measured distribution
seems to be constant over the different sensors. That could be due to a too weak
compaction of the particle bed. A too weak compaction could also cause the lower
peak of sensor 3 for the higher load before cyclic loading. As we perform a com-
paction with a fixed amplitude, we might not compact as much as possible. How to
perform a sufficient compaction could be a subject of a further study.
For the piece-wise constant distribution as presented in Figure 6.14b, the values
for the lower load level are closer to the experimental data than for the normal
distribution. However, similarly to the normal distribution, the pressure of the
outer sensors is not matched. Also the pressure distribution for the higher load
level is further away from the experimental data than for the normal distribution.
Another observation is, that the pressure distribution for a higher load shows more
symmetry in the pressure distribution and the statistical variation is smaller. We
conclude that the simulated pressures are in a correct quantitative range, compared
to experiments, and that further parameter calibration is required to obtain a spot-
on approximation of the experimental data.

6.6 Performance measurements
In Table 6.2 we summarize computational performance results of the coupled sleeper-
ballast simulations. The timing is split in the total simulation time, DEM and FEM
simulation time and the total time of all the specific operations of the coupling
algorithm. We measure the computation time for both distributions. For the normal
distribution we simulate a total of 83,000 and for the piece-wise constant distribution
300,000 particles.
Similarly to the time measurements in section 5.6, the separate solvers account for
an expected amount of the total time, as the number of degrees of freedom in DEM
with 300,000 particles exceeds the number of degrees of freedom in FEM with 800
elements. The higher percentage of the coupling algorithm for the normal distribu-
tion is likely due to the fact that the coupling is performed with a smaller timestep
in comparison to the solver timesteps than in the previous simulation case. However,
the coupling algorithm still accounts for the least amount of time, which in itself
is an important result as it shows that a sufficiently performant coupling algorithm
has been implemented.
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All simulations for the time measurement have been run on a machine with a Xeon
Gold 6134 CPU with a clock speed of 3.20 GHz, 8 cores and 192 GB of memory as
well as a V100 GPU with 32 GB of memory. Many simulations have been performed
on other standard desktop machines with lower specification GPUs which also gave
acceptable performance.
Note that both the solvers and the coupling algorithm are high performant which is
an important aspect also for the scientific investigations. It enables us to do large
repetitive studies to study important aspects such as the influence of the material
and simulation parameters as well as the statistical variation within the simulation
results. In particular, the latter is often overlooked due to low computational per-
formance of the solvers. In particular the utilization of the GPU in the DEM solver
allows for extreme simulation capacity also with a standard desktop with a single
GPU.
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Within this thesis we implemented a high performant coupling algorithm combining
the FCC in-house solvers Demify® and LaStFEM. The implementation was purely
based on Python using the solver interfaces and no alteration of the solvers them-
selves was required. The coupled solver allows for simulation of the interaction
between particle systems and elastic bodies.
With the elastostatic case of a fixed beam under uniformly distributed constant
load we verified the correct data transfer of contact forces from DEM to FEM. In
comparison to the FEM solution, we achieved a relative error to the finite element
solution of less than 1 % for a load of 51 kg.
The surface coupling was applied to the simulation case of a steel sheet under ma-
terial flow. With that we showed that the coupling framework is applicable for
elastodynamics. Additionally, we compared our simulation results to experimental
measurements of the sheet deflection with good agreement.
Following the primary goal of this thesis, we applied the DEM-FEM coupling for
the simulation of railroad ballast. Specifically, we simulated the interaction of the
sleeper with the ballast bed under load. By introducing the predictive coupling, we
optimized the stability of the coupled solution. The adapted scheme allows for a 10
times higher coupling timestep than for the just-in-time coupling.
Furthermore, we performed parameter studies to investigate the effect of varying
properties on the interaction and with that also the simulation results. We found
that significant parameters with noticeable effect on the simulation outcome are the
particle size distribution, friction coefficient of the ballast material, particle model
resolution and the acceleration of the load pattern applied on the sleeper. The
results of the comparison against experimental data for the pressure distribution
within the ballast bed demonstrate good qualitative and quantitative agreement.
Concerning the computational performance of the coupled solution, we were able
to simulate a wide range of parameters repetitively, which represents an important
property for a digital framework. The coupling can be performed on a standard
desktop with a single GPU.
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7.1 Research questions
• How to develop a DEM-FEM coupling matching the current state-of-art in the

open literature?
We developed a high performant DEM-FEM surface coupling algorithm based
on existing state-of-art DEM and FEM solvers. The implementation is in
relation to the current state-of-art open literature.

• How is a stable and convergent scheme between the solvers formulated and
implemented?
Sufficiently small timesteps to resolve the physical equations in DEM and FEM
are required. As we emphasized, parameter studies are a basis for calibration
and ensuring stable numerics. The calibration of the model parameters is
necessary to approximate experimental results and was successfully performed
in the case of a steel sheet in chapter 5.

• What are the temporal and spatial resolutions required to achieve convergent
solutions?
For systems with high forces, relatively short timesteps are required in order to
have a stable simulation method. However, the here presented coupled solution
allows for a timestep 10,000 times larger than in the simulations performed by
Song et al. [31] for the interaction between sleeper and ballast bed.

• What are the required algorithms to get sufficient performance in the coupling?
The performance measurements of the coupled solution showed that the com-
putational time of the coupling specific operations are significantly lower in
comparison to the cost of the DEM and FEM solver. As elaborated earlier,
this is an expected result as the operations performed by the coupling are
small and do not require the solution of a system of equations. Thus, the
measurements show that the coupling algorithm is implemented in an efficient
way.
To be more specific, for a number 86,000 particles and 340 quadrilateral ele-
ments of the object discretization, the total computation time was 116 minutes
for a total simulated time of 5.0 s. This allows for the coupling algorithm to be
applied on standard desktop computer systems and for wide parameter studies
as well as studies of statistical variation.

• What questions concerning railroad ballast simulations with DEM-FEM cou-
plings are not answered yet by the current state-of-art?
We showed that with simulations of complex-shaped particles we can approxi-
mate the results of laboratory experiments. Furthermore, the implementation
of the coupled solution is high performant.

• Can the influence of the shape of the particle be quantitatively characterized to
show the importance for ballast simulations and railroad construction?
We tested simulations with the dilated polyhedron particle model for convex
particle geometries. The scope of this thesis did not allow for further compar-
ison to other particle representations.
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7.2 Future work
Aspects for possible future work on the coupling framework are:

• A more detailed investigation on the improvement in stability with the predic-
tive coupling. We already saw that it allowed for a larger timestep as compared
to the just-in-time coupling. Further interesting aspects are to investigate if
numerical damping is still required for stable simulations.

• Develop the coupling algorithm further to allow more than one object in the
FEM domain. This could be especially interesting for further infrastructure
simulations where the subground below the ballast bed could be modelled with
FEM.

• A comparison of varying particle representations such as dilated polyhedra,
spheres, polyhedra and multi-spheres. For instance, the simulation of steel
sheet under material flow with actually wheat-grain-shaped particles instead
of spheres.

Aspects for future work concerning the simulation of railroad with a DEM-FEM
coupling are:

• Particle breakage is a known phenomenon within ballast beds. The incorpo-
ration of a particle breakage model into the DEM simulation would allow the
investigation of a different set of questions concerning the effects on the ballast
bed.

• Large-scale simulations: The inclusion of the modelling of rails on top of the
sleeper, larger railroad sections with several sleepers connected by rails, varying
ballast bed shapes, reparation of railroad, etc. The list of interesting simulation
cases continuing on the simulation of railroad systems is large.

• Experimental studies providing several measurements and calibration quanti-
ties for railroad simulation together with simulations of those.

The work presented within this thesis will be continued in the Vinnova InfraSwe-
den2030 project DigiRail, with its project lead at FCC. In DigiRail, the high-
performance computing of construction, operation and maintenance of railroad in-
frastructure will be investigated.
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