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Abstract

Distributional semantics has been at the core of recent develop-
ments in deep learning work for natural language processing. This
distributional semantics plus neural processing paradigm has resulted
in significant improvements in state of the art results across a large
number of tasks, including parsing, text classification, and machine
translation. However, there are a number of areas of natural language
processing research where this shift in paradigm has not resulted in
significant improvements in system performance. One such area is in
situated dialogue systems (such as those studied in the field human-
robot interaction), and in particular with respect to the processing of
spatial references. This chapter examines why this lack of progress
has occurred, through a review of existing research on grounding lan-
guage in perception that is structured around three forms of semantic
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information available in situated dialogue: functional, geometric and
perceptual. Through this review we identify which aspects of per-
ceptual grounding distributional semantics naturally accommodates
and which aspects it does not. Building on this insight we suggest
avenues for future work that attempt to integrate distributional and
non-distributional information in order to progress research in per-
ceptual grounding of language, and discuss the broader implications
of our findings for computational representations of natural language
semantics.

1 Introduction

Distributed (continuous dense vector based) representations have a
number of semantic and computational advantages for Natural Lan-
guage Processing (NLP). For example, a distinctive and pervasive char-
acteristic of natural language is the vagueness of many semantic con-
cepts (van Deemter, 2010). Continuous vector based representations,
combined with distance based measures of similarity, provide an intu-
itive semantic space (where the meaning of a concept is understood as
a general region rather than as a point) for encoding vagueness (Karl-
gren and Kanerva, 2021). Furthermore, understood in this way vector
based representations also provide a natural basis for automatic gen-
eralisation from terms to concepts (Hinton et al., 1986). At the same
time, from a computational perspective vector based representations
provide both convenient intra-modal interfaces in multi-modal NLP
systems and intra-lingual representations in machine translation sys-
tems (Kelleher, 2019).

Notwithstanding the fact that the advantages of distributed repre-
sentations have been known for some time, for many years symbolic
(local) representations—either based on logical formalisms or knowledge
engineering—were dominant within NLP. However, systems built using
these symbolic formalisms often struggle to adequately manage the am-
biguity inherent in natural language, and the brittleness of rules based
analysis (Gazdar, 1996). Throughout the 1990s the ground work was
laid for the adoption of distributed representations within mainstream
NLP. Examples of early work in this direction include (Schiitze, 1993)
and (Lund and Burgess, 1996). A commonality across both of these
works is that the vector representation is learned from data through
an analysis of lexical co-occurrence within a large-corpus. Today this
focus on lexical co-occurrence is often framed as implementing the
distributional hypothesis (Harris, 1954), popularised by Firth (1957)
as the meaning of “a word is characterised by the company it keeps”.
These early works on inducing vector based representations through



lexical co-occurrence can be seen as the progenitors of more recent
work such as word2vec (Mikolov et al., 2013) and the Sesame Street
models of ELMo (Peters et al., 2018) and BERT (Devlin et al., 2019).

The combination of distributional semantics with distributed rep-
resentations, in tandem with modern methods for training of large neu-
ral language models, is now the dominant approach in NLP. Indeed,
the dominance of this distributional+distributed+neural paradigm has
begun to invite criticism, in particular with respect to claims attribut-
ing “understanding” to these models. For example, Bender and Koller
(2020) propose a distinction between form and meaning—defining “(lin-
guistic) meaning to be the relation between linguistic form and com-
municative intent”—and build on this distinction to argue that “the
language modelling task, because it only uses form as training data,
cannot in principle lead to learning of meaning”. In a similar vein,
Bisk et al. (2020) argue that “meaning does not arise from the sta-
tistical distribution of words” and argue that NLP as a field must
move beyond solely training on massive internet based corpora, to
consider aspects of meaning arising from perception, embodiment and
social/interpersonal communication.

Sahlgren and Carlsson (2021) provide a counter voice to these crit-
icisms. Although (Sahlgren and Carlsson, 2021) share a scepticism of
claims that current language models achieve natural language under-
standing, they also argue that criticisms of distributional semantics as
a basis for ultimately achieving language “understanding” are founded
on the erroneous assumption that language meaning is a single and uni-
form phenomenon, and error that they name “the singleton fallacy”.
Furthermore, Sahlgren and Carlsson (2021) argue that criticisms of
distributional approaches to semantics that are based on a distinction
between form and meaning are fundamentally “dualist” and “defeatist:
requiring the creation of an “entire human in silico” before allowing the
attribution of natural language understanding to a computational sys-
tem. By contrast, they propose that even if a distinction between
form and meaning holds then there must be a linguistic correlate be-
tween form and meaning, and distributionalist approaches access this
linguistic correlate enabling a system to access meaning: “in the sense
that intentions (meanings) have the effects on linguistic signal (form)
it will be possible to learn these effects by simply observing the signal”
(Sahlgren and Carlsson, 2021, pg.5).

One thing that Bender and Koller (2020), Bisk et al. (2020) and
Sahlgren and Carlsson (2021) do agree on is the importance of mul-
timodality as a future research direction for natural language under-
standing. On this they also agree that in testing the extent to which
a distributional approach can attain understanding of language it is



a unnecessary restriction to only consider distributions across textual
data, with all three pointing to the success of research on image cap-
tioning (e.g. Xu et al. (2015); Lindh et al. (2018); Herdade et al.
(2019); Lindh et al. (2020)). Indeed, Sahlgren and Carlsson (2021) go
so far as to argue that these systems can claim a “visual understand-
ing” of language, and pose the question of whether there is anything
about language that cannot be learned from a distributional analysis
of a large (potentially multimodal) corpus?

In our view, an important omission from the current discussion
on the extent to which language meaning is learnable via a distribu-
tional analysis of multimodal data is the question of situated spatial
language. Visually situated dialogue is spoken from a particular point
of view within a physical or simulated context, and from a computa-
tional semantics perspective provides a useful test-bed for grounding
language meaning in vision (Kelleher, 2003; Dobnik, 2009). From a
practical perspective a natural domain of application for situated dia-
logue systems is human-robot interaction (Kelleher and Kruijff, 2005a;
Kruijff et al., 2006a; Dobnik and de Graaf, 2017). From a theoretical
semantics perspective the resolution of linguistic references to refer-
ent’s in the visual domain is interesting for a range of reasons. First,
it requires intra-modal fusion (identifying that different occurrence of
an object within a modality concern the same object, such as differ-
ent views of the same object) and inter-modal fusion (Kruijff et al.,
2006b). Second, is requires the system to have a perceptual memory
both to enable intra-modal fusion (see (Kelleher, 2006) on co-reference
classes), but also to enable the system to ground references to entities
that were previously seen (Kelleher et al., 2005; Kelleher and Dobnik,
2019; Dobnik and Silfversparre, 2021). An inherent part of situated
dialogue is spatial language, including references that refer to entities
through their location (i.e., locative expressions) such as the person
near the table (Kelleher and Costello, 2009), or references to contextu-
ally defined spatial regions, such as the front of the room in the robot
command go to the front of the room (Hawes et al., 2012).

An error made by many researchers new to the field of situated
spatial language is to equate spatial semantics with Euclidean geome-
try. However, a deeper analysis of the meaning of spatial descriptions
reveals that the extent of the spatial regions linguistically described
as near the table or front of the room are not definable via geometry
alone. The definition of these regions are also sensitive to functional
use, the perspective of the speaker and hearer, and the distribution
of objects and the configuration of the enclosing region. Indeed, we
believe that it is the oversimplification, by many researchers, of spatial
semantics as equating to geometry, that is part of the reason why the



challenge of spatial language is so often overlooked in discussions on
linguistic meaning. This is most clearly seen in discussions relating to
the ability of image captioning systems to ground language in vision.
For example, as noted above, Sahlgren and Carlsson (2021) posit that
these systems can claim to have a “visual understanding” of language
despite that fact that, as Kelleher and Dobnik (2017) highlight, the
“visual understanding” of spatial language attained by many of these
systems is fundamentally limited by the fact that CNN visual encoders
focus on what is in an image, and (deliberately) discard information
relating to where an object is. Furthermore, although there are re-
cent image captioning systems that explicitly address the challenge of
spatial language (see for example (Yang et al., 2019; Yao et al., 2018;
Herdade et al., 2019)) all of these approaches are founded on geomet-
ric features extracted from an object detector, and essentially reduce
spatial semantics to geometry between bounding boxes.

Motivated by Sahlgren and Carlsson (2021) question of what cannot
be learned from a distributional analysis of a large (potentially multi-
modal) corpus, and by a desire to highlight situated spatial language
as a challenge for natural language understanding that requires more
than geometry, in this chapter we examine aspects of the meaning of
situated spatial language that might or might not be learnable via
a distributional approach. The chapter begins by reviewing previous
work on distribution semantics (Section 2), and this if followed by a
review of previous work on situated spatial language (Section 3) that
is structured around three themes of research: geometric approaches
(Section 3.1), perception (Section 3.2), and functional aspects (Section
3.3). Following this review we discuss experimental work on identifying
spatial knowledge from distributions of words over contexts (Section 4)
and finally how distributional information interacts with representa-
tions of other modalities of probabilistic grounded language models
(Section 5).

2 Distributional hypothesis

The history of distributional semantics can be traced at least as far
back as (Harris, 1954). However, for this work we will limit our review
to the most recent generation of computational work within the dis-
tributional tradition, beginning with the models of word2vec (Mikolov
et al., 2013) and GloVe (Pennington et al., 2014).

A fundamental distinction on approaches to distributional seman-
tics induced from corpora can be drawn based on the conceptualisation
of the context used in the analysis. For example, some approaches,
such as Latent Semantic Analysis (LAS) (Deerwester et al., 1990), use



the documents in the corpus to define context and base the analysis
on a “term-document” matrix. The focus of these approaches on the
occurrences of terms within a document means that they are most
naturally applied to document/information retrieval tasks.

By contrast, both word2vec and GloVe define context in terms of
a window of words either side of a word. In these approaches each
instance of a term in a corpus is taken to define an instance of a con-
text, with the width of the contexts being hyper-parameter of a model
and often being truncated by sentence boundaries. Given these in-
stance+window based contexts, word2vec proceeds by training a neu-
ral network to make predictions of term co-occurrences within these
contexts, either by predicting what terms co-occur with a given term
(i.e., the continuous bag-of-words task) or what term co-occurs with
a given context (i.e, the skip-gram task). This neural network model
is trained by randomly initialising the distributed representation (em-
bedding) for each term and then using the back-propagated errors of
the network on the task to learn the term embeddings. GloVe, on the
other hand, begins its analysis by constructing a “term-term” matrix
where an entry in the matrix records the number of times that the
column term occurred within the context window of an instance of the
row term. This matrix is constructed by first identifying for each term
in the vocabulary all instances of the term in the corpus, applying the
context window onto each instances, and then for each term in the vo-
cabulary recording the number of total number of occurrences of these
terms across these contexts. A neural network model is then trained
to predict the log of the co-occurrence count of two terms given the
embeddings of the two terms as input.

Both of these distributional based models of semantics, GloVe and
word2vec, are widely used within natural language processing research.
However, as is natural with any successful and widely adopted research
approach there has been an array of subsequent research that have crit-
ically assessed and extended these approaches in different ways. For
example, Kacmajor and Kelleher (2020) highlight the distinction be-
tween thematic and taxonomic semantic relatedness, and their experi-
ments indicate that although these models are good at capturing the-
matic relatedness they are limited in their ability to capture taxonomic
relatedness. Interestingly, this limitation, however, provides an exam-
ple of how the potential limitations of a distributional analysis can be
addressed through the design of the corpus the analysis is performed
on. For example, a number of researchers have explored combining a
random walk process over a lexical taxonomy (such as WordNet) to
generate a synthetic corpus so that proximity in the corpus reflects
proximity within the taxonomy, and then applying a distributional



analysis to the resulting corpus as a method for injecting taxonomic
semantics into embeddings (Maldonado et al., 2019; Klubicka et al.,
2019; Kacmajor et al., 2020).

Another, perhaps better known, critique of the word2vec and GloVe
methods is that they generate a single semantic representation (em-
bedding) for a term, the implication being that this single semantic
representation cannot do justice to the variety of meanings a term can
have across difference contexts of uses. The best-known solutions de-
veloped for this drawback (e.g., ELMo (Peters et al., 2018) and BERT
(Devlin et al., 2019)) have retained the core concept of a distributional
semantics but coupled this with the contextual dynamism offered by
language models, in order to generate contextualised embeddings that
represent the meaning of a term in the given context.

Finally, the fact that these distributional based semantic models
typically use distributed representations has meant that another cri-
tique of these methods is that it is difficult to understand what in-
formation they are capturing and encoding through the distributional
analysis. This has resulted in a growing body of work focused on
developing methods for probing these representations—e.g., (Salton
et al., 2016; Conneau et al., 2018; Forbes et al., 2019; Ettinger, 2020;
Nedumpozhimana and Kelleher, 2021; Ilinykh and Dobnik, 2021a,b,
2022; Nedumpozhimana et al., 2022)—in order to understand what
information is encoded within them. This body of analytical work
has revealed that these distributional based methods can capture and
encode information relating to syntactic information (such as parts
of speech, chunks, and subject-predicate agreements), semantic infor-
mation (relating to semantic roles, entity types and relations), and of
particular interest for the focus of this chapter although these methods
can struggle with task requiring world knowledge, such as pragmatic
inference, they are competitive on knowledge induction tasks (e.g., fill-

ing in blanks “cats like to chase ), and they also have some ability
with respect to capturing affordances and properties of objects (Rogers
et al., 2020).

The abilities of these methods to capture and encode world knowl-
edge, such as the properties of objects and their affordances, suggest
that these distributional methods may be suitable for capturing as-
pects of spatial linguistic meaning that traditional approaches have
struggled with. In the next section we will review the literature of
spatial language, and following that we will present our analysis of the
suitability of distributional methods to progress research on the spatial
language semantics.



3 Situated spatial language

Physical sciences have developed ways in which space can be described
with a high degree of accuracy, for example by measuring distances and
angles. Furthermore, such measures can be represented on a contin-
uous scale of real numbers. However, humans refer to space quite
differently: descriptions such as “the chair is to the left of the ta-
ble” or “turn right at the next crossroad” refer to discrete units such
as points, regions and volumes and require knowledge about how the
objects related interact with each other. We can also take different
spatial perspectives which are frequently not explicitly described. For
example, the same object can be to the left or to the right of another
object depending on the viewpoint taken. Human spatial descriptions
bridge perceptual and conceptual domains and are notoriously vague.
Consequently, they need to be evaluated relative to each other and rel-
ative to the perceptual (visual salience, cf. (Kelleher et al., 2005)) and
linguistic (discourse salience, cf. (Brennan and Clark, 1996)) contexts
in which they occur and which changes as the interaction unfolds.
Spatial descriptions have been studied extensively in linguistics,
computational linguistics, psychology, computer science and geo-information
science. Classical surveys of their semantics can be found in Herskovits
(1986), Miller and Johnson-Laird (1976) and Talmy (2000). There are
different categories of spatial descriptions which have slightly different
properties. Locative descriptions describe locations of objects and in-
dividuals in scenes, for example “the chair is to the left of the table”
or “the chair is between the table and the sofa”. The object whose
locations is being described is normally described as target while the
other object whose location must be previously known is called the
landmark. The spatial (locating) relationship between the target ob-
ject and the landmark is frequently described using spatial terms that
involve prepositions (e.g., X on Y’, X in front of Y’). In English there
are approximately 80 spatial prepositional descriptions in common use
(Landau, 1996), and a distinction is made between those that primar-
ily indicate a topological (i.e., contact, support, and so on) or proximal
relationship (e.g., at, on, in, near, and so on), and those that indicate
a directional or projective relationship (e.g., behind, above, in front of,
and so on) (Kelleher and Kruijff, 2006). Spatial descriptions can also
be describing actions in which case the relations involve verbs, for ex-
ample “a skater is jumping over a fire hydrant”. In this case the verb is
further describing the nature of relation between the objects. Hence,
the previous description of action is parallel to “a skater over a fire hy-
drant”. Route descriptions and route instructions such as “follow this
road until the next crossroad and then turn left” are another class of



spatial descriptions where there is no explicit landmark object, since
this is implicitly assumed to be the agent following the instruction.

Although the challenges for their modelling are well defined de-
scriptively, to date there has been no unified computational model to
represent their meaning. Early attempts in this direction were based
on first order logic representations, see for example (Winograd, 1976)
and (Miller and Johnson-Laird, 1976). However, these only repre-
sent the conceptual knowledge and ignore how this knowledge maps to
the environment. Since these early works there has been a significant
amount of work on spatial semantics that draw on the environmental
context (often modelled through geometric models), perceptual fac-
tors and cues (such as visual occlusion and perspective), and world
knowledge (capturing functional roles and affordances).

3.1 The geometry of the environment

From a computational semantics perspective the contextual environ-
ment of a spatial reference is often represented through a two-dimensional
or three-dimensional coordinate frame in which we can represent ob-
jects and angles and distances between them. Psycho-linguistic re-
search has found that people decide whether a spatial relation between
a target object and an landmark object applies by anchoring a spatial
template on the landmark that defines regions of differing degrees ac-
ceptability around the landmark where a given relation holds, see e.g.
(Gapp, 1994; Logan and Sadler, 1996). Often these experiments were
deliberately designed to exclude confounding factors, such as object
roles and affordances and so forth. For example, in the experiments
reported in Logan and Sadler (1996) the visual stimuli were 7-by-7
grid marked white regions with an O in the centre cell of the grid and
an X in one of the other grid cells, and the accompanying linguistic
descriptions of the form The X is near to the O. Given paired visual
and linguistic stimuli subjects were asked to rate the acceptability of
the description relative to the visual ground. Using this experimental
setup, Logan and Sadler (1996) studied the semantics of the follow-
ing prepositions: above, below, over, under, left of, right of, next to,
away from, near to, and far from. The analysis of their results re-
vealed that patterns of acceptability varied across these prepositions
(i.e., each preposition has its own spatial template), but that there
was similarity between groups of prepositions (for example, next to
and near to have similar meanings). Table 1 lists the spatial template
for near to as reported in Logan and Sadler (1996). The analysis of
these spatial templates revealed a number of parameters relating to
the extent of different regions of acceptability for given prepositions,



1.7411.90 | 2.84 | 3.16 | 2.34 | 1.81 | 2.13
2.61 | 3.84 | 4.66 | 4.97 | 4.90 | 3.56 | 3.26
4.06 | 5.56 | 7.55 | 7.97 | 7.29 | 4.80 | 3.91
4471591852 O |7.90]|6.13 | 4.46
3471481694 | 7.56 | 7.31 | 5.59 | 3.63
3.25 | 4.03 | 450 | 4.78 | 4.41 | 3.47 | 3.10
1.84 1223 | 2.03 | 3.06 | 2.53 | 2.13 | 2.00

Table 1: 7-by-7 cell grid with mean goodness ratings for the relation the X
s near to the O as a function of the position occupied by X as reported in
Logan and Sadler (1996).

such as the 90° maximum angle of deviation from the canonical direc-
tion vector for the acceptability of a projective prepositions (such as
above above). Later experimental work explored how the shape and
extent of spatial templates are affected by other contextual factors.
For example, Costello and Kelleher (2006) explored how the presence
and location of other (distractor) objects affected on the semantics of
proximity (see Figure 1); Kelleher et al. (2009) investigated how topo-
logical distinctions, such as contact or overlap, affected acceptability
judgements and distinctions between at, on, in, and near. Building on
these experimental results a number of geometrically defined models of
spatial semantics have been proposed, including (Regier and Carlson,
2001; Kelleher and Kruijff, 2005b; Kelleher et al., 2006; Kelleher and
van Genabith, 2006). Several of these models have been implemented
in robotic systems and have been used to ground the robot’s interpre-
tation of spatial commands in its sensor data, e.g. Gorniak and Roy
(2004); Brenner et al. (2007); Schiitte et al. (2017); Dobnik (2009).

3.2 Perception, cognition, and perspective

Moving beyond the geometric relationships between entities in an en-
vironment, spatial semantics is also dependent on a range of factors
that arise through embodiment, cognition, perception and perspec-
tive. Ullman (1980, 1984) argues against a ‘direct perception’ basis of
visual perception and cognition, and instead proposes that the base
representation provided by the visual perception module likely does
not contain information about spatial relations but rather this derived
through wvisual routines. This view is supported by psycho-linguistic
evidence that suggests that spatial relations are not pre-attentively
available, (Treisman and Gormican, 1988), and that their perception
requires attention (Logan, 1994, 1995).

10



the blue square is near the green circle

Figure 1: A example trial stimulus from the experiment reported in (Costello
and Kelleher, 2006)

It is certainly the case that perception, and cognitive processes
relating to perception (e.g., perceptual phenomena such as visual oc-
clusion, visual attention, perceptual memory), affect the processing of
spatial language. For example, eye-tracking research has found that
visual context influences spoken word recognition and syntactic pro-
cessing, even during the earliest stages of language processing (Tanen-
haus et al., 1995). Also, neuro-physiological studies have suggested
two distinct visual neural pathways: the wventral pathway processes
extract information relating to what is in a scene, whereas the dor-
sal pathway—the where/how—extracts the information necessary to
inform the grasping and manipulation of objects, such as size, orien-
tation and location (Mishkin et al., 1983). Landau and Jackendoff
(1993) use this neuro-physiological distinction to build an explanation
of why language only distinguishes a relatively small number of distinct
spatial relations as compared with the human capacity to encode and
differentiate a very large number of faces and object types, and further
suggest that dorsal, or where, pathway is the basis for the processing
of spatial semantics (the reasoning being here that this pathway only
provides a limited information about the detailed geometry of a visual
scene and this limited information basis restricts the number of spatial
distinctions encoded by language). Extending perceptual processing to
include attentional mechanisms and constraints, the attention vector
sum model proposed by Regier and Carlson (2001) can be understood
as extending the spatial template paradigm to accommodate the role
of visual attention in the processing of spatial templates. Furthermore,

11



the interaction between visual and linguistic attention and perceptual
memory has also been studied and modelled (Kelleher and van Gen-
abith, 2004; Kelleher, 2006; Kelleher et al., 2005; Kelleher and Dobnik,
2019).

Another important cognitive factor that impinges on the semantics
of spatial description is the perspective that the speaker and hearer as-
sume is relevant for the spatial description. This is most obvious in
the interpretation of directional (or projective) descriptions, such as
“to the left of”. These require a model of perspective which includes a
viewpoint parameter (Maillat, 2003). In literature on spatial seman-
tics, this model of perspective is often termed the frame of reference,
and computationally modelled as consisting of six half-line axes with
their origin at the landmark. In English these half-line axes are usu-
ally labelled front, back, right, left, above, below. Three different frames
of reference are distinguished in most European languages (Levinson,
1996):

e intrinsic/object centred: the orientation of the co-ordinate sys-
tem is aligned with the landmark object; e.g., the front direction
is aligned with the direction the front of the landmark object is
pointing towards.

o relative /viewer centred / deictic: assumes an ego-centric (observer’s)
perspective on the scene (typically that of the speaker)—distinct
from the orientation of the objects being described—and the ori-
entation of the co-ordinate system is aligned with the observer’s
view (i.e., front being defined as ’in front of’ the speaker)

o absolute/environment centred /allocentric: the orientation of the
co-ordinate system is aligned with salient properties of the envi-
ronment; e.g., the above-below axes is aligned with gravity.

The viewpoint may be defined linguistically “from your view” or “from
there” but it is frequently left out. This can be either inferred from
the perceptual context (if only one interpretation is possible), object
affordances (“a person behind the counter”) or dynamics of perceptual
and linguistic interaction in which case it is negotiated and aligned be-
tween conversational partners (Dobnik et al., 2014, 2015, 2020). There
is a significant body of experimental work that has examined how am-
biguity in relation to intended frame of reference affects cognitive pro-
cessing and interpretation of a spatial description (Carlson-Radvansky
and Irwin, 1993, 1994; Carlson-Radvansky and Logan, 1997; Kelleher
and Costello, 2005; Li et al., 2011; Schultheis and Carlson, 2017). One
of the findings from this work being that ambiguity with respect to
the intended perspective (reference frame) of the speaker can result
in multiple spatial templates being activated during the interpretation

12



and competing and interacting to form a new context specific spatial
template (Schultheis and Carlson, 2018).

The examples of directional /projective prepositions is also useful
in terms of motivating work on the effect of perceptual phenomena,
such as visual occlusion, on spatial semantics. For example, Jackendoff
and Landau (1991) argue that visual occlusion likely impacts on the
semantics of projective prepositions. Similarly the analysis of Vande-
loise (1991) on the semantic distinctions between the French prepo-
sitions “devant /derriere” (approximately “before” and “behind”) states
that in many instances the distinction is based on the presence of ab-
sence of object occlusion. Furthermore, Kelleher et al. (2011) report
psycho-linguistic experiments that demonstrate the effect of percep-
tual occlusion on the semantics of in front of, and that the predictive
performance of the attention vector sum model of Regier and Carlson
(2001) can be improved by integrating occlusion as a factor into the
model.

The fact that on the one hand spatial relations are not pre-attentively
available (i.e., the extracting and processing of these relations are trig-
gered by language), and on the other that there is a variety of percep-
tual and cognitive factors that affect spatial semantics, raises the ques-
tion of whether the identification and processing of spatial relationships
is primarily driven by outputs of the visual system or by language. To
paraphrase Talmy (1983): does language structure the perception of
space, or does perception of space structure the processing of lan-
guage? Allowing some stretching and tolerance in the discussion, this
question of the primacy of language or perception for linguistic spatial
semantics echoes the discussion we made in the introduction relating
the proposition from Sahlgren and Carlsson (2021) that even if a dis-
tinction holds between form and meaning there must be a linguistic
correlate between them, and distributionalist approaches can access
this correlate. Broadly in this vein, Jackendoff (1985) has argued that
grammatical structure offers an important source of evidence for un-
derstanding cognition, and uses the semantics of spatial expressions
as a core exemplar in his analysis. By contrast, Lakoff and Johnson
(1980) put space and spatial perception as a core building block of
conceptual structure, and hence the extensive use of spatial metaphor
in language. However, in more recent years there has been a growing
awareness of the role of embodiment, the grounding of semantics in
action, and the related concepts of object function and affordances.
We will review work on these concepts in relation to spatial language
in the following section.

13



3.3 Embodiment, world knowledge, object func-
tion and affordances

Noé (2004) argues that perception depends on the capacity for ac-
tion: “Perceptual experience acquires content thanks to our possession
of bodily skills. What we perceive is determined by what we do (or
what we know how to do).” Although spatial linguistic semantics is
not a central concern for Noé, his enactive approach to meaning aligns
with a range of work on embodiment and spatial meaning. For exam-
ple, Barsalou et al. (1999) sets out a perceptual theory of knowledge
where the brain captures patterns of sensory-motor activations dur-
ing perceptual experience, then through selective attention schematic
representations of these sensory-motor patterns are stored in memory
to form perceptual symbols. These perceptual symbols then become
organised into simulators. Words then acquire meaning through asso-
ciations with the simulators for the entities and events to which they
refer. Of particular relevance to this discussion, Barsalou argues that
spatial relations (and spatial terms) can be understood as simulators:

“During the perception of a balloon above a cloud, for ex-
ample, selective attention focuses on the occupied regions
of space, filtering out the entities in them. As a result, a
schematic representation of above develops that contains
two schematic regions of space within one of several possi-
ble reference frames .... Following the similar extraction of
information on other occasions, a simulator develops that
can render many different above relations.” (Barsalou et al.,
1999, p.593)

Roy (2005) adopts a similar perspective to Barsalou and Nog, and
proposes semiotic schemas as a framework for grounding language in
action and perception. In this framework a schema is a structured
network of belief that is grounded in an agent’s environment through
a causal-predictive cycle of action and perception. Furthermore, the
basis of language production and comprehension involves operations
on schemas. The form of schema most relevant to spatial descriptions,
such as “the ball is in the cup”, are situation schemas which might
encode beliefs that the ball and cup are in contact and that the cup
contains the ball. These beliefs are connected to perception and action
by, for example if the ball and cup are in contact then the agent can
predict that if they look at the cup they will likely see the ball in
the vicinity, similarly the belief relating to cup containing the ball can
be linked to action and perception by the fact that if the cup (the
container) is moved the ball should also be perceived to move.
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Building on the theoretical and empirical work relating spatial se-
mantics to embodiment, action and perception, Coventry and Garrod
(2004) propose a functional geometric framework for treatment of the
semantics of spatial prepositions. A core element of the framework is
a recognition and foregrounding of the affect of an object’s functional
role or affordances in the processing of some spatial prepositions. For
example, Coventry and Garrod (2004) report experiments that ex-
amined differences in how functional roles and geometry affected the
interpretation of the prepositions over, under, above, and below. In one
of these experiment one object (an umbrella) had the function of pro-
tecting another object (a person) from falling rain. In this experiment
the visual stimuli used in a trial consisted of drawing of a man hold-
ing an open umbrella and in some images rain is falling and in others
there is no rain. The geometric relationship between the man and the
umbrella varied across the images. In one set of images the umbrella
was in the normal position of use (aligned with the gravitational plane
and above the man); in a second set of images the umbrella was ro-
tated 45° of vertical so that it was diagonally in front of and above
the man; and, in a third set of images the umbrella was rotated 90°
of vertical so that is was pointing along the horizontal axis in front of
the man. Across these three sets of images there was no rain falling,
or rain was falling and either falling onto the umbrella or the man.
Each trial consisted of presenting one of the images to the subject
along with a statement of the form The umbrella is over the man or
The umbrella is above the man, and asking the subjects to score the
appropriateness of the description. The analysis revealed that the vari-
ation in the geometric relationship between the man and the umbrella
has the expected affect: rotating the umbrella away from the gravita-
tional plane reduced the appropriateness of both over and above. The
analysis also revealed, however, that the umbrella’s functional role of
protection also affected the appropriateness ratings. Scenes where the
umbrella blocked the rain received higher scores than the correspond-
ing umbrella and man configuration scenes where the umbrella did
not block the rain. These studies also found that over and under
were more influenced by functional roles as compared with above and
below, and conversely that above and below were more sensitive to ge-
ometric factors. Overall the functional geometric framework can be
understood as calling for a multi-factorial approach to spatial seman-
tics, as Coventry and Garrod argue the “functional geometric frame-
work, therefore, requires geometric routines, extra-geometric routines
that capture dynamic-kinematic relations between objects, and stored
representations that reflect stereotypical functional relations between
objects” (Coventry and Garrod, 2004, p.127). The breadth of the fac-
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tors considered in the functional-geometric framework together with
the perceptual, cognitive, and embodied perspective reviewed above
demonstrates the complexity and richness of situated spatial language
as a test case for linguistic semantics.

4 What can a distributional analysis re-
veal about spatial language?

Our review of the literature on spatial language highlighted three ma-
jor sources of information that inform spatial language use: the geom-
etry of the environment; perception, cognition and perspective; and
embodiment, world knowledge, object function and affordances. It
is relatively easy to programme a computer to implement geometric
models. Consequently, the majority of previous computational work
on modelling spatial language has focused on creating geometric mod-
els of the environment based on sensor readings and implementing se-
mantic models for spatial terms based on functions that define spatial
templates within these geometric models. By contrast relatively little
computational work has been done on modelling functional factors af-
fecting spatial language use. This is primarily because, compared with
geometric considerations, it is not obvious how to capture and inte-
grate functional knowledge into computational models. However, here
we argue that distributional analysis may be a useful approach to cap-
ture this functional relationships between objects. As we noted in the
introduction, probing research on distributed representations learned
through distributional analysis of text reveals that these embeddings
do encode information with respect to affordances and properties of
objects. In this section we explore the potential for distributional anal-
ysis to capture these functional based relationships between objects.

4.1 Distributional analysis of image captions
reveals the functional and geometric bias of spa-
tial prepositions

(Dobnik and Kelleher, 2013) describes two experiments where the func-
tional and geometric bias of spatial relations is identified automati-
cally from word distributions in the corpus text and the results are
compared with the results of the psycholinguistics studies Coventry
and Garrod (2004). The approach uses the textual parts of the IAPR
TC-12 Benchmark corpus (Grubinger et al., 2006) and the 8K Image
Flickr dataset (Rashtchian et al., 2010). It is important for the study
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that the descriptions are extracted from vision and language corpora
so that the descriptions are constrained by the visual scene. A prelim-
inary study was done on relations extracted from the British National
Corpus (BNC) where the results were not clear cut since there were
also frequent non-spatial metaphorical uses of the same relations, for
example “in/over three days”. The descriptions from both corpora are
parsed for dependencies and then rules are manually constructed to
normalise words and extract semantic representations of the form Re-
lation(Target, Landmark). The reported results depend on the quality
of the dependency parsing and the coverage of the extraction patterns.

The first experiment examines whether the strength of association
between the target and landmark objects as captured in a language
model corresponds to how strongly the objects are functionally related.
The intuition underpinning the first experiment was that functional
constraints are stronger than geometric ones, because they are focus-
ing on particular dynamic kinematic routines between objects that are
otherwise geometrically relatable. To measure the strength of the as-
sociation between objects and relations Dobnik and Kelleher (2013)
use Log Likelihood Ratio (Dunning, 1993),

L(HY)
L&) (1)

logh = log

which is a log ratio of the likelihood of the hypothesis H; over the
hypothesis Ho where Hi is that the words in a bigram wjws are in-
dependent and Hy that they are dependent. It therefore tells us how
many times more likely Hy is compared to H; and —2log\ approxi-
mates the x? distribution. The results indicate that the most likely
relation for a target and landmark pair “boy-shirt” is “in” and then
“with”. The most likely relations for the landmark “umbrella” and
some other target (e.g. people, boy, table, child, sculpture...) are
either “with” and “under”.

The second experiment reported in Dobnik and Kelleher (2013) was
motivated by the observation that different relations have different se-
lectional properties that can be related and this should be reflected in
an information theoretic measure such as entropy. If some relations
are functionally biased towards particular target-landmark pairs then
this should be reflected in a lower entropy over the target-landmark
pairs that occur with that relation in the corpus. Note that entropy
measures uncertainty, via the distribution across possibilities, and so
an entropy based analysis of a corpus naturally aligns with a distri-
butional perspective on language. For example, in the experimental
studies such as (Coventry and Garrod, 2004) “in”, “on” and “over” have
been identified as being influenced by the functional component and
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these relations are predicted by the corpus study to have a low entropy
of target-landmark pairs compared to their corresponding geometri-
cally biased variants such as “above”. (Dobnik and Kelleher, 2013) did
find that functionally influenced prepositions, such as “over”, do tend
to have lower entropy over their target-landmark pairs as compared
with non-functionally sensitive counterpart, such as “above”.

Dobnik and Kelleher (2014) present two additional experiments
based on the same datasets. First, the target and landmark objects
that occur with a particular relation are clustered in conceptual cate-
gories. The conceptual categories of targets and landmarks occurring
with each relation are determined using the synsets of WordNet and
the class-labelling algorithm (Widdows, 2003) which given a list of
words finds a hypernym that subsumes as many words in the list as
possible and is applied recursively until all the words are exhausted.
The extracted conceptual categories represent semantic classes of tar-
get and landmark objects that occur with each relation. Then, based
on these clusters, patterns of relations relating different conceptual cat-
egories are automatically extracted. Following the previous intuition
that functional relations constrain more specific objects it is expected
that functional relations will give rise to more patterns as well as these
patterns containing more specific classes of objects, and hence more
conceptual categories. Tuples (target, relation, landmark) are rewrit-
ten as (target-class, relation, landmark) such as (i) travel.v.01 over
object.n.01 (9/713), bridge.n.01 over object.n.01 (23/713), bridge.n.01
over body of water.n.01 (42/713) and (ii) person.n.0l under tree.n.0l
(7/213), shirt.n.01 under sweater.n.01 (8/213), person.n.01 under body
of water.n.01 (11/213), person.n.01 under artifact.n.01 (13/213). The
numbers in the brackets indicate the number of times an example fol-
lowing that pattern occurs in the dataset out of the total number of
times a relation is found. The automatically extracted patterns reveal
different situations of objects being related reflecting human concep-
tualisation of objects and space which require quite distinct geometric
arrangements. In fact, they are similar to examples of spatial relations
reported in linguistic literature such as (Herskovits, 1986; Levinson,
2003).

Returning to the question of assessing the functional sensitivity
of different spatial relations, the question of how general and specific
are the relational patterns for a given preposition arises: recall the
intuition that the more functionally sensitive the semantics of a spa-
tial preposition the more specific the objects it encodes relationships
between? To estimate the specificity of the extracted patterns, and
hence the specificity (functional sensitivity) of the preposition that oc-
curs within the patterns, Dobnik and Kelleher (2014) calculated the
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following measures: (i) the average depth of the target and landmark
synset hypernyms, (ii) the number of patterns created, and (iii) the en-
tropy of examples of these patterns in the dataset. Their results were
that the ranking of spatial prepositions across these three measures in
terms of specificity of the patterns the prepositions occur within had
high agreement. Furthermore, in these rankings spatial preposition
that are known to be functionally sensitive—based on experimental
work such as (Coventry and Garrod, 2004)—were found to be more
specific in terms of the patterns they occurred in.

What the experiments in (Dobnik and Kelleher, 2013) and (Dob-
nik and Kelleher, 2014) demonstrate is that distributional analysis of
corpora can reveal information relating to the functional semantics of
spatial prepositions.

4.2 Neural language models attain different per-
plexity when generating functional and geomet-
ric relations

The previous method extracts targets and landmarks for a given rela-
tion independently to form patterns of relations between them. How-
ever, during interaction a describer chooses one of the objects they
would like to refer to and then a particular landmark conditioned on
the target: this has to be functionally associated with the target and
visually and linguistically salient in the interaction. The interpreter
exploits this salience of the landmark to locate a suitable target which
means that the conditioning is reversed here: potential targets are
identified by being conditioned on the landmark. Since a relation
describes a particular functional and geometric interaction between
target and landmark it is conditioned by both. (Dobnik et al., 2018)
examines how such relations are captured in a neural language model
(Bengio et al., 2003; Mikolov et al., 2010; Salton et al., 2017) and
also attempts to identify their functional geometric bias by examining
language model perplexity.

A neural language model estimates the probabilities of a sequence
of words by optimising the parameters of the neural architecture based
on cross-entropy loss. The loss of a neural language model comparing
the predicted words with the ground truth is the average surprisal
over that batch of data. From the loss a measure of perplezity can be
defined for a particular sequence of words 1" as follows:

Perplexity(S, P) = 9Es[—loga(P(wi.1))] (2)

Perplexity therefore indicates a measure of fit of the language model
with a sample sequence. Returning to spatial relations, if descriptions
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involving functional spatial relations are more selective in choice of
their vocabulary (target, landmark and relation) then such sequences
are more predictable in the dataset which means that this will result
in lower perplexity of the language model.

Dobnik et al. (2018) use the Visual Genome corpus (Krishna et al.,
2017) for their experiments. The Visual Genome corpus is a crowd-
source annotated corpus of 108K images including relationships be-
tween objects identified in bounding boxes, for example “cup on table”,
“girl holding on to bear” and “woman standing on snow”. The data is
split into 10-folds and a neural language model is trained and vali-
dated over these sequences and average results are reported. Dobnik
et al. (2018) extracted static spatial relations from these patterns us-
ing a dictionary of terms reported in (Landau, 1996; Herskovits, 1986).
Other pre-processing steps include re-writing composite spatial rela-
tions as single tokens (“jumping over” and “to the left of”, “to left of”
— “left”) and some additional text normalisation and selection was
performed to reduce unwanted variation in the text. The descriptions
were then structured into sequences following the pattern <s> target
relation landmark </s>. Once the pre-processing was completed
the data was split into 10-folds and a neural language model was
trained and validated over these sequences and average results cal-
culated.

Figure 2 shows the average perplexities of descriptions containing
particular spatial relations. Dark grey and black identify relations
that are known to have a functional or geometric bias respectively.
Descriptions of the same bias cluster together. Furthermore, descrip-
tions containing relations with a functional bias are more predictable
by a language model than those that have a geometric bias. It there-
fore follows that in the latter relations a geometric grounding plays
a stronger role in order for them to be interpretable. Overall, these
experiments demonstrate that language models learn specific contexts
for both functionally and geometrically-biased spatial relations.

In a follow up experiment Ghanimifard and Dobnik (2019a) eval-
uate these contexts more closely using the same method. We have
seen that spatial relations are similar or dissimilar depending on what
kind of context target and landmark objects they occur with. If two
relations occur with similar targets and landmarks, then projecting a
relation in the context of the second relation will lead to a low average
surprisal of the language model measured by its perplexity. This way
all relations can be compared with each other: descriptions containing
a particular relation are first collected and then the relation is swapped
by another relation and an average perplexity of the language model
over this collection of descriptions is calculated. This is repeated for
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Figure 2: Mean perplexities of spatial descriptions of LM1 (dark grey: func-
tionally biased, black: geometrically biased relations).

all relations. The average perplexity values over the relations can then
be represented as values of a vector defined by the contexts. Using this
methodology Ghanimifard and Dobnik (2019a) analysed the swapabil-
ity of relations, in terms of the relative increase of perplexity when a
relation is swapped. Figure 3 shows the perplexity vectors for 28 rela-
tions over 26 contexts. K-means clustering of these contextual vectors
identifies clusters of similar vectors and relations that have similar
selectional biases.

These perplexity vectors for spatial relations appear to be so strongly
discriminative of the relation so that they can be used in several com-
mon semantic reasoning tasks. For example, they were tested in the
odd-one-out task where relations are grouped on the basis of the geo-
metric criteria, e.g. axes “left” and “right”, containment “in” and “out”
and proximity “near”. To these pairs an odd word is added from an-
other pair that the model must identify. The results indicate that the
perplexity vector of a language model trained on textual information
can discriminate words by the geometric criteria without ever seeing
the scenes that descriptions are referring to. This is because func-
tional and geometric knowledge are complementary and bias to one
particular knowledge means less bias to the other. Overall, the work
demonstrates that although spatial relations have different selectional
requirements there are similarities between their functional and geo-
metric bias. Furthermore, knowing the functional bias one is able to
predict also the geometric bias since they are in complementary distri-
bution. This way language models might be capturing some grounding
information about the world without ever experiencing the world.

If functional and geometric bias are complementary then differ-
ences for different spatial relations should also be observable in the
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Figure 3: A matrix of perplexity vectors for 28 spatial relations and 26
contexts.
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geometric domain. The literature on spatial cognition gives a plenty
of examples of situations where particular relation would be chosen
by a speaker but where objects are displaced from the typical location
where we would expected them to be based on the geometric considera-
tions alone. For example, “the umbrella is over a man” still holds when
this is held horizontally providing that it is protecting the person from
the rain and “apples are in a bow!l” is acceptable where the volumes of
some apples are not contained in the volume of the bowl as long as the
bowl is constraining the movement of the apples so that they do not
fall of the heap of the apples that are geometrically contained in the
bowl. This suggest that due to the effect of the functional interactions
between objects their locations represented as bounding boxes are ex-
pected to be more variable and diverging from the geometric axes, thus
where they are. However, such relations are more restrictive in terms
of what objects they relate to as shown in the previous discussion. The
opposite is expected for geometrically biased relations.

(Dobnik and Ghanimifard, 2020) tests this hypothesis on the Visual
Genome corpus (Krishna et al., 2017) using a similar extracting and
pre-processing method to the one described earlier, this time also in-
cluding descriptions of actions that refer to dynamic relations between
objects. To calculate the relation between bounding boxes of target
and landmark for a particular relation dense vectors with dimensions
[,y,d] are created, where x and y represent directions between two
points p; representing the target and po representing the landmark in
a 2-dimensional space and d is the Euclidean distance between these
two points. The distance is assigned a negative prefix if ps from the
target is also a point in the landmark. Otherwise, the distance is a
positive value. The vectors are inspired by the Attentional Vector Sum
(AVS) model (Regier and Carlson, 2001) in terms of capturing direc-
tions and by the spatial template model (Logan and Sadler, 1996) in
terms of capturing distances. The two kinds of representations are
also motivated by the difference between projective (“to the left of”)
and topological relations (“near”). While the former are sensitive to
distance and direction, the latter are only sensitive to distance. An
image is segmented into a grid of 7 x 7 locations and for each location
representing target and landmark such a vector is calculated. Vectors
are then collected across images for each instance of that relation be-
tween objects and finally averaged into a single vector. Using a similar
method spatial templates from (Logan and Sadler, 1996) are also con-
verted to single comparable vectors. A cosine similarity between these
vectors indicates that vectors extracted from the Visual Genome are
similar to those vectors from the spatial template experiments which
validates the approach.
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Figure 4: The average cosine distance of dense vectors [z,y,d] from the
average dense vector per spatial relation.

In order to estimate the variation of target and landmark objects
that is indicative of functional and geometric bias a deviation of indi-
vidual vectors from the average vector for a particular relation is deter-
mined using cosine distance as shown in Figure 4. An average cosine
distance close to 0 indicates a stronger central tendency and therefore
a geometric bias. Functionally and geometrically biased relations re-
ported in the literature are indicated in brown and blue respectively.
Verb set 1 are those verbs reported in (Collell et al., 2018) where the
location of the landmark is predicted the least from the y dimension
(e.g. “see”) and Verb set 2 are those where the location of the target is
most strongly predicted from the y dimension (e.g. “flying”). Figure 4
demonstrates that the dense vectors for the geometrically-biased rela-
tions tend to deviate from the mean dense vectors less than those for
functionally-biased relations and the same trend is observed with the
two groups of verbs. The clustering of cosine similarities for individual
relations reveals different contexts of object interactions resembling
different conceptualisations of (Herskovits, 1986) and that there may
be an overlap of vectors between geometric and functional locations
where both of these constraints are satisfied.

The preceding discussion demonstrates that an important part of
semantics of spatial relations which also include verbs is captured by
distributed representations that are estimated from word contexts.
The semantics that distributed representations capture are those that
refer to functional interactions between objects, the dynamic kinematic
routines that reflect human take on the world and are therefore part
of the common-sense semantic knowledge about what objects are in-
teracting. Since objects and events are taking place in physical space
different relations also refer to where these objects are, how they are
grounded in the geometric representation of space. Different relations
are biased to function or geometry differently and so the bias can be
evaluated on a scale rather than being fixed for two classes of relations.
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Importantly, since the two dimensions of meaning are complementary
to each other, a bias to one is also reflected in the other and therefore
predictions of one also has implications on the prediction of the other.
Furthermore, the experimental study in (Dobnik and Astbom, 2017)
suggests that this bias is not fixed even for individual relations and
that contextual factors might affect it.

5 Grounded language models

In the previous section we have examined the contribution of seman-
tic information for different kind of linguistic descriptions but how
is this information captured as representations of probabilistic neu-
ral language models? We call language models that contain semantic
information from word and perceptual contexts probabilistic grounded
language models. Descriptions contain sequences of words that might
be grounded in different modalities to a different degree as well as
there are dependencies between words or structures in these descrip-
tions which define the compositionality of natural language. (Ghan-
imifard and Dobnik, 2017) examines to what degree a neural language
model is able to learn compositionality of complex spatial descriptions
that contain one or more spatial relations, connectives such as “and”,
“either” and “or”, the modifier “not” and other (distractor) words such
as functional words which are expected to have no perceptual but
only linguistic grounding in the word contexts. If meaning of linguis-
tic representations is compositional as suggested by formal semantics
(Montague, 1974; Blackburn and Bos, 2005) which requires that every
composed semantic representation has an interpretation relative to a
model, then in the case of grounded language models we should observe
that the predictions of sequences of words will map to the underlying
perceptual representations.

Ghanimifard and Dobnik (2017) generate an artificial dataset of
descriptions over locations from the acceptability judgements reported
in (Logan and Sadler, 1996), for the prepositions above, below, over,
under, left of, right of, next to, away from, near to and far from, and
the connectives described above. Locations are the 48 locations the
target object can occupy in the 7 x 7 grid used in the experiment, see
Table 1 (the 49th location is the centre where the landmark is located).
Examples are created for individual expressions. For the grounded lan-
guage model an LSTM is used as encoder and decoder. The input is
an embedding vector learned from the one-hot encoded words which
is concatenated with the location of the target and the output is a
prediction of the following word. For example, assuming the target
object is located in the top left quadrant of the grid, if the model is
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provided the input embedding for the sequence left of and then the
correct next word prediction would be above. The model is evalu-
ated on held-out sequences of composed descriptions where individual
word tokens have been seen during training but their compositions are
novel to the model. The next word probabilities over the vocabulary
returned by a model can be thought of as acceptability judgements of
words for that particular input location and can be aggregated to cre-
ate spatial templates. The spatial templates generated from the data
of a grounded neural language model on new composed phrases can
then be compared with the original spatial templates from which the
training data has been generated. Correlation with Spearman’s p in-
dicates that overall there is a high correlation between the predicated
and the ground truth spatial templates when evaluated on the same
dataset as the training one. Similarly the model is also able to predict
simple descriptions containing a single relation while only seeing com-
posed phrases during training. Effectively, the model has learned how
to decompose phrases in terms of perceptual grounding.

These results indicate that grounded neural language models can
capture very well semantic information from word and perceptual con-
texts in the form of grounded dense word embeddings. However, it is
important to note that not all language models ground the meanings
of spatial relations, indeed during generation (for example in an im-
age captioning scenario) language models often generate ungrounded
relations which are also known as hallucinations of language models.

For example, Ghanimifard and Dobnik (2018) examine the adap-
tive attention in a pre-trained model of (Lu et al., 2017). They start
by extracting spatial descriptions and their corresponding images from
the MS-COCO test corpus and investigating where the model directed
its attention to when processing an image and a spatial description.
Note that in this model the attention is explicitly modelled as com-
plementary between the attention on the image features and attention
from the language model. A comparison of the POS-tags of words that
receive visual attention reveals that this is primarily focused on those
tags that make up noun-phrases, e.g. NUM, NOUN, ADJ, DET, while
VERB receives moderate attention and ADV (erbs) and ADP(ositions)
are among the least attend POS-tags, only above PRON and PRT. Av-
erage adaptive attention on words referring to targets, relations and
landmarks is also estimated. As shown in Figure 5 this analysis reveals
that spatial relations overall receive less visual attention than targets
and landmarks. It is also interesting that landmarks receive slightly
less visual attention than targets, perhaps because they can be pre-
dicted from the sequential language model. The visual attention for
relations is not only weaker but also more dispersed which indicates
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Figure 5: Average visual and language attention over a grid of 7 x 7 loca-
tions in images. Darker values indicate stronger visual attention and weaker
language attention. The shades are relative to each other only within a box.

that it is not capturing geometric arrangements between target and
landmark that we observe in spatial templates but is driven by some
other factors, possibly related to the representations of targets and
landmarks.

Visual features from pre-trained object classifiers are therefore use-
ful for identifying objects but not relations between objects which are
not directly identified by visual features. What happens in the same
model when geometric features about the objects are explicitly added
and a grounded language model is allowed to attend over them as
well? What is the optimal representation of geometry between targets
and landmarks? Ghanimifard and Dobnik (2019b) extend the previ-
ous model of adaptive attention to a model that can attend different
representations of the scene: (a) visual features from bounding boxes
of annotated objects, (b) ordered visual features of the target and
landmark bounding boxes, (c) ordered features representing geometric
relations between the target and landmark objects. The models are
compared to two baseline models: (i) model without attention and (ii)
a model with adaptive attention over the visual features of the entire
scene. For training and evaluation again Visual Genome is used (Kr-
ishna et al., 2017). The descriptions generated from these annotations
are therefore simple descriptions containing <s> target relation
landmark </s>. A comparison of cross-entropy loss of different mod-
els indicates that top-down infused knowledge about objects and their
geometric arrangement has a positive effect compared to using purely
bottom-up knowledge. Overall, (b) identification of visual features of
targets and landmarks leads to the largest improvement, greater than
(c) geometric relations between targets and landmarks. When (b) and
(c) are used together this leads to a further but small improvement
over (b). Difference between relations are observed which suggests
that not all features are equally relevant for all relations.
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Figure 6 shows adaptive attention for individual parts of a descrip-
tion in respect of different features. The results indicate that only in
the second case (td order), where the visual features of a target and a
landmark are explicitly identified, geometric spatial features are used
and that VisKE features (Sadeghi et al., 2015) which represent geo-
metric properties and relations between target and landmark bounding
boxes are more effective than masked representations of object bound-
ing boxes. Identification of the visual features of targets and landmarks
(td order) is better than only providing visual features of objects (td)
as this family of models is able to attend better the target and land-
mark descriptions. Overall, the investigation shows that integration of
top-down features has a positive effect on the performance of grounded
language models but different features have different effect on different
classes of relations. The results indicate that the question of feature
representation and optimal information fusion is still very much open
for the current and future research on grounded vision and language
models.

6 Conclusion

The background to this article is the ongoing debate relating to the
level of language “understanding” large language models, that encode
a distributional analysis of text corpora, can claim. We have proposed
that situated spatial language is a useful use-case for this debate to
consider. This proposal is based on the observation that the vari-
ety of information types that spatial language draws upon make it
a challenging research topic for computational systems. In particular,
successfully understanding and generating situated spatial language re-
quires the ability to blend geometric, perceptual, and functional /world
knowledge. A key argument put forward in this article is that distribu-
tional semantics may provide an approach that is particularly suited
to learning and encoding the functional /world knowledge information
necessary to process spatial language. In support of this argument, in
the later half of this article we have showcased a number of works that
have demonstrated how distributional analysis (be it via an entropy
based analysis of image captions, or the behaviour of language models)
can reveal aspects of spatial semantics related to function. Much more
work is necessary to understand precisely how distributional analy-
sis can be best integrated with geometric and perceptual models to
fully do justice to the richness of situated spatial semantics. However,
we believe that recognising that distributional analysis provides basis
to learning functional relationships between objects provides a useful
direction for future work on spatial language.
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