ORAL EFLORNITHINE TREATMENT OF LATE-STAGE HUMAN AFRICAN TRYPANOSOMIASIS

Akademisk avhandling

Som för avläggande av farmacie doktorsexamen vid Sahlgrenska akademin, Göteborgs universitet kommer att offentligen försvaras i sal Europa, Konferenscentrum Wallenberg, Medicinaregatan 20A, den 16 december, klockan 13:00

av Mikael Boberg

Fakultetsopponent:
Professor Charlotte Kloft
Freie Universität Berlin, Tyskland

Avhandlingen baseras på följande delarbeten:

- I. Boberg M, Jonson AC, Leek H, Jansson-Löfmark R, Ashton M. Chiral chromatographic isolation on milligram scale of the human African trypanosomiasis treatment D- and L-eflornithine. ACS Omega, 2020; 5(37): 23885-91
- II. Boberg M, Cal M, Kaiser M, Jansson-Löfmark R, Mäser P, Ashton M. Enantiospecific antitrypanosomal *in vitro* activity of effornithine. *PLoS Neglected Tropical Diseases*, 2021; 15(7): e0009583
- III. Amilon C*, Boberg M*, Tärning J, Äbelö A, Ashton M, Jansson-Löfmark R. Population pharmacodynamic modeling of effornithine-based treatments against late-stage *gambiense* human African trypanosomiasis and efficacy predictions of L-effornithine-based therapy. AAPS J. 2022; 24(3): 48
 - * Authors contributed equally
- IV. Boberg M, Akhondipour Salehabad Y, Oladetoun-Ageh E, Vallöf D, Jansson-Löfmark R, Ashton M. Enantiospecific pharmacokinetics after enantiopure and racemic dosing of effornithine in the rat. *In manuscript*
- V. **Boberg M**, Jansson-Löfmark R, Na-Bangchang K, Ashton M. Pharmacokinetics of racemic effornithine in human plasma and cerebrospinal fluid: Clinical perspectives for L-effornithine against human African trypanosomiasis. *In manuscript*

SAHLGRENSKA AKADEMIN INSTITUTIONEN FÖR NEUROVETENSKAP OCH FYSIOLOGI

ORAL EFLORNITHINE TREATMENT OF LATE-STAGE HUMAN AFRICAN TRYPANOSOMIASIS

Mikael Boberg

Unit for Pharmacokinetics and Drug Metabolism, Department of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden

Abstract

Human African trypanosomiasis is a fatal disease unless treated. It is a parasitic vector borne disease endemic in sub-Saharan African countries. Effornithine is a recommended treatment for gambiense human African trypanosomiasis (g-HAT) in the later disease stage when the parasites have infected the central nervous system. Effornithing is currently dosed as a racemic mixture of D- and L-eflornithine via repeated intravenous infusions, which comes with several disadvantages. The work in this thesis aimed to assess the feasibility of an oral effornithine treatment. A chiral liquid chromatography method was developed for separation and preparation of the D- and L-eflornithine enantiomers from the racemic mixture. The acquired enantiopure material was used to determine that L-eflornithine had higher antiparasitic in vitro potency compared to D-eflornithine. The *in vitro* findings were used with a mathematical modeling approach to predict survival in late-stage g-HAT patients treated with L-eflornithine using pharmacodynamic time-to-event modeling. The in vivo pharmacokinetics in the rat after oral or intravenous doses of enantiopure L-eflornithine was characterized using nonlinear mixed effects modeling and compared to the racemic mixture. Moreover, the distribution of D- and L-eflornithine to the third brain ventricle from the systemic circulation was examined using in vivo microdialysis. Clinical pharmacokinetics in plasma and cerebrospinal fluid for L-effornithine was modeled using literature data. The pharmacokinetic model was used to predict drug exposure and estimate the probability of target attainment for oral L-eflornithine-based treatments against late-stage g-HAT. L-eflornithine administered as monotherapy dosed at 750 mg/kg/day four or twelve times daily could serve as efficacious regimens. In combination with nifurtimox, dose regimens of L-eflornithine at 375 mg/kg/day dosed two, four or twelve times daily could be efficacious. These results are based on *in vitro* and preclinical *in vivo* data as well as clinical data using a translational modeling and simulation approach. Future clinical pharmacokinetic studies are warranted to assess the feasibility of an oral L-eflornithinebased treatment and to establish optimal treatment strategies against late-stage g-HAT.

Keywords: Sleeping Sickness; Neglected Tropical Diseases; Enantiomers; Nonlinear Mixed Effects Modeling; Pharmacokinetics; Pharmacodynamics

ISBN: 978-91-8009-963-9 (TRYCK) http://hdl.handle.net/2077/72583

ISBN: 978-91-8009-964-6 (PDF)