Y CHALMERS |

UNIVERSITY OF TECHNOLOGY

Optimizing the generation of Java JMH
Benchmarks

Master’s thesis in Computer science and engineering

Anthony Path

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG

Gothenburg, Sweden 2022

MASTER’S THESIS 2022

Optimizing the generation of Java JMH
Benchmarks

Anthony Path

UNIVERSITY OF
GOTHENBURG

CHALMERS

UNIVERSITY OF TECHNOLOGY

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2022

Optimizing the generation of Java JMH Benchmarks
Anthony Path

© Anthony Path, 2022.

Supervisor: Philipp Leitner, Department of Computer Science and Engineering
Examiner: Regina Hebig, Department of Computer Science and Engineering

Master’s Thesis 2022

Department of Computer Science and Engineering

Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg

Telephone +46 31 772 1000

Gothenburg, Sweden 2022

1ii

Optimizing the generation of Java JMH Benchmarks Anthony Path
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract

The evolution of the software system during its development is a complex process,
which is both very important and difficult to track. One of the methods that of-
fers such functionality is microbenchmarking, which is a type of regression testing.
Although its efficient at software project performance measurement and tracking,
its also rather difficult to conduct and therefore rarely used in industry. In this
study, several potential optimization approaches are applied to the benchmarking
process in open-source projects in order to make it less complex and applicable to
real-world scenarios, improving its accessibility for software engineering researchers
and practitioners.

Keywords: Computer science, engineering, thesis, benchmarks, Java, JMH, opti-
mization, regression testing.

iv

Acknowledgements

The author would like to express their gratitude to the thesis supervisor Philipp
Leitner for the support and feedback during the study as well as examiner Regina
Hebig for feedback and advice on the general process.

Anthony Path, Gothenburg, June 2022

vi

Contents

List of Figures

1

3

List of Tables
Introduction
1.1 Purposeof thestudy
1.2 Research questions L.
Theory
2.1 Performance testing
2.2 Benchmark testing
2.3 Benchmark testing with junit2jmh
Methods
3.1 Experiment setup L
3.1.1 Study objects
3.1.1.1 RxJava
3.1.1.2 Mockitoo
3.1.1.3 Stubby4j
3.1.2 Evaluated scenarios
3.1.2.1 Baseline
3.1.2.2 Stability prioritization
3.1.2.3 Running time interval heuristic
3.1.2.4 Random package heuristic
3.1.2.5 Coverage prioritization
3.1.2.6 Approach comparison
3.1.3 Execution environment
314 Usedtools
3.1.4.1 Optimization tool
3.1.4.2 IntelliJ.
3143 Gradle. o
3.1.4.4 RStudio
3.1.45 MSExcel
3.1.5 Analysis
3.1.6 Validity threats L.
3.1.6.1 Internal validity threats
3.1.6.2 External validity threats

viil

Contents

3.1.6.3 Construct validity threats 18

4 Results 19
4.1 Coverageo 19
4.2 Benchmark stability 00 0L 23
4.3 Running time 25

5 Conclusion 28
5.1 Discussion 28
5.1.1 Research question 1. 28

5.1.1.1 Random package selection 28

5.1.1.2 Running time interval prioritization 29

5.1.2 Research question 2. 31

5.1.3 Research question 3. 31

5.1.4 Baseline as a potential optimization approach 32

5.2 Future work 33
5.3 Study limitationso 34
54 Conclusion 35

A Appendix I
A.1 Experimental results - raw data I
A1l RxJava. I

A12 Mockito I

A1.3 Stubby4j IT

ix

List of Figures

3.1 Experiment setup diagram 8
3.2 Example of test case stability and mean run time data 11
3.3 Frequency of test cases in different time intervals in test subjects . . . 12
3.4 Fragment of an individual test case coverage file 13
3.5 Benchmark optimizer class diagram 14
3.6 Benchmark optimizer system sequence diagram 15
3.7 Fragment of an optimizer’s benchmark run output 15
3.8 Example of Jacoco HTML coverage report 16
4.1 RxJava - missed instructions per different approaches 19
4.2 RxJava - missed branches per different approaches 20
4.3 Mockito - missed instructions per different approaches 21
4.4 Mockito - missed branches per different approaches 21
4.5 Stubby4j - missed instructions per different approaches 22
4.6 Stubby4j - missed branches per different approaches 22
4.7 RxJava - benchmark stability of different approaches 23
4.8 Mockito - benchmark stability of different approaches 24
4.9 Stubby4j - benchmark stability of different approaches 24
4.10 RxJava - suite running time of different approaches 25
4.11 Mockito - suite running time of different approaches 26
4.12 Stubby4j - suite running time of different approaches 27

3.1 Study objects

List of Tables

X1

1

Introduction

The evolution of software system during its development, modification or mainte-
nance can significantly impact its quality and performance. Although the changes
are often made in order to bring new features and improvements to the system,
they also have a potential to introduce unwanted defects, ranging from minor bugs
to significant, fatal errors [1]. In order to avoid such undesirable consequences of
software system changes, numerous approaches can be used.

Regression testing is one of the such approaches. It encompasses techniques that
can be applied during the evolution of the software in order to detect potential de-
fects in an efficient and effective way [2]. One of the ways to conduct the regression
testing involves microbenchmarking, which can be used to implement a performance
baseline for small fragments of code (thus it can be viewed as an alternative to load
tests). Even though it is not a widely used testing method, it has noticeable ad-
vantages over traditional testing approaches (such as load testing) such as being
faster to implement and execute than the latter and not needing a special execution
environment [3].

One of the recently developed microbenchmarking methods is junit2jmh, which in-
volves generation of microbenchmarks for JMH (Java Benchmark Harness) using
existing unit tests produced by JUnit [4]. Although this method was proven to be
reasonably efficient and promising, it’s still at an early development stage, being un-
optimized for different real-world scenarios such as large projects, limited run time
etc. This may lead to very long execution times of generated benchmark suites (up
to several days), severely limiting the tool’s effectiveness[4]. Similar problem can be
found in many Java projects that have their own large benchmark suites.

In this study, potential ways to optimize the generation of microbenchmark suites
with regards to execution time, stability of resulting benchmarks, and code cover-
age were designed and tested in order to find the most efficient approach for the
improvement of this regression testing technique. This involved both simple heuris-
tics and more complex approaches. The suites generated by junit2jmh were used as
an example, as they can be made from unit tests, greatly increasing the number of
projects that can be assessed (test suites are much more common than benchmark
suites). Improving the microbenchmarking process can make it much more practi-
cal, useful and efficient for application to the real-world Java projects, thus allowing
great improvement of their quality.

1. Introduction

1.1 Purpose of the study

The core purpose of this study is to provide an efficient approach for optimization of
the microbenchmark suites. In the context of this study, optimization means select-
ing a subset of the existing suite that provides the best trade-off between execution
time, stability and code coverage. In order to achieve this, potentially useful opti-
mization approaches were applied to the suites generated by ju2jmh, which therefore
served as a demonstration of new improvement methods’ capabilities.

The wider purpose of the study is to contribute to and to improve regression testing
field by providing better-performing and optimized microbenchmarking methods.
The existing advantages of microbenchmarking over more widely used performance
testing methods (e.g. load testing which can be slower to implement and run [3])
can potentially be amplified further via improvements outlined in this study. This
can in turn lead to more efficient software testing options for both researchers and
practitioners, and make benchmarking applicable to more projects, even the ones
that don’t have benchmark suites (only tests).

1.2 Research questions

The current method of the operation of ju2jmh involves using all the unit tests in-
discriminately, which leads to long running times needed to execute the microbench-
mark suite. Optimizing it via one or more approaches described below can poten-
tially allow to not only greatly improve suite’s efficiency, but also contribute to the
regression testing research area by providing useful knowledge about benchmarking
optimization approaches.

« RQ 1 How efficient is the usage of simple heuristics for the optimization of
the suite?

Simple heuristics include potential improvement strategies that do not require
complex algorithms or measurements. Examples of such approaches may in-
clude randomly selecting of a certain number of unit tests from several random
packages, selecting only unit tests that have an execution time in certain in-
terval (e.g. between 1ms and 1s) etc.

« RQ 2 How efficient is the optimization of the suite based on benchmark sta-
bility ¢

Stability of the benchmark is defined as a degree of variability of the results
of its multiple runs [3]. It is a very important property of a benchmark, since
it determines how large the performance change needs to be before it can be
reliably detected. Consequently, prioritising microbenchmarks with a high re-
sult stability means that generated benchmarks are more likely to be useful
for finding performance regressions.

1. Introduction

o« RQ 3 How efficient is optimisation of the suite based on static code coverage?

One of the conclusions that Laaber, Gall & Leitner [2] reached in their study
was that static code coverage might be a viable alternative when the running
time of microbenchmark suite is limited. Since optimization involves a reduc-
tion (and potentially, limiting) of suite running time, prioritizing static code
coverage can improve the performance of the the suite. Additionally, static
code coverage potentially allows to identify redundant benchmarks (that test
the same code fragments), thus leading to further improvements of the gener-
ated benchmark suite.

2

Theory

In this chapter, some of the important academic works related to this study are
presented. This includes both more widely known concepts such as regression testing
and the less known ones such as benchmark testing and conversion of unit tests to
benchmarks in Java.

2.1 Performance testing

Molyneaux [5] described importance of performance testing for the software devel-
opment life-cycle and problems arising from its frequent neglecting by the business
organizations (caused by lesser popularity of performance testing compared to op-
erational acceptance testing and functional testing). To be precise, deployment of
applications without sufficient information about their performance can potentially
lead to serious problems with their scalability and operation soon after mentioned
applications are released. This may in turn lead to a loss of time and money spent
on performance improvements and also lead to negative impact on testers, coders,
architects and other members of the development team. On the other hand, effec-
tive usage of performance testing during the development allows to identify possible
operational bottlenecks early and quickly, at the stage when its still easy to mitigate
them and deploy the resulting highly performing product with confidence. Lack of
acceptance of performance testing by the I'T practitioners outlined in Molyneaux’s
work signifies need for further research and work in this area, which this study is
going to provide.

Stefan et al. [6] investigated the occurrences of the performance evaluation code
in Java-based performance testing frameworks (found on GitHub), identifying their
relevant approaches to performance testing as well as quantifying their use. The
obtained data was then applied to adjust the SPL (Stochastic Performance Logic)
performance testing framework, which was developed and modified by the study au-
thors. The study has also concluded that only a small fraction of analyzed GitHub
projects (less than 1%) used performance testing frameworks. The simpler Java
function clock query method was used by only 3.4% of projects. Additionally, dif-
ficulties were discovered with the automation of the performance testing as well as
test execution time. This study was interesting for the research, because it clearly
shows lack of dedicated performance testing frameworks in most of the projects in
the industry as well as signifying that test execution time is an issue in those frame-
works, which can be solved with suite optimization.

2. Theory

Chittimalli [7] investigated application of regression testing during software develop-
ment. Its expensive costs, which can even reach up to half of software maintenance
costs were identified as a problem with this method. One of the possible solutions
involves using the same test suite to test both current and future versions of the
program. Since it may be too time consuming or expensive to re-run all the tests of
such suite every time when regression testing is needed, several methods have been
developed to optimize this process. Many such approaches use static code coverage
obtained in previous testing stage to select the test cases for the next stage. This
supports the notion behind the RQ 3 (optimization of benchmark suite basing on
static code coverage), as this approach was proven to be efficient for regression test-
ing before. However, it has not been applied to benchmarks yet. This definitely
leads to the need for further research on its efficiency in such situation, which is one
of aims of this study.

2.2 Benchmark testing

The Java Microbenchmark Harness (JMH) [8] software was used for running bench-
marks during the experiment. Its a Java-based harness for build, run and analysis
of differently-sized benchmarks implemented in Java as well as other programming
languages that have the JVM as a target. In order to enable benchmarking in the
project, the JMH dependency has to be added and the benchmarking classes with
correct method annotations created. After that, the benchmarks have to be compiled
and built into the .jar file, which can then be run with JVM in order to benchmark
the analyzed code. The JMH has multiple possible parameters influencing its run of
the benchmark suite, such as number of warmup and measurement iterations, forks,
measurement iteration time etc. The JMH was instrumental for this study, as it
was used to test and analyze benchmarking optimization approaches.

Laaber et al. [9] stated that execution of software benchmarks is a rather costly
process in terms of time. This operation can potentially take many hours or days
to execute, which makes frequent software assessment via this method (e.g. for
continuous integration) impractical. Furthermore, attempting to change the config-
uration of a project’s benchmark suite without considering the possible influence of
said changes on the quality of obtained results can compromise the latter, severely
reducing efficiency of the benchmarking for project performance assessment. The
two serious issues raised by Laaber et al. [9] could potentially be solved via a novel
benchmark optimization approach used in this study, severely improving the regres-
sion testing and making it more accessible for wider applications.

Cordeiro et al. [10] stated that complexity of software in enterprise applications
and smartphones has greatly increased in recent times. For example, the popular
Android OS (whose mobile applications reached almost 87% market share) is com-
posed of a large library set (around 13 million lines of code). Those libraries contain
both native code and Java code, which requires tools to verify its security attributes.
Additionally, the Java alone is popular in business applications (mainly server-side

2. Theory

programming), thanks to the existence of several high-performance frameworks for
it (such as Spring). As such, verification methods for Java enterprise applications
are also in demand. For example, large technology companies such as Amazon and
Facebook invested substantial amounts of time and effort into development of ef-
fective and efficient verification methods for testing in order to assess reliability of
some of their systems’ aspects to improve their security and robustness. Cordeiro
et al. [10] also noted that while there are many Java software verification tools
(e.g. SPF, Bandera, JayHorn, JPF etc.), they may be rather difficult to compare in
a practical setting because of a lack of the methods to reproduce and standardize
the empirical evaluations as well as lack of common benchmark sets for them. The
latter fact means that developing an easily usable and robust method of benchmark
suite optimization (the aim of this study) can potentially help with assessment and
comparison of Java-based software verification tools, allowing both practitioners and
researchers of Java to greatly improve the process of Java code assessment. This
may in turn lead to significant improvements of Java software in terms of quality and
reliability, which will be very beneficial for I'T industry where Java has historically
been one of the most popular programming languages (Bissyandé et al. [11]).

Laaber et al. [2] investigated the application of coverage-based TCP (test case
prioritization) techniques to software microbenchmarks, with 54 unique parameter
instantiations. The study has concluded that TCP effectiveness had great varia-
tion depending on parameterization. However, it could still provide a noticeable
overhead of 11% of the total execution time of microbenchmark suite. Additionally,
the study results have demonstrated that static-coverage techniques were usually
more efficient than dynamic-coverage ones because of their unacceptable analysis
overhead. Thus, in cases with limited prioritization time, they could offer a viable
alternative. Finally, it was concluded that the total strategy (ranks benchmarks
by their total coverage) displayed better performance than the additional strategy
(ranks benchmarks by coverage which was not covered by other, already ranked
benchmarks). The results of this study imply that static coverage technique can be
useful for optimization (which may include limited time to run and thus prioritize
microbenchmarks) and also provide other potential ways in which the benchmarking
suites can be improved.

Khatchadourian et al.[12] used JMH in their study for assessment of the perfor-
mance impact of the novel automated refactoring method for the optimization of
Java 8 stream code. They stated that using a test harness such as JMH is impor-
tant for isolation and assessment of performance change caused by the changes of the
code. Therefore, benchmark suites provide Java projects with very efficient perfor-
mance improvement indicators. Additionally, during the study, some of the assessed
projects did not include JMH benchmarks but contained large JUnit test suites.
Some of the unit tests from such projects were converted into JMH benchmarks via
replacement of @Test annotation with @Benchmark annotation, effectively turning
the methods into JMH performance tests, which were then successfully used to as-
sess projects’ performance changes. This study shows that conversion of unit tests
to benchmarks is an efficient way to assess performance of the projects that don’t
have benchmark suites (or have very small number of benchmarks), which corrob-

2. Theory

orates the usage of ju2jmh unit test-to-benchmark conversion tool in this study.
Another point raised in research work by Khatchadourian et al. is the importance
of JMH suites for isolation and assessment of software performance changes. This
means that improvements in benchmarking operation made possible by this study
can potentially greatly contribute to quality and reliability of Java-based software
(by providing Java developers with efficient performance tracking methods).

Laaber and Leitner [3] studied the quality of software microbenchmark suites, fo-
cusing on their CI integration as well as suitability to provide rapid performance
feedback. Ten open-source libraries implemented in Java and Go were investigated
with variable size of benchmark suites and duration runtimes. During the study, it
was discovered that sometimes benchmarks display result variability equal or higher
than 50%, signifying that some of them may not be efficient for discovery of slow-
downs. Additionally, artificial slowdowns were introduced in assessed open-source
projects to determine if the benchmark suites will detect them. A new metric for
performance-test quality was introduced, named ABS (API benchmarking score)
for more efficient benchmark suite assessment. In summary, the methodology de-
veloped in this study can be used to generate or suggest benchmarks for untested
API parts, assess quality of microbenchmark suites as well as select a test set for
an efficient continuous integration procedure. The ABS was of particular interest
for this research, since it can be used to assess the efficiency of the optimization
methods applied to microbenchmarking more efficiently.

2.3 Benchmark testing with junit2jmh

The junit2jmh is a relatively new benchmarking approach, which uses existing JU-
nit 4 unit tests of the project in order to generate benchmark suites exercising the
same functionality as the tests and enable continuous performance assessment [4].
It was developed to address the rarity of benchmark suites in Java projects and
enable developers to conduct easier benchmarking without spending time on writ-
ing the benchmarks manually. The main idea behind usage of existing tests for
benchmark generation was that primary objects of regression testing (continuous
integration projects) are very likely to have a test suite already. This makes usage
of benchmarking in such projects much more practical and less time-consuming.

3

Methods

The main scientific method used in this project was an experiment [13]. It was
based on open-source projects and had the following variables. Dependent variables
were the quality of the generated benchmark suite (in terms of code coverage and
stability of the resulting benchmarks) and its execution time. Controlled variable
was represented by the execution conditions - all tests were performed in a pub-
lic/private cloud environment in order to ensure stable and reliable performance
that would not impact study results in a negative way. Finally, the independent
variable was the type of the optimization approach - the strategy/method used to
improve performance of the analyzed microbenchmarking method.

3.1 Experiment setup

/ N - ~ / N .
Search for Potentially " Doesthe . yes Does the ™ s Does the ™ e Conyerl Apply optimization
/ . /" project contain ™, /" project compile ™. project's unit approaches to the Analyze the
—» Java projectin |—w| useful project » project use - - - > : >
~ / . agoodtest ~_and run without - tests into project's converted results
Github found ~ JUnit4? - N / \ /
N / . suite? - . erors? benchmarks benchmark suite

T3 T -

Repeat three times for three projects

Figure 3.1: Experiment setup diagram

The experiment was conducted as follows (Fig. 3.1). Firstly, the source code of
several different open-source projects was obtained to be used in the study. The
main criteria for the project selection was presence of good test suites (that contain
several hundreds to thousands test cases and have as few failures as possible) in
the project that can be converted into the benchmarks and used for the analysis.
Also, the project had to compile and run without errors and also use JUnit 4 (so
that junit2jmh will be able to convert its test cases into benchmarks). Additionally,
the virtual testing environment was set up and tested. After that, the optimization
testing tool was implemented and tested. The optimization approaches were then
applied to the benchmark suites generated by junit2jmh (sixty runs in total for each
approach, explained in detail in section 3.1.4.1) and results of this application were
analyzed. The process was repeated three times with three different Java projects.

3. Methods

Name Description Version | Test suite size

RxJava Java VM-based Reactive Extensions | 3.0.0 12285
implementation

Mockito Mocking framework for unit tests | 4.5.1 2067

implemented in Java
Stubby4j HTTP/1.1, HTTP/2 & WebSockets | 7.5.2 446

stub server

Table 3.1: Study objects

3.1.1 Study objects

Study objects included several open-source Java projects with test suites that could
be converted into benchmarks with junit2jmh (Table 3.1).

3.1.1.1 RxJava

The first project chosen for the assessment was RxJava [14], version 3.0.0. It’s a Java
VM-based Reactive Extensions implementation, which can be used for composing
event-based and asynchronous programs, using observable sequences. The main
reason why this project was chosen is its extensive test suite of over 12000 cases,
which provides lots of material for testing of optimization approaches. Additionally,
the project contained its own benchmark suite and had necessary configurations
and settings for running both tests and benchmarks, making conduction of the
experiment easier.

3.1.1.2 Mockito

The second experimental objects was Mockito [15], version 4.5.1. It’s a popular
mocking framework for unit tests implemented in Java. The Mockito framework
was chosen for the experiment because of its rather large test suite of over 2000
cases which could be converted into a correspondingly large benchmark suite.

3.1.1.3 Stubby4j

The last project chosen for the optimization testing was Stubby4j [16], version 7.5.2.
It’'sa HTTP/1.1, HTTP /2 and WebSockets stub server that can be used for stubbing
(introducing components that simply return certain result for testing purposes) of
distributed web services in non-containerized environments and docker for contract
and integration testing. It had smaller test suite compared to the other study objects
(448 cases), and was chosen in order to study if patterns in optimization approach
efficiency remain similar for both larger and smaller project sizes.

3.1.2 Evaluated scenarios

In order to ensure high accuracy of the research and maintain consistency, each
optimization method would be run under the same conditions (sixty benchmarks per
suite, twenty measurement iterations, ten warmup iterations, two forks, one second

3. Methods

warmup and iteration measurement time). The parameters were chosen as they
both enable reasonably fast benchmark running time (around forty seconds) and
allow to collect enough data from the benchmark run for the analysis. In addition,
randomly selected sixty benchmarks were run as a baseline for further comparison
of the optimization approaches. The optimization scenarios themselves were created
according to the research questions. There were four basic scenarios: prioritization of
most stable benchmarks, prioritization of benchmarks whose "parent" tests running
times were in a certain interval (included three sub-scenarios with intervals which
contained larger number of tests compared to others), selection of number of random
tests from a number of random packages and prioritization of benchmarks with the
highest static code coverage (included two sub-scenarios with instruction and branch
coverage).

There were also other potential optimization approaches (such as prioritization of
benchmarks by dynamic code coverage, selection of benchmarks with certain score
confidence interval etc.), but they were not used in the experiment for a variety of
reasons. For example, measurement of dynamic code coverage is rather complex in
terms of implementation, as it’s needed to both run the program and then analyze its
behavior using collected runtime information such as file accesses, network activities,
system call traces, and system logs, which requires substantially more resources than
static code coverage [17]. As another example, selection of benchmarks basing on
the run results of the entire unoptimized suite (e.g. via score confidence interval)
was impractical because of very long execution time of said suite (up to nineteen
days with chosen experimental JMH settings, depending on project).

3.1.2.1 Baseline

The baseline to be used in optimization method comparison was the least complex
approach - a completely random selection of sixty benchmarks from the entire suite.
This was accomplished via the Optimizer software (described below), in two stages.
The first stage involved search for benchmark methods in all classes, assignment of an
index to each of them and determination of their number in the project. The second
stage involved generation of sixty random integers between zero and a number of
benchmarks in the suite and selection of benchmarks with indexes corresponding to
those integers. As a result, sixty completely random benchmarks were selected and
others were ignored during the JMH run. The performance of the suites generated
in this way was used as a baseline threshold for the other approaches (performing
better than baseline shows efficiency of the approach when it comes to a particular
metric).

3.1.2.2 Stability prioritization

For prioritization by stability, the test suite of the analyzed project was run five
times with IntelliJ [18], producing .xml test results with each test case’s run times.
As according to Alexandersson [4], stability of benchmark made with junit2jmh
corresponds to the stability of the unit test it was converted from, the data from
xml files was used to calculate standard deviation of time of five test runs (Fig.

10

3. Methods

3.2). It was in turn used for the benchmark stability prioritization approach (RQ
2), as the lower the standard deviation is, the more stable and constant the test’s
running time is over repeated runs. Stability prioritization may potentially lead to
successful optimization in terms of the benchmark stability.

name “ avg_dur stability

java:test://org.concurrentmockito. ThreadsRunAllTestsHal fManualTest. shouldRun InMultipleThreads 44694 0.2722354984
java:test://org.concurrentmockito. ThreadsShareAMockTest.shouldAllowverifying InThreads 141.0 0.2475529400
java:test://org.concurrentmockito. ThreadsShareGenerouslyStubbedMockTest.shoul d Al owVerifyingInThreads 1019.4 0.0136294863
javaitest;//org.concurrentmockito ThreadVerifiesContinuouslyinteractingMockTest.shoul d AllowVerifyingInThreads 3711.0 02263390269
java:test://org.concurrentmockito VerificationInOrderFromMultipleThreadsTest. shouldVerifylnOrderWhenMultiple ThreadsinteractWithMock 3.0 0.0888888889
java:test://org.mockito. AnnotationsAreCopiedFromMockedTypeTest. mock_should_have_annotations_copied_from_mocked_type_at_class_level 2838 0.1863425926
java:test/jorg.mockito.AnnotationsAreCopiedFromMocked TypeTest. mock_should_have_annotations_copied_from_mocked_type_on_method_parameters 87.8 03279014742
java:test/forg. mockito. AnnotationsAreCopiedFromMockedTypeTest. mock_should_have_annotations_copied_from_mocked_type_on_methods 038 0.2500000000

java:test://org.mockito. ArgumentCaptorTest. tell_handy_return_values_to_return_value_for 214 1.4539261071

Figure 3.2: Example of test case stability and mean run time data

3.1.2.3 Running time interval heuristic

For the running time interval prioritization heuristic, a similar approach was used as
during Stability prioritization. Namely, the results of five runs of project’s test suite
in IntelliJ (.xml files) were analyzed (Fig. 3.2). The mean running time of each test
case’s five runs’ results was used for time interval heuristic (RQ 1), with random
sixty benchmarks being selected from a set with given mean running time interval.
Three intervals were selected (0 to 5ms, 5 to 10ms and 10 to 15ms) for RxJava and
Mockito, as most of those projects’ test cases had run time in this interval (Fig. 3.3),
meaning larger sample and more validity for such interval pick. The situation was
different for Stubby4j, which had a comparably small test suite and thus possessed
less than sixty benchmarks for all time intervals above 10ms. Two intervals were
selected for it (0-5ms and 5-10ms). Prioritization of benchmarks whose "parent” unit
tests had such short running times may potentially lead to shorter running time for
the entire suite.

3.1.2.4 Random package heuristic

The random package selection heuristic was implemented in a similar way to the
baseline, but with three stages instead of two. In first stage, the optimizer soft-
ware would search for unique packages in the analyzed project and assign the index
to each one. In the second stage, a number (determined by the user) of random
integers between zero and unique package count was generated and packages with
those indexes were selected. In the third stage, a number (again determined by the
user) of benchmarks was randomly selected from each package in a way described
in "Baseline" subsection. This led to a subset of the main benchmark suite with
two randomization stages. Such randomization is more precise and more evenly
distributed than simple selection of the benchmarks from the entire suite and thus
may offer improved results over the baseline (completely random selection).

11

3. Methods

RxJava Stubby4j

Frequency
£000 8000
1]
100 150 200 250
1 1 1]

4000
Il
Frequency

2000
I
1

0
L

= - I T T T T 1
10 20 30 40 S0

T T T T
0 S0 100 150 200 250 300 0

Mean run time Mean run time

Mockito

1500

1000

Frequency

500

I T T T T T 1
0 S0 100 150 200 250 300

Mean run time

Figure 3.3: Frequency of test cases in different time intervals in test subjects

3.1.2.5 Coverage prioritization

The prioritization by static code coverage was the most complex, as no working
standalone tools were found that could calculate each individual test case’s code
coverage and provide this data in an analyzable report. Instead, the new function-
ality was implemented for Benchmark Optimizer software, which ran each test case
individually with Jacoco plugin and parsed the static code coverage data from the
run result into the .csv file (fig 3.4). This resulted in an easily analyzable table
with branch and instruction coverage values for each test. The test cases were then
sorted by the coverage (the less missed instructions or branches, the better) and 60
with the highest coverage were selected for the assessment of RQ 3 with two tested
coverage types - branch and instruction. Such prioritization may lead to improved
static code coverage of the optimized suite compared to the baseline (with instruc-
tion and branch coverage approaches potentially performing better in terms of their
namesake metrics).

3.1.2.6 Approach comparison

The results of the optimization using those approaches (in form of .csv files) were
analyzed and compared in order to determine which one is the most efficient at this
task. Optimization methods were compared both to baseline (randomly selected
benchmarks) and to each other in terms of performance. The three metrics used for
comparison were static code coverage (in terms of missed instructions and branches),

12

3. Methods

Test.name Missed.Instructions Total.instructions Missed.Branches Total.Branches
1 jawatestdio.reactivex.ngava3.completable CompletableRetryTest retryTimesPredicatelithMatchingRetrydmount 158212 159042 14597 14954
2 Javatestifioreactivexngaval.completable CompletableRetryTest retryTime sPredicatelith MotMatchingRetryamo.,, 153161 150042 14592 14064
3 Javatesti/fioreactivexngaval.completable CompletableRetryTestretryTime sPredicatelvithMatchin gPredicate 158165 152042 14592 14954
4 Javatestiffioreactivexingavald.completable CompletableRetryTestuntilTrugEmpty 158275 159042 14911 14954
5 jawartestffio.reactivex.ngawa3.completable CompletableRetryTest.untilTrueErrar 153170 155042 14902 14954
6 javatestifioreactivexngaval.completable CompletableRetryTest retryTime sPredicatelithZeroRetries 188177 150042 14598 14064
7 Jjavatestiioreactivexrgaval.completable CompletableRetryTestuntilFalseEmpty 158275 152042 14911 14954
8 jawatestifio.reactivex.ngawal.completable CompletableRetryTestuntilFalseErrar 158177 159042 148503 14954
9 jawartestffio.reactivex.ngawa3.completable. CompletableTimerTest.timer 153538 155042 14936 14954
10 javatestffioreactivex.ngaval.completable CompletableTestretrySTimes 188117 150042 14876 14064
11 javatestifioreactivex.ngaval.completable CompletableTestfromRunnableMarmal 158613 152042 14915 14954
12 javaitestfio.reactivex.ngava3.completable.CompletableTest. mergefdultipleSources 158486 159042 148905 14954
13 jawatestffio.reactivex.ngava3.completable. CompletableTest.mergeDelayErrorObservablebanyOneThrowes 157990 155042 14865 14954
14 javatestffioreactivex.ngaval.completable CompletableTestsubscribeActionError 158569 150042 14918 14064
15 javatestifioreactivex.ngaval.completable CompletableTest.concatObservableManyOneThrows 158272 152042 145390 14954
16 javaitestifio.reactivex.ngawa3.completable. CompletahleTest.andThenSingle 158175 159042 14887 14954
17 javattest:/fin.reactivex.ngawad.completable CompletableTest.mergeDelayErroriterableEmpty 153519 150042 14911 14954
18 javatestffioreactivex.ngaval.completable CompletableTestusingDisposerThrows 158552 150042 14911 14064

Figure 3.4: Fragment of an individual test case coverage file

benchmark stability and running time of the benchmark suite. The RStudio soft-
ware was used for this task, because of its efficiency in analyzing vast amounts of
experimental data.

3.1.3 Execution environment

The execution environment was composed of two identical cloud-based virtual ma-
chines, each running an Ubuntu 20.04 OS and having 16 GB of RAM and 40 GB
of storage. The machines with those parameters were chosen because earlier test
attempts of experimental procedure on VMs with less RAM failed as a result of
insufficient memory. Each machine had copies of cloned GitHub repositories of ana-
lyzed open-source projects, a .jar file of compiled optimization tool and all necessary
software installed for experimental operation (e.g. gradle, nohup).

3.1.4 Used tools

Several tools were used during the study, both for direct application of the optimiza-
tion approaches to study objects and for other activities necessary for the experi-
ment, such as test running time measurement and compilation of study subjects’
source code. These tools are described below.

3.1.4.1 Optimization tool

In order to test the optimization methods, a BenchmarkOptimizer software was
developed in Java. It consists of five classes that provide different functions for au-
tomation of the testing process. (3.5).

The Main class contained the main method used to run the program as well as meth-
ods for recursive search of the analyzed project’s directory for files, preparation of
log files and debug diagnostics. It also uses three other classes to apply different
optimization strategies (chosen by the user).

13

3. Methods

CoverageCalculator
+createCoverageSuite()
+readBenchmarkCSV()
+parseBenchmarkCSV()

N\

I

I
<<USE® >

I

:

,

Cc dExecutor Main FileReader

+runJMHCommand() +main() +selectBenchmarksAccordingToFile()
+parseTestFile() <C - - - <suser> ____ +searchDirectory() - <<uses> - +selectClassesAccordingToFile()
+individualCoverageCommandy() +prepareLogFiles() +deleteNestedBenchmarks()
+getBenchmarkPaths()
+printPaths()

<<ySET>
1
1

\/

Random!
+completelyRandomSelection()
+randomlySelectNumberFromEachclass()
+randomPackageSelect()
+searchNestedBenchmarks()
+deleteNestedBenchmarks()

Figure 3.5: Benchmark optimizer class diagram

The FileReader class allowed to select benchmarks and classes containing them ac-
cording to the text file provided by the user. Since benchmarks’ parameters such as
coverage and stability were calculated outside of the program, this class allowed to
test suites created by such methods. It was used to investigate RQ 2, 3 as well as
an prioritization of benchmarks according to their execution time (part of RQ 1).

The RandomSelector class was used to test the random package selection heuristic
and to produce a baseline (randomly selected benchmark suite) for comparison to
other approaches.

The CommandExecutor class provided functionalities for building the optimized
JMH benchmark suite into the JAR file, its subsequent execution according to the
parameters defined by the user and parsing of the JSON files created by JMH runs
into CSV format, which can then be used for data analysis. It also contained method
for analysis of individual test cases’ static code coverage (for RQ 3).

The CoverageCalculator class enabled assessment of the optimized benchmark suites’
static code coverage (which is one of the metrics for optimization approaches’ effi-
ciency comparison).

The entire tool works as a fully-automatic pipeline (example shown in fig 3.6).
Firstly, the user has to start it with necessary arguments (e.g. benchmark direc-
tory, test type, number of iterations etc.). Secondly, the tool cleans the old log files
(to avoid process slowdown caused by lack of memory) and conducts optimization
approach testing loops/cycles. There are two types of loops: outer (which involve

14

3. Methods

% RandomSelector CommandExecutor
|
|

User |
|

}

i 1.1: searchDirectory() |
|

|

|

|

|

f

|

1: Execution parameters

i 1.2: prepareLogFiles()

[OuterLoop] 1.3: randomPackageSelect() tﬂ

Ionp]

1.4: process finished

|
T
M) 1.5: runJMHCommand()

1.5.1: parseTestFile()
1.5.2: parsing finished

m—— 1

Figure 3.6: Benchmark optimizer system sequence diagram

benchmark rawDatal rawData2 rawData3 rawDatad rawDats5 jmhversiomode threads forks jvm Jvmergs jdkversiorymName vm\Versior warmuplterations
in.reacti b _Benchmark benchmark 445.95702¢ 364, 53588 329,300126 407506764 375,30920838: 1.2 thrpt 1 2 fus/ibfvm () 10141 OpeniDK6110.14.141
in.reacti Tests._Benchmark.benchmark_r 157538.802163407.05 144763,092 1550851101 75545,3781 7121 thrpt 1 2 fus/ibfvm () 110141 OpeniDK 611.0.14.141
in.reacti ITests._Benchmark. benchmark_t 143536,992143851, 676 105985.216 127687077 156273,886844, 1.2 thrpt 2 fuse/iib/jvm, (1 10141 OpenioK 611.0.14.141
in.reacti 3.internal.disposabl liableD _Benchmark.benchmark_disposeRace 38967661 45.416626% 35, 3621545 20,904199725.8555196149. 121 thrpt
Io.reactivexrjavad.internal jdks, _Benchmark benchmark_ 7892,2682 7403.147177912. 77905 7798, 69665 7626.30593945/1.21 thpt
o 3.ntemal joks,Parallel Test._Benchmark benchmark_none 255.290851233,014021 261, 752156 293.868001 279, 761628124 121 thrpt
at] letabl _Benchmark benchmark_onrrorThrows2 80344,4633101211,717125245,095 112124 S66 126501, 6532311121 thrpt
io.reactivexrjavad.internal.cperats letabl _Benchmark benchmark_disposedupfront 15259.115113636.0884 11734, 2090 15575.240C 132619648747, 1.21 _ thrpt
io.reactivexjavad.internal. FlowableCombineLatestTest._Benchmark,benchmark_fusedNormal 277070285 203317,54 326101, 08€ 337741035 35251 7.029900: 1.2 thrpt

2 fustfliofjvm. (1 10141 Openiok 611.0.14.141
2 fustfliofjvm.[1 110141 Openiok 611.0,14.141
2 fustflibfjvm.[1 10141 OpenioKk 611.0.14.141
2 fustflibfjvm.[1 10141 OpenioK 611.0.14.141
2 fust/lib/jvm.[] 10141 OpenioK 611.0.14.141
2 fust/lib/jvm.[] 10141 OpeniDK §11.0.14.141

Figure 3.7: Fragment of an optimizer’s benchmark run output

generation and building of new set of benchmarks via chosen approach) and inner
(which involve same set of benchmarks being run several times and take place in-
side outer loop). Each test run in the study contained thirty outer and two inner
loops, leading to sixty iterations for each approach in total. After the end of every
inner loop, the data from JMH run’s JSON file is parsed (benchmark name, run
parameters, score etc, see fig 3.7) into CSV format and added to the output file.
This "constant file writing" aspect greatly increases tool’s fault tolerance, as even if
the program fails at some point, the data it recorded before stopping will still be
available. After the last loop was finished, the tool stops automatically. The data
from the run could then used to assess the efficiency of the tested approach. As the
tool’s run may take a long time (around forty two hours) in the experimental setup,
a 'nohup" tool from Ubuntu was used to make the optimizer run in the background
without need of user intervention.

Additionally, the BenchmarkOptimizer was used to calculate code coverage of bench-
mark suites generated by junit2jmh. The principle behind this operation is similar to
the optimization functionality - the coverage algorithm selects a subset of unit tests
corresponding to the analyzed benchmark suite (since they cover the same parts of
the program) and runs it with the Jacoco plugin [19], producing the coverage re-
port (HTML example shown in fig 3.8). After the run is complete, coverage figures
(missed instructions and branches) are extracted from the test report, recorded to
.csv file and stored for further analysis.

15

3. Methods

rxjava

Element Missed Instructions+ Cov.© Missed Branches+ Cov.+ Missed Cxty+ Missed Lines¢ Missed+ Methods+ Missed+ Classes
ftio.reactivex.rxjava3.internal.operators.flowable 4% 3% 4,434 4,582 13,005 13,582 2,004 2,126 390 430
fio.reactivex.rxjava3.internal.operators.observable 5% == 3% 3,279 3,401 9,449 9,954 1,769 1,876 341 379
io.reactivex.rxjava3.core |] 5% = 9% 1,669 1,782 3,683 3,963 1,474 1,586 4 13
#io.reactivex.rxjava3.internal.operators.maybe = 3% = 2% 1,013 1,046 2,790 2,898 698 730 145 157
ftio.reactivex.rxjava3.internal.operators.parallel = 0% = 0% 557 560 1,708 1,715 223 226 46 47
ftio.reactivex.rxjava3.internal.operators.single = 5% & 4% 603 632 1,747 1,852 426 451 110 119
2 io.reactivex.rxjava3.internal.jdk8 | | 0% = 0% 557 557 1,707 1,707 295 295 65 65
1 io.reactivex.rxjava3.internal.operators.mixed = 4% = 3% 533 547 1,500 1,572 277 290 50 55
f io.reactivex.rxjava3.internal.operators.completable = 0% I 0% 465 471 1,403 1,416 306 312 81 84
1 io.reactivex.rxjava3.subjects | | 14% = 10% 524 579 1,141 1,325 180 225 16 23
1 io.reactivex.rxjava3.processors = 16% &= 7% 523 572 1,166 1,383 169 209 11 19
1 io.reactivex.rxjava3.internal.schedulers |] 26% I 14% 297 360 707 941 144 202 24 46
fio.reactivex.rxjava3.internal .observers H 6% I 3% 319 336 813 870 183 200 25 32
1 io.reactivex.rxjava3.internal.util [] 19% & 8% 302 352 606 738 126 174 12 26
fio.reactivex.rxjava3.internal.subscribers H 5% & 3% 259 266 588 622 144 151 20 22
fio.reactivex.rxjava3.observers] 26% I 21% 176 216 412 555 79 112 11 14
fio.reactivex.rxjava3.subscribers 1 26% | 26% 83 113 254 350 37 62 3 7
fiio.reactivex.rxjava3.internal functions 1 16% 8% 104 137 183 235 92 125 24 41
fiio.reactivex.rxjava3.internal.subscriptions 1 29% I 19% 150 183 256 363 53 80 2 10
1 io.reactivex.rejava3.parallel 1 8% 50% 55 59 149 160 52 55 1 2
fio.reactivex.rxjava3.internal.disposables | 31% | 21% 82 108 158 236 33 52 2 6
fio.reactivex.rxjava3.exceptions | 16% | 17% 46 55 102 129 19 27 6 10
fio.reactivex.rxjava3.disposables | 32% | 34% 59 80 119 182 29 45 5 9
fio.reactivex.rxjava3.plugins I 48% | 51% 93 152 120 313 40 93 0 1
fio.reactivex.rxjava3.operators | 51% 32% 33 64 77 168 10 39 0 2
Hio.reactivex.rxjava3.schedulers 46% 23% 40 73 62 131 26 58 0 14
Hio.reactivex.rxjava3.internal.queue 0% 0% 25 25 51 51 18 18 2 2
Hiio.reactivex.rxjava3.flowables 29% 0% 11 14 18 24 10 13 1 2
Hio.reactivex.rxjava3.observables 39% 0% 10 14 15 24 9 13 1 2
H#io.reactivex.rxjava3.annotations 0% nfa 1 1 7 7 1 1 1 1
H#io.reactivex.rxjava3.internal fuseable 9% nfa 13 15 15 17 13 15 1 2
Total 147,316 0f 159,042 7% 14,1330f 14,954 5% 16,315 17,352 44,011 47,483 8,939 9,861 1,400 1,642

Figure 3.8: Example of Jacoco HTML coverage report

The optimizer software was developed in several iterations, with more functionality
added on each stage (which was also tested every time in order to ensure high re-
liability). After the tool was developed, its optimization methods were applied to
the benchmark suites generated by junit2jmh. While the random package heuristic
(RQ 1) and baseline (random selection) were straightforward, other optimization
approaches required more work (described in "Evaluated scenarios' section).

3.1.4.2 IntelliJ

IntelliJ [18] is an integrated development environment (IDE) for Java, developed by
JetBrains. It was mainly used in the study for running unit tests in analyzed projects
and producing the .xml data of the run results that could be used for prioritization
of benchmarks by stability and run time interval.

3.1.4.3 Gradle

Gradle [20] is a tool for build automation that can be used for software development
in multiple programming languages. Apart from building the project, it also provides
functionalities for testing and publishing of the software. In this study, Gradle was
used to build and run the optimized JMH suites during the experiments.

3.1.4.4 RStudio

RStudio [21] is an IDE for R, which can be used for statistical computing, data
analysis and creation of analytical graphics (histograms, scatter plots etc.). In the
study it was mainly used to analyze and process experimental data in order to
visualize it and compare efficiency of different optimization approaches accurately.

16

3. Methods

3.1.4.5 MS Excel

Microsoft Excel [22] is a spreadsheet software developed by Microsoft that can be
used for processing (e.g. calculation, computation) as well as visualization of data.
In this study, the Excel was used for processing and subsequent visualization of the
experimental run data.

3.1.5 Analysis

After the experiment was conducted, the optimizer tool’s .csv file outputs for both
benchmark tests and Jacoco coverage reports were used to assess the quality of
benchmark suites produced via different optimization approaches. Average running
time was calculated for each sixty test runs of every optimization method as well
as average static code coverage (in terms of missed branches and instructions) and
average stability of each benchmark (standard deviation of its run time). This data
was then used to create diagrams (via MS Excel and RStudio) and subsequently
to analyze and compare different optimization approaches in terms of efficiency.
After the most efficient ones were determined (the ones which produced benchmark
suites with the best performance in terms of one or more experimental metrics), the
recommendations were also produced on which approaches are to be used in which
optimization-requiring situation.

3.1.6 Validity threats

Several factors could potentially compromise the validity of the results of this study,
which are described in this section.

3.1.6.1 Internal validity threats

During the experiment, only a limited number of repetitions could be run for each
approach because of time constraints. This factor could potentially negatively im-
pact study results (less data, less knowledge about factors that could experimental
runs etc.), which could in turn reduce validity of the study results.

Additionally, during the study, the free space of virtual machine used as execu-
tion environment was gradually reduced as more test subjects (open-source Java
projects) and experimental data accumulated over time. Although no visible issues
were detected during the study, such reduction of free storage space could potentially
negatively impact the performance of the virtual machine, compromising validity of
the study results.

3.1.6.2 External validity threats

Since the experiment was conducted with open-source Java projects only, the gen-
eralizability of obtained results may potentially be limited. For example, it’s not
known if the optimization methods that worked for experimental subjects in this
study will still work for industrial, closed source Java projects or if they will be
applicable to the software written in another programming language.

17

3. Methods

As the experiment was conducted in an Ubuntu-based virtual machine with specific
properties (16GB RAM 40GB storage), the results may potentially have limited
generalizability to other types of execution environments.

3.1.6.3 Construct validity threats

The virtual machine that served as an execution environment was periodically taken
offline by the provider for maintenance. While the optimizer tool recorded test re-
sults iteratively and the results remained even if shutdown occurred, such events
could potentially impact the work of the experimental tools and influence the re-
sult validity negatively. This threat was mitigated by running the tool outside of
maintenance days.

18

4

Results

After the experimental runs were conducted, the quantitative data was obtained
regarding the different optimization approaches’ performance, which is presented in
this section.

4.1 Coverage

180000

160000

140000
120000
100000
80000
60000
40000
20000
0

Highest Highest Baseline 5-10ms 10-15ms 0-5ms Random Most stable
coverage - coverage - package
instructions branch

Missed instructions

Figure 4.1: RxJava - missed instructions per different approaches

Static code coverage was assessed in terms of average number of missed instructions
and branches for all run cycles of each method. Therefore, in the diagrams lower
value shows higher coverage (less code was missed).

When it comes to static code coverage, the different optimization approaches demon-
strated varying effectiveness when applied to RxJava benchmark suite (results of this
assessment are shown in Fig 4.1 and 4.2). Prioritization of benchmarks by coverage
(branch and instruction) produced the suites with the highest code coverage (least
missed branches and instructions), which was expected, as it was one of the main
potential advantages of this approach. All other approaches were less efficient in this
regard, having slightly less static code coverage than even the baseline (completely
random benchmark selection, highlighted in red on the diagram), however the per-
formance difference between them was negligible. The prioritization of benchmarks

19

4. Results

16000
14000
12000
B
< 10000
(=]
c
©
o 8000
o]
1]
E 6000
=
4000
2000
0
Highest Highest Baseline 5-10ms 10-15ms 0-5ms Random Most stable
coverage- coverage - package

instructions branch

Figure 4.2: RxJava - missed branches per different approaches

whose tests ran in 5-10ms range produced second-best code coverage, while the 10-
15ms and 0-bms prioritization demonstrated slightly weaker results. The random
package selection produced suite with second-least coverage, while prioritization of
most stable benchmarks displayed the worst results in this regard. The minimal dif-
ference between worse-performing approaches could be caused by similar coverage in
suites that were not selected basing on this metric. While the highest coverage pri-
oritization approaches demonstrated noticeably higher coverage in terms of missed
instructions than the baseline and other methods, the difference was smaller when
it comes to branch coverage - around 10-15% between the baseline and the most
efficient approaches. All other approaches had even less difference between their
results, below 10%.

The optimization methods applied to the benchmark suite generated from Mock-
ito unit tests demonstrated slightly varying coverage in terms of missed branches
and instructions (Fig. 4.3 and 4.4). When it comes to instruction coverage, the
5-10ms prioritization produced the best results and was the only approach that
performed better than the baseline. Random package selection heuristic, prioritiza-
tion of most stable benchmarks as well as 10-15ms and 0-5ms interval prioritization
produced underperforming results, while highest coverage benchmark prioritization
approaches counter-intuitively produced suites with the lowest instruction coverage.
When it comes to branch coverage, the results were slightly different. While 0-5ms
prioritization, random package selection and highest instruction coverage prioriti-
zation approaches demonstrated similar performance as with instruction coverage,
other methods produced different results. Most stable benchmark prioritization
performed slightly better, while 10-15ms and 0-5ms prioritization were less efficient.
Highest branch coverage prioritization also demonstrated slightly better results with
this metric. In both branch and instruction coverage, the difference between all ap-
proaches was rather small, less than 10%.

20

4. Results

30000

25000
20000
15000
10000
5000
0

5-10ms Baseline Random 10-15ms 0-5ms Moststable Highest Highest
package coverage - coverage -
branch instructions

Missed instructions

Figure 4.3: Mockito - missed instructions per different approaches

2500

2000
1500
1000

50
0

5-10ms Baseline Random Moststable 10-15ms Highest 0-5ms Highest
package coverage - coverage -
branch instructions

Missed branches

=]

Figure 4.4: Mockito - missed branches per different approaches

When it comes to application of the optimization approaches to Stubby4j, they
performed as follows in terms of static code coverage (Fig. 4.5 and 4.6). In a similar
way to Mockito, highest coverage prioritization approaches actually produced suites
with the lowest coverage, both in terms of branch and instruction coverage. Other
optimization approaches were more efficient. In terms of missed instructions, 0-5ms
and 5-10ms prioritization produced higher-quality results, but still fell short of most
stable prioritization and random package selection (the latter being the only method
that surpassed baseline in terms of instruction coverage). When it comes to branch
coverage, the results were mostly similar to instruction coverage, but 5-10ms priori-
tization produced suites with the highest coverage, while random package selection
and 0-bms prioritization produced lower-quality results, with coverage between sta-

21

4. Results

12000

10000

8000
6000
4000
2000

0

Random Baseline Moststable 0-5ms 5-10ms Highest Highest
package coverage - coverage -
branch instructions

Missed instructions

Figure 4.5: Stubby4j - missed instructions per different approaches

5-10ms Baseline Maoststable Random 0-5ms Highest Highest
package coverage - coverage -
branch instructions

900

800

700

60

O

50

o

40

L=

30

Missed branches
]

20

L=

10

L=

O

Figure 4.6: Stubby4j - missed branches per different approaches

bility prioritization and coverage prioritization approaches. The difference in cover-
age between different approaches was noticeable here, sometimes reaching over 20%
(e.g. between the baseline and highest instruction coverage prioritization approach).
The suboptimal performance of coverage prioritization approaches in terms of suite
coverage metric was unexpected, as (as seen from the approaches’ names) high per-
formance in this area is supposed to be their main advantage. It could potentially
be explained by overlapping of the code covered by multiple benchmarks in the suite

22

4. Results

(when several of them run and cover the same branches/instructions), thus resulting
in less coverage overall.

4.2 Benchmark stability

35000

30000

25000

20000

15000

10000

5000
0 —_ ==

Highest Highest Baseline 0-5ms 10-15ms Moststable 5-10ms Random
coverage - coverage - package
branch instructions

Standard deviation

Figure 4.7: RxJava - benchmark stability of different approaches

Individual benchmark stability was calculated as a standard deviation of each bench-
mark’s fifteen run iterations’ duration in milliseconds (per experimental setup, Fig
4.7). After this, the average stability of the entire run of the optimization method
was calculated and used for the analysis. Since the diagram represents average stan-
dard deviation, smaller value shows higher stability. In terms of benchmark stability
for RxJava, the highest coverage benchmark prioritization approach showed the best
performance by a very wide margin, which was surprising given that prioritization
of most stable benchmarks showed noticeably inferior results. All other approaches
produced much more unstable benchmark suites, but 10-15ms prioritization showed
much more stability than 5-10ms prioritization, in turn being outperformed by 0-
5ms prioritization. Finally, the random package heuristic produced the worst suite
in terms of stability. All optimization approaches except highest coverage prior-
itization failed to surpass the baseline when it comes to the benchmark stability
metric.

23

4. Results

8000
7000

6000

5000
4000
3000
2000
1000
0 | |

Highest Highest 5-10ms Most stable 0-5ms 10-15ms Baseline Random
coverage - coverage - package
instructions branch

Standard deviation

Figure 4.8: Mockito - benchmark stability of different approaches

When it comes to benchmark stability for Mockito suite, optimization approaches
performed as follows (Fig. 4.8). Both highest coverage prioritization approaches
demonstrated the best benchmark stability, while other methods were considerably
less efficient in this regard. 5-10ms and 0-Hms prioritization as well as stability
prioritization approaches created much less stable suites than coverage prioritization
method. However, they still were more efficient than 10-15ms prioritization and
random package selection (which was also the only approach that failed to surpass
baseline when it comes to stability metric).

40000

35000

30000

25000
20000
15000
10000
5000 I
0 —_— —

Highest Highest Baseline 0-5ms 5-10ms Most stable Random
coverage - coverage - package
instructions branch

Standard deviation

Figure 4.9: Stubby4j - benchmark stability of different approaches

24

4. Results

In terms of stability, the optimization approaches applied to Stubby4j demonstrated
the following results (Fig. 4.9). Similarly to the other study objects, highest cov-
erage approaches again demonstrated exceptional benchmark stability, greatly out-
performing all other optimization methods (which also did not overcome baseline) in
terms of this metric. The 0-5ms prioritization had the second-best results in terms of
stability (but still very subpar compared to coverage prioritization methods), while
remaining approaches demonstrated even more substandard performance, with ran-
dom package selection heuristic producing the least stable benchmark suites. In
a similar way to RxJava, prioritization of the most stable benchmarks produced
second least stable suite, which was unexpected and counter-intuitive, as potential
advantage of this approach was increased stability of the resulting benchmark suite.

4.3 Running time

0-5ms 5-10ms Moststable 10-15ms Random Baseline Highest Highest
package coverage - coverage -
branch instructions

60

Run time (min)
= I 5] P o
[[e] (o] [] [}

o

Figure 4.10: RxJava - suite running time of different approaches

The running time was calculated as an average of execution times of each cycle for
each approach (Fig 4.10). When it comes to this metric in RxJava, almost all the
optimization approaches performed similarly: around forty minutes on average for
sixty benchmarks, with 0-bms prioritization producing the fastest-executing suite.
The only exceptions were highest coverage prioritization approaches, which were
significantly slower: more than fifty minutes.

25

4. Results

Baseline 0-5ms Moststable 10-15ms 5-10ms Random Highest Highest
package coverage- coverage-
branch instructions

50
45
4

o

3

o

3

(=]

2

[6)]

2

Run time {min)
[a]

1

w

1

Lo T V) B s}

Figure 4.11: Mockito - suite running time of different approaches

Regarding the running time for the Mockito suites, all optimization approaches per-
formed worse than the baseline (Fig. 4.11), but highest coverage methods produced
the slowest-executing suites (about 10% more time to execute), in a similar fashion
to the RxJava. All others methods produced slightly faster-executing suites, with
0-5ms prioritization being the fastest. However, in general there were no major dif-
ferences between approaches when it comes to execution time in this project.

26

4. Results

60

50

0

0-5ms Baseline 5-10ms Highest Highest Random Most stable
coverage - coverage - package
instructions branch

Run time (min)
b i I
o o o

o

Figure 4.12: Stubby4j - suite running time of different approaches

In terms of running time, the optimization approaches applied to the Stubby4j per-
formed as follows (Fig. 4.12). 0-5ms prioritization produced the fastest-executing
suites, similarly to previous study objects, while other approaches produced compa-
rable results, with only the most stable prioritization being an outlier, with the worst
result for this project at over 50min average 60-benchmark suite running time.

27

O

Conclusion

In this study, various benchmark generation optimization approaches were designed
and tested, producing different results.

5.1 Discussion

As seen from the results, the quality of the optimized benchmark suites varies greatly
depending on the optimization method. The results of those approaches’ application
are presented in this section with corresponding research questions.

5.1.1 Research question 1

Different simple heuristics demonstrated varying effectiveness in terms of different
metrics throughout the experiment. The in-depth description of their performance
is presented in this section.

5.1.1.1 Random package selection

The random package selection was the least efficient approach among simple heuris-
tics, for several reasons. Firstly, it consistently produced the least stable benchmark
suites by a wide margin for all three assessed projects, regardless of their size. This
means that the benchmark suite run results produced using this approach will vary
considerably from one execution to another, severely decreasing the accuracy of
the procedure and making it difficult to accurately measure the performance of the
assessed software artifact. Secondly, its performance in terms of coverage was unsat-
isfactory as well, as it either produced generally poor coverage results (in RxJava)
or failed to surpass baseline and produce improved results over other approaches
(Mockito and branch coverage in Stubby4j). The one and only exception was in-
struction coverage in Stubby4j, where it produced the best results and was the only
method to surpass the baseline. When it comes to running time, the results of
random package selection heuristic were subpar as well, as it failed to surpass the
baseline in two out of three projects and demonstrated similar results to other ap-
proaches in the third project (RxJava), without noticeable advantages.

Therefore, basing on very poor stability of suites generated by this approach as well
as almost complete absence of advantages over other optimization approaches in
terms of running time and coverage (with rare exceptions), it can be concluded that
random package selection is not an efficient benchmarking optimization approach.

28

5. Conclusion

5.1.1.2 Running time interval prioritization

The running time interval prioritization heuristic produced variable results depend-
ing on the chosen interval. The in-depth discussion of those sub-approaches and
their efficiency is presented below.

The 0-5ms prioritization approach produced suites with suboptimal coverage, never
surpassing the baseline and being either inferior to most other approaches in terms
of this metric (both coverage types in RxJava, and branch coverage in Mockito
and Stubby4j) or having medium quality results (instruction coverage in Mockito
and Stubby4j). This is not surprising, as faster-running test cases may potentially
cover less code, resulting in less coverage for the converted benchmark suite. 0-
bSms optimization results were noticeably better when it comes to stability. It was
the third best-performing approach in terms of this metric in RxJava and Stubby4j
(though still failing to surpass the baseline and performing significantly worse than
highest-coverage approaches in both cases). It showed medium stability results in
Mockito, surpassing the baseline and producing significantly more stable suites than
10-15ms prioritization and random package heuristic, although demonstrating less
efficiency than other approaches. The running time has proven to be the biggest
advantage of 0-5ms interval prioritization, as its suites consistently had the fastest
execution time of all approaches and only failed to surpass the baseline in Mockito.
This was expected, as fastest-executing test cases (compared to other optimization
approaches) naturally produced the fastest-executing benchmark suite. It should
be noted however that this advantage in execution time was quite small in all these
cases, never surpassing 10%.

Basing on all these factors it can be concluded that prioritization of benchmarks
whose "parent' test cases have running time in 0-5ms interval may potentially be
an efficient optimization approach when benchmarking time has to be as short as
possible, albeit the time savings may not reach more than 10%, as noted above.

The 5-10ms prioritization approach demonstrated somewhat inconsistent results
when it comes to coverage. For example, in RxJava it produced medium cover-
age suites in terms of missed branches and instructions (noticeably less than the
coverage prioritization approaches and less than the baseline, but slightly better
than other approaches) and was one of the worst-performing approaches in terms
of missed instructions in Stubby4j. On the other hand, it produced the highest-
coverage suites (both in terms of branch and instruction coverage) in Mockito and
demonstrated the highest branch coverage in Stubby4j, in both cases being the only
approach to surpass the baseline. However, in both of these cases the advantage was
quite small, less than 10% over the next-most efficient approach, in a similar man-
ner to execution time advantage of 0-5ms prioritization approach mentioned above.
When it comes to benchmark stability, the results were inconsistent yet again, as 5-
10ms prioritization demonstrated one of the lowest suite stability figures in RxJava
and Stubby4j, while being the third best method in Mockito in terms of this met-
ric. Regarding the running time, this approach demonstrated very similar results
to most other approaches (no noticeable advantages or disadvantages), with time
difference between most of them being negligible (with the exception of outliers such

29

5. Conclusion

as highest coverage approaches in RxJava and Mockito and stability prioritization
in Stubby4j).

To sum up, the 5-10ms prioritization may not be an efficient optimization method
because of its inconsistent performance in terms of static code coverage and bench-
mark stability and lack of noticeable improvements in terms of suite running time
over other approaches.

The last time interval to be experimented with was 10-15ms. It was the only interval
that was applied to two projects out of three, because of insufficient number of tests
in this interval in the smaller Stubby4j project. In terms of static code coverage,
it demonstrated medium-quality results in both Mockito and RxJava (in terms of
branch and instruction coverage), being near the middle in every graph, failing to
surpass the baseline and performing similarly to most other approaches with absence
of significant advantages and disadvantages (with the exception of RxJava, where it
performed noticeably worse than the highest coverage prioritization approaches). It
was a bit unexpected since longer-running benchmarks can potentially cover more
code (which is partially supported by the slow execution time of highest-coverage
approaches’ suites in the experiment) and result in higher-coverage suite. Some of
the possible reasons for this are overlapping of code covered by different benchmarks
as well as other reasons for longer test execution time unrelated to coverage such
as time-inefficient or complex methods ran by some of the benchmarks in 10-15ms
interval. In terms of benchmark stability, it produced mediocre results in both
Mockito and RxJava (producing one of the least stable suites in the former and
failing to surpass the baseline in the latter). In terms of running time, the 10-15ms
prioritization did not differ noticeably from most other optimization methods, pro-
ducing the suites with less than 10% difference in running time from them (with the
exception of slowest approaches such as coverage prioritization in RxJava).

Considering both its mostly inefficient performance in terms of experimental met-
rics as well as its potential unsuitability for smaller projects (which may not have
enough longer-running tests to create an optimized suite) as seen with Stubby4j, the
10-15ms time interval prioritization may not be considered an efficient optimization
approach.

To sum up, most of the simple heuristics tested in the experiment may not be con-
sidered efficient benchmarking optimization approaches. The only exception to this
is 0-bms time interval prioritization, which could potentially be effective in situa-
tions with time constraints when its necessary to conduct the benchmarking as fast
as possible. However, its rather small advantage in terms of time savings (less than
10%) as well as suboptimal performance in terms of static code coverage potentially
make its usage for the benchmark suite optimization a questionable choice.

30

5. Conclusion

5.1.2 Research question 2

The prioritization of benchmarks by stability produced somewhat unexpected re-
sults. It demonstrated inconsistent results in terms of coverage, producing ei-
ther suites with similar/slightly worse coverage than other approaches (in RxJava
and Mockito) or demonstrating noticeably better results than most of them (in
Stubby4j). However, the most surprising aspect of this method was the bench-
mark stability of the suites generated by it, which was either much worse than that
demonstrated by most other approaches (in RxJava and Stubby4j, in both cases
failing to surpass the baseline) or mediocre (in Mockito). Those results were rather
unexpected, as prioritizing benchmarks by their "parent" test stability should have
potentially led to creation of benchmark suites with the highest stability compared to
other approaches. This is because stability of the converted benchmark should corre-
spond to the stability of the unit test it was made from (according to Alexandersson
[4]). A possible explanation for such stability paradox observed in the experiment
is that stability of the unit test does not necessarily correspond to the one of its
converted benchmark. Furthermore, the differences between each test-benchmark
pair might be amplified with increasing size of the suite, leading to significantly
lower stability results than expected. When it comes to running time, the results
were inconsistent yet again, as stability prioritization approach demonstrated either
similar results to other methods with negligible difference (in RxJava and Mockito)
or performed the worst (it generated the slowest-running suite in Stubby4j by a wide
margin).

Considering its unimpressive results in terms of coverage and running time as well as
surprisingly bad stability of the benchmark suites generated with it, the benchmark
prioritization by stability may not be considered an efficient optimization approach,
at least when it comes to the benchmarks converted from unit tests as in this study.

5.1.3 Research question 3

As seen from the results, the static code coverage prioritization approach was unique
among others in terms of performance. The main reason for this was extraordinary
stability of the benchmark suites generated with it (both with instruction and branch
coverage prioritization), which bested all other optimization approaches by several
orders of magnitude in all tested projects. This was a really surprising and unex-
pected result, as such performance was expected from the stability prioritization
approach mentioned above and not from coverage prioritization. One potential ex-
planation for this is that long running time of the benchmarks contained in the suite
(noticeably longer than other optimization methods in RxJava and somewhat longer
in Mockito) results in their better stability, as performance fluctuations have time
to subside during the benchmark run, resulting in more consistent results. When it
comes to code coverage, another paradox emerged. While this approach performed
the best in the RxJava (much better branch and instruction coverage, only method
that surpassed the baseline, instruction coverage prioritization expectedly had much
higher instruction coverage), the results in other projects were opposite. In Mockito,
both instruction and branch coverage prioritization approaches actually produced
suites with the least coverage (albeit not very different from the ones made with

31

5. Conclusion

other optimization methods). In Stubby4j, both approaches performed noticeably
worse than others, with differences of up to 20% (between random package and high-
est coverage approaches in missed instructions metric in Stubby4j). The last case
was especially unexpected, as main potential advantage of this approach (outlined
in the experimental setup) was improved coverage of its suites. Such inconsistent
results could be explained bu overlapping of the code covered by multiple bench-
marks, in different projects. This means that static code coverage of this approach
may potentially be heavily dependent on the quality of the benchmark/test suite of
the assessed project. If those were made by skilled developers/researchers and there
is minimal overlap, this approach may produce good results in terms of coverage
(as seen in RxJava). Otherwise, the results may be inconsistent, as seen in Mockito
and Stubby4j. When it comes to running time, the coverage prioritization produced
the slowest-executing suites in RxJava (with slowdown of up to 20% compared to
other methods) and Mockito (less pronounced than in RxJava, slowdown lower than
10%, but still noticeable), while demonstrating medium-speed results in Stubby4;
(similar execution time to most other approaches). The slower execution time may
be explained by higher complexity of the benchmarks that cover more code (and
thus have more instructions to execute).

To sum up, while the coverage prioritization approach (both instruction and branch
subtypes) may be slower than other assessed methods and may produce benchmark
suites with inconsistent coverage depending on the project, it consistently demon-
strates the highest stability among the tested methods by a very wide margin and
thus can be considered a very efficient optimization approach. Its usage can be ad-
vised for most optimization-requiring situations, with possible exception, when very
strict time constrains are in place (then 0-5ms prioritization approach may be used
instead, greatly sacrificing stability for minor gains in execution time).

5.1.4 Baseline as a potential optimization approach

Per experiment setup, the simple straightforward selection of random benchmarks
was used as a baseline for comparison to other optimization approaches. However,
it demonstrated quite decent results on its own. For example, it consistently pro-
duced suites with one of the best static code coverage values (both in terms of
missed branches and instructions), only being surpassed significantly in RxJava by
the highest coverage prioritization approach. However, its coverage advantage over
most other approaches was not significant in most cases (less than 10%). It also
demonstrated the best stability behind the highest coverage approaches in RxJava
and Stubby4j (although still significantly worse than them), but was second-worst
in Mockito by a wide margin in terms of this metric. In terms of running time, it
performed similarly to most other approaches (except the slowest ones), and while
it produced some of the fastest-executing suites in Mockito and Stubby4j, the ad-
vantage was still very small compared to other methods.

Considering these decent results it can be concluded that random benchmark se-
lection can potentially be used as an optimization approach on its own, especially
considering simplicity of its application when compared to most other methods (for
example, it doesn’t require running benchmark "parent" tests, measuring their cov-

32

5. Conclusion

erage and stability). However, it still performed much worse than coverage priori-
tization in terms of benchmark stability and latter remains the most recommended
approach overall.

To summarize the results, from all potential optimization approaches outlined in re-
search questions and tested in this study, only one can be considered truly efficient
and consistent when it comes to at least one metric. This is of course the high-
est coverage prioritization approach (both branch and instruction coverage) which
produced the suites with significantly higher stability than other optimization meth-
ods. As noted above, it can be recommended for the majority of the optimization-
requiring situations. The only other approach that consistently demonstrated some
sort of advantage was 0-5ms time interval prioritization heuristic, which always
produced the fastest-executing suites. However, unlike the coverage prioritization
approach, the advantage of this one is much smaller, never exceeding 10% speed-up
in all experimental subjects and its numbers in terms of other metrics (benchmark
stability and instruction/branch coverage) were not very impressive as well. All
other optimization approaches demonstrated mostly suboptimal and inconsistent
results and can be considered inefficient.

5.2 Future work

Future work may be mostly focused on experimentation with other potential bench-
marking optimization approaches as well as improvements and additions to the
current method outlined in this study.

Firstly, usefulness of prioritization of benchmarks by the dynamic code coverage can
be investigated. Since static code coverage prioritization proved to be extremely ef-
ficient in terms of benchmark stability in this study, the dynamic coverage method
could also potentially display promising results. However, calculation of the dy-
namic code coverage is notoriously difficult, requiring run of the assessed program
and subsequent analysis of its behavior via usage of collected runtime information
such as file accesses, network activities, system call traces etc. [17]. Therefore, lots
of time and computing resources may be needed for such experiment.

Secondly, the run results of the entire benchmark suite of the project can be used
as a source for optimization approaches. For example, benchmarks may be prior-
itized by their score, confidence interval, stability (of benchmarks themselves and
not their "parent" unit tests), some of the secondary metrics etc. This method may
also potentially produce good results, since can be viewed as a direct improvement
of the existing benchmark suite without its "parent" test suite involved. However,
it can take a very long time to run such an experiment, as JMH suites can take
multiple weeks to execute.

Thirdly, prioritization of benchmarks by other types of coverage can be tested. In
this experiment only the branch and instruction coverage were assessed, thus it
leaves at least class and method coverage as potential optimization approaches to
be tested in the future. However, since there were almost no major differences in

33

5. Conclusion

terms of performance between the tested instruction and branch coverage (except
instruction coverage in RxJava, where instruction coverage prioritization performed
much better), testing other coverage types prioritization may potentially be redun-
dant and may even produce similar results to the already evaluated similar methods
used in this study.

Fourthly, combination of the most efficient optimization approaches can be investi-
gated. Theoretically, a well-executed combination of methods based on a rational
selection can potentially be more efficient than trying to develop or find a single
most efficient approach [23]. Initial scope of this study involved investigation of such
combined methods, but since the experiments did not produce a selection of "most
efficient” optimization methods, with only the static code coverage consistently pro-
ducing far more stable suites than other approaches and 0-5ms prioritization always
being slightly faster to execute than other methods. However, with addition of new
optimization approaches such as, for example, dynamic code coverage prioritization
and benchmark selection by score, a selection of the "best" approaches may poten-
tially be obtained and their combination(s) investigated thoroughly.

Fifthly, the junit2jmh optimization tool can be modified and modernized. For exam-
ple, support for JUnit 5 test cases can be added, as lots of the newer Java projects
use it [24], making them incompatible with the current version of junit2jmh. The
modified tool can then be tested with the new projects available for analysis, poten-
tially allowing for a larger selection of study objects to experiment with.

Sixthly, the sample size can be greatly expanded. Three projects were assessed
in this study because of time constraints, but with more time available (and with
modifications to junit2jmh outlined above), the number of study subjects can be
greatly expanded, potentially allowing to obtain more data on efficiency of different
optimization approaches and study each one of them more deeply. Since this will
require lots of time, more virtual machines may be needed for such setup, in order
to run more experimental iterations concurrently.

5.3 Study limitations

Even though the study has been conducted effectively and produced conclusive re-
sults, it still had its limitations, which will be described in this section.

Firstly, only Java benchmarking process’ optimization was assessed, meaning that
results of similar procedure being conducted for the software implemented in other
programming languages may be different. Additional experiments have to be con-
ducted in order to assess this. Secondly, because of time constraints, only three
projects were selected and analyzed. However, they all produced differently-sized
benchmark suites and similar patterns were observed during the experimental runs
(e.g. consistently stable suites produced by coverage prioritization approaches).
Thirdly, only a part of possible optimization approaches were used (for reasons de-
scribed above), thus limiting efficiency assessment’s scope to them.

34

5. Conclusion

5.4 Conclusion

In this study, multiple potential optimization approaches for Java JMH benchmark-
ing were designed, presented, tested in an experimental environment, and analyzed.
The approaches included both - simple heuristics (such as random package selection
as well as prioritization of benchmarks whose "parent' test cases ran in a certain time
interval (0-bms, 5-10ms and 10-15ms)), and more complex methods (such as priori-
tization of benchmarks by stability and static code coverage (in terms of missed in-
structions and branches)). The experiment included application of these approaches
to the benchmarks generated from differently-sized unit test suites of three different
open-source projects (large suite for RxJava, medium-sized for Mockito and smaller
for Stubby4j). The results obtained from the experimental runs were then analyzed
and visualized. The analysis revealed that only one optimization method consis-
tently outperformed others by a great margin when it came to at least one metric
(static code coverage prioritization approach and its outstanding benchmark stabil-
ity). Another method was found to consistently produce the fastest-executing suites
(0-5ms time interval heuristic), but its advantage over other methods wasn’t nearly
as extreme as the one of code coverage prioritization approach.

The results of this study can be used as a guidance for the optimization of Java JMH
benchmark suites in projects (both pre-existing and newly converted from unit test
suites), which can potentially improve the benchmarking process, making it easier
to conduct and thus more accessible to both practitioners and researchers. This
may in turn lead to improvements in the regression testing field, as benchmarking
possesses unique advantages compared to other methods in this area (such as being
faster to setup and execute than load testing for example). This can potentially
result in substantial improvements of software quality (as defects will be found and
mitigated earlier, when the cost of this procedure is much lower), achieving better
performance of the IT sector.

However, the benchmarking area still remains understudied compared to other re-
gression testing methods and substantial amounts of additional research may be
needed in order to explore its true potential and put it to use in the software devel-
opment industry.

35

[1]

[10]

[11]

[12]

Bibliography

W. T. Tsai, X. Bai, R. Paul, and L. Yu, “Scenario-based functional regression
testing,” In 25th Annual International Computer Software and Applications
Conference, COMPSAC 2001, pp. 496-501, Oct 2001.

C. Laaber, H. C. Gall, and P. Leitner, “Applying test case prioritization to
software microbenchmarks,” Empirical Software Engineering, vol. 26, no. 6,
pp. 1-48, 2021.

C. Laaber and P. Leitner, “An evaluation of open-source software microbench-
mark suites for continuous performance assessment,” in Proceedings of the
15th International Conference on Mining Software Repositories, ser. MSR’18,
Gothenburg, Sweden:ACM, pp. 119-130, 2018.

N. Alexandersson, “JUnit-to-JMH: Automatic Generation of Performance
Benchmarks from Existing Unit Tests in Java,” 2021.

I. Molyneaux, “The art of application performance testing: from strategy to
tools,” O’Reilly Media, Inc, 2014.

P. Stefan, V. Horky, L. Bulej, and P. Tuma, “Unit testing performance in
Java projects: Are we there yet?” In Proceedings of the 8th ACM/SPEC on
International Conference on Performance Engineering, pp. 401-412, 2017.

P. Chittimalli and M. Harrold, “Recomputing coverage information to assist
regression testing.” IEEE Transactions on Software Engineering, vol. 35, no. 4,
pp- 496-501, 2009.

“Java microbenchmark harness (jmh),” https://github.com/openjdk/jmh,
2022.

H. G. C. Laaber, S.Wiirsten and P. Leitner, “Dynamically reconfiguring soft-
ware microbenchmarks: Reducing execution time without sacrificing result
quality.” In Proceedings of the 28th ACM Joint Meeting on FEuropean Soft-
ware Engineering Conference and Symposium on the Foundations of Software
Engineering, pp. 989-1001, Nov 2020.

L. Cordeiro, D. Kroening, and P. Schrammel, “ Benchmarking of Java verifica-
tion tools at the software verification competition,” SV-COMP, 2018.

T. F. Bissyandé, F. Thung, D. Lo, L. Jiang, and L. Réveillere, “Popularity,
interoperability, and impact of programming languages in 100,000 open source
projects,” In 2013 IEEE 37th annual computer software and applications con-
ference, pp. 303-312, 2013.

R. Khatchadourian, Y. Tang, and M. Bagherzadeh, “Safe automated refac-
toring for intelligent parallelization of java 8 streams,” Science of Computer
Programming, 2020.

36

https://github.com/openjdk/jmh

Bibliography

[13]
[14]
[15]

[16]

[17]

[24]

S. L. Pfleeger, “Experimental design and analysis in software engineering,” An-
nals of Software Engineering, vol. 1, no. 1, pp. 219-253, 1995.

“RxJava: Reactive Extensions for the JVM,” https://github.com/ReactiveX/
RxJava, 2022.

“Mockito: Most popular Mocking framework for unit tests written in Java,”
https://github.com/mockito/mockito, 2022.

“Stubby4j:HTTP /1.1, HTTP/2 and WebSockets stub server for stubbing dis-
tributed web services in Docker and non-containerized environments for inte-
gration and contract testing,” https://github.com/azagniotov/stubby4j, 2022.
C. Y. Huang, C. H. Chiu, C. H. Lin, and H. W. Tzeng, “Code coverage mea-
surement for Android dynamic analysis tools.” In 2015 IEEE International
Conference on Mobile Services, pp. 209-216, 2015.

] “Intellij idea,” https://www.jetbrains.com/idea/, 2022.
] “JaCoCo Java Code Coverage Library,” https://github.com/jacoco/jacoco,

2022.

“Gradle - a build automation tool for multi-language software development,”
https://gradle.org/, 2022.

“RStudio - an integrated development environment (IDE) for R,” https://www.
rstudio.com/, 2022.

“Microsoft Excel,” https://www.microsoft.com/en-us/microsoft-365/excel.

L. W. Schuwirth and C. P. Van Der Vleuten, “Different written assessment
methods: what can be said about their strengths and weaknesses?” Computer,
vol. 38, no. 9, pp. 974-979, 2004.

“JUnit 5,” https://mvnrepository.com/artifact /org.junit /junit5-engine/, 2022.

37

https://github.com/ReactiveX/RxJava
https://github.com/ReactiveX/RxJava
https://github.com/mockito/mockito
https://github.com/azagniotov/stubby4j
https://www.jetbrains.com/idea/
https://github.com/jacoco/jacoco
https://gradle.org/
https://www.rstudio.com/
https://www.rstudio.com/
https://www.microsoft.com/en-us/microsoft-365/excel
https://mvnrepository.com/artifact/org.junit/junit5-engine/

A.1 Experimental results - raw data

A

Appendix

A.1.1 RxJava

Optimization | Missed Missed Stability Run time

approach instructions | branches

Highest coverage | 108602 12311 515 53.2

- instructions

Highest coverage | 124372 12415 221 52

- branch

Baseline 139798 13492 14392 41.9

5-10ms 142395 13669 25557 41

10-15ms 142449 13837 18303 41.6

0-5ms 145637 13965 16061 40.4

Random 145879 13993 29448 41.7

package

Most stable 147277 14127 24061 414
A.1.2 Mockito

Optimization | Missed Missed Stability Run time

approach instructions | branches

Highest coverage | 24481 2117 206 44.2

- instructions

Highest coverage | 24139 2083 221 44.1

- branch

Baseline 23476 2038 6224 41.4

5-10ms 23443 2011 2911 42.11

10-15ms 24047 2080 5540 42

0-5ms 24052 2089 3460 41.7

Random 23804 2066 6416 42.3

package

Most stable 24135 2072 3435 41.9

A. Appendix

A.1.3 Stubby4j

Optimization | Missed Missed Stability Run time
approach instructions | branches

Highest coverage | 10674 729 284 43.7
- instructions

Highest coverage | 10507 701 368 44.2
- branch

Baseline 8372 634 9783 43.5
5-10ms 9235 629 26089 43.51
0-5ms 9176 668 12490 40.5
Random 8104 655 32963 45.3
package

Most stable 8511 649 27357 51.9

IT

	List of Figures
	List of Tables
	Introduction
	Purpose of the study
	Research questions

	Theory
	Performance testing
	Benchmark testing
	Benchmark testing with junit2jmh

	Methods
	Experiment setup
	Study objects
	RxJava
	Mockito
	Stubby4j

	Evaluated scenarios
	Baseline
	Stability prioritization
	Running time interval heuristic
	Random package heuristic
	Coverage prioritization
	Approach comparison

	Execution environment
	Used tools
	Optimization tool
	IntelliJ
	Gradle
	RStudio
	MS Excel

	Analysis
	Validity threats
	Internal validity threats
	External validity threats
	Construct validity threats

	Results
	Coverage
	Benchmark stability
	Running time

	Conclusion
	Discussion
	Research question 1
	Random package selection
	Running time interval prioritization

	Research question 2
	Research question 3
	Baseline as a potential optimization approach

	Future work
	Study limitations
	Conclusion

	Appendix
	Experimental results - raw data
	RxJava
	Mockito
	Stubby4j

