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Abstract—Program comprehension is a crucial activity for
software developers, just as it is for data scientists. It is an
activity that involves gaining new knowledge and recovering
lost knowledge, and the process could be a factor that affects
various aspects of software projects. Because of this, there is a
good amount of research on developers’ information needs and
program comprehension support tools and techniques. “What
Developers (Care to) Recall” [1] especially investigates the link
between what software developers think is important to remem-
ber, their information needs and their memory. Krüger et al.
studied the importance of knowledge, memory correctness, and
self-assessment by interviewing 17 developers of small systems.
However, we could not find similar studies that particularly
focus on data scientists and their human factors. Data scientists
deal with different concepts in their daily tasks, which means
that their information needs may be different from software
developers’. To fill this gap, we replicated [1] and conducted the
same interview-survey with some adjustments to the questions
fit in the data science context. We interviewed 12 data scientists
and investigated the knowledge they consider to be important to
remember, whether they can remember parts of their systems
correctly, the relation between their actual knowledge and their
self-assessment, and finally how different/similar the results are
to the replicated paper’s. Our results suggest that similar to soft-
ware developers, data scientists consider architectural knowledge
to be the most important to remember, they perform best in what
they considered to be the most important type of knowledge,
and on the contrary to software developers, their self-assessment
increases when reflecting on their systems. In this paper, we
discuss these findings, as well as the validity of these results and
what kind of research directions may need to be considered in
the future to better grasp the kind of comprehension support
that data scientists need.

Index Terms—data scientists, human factors, program com-
prehension, knowledge importance, memory

I. INTRODUCTION

Developers need to understand the behaviour and structure
of the systems they work on in their daily work in order to
maintain, develop and extend them, which makes the process
of code comprehension one of the factors that may affect the
success of software projects, maintenance costs, the quality of
the system, and so forth [2] [4] [5] [6]. Therefore, researchers
continue to investigate and suggest techniques that may help
developers by facilitating tasks such as code comprehension
and recovering lost knowledge. At the present time, developers
spend around 58% of their overall time on comprehending
source code, and this includes for example legacy system parts
that they maintain [17]. Program comprehension is a discipline

that is concerned with supporting developers in this crucial
task.

To understand the approaches developers use when they
comprehend their systems, as well as the types of knowledge
they consider important to have when working on their tasks,
researchers have investigated important aspects of a devel-
oper’s daily tasks such as program comprehension [3]. For
instance, Maleej et al. [3] have found that developers’ infor-
mation needs mostly lie within functionality knowledge (e.g.
code intent), as well as rationale knowledge (e.g. questioning
design), and that developers do not consider meta knowledge
(e.g. who worked on what) to be important. The results of their
study also shows that developers follow their own pragmatic
procedures based on context during program comprehension,
and are unaware of program comprehension tools and therefore
did not use them. This may indicate that these tools perhaps
did not help the developers who came across them enough to
share them with other developers, as useful tools tend to get
popular fairly quickly in the software development field.

Krüger et al. [1] have investigated the types of knowledge
developers – who worked on smaller systems – considered
important such as architecture, code, and meta knowledge,
aiming to study the link between developers’ memory and
their information needs. Their results suggest that developers
consider architecture the most important to remember, fol-
lowed by code, while meta knowledge is considered the least
important, akin to the results of [3]. However, these studies
examined software developers of all types of software fields,
which means that generalisations based on their results might
not align well with data scientists, as their daily tasks can be
quite different from the typical software developer [9] [18].

Data science can be quite complex, as data scientists
constantly work with data, and deal with concepts that are
special to data science. Their daily tasks require them to:
1) Collect needed data 2) Clean the data to be used in
learning algorithms 3) Train the machine learning models
4) Estimate and improve the precision and accuracy of the
trained models [12]. To the best of our knowledge, there is
a lack of studies that investigate the types of knowledge data
scientists consider important to keep in their memory. Most
data science research papers cover the technical areas, whereas
questions on the human aspects and factors of data scientists
are still not appropriately and adequately researched. There is
research on the understandings of users of machine learning-



based systems, for example [7], but not the developers of the
machine learning system themselves.

In this thesis, we want to take a look at data scientists’
perspectives and investigate what they care about enough
to remember about their systems by replicating and extend-
ing the original study “What developers (care to) recall:
An Interview Survey on Smaller Systems” that investigated
developers’ memory in a larger context [1]. Therefore, the
purpose of this study is to investigate the information needs
and memory decay of data scientists to obtain conclusions
that can potentially be beneficial for both researchers and
practitioners in the data science field. For instance, the results
may support other researchers in developing techniques that
can aid data scientists in comprehension, which may also lead
to introducing a framework that novice data scientists can refer
to when they are dealing with systems that are new to them
which they need to maintain and extend.

Moreover, the results may also contribute to devising and
proposing techniques and tools that can make data scientists’
daily tasks (e.g. program comprehension, knowledge recovery)
smoother. Furthermore, we want to compare the results of this
study to the original study which studied software developers
in a bigger context, as we might be able to draw conclusions
that can highlight the differences between a typical software
developer’s memory and a data scientist’s memory based on
practical evidence.

II. RELATED WORKS

Developer Memory and Comprehension of Systems from
the perspective of the engineer

Developers need to continuously understand their systems in
their daily work, which may include learning new things about
their systems, or recovering details that they have forgotten
about the systems; hence the large number of papers available
which focus on developers’ comprehension and memory.

For example, Maleej et al. investigated how developers
comprehend programs in their daily work, as well as the
types of knowledge developers consider important through
qualitative and quantitative research [3]. They observed the
comprehension behaviour, tools used, and strategies of 28
experienced developers, and designed an online survey with
1477 respondents. The survey had questions about the types
of knowledge developers consider important for program
comprehension, the source of these knowledge types, and
how developers share them with their colleagues. The results
of the research indicate that developers follow pragmatic
context-dependent comprehension strategies, and that they did
not make use of program comprehension facilitating tools,
seemingly unaware of them. Maleej et al. conclude that there
seems to be a gap between research and practice [3]. As
mentioned earlier in the introduction, this result suggests that
the existing tools for program comprehension support may not
be as useful as developers would want them to be, and that
further research on program comprehension is needed.

Consequently, research that suggests comprehension support
tools continues. For instance, Haiduc et al. talk about the

challenges and problems developers encounter during program
comprehension, especially when the amount of code is vastly
large and thus difficult to maintain and keep up with [13].
To make it easier and faster for developers to fathom source
code and facilitate their comprehension, Haiduc et al. propose
a solution which is to use high-level descriptions of the source
code by automatically determining said descriptions, and auto-
generating summaries using automated text summarization
technology.

In [15], Roehm et al. did an observational study to find
out what different developers do in order to comprehend
and understand the software they are working on. They did
their study on 28 developers from 7 different companies to
test the previous observations mentioned by the researchers
who worked on this subject previously and also report new
observations. They claimed that the developers see the code
comprehension as a part of maintenance tasks and not an indi-
vidual task itself. Although comprehending the software you
are working on is an important part of software development,
developers usually try to skip this step. Their study results
indicate that the developers are not familiar with the tools
which are available for them to do the code comprehension as
a separate task during development. Software comprehension
is considered a complex task for developers. [16] stated that
developers need to look into both the “structure of their source
code” and the “core domain of the software” in order to be
able to comprehend their software. That is why this task is
not considered easy to do by developers. They looked into
different methods that can be used to help the developers to
understand their system. This shows that there are different
methods that can be used for system comprehension and they
seem to be feasible based on this study.

In order to understand the type of information developers
need to recognize what might help in facilitating their
program comprehension and knowledge recovery, researchers
have investigated the relationship between the developer’s
information needs and their memory decay in a two-fold
study. Following SLRs guidelines, Krüger and Hebig [1]
collected questions that developers asked during work from
different studies, classifying them based on 3 main themes;
architecture, code, and meta. They conducted a qualitative
interview survey with 17 experienced developers – working
on smaller systems –, using general questions based on the
3 main themes regarding their systems, with the goal of
understanding what developers consider important to recall,
assessing their ability to remember knowledge about their
systems, and finding out how the way they assess their
knowledge relates to their actual knowledge. The results of
their study imply that developers working on smaller systems
tend to consider architecture and abstract knowledge about
the code to be the most important to remember, with meta
knowledge being the least important to remember. However,
the study interviewed developers in a larger context, working
on smaller systems, which means that the results may change
if for instance, developers from the data science field or
developers working on larger-scale systems were interviewed.



Human factors in Data Science
There is a lack of studies that investigate the human factors

of data scientists. Data scientists such as machine learning
developers work differently from the traditional software de-
veloper, therefore, the human aspect of data scientists demands
attention and investigations. The majority of today’s data
science studies are focusing more on the technical side; as
in how different learning algorithms and trained models work
in real-life, how to define a process for implementing machine
learning systems, what tasks and steps should be added to the
traditional software development processes, and what are the
challenges data scientists face during development. We looked
into specific papers which are focusing on two main concepts:
Human factors of software engineering in machine learning
and Software Comprehension and memory of developers.

“Emerging and changing tasks in the development process
for machine learning systems” claims that there is an existing
gap in today’s knowledge regarding the changes needed to be
applied to the software development process when machine
learning related components are added to the software. By
doing an interview study, they were able to come up with 25
tasks which need to be added to the software development
process. These tasks are done in different software develop-
ment phases such as Requirement Engineering, Development
Iterations, Deployment etc. 25% of their founded tasks are
part of the Requirement Engineering phase which is the first
phase in the software development process [8]. This shows the
importance of having a data scientist from the beginning of the
project. Also, we can see the presence of the data scientists
in all of the development phases. This also emphasises the
importance of investigating machine learning human factors in
the later studies. In addition, the paper states that there needs
to be some knowledge exchange between the team during the
process [8], which shows that researching on the topics which
machine learning engineers (data scientists) recall or believe
that they are important to recall will be useful in developing
machine learning based software.

A case study applied to the Microsoft teams [9], which
are specifically working on AI features, also looked into
the challenges that an AI specific software team may face
during the development. Their nine stage workflow which
is specific to the development of AI features shows that
although there are some similarities between the development
of AI-based software and other types of software, we need
to come up with a process/workflow which is more specific
to AI. They claimed that their key finding is three new
domains which are specific to AI and will differentiate AI
with other types of software, which are 1) More complex
discovering, management and versioning the needed data
2) Different skills needed for model customization and
reuse tasks 3) More difficulty in handling AI components
due to the presence of entanglement between modules [9].
The results of this study shows that although AI-based
software is a type of software, there are some complexities
and difficulties in the process of their development which

needed to be more emphasised on and looked into individually.

Comprehension of ML/AI-Models
As mentioned above, there are papers which focus on how

model training works and are trying to explain them in an
easy way to understand. Their goal is to help the users to
understand that machine learning and artificial intelligence
is not a magical black box. For example, “What does my
classifier learn?” is a conference paper published in 2017
which explains how a trained neural network model is making
decisions in the natural language processing (NLP) context
[7]. [21] and [14] are also other examples of papers which
are aiming for providing clarity in how neural networks work
and what are the mathematical reasons behind the learning
algorithms. Although there is research done on comprehension
from the user’s perspective of systems built by machine
learning models [7], we were not able to find articles which
focus on data scientists’ comprehension of their systems.

On the other hand, there are research papers that aim to
understand the role of data scientists to identify the challenges
they face, as well as the way they work and make use of
existing methodologies and tools in order to find solutions that
could assist data scientists in their work [19] [20]. However, as
far as we currently know, research on the information needs
of data scientists, the knowledge data scientists perceive as
“important”, as well as how both the previous two points may
be linked to their memory decay, has not been done yet.

III. METHODOLOGY

In order to have a systematic survey procedure, we decided
to follow the steps that are mentioned in the “Guidelines
for conducting surveys in Software Engineering” published
in 2015 [10]. The paper stated that the survey methodology
consists of two main parts which are planning and applying
the planned steps. They are introducing 8 sequential steps
which can be followed by researchers who choose surveys
as their research method. We should state that we did not
apply all the methods and techniques which are mentioned
in this article. The important and useful steps which were
accomplish-able based on the scope of our project were
derived from the paper. Also, it is necessary to state that most
of our research methods are the repetition of the methods
mentioned in the paper we are replicating and extending [1].
There are some few changes applied to the previous study
which will be explained in detail in the following sections.

Research Objectives
As mentioned in the previous sections of the paper, the

purpose of this research is to find out what type of knowledge
do data scientists remember about the system they are working
on, and what concepts do they consider important to recall.
The existence of a correlation between the concepts they
can remember well, and the concepts which they consider
important will be looked into as well [1]. Extending and
replicating the previous research with changing the structure
and the content of the used interview questionnaire, and



interviewing data scientists are the objectives of this research.
We are also curious about how the results may be different
from the replicated paper by applying the above changes. The
research questions are equivalent to the ones in the original
study [1], but with a change in the interviewees, as we will be
targeting only data scientists instead of all types of developers.

• RQ1: What knowledge about their system do data scien-
tists consider important to remember?

• RQ2: Can data scientists correctly answer questions
about their system based on their memory?

• RQ3: To what extent does a data scientist’s self-
assessment align with their actual knowledge about their
system?

• RQ4: What are the similarities and differences between
data scientists and developers when it comes to what they
consider to be important to remember?

Survey Instrument
We decided to use a face-to-face interviewer-administered

questionnaire as our survey instrument [1] [10]. We believed
that based on the replicated study [1], choosing this type
of questionnaire was applicable. An interviewer-administered
questionnaire will reduce the risk of misunderstanding, and
will allow us to gather more reliable data. Our questionnaire
consists of questions derived from the source paper (which is
conducted via systematic literature review by Krüger et al.),
and the questions added by us. Due to applied changes to
the population (targeting only data scientists), a number of
questions are added to the questionnaire to make the questions
more specific and related to data science concepts. To gain a
more accurate insight in data science, we tried to formulate
these questions based on the main practices of data science
mentioned in [12]. The questionnaire contains both open and
close ended questions and is divided into 5 main sections:

• Overall self-assessment: This section contains questions
to find out the interviewee’s own opinion and impression
on their assessment of the system. The interviewee must
answer this section four times; one time in the beginning,
and then once after each knowledge section is answered
excluding the Importance of Knowledge section. This
is to see if their self-assessment would change after
answering each knowledge section.

• Architecture: This section is the first knowledge section
and it consists of seven questions about the architecture
and structure of the system.

• Meta knowledge: This section is the second knowledge
section and it consists of five questions that ask about the
context of the system.

• Code comprehension: This section is the third knowl-
edge section and it consists of four questions (Two of
them have sub-questions) that focus on the implementa-
tion of the system.

• Importance of knowledge: This section consists of five
questions that ask about which part of the system and the
knowledge we categorised the interviewee thinks is more
important.

Architecture, Meta Knowledge, and Code Comprehension
are the sections that require the interviewee to answer ques-
tions about their systems.

TABLE I
INTERVIEW QUESTIONS

ID Questions
Section: Overall Self-Assessment (0-100%)

OS1 How good do you still know this system?
OS2 How good do you still know the architecture of your overall system?
OS3 How well do you know your code in this project?
OS4 How well do you know File 3?

Section: System Files
File 1:
File 2:
File 3:
File 4:
Section: Architecture

A1 What are the learning algorithms used in your system?
A2 Where did you get your data from?

() Provided by customer
() Generated from another algorithm
() Others (Please write down your answer)

A3 Did you continue collecting the data? If yes, did you retrain your model?
A4 Did you use a validation set or test sets? How did you split your training

data-set?
A5 Did you apply any feature engineering to your data-set? If yes, what

techniques did you use?
() Yes () No — Technique:

A6 Did you do any hyperparameter tuning? If yes, what techniques did you
use?
() Yes () No — Technique:

A7 Did you combine any different models in your system? If yes, what
techniques did you use?
() Yes () No — Technique:
Section: Meta Knowledge

M1 Can you point out an old file that has especially rarely/often been changed?
() Yes () No — File:

M2 How old is this file in the project life-cycle and how often has it been
changed since the creation?

M3 Who is the owner of File 1?
M4 How big is File 2?
M5 Did your model have any overfitting or underfitting? If yes, how did you

fix it?
() Yes () No — How:
Section: Code Comprehension

C1 What is the intent of the code in the file?
A. File 3:
B. File 4:

C2 Is there a code smell in the code of the file?
A. File 3:
B. File 4:

C3 Feature vector and labels
() Supervised Learning
— () Can you describe your feature vector?
— () Can you describe your labels?
() Semi-Supervised Learning
— () Can you describe your feature vector?
— () Can you describe your labels?
— () Which type of examples are the majority in the dataset? Labelled
or unlabeled?
() Unsupervised Learning
— () Can you describe your feature vector?
— () Can you describe the types of your output?
() Reinforcement Learning
— () Can you describe your feature vector?

C4 How did you assess your model’s performance? What techniques did you
use?
Section: Importance of Knowledge

IK1 Which part of your system do you consider important?
IK2 Which type of the previously investigated types of knowledge do you

consider important?
IK3 Which of the previous questions do you consider important or irrelevant

when talking about familiarity? (Pick the questions)
IK4 What do you consider/reflect about when making a self-assessment of

your familiarity?
IK5 Do you have additional remarks?



A. Instrument Evaluation

We kept adjusting the questions from the survey used in
[1] and the new added questions according to the feedback
given by the supervisor and applied many changes. For
example, in the Architecture section, we removed some of
the questions we thought were not relevant in the context
of our research. We also removed questions that asked about
database functionalities, user interface, and the system’s main
controller. Initially, the questionnaire had more questions since
we planned to have interviews that can take up to 2 hours
based on the time mentioned in the replicated study [1], but we
received complaints from some of the potential interviewees
we contacted about the interview duration being too long.
Thus, we had to remove some of the questions to make the
duration of the interview not exceed 1 hour.

To make sure that our survey instrument is valid and
reliable, we asked our first participant to give us their opinion
about the questionnaire and if there were any irrelevant or
difficult to follow questions. According to the first participant,
all the questions made sense and did not require any changes.
We continued to ask all of our participants at the end of the
interviews about the quality of the questions to keep the threats
to validity in check. We have not received any feedback that
suggests that our questions are not understandable or irrelevant
in the data science context.

B. Interview Structure

Initially, we planned to conduct the interviews in person
which we managed to do with the first interviewee. However,
we noticed that the majority of the potential interviewees we
contacted did not prefer to have the interview in person. Taking
this into consideration, as well as other factors such as the
spread of COVID-19, and potential interviewees not being
available in Gothenburg for an in-person interview, we decided
to switch to conducting online interviews via Zoom, despite
the disadvantages and threats to validity.

We started the interviews by introducing the interview pro-
tocols, and then asking the interviewee to fill in the background
questions, as well as sign a consent form in case of paper
publication. The majority of our interviewees’ projects were
not open source which is why we had no chance to access and
check their systems to fill in the questions that for example
ask about certain files in their systems. In order to solve
this problem, we devised a roundabout way to ask about
files without looking at their systems. First, we replaced the
empty spaces in some of the interview questions that required
filenames with File 1, File 2, and etc. Second, we added an
empty file list in the beginning of the questionnaire (Table I).
Before answering the knowledge sections, the interviewees had
to fill in the empty file list with filenames from their systems
so that they could refer to them when answering the questions
that contain File 1, 2, 3, 4 such as M3, M4, and C1 (Table I).

To fill in the file list, we asked the interviewees to open
their systems and navigate according to our selection. For
instance, we asked the interviewee about how many folders
their repository had, and then we randomly picked a folder

(e.g., the second folder). Then, we asked about how many
files the folder we picked had, and randomly picked a file
(e.g., the forth file) that they added to one of the files
in the empty file list. After the file selection process, we
asked the interviewees to start answering the questions in the
knowledge sections without looking at the system, and we
clarified any misinterpretations when needed throughout the
questionnaire/interview.

C. Rating Correctness

The correctness of answers was rated by going through
each question with the interviewees, asking them to check
their systems to self-correct themselves. We were unable to
access and investigate the interviewees’ systems and assess
correctness together with them as [1] did due to privacy issues
since the majority of our interviewees’ systems were closed
source. As a result, we did not have a way to even evaluate
the interviewees’ self-correction so we could not alleviate
potential bias. Some of the questions were easy to self-correct
and had no place for bias such as M1-M4 (Table I) which the
answers to them should be documented in version control, but
answers to high-level questions such as A2-A4 (Table I) were
difficult to self-correct by just looking at the system. Most
of our interviewees self-corrected the architecture questions
based how confident they were about their own understanding
of the system structure.

Other questions such as C1-C2 (Table I) do not necessarily
have one definitive correct answer to them, since they ask
about the intent and code smells of files which are usually
subjective and debatable topics among developers. Our in-
terviewees self-corrected their answers to C1-C2 based on
their own perspectives and understanding of the code. The
interviewees however did reflect and explain the reasoning
behind their self-corrections at times, as they were trying to
be fair in their judgement as much as possible. For example,
for questions C1-C2, two interviewees gave us percentages of
how much their answers covered all intents and code smells
that can be found in the selected files, and explained in detail
to us what makes them for example think that something is a
code smell, especially if the file had code written by one of
their colleagues.

D. Rating Scheme

Since we decided to analyse our data in the same method
as [1], we followed the same rating scheme which is 0 points
for incorrect answers, 0.5 points for partially correct answers,
and 1 point for correct answers. To rate whether an answer
is partially correct or not, we asked the interviewees to let us
know if their answers were missing important points and did
not cover everything that should be mentioned in the answer.
Additionally, If the interviewee was not completely sure or
confident enough, we considered their answers to be partially
correct.



Target Audience and Sampling
To answer our research questions, we targeted data scientists

that are based in Sweden and working for Swedish companies
and branches. We tried to characterise them based on attributes
that are recommended in [10] [11].

• Size: We do not have access to the numbers of data
scientists in Sweden but we are aware that our target
audience is smaller than the replicated paper’s target
audience.

• Jobs and Responsibilities: Working as a data scientist.
• Education Level: No limitation.
• Gender: No limitation.
• Age: No limitation.
• Years of Experience: No limitation.
We tried to contact data scientists of different companies,

domains, and experience but due to time constraints and our
status as bachelor students, finding potential interviewees who
would approve to get interviewed was difficult, so we decided
to interview any data scientist who accepted our interview
request, regardless of diversity. We mentioned above that we
initially targeted data scientists working in Sweden only, but
after switching to online interviews, we removed this limitation
and we were willing to interview any data scientist from
our network regardless of their location and the company
they work for. We managed to interview 12 data scientists
of different gender, years of experience, and domains but
all working on smaller systems with the exception of one
data scientist (ID3, Table II) who worked on a medium sized
system.

TABLE II
OVERVIEW OF THE INTERVIEWEES

ID Degree Exp Domain Devs Status
1 Master < 1 Market domain prediction 7 Ongoing
2 Bachelor 15 Telecom 3 Done
3 Master 2 Machine Learning 15 Ongoing
4 Master 4 Credit / Risk 6 Ongoing
5 DSc 10 Healthcare / HR 3 Ongoing
6 Master 5 Agricultural classification 4 Done
7 PhD 5 Software Performance AI 1 Done
8 Master 10 Image Processing 2 Ongoing
9 Master 5 Image Processing 2 Ongoing
10 Master 7 Real Estate 2 Ongoing
11 Master 4 Biomedicine 1 Ongoing

We used Judgement sampling and Snowballing sampling
to create and define our sample. Both Judgement and
Snowballing sampling are a type of Non-probabilistic
sampling. The reason for choosing non-probabilistic sampling
methods is that the population is very big and we are not
able to apply probabilistic sampling although we know that
using non-probabilistic sampling would make our results less
generalizable [10]. The Judgement sampling was applied by
contacting specific employees by searching through company
websites, and Linked-In. We filtered the search engine in
Linked-In to look for data scientists who are working in
Sweden. We contacted the data scientists we found via
email and also asked them to introduce us to any other data

scientists that they thought might be interested to participate
which counts as a Snowballing sampling. We also utilised the
network of our supervisor to find relevant participants, which
gave us the opportunity to interview four data scientists from
our sample.

Data Analysis
We analysed the data we collected in the same way done

in the replicated study [1] but with very minor changes. This
way, we could keep the results consistent enough and could
compare the results of our study with the replicated paper
to see how changing our population might affect the results
of [1], which answers our fourth research question. In order
to answer the first research question, we analysed the inter-
viewees responses to the Importance of Knowledge section
(Table I) qualitatively and quantitatively by extracting codes
and calculating the number of times each knowledge section
was chosen as important and not important. The quantitative
analysis we made based on the correctness of the answers to
the Architecture, Meta Knowledge and Code Comprehension
sections (Table I) helped us in answering the second research
question. For this analysis, we calculated the average of overall
correctness for each question (A1-A7 — M1-M5 — C1-C4 in
Table I), and also for each knowledge section (Architecture,
Meta, Code). The quantitative analysis we made based on the
self-assessment scores were used to answer the third research
question. For this analysis, We calculated the p-value using
the average correctness of each participant, the initial and final
overall self-assessments using Kendall’s τ .

Although we interviewed 12 participants, we decided to
exclude one of our data points for being an outlier. One of our
participants chose a system that was in the early development
stage and because of this, 7 out of the 18 questions in the
Knowledge Sections were not applicable to the system. Since
these 7 questions could not be answered, we could not score
the correctness for them. Therefore, our calculations come
from 11 different data points only. We initially wanted to
calculate the importance of knowledge as done in [1] but due
to the interview length constraint, it was difficult to ask the
interviewees to rate the importance of each question in the
questionnaire. Thus, we decided to depend on the qualitative
analysis results that we obtained from the answers to IK3
(Table I).

Threats to Validity
Drawing Conclusions: After analysing our data and before

coming to conclusions, we needed to make sure that our cho-
sen research procedure is valid, to make sure that our results
will be reliable and generalizable under specific circumstances.
The threats mentioned by [1] are the ones which affect the
paper’s Internal, External, and Conclusion validity. Due to the
fact that our research is a replication of [1], we can assume
that the whole threats mentioned in [1] are also a threat to our
research validity. There might also be some more threats more
specific to our research due to the changes we applied to the
research procedure.



Internal Validity: We are not considering how human
factors such as age, gender, memory performance, etc. can
affect our study. The mentioned aspects are more related to the
psychological side of the study which is not in the scope of our
research and knowledge. The whole interview questions might
not be an ideal decision and questions might be misunderstood
by the interviewees. As it is mentioned in the methodology
section, we added some questions to the questionnaire which
are related to the data science field. Choosing these questions
and grouping them into the pre-defined groups might not be
an ideal choice.

In addition, unlike in [1], we could not avoid explaining
briefly the purpose of the interview to the potential intervie-
wees to get them to participate. We informed the interviewees
that they would answer questions regarding systems they
worked on, and since most projects were closed-source, they
also chose the system themselves. This gave them the chance
to choose a system they remember well unintentionally or
intentionally, or they could prepare themselves in advance.

Furthermore, they have to open their systems in the begin-
ning so that we could ask them about files in their source
code folders without us looking at their systems, which could
refresh their memory. We asked general questions about the
files we chose randomly (e.g. did you contribute to the file)
but not being able to look at the content of the files means
that we might have chosen files that were not appropriate to
ask about to get the results we are looking for. Although
unlikely, there is also the risk that they can look at their
systems while answering the questions since the interview is
conducted online.

External Validity: One of the stated external threats by [1]
is the small sample size, which is also a threat to this study, as
our sample size is going to be small, and there is a possibility
it will be even smaller than the sample size in [1]. The other
external threat is stated as assuming knowledge in a general
way. Whereas in our study we are focusing more on the data
science concepts which will reduce the effectiveness of this
threat, it will not completely remove it.

Conclusion Validity: Most of our interview questions are
derived from the questionnaire created by [1]. Although they
did a well structured systematic literature review to gather
the questions, there might be some threats to the conclusion
because of the used ways of classification and grouping the
questions. Different researchers may categorise the questions
in a totally different way, but we decided to follow the exact
categorization for the new added questions to be able to
compare our final results with [1]. After interviewing different
data scientists who are working in different companies, we
think that there may not be a specific definition of the tasks
which are assigned to data scientists in different companies.
This may cause people with the same title (data scientists)
to have different responsibilities which eventually leads to
different perspectives. With this investigation, the previously
mentioned matter, and the threats to validity, it is difficult
to conclude confidently what data scientists need to facilitate
their program comprehension.

IV. RESULTS

RQ1: What knowledge about their system do data
scientists consider important to remember?

To answer our first research question, we asked our
participants about what parts of their systems they consider
to be important in general and what types of knowledge
they consider to be important to remember according to our
questionnaire (IK1-IK3, Table I).

— IK1: Which part of your system do you consider
important?

We qualitatively analysed the participants’ answers on what
part of their system they consider to be important (IK1,
Table I). We extracted six codes (data science concepts)
and then categorised these codes into the three knowledge
sections that we had in the questionnaire. Two participants
have mentioned the architecture of the system explicitly, and
the rest of the nine participants have mentioned parts of the
system (the codes we extracted) that we categorised as part of
the Architecture, such as model training, pipeline flow which
is a number of steps which will take place in a data driven
development processes [22], data engineering, and etc. In other
words, every participant had included in their answers a part
of their system that belongs to the Architecture knowledge
section according to our questionnaire. Two participants had
mentioned documentation and logging as an important part
of their system which we categorised as part of the Meta
knowledge section. One participant mentioned code as an
important part explicitly, and four people mentioned parts of
the system (e.g. model configuration, model evaluation, model
serving) that we categorised as part of the Code section. These
categorizations may not be accurate but we categorised them
according to our questionnaire to stay consistent.

Summary:
• All participants consider parts of the system that belong

to the Architecture to be important.
• Nearly half of the participants consider Code to be an

important part of their systems.
• Less than half of the participants consider Meta to be

important.

— IK2: Which type of the previously investigated types of
knowledge do you consider important?

We asked our participants to choose the knowledge section
they think is important (IK2, Table I), reflecting on the
questions that we had in the questionnaire. The results in
total are: 10 out of the 11 participants chose Architecture
as an important knowledge type, and seven out of the 11
participants chose Code, and one out of the 11 participants
chose Meta (Fig. 1). Four participants chose Architecture
only, and one participant chose Code only. Five of the
participants chose Architecture and Code together, and one
participant chose all three types; Architecture, Meta and Code.



Summary:
• The majority of the participants believe that parts of the

system architecture are important to remember.
• A little more than half of the participants think that Code

knowledge is important to remember.
• Less than a quarter of the participants consider Meta to

be important to remember.

Fig. 1. Knowledge Importance

— IK3: Which of the previous questions do you consider
important or irrelevant when talking about familiarity?

We analysed the answers to this question (IK3, Table I) to
understand what the participants consider to be important or
irrelevant when they are considering their familiarity with their
systems. (All questions we are referring to are in Table I)

Grouping the participants’ responses leads to the following
results; Architecture questions were mentioned by six of the
participants as being important when talking about familiarity.
One of them had explicitly chosen learning algorithms (A1),
data collection (A3), feature engineering (A5), and hyper-
parameter tuning (A6) as important. Another participant talked
about general knowledge about model techniques (e.g. A1-A7)
to be important to remember. The rest of the participants chose
the whole Architecture section as important.

When it comes to the Code knowledge, three participants
in total talked about Code being important. One of them ex-
plicitly said that “Code” is important for detailed knowledge.
The second participant said that code smells (C2) and feature
vectors/labels are important (C3). Lastly, the third participant
only mentioned that feature vectors/labels (C3) are important.
Although code smells (C2) were mentioned as important by
one of the participants, another participant referred to the same
question but for being not important. On the other hand, six
participants chose Meta questions as not important, stating that
they questions such as the size of a file (M4) are irrelevant
to remember, and it was pointed out explicitly by three

participants. Also, one participant mentioned remembering an
old file has been rarely or frequently changed (M1) is not
important.

Summary:
• More than half of the interviewees chose Architecture

questions to be important to remember.
• The majority of the interviewees mentioned Meta ques-

tions as not important questions when talking about
familiarity.

• The majority of the participants think that the size of a
file is irrelevant to remember.

• Feature vectors/labels considered to be important to re-
member by two participants.

RQ2: Can data scientists correctly answer questions
about their system based on their memory?

To assess how well data scientists can remember different
parts of their systems, we calculated the averages of the overall
correctness of each question, each knowledge section, and each
participant.

Architecture: Most participants have scored noticeably
high in the Architecture section, as we can see in (Fig. 2)
that the average correctness of the architecture section is 92%.
The highest average correctness is 100% and it was scored
on A2 which asks about the source of the data used in the
system. This makes A2 (Table I) one of the most correctly
answered questions in the questionnaire. The lowest average
correctness is 86% and it was scored on two questions; A5
(Table I) which asks about feature engineering, and A6 which
asks about hyper-parameter tuning.

Meta: The Meta section has the lowest correctness, as we
see in (Fig. 3) that the average correctness of the Meta section
is 64%. The highest average correctness in this section is 100%
and it was scored on M5 (Table I) which asks about whether
the model in the system had an over-fitting / under-fitting. This
makes M5 the second most correctly answered question in the
whole questionnaire (the first one is A2). The lowest average
correctness is 9% which was scored on M4 (Table I) which
asks about the size of a file in terms of lines of code. This
makes M4 the most wrongly answered question in the whole
questionnaire.

Code: Similar to the Architecture section, the Code section
has a considerably high correctness of 92%, with a difference
of 0.01% from the Architecture correctness as we see in (Fig.
4). The highest average correctness in this section is 98% and it
was scored on C1 (Table I) which asks about the intent of two
different files in the system. The lowest average correctness is
84% and it was scored on C2 (Table I) which asks about code
smells in the same files that were used in C1.

Participants: The overall average correctness of the 11
participants is 83%. The highest average correctness is 100%
and the lowest average correctness is 66%. The rest of the
participants have scored an average correctness of 72% to
90%.



Summary:
• Only one participant could remember all the parts we

asked about their system correctly.
• Only one participant could remember the size of a file in

the system correctly.
• All participants could remember the source of their data,

and whether their model had an over-fitting / under-fitting.
• Participants seem to remember the intent of their files,

as well as their feature vector and labels better than
code details such as code smells and model assessment
techniques.

• Participants performed almost equally good in both Ar-
chitecture and Code with only a difference of 0.01%.

Fig. 2. Architecture Correctness

Fig. 3. Meta Correctness

Fig. 4. Code Correctness

RQ3: To what extent does a data scientist’s self-
assessment align with their actual knowledge about their
system?

In order to answer this research question we compared the
interviewees’ average correctness and their initial and final

self assessment results to investigate the presence of any
correlation. We also looked into how the results of the initial
and final overall self assessments changed during the interview.
Analysing the interviewees’ initial and final results for overall
self assessment shows that five interviewees increased and
three of them decreased their overall self assessment. Three
interviewees left their self assessment unchanged during the
interview. We applied Kendall’s τ test on this data based on [1]
which results in no significant correlation between the overall
self assessment and the average correctness of interviewees.
(p-values > 0.05, initial τ = 0.242, final τ = 0.061)

Fig. 5. Self-assessment and Correctness

The participants’ responses to IK4 (Table I) were analysed
in order to find what they based their overall self-assessment
on. Two participants talked about reflecting on the pipeline
flow and model training. Two other participants said that



they assessed their ability in explaining and talking about
the structure of their systems. Two participants reflected on
system structure and the idea behind the implementation
of the system. One participant mentioned reflecting on
how well they know the system architecture explicitly.
We considered all of the points above to fall under the
Architecture knowledge section. So in total, we conclude
that six participants were considering their knowledge about
Architecture when answering the self assessment questions.
Three of these six participants also talked about reflecting
on Code knowledge. Two other participants talked about
reflecting on what they think is relevant in their systems.
One participant made their self-assessment based on their
confidence in what they remember and do not remember
about their systems. Lastly, one of the participants mentioned
that they were not considering anything in particular because
the system was small and fairly recent, and they were the
only developer.

RQ4: What are the similarities and differences between
data scientists and developers when it comes to what they
consider to be important to remember?

The results in the replicated study suggest that software
developers consider Architectural and abstract (e.g. intent)
knowledge to be important to remember. The results also
suggest that although developers believe Code knowledge is
important, it is less important than Architectural knowledge,
and developers are not interested in remembering code details
such as method parameters. Meta knowledge is considered
generally to be less important than Architecture and Code for
smaller systems with a few developers [1].

TABLE III

Knowledge Type Software Engineers Data Scientists
Architecture 76.5% 90.9%
Code 52.9% 63.6%
Meta 11.8% 9.1%

Results Comparison
We found the results from both studies (Table III) to be

almost identical for the following reasons:
• The order of the importance is the same; Architecture

followed by Code and lastly, Meta.
• Architectural knowledge is considered to be the most

important.
• Abstract knowledge (e.g. system structure, implementa-

tion ideas, code intent) is considered important
• Code knowledge such as intent is considered fairly im-

portant but not code details
• Meta is considered not important and irrelevant

V. DISCUSSION

A. Importance of Knowledge
Based on the analysis of IK1-IK3 (Table I), we understand

that:

Architecture is deemed to be the most important part
to remember and in general since it was chosen by the
participants the most. However, a few participants asked about
what we meant by Architecture in the questionnaire. One
interesting observation is that one of the participants said that
the word “architecture” is not exactly used to represent the set
of questions we had in the architecture knowledge section. The
participant said that “project settings” would make a better
word. In other words, it appears that some terms that are
used in computer science and software engineering may not
be applicable to data science, especially if the data scientist
has no roles that involve other tasks such as developing
other parts of the system that are not data science-related.
However, this would not be the case for data scientists who are
also the software developers of their systems. Thus, research
on the differences between architecture in data science and
architecture in software engineering should be considered.

Code seems to be considered fairly important based on the
results, but we suspect that our categorization of C3 (feature
vectors/labels) and C4 (model assessment) was not accurate
enough, as we think that there might have been an overlap
between architecture and code in questions C3-C4 (Table I).
We can also see from the results that when asked about
knowledge importance based on the questions we had in the
questionnaire (IK3, Table I), only three participants mentioned
Code and two of them mentioned C3 explicitly. One interesting
remark that one of the participants gave is that they are not
too fond of software engineers who are always thinking about
code, and that they – as a data scientist – prefer to always
think about design and the solution on a higher level. With all
these observations, it is difficult to conclude how important
Code is for data scientists. Thus, we think that an extension
of our study with better Code categorization is needed.

Meta is considered generally irrelevant and consequently,
the least important to remember. Most of the systems that
were used in the interviews were small with a number of
developers that ranged from one to seven, with the exception
of one medium sized system that had 15 developers. We think
that the size of the system might have a role in this perception
of Meta knowledge, and this result backs up the observation
in [1] that research on the importance of meta knowledge in
different contexts may be needed.

All in all, we found that abstract knowledge which in-
cludes architectural knowledge (e.g. system structure, system
behavior) and non-detailed code knowledge (e.g. code intent,
implementation ideas) are considered the more important parts
of a system to remember, as opposed to detailed knowledge
such as code smells. Abstract knowledge concerns the general
understanding of data scientists or developers on how and why
their systems or certain parts of the systems work the way they
do.

B. Correctness
The majority of the participants have performed quite well

in general, as we see that the overall average correctness of
all participants is 83%. Only one participant could remember



all the parts we asked about their system correctly, who also
was the only participant able to remember the size of a file
correctly. Meta questions were answered fairly well despite
being considered irrelevant. We suspect that the question that
asks about over-fitting/under-fitting (M5, Table I) which was
answered correctly by all participants was not placed in the
correct knowledge section and should have been part of the
Architecture section. This was also mentioned by one of the
participants in the second half of the data collection phase.
However, even if we remove M5 from the Meta questions,
the average correctness would still be on the higher side. As
mentioned before, this could be the result of the majority of
the systems being small.

The participants particularly scored high in the knowledge
sections which they thought are important; Architecture, fol-
lowed by Code. Although the results suggest that the partic-
ipants believe Architecture to be more than Code, they per-
formed almost equally good in both knowledge sections with
only a difference of 0.01%. We noticed that the participants
seem to remember the intent of their files, as well as their
feature vector and labels better than code details such as code
smells and model assessment techniques.

C. Self-assessment & Correctness
The majority of participants seem to consider their archi-

tectural knowledge when assessing their overall knowledge of
their systems. Nearly half of the participants increased their
overall self-assessment. Less than half of the participants did
not change their overall self-assessment. Less than half of the
participants decreased their self-assessment. We did not find
any specific correlation between the average correctness and
the results of overall self-assessment.

D. Threats to Validity
We think that the Architecture-Code overlap we mentioned

previously (refer to Discussion: A) might have had an effect
that led to this equally good performance in both Architecture
and Code. We also think that the high average correctness of
Architecture questions might be a result of a few participants
who did not check their repository during self-correction prop-
erly, and their self-correction was mostly based on confidence
in what they remember. Not being involved in evaluating
the correctness of the answers might also have had a role
in the results. We think that it is difficult to come to a
conclusion confidently based on these results. Therefore, doing
the exact same research but with open source systems which
the interviewers can access should be considered.

E. Results compared to the replicated paper
Based on the results of the original study and our study:
Knowledge Importance: Both data scientists and software

developers think that Architectural knowledge to be the most
important to remember, followed by Code. Both data scientists
and software developers (of smaller systems) seem to agree on
Meta knowledge not being important to remember.

Correctness: The lowest average correctness of a question
is scored in the question that asked about the file size, which

is similar to the result in the original paper, indicating that
both data scientists and software developers do not place
importance on remembering some Meta knowledge, which is
also supported by their remarks on the irrelevance of Meta
when talking about knowledge importance. Another similar
result is that when it comes to Code knowledge, both data
scientists and software developers performed best on questions
about the code intent of their system files. In addition, the
average correctness of the knowledge sections is the same
in both studies; with Architecture having the highest average
correctness and Meta having the lowest.

Self-assessment: Interestingly in our study, the number
of participants who increased their overall self-assessment is
less than the ones who decreased it, which is contrary to
the results from the replicated study where the number of
interviewed software developers who decreased their overall
self-assessment were more than those who increased it. We
think that this difference in the results supports [1]’s statement
on the need for research that investigates the reliability of self-
assessments in more detail and the consideration of guidelines
for research methods.

F. Additional Remarks

We received some of the interesting insights from the
additional remarks. One participant mentioned that our
questionnaire lacked data-quality questions, and another
participant argued that data knowledge is more important than
Code specific knowledge or Meta knowledge. Two participants
mentioned that “code smells” are not as important to them
as they are to software developers. Although this could be a
subjective point of view and not necessarily related to being
data scientists, we thought that their remark was interesting
as taking code smells into consideration is a well-known
good practice for software developers.

By looking at these observations and the backgrounds of
the participants, we believe that there might be differences
between the viewpoints of the data scientists who are working
in the industry and those who are working in academia. We
think that an extension of this research that includes data
knowledge questions in the questionnaire with a more accurate
knowledge section categorization is needed to better clarify
data scientists’ information needs so that support tools and
techniques for data scientists can be appropriately addressed
and looked into.

VI. CONCLUSION

To conclude, we studied the types of knowledge data
scientists consider to be important to remember, if they can
correctly remember parts of their system from memory and
whether there is a correlation between their correctness and
the type of knowledge they consider to be important. We also
studied how well their self-assessment aligns with their actual
knowledge and observed the changes of their self-assessments
during the interview. Based on the data we received from the



11 data scientists who are working on small systems (with the
exception of one medium sized system), we found that:

• Data scientists believe that Architecture is the most
important type of knowledge to remember, followed
by Code. They do not place importance on Meta
knowledge. Similar to the software developers based
on the results from the replicated paper.

• Data scientists increase their self-assessment, which is
contrary to Software developers based on the results
from the replicated paper.

• Data scientists answer correctly best in the questions
that they believe are more important.

In addition to all these points, we want to extend this
study and involve data scientists with different backgrounds
and from different companies to gain more insight on their
responsibilities. We also would like to interview data sci-
entists who are working on larger, or open source systems.
Furthermore, after learning more about data science and the
potential miscategorizations we had, we want to improve the
questionnaire for the future extended studies.
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