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1. C*-ALGEBRAS

Given a compact Hausdorff space X, the set of continuous complex-valued func-
tions C'(X) on X forms an algebra under pointwise multiplication. The algebra is
unital as the constant function 1 is the multiplicative identity. Taking the point-
wise complex conjugate of a function defines a *-operation that makes C(X) into
a #-algebra. We also define the supremum norm ||f|| € [0,0) of f € C(X) by

1) = ma | 7))

Since a continuous real function on a compact set attain its maximum value, it is
immediate that || f|| exists. Any Cauchy sequence of continuous functions in C'(X)
converges to a continuous function, so the normed space C(X) is complete. For
f,g€ C(X) we have

o |Ifgll < |IfIllgll, so C(X) is a Banach algebra.
o |/*| = |Ifll, so C(X) is a Banach =-algebra.
o [IF*fIl =1If]? so C(X) is a C*-algebra.

Definition 1.1. A C*-algebra is a Banach #-algebra over the field of complex
numbers with the following properties:

o llzyll < ll=[lllyll;
o 127l = llz1l;
o [laz*| = =]

C(X) is an example of a commutative unital C*-algebra. The Gelfand theorem
(see [1]) states that every commutative unital C*-algebra is isomorphic to C(X)
for some compact Hausdorff space X.

Given a set G, a relation on G is a set R consisting of pairs (p,n) where p is a
x-polynomial on G and 7 is non-negative real number. A representation of (G, R)
on a Hilbert space H is function p from G to the algebra of bounded operators on
H such that ||p o p(R)|| < n for all (p,n) in R. The pair is called admissible if a
representation exists and the direct sum of representations is also a representation.
Then

llalluniv = sup{|lp(a)| : p is a representation of (G, R)}

is finite and defines a seminorm satisfying the C*-norm condition on the free algebra
on G.

Definition 1.2. The completion of the quotient of the free algebra by the ideal
{a : ||a||univ = 0} in norm ||-||yniv is called the universal C*-algebra of (G, R).
2



Kappa

Example 1.3. Let H be a separable Hilbert space. The algebra K(H) of com-
pact operators on H is a norm closed subalgebra of B(H). It is also closed under
involution; hence it is a C*-algebra.

Example 1.4 ([9]). Let n > 2 and H be a separable Hilbert space. Consider the

C*-algebra generated by n isometries Sy, ..., S, acting on H satisfying

n

DSiSF =1

i=1
The concrete C*-algebra generated by Si,...,S, is isomorphic to the universal
C*-algebra O,, generated G = {1,s1,...,5,} and R = {1 = 1* = 12, 1s; = 511 =
$1yevs 18y = Spl = sy, sTsy = 1,...,8%s, = 1,2 | s;s¥ = 1}, where n = 0 for

each polynomial described in R. O, is called the Cuntz algebra.

Example 1.5. Given a skew-symmetric matrix n x n matrix © the noncommuta-
tive torus C(Tg) is defined as the universal C*-algebra generated by n unitaries
U1, ..., U, subject to the relations

UUj = e‘Qm@ifujui.

Properties of this C*-algebra will be discussed in Section 7.

2. Cy(X)-STRUCTURES

Let X be a locally compact Hausdorff space and let Cy(X) be the C*-algebra of
continuous functions on X that vanish at infinity.

Definition 2.1 ([30]). A Co(X)-structure on a C*-algebra A is a monomorphism
D CH(X) - ZM(A)
such that the ideal ®(C(X)) - A is dense in A.
For x € X consider closed two-sided ideal
I, ={®(f)-a, ac A, feCy(X) such that f(z)=0}.
The fiber A(x) of A over z is defined as
Az) = A/l
and the canonical quotient map ev, : A — A(x) is called the evaluation map at z.

Definition 2.2. An action « of a locally compact group G on a Co(X)-C*-algebra
A is said to be fibrewise if

ag(®(f)a) = ®(f)(ag(a)), g€ G, ac A, fe Co(X).

If an action « is fibrewise then it induces an action a” of G on A(z) for every
x € X making the fiber restriction equivariant.

3. ACTIONS OF GROUPS AND CROSSED PRODUCTS

Let G be a locally compact group with a choice of (left) invariant Haar measure A,
Abea C*-algebra and o : G — Aut(A) be an action of G on A. A #-homomorphism
¢ : A — B between C*-algebras with G-actions o and § is called equivariant if

p(ag(a)) = By(p(a)) for every a € A, g€ G.
3
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Definition 3.1. A covariant representation of (G, A, ) on a Hilbert space H is a
pair (v, ) consisting of a unitary representation v : G — U(H) and a representation
7w A — B(H), satisfying the covariance condition

v(g)m(a)v(g)* = m(ay(a))
for all g € G and a € A.

Let C.(G, A, @) be the linear space of compactly supported continuous A-valued
functions on G. Given f,g € C.(G, A, o) we define multiplication as the following
twisted convolution product:

(f1-a f2)(g f fi(h)an(f2(h"g))dA(h).

On a locally compact group G there exists unique scalar function A such that
for every Borel subset S < G it holds that A\(¢g~1S) = A(g)A(S). We define the
x-operation on C.(G, A4, ) by

f*(g9) = Alg) ag(flg™h)*).

Definition 3.2. The integrated form of a covariant representation (v,7) is the
representation v x 7 : C.(G, A, o) — B(H) given by

(v x T)(f)€ = f (9)€dA(g).

Definition 3.3. The crossed product A x, G is the completion of the =x-algebra
C.(G, A, a) by the norm

1/l == sup{||(v x m)(f)]| : (v,7) is a covariant representation}.
If A = C then we call C x G the group C*-algebra C*(QG).

4. K K-THEORY

K K-theory (see [1]) is a bivariant functor that jointly generalizes operator K-
theory and K-homology: for two C*-algebras A,B, the K K-group KK(A, B) is
a homotopy equivalence class of (A, B)-Hilbert C*-bimodules equipped with an
additional Fredholm module structure. The K K-group KK (A, B) behave as K-
homology of A in the first argument and as operator K-theory of B in the second.
For further references see [1].

Definition 4.1. For a C*-algebra B, a Hilbert C*-module over B is a complex
vector space F equpped with an action of B from the right and a sesquilinear map
{,-y: E x E — B such that

1) <$>y>* = <y,x>;

2) {x,x) = 0;

3) (x,z) = 0 precisely if z = 0;
4) z,y - b) = (z,y) - b;

1
(5) E is complete with respect to the norm |z|| g = ||{z, )| 3.
Definition 4.2. For a C*-algebra B and E a Hilbert C*-module over B, a C-linear
operator F': E — F is called adjointable if there is an adjoint operator F'* : E — FE
with respect to the A-valued inner product in the sense that

(F(a),by ={a, F*(b)), for all a,b€e E.
4
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Adjointable operators are automatically bounded and B-linear. We denote the
set of adjointable operators on a Hilbert B-module E by Bg(E).

Definition 4.3. For a Hilbert C*-module E, an adjointable operator 7' : £ — E
is of finite rank if it is of the form

n
T:v— Z wi{v;, V)
i=1
for v; € F and w; € E. T is called B-compact operator if it is in the norm-closure
of finite-rank operators.

We denote the set of B-compact operators on a Hilbert C*-module E over B by
Kp(E).

Definition 4.4. For C*-algebras A, B an (A, B)-Hilbert C*-bimodule is a Hilbert
C*-module over B equipped with an action of A from the left such that all a € A
are adjointable for the B-valued inner product

<CL* ) a?,y> = <maa’ ) y>
Definition 4.5. For C*-algebras A, B a Kasparov (A, B)-bimodule is a Zg-graded
(A, B)-Hilbert bimodule E equipped with an adjointable oddly-graded bounded
operator F' € Bg(FE) such that for all a € A
(1) (F? —1)n(a) e Kg(E).
(2) [F,7(a)] € Kp(E).
(3) (F — F*)r(a) e Kp(E).

Definition 4.6. A homotopy between two Kasparov (A, B)-bimodulesis a (A4, C([0,1], B))-
bimodule that interpolates between the two.

A homotopy of Kasparov bimodules is an equivalence relation.

Definition 4.7. We write K K (A, B) for the set of equivalence classes of Kasparov
(A, B)-bimodules under homotopy.

KK(A,B) is an abelian group under direct sum of bimodules and operators.
There is a composition operation KK (A, B) x KK (B,C) - KK(A,(C) called the
Kasparov product. We will denote by o : KK(A,B) x KK(B,C) > KK(A,C)
the Kasparov product, and by X: KK(A,B) x KK(C,D) > KK(AQC,B® D)
the exterior tensor product. We say that two C*-algebras A and B are KK-
isomorphic if there exists an invertible element in KK (A, B) with respect to the
Kasparov product. Given a homomorphism ¢ : A — B, put [¢] € KK (A, B) to be
the induced K K-morphism. For more details see [1, 15].

5. RIEFFEL DEFORMATION

Given a C*-algebra A with an action a of R" and a skew-symmetric matrix
© one can consider the Rieffel deformation A® of A, see [31]. Let C,(R™, A) be
the C*-algebra of bounded continuous A-valued functions on R™ equipped with
the supremum norm. There is an action of R"™ on Cy(R™, A) by translations. De-
note B#(R") to be the set of smooth elements for the translation action of R"
on Cy(R", A). For f,g € BA(R™) we define product by the following oscillatory
integral

(Fxoa)t)m [ flt+O)glt + e dads,

R xR™
5



Kappa

where the integral is understood in the sense of Proposition 1.6 of [31]. Denote by
B4(R™) the algebra equipped with multiplication xg.

Let S4(R™) denote the space of A-valued Schwartz functions. There is an A-
valued inner product on S4(R") given by

(Flgya = j £(5)*g(s)ds.

We denote by X the completion of S4(R™) in the norm ||f]|4 := H<f|f>||1%4 Then
X is a right Hilbert A-module. Let f € BS(R™) act on S4(R") as

m(f)g=f xe g
Then 7°(f) is an adjointable bounded operator on X.
Equip B4 (R™) with the pre-C*-norm

I£lle = ll7® (A,

where |-|| is the operator norm on B4 (X). Denote by B4(R") the C*-completion
of B§(R") with respect to this norm.

Definition 5.1. Let « be an action of R™ on A and let A® — A be the subalgebra
of smooth elements for the action a. For a € A denote f, to be the function
in B§(R") defined by f.(t) = a_i(a). For a € A® we have f, € B5§(R"). The
Rieffel deformation of A with respect to (a, ©) is the C*-algebra A® obtained by
completing A% in the norm

lalle := [l7®(fa)ll-
Thus, A® is a C*-algebra with multiplication given by

a-eb:= J J a@(z)(a)ay(b)ezm@’wdxdy, a,be A, (1)

Example 5.2. Let a : R" — Aut(C(T™)) be the action defined by
g, (ui) = €™y,
Then for the C*-algebra defined in the Example 3 it holds that
C(T2) ~ C(T™)%.
6. CLASSIFICATION OF KIRCHBERG ALGEBRAS

For more details on the definitions below see [2]

Definition 6.1. A C*-algebra A is nuclear if there exists a sequence of finite-
dimensional C*-algebras F, Fs, ... and completely positive maps ¢, : A — F,,
Yy F, — A such that

tim|[t, © @ (a) — all = 0.

Definition 6.2. A C*-algebra A is simple if it contains no nontrivial closed two-
sided ideals.

Definition 6.3. A simple unital C*-algebra A of dimension at least 2 is purely
infinite if for every non-zero element a € A there are elements x,y € A such that
zay = 1.

Definition 6.4. A C*-algebra is called Kirchberg algebra if it is separable, nuclear,
unital, purely infinite and simple.
6



Kappa

Theorem 6.5 (Kirchberg-Philips, [27]). Let A and B be Kirchberg C*-algebras, and
suppose that there exists an invertible element n € KK (A, B) such that [ta]on =
[tB], where ta : C —> A is X\ — Ay, and similarly for tg. Then A and B are
isomorphic as C*-algebras.

7. NONCOMMUTATIVE TORI

By now no one has given a satisfactory definition for a noncommutative manifold,
however a number of naturally arising examples are known. One of the most well-
studied examples of a noncommutative manifold is noncommutative tori. Given a
skew-symmetric n x n matrix © the noncommutative torus C(Tg) is defined as a
universal C*-algebras generated by n unitaries uy, ..., u, subject to the relations

6_27”6

Uil = ”ujui.

Various different aspects of C(T%) has been studied and it appeared to be useful
not just as a toy-object used to study effects which appear in non-commutative
geometry, but also outside of the subject of noncommutative geometry, for example
in mathematical physics: quantum diffusion [14], quantum Hall effect [7], String
theory [22], Yang-Mills theory [8], in number theory: Generalized theta functions
as holomorphic elements of projective modules [32], parallel between the theory of
elliptic curves with complex multiplication and the theory of noncommutative tori
with real multiplication [24].

We call O irrational if whenever pOZ™ c Z for some p € Z™ it follows that p = 0.
If © is irrational then C(Tg) is simple.

One has an action a of T" on C(Tg) given by

o, (u;) = ziu;.

The action is ergodic, i.e. C(T3)* ~ C. The conditional expectation with respect
to this action is the trace 7 defined from the following property

1-7(a) = Jn ay(a)dz, a € C(Tg).

One can show that in case of that C'(Tg) is simple it is the unique trace up to scalar
multiple.

The problem of classifying C(Tg) up to C*-isomorphism has been solved in the
case when O is irrational, see [28]. In particular, for n = 2, C(Tj ) ~ C(Tp,) iff
0, = 60> mod Z. When O satisfies certain rationality condition a classification is
given in [5] for general n.

8. WICK ALGEBRAS

Consider a set of numbers {Ti’;l,

—lk
Ti’;»l =T,. Let H = C? and eq, .., eq be the standard orthonormal basis of .
Construct

i,4,k,1 = 1,d} < C satisfying the condition

d
T:H®? 5 HO? Tep@e = Z Tillgei®ej.
=1
7
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The Wick algebra W (T'), see [16], is the #-algebra generated by elements aj, af,
7 =1,...,d subject to the relations

d
a;"aj = (Sij]_ + Z Ti
k=1

Jﬁlala”k‘.
It was studied in [16] how the properties of W(T") depend on a self-adjoint operator
T. Notice that the subalgebra of W(T) generated by {a;}9_, is free and can be

identified with the full tensor algebra F = @fzo HE" via,
Qjy oo Qg > €4y ®"'®81‘k EH®k.

Definition 8.1. The Fock representation mpr of W(T') is a representation on
Hilbert space H such that the following conditions hold: (i) mp r is an irreducible
x-representation; (ii) there exists a unit vector 2 € H (vacuum vector), such that

WF’T(G;C)Q = O, ] = 1,d.

The Fock representation, if it exists, is unique up to a unitary equivalence. In
general, the problem of existence of g is non-trivial and is one of the central
problems in representation theory of Wick algebras. Some sufficient conditions are
collected in the following theorem, see [4, 17, 16].

Theorem 8.2. The Fock representation g of W (T') exists if one of the conditions
below is satisfied

e The operator of coefficients T = 0;

o [|IT||<v2-1;

o T isbraided, i.e. (1QT)(T®1)(1QT) = (I'®1)(1QT)(1QT) on H®? and
|IT|| < 1. Moreover, if ||T|| < 1 then wpr is a faithful representation of
W(T) and ||mpr(a;)|] < (1 — IT|)~=. If||T|| = 1, one can not guarantee
boundedness of mpr and in this case ker mp 1 is a *-ideal Iy generated as a
x-ideal by ker(1 +T'). Hence wp 1 is a faithful representation of W(T')/Zs.

An important question in the theory of Wick algebras is the question of stability
of isomorphism classes of W(T') = C*(W(T)) for the case ||T|| < 1. The following
problem was posed in [18].

Conjecture 8.3. Let T : H®? — H®? be a self-adjoint braided operator and
|T|| < 1. Then W(T) ~ W(0).

In particular, the authors of [18] have shown that the conjecture holds for the
case ||T|| < +/2 — 1, for more results on the subject see [10], [19].

Consider the case T = 0 in a few more details. If d = dimH = 1, then W(0)
is generated by a single isometry s, s*s = 1. In this case the universal C*-algebra
E of W(0) exists and is isomorphic to the C*-algebra generated by the unilateral
shift S in I3(Z). Notice also that mpo(s) = S, so the Fock representation of the
C*-algebra & is faithful. The ideal Z in &, generated by 1 — ss* is isomorphic to
the algebra of compact operators and £/Z ~ C(S'), see [6]. When d > 2, W(0) is
generated by s;, s;‘, such that

Sij = 6ij17 27] = l,d
8
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The Fock representation g4 acts on F := F; as follows

mrd(s;)Q=¢€j, Tra(sjle, @ - Qe =€;Qe;, @ - Qe, k=1,
Trd(sT) =10, 7mra(s})e, @ - ®ei, =djiei, @ - ®ey, k=1

The universal C*-algebra generated by W (0) with d > 2 exists and coincides with
the Cuntz-Toeplitz agebra (’)EIO). It is isomorphic to C*(mp,q¢(W(0))), so the Fock
representation of O((io) is faithful, see [9]. Further, the ideal Z generated by 1 —

Zj:1 sjs% is the unique largest ideal in (9{(10). It is isomorphic to the algebra of

compact operators on Fy. The quotient Oéo) /Z is the Cuntz algebra Oy.

9. PSEUDODIFFERENTIAL OPERATORS

9.1. Pseudodifferential operators. Theory of Pseudodifferential operators starts
from the following idea. Write the Fourier inversion formula:

f(a) = j fle)eeae,
where
fle) = —— x)e "l dy
fi€) = G | Fla)emSaa.

After differentiation one obtains:
D) = [ € flere=ag,

o n _ 1 0 :
where D% = D' - Dp», D; = 730 Hence, if

i

is a differential operator, we have

p<a:,D>f<x>=fp<x, VF©)ei e,

where

p(l‘,f) = Z aa(x)ga'

|| <k

One uses the Fourier integral representation to define pseudodifferential operators,
taking the function p(x,£) to belong to one of a number of different classes of
symbols.

Definition 9.1. Assume p,d € [0,1], m € R, define S5 to consist of C'*-functions
p(x, ) satisfying

o 2 (m—pla
|DEDEp(,€)| < Cap(1 + [¢[?)2(mrlol+olfD,
for all a, .

Usually the case of interest is p = 1,5 = 0.
9
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Definition 9.2. Suppose there are smooth p,,—;(x, ), homogeneous in £ of degree
m — j for |¢| = 1, that is, pp—;(z, 7€) = 1™ I py_j(z,&) for r, || = 1 such that for
all N

N
p(x,€) = Y Py, €) € STV
j=0

Then we say that p(z,£) € S7} is classical symbol of order m.

9.2. Schwartz kernels. To an operator p(x, D) € S)'s corresponds a Schwartz
kernel K € D'(R™ x R™), satisfying

w16y = [ [utwwe. (e <atds = o [ [ [utipla. e <uly)dydeas.

Proposition 9.3. Given symbol p(x, &) the integral kernel which corresponds to it
18

K = e | plan e i
Important theorem for the theory of Pseudodifferential operators:
Theorem 9.4. If p > 0, then K is C® off the diagonal A < R™ x R™.
Theorem 9.5. If p >0 and 6 <1 then p(x, D) has the pseudolocal property:
sing suppp(x, D)(u) < sing suppu, ue & (R™).

Definition 9.6. Define H(R") to be the space of distributions on R", homoge-
neous of degree u, which are smooth on R™\0.

Theorem 9.7. Assume L € §'(R™ x R"™) is a smooth function of x with values
in Sy(R™) n L'(R™). Let j = 1,2,3,.... Then K(z,y) = L(z,x —y) defines an

operator in S, if and only if

L(z,z) ~ Y (e, 2) + pi(a, 2) log 2,

=0

where each D2q(x,-) is a bounded continuous function of x with values in Hﬁl_n,

and pi(x, z) is a polynomial homogeneous of degree j + 1 —n in z, with coefficients
that are bounded, together with all their x-derivatives.

9.3. Adjoints and products. Given p(z,§) € S}, we obtain that the adjoint is
given by

p(ar, D)o = —— f Py, €)Y Eu(y)dyde.

(2m)
However presence of p(y,£)* makes the expression be in a nonstandard form. In-
stead there is an asymptotic expansion.

Proposition 9.8. If p(z,D) € Sy then

ilal

p(w,&)* ~ ] —y DeDgp(@, )"

a=0

There is also an asymptotic expansion formula for the symbol of product of two
pseudodifferential operators.
10
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Proposition 9.9. Given p1(z,D) € S;;l“él and pa(z, D) € 5/7)2252, suppose
0<dy<p<1, p=min(p1,p2).

Then
pl(IaD)PQ(IyD) = q(va) € S;‘:l(§+m27
with § = max(d1,d3) and
e
)
q(x,€) ~ go —DEpi (2,6 Dipa(w, €).

9.4. Elliptic operators. We say that p(z, D) € S5 is elliptic if for some r < o0

Pz, < CO+ )%, [¢] =

Thus if ¢(§) € C*(R™) is equal to 0 for |{]| < r, 1 for |£] = 2r, it follows easily from
the chain rule that

m
2

BOP( 6" = qo(w,6) € ST
Applying asyptotic expansion formula for products we obtain
qo(z, D)p(x, D) = I + ro(z, D),
p(va)QO(va) =1+ 770(va)7
with
TO(J:’ 5)7 ,F(/)(x)é.) € S;(SP-HS'
Using the formal expansion
I —ro(x,D) +7ro(x,D)?> — ...~ I +s(zx,D) e 52’5
and setting g(z, D) = (I + s(z, D))qo(z, D) € S, 5", we have
q(z, D)p(z, D) = I +r(x, D), r(z,§) e S~.
Similarly, we obtain ¢(z, D) € S;g” satisfying
p(x,D)q(x, D) = I + ¥z, D), 7(x,£) €S~
But evaluating
(¢(z, D)p(z, D))q(x, D) = q(x, D)(p(x, D)q(z, D))
yields ¢(z, D) = ¢(x, D) mod S™%, so in fact
Q(va)p<£r7D) =1 mod 5—007
p(z,D)q(x,D) =1 mod S™%.

We say that ¢(z, D) is a two-sided parametrix for p(z, D).
The parametrix can establish the local regularity of a solution to

p(z, D)u = f.
Suppose u, f are tempered distributions and p(x, D) € S}s 1s elliptic. Constructing
q(z,D) € S, §" we have
u=q(z,D)f —r(x,D)u.
Thus u = g(x, D)f mod C*.

Proposition 9.10. If p(z,D) € S5 is elliptic then for any u being tempered
distribution,
sing supp p(x, D)u = sing supp u.
11
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9.5. Pseudodifferential operators on manifolds.

Definition 9.11. If X is a smooth manifold and C(X) < C*®(X) is the space
of C* functions of compact support, then, for any m € R, ¥ (X) is the space of
linear operators

A: CP(X) — C%(X)

with the following properties. First, if ¢,1 € C*(X) have disjoint supports then
exists K € C®(X x X,{r) such that for all v e CL(X),

pApu = L K (z,y)u(y),

and secondly if F' : W — R" is a coordinate system in X and ¢ € CL(X) has
support in W then there exists B in WJ(R™) with support in F(W) x F(W) such
that 1 Ayu restricted to W is F*(B((F~1)*(yu))) for all u e CX(X).

9.6. Symbol of an operator. Let D be a differential operator on manifold M of
order k. For (z,£) € TX*M take g € C*(M,R) with g(x) = 0 and dg(z) = £. Then
1
o0(2,€) = D(7:6")(@).

10. FUNCTIONAL ANALYTIC PROPERTIES OF A PSEUDODIFFERENTIAL OPERATOR

Many functional analytic properties of a pseudodifferential operators can be
extracted from its symbol.

10.1. Boundedness.

Theorem 10.1. Let a : R™ x R™ — C be a continuous function whose derivatives

agafa in the distribution sense satisfy the following condition: there is a constant
C > 0 such that

1020¢all e g xrmy < C,
where v = (1, ..., ), B=(B1,...,0n) witha; =0 orl, §; =0 or 1.
Then a(x, D) is continuous from L*(R™) to L*(R™) with its norm bounded by

Chllal| where Cy, is a constant depending only on n and ||a|| is the smallest C such
that the inequality above holds.

10.2. Compactness.

Theorem 10.2. Let a(z, D) € S 5 such that the kernel of a(x,D) has compact
support and sup, |a(z,&)| — 0 as & — . Then a(x,D) extends to a compact
operator on L2.

Theorem 10.3. Classical pseudodifferential operator on a compact manifold is
compact if and only if it has negative order.

10.3. Selfadjointness, normalness and unitarity.

Theorem 10.4. Let a(x,D) € S . Then it is self-adjoint operator on L*(R™) iff
forall,neR"”

J 627'ri<£—7hy>(a(y’ g) — C(/(T”I’]))dy = 0.
12
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Theorem 10.5. Let a(x, D) € SY . Then it is normal operator on L*(R™) iff for
all §,meR”

|| e aty, atym) - a* (T )y = .

Theorem 10.6. Let a(xz, D) € S0, Then it is unitary operator on L*(R™) iff for
all E,meR”

f ) 2T (a(y, E)aly, n) — a*(y, €)a* (y,n))dy = ¢..

Theorem 10.7. Let a(x,D) € Sy . Then it is unitary operator on L*(R™) iff for
all £,meR”
{a(~,§), § € Rn} and {a*('af)a 5 € Rn}

are orthonormal bases for L*(R™).
10.4. Essential normality.

Theorem 10.8. Let a(x, D) € S7 o(M) for a compact manifold M. Then a(x, D) is
automatically essentially normal! To understand this you can read article of Shahla
Molahagjloo called A Characterization of Compact Pseudo-Differential Operators on
S17, where in Proposition 2.2 he gives an argument for M = S*, but the argument
works for arbitrary compact manifold.

10.5. Spectrum.

Theorem 10.9. Suppose A is a self-adjoint elliptic pseudodifferential operator on
a smooth manifold M. Then there exists a complete orthonormal system of C*® (M)
functions which are eigenfunctions of A.

Theorem 10.10. Suppose A € Sg?(s is elliptic withm > 0, 1 —p <0 < p. Then
for the spectrum o(A) there are two possibilities:

(1) o(A) = C (which, in particular, is the case when ind (A) # 0).

(2) o(A) is discrete.

10.6. Fredholmness.

Theorem 10.11. Let M be a closed manifold and A € S7's(M) is elliptic, 1 — p <
d < p. For any s € R construct the operator A; € B(H®*(M),H*"™(M)) - the
extension of A be continuity to Sobolev spaces. Then

(1) A is Fredholm.

(2) ker A; € C*(M), therefore ker A does not depend on s.
(3) index(As) does not depend on s.

(4) if D e S;?(;, where m' < m then index(A + D) = index(A).

11. PSEUDODIFFERENTIAL OPERATORS AND BDF THEORY

11.1. BDF theory. The story of Brown—Douglas—Fillmore theory begins with the
Weyl-von Neumann theorem, which, in one of its formulations, says that a bounded
self-adjoint operator T' = T* on an infinite-dimensional separable Hilbert space H
is determined up to compact perturbations, modulo unitary equivalence, by its
essential spectrum. (The essential spectrum is the spectrum o(7(T"))) of the image
7(T) of T in the Calkin algebra Q(H) = B(H)/K(H); it is also the spectrum of
the restriction of T' to the orthogonal complement of the eigenspaces of T' for the
13



Kappa

eigenvalues of finite multiplicity. In other words, unitary equivalence modulo the
compacts K(#H) washes out all information about the spectral measure of T, and
only the essential spectrum remains. This result was extended to normal operators
by I.D. Berg and W. Sikonia, working independently. However, the theorem is not
true for operators that are only essentially normal, in other words, for operators T
such that T#*T — TT* € K(H). Indeed, the "unilateral shift” S satisfies S*S = 1
and SS* = 1 — P, where P is a rank-one projection, yet S cannot be a compact
perturbation of a normal operator since its Fredholm index is non-zero. L.G. Brown,
R.G. Douglas and P.A. Fillmore (known to operator theorists as "BDF” ) showed
that this is the only obstruction: an operator T' in B(#) is a compact perturbation
of a normal operator if and only if T is essentially normal and ind (T — A\) = 0 for

every A ¢ o(n(T)).

11.2. Classification of classical pseudodifferential operators. Let M be a
closed Riemannian manifold.

Theorem 11.1. The following diagram commutes, has exact rows and the vertical
maps are injections:

0 —— S;' (M) ——— SY(M) ——2> 4 C®(S*M) —— 0

cl

| | |

0 —— K(L*(M)) —— B(L*(M)) —— B(L*(M))/K(L*(M)) —— 0

Every 0-order classical pseudodifferential operator is essentially normal. Thus
by BDF theory, up to unitary equivalence modulo compact they are classified by

(1) The essential spectrum.
(2) The set (ind (7' — A))ago. .. (T)-
The following proposition follow from the commutative diagram above.

Proposition 11.2. Let A€ S%(M). Then
Oess(A) = imag(A).

Proposition 11.3. Let M be closed connected manifold. Let A,B € S%(M).
Then there exists a unitary operator U on L?>(M) and K € K(L*(M)) such that
UAU* = B+ K iff
(1) imoY = imo¥.
(2) For some X ¢ im oY holds ind (A — X\) = ind (B — \).

Proposition 11.4. Let M be a closed connected manifold. Then up to scaling
there is unique elliptic classical pseudodifferential operator of order 0 with discrete
spectrum up to unitary equivalence modulo compacts.

Proof. So:

(1) Pseudodifferential operators of order 0 are essentially normal.

(2) Essential spectrum is a subset of spectrum.

(3) If M is connected, then the essential spectrum is connected. Thus essential
spectrum is a point in C.

(4) By BDF theory, up to unitary equivalence modulo compacts the operator
is determined by index (which is 0) and the essential spectrum (which is
one point), so up to scaling the operator is unique.

14
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*

Corollary 11.5. Let M be a closed connected manifold. Then scalar multiples of
identity are the only elliptic pseudodifferential operators of order 0 with discrete
spectrum modulo compact operators.

Corollary 11.6. Let M be a closed connected manifold. If elliptic pseudodifferential
operator of order 0 has index 0 then it is scalar multiple of identity modulo compact
operator.

Corollary 11.7. If M is a closed connected odd-dimensional manifold then every
elliptic A € WO(M) has form

A= +K, KeV Y M)

Corollary 11.8. If M is a compact connected manifold and P € WO(M) is a
projection then either P or 1 — P is compact.

Corollary 11.9. On a compact connected manifold there is unique pseudodifferen-
tial projection up to unitary equivalence modulo compacts.

Corollary 11.10. On a compact connected manifold there are 2Ry projections
modulo unitary equivalence:

POal_P()»Plal_le"a
in every pair one projection is compact and the other is elliptic.

And so on! There are numerous ways to play with BDF theory and pseudodif-
ferential operators.

11.3. Conjectural approximation of abstract essentially normal operators
by pseudodifferential operators. Since mapping [D] — ind D is surjective,
one can approximate every essentially normal operator N with connected essential
spectrum with a sequence of pseudodifferential operators Ay, Ao, ..., for which we
have topological index formula. Thus we get topological index formula for abstract
operators in functional analysis:

ind(N) = lim | 7Toch[oa,]A Td(T*M).

n—o0 M
There are several problems of course:

(1) How to realize arbitrary operator as operator on L?(M)?
(2) How to find sequence of pseudo-differential approximations?
(3) What should we do with non-connected essential spectrum?

12. DIRAC OPERATORS

12.1. Clifford algebra. Let V be a finite-dimensional, real vector space, g a qua-
dratic form on V. We allow g to be definite or indefinite if nondegenerate; we even
allow g to be degenerate.

Definition 12.1. The Clifford algebra CI(V, g) is the quotient algebra of the tensor
algebra
®V:R@V®(V®V)(-B(V®V®V)(-B...
by the ideal I < (X)V generated by
frRuw+w®v—2w,wy-1:v,weV},
15
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where (-, is the symmetric bilinear form on V arising from g.

Thus, in CI(V,g), V occurs naturally as a linear subspace, and there is the
anti-commutation relations

vw 4+ wu = 2v,wy -1, v,w,e V.

Definition 12.2. Vector space F is a Clifford module if there exists v : V —
End(E) a linear map from V into the space of endomorphisms of a vector space E
such that

v(v)? ={v,v)- I, veV.

In this case v extends uniquely to an algebra homomorphism
v:Cl(V,g) » End(E), v(1) =I.

Definition 12.3. Clifford module F with a Hermitean metric is a Hermitean Clif-

ford module if v(v) = v(v)*.

Definition 12.4. Hermitean Clifford module E with a Z/2Z-grading E = Ey® E
is a graded Hermitean Clifford module if v(v)(E;) < Ejii1.

12.2. Operators of Dirac type. Let M be a Riemannian manifold, £; — M
vector bundles with Hermitean metrics.

Definition 12.5. A first-order, elliptic differential operator
D :C*®(M, Ey) — C*(M, E,)
is said to be of Dirac type provided D*D has scalar principal symbol, i.e.
opxp(x,€) = g(x,§)I : Eox — Eo .,
where g(z,§) is a positive quadratic form on T:* M.

If Ey = Fy and D = D*, we say D is a symmetric Dirac-type operator. Given a
general operator D of Dirac type, if we set £ = Ey@® E; and define D on C*(M, E)

as
~ 0 D*
-(5 )

then D is a symmetric Dirac-type operator.

Let v(z,£) denote the principal symbol of a symmetric Dirac-type operator.
With x € M fixed, set v(§) = v(z,£). Thus v is a linear map from 7;*M into
End(E,) satisfying

v(€) = v(&)*, v(€)® = (&L
Example 12.6. If M is a Riemannian manifold, the exterior derivative operator
d:NM — N M
has a formal adjoint
§=d* : NNTM — A M,
so d + d acts on A* M. One can show that
(d+8)*(d+4d) = —A,
where A is the Hodge Laplacian, so d + ¢ is a symmetric Dirac-type operator.
This operator is used to deduce Gauss-Bonnet formula from the Atiyah-Singer

index formula.
16



Kappa

Example 12.7. Suppose dim M = 2k is even. In terms of the Hodge star operator,
§ is defined on A7 M as follows:

§=d* = (=1)7" DM s dw = wd % .
On complexification AZM define
a:r ALM — AL7M, a = @07tk
Then o? = 1 and a(d + §) = —(d + §)a, so we can write eigenspaces of a:
AN=ATM@®A M
and
D =d+6:C®(M,A*) — C*(M,AF)

are operators of Dirac type.
This operators are used to deduce Hirzebruch signature formula from the Atiyah-
Singer index formula.

Example 12.8. Let M be Riemannian manifold, 7* M has an induced inner prod-
uct, giving rise to bundle CI(M) — M of Clifford algebas. We suppose that E — M
is a Hermitian vector bundle such that each fiber is a Hermitian Cl,(M)-module.
Let E — M have a connection V, so

V:C®M,E)— C®(M, T*® E).
If E, is a Cl,(M)-module, the inclusion T;* — Cl, gives rise to a linear map
m:CP(M, T*QE) - C*(M,E),
called Clifford multiplication. Let
D=i-moV:C®M,E)—> C®(M,E).
For v e E,,
op(z,§)v =m(E®v) = {ou,

so op(x,&) is |£|, times an isometry on E,. Hence D is of Dirac type.

13. MANY INCARNATIONS OF THE ATIYAH-SINGER INDEX THEOREM

13.1. Atiyah-Singer.

Theorem 13.1. Let D be an elliptic differential operator on a closed manifold M.
Then

ind(D) = fM Toch([op]) A Td(T* M),

where

Td(T*M) € H*(M) is the Todd class.
[op] € K« (T*M) is a K-theory class of the elliptic complex given by mul-
tiplication with op on T* M.
ch([op]) € H*(T*M) is the image of the Chern character.
7: H*(T*M) — H*(M) is the Thom isomorphism.
17
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13.2. Toeplitz index theorem. Let M be an odd dimensional closed Spin® man-
ifold with Dirac operator D acting on sections of the spinor bundle S. If F is a

smooth C vector bundle on M, D¥ denotes D twisted by E. The closure EE of
D¥ is an unbounded self-adjoint operator on the Hilbert space L?(M,S ® E) of

L2-sections of SQF. D" has discrete spectrum with finite dimensional eigenspaces.
Denote by L2 (M, S® E) the Hilbert space direct sum of the eigenspaces of D" for
eigenvalues A > 0. Pf denotes the orthogonal projection
PELA(M,S®E) > L3 (M,S®E).
Suppose that « is an automorphism of F, and I's ®« the resulting automorphism of
S®FE. M, is the bounded invertible operator on L2(S®E) obtained from Is ® c.
The Toeplitz operator Ty, is the composition of M, : Li — L? with Pf ) Li,
T,=PFoM,:12(M,S®E)— L%(M,S®E).
The Toeplitz operator T, is a Fredholm operator.

Theorem 13.2. Let M be an odd dimensional compact Spin® manifold without
boundary. If E is a smooth C vector bundle on M, and o is an automorphsim of
E, then

ind (T,,) = (ch(E,a) n Td(M))[M]).
13.3. Gauss-Bonnet. If you plug d + d* into the Atiyah-Singer index formula,
you get Gauss-Bonnet.

Theorem 13.3. Let M be a Riemannian even-dimensional compact orientable
manifold, Q - Riemannian curvature. Then the Euler characteristics x(M) can be

computed as .
XO0n) = o | )

Corollary 13.4. In dimension 2n = 4, we get
1
M)=—
X(M) =
where Riem is Riemannian curvature, Ric is the Ricci curvature and R is the scalar
curvature.

J |Riem|? — 4| Ric|* + R,
M

13.4. Riemann-Roch. Take X to be a complex manifold with a holomorphic vec-
tor bundle V. We let the vector bundles ' and F be the sums of the bundles of
differential forms with coefficients in V' of type (0,¢) with ¢ even or odd, and we let
the differential operator D be the sum

2+
restricted to E. Then the analytical index of D is the holomorphic Euler charac-
teristic of V:
index(D) = > (—1)"dim H?(X, V).
P
The topological index of D is given by

index(D) = ch(V) Td(X)[X],

the product of the Chern character of V' and the Todd class of X evaluated on the
fundamental class of X. By equating the topological and analytical indices we get
the Hirzebruch-Riemann-Roch theorem.

18
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13.5. Hirzebruch index theorem. The Hirzebruch signature theorem states that
the signature of a compact oriented manifold X of dimension 4k is given by the L
genus of the manifold. This follows from the Atiyah—Singer index theorem applied
to the following signature operator.

The bundles E and F' are given by the +1 and 1 eigenspaces of the operator on
the bundle of differential forms of X, that acts on k-forms asiF(=1)

times the Hodge * operator. The operator S is the Hodge Laplacian

D=A:=(d+d*)’

restricted to E, where d is the Cartan exterior derivative and d* is its adjoint.
The analytic index of D is the signature of the manifold X, and its topological
index is the L genus of X, so these are equal.

13.6. Gromov-Lawson-Rosenberg conjecture. A result of Lichnerowicz states
that there are spin manifolds which do not admit positive scalar curvature met-
rics. Indeed, by the Lichnerowicz formula, the existence of such a metric implies
that the index of the Dirac operator vanishes. This, combined with the Atiyah-
Singer index theorem implies that A genus, which is a linear combination of the
Pontrjagin classes of the manifold, vanishes. The A obstruction was generalized by
Hitchin to an obstruction a(M) € KO,,, where a denotes the Atiyah-Bott-Shapiro
homomorphism. This agrees with A in dimensions 0 mod 4, but is in fact a strict
generalization, and indeed Hitchin constructed exotic spheres admitting no met-
ric of positive scalar curvature in dimensions n = 1,2 mod 8. Letting = denote
any fundamental group, the homomorphism « gives rise to a transformation of
cohomology theories
a: QP"(Brr) — KO(BT)

and Gromov and Lawson conjectured that «(M) = 0 was also a sufficient condition
for M to admit a metric of positive scalar curvature. Rosenberg later generalized
this further, showing that if a spin manifold M with fundamental group 7 admitted
a metric of positive scalar curvature, then ind([M, u]) = 0, where u is the classifying
map of the universal cover of M, and ind maps to the real K—theory of the reduced
C* algebra of m:

ind = Aoa: QP"(Br) - KO(C*(7)ed).

This can be thought of as an equivariant generalized index, and the map A is
the assembly map of Baum-Connes. Modifying the Gromov-Lawson conjecture,
Rosenberg conjectured that the converse was true also; namely that a compact
spin manifold M with m (M) = 7 and n > 5 admits a positive scalar curvature
metric if and only if ind[u : MB7] = 0 € KO, (C*(7)cqa). The conjecture has been
proven in the simply connected case, if 7w has periodic cohomology, and if 7 is a free
group, free abelian group, or the fundamental group of an orientable surface. It is
also known to be false in general, for example if 7 = Z4 x Z3, and for a large class
of torsion free groups.

13.7. Stolz conjecture. The Stolz conjecture asserts that if X is a closed manifold
with String structure which furthermore admits a Riemannian metric with positive
Ricci curvature, then its Witten genus vanishes.
One part of the reasoning that motivates the conjecture is the idea that string
geometry should be a “delooping” of spin geometry, and that the Witten genus is
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roughly like the index of a Dirac operator on loop space. Now for spin geometry
the Lichnerowicz formula implies that for positive scalar curvature there are no
harmonic spinors on a Riemannian manifold X, and hence that the index of the
Dirac operator vanishes. One might then expect that there is a sensible concept of
scalar curvature of smooth loop space obtained by integrating the Ricci curvature
on X along loops (transgression). Therefore, in this reasoning, a positive Ricci
curvature of X would imply a positive scalar curvature of the smooth loop space,
thus a vanishing of the index of the “Dirac operator on smooth loop space”, hence
a vanishing of the Witten genus.

14. SUMMARY OF PAPER I

In Paper I, "Faithfulness of the Fock representation of C*-algebra generated by
¢ij-commuting isometries” we consider universal C*-algebra I'som,, generated by
n isometries aq, ..., a, such that

a;aj = ¢ija;a; -

This algebra has a distinguished representation called the Fock representation. It
is a unique up to unitary equivalence representation 7 on the Fock space C{Q2} @
C"@®C" @... such that af(Q) = 0. This representation exists for every Wick
algebra and it is a question if 7w is faithful. It is known however that it is faithful
x-algebraically.

In order to prove faithfulness of 7 for I'som,,; we examine the fixed point subal-
gebra under the action of T™. It appears to be an AF-algebra with Bratelli diagram
which looks like multidimensional Pascal tetrahedron. Using integration trick we
reduce problem of faithfulness of mp on Isomg,; to the problem of faithfulness of
mp restricted to I somgz,. Since AF-algebras are limits of finite-dimensional alge-
bras and faithfulness is proven on algebraic level, we show faithfulness of mr on
C*-algebraic level.

It is expected that I'som,,; is in fact isomorphic to the Cuntz-Toeplitz algebra
KO,,, which has unique maximal ideal K. For KO, generator is very simple, but
for Isomy,, it is not so obvious. We construct generated for ideal K explicitly.

15. SUMMARY OF PAPER II

In Paper II, "On ¢-tensor product of Cuntz algebras” we consider the C*-algebra
&1 generated by the Wick algebra for T" described as follows. Let H = C" @ C™,

n,m

lg] <1 and
Tuy ®uo =0, TvyQ®ua =0, wup,useC” vy,veeC™,
Tu@v=q®u, Tvu=qu®v, ueC" veC™.

We consider cases |g| < 1 and |¢| = 1 separately. In the case |¢| < 1 we write
explicit formula for the isomorphism

Theorem 15.1. For any q € C, |q| < 1, one has an isomorphism £}, ~ 5277”.

In the case |g] = 1 the C*-algebra &, decomposes into the following short
exact sequence
0> Mg — &L — (0,®0,)% -0,
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0

o ke

where for ¢ = €2™¢ we define 0, = ( ) and M, is the maximal ideal

[SASH

described below.

We prove that (0, ® O,,)® is a Kirchberg algebra K K-isomorphic to O, ® O,,.
Then we use Kirchberg-Philips classification theorem in order to conclude the next
theorem

Theorem 15.2. The C*-algebras (O, ® O,,)® and O,, ® O,, are isomorphic for
any |q| = 1.

We show that the ideal M, of &, further decomposes as
0-K->M;—-0,0K®0, K — 0.

The extension happens to be essential which allows us to use the Voiculescu theorem
to prove

Theorem 15.3. For any g€ C, |q| = 1, one has M, ~ M;.

16. SUMMARY OF PAPER III

In Paper III, "Classification of irrational ©-deformed CAR C*-algebras” we con-
sider the C*-algebra CARg defined as the universal enveloping C*-algebra of -
algebra generated by a1, ..., a, subject to the relations

* *
a; a; +aa; =1,

CARg has an action a of T™ given by
a(a;) = za;.

We express it as a Rieffel deformation of the tensor product of n copies of 1-
dimensional CAR with respect to the action « and the skew-symmetric matrix

O.
Proposition 16.1.
CARg ~ (CAR®™) %

Denote Cl,, to be the complex Clifford C*-algebra on n generators. The C*-
algebra CAR; possess C[0, 3]-structure and its fibers are the following:

(CAR1)(0) = Cla,

1
(CAR)) (@) ~ C(T) %0 Zo, 0 <2< L o(/)(2) = f(~2).
1
3)
Action «a of T on CAR; is fibrewise with respect to the C[0, %]—structure, which
allows us to conclude the following;:

(CARy)(Z) ~ C(T).
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Proposition 16.2. CARg possess a C|0, %]"—stmcture with fibers given by CARg(z) ~
(CAR®™(2))2. Given x = (x1,...,2,) € [0, 1™, let

L,={ie{l,...,n}:x; =0},

Mz:{ie{l,...,n}:0<xi<%},
Re=fic{l,....n}:z = %}.
Then
CARe (2) =~ Clyjp,) ® C(Tigl H1ely sq 7M1,

O My LR,

Any irreducible representation of a C*-algebra A equipped with a Co(X)-structure
factors through an irreducible representation of a fiber A(z). This fact combines
with Proposition 2 give us the next theorem

Theorem 16.3. Any irreducible representation of CARg is unitary equivalent to a
representation 7, x € [0, 11+ given on (®ker, C*) @ (®rer, C*) ® H by

T(a;) = n (erer + em@i*"‘e,’:ek)ei ®1,i€ L,,

keL,
N\ * TiO; k% * 270, k *
T(a;) = (eref + €™t kefer) ® (erer +e exer) ® 1y
keL, keM, k<i

X («/xi 1_[ (erer + e4ﬁi@i”“ekez)ei ®u; + V1 —mief ® 1H>> ;i€ M,

keM, k=i

) . 1
Ti(a;) = n (eref + e™@ikefer) ® H (efer + ™ Cikeref) ® T'Ui 11 € Ry
k€L, keM, 2
(2)

where (v;)ienr, LR, defines an irreducible representation of C(Tg“”“R“) on H, where
4@2'7]' i,j € Mm
Zi,j = 2@,& (’L,]) or (j,Z) S Mm X PLz
ei,j i,j € Rw

Moreover, two such irreducible representations T, and T, are unitary equivalent if
and only if x = y and the corresponding representations of C’(Tgw”Rw) are unitarily
equivalent.

Finally, we give a partial classification result for CARg with irrational ©

Theorem 16.4. Let O, and ©9 be irrational.
(1) If P is a signed permutation matriz then ©1 = POy P! implies CARg, ~
CARe,.
(2) If CARe, ~ CARe, then (©2);; = +(01)s(;,;) mod Z for a bijection o of
the set {(i,j):i <7, i,j=1,...,n}.

In particular, for n = 2 we get

Corollary 16.5. If 61, 02 are irrational numbers then CARg, ~ CARg, iff 61 = £62
mod Z.
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17. SUMMARY OF PAPER IV

In paper IV, 7CCR and CAR algebras are connected via a path of Cuntz-Toeplitz
algebras” we prove conjecture of Jorgensen, Schmidt and Werner about indepen-
dence of C*-isomorphism class of universal C*-algebra @, generated by ay,...,an
subject to relations

ala; = 0;; + qa;af
from number ¢. It was conjectured that @, ~ @, but the prove was done only for

lg| < v/2—1. We prove it for |q| < 1 using recent developments in classification of
C*-algebras, Kirchberg-Philips theory and works of Rosenberg from 70s.

18. SUMMARY OF PAPER V

Everybody knows Atiyah-Singer index formula, here it is:
ind (D) = f Toch[op] A Td(T*M).
M

It works only for elliptic pseudodifferential operators on compact manifolds. But
there might be not so many of them! Eric van Erp gave (not for the first time in
history probably!) an example of non-elliptic differential operator which is hypoel-
liptic, Fredholm and everything else you might want from a differential operator,
you can observe it below:

D=X?4+Y?+~Z,

where [X,Y] = Z and 7 is a function. It appears that D is Fredholm if and only if
image of v does not contain odd integers. This differential operator lives naturally
in a nonclassical pseudodifferential calculus called Heisenberg calculus. Heisenberg
calculus can be introduced for contact manifolds, which locally look like Heisenberg
Lie algebra. Contact manifolds have a distinguished vector subbundle H ¢ T'M of
codimension 1, quotient TM/H let’s denote by Z. Eric van Erp and Paul Baum
modified Atiyah-Singer index formula to work for Heisenberg elliptic operators on
contact manifolds:

ind (D) = L Toch([cB]®@H) A Td(2).

In paper V, "Index theory of hypoelliptic operators on Carnot manifolds” we modify
this formula even further. Carnot manifolds are manifolds with filtration of T'M
by subbundles:

{0} =T°McT'Mc..cTFM =TM,

such that [C®(M,T'M),C*(M,TIM)] = C*®(M,T**IM). Carnot manifolds lo-
cally resemble certain nilpotent Lie algebras. For such manifolds there is a cor-
responding pseudodifferential calculus and notion of ellipticity, called Rockland
condition. For pseudodifferential operators with Rockland condition our formula
now is

ind (D) = L Toch([o}] ®H) A Td(D),

where I' is a fiber bundle over the manifold with fiber being a dense stratum of
spectrum of the nilpotent Lie algebra associated to the Carnot manifold.
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