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A
Many conventional radiological examinations have during the past decades been replaced by 

examinations performed on computed tomography (CT) systems. One reason is that a CT 

system, in contrast to a conventional X-ray system, depicts slices of the body so that anatomical 

structures to a lesser extent risk to obscure the potential pathology. is extra diagnostic 

information may increase the absorbed dose for patients, because the noise in CT examinations 

acquired at the same absorbed dose as conventional radiographs would have instead risked 

obscuring the pathology. Hence, if the noise in the CT images could be reduced by a 

mathematical algorithm a reduction in absorbed dose may also be possible. Traditionally, noise 

is reduced using linear convolution kernels, which weights the content of the CT image such 

that distinct variations are reduced. Concurrently, sharp edges in the image are smoothed out 

(the resolution is reduced), as sharp edges and noise are described by the same type of image 

content. Hence, the amount of noise reduction and consequently dose reduction will be limited 

by the required image resolution for the diagnostic task. In contrast to a linear algorithm, a 

nonlinear noise reduction algorithm is intended to reduce noise while keeping or increasing the 

image resolution. Hence, the image quality brought about by such an algorithm may depend on 

the content of the image including the noise level, which will make prediction of image quality 

in patients more difficult than for a linear algorithm. Further, nonlinear algorithms tend to distort 

the imageimpression of the image content may potentially be changed and aggravate the 

diagnostic assessment.  he overall aim of the thesis was to investigate the effects of 

nonlinear noise reduction algorithms in CT imaging to help understand how to assess and 

predict image quality. 

nonlinear effect was investigated using human observer evaluation of paediatric cerebral 

and abdominal CT examinations, which had been noise reduced by a nonlinear noise reduction 

algorithm. However, for the abdominal examination, the combination effect of type of 

convolution kernel and noise reduction strength on image quality was investigated. 
investigations showed the visualisation of some anatomical structure to increase, concurrently 

the resolution of other structures was shown to decrease as the strength of the noise reduction 

was increased. An edge-enhanced convolution kernel showed to compensate the reduced 

resolution. However, the visualisation of the structures was not found to be higher than the 

optimal strength of the noise reduction for the original convolution kernel. 

 distortion effect was investigated using an objective method implemented from 

conventional radiography. method showed that the tendency to distort the image content 

for the nonlinear algorithms increased with the noise level. However, the method does not 

visualize the distortion in the spatial domain. Hence, the method inspired to develop a new 

method, which shows where the distortion is located and how the image is distorted when noise 

is reduced by a nonlinear algorithm. showed the distortion of the imaged object 

to be caused by the noise and the distortion of the noise to be caused by the imaged object. 

emphasises the importance of investigating the distortion effect when nonlinear 

noise reduction algorithms are used to reduce the absorbed dose of CT examinations. 
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Päk
Allt fler konventionella röntgenundersökningar har under de senaste årtiondena blivit ersatta 

av skiktröntgenundersökningar utförda på datortomografer. En orsak är att en datortomograf 

till skillnad från ett konventionellt röntgensystem avbildar skivor av kroppen så att organ i 

mindre grad riskerar att skymma eventuell sjukdom. Denna extra information om patientens 

kroppsliga tillstånd kan även öka stråldosen till patienten, eftersom bruset i en 

datortomografiundersökning utförd med samma stråldos som en konventionell i stället skulle 

kunna riskera att skymma det sjuka. Således är det möjligt att minska stråldosen om bruset i en 

datortomografibild kan minskas med hjälp av en matematisk algoritm. Det traditionella sättet 

att minska brus är att använda en linjär matematisk algoritm som viktar bildinnehållet på ett 

sådant sätt att distinkta förändringar i bilden minskas. Detta leder samtidigt till att skarpa kanter 

i bilden smetas ut (upplösningen blir lägre), eftersom skarpa kanter och brus beskrivs av samma 

typ av bildinnehåll. Därför blir mängden brusminskning och då även en stråldosminskning 

beroende på upplösningen som krävs för att kunna bestämma om patienten exempelvis är sjuk. 

Utöver linjära algoritmer, så finns det ickelinjära algoritmer avsedda att minska bruset medan 

upplösningen ökas eller förblir opåverkad. Kvaliteten på en bild framställd med en sådan 

algoritm blir beroende på vad som avbildats samt på brusnivån, vilket leder till att bildkvaliteten 

i en patient blir svårare att förutse än för en linjär algoritm. En ickelinjär brusminskande 

algoritm kan även tendera att förvränga bilden. Intrycket av bildinnehållet kan därför också 

möjligen ändras, vilket kan försvåra bedömningen av en sjukdomsfrågeställning. Därför var 

det övergripande målet med avhandlingen att studera effekten av ickelinjära brusminskande 

algoritmer vid datortomografibildtagning för att få hjälp att förstå hur bildkvalitet kan bedömas 

och förutses samt hur man kan genomföra en säker stråldosminskning för ett sådant system.  

Den ickelinjära effekten studerades genom att röntgenläkare utvärderade 

datortomografiundersökningar av barns huvud och mage som brusminskats med en ickelinjär 

brusminskande algoritm. Vid magundersökningarna studerades även påverkan av att 

kombinera linjära med ickelinjära algoritmer. Dessa studier visade att vissa organ syntes bättre, 

men att upplösningen av vissa organ i kroppen blev lägre då graden av den ickelinjära 

brusminskningen ökades. Upplösningen visades i studien kunna kompenseras med en 

kantförstärkande linjär algoritm, men synbarheten av organen blev aldrig bättre än den mest 

optimala graden av den ickelinjära brusminskningen vid den ursprungliga linjära algoritmen. 

Förvrängningseffekten studerades med hjälp av en matematisk metod som tidigare använts 

för att utvärdera ickelinjära brusminskande algoritmer vid konventionell röntgenbildtagning. 

Metoden visade att de ickelinjära algoritmerna tenderade att förvränga bildinnehållet mer då 

mängden brus ökade, men inte hur förvrängningen såg ut. Därför inspirerade denna metod till 

att utveckla en ny metod för datortomografi som visar var förvrängningen ägt rum och hur 

bilden förvrängts då bruset minskats med en ickelinjär algoritm. Den nya metoden visade att 

både det som avbildas och bruset kan förvrängas av varandra. 

Avhandlingen understryker vikten att studera förvrängningseffekten då ickelinjära 

algoritmer avsedda att minska brus används för att minska stråldosen av datortomografiska 

undersökningar. 
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1. Introduction 

1.1 Historical background 

  of X-rays in 1895 revolutionised the medical field by the 
introduction of radiological examinations.  physician was then enabled to 
detect pathology and diagnose patients by viewing X-ray images showing the 
internal organs. Although the interior of a patient was shown, the pathology might 
be obscured or concealed by overlapping anatomical structures, which might 
impair the possibility of making a correct diagnosis. However, the invention and 
installation of the first clinical computed tomography (CT) scanner in 1971 
addressed the problem of overlapping anatomy, as this modality produced cross-
sectional images through the reconstruction of several X-ray projections taken 
around the patient. ‘It looks exactly like the picture’ from an enthusiastic 
surgeon, who was given the opportunity of viewing CT images of a patient with 
brain tumour before surgery,(1) may well describe the sensation of this new 
modality. Although tumours could be shown separated from anatomical structures 
by an early CT system, image quality was not always adequate to characterise the 
degree of severity. 

e first CT system was exclusively designed for head examinations, as heart 
and respirational movement would have led to great inconsistency in the 
projection data using the acquisition technique at that time. 
one CT image took approximately five minutes to acquire and five more for 
reconstruction. At that time, a full examination consisted of six images and was 
assumed to be completed in 35 minutes, as the reconstruction was processed 
during the scanning.(2) However, the increasing demand for CT examinations 
encouraged the development of innovations to speed up acquisition and 
reconstruction technique.  acquisition technique of the first CT system was 
sampling of the projection of each angle using a well-collimated X-ray (narrow) 
beam together with one detector that were translating over the patient. Current CT 
systems sample the projections using a fan-beam of X-rays that covers several 
rows of detector elements (Figure 1) and can acquire the projections from one 
rotation in less than 0.3 seconds. Consequently, reconstruction time had to follow 
the speed of the newer faster scans in order not to counteract the gained efficiency 
in workflow. 
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 e improvements in hardware and acquisition procedure of CT systems also 
brought about higher image quality that further expanded the ability to diagnose 
patients in body parts other than the head and with other pathology referrals. 
Accordingly, the number of CT scanners in clinical use increased steadily in the 
UK (where the first clinical CT was installed), and in 1995 the number of CT 
scanners was 350 (166,000 people per CT scanner), while in Sweden the number 
was 115 (77,000 people per CT scanner).(3) Hence, the increased availability of 
CT examinations and more detailed diagnostic information has led to conversion 
of conventional X-ray examinations to corresponding CT examinations. Reports 
from the Swedish Radiation Safety Authority (SSM) estimated the annual number 
of CT examinations per 1,000 people to have increased from 39 in 1995, 72 in 
2005, 98 in 2008 to 147 in 2018.(4–6) 

X-ray examinations expose patients to ionising radiation and deliver an 
absorbed dose to the examined body part. Ionising radiation is associated with risk 
to an irradiated population and the atomic bomb survivors is a cohort well studied. 
 ort has shown, among other things, that ionising radiation exposure 
increases the risk of cancer mortality throughout life and that the relative risk for 
cancer death is higher for those exposed at younger ages.(7,8) However, in risk 
estimations it is assumed that all the atomic bomb survivors received a whole body 
irradiation whereas in medical diagnostic X-ray examinations only a part of the 
body is irradiated. Further, the risk of low radiation doses is based on estimations 
using large populations such as the atomic bomb cohort. Hence, the risk associated 

Figure 1. Illustration of the first-generation CT system where a well-collimated beam and 

detector are translated over the patient at each angle projection (left) and the most common 

third-generation CT system where the whole angle projection of the patient is covered at once 

by a diverging fan-beam (right). The third-generation CT system may achieve a rotation in 

under 0.3 seconds. 
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with an X-ray examination cannot be applied to specific patients. However, a 
reasonable conjecture is that the risk follows a relationship of linear non-threshold 
down to zero dose.(9) Consequently, optimisation aiming at minimising the 
radiation dose at a reasonable image quality is necessary. According to Swedish 
regulations, medical examinations have to be optimised according to image 
quality and radiation dose(10) and the exposure has to be performed with care 
especially when the patient is a child. Although, as long as the patient benefits 
from the examination, there is no dose limit for the medical exposure of the 
patient.(11) However, national dose reference revels (DRLs) are used as guidelines 
of reasonable radiation dose levels for specified diagnostic X-ray examinations(10). 
Today in Sweden, DRLs for children (15 years-old and younger) are only set for 
cerebral and abdominal CT examinations, respectively. Further, the DRLs can 
indicate if for example the radiation dose for an CT examination is high or low. 
However, a radiation dose should not be lowered to the DRL if the CT system is 
not capable of generating a reasonable image quality at that dose. To achieve a 
dose reduction of a CT system, noise reduction techniques has been identified as 
having an important part to play.(12)  

 in CT systems, the Algebraic 
Reconstruction Technique (ART), is a type of iterative reconstruction technique 
(IRT).(13) e reconstruction procedure of ART uses a system of equations related 
to all X-ray paths, at all acquired angles, and a summation of the signal to the 
detector element (ray-sum) for        
straight line from the X-ray focal spot to a detector element. Pixels (picture 
elements) which will form the reconstructed image are updated iteratively at every 
projection angle by comparing all measured ray-sums at each projection angle 
with the respective last updated ray-    
distributed over the pixels in the image and weighted by the distance to the related 
X-      the ART algorithm is very time-
consuming, leading to the implementation of an analytical reconstruction 
procedure, the filtered back-projection (FBP). ART in its original design requires 
more time per iteration than a complete reconstruction by FBP with comparable 
accuracy in image quality.(14) However, IRTs are more flexible in incorporating, 
for example, complex reconstruction geometries and noise statistics modulation, 
and are less sensitive to the number of projections used in the reconstruction.(15) 
Due to the difference in reconstruction speed, FBP has been the gold standard in 
reconstruction techniques in clinical CT scanners since the mid-1970s. About 
three decades later, the difference in computational time between some IRTs and 
FBP had become insignificant due to the increased power of reconstruction 
computers. In addition, due to the many advantages of the iterative approach in 
reconstruction mentioned above, the major CT manufacturers then started to 
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with an X-ray examination cannot be applied to specific patients. However, a 
reasonable conjecture is that the risk follows a relationship of linear non-threshold 
down to zero dose.(9) Consequently, optimisation aiming at minimising the 
radiation dose at a reasonable image quality is necessary. According to Swedish 
regulations, medical examinations have to be optimised according to image 
quality and radiation dose(10) and the exposure has to be performed with care 
especially when the patient is a child. Although, as long as the patient benefits 
from the examination, there is no dose limit for the medical exposure of the 
patient.(11) However, national dose reference revels (DRLs) are used as guidelines 
of reasonable radiation dose levels for specified diagnostic X-ray examinations(10). 
Today in Sweden, DRLs for children (15 years-old and younger) are only set for 
cerebral and abdominal CT examinations, respectively. Further, the DRLs can 
indicate if for example the radiation dose for an CT examination is high or low. 
However, a radiation dose should not be lowered to the DRL if the CT system is 
not capable of generating a reasonable image quality at that dose. To achieve a 
dose reduction of a CT system, noise reduction techniques has been identified as 
having an important part to play.(12)  

 in CT systems, the Algebraic 
Reconstruction Technique (ART), is a type of iterative reconstruction technique 
(IRT).(13) e reconstruction procedure of ART uses a system of equations related 
to all X-ray paths, at all acquired angles, and a summation of the signal to the 
detector element (ray-sum) for        
straight line from the X-ray focal spot to a detector element. Pixels (picture 
elements) which will form the reconstructed image are updated iteratively at every 
projection angle by comparing all measured ray-sums at each projection angle 
with the respective last updated ray-    
distributed over the pixels in the image and weighted by the distance to the related 
X-      the ART algorithm is very time-
consuming, leading to the implementation of an analytical reconstruction 
procedure, the filtered back-projection (FBP). ART in its original design requires 
more time per iteration than a complete reconstruction by FBP with comparable 
accuracy in image quality.(14) However, IRTs are more flexible in incorporating, 
for example, complex reconstruction geometries and noise statistics modulation, 
and are less sensitive to the number of projections used in the reconstruction.(15) 
Due to the difference in reconstruction speed, FBP has been the gold standard in 
reconstruction techniques in clinical CT scanners since the mid-1970s. About 
three decades later, the difference in computational time between some IRTs and 
FBP had become insignificant due to the increased power of reconstruction 
computers. In addition, due to the many advantages of the iterative approach in 
reconstruction mentioned above, the major CT manufacturers then started to 
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n FBP image from 
which the iteration procedure was started, some manufacturers gave the operator 
the option of choosing the numbers of iterations for the reconstruction and other 
manufacturers construct a fusion image consisting of the iterated image and the 
FBP image.  

he main factor limiting the minimisation of the absorbed 
dose for a CT examination reconstructed using FBP, as the noise may become too 
high and obscure important anatomical structures or pathology. Hence, the IRTs 
were primarily reintroduced to reduce quantum noise. reintroduced iterative 
reconstruction algorithms used a model of noise based on Bayesian statistics in 
the updating procedure of the image.(16) Each pixel in the CT image consists of a 
CT number describing the capacity of the imaged material to attenuate X-rays (see 
section 1.2 ‘Image quality’). One part of this model is the regularisation step, in 
which pixels with CT numbers far from its neighbours’ CT numbers are called to 
be updated. Some of the random noise in the image will be reduced in this step 
since the random noise is unrelated to its neighbours. A regularisation step is 
typically nonlinear as it adapts to preserve sharp edges in the image.(15) 
framework also offers the possibility of weighting down noisy projections in the 
reconstruction procedure to maximise the contribution of projections with good 
quantum statistics.(15) In addition to reduction of noise, some beam-hardening 
artefacts are also reduced, as has been shown in clinical studies.(17,18) Further 
development of the algorithms includes modelling of, for example, the geometry 
of the focal spot, the imaged object, and the detector element to be represented by 
           
improvements in spatial resolution of the CT images.(15) One disadvantage of the 
noise reduction part of an IRT is, as mentioned above, the fact that it is often 
nonlinear, and the smoothing of a nonlinear algorithm can alter the appearance of 
the image to look unfamiliar to the radiologist and other concerned medical 
professions. 

FBP is a linear reconstruction technique, and image appearance can be 
modified using convolution kernels.  image content can be divided into the 
imaged object and the noise. According to the theory of linear systems, the image 
content can be described using spatial frequencies. Further, the imaged object to 
a larger extent than the noise is composed by lower frequencies. Hence, by 
application of a low-pass kernel, noise will be reduced more than the imaged 
object. However, sharp edges also consist of high frequencies and will 
consequently also be suppressed by such a kernel. Hence, a dose reduction using 
a low-pass kernel will then be limited to the required spatial resolution of the 
specific CT examination. Another advantage of using linear reconstruction 
techniques is the possibility of generalising measurements of image quality to be 
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valid for any imaged part of the patient body. In contrast, a nonlinear 
regularisation will introduce an image quality that cannot be generalised, as the 
regularisation is dependent on the contrast of the imaged structures in the patient 
or the noise level. Other nonlinear algorithms that can be implemented in an 
iterative reconstruction, may also generate artificial structures.(19) Such structures 
could be mistaken for or obscure pathology and lead to a misdiagnosis. Generation 
of artificial structures is most common in metal artefact reduction (MAR) and has 
been studied by many, both clinically and through phantom studies.(20–22) In CT 
imaging for diagnostics and also in the planning of radiotherapy treatment,(23) the 
reduction of metal artefacts often outweighs the generation of other types of 
artefacts induced by the MAR algorithms.(24,25) Although the risk of artificial 
structure generation is higher due to the mechanisms in some MAR algorithms,(26) 
there is still a possibility that nonlinear noise reduction may induce structures 
mimicking pathology. 

In summary, the effects of nonlinear noise reduction algorithms may increase 
image quality and support the radiologist in the diagnostic process. Further, the 
image quality may be altered such that radiologists’ experience of how pathology 
is depicted in CT imaging is no longer applicable. , the present thesis 
investigates some of the effects of nonlinear noise reduction algorithms on clinical 
image quality and how the effects can be analysed. 

1.2 Image quality 

A CT system depicts the linear attenuation coefficient of an acquired object, which 
describes the capacity of the depicted material to reduce radiation. Since the 
attenuation is dependent on the energy of the X-ray photons, the coefficient value 
is presented in relation to water and referred to as CT number. 
CT number is expressed as follows: 

CT number = 1000 ∙
µ − µ

µ
,  

where µ and µ  are the linear attenuation coefficients of the estimated 
material and water, respectively. Hounsfield unit (HU) is the unit of CT number. 
-ray spectrum used, to assign water and air 
the CT numbers 0 HU and -1000 HU, respectively. Spatial resolution and noise in 
an image affect the reproduction of the CT number and are two fundamental 
quantities that are often used to describe image quality   are 
described below to provide a short introduction to what a nonlinear noise reduction 
algorithm can affect. 
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n FBP image from 
which the iteration procedure was started, some manufacturers gave the operator 
the option of choosing the numbers of iterations for the reconstruction and other 
manufacturers construct a fusion image consisting of the iterated image and the 
FBP image.  

he main factor limiting the minimisation of the absorbed 
dose for a CT examination reconstructed using FBP, as the noise may become too 
high and obscure important anatomical structures or pathology. Hence, the IRTs 
were primarily reintroduced to reduce quantum noise. reintroduced iterative 
reconstruction algorithms used a model of noise based on Bayesian statistics in 
the updating procedure of the image.(16) Each pixel in the CT image consists of a 
CT number describing the capacity of the imaged material to attenuate X-rays (see 
section 1.2 ‘Image quality’). One part of this model is the regularisation step, in 
which pixels with CT numbers far from its neighbours’ CT numbers are called to 
be updated. Some of the random noise in the image will be reduced in this step 
since the random noise is unrelated to its neighbours. A regularisation step is 
typically nonlinear as it adapts to preserve sharp edges in the image.(15) 
framework also offers the possibility of weighting down noisy projections in the 
reconstruction procedure to maximise the contribution of projections with good 
quantum statistics.(15) In addition to reduction of noise, some beam-hardening 
artefacts are also reduced, as has been shown in clinical studies.(17,18) Further 
development of the algorithms includes modelling of, for example, the geometry 
of the focal spot, the imaged object, and the detector element to be represented by 
           
improvements in spatial resolution of the CT images.(15) One disadvantage of the 
noise reduction part of an IRT is, as mentioned above, the fact that it is often 
nonlinear, and the smoothing of a nonlinear algorithm can alter the appearance of 
the image to look unfamiliar to the radiologist and other concerned medical 
professions. 

FBP is a linear reconstruction technique, and image appearance can be 
modified using convolution kernels.  image content can be divided into the 
imaged object and the noise. According to the theory of linear systems, the image 
content can be described using spatial frequencies. Further, the imaged object to 
a larger extent than the noise is composed by lower frequencies. Hence, by 
application of a low-pass kernel, noise will be reduced more than the imaged 
object. However, sharp edges also consist of high frequencies and will 
consequently also be suppressed by such a kernel. Hence, a dose reduction using 
a low-pass kernel will then be limited to the required spatial resolution of the 
specific CT examination. Another advantage of using linear reconstruction 
techniques is the possibility of generalising measurements of image quality to be 
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valid for any imaged part of the patient body. In contrast, a nonlinear 
regularisation will introduce an image quality that cannot be generalised, as the 
regularisation is dependent on the contrast of the imaged structures in the patient 
or the noise level. Other nonlinear algorithms that can be implemented in an 
iterative reconstruction, may also generate artificial structures.(19) Such structures 
could be mistaken for or obscure pathology and lead to a misdiagnosis. Generation 
of artificial structures is most common in metal artefact reduction (MAR) and has 
been studied by many, both clinically and through phantom studies.(20–22) In CT 
imaging for diagnostics and also in the planning of radiotherapy treatment,(23) the 
reduction of metal artefacts often outweighs the generation of other types of 
artefacts induced by the MAR algorithms.(24,25) Although the risk of artificial 
structure generation is higher due to the mechanisms in some MAR algorithms,(26) 
there is still a possibility that nonlinear noise reduction may induce structures 
mimicking pathology. 

In summary, the effects of nonlinear noise reduction algorithms may increase 
image quality and support the radiologist in the diagnostic process. Further, the 
image quality may be altered such that radiologists’ experience of how pathology 
is depicted in CT imaging is no longer applicable. , the present thesis 
investigates some of the effects of nonlinear noise reduction algorithms on clinical 
image quality and how the effects can be analysed. 

1.2 Image quality 

A CT system depicts the linear attenuation coefficient of an acquired object, which 
describes the capacity of the depicted material to reduce radiation. Since the 
attenuation is dependent on the energy of the X-ray photons, the coefficient value 
is presented in relation to water and referred to as CT number. 
CT number is expressed as follows: 

CT number = 1000 ∙
µ − µ

µ
,  

where µ and µ  are the linear attenuation coefficients of the estimated 
material and water, respectively. Hounsfield unit (HU) is the unit of CT number. 
-ray spectrum used, to assign water and air 
the CT numbers 0 HU and -1000 HU, respectively. Spatial resolution and noise in 
an image affect the reproduction of the CT number and are two fundamental 
quantities that are often used to describe image quality   are 
described below to provide a short introduction to what a nonlinear noise reduction 
algorithm can affect. 
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1.2.1 Spatial resolution 

Spatial resolution refers to the ability to resolve two measured values from each 
other in image physics this is equivalent to the smallest spacing between two 
imaged objects. In CT imaging, the maximum spatial resolution is often specified 
as line pairs per centimetre at full width at half maximum, i.e. how many 
reconstructed lines of equal width of line and spacing can be fitted in one 
centimetre before the lines are not able to be separated. An ideal imaging system 
would be able to fit an infinite number of lines, i.e. the system would be able to 
reproduce an edge without any blur. However, in a CT imaging system there are 
various limitations that will reduce its ability to reproduce sharp edges. For 
example, let us consider an X-ray film with no screen imaging system, where all 
the variations of the attenuation of the examined object must be detected to be able 
to fully reproduce the object in an image. Even though the ‘detector elements’ of 
the film are at the size of micrometres, the film will still not have reproduced a 
fully clear image, as the object will scatter the X-ray photons to the surrounding 
‘elements’. Further, the area of the X-ray focal spot will generate a geometrical 
distribution error of the X-ray photons, known as penumbra shading. In CT 
imaging, the geometrical error will be even larger, as the detector elements are 
larger than the grains in photographic film and the projections are only 
approximately acquired continuously around the object, due to technical 
limitations such as data storing and after-glow in the detector (limiting a 
reasonable acquisition time). All these phenomena will increase the uncertainty in 
the separation of the linear attenuation coefficients in the object. If the system is 
linear, the generalised spread caused by the CT system can be estimated by the 
point spread function (PSF), which is often acquired by imaging a thin highly 
attenuating object. A common practice is to calculate the discrete Fourier 
transform of the PSF to estimate the modulation transfer function (MTF). 
Modulation refers to the amplitude of a sinusoidal signal relative to the average of 
the sinusoidal signal. Further, the MTF is defined as the ratio of the modulation of 
the signal in an image to the modulation before the imaging of the signal at each 
spatial frequency, i.e. how much of a specific spatial frequency has been 
transferred to the image (for further information on the subject, see section 1.4.2 
‘Objective evaluation of resolution and distortion in nonlinear systems’ and 3.3.1 
‘’). 

1.2.2 Noise 

Noise can be interpreted as statistical variations in measurements, and in a digital 
image the variations generated by an X-ray system can be divided into quantum 
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noise and electronic noise. In an X-ray imaging system composed of a source and 
a detector array, the measurements consist of letting a number of photons pass 
through an object to estimate the attenuation of the object. e probability of the  
X-ray photons interacting with the object medium (not reaching the detector) will 
for example depend on the thickness and electron density of the object and the 
energy of the photons. e number of photons reaching the detector in a period of 
time follows a Poisson distribution. Hence, the array of detector elements will 
demonstrate signal variations (quantum noise) dependent on this distribution. e 
measurements obtained by a detector may further be disturbed by electronic noise, 
due to current variations in the hardware components of the CT system. ese 
variations are often small compared to the quantum noise for an energy integrating 
detector. However, the effect of electronic noise becomes more substantial as the 
number of detections is decreased.(27) Both the quantum and electronic noise will 
be represented as random variations of the CT number in the image, and one study 
has proposed that the electronic noise may be compound-modelled as Gaussian.(28) 

standard deviation of the pixel values in a region of interest (ROI) is often 
used as a measure of noise magnitude. However, the appearance of the image 
noise will depend on the spatial frequencies represented in the noise. 
of noise magnitude in a digital system can then be extended to measure the power 
of the noise at individual frequencies using the concept of noise power spectrum 
(NPS).(29) Analysis of NPS in CT systems can indicate the texture of the noise, 
and the NPS may vary between manufacturers and model of CT scanner.(30) 
compared to standard deviation, the use of NPS improves image quality 
assessments.(31) 

In a CT system, the noise is transferred from the projections to the 
reconstructed image.   will be correlated depending on the 
reconstruction technique used and the geometry in which the projections are 
acquired. In the case of geometrical dependence, the noise magnitude in a 
reconstructed image will follow a radial relationship, as patients can often be 
approximated as cylindrical objects. Hence, the X-ray beam will face a thicker 
object in the middle of the beam as it is rotating around the patient. Consequently, 
the statistical variations will be higher in the middle detectors, and the magnitude 
of the noise will be higher in the centre of the reconstructed image. 
geometrical phenomenon is almost always true in clinical situations. Hence, 
clinical CT systems are always equipped with physical filters of low density, 
known as bowtie filters, to shape the photon flux to be lower at the ends and higher 
in the middle of the fan-beam, such that the noise magnitude in the detector array, 
and consequently also in the reconstructed image, will be more homogeneous. 
Consequently, the use of bowtie filters also requires the scanned object to be 
placed in the isocentre of the CT gantry. Otherwise, the noise will be higher and 
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1.2.1 Spatial resolution 

Spatial resolution refers to the ability to resolve two measured values from each 
other in image physics this is equivalent to the smallest spacing between two 
imaged objects. In CT imaging, the maximum spatial resolution is often specified 
as line pairs per centimetre at full width at half maximum, i.e. how many 
reconstructed lines of equal width of line and spacing can be fitted in one 
centimetre before the lines are not able to be separated. An ideal imaging system 
would be able to fit an infinite number of lines, i.e. the system would be able to 
reproduce an edge without any blur. However, in a CT imaging system there are 
various limitations that will reduce its ability to reproduce sharp edges. For 
example, let us consider an X-ray film with no screen imaging system, where all 
the variations of the attenuation of the examined object must be detected to be able 
to fully reproduce the object in an image. Even though the ‘detector elements’ of 
the film are at the size of micrometres, the film will still not have reproduced a 
fully clear image, as the object will scatter the X-ray photons to the surrounding 
‘elements’. Further, the area of the X-ray focal spot will generate a geometrical 
distribution error of the X-ray photons, known as penumbra shading. In CT 
imaging, the geometrical error will be even larger, as the detector elements are 
larger than the grains in photographic film and the projections are only 
approximately acquired continuously around the object, due to technical 
limitations such as data storing and after-glow in the detector (limiting a 
reasonable acquisition time). All these phenomena will increase the uncertainty in 
the separation of the linear attenuation coefficients in the object. If the system is 
linear, the generalised spread caused by the CT system can be estimated by the 
point spread function (PSF), which is often acquired by imaging a thin highly 
attenuating object. A common practice is to calculate the discrete Fourier 
transform of the PSF to estimate the modulation transfer function (MTF). 
Modulation refers to the amplitude of a sinusoidal signal relative to the average of 
the sinusoidal signal. Further, the MTF is defined as the ratio of the modulation of 
the signal in an image to the modulation before the imaging of the signal at each 
spatial frequency, i.e. how much of a specific spatial frequency has been 
transferred to the image (for further information on the subject, see section 1.4.2 
‘Objective evaluation of resolution and distortion in nonlinear systems’ and 3.3.1 
‘’). 

1.2.2 Noise 

Noise can be interpreted as statistical variations in measurements, and in a digital 
image the variations generated by an X-ray system can be divided into quantum 
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noise and electronic noise. In an X-ray imaging system composed of a source and 
a detector array, the measurements consist of letting a number of photons pass 
through an object to estimate the attenuation of the object. e probability of the  
X-ray photons interacting with the object medium (not reaching the detector) will 
for example depend on the thickness and electron density of the object and the 
energy of the photons. e number of photons reaching the detector in a period of 
time follows a Poisson distribution. Hence, the array of detector elements will 
demonstrate signal variations (quantum noise) dependent on this distribution. e 
measurements obtained by a detector may further be disturbed by electronic noise, 
due to current variations in the hardware components of the CT system. ese 
variations are often small compared to the quantum noise for an energy integrating 
detector. However, the effect of electronic noise becomes more substantial as the 
number of detections is decreased.(27) Both the quantum and electronic noise will 
be represented as random variations of the CT number in the image, and one study 
has proposed that the electronic noise may be compound-modelled as Gaussian.(28) 

standard deviation of the pixel values in a region of interest (ROI) is often 
used as a measure of noise magnitude. However, the appearance of the image 
noise will depend on the spatial frequencies represented in the noise. 
of noise magnitude in a digital system can then be extended to measure the power 
of the noise at individual frequencies using the concept of noise power spectrum 
(NPS).(29) Analysis of NPS in CT systems can indicate the texture of the noise, 
and the NPS may vary between manufacturers and model of CT scanner.(30) 
compared to standard deviation, the use of NPS improves image quality 
assessments.(31) 

In a CT system, the noise is transferred from the projections to the 
reconstructed image.   will be correlated depending on the 
reconstruction technique used and the geometry in which the projections are 
acquired. In the case of geometrical dependence, the noise magnitude in a 
reconstructed image will follow a radial relationship, as patients can often be 
approximated as cylindrical objects. Hence, the X-ray beam will face a thicker 
object in the middle of the beam as it is rotating around the patient. Consequently, 
the statistical variations will be higher in the middle detectors, and the magnitude 
of the noise will be higher in the centre of the reconstructed image. 
geometrical phenomenon is almost always true in clinical situations. Hence, 
clinical CT systems are always equipped with physical filters of low density, 
known as bowtie filters, to shape the photon flux to be lower at the ends and higher 
in the middle of the fan-beam, such that the noise magnitude in the detector array, 
and consequently also in the reconstructed image, will be more homogeneous. 
Consequently, the use of bowtie filters also requires the scanned object to be 
placed in the isocentre of the CT gantry. Otherwise, the noise will be higher and 
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may even be more heterogeneous than without a bowtie filter. However, in a 
clinical situation, the magnitude of the noise is most often sufficiently 
homogeneous to be measured using standard deviation or NPS. Although the noise 
is approximately homogeneous, the complexity of analysing image quality of CT 
systems increases when reconstruction parameters are applied. For example, filter 
kernels (see 1.3.1 ‘Filter kernels’), iterative reconstruction and noise reduction 
algorithms (see 1.3.2 ‘Iterative reconstruction and nonlinear noise reduction’) can 
be used to adapt image quality to the clinical task and are unique to manufacturers, 
which may complicate comparisons between CT systems. Methods have been 
developed to consider these parameters.(31–35) However, the complexity of 
nonlinear noise reduction algorithms still needs further investigation, and some of 
the complexities are within the scope of the present thesis.  

1.3 Noise reduction techniques 

and locate pathology, such as lesions, may be affected by the 
contrast between the lesion and the surrounding anatomy, the size of the lesion, 
and the noise in the CT image.(36) strategies for reducing the influence of noise, 
i.e. decreasing the random variations of the CT number, can be represented by 
reconstruction algorithms and postprocessing techniques. A noise reduction 
reconstruction algorithm used in a CT system is applied in the reconstruction 
domain and can be categorised as filter kernels or iterative reconstruction 
algorithms. e iterative algorithms can use models of the quantum statistics or 
the geometry of the CT system to reduce noise. In contrast, a postprocessing 
technique is applied directly to the reconstructed image.    all 
categories can be either linear or nonlinear.  kernels and iterative noise 
reduction algorithms provided in the CT scanner have manufacturer-specific 
product names, even though the mechanism may be similar. 

1.3.1 Filter kernels 

Filter kernels are part of the FBP algorithm, which is based on the theory of back-
projection. A back-projection reconstruction technique can roughly be described 
as evenly spreading the acquired projections back along the paths of the X-rays. 
Intuitively, this technique will distribute attenuation values at positions that have 
not attenuated the X-ray photons in the acquisition. Consequently, attenuation 
values of objects may also be underestimated, as these projection values are evenly 
distributed at other positions. he result of a back-projection reconstruction 
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is a blurred image of the acquired object. To compensate for the blurring, the 
acquired projections can be filtered in the frequency domain by multiplication of 
a ramp filter amplitude of the linear ramp increases with frequency and will 
hence work as a high-pass filter, which reduces the low frequency components 
and emphasises the high frequency components.(37) A back-projection algorithm 
using this type of filter defines the FBP algorithm. e filtering in the FBP 
algorithm can be described in the spatial domain as deconvolving the blur 
generated by the back-projection algorithm. e filter ramp can be combined with 
a second filter which then changes the weighting of the spatial frequencies. 
combination is called convolution kernel and is often constructed to weight down 
the highest frequencies. A suppression of these frequencies will increase the 
contrast-to-noise ratio (CNR) in a reconstructed image, as such weighting will 
reduce the noise more than the contrast. However, as sharp edges of structures in 
the patient also consist of high frequencies the weighting must be adapted 
dependently. the CT manufacturers have often incorporated several types of 
convolution kernels suited to the different examination types.   
differentiate between white and grey matter (brain tissue) in cerebral examinations 
is mainly dependent on the contrast difference rather than the delineation of 
structure borders. Such examinations can benefit from a highly smoothing 
convolution kernel that reduces the random noise as noise can obscure the contrast 
differences more than the delineation of the structure borders. convolution 
kernel used in paediatric cerebral examinations part of the investigation in Paper I 
is highly smoothing and was used at the clinic due to the diagnostic task.  
dependence of type of convolution kernel in combination with an iterative noise 
reduction was one of the aims in the investigation in Paper II. 

Image processing using a mean or a median filter works as a smoothing 
convolution kernel and may be applied directly to the image or the projection data 
to reduce noise. filters operate in the spatial domain and will function more 
or less as a low-pass frequency filter in the frequency domain, depending on the 
shape of the kernel.  median filter preserves the signal values and does not 
fabricate new ones, as the mean filter does, which can make the median filter better 
in edge preserving. However, the mechanism of a mean filter is linear, as the 
output of the filter is directly proportional to the change in the input.(38) In contrast, 
the median mechanism is nonlinear and may cause signal distortion (see 1.4.2 
‘Objective evaluation of resolution and distortion in nonlinear systems’). 
nonlinear behaviour of the median filter is investigated in Papers III and IV. 
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may even be more heterogeneous than without a bowtie filter. However, in a 
clinical situation, the magnitude of the noise is most often sufficiently 
homogeneous to be measured using standard deviation or NPS. Although the noise 
is approximately homogeneous, the complexity of analysing image quality of CT 
systems increases when reconstruction parameters are applied. For example, filter 
kernels (see 1.3.1 ‘Filter kernels’), iterative reconstruction and noise reduction 
algorithms (see 1.3.2 ‘Iterative reconstruction and nonlinear noise reduction’) can 
be used to adapt image quality to the clinical task and are unique to manufacturers, 
which may complicate comparisons between CT systems. Methods have been 
developed to consider these parameters.(31–35) However, the complexity of 
nonlinear noise reduction algorithms still needs further investigation, and some of 
the complexities are within the scope of the present thesis.  

1.3 Noise reduction techniques 

and locate pathology, such as lesions, may be affected by the 
contrast between the lesion and the surrounding anatomy, the size of the lesion, 
and the noise in the CT image.(36) strategies for reducing the influence of noise, 
i.e. decreasing the random variations of the CT number, can be represented by 
reconstruction algorithms and postprocessing techniques. A noise reduction 
reconstruction algorithm used in a CT system is applied in the reconstruction 
domain and can be categorised as filter kernels or iterative reconstruction 
algorithms. e iterative algorithms can use models of the quantum statistics or 
the geometry of the CT system to reduce noise. In contrast, a postprocessing 
technique is applied directly to the reconstructed image.    all 
categories can be either linear or nonlinear.  kernels and iterative noise 
reduction algorithms provided in the CT scanner have manufacturer-specific 
product names, even though the mechanism may be similar. 

1.3.1 Filter kernels 

Filter kernels are part of the FBP algorithm, which is based on the theory of back-
projection. A back-projection reconstruction technique can roughly be described 
as evenly spreading the acquired projections back along the paths of the X-rays. 
Intuitively, this technique will distribute attenuation values at positions that have 
not attenuated the X-ray photons in the acquisition. Consequently, attenuation 
values of objects may also be underestimated, as these projection values are evenly 
distributed at other positions. he result of a back-projection reconstruction 
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is a blurred image of the acquired object. To compensate for the blurring, the 
acquired projections can be filtered in the frequency domain by multiplication of 
a ramp filter amplitude of the linear ramp increases with frequency and will 
hence work as a high-pass filter, which reduces the low frequency components 
and emphasises the high frequency components.(37) A back-projection algorithm 
using this type of filter defines the FBP algorithm. e filtering in the FBP 
algorithm can be described in the spatial domain as deconvolving the blur 
generated by the back-projection algorithm. e filter ramp can be combined with 
a second filter which then changes the weighting of the spatial frequencies. 
combination is called convolution kernel and is often constructed to weight down 
the highest frequencies. A suppression of these frequencies will increase the 
contrast-to-noise ratio (CNR) in a reconstructed image, as such weighting will 
reduce the noise more than the contrast. However, as sharp edges of structures in 
the patient also consist of high frequencies the weighting must be adapted 
dependently. the CT manufacturers have often incorporated several types of 
convolution kernels suited to the different examination types.   
differentiate between white and grey matter (brain tissue) in cerebral examinations 
is mainly dependent on the contrast difference rather than the delineation of 
structure borders. Such examinations can benefit from a highly smoothing 
convolution kernel that reduces the random noise as noise can obscure the contrast 
differences more than the delineation of the structure borders. convolution 
kernel used in paediatric cerebral examinations part of the investigation in Paper I 
is highly smoothing and was used at the clinic due to the diagnostic task.  
dependence of type of convolution kernel in combination with an iterative noise 
reduction was one of the aims in the investigation in Paper II. 

Image processing using a mean or a median filter works as a smoothing 
convolution kernel and may be applied directly to the image or the projection data 
to reduce noise. filters operate in the spatial domain and will function more 
or less as a low-pass frequency filter in the frequency domain, depending on the 
shape of the kernel.  median filter preserves the signal values and does not 
fabricate new ones, as the mean filter does, which can make the median filter better 
in edge preserving. However, the mechanism of a mean filter is linear, as the 
output of the filter is directly proportional to the change in the input.(38) In contrast, 
the median mechanism is nonlinear and may cause signal distortion (see 1.4.2 
‘Objective evaluation of resolution and distortion in nonlinear systems’). 
nonlinear behaviour of the median filter is investigated in Papers III and IV. 
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1.3.2 Iterative reconstruction and nonlinear noise reduction 

An IRT in CT imaging is based on comparisons between the forward projections 
of an estimate of the object and the real acquired projection data. d 
projection data is acquired by simulating a CT system which is virtually forward 
projecting the reconstructed image as if it was the object.  comparison between 
the real and estimated projection data is used to compute a correction term based 
on the various built-in models in the reconstruction algorithm.  first iteration 
is finished when the correction term has adjusted the reconstructed image
process can be stopped after a fixed number of iterations, when the correction term 
is small enough or an image criterion is reached. For the two latter stopping 
conditions, the closer the estimate of the object is to the real object, the fewer 
iterations are required for the process to converge to a stable solution. Hence, an 
CT image reconstructed using FBP is frequently used as an initial estimate.(39) e 
forward projections of the FBP image will not be identical to the acquired 
projections, due to the quantum variations in the detected signal.  iteration 
process of the FBP image may change the noise appearance. Hence, some 
manufacturers fuse the iterative reconstructed image with an FBP image to 
preserve some of the noise appearance that radiologists are familiar with 
adaptive statistical iterative reconstruction (ASiR™, GE Healthcare, Milwaukee, 
WI, USA) can be fused in steps of 10% up to 100% (0% ASiR is the same as an 
FBP reconstruction and these terms are used interchangeably throughout the 
 100% ASiR implies only the ASiR reconstruction) and is the noise 
reduction algorithm investigated in Papers I and II. 
on the iterative coordinate descent algorithm and uses the statistical properties in 
the intensity measurements from the CT scanner to reduce noise.(16,40) 

 iterative approach of reconstructing CT images has the advantage of 
updating the pixel values in an image based on the properties of the CT system. 
se properties can be divided into optical and physical parameters, and noise 
statistics. e FBP algorithm models the optics using only one X-ray pathway to 
represent the beam of X-rays from source through the object to the detector. In 
contrast, an IRT is able, for example, to model the area of the X-ray focal spot, 
the object volume, and the detector array to consist of many subregions. 
number of possible pathways increases with each subregion, which enables more 
precise estimation of the linear attenuation coefficient in the volume element 
(voxel).  resolution and a reduction in systematic errors such 
as streaking artefacts. However, this procedure may depend on the location of the 
objects in the image of the patient and will thus not fulfil the requirements of a 
linear system. Further, the computation time also increases as the number of 
equations in the system follows the number of pathways. Consequently, the 
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strategy of using subregions is often omitted or approximated by a gaussian 
distribution to speed up the reconstruction time.(16) 

e X-ray beam used in CT imaging is polychromatic, which is not accounted 
for in a reconstruction using FBP. An iterative reconstruction approach can model 
the interaction of a polychromatic beam in the focal spot, the object, and the 
detector to reduce artefacts due to beam hardening.(26,41) Other physical properties 
that could be incorporated in the model may be to not allow negative values of the 
linear attenuation coefficients, as this would imply that X-ray photons are created 
rather than attenuated. Even if exclusion of the non-negativity constraint would 
violate fundamental physics, the benefits of the constraint in diagnostic CT are 
questioned.(42) Further, the distortion properties of the constraint is investigated in 
Paper III. 

Models of noise statistics can be applied in the projection domain (pre-
processing) or in the image domain (post-processing) and can be independent of 
the reconstruction algorithm.(43–46) Such models are based on maximising the 
posterior probability using the Bayesian framework, i.e. what is the most probable 
attenuation coefficients based on the measured projection data. Hence, these 
models can assign a confidence level to the measured values which are being 
updated, based on the variation in relation to their surrounding values. Further, the 
attenuation differences of human tissues are relatively small in comparison to the 
variations in the noise. Hence, the noise could be distinguished from the linear 
attenuation coefficient of human tissue as the estimated values of the coefficient 
should fall in a reasonable range.  common strategy to reduce noise in a CT 
image of a patient is to minimise the total variation (see section 3.4.4 ‘Nonlinear 
noise reduction algorithms used in the simulations’ for a short description of the 
algorithm) as this type of minimisation will penalise noise more than the structures 
of the patient.(47,48) e total variation algorithm is nonlinear, and the distortion 
properties of this filtration are further analysed in Paper IV. Another strategy for 
the pre-processing algorithms is to weight the projections depending on the noise 
level of the measured values, such that projections with high noise are given lower 
confidence and will contribute less to the correction term.(49) logic of the 
updating process can be assigned to post-processing, where unrealistic CT 
numbers are penalised and modified more than a CT number that does not diverge 
much from the neighbouring pixels. e process of assigning confidence to the 
measured projection values is nonlinear as it typically adapts to preserve the 
spatial resolution of the imaged object while reducing the noise. 

correction term obtained from the noise model can be back-projected using 
FBP or used to update the pixels in the image by an iterative strategy. 
differs between the iterative algorithms, as described above the ART algorithm 
updates the image ray by ray, in contrast to the simultaneous iterative 
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strategy of using subregions is often omitted or approximated by a gaussian 
distribution to speed up the reconstruction time.(16) 

e X-ray beam used in CT imaging is polychromatic, which is not accounted 
for in a reconstruction using FBP. An iterative reconstruction approach can model 
the interaction of a polychromatic beam in the focal spot, the object, and the 
detector to reduce artefacts due to beam hardening.(26,41) Other physical properties 
that could be incorporated in the model may be to not allow negative values of the 
linear attenuation coefficients, as this would imply that X-ray photons are created 
rather than attenuated. Even if exclusion of the non-negativity constraint would 
violate fundamental physics, the benefits of the constraint in diagnostic CT are 
questioned.(42) Further, the distortion properties of the constraint is investigated in 
Paper III. 

Models of noise statistics can be applied in the projection domain (pre-
processing) or in the image domain (post-processing) and can be independent of 
the reconstruction algorithm.(43–46) Such models are based on maximising the 
posterior probability using the Bayesian framework, i.e. what is the most probable 
attenuation coefficients based on the measured projection data. Hence, these 
models can assign a confidence level to the measured values which are being 
updated, based on the variation in relation to their surrounding values. Further, the 
attenuation differences of human tissues are relatively small in comparison to the 
variations in the noise. Hence, the noise could be distinguished from the linear 
attenuation coefficient of human tissue as the estimated values of the coefficient 
should fall in a reasonable range.  common strategy to reduce noise in a CT 
image of a patient is to minimise the total variation (see section 3.4.4 ‘Nonlinear 
noise reduction algorithms used in the simulations’ for a short description of the 
algorithm) as this type of minimisation will penalise noise more than the structures 
of the patient.(47,48) e total variation algorithm is nonlinear, and the distortion 
properties of this filtration are further analysed in Paper IV. Another strategy for 
the pre-processing algorithms is to weight the projections depending on the noise 
level of the measured values, such that projections with high noise are given lower 
confidence and will contribute less to the correction term.(49) logic of the 
updating process can be assigned to post-processing, where unrealistic CT 
numbers are penalised and modified more than a CT number that does not diverge 
much from the neighbouring pixels. e process of assigning confidence to the 
measured projection values is nonlinear as it typically adapts to preserve the 
spatial resolution of the imaged object while reducing the noise. 

correction term obtained from the noise model can be back-projected using 
FBP or used to update the pixels in the image by an iterative strategy. 
differs between the iterative algorithms, as described above the ART algorithm 
updates the image ray by ray, in contrast to the simultaneous iterative 
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reconstruction technique (SIRT), which updates all the pixels in the image 
concurrently for each iteration. For example, the correction for one projection 
angle can be performed for all pixels before another projection angle can correct 
the image or the contribution of all projections angles can be used to calculate the 
correction.(50)   process aims to minimise the residual between the 
forward projection data and the obtained projection data from the CT examination. 
  is usually a non-zero positive value as the projections are 
inconsistent due to noise, and the minimum may be found by different strategies. 
   least-square (CGLS) algorithm uses the concept of 
conjugate direction to find the minimum.(51) Without a nonlinear noise model, such 
an iterative process is linear.  distortion caused by a SIRT algorithm and a 
CGLS algorithm in combination with a median filter and a total variation 
reduction algorithm, respectively, is analysed in Paper IV. 

1.4 Evaluation of image quality 

Image quality can be evaluated using human observers and mathematical 
measures in the image. se methods can be divided into two groups: subjective 
evaluation and objective evaluation, where mathematical measurement is always 
objective. However, a human observer evaluation measures image criteria based 
on psychophysical determinations and can only be considered as objective when 
a ground truth is given to compare with in the analysis. Without the ground truth, 
the evaluation measures the observer’s subjective opinion of the image quality. 
           task, as an 
observation made by a radiologist is more likely to correlate to a clinical task than 
a number derived from measurements of the physical image.(52) On the other hand, 
mathematical measurements may determine differences between imaging systems 
more conveniently than human observer studies, as long as the image quality is 
measured correctly. A combination of the two evaluation methods should be 
considered if the diagnostic value of the whole imaging system is to be 
assessed.(53) 

1.4.1 Human observer evaluation 

A study using human observers where the ground truth is known may be 
considered as more clinically relevant than a study analysing the image quality 
based on the opinion of observers. However, an observer study of known 
pathology can be difficult to perform, as it requires images of patients with and 
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without the specific pathology.(53) Further, the collection of a sufficiently large 
sample size of images and the process of constructing the true answers of the 
pathology may be very time-consuming. In addition, the study preparations cannot 
be too long, as the study may become irrelevant when the study is finished. An 
alternative is to simulate pathology into the images of a patient with negative 
findings to increase the sample size.(54–56) However, another alternative is to set up 
an observer study of anatomical structures and let the observers grade how well 
these structures are reproduced, known as visual grading (VG). theory of VG 
is based on the fact that radiologists detect pathology by comparing the findings 
with their experience of healthy structures, i.e. if the anatomy can be reproduced 
well, then so can the pathology. Although VG studies have been subject to 
criticism, as a determination of beauty rather than diagnostic value, the method is 
widely used and has been indicated to be as clinically relevant as a study of 
pathology.(57) 

VG may be used to grade image quality relatively by comparing the structures 
between two or more images.  image quality can also be assessed on an 
absolute verbal rating scale, where one image at a time is graded using ordered 
adjectives of visibility. n absolute VG study is ordinal and must be 
treated according to rank-invariant properties in the statistical analysis, i.e. the 
result of the verbal rating is only dependent on the order and not the labels.(58,59) 
Quite a few statistical methods have been developed that are appropriate to these 
types of studies.(60–62) Further, the data may also be paired in cases where two 
different methods are compared by viewing the exact same reproduced region in 
the patient.  observer studies in the present work (Papers I and II) are 
VG studies with paired ordinal data. 

1.4.2 Objective evaluation of resolution and distortion in nonlinear 
systems 

image quality of CT images may be estimated using mathematical measures 
of the image such as the spatial resolution and noise. 
described in terms of the MTF, which estimates the ability of the imaging system 
to reproduce isolated spatial frequencies of the objecte NPS is used to describe 
the frequency content of the noise in the image. mage quality metrics can 
be generalised for any input in a system that fulfils the requirements of linearity, 
i.e. additivity and homogeneity.(63) Additivity states that the sum of two inputs 
transferred through a system should be equal to the sum of the two inputs after 
they have been separately transferred through the same system.   
mathematically written as: 
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without the specific pathology.(53) Further, the collection of a sufficiently large 
sample size of images and the process of constructing the true answers of the 
pathology may be very time-consuming. In addition, the study preparations cannot 
be too long, as the study may become irrelevant when the study is finished. An 
alternative is to simulate pathology into the images of a patient with negative 
findings to increase the sample size.(54–56) However, another alternative is to set up 
an observer study of anatomical structures and let the observers grade how well 
these structures are reproduced, known as visual grading (VG). theory of VG 
is based on the fact that radiologists detect pathology by comparing the findings 
with their experience of healthy structures, i.e. if the anatomy can be reproduced 
well, then so can the pathology. Although VG studies have been subject to 
criticism, as a determination of beauty rather than diagnostic value, the method is 
widely used and has been indicated to be as clinically relevant as a study of 
pathology.(57) 

VG may be used to grade image quality relatively by comparing the structures 
between two or more images.  image quality can also be assessed on an 
absolute verbal rating scale, where one image at a time is graded using ordered 
adjectives of visibility. n absolute VG study is ordinal and must be 
treated according to rank-invariant properties in the statistical analysis, i.e. the 
result of the verbal rating is only dependent on the order and not the labels.(58,59) 
Quite a few statistical methods have been developed that are appropriate to these 
types of studies.(60–62) Further, the data may also be paired in cases where two 
different methods are compared by viewing the exact same reproduced region in 
the patient.  observer studies in the present work (Papers I and II) are 
VG studies with paired ordinal data. 

1.4.2 Objective evaluation of resolution and distortion in nonlinear 
systems 

image quality of CT images may be estimated using mathematical measures 
of the image such as the spatial resolution and noise. 
described in terms of the MTF, which estimates the ability of the imaging system 
to reproduce isolated spatial frequencies of the objecte NPS is used to describe 
the frequency content of the noise in the image. mage quality metrics can 
be generalised for any input in a system that fulfils the requirements of linearity, 
i.e. additivity and homogeneity.(63) Additivity states that the sum of two inputs 
transferred through a system should be equal to the sum of the two inputs after 
they have been separately transferred through the same system.   
mathematically written as: 
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,  + ,  = ,  +, , 

 
where  is the system working on the input functions ,  and , . 
homogeneity condition states that the result of a scalar factor working on an input 
before it has been transferred through a system is equal to the result of the scalar 
working on the output of the same system, provided the same input. 
Mathematically, this is written as: 
 

,  = , , 
 

where  is a scalar. Although real systems are never strictly linear, an 
approximation of the linear-system characteristics may be justified. 
introduction of iterative noise reduction algorithms in CT imaging has 
complicated this justification as the often-applied regularisation term is highly 
nonlinear. of the nonlinearity in CT imaging systems have been 
shown to be resolution-dependent on the noise level and the contrast level, both in 
phantom studies(34,64–67) and visually in clinical studies.(68) Further, the noise has 
been shown to be non-stationary and dependent on the imaged object.(69,70) 
Furthermore, the object and the noise in the image have been shown to be distorted 
to other frequencies(71) and to have generated new types of artefacts, such as 
plastic-like appearance (especially in noise reduction) or object generation 
(especially in MAR). Studies have proposed task-specific metrics to overcome the 
issue of noise and contrast dependence.(72) Based on the theory of MTF, the task 
transfer function (TTF) was developed to estimate the transfer of a signal at a 
specified contrast and noise level relevant to the task. A similar approach has been 
proposed to calculate a task-specific NPS.(34)       
nonlinear algorithm and generate a noise texture different to noise reconstructed 
using FBP, which might make the radiologist uncertain of the diagnosis.(73) As a 
consequence of these findings, the developers of the noise reduction algorithms 
started to adapt the algorithms to better match the reconstruction of FBP.(74–76) 

In nonlinear systems, even if the NPS is task-specific it may not indicate 
changes in the noise texture due to a dependence on the content of the background, 
as the NPS is calculated in a homogeneous background. However, studies have 
proposed the noise to be segmented based on the noise magnitude to calculate the 
noise characteristics using the autocorrelation.(69,77) Further, the unavoidable 
distortion effects are often ignored in these modifications of metrics, based on the 
linear-system theory, as the distortion effect is assumed to be embedded in the 
metric. However, the distortion effects embedded in the TTF may not correspond 
to the distortion of the analysed task. A study by Wells and Dobbins(71) has 
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separated the distortion effects from the signal modulation using a methodology 
to obtain the proposed principle frequency response (PFR), which is equal to the 
MTF for a linear system, and the distortion power spectrum (DPS), which 
corresponds to the distortion power of individual frequencies. e methodology 
was developed and tested on conventional radiography systems, and the scope of 
Paper III was to implement the methodology for CT systems. Further, the 
distortion effects may also vary depending on the composition of the object. 
Hence, an analysis of individual frequencies may not fully grasp the distortion 
effects in patient images. Paper IV proposes a methodology to visualise the 
distortion of objects and noise caused by nonlinear noise reduction algorithms.  

Many diagnostic tasks can be interpreted as detection procedures, i.e. whether 
the radiologist can detect a pathology or not. Since human observer studies can be 
rather time-consuming, this has led to the development of a method that can 
mathematically describe the detection of, for example, a lesion in a CT image of 
a patient. is mathematical model of an observer is called model observer and 
can either be ideal or filtered in one way or another to match the diagnostic task, 
e.g. often mimic observation by a human eye. is based 
on the separation of the probability distribution of a signal (e.g. a lesion) present 
or not present in a background (anatomy plus noise). In a linear imaging system, 
the signal task is filtered using the image quality properties of MTF and NPS and 
often also by the visual response of a human observer. is an index that 
describes the probability that the signal is detected, the detectability index 
(’).(35,78) use of mathematical models can be extended to include modelling 
of all steps in an observer study, including the acquisition of the images, the 
examined patient, and the diagnostic evaluation of the detected pathology. 
concept is known as virtual clinical trials.(79,80)  and task-specific NPS 
have been implemented in the model observer formalism to account for some of 
the nonlinear effects of noise reduction algorithms and have recently also been 
determined in clinical images.(81,82) effect of distortion on the image quality 
has not yet been properly investigated, and some methods to analyse these effects 
will be explored in the present thesis. 
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examined patient, and the diagnostic evaluation of the detected pathology. 
concept is known as virtual clinical trials.(79,80)  and task-specific NPS 
have been implemented in the model observer formalism to account for some of 
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determined in clinical images.(81,82) effect of distortion on the image quality 
has not yet been properly investigated, and some methods to analyse these effects 
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2. Aims 

e overall aim of the work in the present thesis was to investigate the effects of 
nonlinear noise reduction algorithms in computed tomography imaging. aim 
was split into four separate studies, the first two studies investigating the effect 
subjectively and the last two aims of the separate studies were: 

1. To investigate the effect of a nonlinear noise reduction algorithm on the 
diagnostic image quality in paediatric cerebral CT imaging (Paper I). 

2. To investigate the dependence of diagnostic image quality of a nonlinear noise 
reduction algorithm on type of convolution kernel in paediatric abdominal CT 
imaging (Paper II).  

3. To implement objective metrics for resolution and distortion effects in 
nonlinear CT imaging (Paper III). 

4. To develop methods for visualising the distortion of object and noise caused 
by nonlinear noise reduction algorithms in CT imaging (Paper IV).  
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3. Materials and Methods 

Papers I and II investigate the effect of a nonlinear noise reduction algorithm on 
image quality in clinical images using human observer evaluation, while Paper III 
and IV focus on describing the changes in image quality through measurements in 
the image using simulations of the CT systems and the scanned objects. 

3.1 The clinical computed tomography system 

All major CT manufacturers provide clinical systems equipped with nonlinear 
noise reduction algorithms. In the present thesis, the effect of one nonlinear noise 
reduction algorithm on the clinical image quality was investigated. All methods 
described below were intended to be applicable to any CT system independent of 
the manufacturer. e objective method of analysing resolution and distortion 
implemented in CT in Paper III requires access to the projection data, which can 
only be provided by the manufacturer. In Paper IV, the objective methods 
developed for analysing the nonlinear distortion of object and noise also required 
access to the projection data. However, an approximation of the method for 
analysing the nonlinear distortion of object was proposed to perform the analysis 
on image data only. se mathematical estimations of the distortion effects were 
mainly investigated using basic nonlinear algorithms to understand more easily 
what the methods are capable of analysing. 

3.1.1 Acquisition parameters 

 same clinical CT system was used in the two observer studies (Papers I and 
II)e system was a 64-slice Discovery CT 750HD™ scanner (GE Healthcare, 
Milwaukee, WI, USA) located at the Paediatric Radiology Department of Queen 
Silvia Children’s Hospital, Gothenburg, Sweden. 

acquisition of the projections could be performed in two modes on the 
present system. One mode acquired images by scanning the patient using a step 
and shot technique (axial mode), where each rotation was acquired at fixed 
positions of the patient, i.e., the patient table was stationary during the collection 
of projection data. e other mode acquired the projections as the patient table 
was moving through the gantry and was called helical mode in the present system. 
One advantage of the axial mode and the reason for using it in the acquisition of 
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cerebral examinations (Paper I), was the possibility of tilting the gantry, such that 
the eyes of the patient were not irradiated directly by the X-ray beam and absorbed 
dose to the lens was avoided.  helical mode was used for abdominal 
examinations (Paper II), as it could cover a larger length of the patient faster and 
more conveniently, due to continuous movement of the patient table. One 
disadvantage of the helical mode, in comparison to the axial mode, was that a 
larger length of the patient must be irradiated to be able to reconstruct images of 
the same volume in the patient (overrangingFigure 2).  

detector array of modern CT system consists of several rows along the 
patient, and the system used in Paper I and II was able to simultaneously acquire 
64 image slices with an image thickness of 0.625 mm on one rotation using the 
axial mode. Hence, the collimation width of the X-ray beam for such acquisition 
must be just over 40 mm to also compensate for the effect of the penumbra on both 
sides. signals from the detector rows can be combined to acquire thicker slices, 
consequently the number of images will then be reduced. Reconstruction of thick 
slices may be more beneficial than batching thicker slices from thinner 

Figure 2. Illustration of the overranging (a) and the overbeaming (penumbra; b) required to 

obtain images of the whole reconstruction volume (c) and full radiation flux to the detectors 

respectively. The difference in overranging and overbeaming between two different 

collimation widths (d) is shown, where the first setup used the whole detector array (1.) and 

the second used the detector array partially (2.). 
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reconstructed slices. However, the latter approach may be more convenient in a 
clinical workflow.  overranging distance is often minimised by active 
collimation, as the whole detector array is not used for the slice at the end of the 
then reduced by shifting one of 
the collimators actively at the start and stop position of the reconstruction 
volume.(83) Further, the collimation could be adjusted to optimise between 
overranging and overbeaming (penumbraFigure 2), but also scattered radiation, 
and speed of the examination. Overbeaming describes the increased beam width 
along the patient, due to geometrical effects such as the size of the focal spot. 
overbeaming area does not contain full beam flux and is not used for 
reconstruction of images and will only contribute to more absorbed dose to the 
patient. Hence, large collimation is preferable for whole-body examinations as the 
number of overbeaming areas will be lower. However, using the helical mode, a 
smaller collimation may be more dose-efficient for shorter scanning distance, as 
the overbeaming may contribute less to the total absorbed dose than the 
overranging could have contributed to with large collimation. Further, small 
collimation would generate less scattered radiation to the active detectors, while 
large collimation could cover a longer part of the patient faster. A collimation of 
20 mm was used for all cerebral examinations and for the youngest children of the 
abdominal examinations, while a collimation of 40 mm was used for the older 
children.  

In helical mode, the ratio between the patient table increment to the total 
collimation width defines the pitch. Hence, a pitch smaller than one indicates the 
patient being irradiated with an overlap, a pitch of one is an edge-to-edge scanning 
acquisition, and a pitch larger than one irradiates the patient with a gap. e pitch 
of the abdominal scans was close to one, 0.984. 

 fastest rotation time of the system was 0.4 s and was used for the abdominal 
examinations to decrease the scanning time and possible artefacts, due to 
respiratory motions.  risk of motion-artefacts in cerebral examinations was 
smaller, which allowed a slower rotation time of 0.6 s. A longer rotation time also 
allowed a larger number of projections per rotation and consequently often a better 
spatial resolution. However, in examinations of children, a fast scanning-time may 
be crucial for a good examination, as unpredicted motion may occur more 
frequently compared to adults. Hence, the rotation time could not be chosen to be 
too long. 

for adult examinations of both the head and the body 
has been 120 kV. However, it could be more dose-efficient to scan small patients 
using a lower tube voltage, especially children. Hence, the youngest patients at the 
clinic were scanned using 100 kV. e relationship between image quality from 
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reconstructed slices. However, the latter approach may be more convenient in a 
clinical workflow.  overranging distance is often minimised by active 
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the collimators actively at the start and stop position of the reconstruction 
volume.(83) Further, the collimation could be adjusted to optimise between 
overranging and overbeaming (penumbraFigure 2), but also scattered radiation, 
and speed of the examination. Overbeaming describes the increased beam width 
along the patient, due to geometrical effects such as the size of the focal spot. 
overbeaming area does not contain full beam flux and is not used for 
reconstruction of images and will only contribute to more absorbed dose to the 
patient. Hence, large collimation is preferable for whole-body examinations as the 
number of overbeaming areas will be lower. However, using the helical mode, a 
smaller collimation may be more dose-efficient for shorter scanning distance, as 
the overbeaming may contribute less to the total absorbed dose than the 
overranging could have contributed to with large collimation. Further, small 
collimation would generate less scattered radiation to the active detectors, while 
large collimation could cover a longer part of the patient faster. A collimation of 
20 mm was used for all cerebral examinations and for the youngest children of the 
abdominal examinations, while a collimation of 40 mm was used for the older 
children.  

In helical mode, the ratio between the patient table increment to the total 
collimation width defines the pitch. Hence, a pitch smaller than one indicates the 
patient being irradiated with an overlap, a pitch of one is an edge-to-edge scanning 
acquisition, and a pitch larger than one irradiates the patient with a gap. e pitch 
of the abdominal scans was close to one, 0.984. 

 fastest rotation time of the system was 0.4 s and was used for the abdominal 
examinations to decrease the scanning time and possible artefacts, due to 
respiratory motions.  risk of motion-artefacts in cerebral examinations was 
smaller, which allowed a slower rotation time of 0.6 s. A longer rotation time also 
allowed a larger number of projections per rotation and consequently often a better 
spatial resolution. However, in examinations of children, a fast scanning-time may 
be crucial for a good examination, as unpredicted motion may occur more 
frequently compared to adults. Hence, the rotation time could not be chosen to be 
too long. 
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has been 120 kV. However, it could be more dose-efficient to scan small patients 
using a lower tube voltage, especially children. Hence, the youngest patients at the 
clinic were scanned using 100 kV. e relationship between image quality from 
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different tube potentials and absorbed dose has been studied more thoroughly by 
other authors.(84,85)  

Tube current modulation is provided in various configuration by the 
manufacturers. However, the main purposes of these utilities are to vary the tube 
current depending on the attenuation properties along the patient (z-modulation) 
and around the patient (x/y-modulation), as a patient tends to be more ellipsoidal 
than cylindrical. A modulation utility searches to keep the standard deviation in 
an image constant throughout the examination by correlating an index to the 
acceptable quantum noise. A more thorough description of the tube current 
modulation can be found elsewhere.(86,87) guration of the present system 
modulated the cerebral examinations using z-modulation and the abdominal 
examinations using x-, y-, and z-modulation.  index of which the modulations 
were controlled was named noise index (NI) on the CT scanner used, where a low 
value of NI indicated a low standard deviation. was set lower for younger 
children, as the contrast in anatomy increases with age. 
on the slice thickness of the reconstructed image, as thicker slices have lower 
standard deviation than thinner slices. However, the NI was independent of filter 
kernel as the standard deviation of reference was calculated in an image of water 
reconstructed using FBP and the filter kernel called ‘Standard’. cerebral and 
abdomen examinations were acquired with an NI related to an image slice 
thickness of 5 mm and 0.625 mm respectively. for scanning using thin 
slices of 0.625 mm was to be able to batch image series in the coronal and sagittal 
planes of the patient, while the cerebral examinations were only viewed in the 
axial plane at that time and did not have to be reconstructed in thin slices. 

It was important to consider the shape of the bowtie filter regarding the size of 
the examined body part. re were two shapes of the bowtie filter designed to 
even out the detector signal and thereby also the dose gradient in the patient. Each 
of the shapes was limited to a circular maximum reconstruction region, which was 
called scan field-of-view (SFOV) on the present CT system. e SFOV of the 
smaller bowtie filter was 32 cm, while the SFOV of the larger filter was 50 cm in 
diameter. In general, the larger SFOV was used for adult (or children of the same 
size) body examinations and the smaller SFOV was used for head examinations 
and body examinations of the smallest children. Head examinations must have a 
reconstruction correction to decrease artefacts due to the skull bone. Hence, the 
choice of a small SFOV also included a choice between head and body 
examination. 

In a CT system, the weighted computed tomography dose index (CTDIw) 
estimates the absorbed dose for one rotation divided by the width of the beam 
collimation.(88) Further, the CTDIw is determined using the axial scanning 
technique on a cylindrical polymethyl methacrylate (PMMA) phantom. A 
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phantom of diameter 32 cm is used for estimations of the absorbed dose for a body 
CT examination and a phantom of 16 cm is used for a head examination. 
Furthermore, the smaller phantom is sometimes used to estimate the absorbed 
dose for CT examinations of children. Absorbed dose for a CT examination 
performed using the helical scanning technique is determined by dividing the 
CTDIw with the pitch to form the volume averaged CTDI (CTDIvol). 
of reporting these dose metrics is in unit of milliGray (mGy). In theory the CTDIvol 
is independent of the scanning length and the total dose for a CT examination can 
be estimated by the multiplication of CTDIvol by the scan length, which forms the 
dose length product (DLP).  this metric is in unit of milliGray centimetre 
(mGycm). Table 1 in Paper I and Table 1 in Paper II list the estimated CTDIvol for 
each age group. It should be noted that the CTDIvol is an index estimated to PMMA 
and should not be used to estimate dose to individual patients. Recently, size-
specific dose estimate (SSDE) has been proposed to be a dose estimate specific to 
the size and density of irradiated volume of the patient.(89–91) 

3.1.2 Raw data collection 

Clinically preformed paediatric CT examinations of the cerebrum (Paper I) and 
abdomen (Paper II) were the subject of interest, as these were the most frequent 
and most dose-heavy CT examinations, respectively. Further, the cerebral and 
abdominal examinations were performed without and with intravenous contrast 
medium, respectively. e acquired examinations were stored locally on the CT 
system in a raw data format (projection data). Further, anonymised raw data of the 
subjects were retrospectively collected and stored on local hard-drive disks as the 
CT system could not store more than approximately one month of patient 
examinations.  criteria for inclusion were examinations using standard 
examination parameters and with no pathological findings or motion artefacts that 
could disturb the assessment of the anatomical structures. patients 
was also limited due to time, as the scanning protocols had to be kept the same 
and without updates of the CT systems. A collection time of approximately one 
year was considered to be reasonable, as by then the number of included patients 
had reached 20 (Table 1).  

3.1.3 Reconstruction of raw data 


studies was ASiR (see section ‘1.3.2 Iterative reconstructions and nonlinear noise 
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different tube potentials and absorbed dose has been studied more thoroughly by 
other authors.(84,85)  
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phantom of diameter 32 cm is used for estimations of the absorbed dose for a body 
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CT system could not store more than approximately one month of patient 
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examination parameters and with no pathological findings or motion artefacts that 
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was also limited due to time, as the scanning protocols had to be kept the same 
and without updates of the CT systems. A collection time of approximately one 
year was considered to be reasonable, as by then the number of included patients 
had reached 20 (Table 1).  

3.1.3 Reconstruction of raw data 


studies was ASiR (see section ‘1.3.2 Iterative reconstructions and nonlinear noise 
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reduction’     cerebral and 
abdominal scans following the recommendation of 
ASiR level was accompanied by an increased NI to use the gained noise reduction, 
as an action to save on absorbed dose.  
retrospectively reconstructed at the percentage levels of ASiR used in the studies 
(Table 1) carefully performed to generate 
images at the same location in the abdomen for all the series of different levels of 
ASiR. Only axial images were reconstructed and used in the investigations as the 
image evaluation software ViewDEX (Viewer for Digital Evaluation of X-ray 
images) used in the investigation had not yet implemented an option of 
simultaneously view multiple stacks.(92–95) e cerebral and abdominal 
examinations were reconstructed into image stacks of 5 mm thick slices. A stack 
of the whole cerebral examination was used to evaluate the image quality of the 
anatomical structures, while a smaller region (4 cm in length) was used for the 
evaluation of the abdominal examinations. location of the region was carefully 
specified to contain the relevant anatomical structures of the investigation for each 
patient. g a smaller region was to reduce the time for observer 
evaluation. e number of images in each stack used in the observer studies was 
approximately the same for the younger age groups. Hence, the paediatric heads 
were quite small, and the image slices of the head were reconstructed edge-to-
edge, compared to the abdominal images, which were reconstructed with 50% 
overlap. 
 
Table 1. Study information of the patient groups assessed in Paper I and Paper II. The 
table includes the assessed ASiR levels and convolution kernels for the patient material, 
where bold marks the reference (original) parameters.   

 
Cerebral study 

(Paper I) 
Abdominal 

study (Paper II) 

Group A B A B C 

Age range 5-18 y 0-5 y 2-15 y 

Assessed ASiR levels 
0%, 20%, 

30%,40%, 50%, 
60%, 100% 

0%, 30%, 40%, 
50%, 60%, 70%, 

80%, 100% 

30%, 50%, 
70%, 90%, 

100% 

Convolution kernel Soft Soft 
Soft, Standard, 

Detail 
No. of patients  

(in intra observer study) 
20 (3) 20 (3) 35 (4) 

Viewed cases 161 184 585 

No. of observers 3 3 4 
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convolution kernel used at the clinic for the present examination types was 

a smoothing type of kernel called ‘Soft’ on the CT system. ‘Soft’ kernel was 
used as a noise reduction tool, which also smoothed out edges.  reason for 
investigating the effect of the convolution kernel in Paper II was the results from 
the cerebral examination in Paper I. It showed the delineation of one of the 
structures representing sharp edges (‘cerebral fluid space around the brain’, Table 
2) to degrade as the level of ASiR increased to 100%. Such degradation might be 
due to the combination of the ‘Soft’ kernel and the level of ASiR, since the 
smoothing of the edges could have become more prominent when the noise was 
further reduced by the ASiR algorithm. Hence, the observer study of the 
abdominal examinations investigated the effect of combining a more edge-
enhancing filter kernel with ASiR. Consequently, the number of cases for the 
observers to view in Paper II increased threefold, as three filter kernels (‘Soft’, 
‘Standard’ and ‘Detail’) were investigated. 
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convolution kernel used at the clinic for the present examination types was 

a smoothing type of kernel called ‘Soft’ on the CT system. ‘Soft’ kernel was 
used as a noise reduction tool, which also smoothed out edges.  reason for 
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‘Standard’ and ‘Detail’) were investigated. 
  



38   3 .  M AT ER IALS AND M ET HODS

 

Table 2. The assessed questions of anatomical structures and diagnostic image quality 
with corresponding rating scale used in Papers I and II. The anatomical structures are 
highlighted by bold text. 

 Cerebral study (Paper I) Abdominal study (Paper II) 
uestions about the anatomical structures 

Q1 
How well can you differentiate 
? 

How well is the o delineated? 

Q2 
How well are the   
delineated? 

How well are the  
delineated? 

Q3 
How well is the   
delineated?

How well is the 
o? 

Q4 
How well is the o 
 o  o
delineated?

How well is the x-o
o delineated? 

Q5 
How well is the o 
o delineated? 

How well is the  delineated? 

Q6 
How well are the   
o delineated? 

How well is the   
delineated? 



Q7 
For what diagnostic situation is this 
iag uait suicint 

Grad th diagnostic usunss o this 
iag uait or a standard abdoina 
xaination 

-6

A. Car A.  Car 
B. Accptab B.  Accptab 
C. Poor C.  Poor 
D. Not at a D.  Not at a 
  E.  Not appicab 



E. For high-rsoution diagnostics   
F. For standard diagnostics F.  Excnt 
G. For ow-rsoution diagnostics G.  uicint 
H. Not diagnostica usu H.  nsuicint 
  .    No diagnostic us 
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3.2 Observer evaluation of image quality in 
nonlinear systems 

3.2.1 Visual grading 

e number of CT examinations of paediatric patients without pathological 
findings was low (Table 1). However, the number of examinations with a specific 
pathology was even lower. Hence, it was suitable to use visual grading for the 
evaluation of image quality of the paediatric CT scans at the clinic (Paper I and 
approach was absolute, as the cases were evaluated 
separately using a scale of verbal rating (Table 2). A case was defined as one 
patient’s reconstructed image series using one specific set of reconstruction 
parameters. Each case was rated using six questions related to the anatomical 
structures and one question about the diagnostic image quality (Table 2). 
categories of the rating scale described how well the anatomical structures were 
reproduced (Table 2)categories used for Question 7 in Paper I described for 
what diagnostic situation the image quality was sufficient and in Paper II the 
categories described the diagnostic usefulness of the image quality for a standard 
abdominal examination (Table 2). ratings were paired data, as the same raw 
data of each patient was reconstructed with different reconstruction parameters 
and evaluated against the reference parameters (Table 1). All cases in the studies 
were presented to each observer in a unique random order, without annotations of 
patient information or scanning parameters to reduce possible biases in the 
observer ratings in the assessments. 

Since the observer studies used quite few patients and few observers, it was 
important to consider the intra-observer variability to identify possible changes in 
observer ratings, i.e. an intra-observer study. e intra-observer study identified 
one observer to have changed his/her way of using the rating scale during the 
assessment of the first patient group (Group A, Table 1), who was asked to reassess 
all the images in this substudyreassessment was then used in 
the analysis. -observer study consisted of three to four patients related to 
each group of assessed patients, where the image stacks were duplicated and 
reconstructed at all studied levels of ASiR (Table 1). intra-observer study was 
integrated in the studies and was not known to the observers. As each of the intra-
observer cases was assessed twice, the first assessed case was used in the observer 
evaluation. 

e observer evaluation was assessed on the same computer using a 
mono 
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Table 2. The assessed questions of anatomical structures and diagnostic image quality 
with corresponding rating scale used in Papers I and II. The anatomical structures are 
highlighted by bold text. 

 Cerebral study (Paper I) Abdominal study (Paper II) 
uestions about the anatomical structures 

Q1 
How well can you differentiate 
? 

How well is the o delineated? 

Q2 
How well are the   
delineated? 

How well are the  
delineated? 

Q3 
How well is the   
delineated?

How well is the 
o? 

Q4 
How well is the o 
 o  o
delineated?

How well is the x-o
o delineated? 

Q5 
How well is the o 
o delineated? 

How well is the  delineated? 

Q6 
How well are the   
o delineated? 

How well is the   
delineated? 



Q7 
For what diagnostic situation is this 
iag uait suicint 

Grad th diagnostic usunss o this 
iag uait or a standard abdoina 
xaination 

-6

A. Car A.  Car 
B. Accptab B.  Accptab 
C. Poor C.  Poor 
D. Not at a D.  Not at a 
  E.  Not appicab 



E. For high-rsoution diagnostics   
F. For standard diagnostics F.  Excnt 
G. For ow-rsoution diagnostics G.  uicint 
H. Not diagnostica usu H.  nsuicint 
  .    No diagnostic us 
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3.2 Observer evaluation of image quality in 
nonlinear systems 

3.2.1 Visual grading 

e number of CT examinations of paediatric patients without pathological 
findings was low (Table 1). However, the number of examinations with a specific 
pathology was even lower. Hence, it was suitable to use visual grading for the 
evaluation of image quality of the paediatric CT scans at the clinic (Paper I and 
approach was absolute, as the cases were evaluated 
separately using a scale of verbal rating (Table 2). A case was defined as one 
patient’s reconstructed image series using one specific set of reconstruction 
parameters. Each case was rated using six questions related to the anatomical 
structures and one question about the diagnostic image quality (Table 2). 
categories of the rating scale described how well the anatomical structures were 
reproduced (Table 2)categories used for Question 7 in Paper I described for 
what diagnostic situation the image quality was sufficient and in Paper II the 
categories described the diagnostic usefulness of the image quality for a standard 
abdominal examination (Table 2). ratings were paired data, as the same raw 
data of each patient was reconstructed with different reconstruction parameters 
and evaluated against the reference parameters (Table 1). All cases in the studies 
were presented to each observer in a unique random order, without annotations of 
patient information or scanning parameters to reduce possible biases in the 
observer ratings in the assessments. 

Since the observer studies used quite few patients and few observers, it was 
important to consider the intra-observer variability to identify possible changes in 
observer ratings, i.e. an intra-observer study. e intra-observer study identified 
one observer to have changed his/her way of using the rating scale during the 
assessment of the first patient group (Group A, Table 1), who was asked to reassess 
all the images in this substudyreassessment was then used in 
the analysis. -observer study consisted of three to four patients related to 
each group of assessed patients, where the image stacks were duplicated and 
reconstructed at all studied levels of ASiR (Table 1). intra-observer study was 
integrated in the studies and was not known to the observers. As each of the intra-
observer cases was assessed twice, the first assessed case was used in the observer 
evaluation. 

e observer evaluation was assessed on the same computer using a 
mono 
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Ishikawa, Japan). In the image evaluation software ViewDEX,(92–95) the image 
stack of the cases was presented together with a digital questionnaire bound to the 
viewed case.  observers were allowed to use zoom, pan, and change the 
window width and window level of the images and to stop the session at any time 
to take breaks, when assessing the anatomical structures. However, the observers 
did not have the option to revisit a case after assessment of it was finished. 
observers were able to calibrate their rating scale by visiting a training session 
before each trial of assessment or after breaks. 
were not included in the study as they did not fulfil the inclusion criteria.  

questions used in the evaluation were implanted with small changes from 
previous studies by Ledenius et al.(96,97) choice of structures was based on 
including image quality markers of high- and low-contrast diagnostics. Both 
clinical studies (Papers I and II) also included a question of the diagnostic value, 
which was used to represent the overall image quality. 

Variations in the assessments between observers with different experience 
might exist. Hence, for the evaluation to be valid for a large group of radiologists, 
the radiologists participating as observers in the studies were chosen to represent 
different specialities (radiology, paediatric radiology and paediatric 
neuroradiology) and time in the field of radiology (range: radiology resident in 
radiology to about 25 years of practice). 

3.2.2 Statistical analysis 

paired ordinal data, which had systematic 
and random variability  nonparametric method of Svensson was used to 
separate these variabilities and to analyse the probability of a change in the 
observer ratings between the assessed image qualities.(60,98,99) For each observer, 
the rating of each question for the clinical reconstruction settings used (30% ASiR 
had been implemented before the studies) was the reference and paired with each 
rating of the same question for the tested reconstruction parameters. Hence, in 
Paper I, the level of 30% ASiR was paired with each other tested level of ASiR. 
Further, in Paper II, the filter kernel of ‘Soft’ together with the level of 30% ASiR 
were the reconstruction parameters of reference and paired with each other 
combination of filter kernel and level of ASiR. In practice, the frequency 
distributions of the paired assessments were placed in cross-classification tables 
to calculate percentage of agreement (PA), relative position (RP), relative 
concentration (RC) and relative rank variance (RV). A closer description of these 
metrics has been made by others.(60,100) In summary, the PA was the percentage of 
cases with equal rating, i.e. no difference between the reconstruction parameters. 
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RP and the RC described the probability of a systematic difference for the 
frequency distributions, in contrast to the RV, which described the random 
difference.  and RC ranged between values of -1 and +1. Negative values 
of RP indicated the proposed reconstruction parameters to be systematically rated 
with lower categories in comparison to the reference, i.e. a lower category in the 
present studies describes better reproduction of the image. Further, a positive RC 
indicated the distribution of the ratings for the reference to be more centrally 
located on the rating scale, i.e. some cases were better reproduced, while other 
cases were worse reproduced using the proposed reconstruction parameters. A 
value of RC well separated from zero could indicate that something had disturbed 
the assessment. RV ranged from 0 to +1 and a value diverging from zero 
indicated variability isolated from the systematic variability of the ratings. 

3.3 Objective assessment of resolution and 
distortion in nonlinear systems 

thesis was to develop an objective 
method to assess the degradation in image quality observed in Papers 
possible distortion caused by the nonlinear noise reduction algorithm was 
proposed to be one of the explanations and was intended to be assessed in Paper 
III and IV. To the author’s knowledge, the signal response of nonlinear CT 
systems had never been isolated from the distortion. Hence, a methodology 
developed for conventional radiology was implemented in CT systems in 
Paper III, where the response of individual frequencies was isolated from the 
distortion. In Paper IV, the implemented methodology (Paper III) inspired 
development of a more accessible method that could be applied to existing CT 
systems. 
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     
     

    
     
    
   
    
    


   
      
   

    

     
 


 
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       
           
            

           




           

 
          


Figure 3. Impact of nonlinear noise 

reduction on a 2D sinusoid, showing signal 

power to be transferred to other 

frequencies. The sinusoid is presented in 

the image domain (top row) and in the 

Fourier domain (bottom row). The original 

sinusoid (left) has been noise reduced in the 

projection domain by a median filter 

(middle) and by a total variation filter 

(right) and reconstructed using a FBP 

algorithm. In rows, the image domain and 

the Fourier domain plots are equally 

windowed and levelled. The intensity in the 

Fourier domain plots is at log scale. 
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the relative amplitude at all spatial frequencies, i.e. the system MTF, and describe 
how well a system can reproduce individual spatial frequencies. In practice, the 
narrow signal is approximated using a thin wolfram wire or a sharp edge of a 
phantom. e latter method is used for the task-specific metric TTF.(64) 

2Objcvmm


nonlinear system, as signal power may be transferred to other spatial frequencies 
(distort) and corrupt the estimation of the PSF (point spread function). Further, the 
resolution of a system can equivalently be estimated by presenting individual 
sinusoids to the system and analysing the proportion of the transferred 
amplitudes.(29,101) Hence, by isolating the response of individual spatial 
frequencies the resolution can be estimated isolated from the distorted frequencies 
using the PFR, which is equivalent to the MTF for a nonlinear system.(71) 
is estimated using discrete 2-dimensional sinusoidal patterns. In the frequency 
domain, a continuous 2-dimensional sinusoid is represented by two mirrored 
complex values (dots) specific to the spatial frequency. Hence, the pixel positions 
of the frequency response are easy to locate for the sinusoids (Figure 4a). 
However, the patterns must be limited to the reconstruction area and such 
limitation will convolve the dots with a sinc function (Figure 4b). Fortunately, the 
discretisation of the sinusoid will lead to sampling of the frequency domain at 
positions where the sinc function is zero if the sinusoid is a period of the 
reconstruction field of view (FOVFigure 4c). , the change in magnitude of 
the spatial frequencies is estimated by the ratio between the absolute value of the 
pixel positions before and after the sinusoid has been transferred through 
(reconstructed by) the system (Figure 4d). Consequently, the PFR values range 
between 0 and 1 if no edge enhancement has been applied to the reconstruction. 
number of spatial frequencies in an estimation of the resolution 
using PFR is dependent on the size of the reconstructed FOV. e spatial 
frequencies may be sampled more sparsely to accommodate the power of the 
computer processor and storage capacity, as long as the frequencies are a period 
of the FOV size.  size of the PFR was chosen to 32 × 32, as this size was 
used by Wells and Dobbins. Each sinusoid was sampled at dierent phase shifts 
to average the estimation of the distortion eect and resolution, 30 phase shifts 
were used in Paper III as some phase shift led to null values. Further, a background 
containing noise was added to the sinusoids to investigate the dependence of the 
resolution of a nonlinear system on noise level. Background noise was simulated 
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     
     

    
     
    
   
    
    


   
      
   

    

     
 


 
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       
           
            
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Figure 3. Impact of nonlinear noise 

reduction on a 2D sinusoid, showing signal 

power to be transferred to other 

frequencies. The sinusoid is presented in 

the image domain (top row) and in the 

Fourier domain (bottom row). The original 

sinusoid (left) has been noise reduced in the 

projection domain by a median filter 

(middle) and by a total variation filter 

(right) and reconstructed using a FBP 

algorithm. In rows, the image domain and 

the Fourier domain plots are equally 

windowed and levelled. The intensity in the 

Fourier domain plots is at log scale. 
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the relative amplitude at all spatial frequencies, i.e. the system MTF, and describe 
how well a system can reproduce individual spatial frequencies. In practice, the 
narrow signal is approximated using a thin wolfram wire or a sharp edge of a 
phantom. e latter method is used for the task-specific metric TTF.(64) 

2Objcvmm


nonlinear system, as signal power may be transferred to other spatial frequencies 
(distort) and corrupt the estimation of the PSF (point spread function). Further, the 
resolution of a system can equivalently be estimated by presenting individual 
sinusoids to the system and analysing the proportion of the transferred 
amplitudes.(29,101) Hence, by isolating the response of individual spatial 
frequencies the resolution can be estimated isolated from the distorted frequencies 
using the PFR, which is equivalent to the MTF for a nonlinear system.(71) 
is estimated using discrete 2-dimensional sinusoidal patterns. In the frequency 
domain, a continuous 2-dimensional sinusoid is represented by two mirrored 
complex values (dots) specific to the spatial frequency. Hence, the pixel positions 
of the frequency response are easy to locate for the sinusoids (Figure 4a). 
However, the patterns must be limited to the reconstruction area and such 
limitation will convolve the dots with a sinc function (Figure 4b). Fortunately, the 
discretisation of the sinusoid will lead to sampling of the frequency domain at 
positions where the sinc function is zero if the sinusoid is a period of the 
reconstruction field of view (FOVFigure 4c). , the change in magnitude of 
the spatial frequencies is estimated by the ratio between the absolute value of the 
pixel positions before and after the sinusoid has been transferred through 
(reconstructed by) the system (Figure 4d). Consequently, the PFR values range 
between 0 and 1 if no edge enhancement has been applied to the reconstruction. 
number of spatial frequencies in an estimation of the resolution 
using PFR is dependent on the size of the reconstructed FOV. e spatial 
frequencies may be sampled more sparsely to accommodate the power of the 
computer processor and storage capacity, as long as the frequencies are a period 
of the FOV size.  size of the PFR was chosen to 32 × 32, as this size was 
used by Wells and Dobbins. Each sinusoid was sampled at dierent phase shifts 
to average the estimation of the distortion eect and resolution, 30 phase shifts 
were used in Paper III as some phase shift led to null values. Further, a background 
containing noise was added to the sinusoids to investigate the dependence of the 
resolution of a nonlinear system on noise level. Background noise was simulated 
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Figure 4. Schematic illustrations of a 2-dimensional sinusoid in the frequency domain, the red 

lines represent the absolute value of the 1-dimentional profile over the dots representing the 

sinusoid. The dots for a continuous 2-dimensional sinusoid are represented by delta functions 

(a), for a limited reconstruction area the dots are convolved with a sinc function (b), the 

discretisation of a sinusoid with period of the field-of-view is sampled when the sinc function 

is zero (c), and the change in magnitude of the sinusoid may be measured at these discrete 

pixel positions (black corresponds to zero signal and white to the magnitude; d). 
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1. Generation of 2-dimensional sinusoidal patterns with a number of periods of 
the size of the reconstructed FOV and equal amounts of phase shifts. The 
number of sinusoids used in Paper III was 32 × 32 spatial frequencies and 30 
phase shifts, i.e., 1,024 evenly spaced spatial frequencies each at 30 phase 
shifts, a total number of 30,720 reconstructions for one noise level. 

2. Forward projection of the sinusoids to projection data. 

3. Application of a Poisson-distributed noise related to the projection data. The 
process is repeated for the number of background samples used in the 
estimation. In Paper III, one sample of noise was used, however the period of 
the sinusoid with the largest wavelength was repeated 256 times in that noise 
sample. The noise was also resampled at each phase shift and the sinusoid was 
consequently then analysed in at least 7,680 unique noise backgrounds. 

Figure 5. Illustration of the workflow for the calculation of the ‘principle frequency response’ 

(PFR). The squared objects at (1.), (4.), and (5.) are presented in the image domain and the 

rectangular objects at (2.) and (3.) represent the projection data of (1.) and (4.). The squared 

objects at (6.) represent the fast Fourier transform (FFT) of the images at (1.) and (5.), and 

(7.) represents the PFR of the analysed nonlinear algorithm. The cogwheels indicate 

reconstruction, and the arrows are marked with forward projection or FFT, vertical lines 

indicate absolute value, and the circle arrows indicate that the calculation is repeated for each 

analysed frequency, phase and background. The numbers (1.-7.) are related to the workflow 

described in the text. 
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

         
 

Figure 4. Schematic illustrations of a 2-dimensional sinusoid in the frequency domain, the red 

lines represent the absolute value of the 1-dimentional profile over the dots representing the 

sinusoid. The dots for a continuous 2-dimensional sinusoid are represented by delta functions 

(a), for a limited reconstruction area the dots are convolved with a sinc function (b), the 

discretisation of a sinusoid with period of the field-of-view is sampled when the sinc function 

is zero (c), and the change in magnitude of the sinusoid may be measured at these discrete 

pixel positions (black corresponds to zero signal and white to the magnitude; d). 
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1. Generation of 2-dimensional sinusoidal patterns with a number of periods of 
the size of the reconstructed FOV and equal amounts of phase shifts. The 
number of sinusoids used in Paper III was 32 × 32 spatial frequencies and 30 
phase shifts, i.e., 1,024 evenly spaced spatial frequencies each at 30 phase 
shifts, a total number of 30,720 reconstructions for one noise level. 

2. Forward projection of the sinusoids to projection data. 

3. Application of a Poisson-distributed noise related to the projection data. The 
process is repeated for the number of background samples used in the 
estimation. In Paper III, one sample of noise was used, however the period of 
the sinusoid with the largest wavelength was repeated 256 times in that noise 
sample. The noise was also resampled at each phase shift and the sinusoid was 
consequently then analysed in at least 7,680 unique noise backgrounds. 

Figure 5. Illustration of the workflow for the calculation of the ‘principle frequency response’ 

(PFR). The squared objects at (1.), (4.), and (5.) are presented in the image domain and the 

rectangular objects at (2.) and (3.) represent the projection data of (1.) and (4.). The squared 

objects at (6.) represent the fast Fourier transform (FFT) of the images at (1.) and (5.), and 

(7.) represents the PFR of the analysed nonlinear algorithm. The cogwheels indicate 

reconstruction, and the arrows are marked with forward projection or FFT, vertical lines 

indicate absolute value, and the circle arrows indicate that the calculation is repeated for each 

analysed frequency, phase and background. The numbers (1.-7.) are related to the workflow 

described in the text. 
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4. Reconstruction of both the noisy projection data and the noise data separately, 
using the same nonlinear algorithm. 

5. Subtraction of the reconstructed noise from the reconstructed noisy sinusoid to 
generate a sinusoid consisting of the original spatial frequency and the 
distorted frequencies caused by the nonlinear algorithm. 

6. Comparison in the frequency domain between the absolute values of the pixel 
positions for the sinusoid obtained in 5. and the original sinusoid. 

7. Averaging of the ratio obtained in 6. over the number of phase shifts and the 
number of background samples for each spatial frequency to obtain the array 
of PFR. 

d

Distortion is defined here as the transfer of power from one spatial frequency to 
another (Figure 3). According to this definition, aliasing is a type of distortion. 
Aliasing can induce what are known as moiré patterns in the image and occurs 
when the object has been sampled too sparsely to only reproduce that object. 
Consider a continuous sine wave, which has been sampled at discrete positions 
too sparse to accurately reproduce the spatial frequency of the sine wave. ese 
sample positions can fit both the continuous sine wave and at least one other sine 
wave of a lower frequency. Hence, an image of the sample points will appear as 
these spatial frequencies. , signal power of the high frequency could be said 
to have been transferred to a lower frequency. Such under-sampling may induce 
distortion artefacts in images of all digital systems, both linear and nonlinear. 

Distortion artefacts in images are complex to evaluate, and many dierent 
methods have been proposed to assess the eect of the artefacts and correlate them 
to the perception of the human eye. Although the origin of many of these methods 
is from image compression, some methods are used in medical imaging 
evaluation.(102–104) se objective methods assess changes of the physical image 
using numerical values based on various variation metrics. e metrics may be 
related to the mean squared error and the peak signal-to-noise ratio. However, in 
some cases such metrics do not correlate with human observations.(105) Hence, 
adaptations to the human visual system have then been made to the metrics by 
introducing schemes weighing the dierences based on structure information or 
statistical information, e.g. structural similarity index,(106) visual information 
fidelity(107) and most apparent distortion.(108) most apparent distortion scheme 
combined two strategies to change between dependent on the type of distortion in 
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the image. One of the strategies is used for images containing just-visible 
distortions and the second one is for more obvious distortions. However, the 
mentioned methods do not distinguish between if the distortion is caused by a 
linear or nonlinear system. 

4Objcvmdm


nonlinear systems. 

4Dpwpcm,ddx, &  

         (see, 3.3.2 
‘Objective assessment of resolution in nonlinear systems’) that isolates the PFR 
from distortion also estimates the DPS. A nonlinear system may transfer signal 
power dependent on the spatial frequencies in the signal. However, the distortion 
caused when imaging a delta function (containing all spatial frequencies) may not 
correspond to the waveform distortion of sinusoids at individual spatial 
frequencies. Hence, the DPS summarises the power of the distortion at an array 
corresponding to the sampled spatial frequencies of the PFR array. e DPS array 
represents the power of transferred distortion to all sampled frequency positions 
other than the spatial frequency of the investigated sinusoid, i.e. DPS does not 
represent the summarised power distorted to the spatial frequency of the 
corresponding sinusoid.        combined to 
characterise the ratio of the distortion to the transferred sinusoidal signal by a 
distortion index (DI).(71)        nic distortion, a 
metric used for analysing 1-dimensional nonlinear waveform distortion in the 
engineering community.(109–111) 

 DPS was estimated using sinusoidal patterns, and the first five steps in the 
simulation process of PFR described in section 3.3.2 ‘Objective assessment of 
resolution in nonlinear systems’ were equal to those for DPS. However, to obtain 
the DPS steps 6. and 7. were changed, as follows (Figure 6): 

6. A notch filter ignoring the pixel positions of the sinusoid was applied in the 
frequency domain when the absolute distortion values was summed up and 
averaged over the number of background samples used in the estimation. 
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4. Reconstruction of both the noisy projection data and the noise data separately, 
using the same nonlinear algorithm. 

5. Subtraction of the reconstructed noise from the reconstructed noisy sinusoid to 
generate a sinusoid consisting of the original spatial frequency and the 
distorted frequencies caused by the nonlinear algorithm. 

6. Comparison in the frequency domain between the absolute values of the pixel 
positions for the sinusoid obtained in 5. and the original sinusoid. 

7. Averaging of the ratio obtained in 6. over the number of phase shifts and the 
number of background samples for each spatial frequency to obtain the array 
of PFR. 

d

Distortion is defined here as the transfer of power from one spatial frequency to 
another (Figure 3). According to this definition, aliasing is a type of distortion. 
Aliasing can induce what are known as moiré patterns in the image and occurs 
when the object has been sampled too sparsely to only reproduce that object. 
Consider a continuous sine wave, which has been sampled at discrete positions 
too sparse to accurately reproduce the spatial frequency of the sine wave. ese 
sample positions can fit both the continuous sine wave and at least one other sine 
wave of a lower frequency. Hence, an image of the sample points will appear as 
these spatial frequencies. , signal power of the high frequency could be said 
to have been transferred to a lower frequency. Such under-sampling may induce 
distortion artefacts in images of all digital systems, both linear and nonlinear. 

Distortion artefacts in images are complex to evaluate, and many dierent 
methods have been proposed to assess the eect of the artefacts and correlate them 
to the perception of the human eye. Although the origin of many of these methods 
is from image compression, some methods are used in medical imaging 
evaluation.(102–104) se objective methods assess changes of the physical image 
using numerical values based on various variation metrics. e metrics may be 
related to the mean squared error and the peak signal-to-noise ratio. However, in 
some cases such metrics do not correlate with human observations.(105) Hence, 
adaptations to the human visual system have then been made to the metrics by 
introducing schemes weighing the dierences based on structure information or 
statistical information, e.g. structural similarity index,(106) visual information 
fidelity(107) and most apparent distortion.(108) most apparent distortion scheme 
combined two strategies to change between dependent on the type of distortion in 

 

3 .  M AT ER IALS AND M ET HODS   47

the image. One of the strategies is used for images containing just-visible 
distortions and the second one is for more obvious distortions. However, the 
mentioned methods do not distinguish between if the distortion is caused by a 
linear or nonlinear system. 

4Objcvmdm


nonlinear systems. 

4Dpwpcm,ddx, &  

         (see, 3.3.2 
‘Objective assessment of resolution in nonlinear systems’) that isolates the PFR 
from distortion also estimates the DPS. A nonlinear system may transfer signal 
power dependent on the spatial frequencies in the signal. However, the distortion 
caused when imaging a delta function (containing all spatial frequencies) may not 
correspond to the waveform distortion of sinusoids at individual spatial 
frequencies. Hence, the DPS summarises the power of the distortion at an array 
corresponding to the sampled spatial frequencies of the PFR array. e DPS array 
represents the power of transferred distortion to all sampled frequency positions 
other than the spatial frequency of the investigated sinusoid, i.e. DPS does not 
represent the summarised power distorted to the spatial frequency of the 
corresponding sinusoid.        combined to 
characterise the ratio of the distortion to the transferred sinusoidal signal by a 
distortion index (DI).(71)        nic distortion, a 
metric used for analysing 1-dimensional nonlinear waveform distortion in the 
engineering community.(109–111) 

 DPS was estimated using sinusoidal patterns, and the first five steps in the 
simulation process of PFR described in section 3.3.2 ‘Objective assessment of 
resolution in nonlinear systems’ were equal to those for DPS. However, to obtain 
the DPS steps 6. and 7. were changed, as follows (Figure 6): 

6. A notch filter ignoring the pixel positions of the sinusoid was applied in the 
frequency domain when the absolute distortion values was summed up and 
averaged over the number of background samples used in the estimation. 
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7. The output from 6. was squared and multiplied by the dimensions of the 
reconstructed FOV array (i.e. number of pixels and the widths of a pixel) to 
convert the output units to reflect the signal power. 




      







Figure 6. Illustration of the workflow for the calculation of the distortion power spectrum 

(DPS). The squared objects at (1.), (4.), and (5.) are presented in the image domain and the 

rectangular objects at (2.) and (3.) represent the projection data of (1.) and (4.). The squared 

object at (6.) represents the fast Fourier transform (FFT) of the image at (5.), and (7.) 

represents the DPS of the analysed nonlinear algorithm. The cogwheels indicate 

reconstruction, and the arrows are marked with forward projection or FFT, vertical lines 

indicate absolute value, and the circle arrows indicate that the calculation is repeated for each 

analysed frequency, phase and background. The numbers are related to the workflow 

described in the text. 
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described by ΣDI to have low distortion, even if the distortion fraction at individual 
spatial frequencies was 100 percentcould be described by DI to 
have high distortion, even if the distortion at the individual spatial frequencies was 
barely visible due to the low resolution of the system. Hence, the choice of figure 
of merit was dependent on the question, i.e. was the distortion fraction of interest 
dependent on (ΣDI) or independent of (DI) resolution of the system. However, a 
comparison between systems is easiest when the systems have equal power of the 
total output signal. 

3.3.4.2 Nonlinear distortion of objects and noise, NLDobject & NLDnoise 

If the imaging system is nonlinear, the sum of distortion at individual sinusoids 
(ΣDI or DI) may not be equal to the distortion of an image composed by the same 
sinusoids, i.e. the distortion may be dependent on the composition of the imaged 
object. Further, a nonlinear noise reduction algorithm may not only distort the 
object but also the noise.  appearance of the distortion may also be of interest, 
as the composition of the distorted spatial frequencies can mimic or obscure the 
pathology. Hence, Paper IV intended to develop a method to visualise the 
distortion in nonlinear CT systems.  

 method was divided into two types of image visualising distortion of the 
object and noise induced by a nonlinear noise reduction algorithm. 
was inspired by the technique of isolating distortion from frequency response 
described by Wells and Dobbins(71) and later implemented in CT systems by the 
present author (Paper III). e method presented in Paper IV was adapted to isolate 
the nonlinear difference of a system by comparing the two sides in the 
superposition principle. e residual between the two sides describes to what 
extent the system was nonlinear, and for a residual close to zero the system was 
assumed to be linear. In the calculation of the first type of image, the nonlinear 
distortion of objects (NLDobject), one of the sides represented several noisy 
projection data that were first averaged and then reconstructed into an 
approximately noise-free image.    represented the same noisy 
projection data that were first reconstructed and then averaged into an 
approximately noise-free image (Figure 7). se sides was 
the NLDobject and was calculated using the following workflow: 

1. Projection data of an object were acquired repeatedly over the same volume at 
the noise level of interest and duplicated into two sets. The number of 
acquisitions was dependent on the noise level to generate an NLDobject with 
reasonable low variations to visualise the systematic distortion.  
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7. The output from 6. was squared and multiplied by the dimensions of the 
reconstructed FOV array (i.e. number of pixels and the widths of a pixel) to 
convert the output units to reflect the signal power. 




      





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Figure 6. Illustration of the workflow for the calculation of the distortion power spectrum 

(DPS). The squared objects at (1.), (4.), and (5.) are presented in the image domain and the 

rectangular objects at (2.) and (3.) represent the projection data of (1.) and (4.). The squared 

object at (6.) represents the fast Fourier transform (FFT) of the image at (5.), and (7.) 

represents the DPS of the analysed nonlinear algorithm. The cogwheels indicate 

reconstruction, and the arrows are marked with forward projection or FFT, vertical lines 

indicate absolute value, and the circle arrows indicate that the calculation is repeated for each 

analysed frequency, phase and background. The numbers are related to the workflow 

described in the text. 

 

3 .  M AT ER IALS AND M ET HODS   49

described by ΣDI to have low distortion, even if the distortion fraction at individual 
spatial frequencies was 100 percentcould be described by DI to 
have high distortion, even if the distortion at the individual spatial frequencies was 
barely visible due to the low resolution of the system. Hence, the choice of figure 
of merit was dependent on the question, i.e. was the distortion fraction of interest 
dependent on (ΣDI) or independent of (DI) resolution of the system. However, a 
comparison between systems is easiest when the systems have equal power of the 
total output signal. 

3.3.4.2 Nonlinear distortion of objects and noise, NLDobject & NLDnoise 

If the imaging system is nonlinear, the sum of distortion at individual sinusoids 
(ΣDI or DI) may not be equal to the distortion of an image composed by the same 
sinusoids, i.e. the distortion may be dependent on the composition of the imaged 
object. Further, a nonlinear noise reduction algorithm may not only distort the 
object but also the noise.  appearance of the distortion may also be of interest, 
as the composition of the distorted spatial frequencies can mimic or obscure the 
pathology. Hence, Paper IV intended to develop a method to visualise the 
distortion in nonlinear CT systems.  

 method was divided into two types of image visualising distortion of the 
object and noise induced by a nonlinear noise reduction algorithm. 
was inspired by the technique of isolating distortion from frequency response 
described by Wells and Dobbins(71) and later implemented in CT systems by the 
present author (Paper III). e method presented in Paper IV was adapted to isolate 
the nonlinear difference of a system by comparing the two sides in the 
superposition principle. e residual between the two sides describes to what 
extent the system was nonlinear, and for a residual close to zero the system was 
assumed to be linear. In the calculation of the first type of image, the nonlinear 
distortion of objects (NLDobject), one of the sides represented several noisy 
projection data that were first averaged and then reconstructed into an 
approximately noise-free image.    represented the same noisy 
projection data that were first reconstructed and then averaged into an 
approximately noise-free image (Figure 7). se sides was 
the NLDobject and was calculated using the following workflow: 

1. Projection data of an object were acquired repeatedly over the same volume at 
the noise level of interest and duplicated into two sets. The number of 
acquisitions was dependent on the noise level to generate an NLDobject with 
reasonable low variations to visualise the systematic distortion.  
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2. For the first set of noisy projection data, the object was reconstructed in the 
presence of noise by the following steps: 

a. The noisy projection data were reconstructed separately to noisy 
images of the object. 

b. The noisy images were averaged to an approximately noise-free 
image, where the averaged image represents the object and the 
systematic effect of the reconstruction algorithm in the presence 
of noise. 

3. For the second set of noisy projection data, the object was reconstructed in the 
absence of noise by the following steps: 

a. The noisy projection data were averaged to approximately 
noise-free projection data. 

b. The projection data obtained in 3a. was reconstructed to an 
approximately noise-free image, where the image represents the 
object and the systematic effect of the reconstruction algorithm 
in the absence of noise. 

4. The averaged image obtained in 3b. was subtracted from the image 
reconstructed in 2b. to obtain the NLDobject, which represents the distortion of 
the object dependent on the noise level and number of repeated acquisitions for 
a nonlinear system. 

Figure 7. Illustration of the workflow for the calculation of the nonlinear distortion of objects 

(NLDobject). The cogwheels and arrows indicate reconstruction and averaging, respectively. 

The numbers are related to the workflow described in the text. 
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





           
 

1. Projection data of an object was acquired repeatedly over the same volume at 
the noise level of interest and duplicated into to two sets. The number of 
acquisitions was dependent on the noise level to generate an NLDnoise with 
reasonable separation of the object. 

2. For the first set of noisy projection data, the noise was isolated after 
reconstruction by the following steps: 

a. The noisy projection data were reconstructed separately to noisy 
images of the object. 

b. The noisy images were averaged to an approximately noise-free 
image. 

Figure 8. Illustration of the workflow for the calculation of the nonlinear distortion of noise 

(NLDnoise). The cogwheels and arrows indicate reconstruction and averaging respectively. The 

numbers are related to the workflow described in the text. 
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2. For the first set of noisy projection data, the object was reconstructed in the 
presence of noise by the following steps: 

a. The noisy projection data were reconstructed separately to noisy 
images of the object. 

b. The noisy images were averaged to an approximately noise-free 
image, where the averaged image represents the object and the 
systematic effect of the reconstruction algorithm in the presence 
of noise. 

3. For the second set of noisy projection data, the object was reconstructed in the 
absence of noise by the following steps: 

a. The noisy projection data were averaged to approximately 
noise-free projection data. 

b. The projection data obtained in 3a. was reconstructed to an 
approximately noise-free image, where the image represents the 
object and the systematic effect of the reconstruction algorithm 
in the absence of noise. 

4. The averaged image obtained in 3b. was subtracted from the image 
reconstructed in 2b. to obtain the NLDobject, which represents the distortion of 
the object dependent on the noise level and number of repeated acquisitions for 
a nonlinear system. 

Figure 7. Illustration of the workflow for the calculation of the nonlinear distortion of objects 

(NLDobject). The cogwheels and arrows indicate reconstruction and averaging, respectively. 

The numbers are related to the workflow described in the text. 
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
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1. Projection data of an object was acquired repeatedly over the same volume at 
the noise level of interest and duplicated into to two sets. The number of 
acquisitions was dependent on the noise level to generate an NLDnoise with 
reasonable separation of the object. 

2. For the first set of noisy projection data, the noise was isolated after 
reconstruction by the following steps: 

a. The noisy projection data were reconstructed separately to noisy 
images of the object. 

b. The noisy images were averaged to an approximately noise-free 
image. 

Figure 8. Illustration of the workflow for the calculation of the nonlinear distortion of noise 

(NLDnoise). The cogwheels and arrows indicate reconstruction and averaging respectively. The 

numbers are related to the workflow described in the text. 
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c. The image obtained in 2b. was subtracted from each noisy 
image obtained in 2a. to isolate the images of noise only, where 
the images represent the effect of the reconstruction algorithm 
on noise reconstructed in the presence of the object. 

3. For the second set of noisy projection data, the noise was isolated before 
reconstruction by the following steps: 

a. The noisy projection data were averaged to approximately 
noise-free projection data. 

b. The projection data obtained in 3a. were subtracted from each 
noisy projection data to isolate the projection data of noise only. 

c. The projection data of noise obtained in 3b. were reconstructed 
separately to images of noise only, where the images represent 
the effect of the reconstruction algorithm on noise reconstructed 
in the absence of the object. 

4. The noise images obtained in 3c. were subtracted from the respective noise 
images obtained in 2c. to obtain the NLDnoise series, which represent the 
distortion of the noise dependent on the noise level and number of repeated 
acquisitions for a nonlinear system. 

e NLDobject and NLDnoise visually described the distorted spatial frequencies of 
the object and noise respectively. object could detect the noise dependence 
of the nonlinear noise reduction algorithm, as the systematic distortion difference 
between reconstructing noisy projection data and approximately noise-free 
projection data was calculated. Further, the NLDnoise could detect how the noise 
was distorted by the reconstruction depending on the object, as the object was 
reconstructed with and without the object. 

 NLDobject and NLDnoise had to be calculated through manipulations in the 
projection data. However, an approximation of NLDobject (NLD’object) could be 
estimated by replacing the approximately noise-free image by a separately 
acquired image with low noise. Hence, estimation of the NLD’object was possible 
on an existing CT system without access to manipulation of the projection data. 
noise was not static between acquisitions and cannot be replaced in a second 
acquisition. 
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3.4 Simulation of a computed tomography system 

An existing CT system at a clinic has limited access to the projection data, i.e. the 
data are locked to saving, loading, and retro reconstruction using the built-in 
algorithms. Hence, most of the manipulation of projection data used in the 
methods described in section 3.3 ‘Objective assessment of resolution and 
distortion in nonlinear systems’ cannot be performed on a CT system at a clinic 
without permission from the manufacturer.  simulation of a computed 
tomography system was suited to use when testing these methods for analysing 
resolution and distortion effects of nonlinear noise reduction algorithms. 

3.4.1 Configuration of the simulated geometry 

s was to assess resolution and distortion induced 
by a nonlinear CT system. quired geometrical elements for the simulation 
of such a CT system were a source and detector array rotating around (projection 
geometry) an object (volume geometry) and a reconstruction algorithm based on 
these geometries.  the CT systems in Papers III and IV were 
simulated using the open source Compute Unified Device Architecture (CUDA)- 
integrated toolbox ASTRA©(112–114) for MATLAB™, due to the easily handled 
code and the variety of integrated reconstruction algorithms. 
from the simulation were generated through forward projection of the object based 
on the projection and volume geometries. 

In the simulation of the projection geometry, the detector array was limited by 
the toolbox to a flat configuration, where the width of the detector array was 
defined as the number of detectors multiplied by the distance between the centres 
of two adjacent detector elements.  large array of detectors would 
generate long reconstruction times was taken into consideration, when the detector 
width of around 1 mm defined at the iso-centre and the number of detectors was 
set to 737 and 1,474 in Papers III and IV respectively.    
mimicked what is known as a cone-beam CT system more than a conventional CT 
system. However, the outcomes of the studies were to be used as examples of how 
the distortion could be assessed. Hence, an exact geometrical configuration was 
not critical to validate the proposed methods. 

      -beam, where the projection geometry 
simulated diverging X-rays using the width of the detector array, the distance 

distances used in the simulation originated from a rather old clinical CT system. 
projection positions were defined by the degree and range of the angles. 
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c. The image obtained in 2b. was subtracted from each noisy 
image obtained in 2a. to isolate the images of noise only, where 
the images represent the effect of the reconstruction algorithm 
on noise reconstructed in the presence of the object. 

3. For the second set of noisy projection data, the noise was isolated before 
reconstruction by the following steps: 

a. The noisy projection data were averaged to approximately 
noise-free projection data. 

b. The projection data obtained in 3a. were subtracted from each 
noisy projection data to isolate the projection data of noise only. 

c. The projection data of noise obtained in 3b. were reconstructed 
separately to images of noise only, where the images represent 
the effect of the reconstruction algorithm on noise reconstructed 
in the absence of the object. 

4. The noise images obtained in 3c. were subtracted from the respective noise 
images obtained in 2c. to obtain the NLDnoise series, which represent the 
distortion of the noise dependent on the noise level and number of repeated 
acquisitions for a nonlinear system. 

e NLDobject and NLDnoise visually described the distorted spatial frequencies of 
the object and noise respectively. object could detect the noise dependence 
of the nonlinear noise reduction algorithm, as the systematic distortion difference 
between reconstructing noisy projection data and approximately noise-free 
projection data was calculated. Further, the NLDnoise could detect how the noise 
was distorted by the reconstruction depending on the object, as the object was 
reconstructed with and without the object. 

 NLDobject and NLDnoise had to be calculated through manipulations in the 
projection data. However, an approximation of NLDobject (NLD’object) could be 
estimated by replacing the approximately noise-free image by a separately 
acquired image with low noise. Hence, estimation of the NLD’object was possible 
on an existing CT system without access to manipulation of the projection data. 
noise was not static between acquisitions and cannot be replaced in a second 
acquisition. 
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3.4 Simulation of a computed tomography system 

An existing CT system at a clinic has limited access to the projection data, i.e. the 
data are locked to saving, loading, and retro reconstruction using the built-in 
algorithms. Hence, most of the manipulation of projection data used in the 
methods described in section 3.3 ‘Objective assessment of resolution and 
distortion in nonlinear systems’ cannot be performed on a CT system at a clinic 
without permission from the manufacturer.  simulation of a computed 
tomography system was suited to use when testing these methods for analysing 
resolution and distortion effects of nonlinear noise reduction algorithms. 

3.4.1 Configuration of the simulated geometry 

s was to assess resolution and distortion induced 
by a nonlinear CT system. quired geometrical elements for the simulation 
of such a CT system were a source and detector array rotating around (projection 
geometry) an object (volume geometry) and a reconstruction algorithm based on 
these geometries.  the CT systems in Papers III and IV were 
simulated using the open source Compute Unified Device Architecture (CUDA)- 
integrated toolbox ASTRA©(112–114) for MATLAB™, due to the easily handled 
code and the variety of integrated reconstruction algorithms. 
from the simulation were generated through forward projection of the object based 
on the projection and volume geometries. 

In the simulation of the projection geometry, the detector array was limited by 
the toolbox to a flat configuration, where the width of the detector array was 
defined as the number of detectors multiplied by the distance between the centres 
of two adjacent detector elements.  large array of detectors would 
generate long reconstruction times was taken into consideration, when the detector 
width of around 1 mm defined at the iso-centre and the number of detectors was 
set to 737 and 1,474 in Papers III and IV respectively.    
mimicked what is known as a cone-beam CT system more than a conventional CT 
system. However, the outcomes of the studies were to be used as examples of how 
the distortion could be assessed. Hence, an exact geometrical configuration was 
not critical to validate the proposed methods. 

      -beam, where the projection geometry 
simulated diverging X-rays using the width of the detector array, the distance 

distances used in the simulation originated from a rather old clinical CT system. 
projection positions were defined by the degree and range of the angles. 
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number of projection angles was kept at 1,152 and was evenly spaced around the 
object (geometry of 2π). 

e simulation of the volume geometry was limited by the toolbox to a 
centrally positioned array when the graphics processing unit (GPU) was used. 
ere was a possibility that the sharp squared objects used in Paper III might 
interfere with the analysis of the DPS. Hence, a circular mask was used to reduce 
long vertical and horizontal edges of the object. Further, a typical clinical CT 
image consists of 512 × 512 pixels, and the geometry of the reconstructed volume 
of one image slice was specified to 768 × 768 pixels in the simulations. , a 
ROI of the same size as a clinical image (512 × 512 pixels) could be used to 
analyse the frequency content well within the borders of the object. Another 
reason to ignore the outer region of the reconstructed area was that possible 
differences in the distortion effects due to the geometrical difference between an 
arc or flat detector array could be reduced. 

3.4.2 Simulation of noise 

nonlinear algorithm on noise was assessed at a range of noise 
levels. In Paper III, the analysis of the distortion effects was based on sinusoidal 
objects with an amplitude of unity and a mean of zero. Hence, it was logical and 
convenient to define the greatest variation from zero of the sinusoids as the 
contrast and use a contrast-to-noise ratio (CNR) to define the level of noise. 
exist many methods of measuring CNR, and the differences are mainly in the 
estimation of the noise.(115) 
the noise image reconstructed without the object, which was connected to one of 
the lowest frequencies evaluated. In Paper IV, a typical abdominal CT image was 
used to illustrate the concept of the method. In this image, a CNR was defined as 
the difference between the CT numbers of muscle and liver tissue (avoiding the 
hepatic veins filled with contrast medium) divided by the standard deviation of the 
CT number in the muscle tissue (here defined as the background).  was 
estimated using sufficiently large ROIs to generate stable standard deviation 
values. was estimated in the muscle ROI as this has been 
recommended by others to be used as background.(115) s of the sinusoid 
and the typical abdominal CT image were both defined in images reconstructed 
using FBP. 

In Paper III, the sinusoidal objects for which the noise was simulated were 
scaled to represent maps of linear attenuation coefficients, which was calculated 
to range from the coefficient of dry air (near sea level) to that of liquid water.  
linear attenuation coefficients listed in the NIST database were used in the 
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studies.(116)     had to be transformed from linear 
attenuation to detector signal by the Beer-Lambert law before a quantum noise 
could be added. added noise was calculated from a Poisson distribution where 
the expectation values followed the attenuation of the object. In Paper IV, noise 
was simulated as if the intensity of the CT image ranged from dry air (near sea 
level) to that of cortical bone. 

3.4.3 Reconstruction algorithms used in the simulations 

analytical reconstruction algorithm, FBP, used the Ram-Lak and Hamming 
filters-Lak filter is a ramp filter that only compensates for the blur of the 
back-projection and, unlike the Hamming filter, does not reduce noise by 
weighting down image components of the highest frequencies. Ram-Lak filter 
was used in Paper III to show the distortion of all frequencies without any noise 
reduction. In Paper IV, the smoothing by the Hamming filter was compared to the 
noise reduction of the median and total variation filter. 

 methodology used in Paper III was implemented from conventional 
radiography and has never been tested in CT. Hence, it might be important to 
investigate basic and understandable reconstruction algorithms or nonlinear 
mechanisms. e iterative reconstruction algorithm SIRT and the non-negative 
constraint were investigated, as they were well-known and quite easy to 
understand. An initial test of the integrated algorithms of the toolbox indicated 
that the CGLS algorithm behaves differently to the SIRT algorithms. Hence, both 
these algorithms were chosen to test the developed methodology of assessing 
distortion in Paper IV. 

3.4.4 Nonlinear noise reduction algorithms used in the simulations 

 and the total variation filter were chosen, due to their simplicity 
and their frequent use in medical imaging,(117) to demonstrate the methods for 
analysing the distortion induced by the nonlinear noise reduction algorithms. 
most basic adaptation of the filters was used to explore the utility of the metrics 
derived from the methods. e nonlinear noise reduction algorithms were only 
applied to the projection data before the reconstruction of all algorithms and not 
internally implemented in the iterative reconstruction algorithms to keep the 
algorithm complexity low. filter used in Papers III and IV returned the 
median value at a kernel size of 3 × 3. values outside the boundaries of the 
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used to illustrate the concept of the method. In this image, a CNR was defined as 
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and the typical abdominal CT image were both defined in images reconstructed 
using FBP. 

In Paper III, the sinusoidal objects for which the noise was simulated were 
scaled to represent maps of linear attenuation coefficients, which was calculated 
to range from the coefficient of dry air (near sea level) to that of liquid water.  
linear attenuation coefficients listed in the NIST database were used in the 
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studies.(116)     had to be transformed from linear 
attenuation to detector signal by the Beer-Lambert law before a quantum noise 
could be added. added noise was calculated from a Poisson distribution where 
the expectation values followed the attenuation of the object. In Paper IV, noise 
was simulated as if the intensity of the CT image ranged from dry air (near sea 
level) to that of cortical bone. 

3.4.3 Reconstruction algorithms used in the simulations 

analytical reconstruction algorithm, FBP, used the Ram-Lak and Hamming 
filters-Lak filter is a ramp filter that only compensates for the blur of the 
back-projection and, unlike the Hamming filter, does not reduce noise by 
weighting down image components of the highest frequencies. Ram-Lak filter 
was used in Paper III to show the distortion of all frequencies without any noise 
reduction. In Paper IV, the smoothing by the Hamming filter was compared to the 
noise reduction of the median and total variation filter. 

 methodology used in Paper III was implemented from conventional 
radiography and has never been tested in CT. Hence, it might be important to 
investigate basic and understandable reconstruction algorithms or nonlinear 
mechanisms. e iterative reconstruction algorithm SIRT and the non-negative 
constraint were investigated, as they were well-known and quite easy to 
understand. An initial test of the integrated algorithms of the toolbox indicated 
that the CGLS algorithm behaves differently to the SIRT algorithms. Hence, both 
these algorithms were chosen to test the developed methodology of assessing 
distortion in Paper IV. 

3.4.4 Nonlinear noise reduction algorithms used in the simulations 

 and the total variation filter were chosen, due to their simplicity 
and their frequent use in medical imaging,(117) to demonstrate the methods for 
analysing the distortion induced by the nonlinear noise reduction algorithms. 
most basic adaptation of the filters was used to explore the utility of the metrics 
derived from the methods. e nonlinear noise reduction algorithms were only 
applied to the projection data before the reconstruction of all algorithms and not 
internally implemented in the iterative reconstruction algorithms to keep the 
algorithm complexity low. filter used in Papers III and IV returned the 
median value at a kernel size of 3 × 3. values outside the boundaries of the 
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
 


            




             
            
          


 

          

          

 

Figure 9. Schematic illustration of the total variation of a noisy edge (left), a sharp edge 

(middle), and a smoothed edge (right). The total variation is obviously greater for the noisy 

edge and equal between the sharp and smoothed edges, meaning that an updating procedure 

minimising the total variation will not favour a smooth edge over a sharp edge. 
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4. Results and Discussions 

4.1 Subjective effect of nonlinear noise reduction 

4.1.1 Paediatric cerebral computed tomography (Paper I) 

In Paper I several anatomical structures were investigated to find the specific 
structures affected by the nonlinear noise reduction. ood out 
from the rest was ‘the cerebrospinal fluid space around the brain’ (Cerebral study 
(Paper I), Question 5, see Table 2). is structure was described as having the best 
delineation at a level of about 40 to 60% ASiR. Dose reduction studies often use 
an ASiR level in this interval and have reported the image quality to be unchanged 
for the applied dose reduction.(118–120) However, in such studies knowledge about 
which structures may be affected by the mechanism of the ASiR algorithm at 
higher percentage might possibly be missed. Further in Paper I, the statistical 
analysis was made in comparison to 30% ASiR (Figure 10a) and all structures 
were rated as having worse delineation at FBP Figure 10b). In addition, 
the delineation of ‘the cerebrospinal fluid space around the brain’ at 100% ASiR 
was equal to that of FBP (Figure 10c and Figure 1 in Paper I). In contrast, the 
delineation of all the other structures tended not to deviate from each other and to 
increase up to 80% ASiR. Further, one of the obvious effects that limited the 
delineation up to a level of 60% ASiR was noise, as the delineation for all 
investigated anatomical structures increased up to that level (Figure 10d and 
Figure 1 in Paper I) and since the ASiR algorithm reduces noise. However, above 
60% ASiR only the delineation described in Question 5 was rated to be worse than 
30% ASiR. Hence, the delineation did not correspond to the noise reduction, but 
to a smoothing effect caused by the ASiR algorithm.  effect may also have 
influenced the overall image quality as the optimal level was identified at about 
60% ASiR.  effect of the nonlinear algorithm could also be observed when 
profiles of ‘the cerebrospinal fluid space around the brain’ (the area between the 
skull bone and the brain tissue) were plotted, for FBP and all levels of ASiR 
(Figure 11). e structure was quite smooth at FBP and was sharpest at 10% ASiR. 
However, the structure became more and more smoothed as the level of ASiR was 
increased (Figure 11could thus be summarised as: the 
delineation of the structure was limited by the noise level until the nonlinear 
smoothing effect degraded the image quality more than the noise. It should be 
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
 


            




             
            
          


 

          

          

 

Figure 9. Schematic illustration of the total variation of a noisy edge (left), a sharp edge 

(middle), and a smoothed edge (right). The total variation is obviously greater for the noisy 

edge and equal between the sharp and smoothed edges, meaning that an updating procedure 

minimising the total variation will not favour a smooth edge over a sharp edge. 
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4. Results and Discussions 

4.1 Subjective effect of nonlinear noise reduction 

4.1.1 Paediatric cerebral computed tomography (Paper I) 

In Paper I several anatomical structures were investigated to find the specific 
structures affected by the nonlinear noise reduction. ood out 
from the rest was ‘the cerebrospinal fluid space around the brain’ (Cerebral study 
(Paper I), Question 5, see Table 2). is structure was described as having the best 
delineation at a level of about 40 to 60% ASiR. Dose reduction studies often use 
an ASiR level in this interval and have reported the image quality to be unchanged 
for the applied dose reduction.(118–120) However, in such studies knowledge about 
which structures may be affected by the mechanism of the ASiR algorithm at 
higher percentage might possibly be missed. Further in Paper I, the statistical 
analysis was made in comparison to 30% ASiR (Figure 10a) and all structures 
were rated as having worse delineation at FBP Figure 10b). In addition, 
the delineation of ‘the cerebrospinal fluid space around the brain’ at 100% ASiR 
was equal to that of FBP (Figure 10c and Figure 1 in Paper I). In contrast, the 
delineation of all the other structures tended not to deviate from each other and to 
increase up to 80% ASiR. Further, one of the obvious effects that limited the 
delineation up to a level of 60% ASiR was noise, as the delineation for all 
investigated anatomical structures increased up to that level (Figure 10d and 
Figure 1 in Paper I) and since the ASiR algorithm reduces noise. However, above 
60% ASiR only the delineation described in Question 5 was rated to be worse than 
30% ASiR. Hence, the delineation did not correspond to the noise reduction, but 
to a smoothing effect caused by the ASiR algorithm.  effect may also have 
influenced the overall image quality as the optimal level was identified at about 
60% ASiR.  effect of the nonlinear algorithm could also be observed when 
profiles of ‘the cerebrospinal fluid space around the brain’ (the area between the 
skull bone and the brain tissue) were plotted, for FBP and all levels of ASiR 
(Figure 11). e structure was quite smooth at FBP and was sharpest at 10% ASiR. 
However, the structure became more and more smoothed as the level of ASiR was 
increased (Figure 11could thus be summarised as: the 
delineation of the structure was limited by the noise level until the nonlinear 
smoothing effect degraded the image quality more than the noise. It should be 
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ff
ff
           
 




      ff     
  

ff


Figure 10. An example of a CT head image at four levels of ASiR, 30% (reference level; a), 

0% (FBP; b), 100% (c) and 60% (optimal level; d). The question of the diagnostic value of the 

image quality was rated to be optimal at 60% and worst at 0% and 100% level of ASiR. 
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
 

4.1. Paediatric abdominal computed tomography (Paper II) 


          





         
 

Figure 11. Illustration of the smoothing by a profile plot of ‘the cerebrospinal fluid space 

around the brain’ for each ASiR level. FBP is 0% ASiR. 
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ff
ff
           
 




      ff     
  

ff


Figure 10. An example of a CT head image at four levels of ASiR, 30% (reference level; a), 

0% (FBP; b), 100% (c) and 60% (optimal level; d). The question of the diagnostic value of the 

image quality was rated to be optimal at 60% and worst at 0% and 100% level of ASiR. 
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
 

4.1. Paediatric abdominal computed tomography (Paper II) 


          





         
 

Figure 11. Illustration of the smoothing by a profile plot of ‘the cerebrospinal fluid space 

around the brain’ for each ASiR level. FBP is 0% ASiR. 
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     
           
        

ff
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Figure 12. An example of a CT abdomen image at four of the combinations of levels of ASiR 

and convolution kernel, 30% and ‘Soft’ (reference combination; a), 100% and ‘Soft’ (b), 70% 

and ‘Standard’ (optimal combination; c), and 100% and ‘Detail’ (d). 
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However, 100% was the maximum level of ASiR, and the same trend might have 
been observed for these stronger edge-enhancing filters, if the ASiR algorithm had 
had stronger noise reduction. results could thus be interpreted as: A stronger 
edge enhancement may compensate for the nonlinear smoothing effect shown in 
Paper I and II (Figure 12). However, the increased weighting of the quantum noise 
by these filters could concurrently reduce the delineation of structures, such that 
the resulting image quality is unchanged or worse. Other authors have later 
evaluated if the reduction in TTF by nonlinear noise reduction can be compensated 
for by a more edge-enhancing convolution kernel.(125) Even if that study was done 
on adults, the difference in noise index compared to the oldest children in Paper II 
(Group C, Table 1 in Paper II NI 13.5 vs NI 34.2, after conversion to a slice 
thickness of 1.25 mm) indicates the noise to be considerably lower for these 
adults.(125) Although the assessed effect on the image quality at these two noise 
levels may differ, the studies indicated a similar conclusion.(125) It should also be 
remembered that the perceived appearance of CT images reconstructed using a 
nonlinear noise reduction algorithm in combination with an unfamiliar filter may 
differ between radiologists. Such a difference could perhaps be indicated by the 
relatively large span of the RP among the observers, especially for Question 7 and 
the ‘Detail’ filter (Figure 1 in Paper II a filter not applied to any CT examinations 
in the paediatric department at the time of the study). 

4. Objective effect of nonlinear noise reduction 

effects of ASiR observed in Paper I and II indicated that the image quality 
may be both increased and reduced by a nonlinear noise reduction algorithm and 
that it is dependent on the diagnostic environment (type of anatomical structure). 
Although the optimal noise reduction level of an algorithm could be identified 
using human observers, such studies may be tedious. An objective method 
describing the effect of a nonlinear noise reduction could be more convenient to 
perform. Hence, objective methods were investigated in Paper III and IV and the 
results from these investigations are presented in section 4.2.1 ’Resolution and 
distortion of individual frequencies (Paper III)’ and 4.2.2 ’Distortion of object and 
noise (Paper IV)’. 

4..1 Resolution and distortion of individual frequencies (Paper III) 

resolution and distortion implemented in CT systems in 
Paper III estimated resolution using the metric PFR, which is equal to the MTF 
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Figure 12. An example of a CT abdomen image at four of the combinations of levels of ASiR 

and convolution kernel, 30% and ‘Soft’ (reference combination; a), 100% and ‘Soft’ (b), 70% 

and ‘Standard’ (optimal combination; c), and 100% and ‘Detail’ (d). 
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However, 100% was the maximum level of ASiR, and the same trend might have 
been observed for these stronger edge-enhancing filters, if the ASiR algorithm had 
had stronger noise reduction. results could thus be interpreted as: A stronger 
edge enhancement may compensate for the nonlinear smoothing effect shown in 
Paper I and II (Figure 12). However, the increased weighting of the quantum noise 
by these filters could concurrently reduce the delineation of structures, such that 
the resulting image quality is unchanged or worse. Other authors have later 
evaluated if the reduction in TTF by nonlinear noise reduction can be compensated 
for by a more edge-enhancing convolution kernel.(125) Even if that study was done 
on adults, the difference in noise index compared to the oldest children in Paper II 
(Group C, Table 1 in Paper II NI 13.5 vs NI 34.2, after conversion to a slice 
thickness of 1.25 mm) indicates the noise to be considerably lower for these 
adults.(125) Although the assessed effect on the image quality at these two noise 
levels may differ, the studies indicated a similar conclusion.(125) It should also be 
remembered that the perceived appearance of CT images reconstructed using a 
nonlinear noise reduction algorithm in combination with an unfamiliar filter may 
differ between radiologists. Such a difference could perhaps be indicated by the 
relatively large span of the RP among the observers, especially for Question 7 and 
the ‘Detail’ filter (Figure 1 in Paper II a filter not applied to any CT examinations 
in the paediatric department at the time of the study). 

4. Objective effect of nonlinear noise reduction 

effects of ASiR observed in Paper I and II indicated that the image quality 
may be both increased and reduced by a nonlinear noise reduction algorithm and 
that it is dependent on the diagnostic environment (type of anatomical structure). 
Although the optimal noise reduction level of an algorithm could be identified 
using human observers, such studies may be tedious. An objective method 
describing the effect of a nonlinear noise reduction could be more convenient to 
perform. Hence, objective methods were investigated in Paper III and IV and the 
results from these investigations are presented in section 4.2.1 ’Resolution and 
distortion of individual frequencies (Paper III)’ and 4.2.2 ’Distortion of object and 
noise (Paper IV)’. 

4..1 Resolution and distortion of individual frequencies (Paper III) 

resolution and distortion implemented in CT systems in 
Paper III estimated resolution using the metric PFR, which is equal to the MTF 
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for a linear system.    that the distortion caused by the 
acquisition configuration was not separated from the nonlinear reconstruction 
algorithm, as reconstructions using the linear reconstruction algorithms FBP and 
SIRT both distorted the original signal due to geometrical limitations. Hence, the 
distortion power of the entire CT system was analysed by the method, in contrast 
to a previous simulation of a conventional radiological system where only the 
distortion caused by the nonlinear algorithm was estimated.(71) Further, the method 
showed a CT system using the SIRT algorithm to have slightly higher resolution 
and to cause slightly less distortion than a CT system using the FBP algorithm, as 
the same acquisition configuration was used. Hence, generation of distortion is not 
an indication of the CT system to be nonlinear. However, both the FBP algorithm 
and the SIRT algorithm did not show any dependence of the distortion on CNR 
whereas for the median filter and the non-negative constraint incorporated in the 
reconstruction the distortion was changed between CNR levels.  a CNR 
dependence of the distortion may indicate the system to be nonlinear.  

nonlinear median filter probably exhibited aliasing distortion due to the 
filter kernel, which also reduced the PFR in comparison to FBP. However, the 
PFR increased concurrently with the noise level for the median filter. Such 
behaviour of an algorithm was surprising, as it might indicate that noise power has 
been transferred to the frequencies of the object.    analysing 
nonlinear noise reduction algorithms would increase if the noise was distorted to 
the object, which could mean that the true resolution was not estimated by the 
PFR. However, this was observed at very low CNRs, and the distorted power to 
other spatial frequencies was shown to dominate over the increased resolution for 
the median filter as the DI increased with decreasing CNR (Figure 3 in Paper III). 
Further, the observation of the distortion of the noise to the ‘principle frequency’ 
was consistent with the obtained PFR and DPS for the bilateral filter in the study 
of conventional radiography performed by Wells and Dobbins.(71) Hence, the 
relevance of the described phenomenon might be negligible, but memorable. 

non-negative constraint is often used to accommodate physical properties 
of radiation attenuation in the reconstruction. However, the utility of the constraint 
has been questioned in CT reconstruction as it could be excluded to simplify the 
optimisation problem.(42) analysis of the non-negative constraint using the DI 
showed the distortion ratio of the system to increase as the noise level increased. 
In contrast to the median filter, the increased distortion for the constraint could 
indicate the noise power to be transferred to spatial frequencies unrelated to the 
object, as the PFR did not increase. Further, the PFR for the constraint showed 
signal power of high spatial frequencies to be affected more than lower frequencies 
as the noise level increased. the non-negative constraint and cut-offs due to 
technical limitations could lead to loss in signal power and increased distortion. 
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   
 

   
  

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   
  
   
   
    
 
   
  
  
  
  

  

   
  
 


 
       

          



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Figure 13. The “principle frequency response” (PFR; top 

row), distortion power spectrum (DPS; middle row), 

distortion index (DI; bottom row), for the two nonlinear 

noise reduction algorithms median filter in combination 

with FBP (left column), and total variation algorithm in 

combination with FBP (right column). Observe that the 

scale of the DPS image for the total variation algorithm is 

three magnitudes greater than for the median filter.   
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for a linear system.    that the distortion caused by the 
acquisition configuration was not separated from the nonlinear reconstruction 
algorithm, as reconstructions using the linear reconstruction algorithms FBP and 
SIRT both distorted the original signal due to geometrical limitations. Hence, the 
distortion power of the entire CT system was analysed by the method, in contrast 
to a previous simulation of a conventional radiological system where only the 
distortion caused by the nonlinear algorithm was estimated.(71) Further, the method 
showed a CT system using the SIRT algorithm to have slightly higher resolution 
and to cause slightly less distortion than a CT system using the FBP algorithm, as 
the same acquisition configuration was used. Hence, generation of distortion is not 
an indication of the CT system to be nonlinear. However, both the FBP algorithm 
and the SIRT algorithm did not show any dependence of the distortion on CNR 
whereas for the median filter and the non-negative constraint incorporated in the 
reconstruction the distortion was changed between CNR levels.  a CNR 
dependence of the distortion may indicate the system to be nonlinear.  

nonlinear median filter probably exhibited aliasing distortion due to the 
filter kernel, which also reduced the PFR in comparison to FBP. However, the 
PFR increased concurrently with the noise level for the median filter. Such 
behaviour of an algorithm was surprising, as it might indicate that noise power has 
been transferred to the frequencies of the object.    analysing 
nonlinear noise reduction algorithms would increase if the noise was distorted to 
the object, which could mean that the true resolution was not estimated by the 
PFR. However, this was observed at very low CNRs, and the distorted power to 
other spatial frequencies was shown to dominate over the increased resolution for 
the median filter as the DI increased with decreasing CNR (Figure 3 in Paper III). 
Further, the observation of the distortion of the noise to the ‘principle frequency’ 
was consistent with the obtained PFR and DPS for the bilateral filter in the study 
of conventional radiography performed by Wells and Dobbins.(71) Hence, the 
relevance of the described phenomenon might be negligible, but memorable. 

non-negative constraint is often used to accommodate physical properties 
of radiation attenuation in the reconstruction. However, the utility of the constraint 
has been questioned in CT reconstruction as it could be excluded to simplify the 
optimisation problem.(42) analysis of the non-negative constraint using the DI 
showed the distortion ratio of the system to increase as the noise level increased. 
In contrast to the median filter, the increased distortion for the constraint could 
indicate the noise power to be transferred to spatial frequencies unrelated to the 
object, as the PFR did not increase. Further, the PFR for the constraint showed 
signal power of high spatial frequencies to be affected more than lower frequencies 
as the noise level increased. the non-negative constraint and cut-offs due to 
technical limitations could lead to loss in signal power and increased distortion. 
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  
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    
   
  
   
   
    
 
   
  
  
  
  

  

   
  
 


 
       

          



 


 
    
            



Figure 13. The “principle frequency response” (PFR; top 

row), distortion power spectrum (DPS; middle row), 

distortion index (DI; bottom row), for the two nonlinear 

noise reduction algorithms median filter in combination 

with FBP (left column), and total variation algorithm in 

combination with FBP (right column). Observe that the 

scale of the DPS image for the total variation algorithm is 

three magnitudes greater than for the median filter.   
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as being low in comparison to the FBP or SIRT algorithm (at high CNR) and high 
using DI (compare Figures 5a and b in Paper III). median filter reduced the 
resolution and consequently also the total output signal power. Hence, the DI 
describes the median filter to cause high distortion at individual frequencies. 
However, the ΣDI described the distortion of the median filter to be low, as the 
distortion was reduced due to the low spatial resolution of the system. he 
ΣDI and the DI should be used in combination to compare the distortion caused by 
nonlinear noise reduction algorithms.  

4.2.2 Distortion of object and noise (Paper IV) 

In Paper III, the total distortion induced by a nonlinear noise reduction algorithm 
was evaluated using the DPS metric. However, in Paper IV the distortion was 
separated into two types of distortion, one representing the distortion of the object 
and the other of the noise. For a nonlinear noise reconstruction algorithm, not only 
the noise in the reconstructed image will be dependent on the dose of the CT scan, 
but also for example the image contrast. Hence, a subtraction between an image 
acquired at high and low dose will consist of the nonlinear distortion difference 
and noise, and for a linear reconstruction algorithm only noisein such 
an image is induced mostly by the low dose acquisition and may obscure or 
conceal the distortion difference.  Hence, in Paper IV, the NLDobject image was 
developed to average out the disturbing noise by visualising the systematic 
distortion difference (Figure 14). Intuitively, the noise power may also be distorted 
by a nonlinear noise reduction algorithm. Hence, in Paper IV, the NLDnoise series 
represents the difference in reconstructing noise with and without an object 
present.  

nonlinear noise reduction algorithms in Paper IV were shown to transfer 
signal power from the object to structures correlated to the object, as the NLDobject 
images showed structures reminiscent of the object shape. Several structures in 
the abdomen were seen to be affected, and the most prominently affected structure 
in the head was the delineation between the skull bone and the brain, i.e., ‘the 
cerebrospinal fluid space around the brain’ investigated in Paper I (Figure 14). 
Such distortion may be more clinically disturbing than a distortion of stochastic 
variations. Hence, a distortion that mimics the object may affect the resolution or 
induce structures that could be interpreted as pathology. In contrast, a nonlinear 
noise reduction algorithm that only induced distortion of stochastic variations 
would probably be able to be approximated as linear, as the distortion would be 
interpreted as extra noise. Few visible structures in difference images between  
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Figure 14. Shows a typical cerebral (left column) and a typical abdominal (right column) CT 

examination. NLDobject images (top row) show the distortion of the total variation algorithm, 

the difference images between ASiR 100% and FBP (middle row) show the difference between 

ASiR and FBP, difference images between the total variation algorithm and FBP with added 

noise (low dose; bottom row) show the noise to obscure the differences between the algorithms. 
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images reconstructed using FBP and a noise reduction algorithm are sometimes 
given as proof that the algorithm preforms well(76) as discussed previously, this 
may be true for that specific noise level and if the noise in the difference image is 
low enough to not hide the structures (Figure 14). In an optimisation evaluation 
situation, the systematic nonlinear distortion difference between two noise levels 
could be visualised without the presence of noise using the NLDobject. For those 
interested in such analysis without having access to manipulation of the projection 
data, the NLD’object may be generated by acquiring images of the same object 
several times at the two noise levels of interest. Further, the images of each noise 
level are then averaged and compared to each other by subtraction. Remember that 
the NLD’object might show the nonlinear difference of, for example, the size of the 
focus spot or number of projections acquired, which might be useful in the 
optimisation situation. In contrast, the NLDobject will isolate the performance of 
the nonlinear noise reduction algorithm, which may instead be more helpful for 
algorithm engineers in the optimising process of the noise reduction algorithm 
itself. 

e type of nonlinear noise reduction was shown to transfer the noise power 
differently, as the magnitude of the pixel values was low in the NLDnoise series for 
the median filter compared to the total variation algorithm (Figure 15). Although 
the distortion of the noise caused by the median filter was low, it consisted of both 
stochastic variation and structures correlated to the object, especially for the skull 
bone of the head at high noise (Figure 15) and for some abdominal structures 
(Figure 6 in Paper IV).   distortion type would possibly confirm the 
observed tendency of the increased PFR as the CNR was reduced, in Paper III. 
Although such an increase in PFR might be beneficial, the NLDnoise series should 
instead be used to identify if the transferred noise power could have generated 
structures correlated to , the lack of such correlation in both the 
NLDobject image and NLDnoise series could perhaps indicate the nonlinear noise 
reduction algorithm being approximated as linear. However, the presence of 
anatomical structures in these images could be used to locate structures to 
investigate in human observer studies in order to possibly reduce the evaluation 
time and focus on relevant structures. 

It is always preferable if an algorithm causes low distortion, i.e. transfers as 
low signal power to other frequencies as possible. However, the low distortion 
may be expressed more unfavourably than a higher distortion. For example, a 
stochastic distribution of the distortion would have only generated an extra noise 
to the image in contrast to a distribution correlated to the object. Hence, the 
distortion in images of patients must be analysed to evaluate the degradation of 
the clinical image quality caused by a nonlinear noise reduction algorithm. An 
assessment using the proposed methods in Paper IV on patients should 
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Figure 15. The nonlinear distortion of noise (NLDnoise) of a typical CT head examination. Two 

simulated noise levels, one with eight times lower noise (top row) than the other (bottom row), 

were calculated for the median filter (left column) and the total variation filter (middle 

column) using FBP. A reconstruction of each noise level for comparison (right column). 
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images reconstructed using FBP and a noise reduction algorithm are sometimes 
given as proof that the algorithm preforms well(76) as discussed previously, this 
may be true for that specific noise level and if the noise in the difference image is 
low enough to not hide the structures (Figure 14). In an optimisation evaluation 
situation, the systematic nonlinear distortion difference between two noise levels 
could be visualised without the presence of noise using the NLDobject. For those 
interested in such analysis without having access to manipulation of the projection 
data, the NLD’object may be generated by acquiring images of the same object 
several times at the two noise levels of interest. Further, the images of each noise 
level are then averaged and compared to each other by subtraction. Remember that 
the NLD’object might show the nonlinear difference of, for example, the size of the 
focus spot or number of projections acquired, which might be useful in the 
optimisation situation. In contrast, the NLDobject will isolate the performance of 
the nonlinear noise reduction algorithm, which may instead be more helpful for 
algorithm engineers in the optimising process of the noise reduction algorithm 
itself. 

e type of nonlinear noise reduction was shown to transfer the noise power 
differently, as the magnitude of the pixel values was low in the NLDnoise series for 
the median filter compared to the total variation algorithm (Figure 15). Although 
the distortion of the noise caused by the median filter was low, it consisted of both 
stochastic variation and structures correlated to the object, especially for the skull 
bone of the head at high noise (Figure 15) and for some abdominal structures 
(Figure 6 in Paper IV).   distortion type would possibly confirm the 
observed tendency of the increased PFR as the CNR was reduced, in Paper III. 
Although such an increase in PFR might be beneficial, the NLDnoise series should 
instead be used to identify if the transferred noise power could have generated 
structures correlated to , the lack of such correlation in both the 
NLDobject image and NLDnoise series could perhaps indicate the nonlinear noise 
reduction algorithm being approximated as linear. However, the presence of 
anatomical structures in these images could be used to locate structures to 
investigate in human observer studies in order to possibly reduce the evaluation 
time and focus on relevant structures. 

It is always preferable if an algorithm causes low distortion, i.e. transfers as 
low signal power to other frequencies as possible. However, the low distortion 
may be expressed more unfavourably than a higher distortion. For example, a 
stochastic distribution of the distortion would have only generated an extra noise 
to the image in contrast to a distribution correlated to the object. Hence, the 
distortion in images of patients must be analysed to evaluate the degradation of 
the clinical image quality caused by a nonlinear noise reduction algorithm. An 
assessment using the proposed methods in Paper IV on patients should 
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Figure 15. The nonlinear distortion of noise (NLDnoise) of a typical CT head examination. Two 

simulated noise levels, one with eight times lower noise (top row) than the other (bottom row), 

were calculated for the median filter (left column) and the total variation filter (middle 

column) using FBP. A reconstruction of each noise level for comparison (right column). 
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convolution kernel. Hence, an analysis of the distortion of a nonlinear algorithm 
is best performed with the same algorithm. 

object and NLDnoise enabled a closer analysis of the distortion 
effect caused by nonlinear algorithms and could increase the understanding of how 
the distortion is expressed. Further, the distortion was aimed to be visualised at 
the corresponding locations in the image, such that it would be easy to track and 
understand it intuitively. Furthermore, the method to generate an NLDobject image 
requires access to perform averaging and take the difference between the 
projection data.  an analysis of nonlinear algorithms on CT systems without 
this type of access may be done using the NLD’object, which is an approximation 
of the NLDobject (Figure 16). ffobject and NLD’object 
is noise, since the noise in an acquisition of the high dose image for the NLD’object 
is not correlated with the noise acquired in the im    
contrast to NLDobject, where the exact same noise was compared to estimate the 
distortion. However, for the highest evaluated CNR in Paper IV 128 repetitions 
were required to generate an NLD’object comparable to the NLDobject (Figure 16), 
which can be completed within the time of a working day. 

 

4 .  R ESULT S AND DISC USSIONS   69

 

Figure 16. A typical CT abdomen image with added noise (top image), nonlinear distortion of 

object (NLDobject; left column) and the approximated nonlinear distortion of object (NLD’object; 

right column) of the same image calculated using 128, 64, 32, and 16 images (top to bottom) 

respectively. 
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4.3 General discussion 

          ff   
reduction algorithms in CT. Besides the obvious effect of reducing noise, the 
results from the thesis indicate that a nonlinear noise reduction algorithm may 
increase the image quality to a limited level. Further, using the definition of 
distortion from the present thesis, i.e. transfer of signal power to other frequencies, 
the distortion can be interpreted as the source of all the image quality changes 
caused by the nonlinear noise reduction algorithm.   
nonlinear noise reduction algorithm may be divided into distortion of the object 
and distortion of the noise. Furthermore, the maximum image quality induced by 
such an algorithm is obtained at as low noise as possible and will most likely be 
           
investigated effects of nonlinear noise reduction algorithms in CT systems.  

Noise reduction algorithms are often distributed with several levels indicating 
the amount of noise reduction. Finding the optimal level of a noise reduction 
algorithm may require that all these levels are evaluated. In Paper I and II, the 
number of cases to be evaluated for the ASiR algorithm would have been equal to 
the number of patients multiplied by the ten levels of ASiR. Further, the time of 
evaluation for each observer increases proportionally to the evaluated noise 
reduction levels. Nevertheless, although the number of patients was relatively few 
in Paper I and II, the number of levels was decided to be reduced (Table 1) as the 
evaluation time for the observers would have been unreasonable if all levels were 
included in the study. Furthermore, in Paper I, the optimal level was originally not 
thought to be found above 60% ASiR due to the first impression of the ASiR 
images. us, not all levels of ASiR were included in the evaluation in Paper I. It 
is fairly common to not evaluate every level of the noise reduction algorithms in 
observer evaluation studies.(126–128)  reduction of the number of levels 
increases the risk of missing the optimal level. oldest patients in 
Paper I (Group A, Table 1 in Paper I) indicated this risk and the investigated levels 
of ASiR were shifted and extended to higher levels in the study of the other age 
groups. From the latter study the optimal level was indicated not to have been 
missed for the oldest age group. A larger number of patients could potentially have 
given a more certain result. However, the obtained trends were quite clear and the 
evaluated number of patients was similar to other observer studies of noise 
reduction algorithms.(129,130) Further in Paper I, the effect of ASiR on the image 
quality was indicated ff
to not be very different between examination types. Hence, the chosen levels of 
ASiR were distributed more sparsely in the study of the abdominal CT 
examinations (Paper II). 
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question of the diagnostic value of the image quality (Question 7 in both studies 
Table 2), as Question 7 summarised the general effect of ASiR on image quality 
well. An indication of this is that the pooled delineation of all anatomical 
structures would have indicated 80% ASiR to be the optimal level in Paper I. 
Hence, the degradation of ‘the cerebrospinal fluid space around the brain’ was 
shown to be considered when Question 7 was rated. Besides helping the observer 
to evaluate the image quality by forcing them to rate specific structures, the 
questions of the anatomical structures could potentially be used in the optimisation 
of other than the standard scanning protocol. 

A linear noise reduction algorithm reduces noise relatively homogeneously 
over the image, i.e. independently of the noise level or the imaged object. 
Increased smoothing using linear convolution kernels will increase the visibility 
of anatomical structures until the delineation of important structures is too low, 
when the increase in image quality obtained by reduction in noise can no longer 
compensate for the degradation in image quality caused by the reduction in spatial 

the noise, and the reduction is often estimated in an image of a water phantom. 
However, the increase in diagnostic image quality does not have to be proportional 
to the reduced noise estimated in the water phantom, as the algorithm is nonlinear 
and can reduce noise dependent on the anatomical structure as well as noise 
level.(131) Further, like a convolution kernel, the nonlinear ASiR algorithm may 
also degrade the spatial resolution. By the same reasoning, the degradation does 
not have to be the same for all anatomical structures. Furthermore, unlike the 
convolution kernel, the spatial resolution may be reduced as the absorbed dose is 
reduced and the reduction may also be disproportionate to dose reduction. Even 
though the task-based metric TTF describes the changes in resolution of sharp 
edges well,(64) it is possible that the resolution may be affected differently between 
various textures. Hence, for nonlinear systems, an assessment of the visibility of 
anatomical structures is crucially important to detect deviating effects of the 
reconstruction.  

           
observer evaluation studies worked well to identify structures that had been 
affected by the nonlinear ASiR algorithm. Due to the nonlinear behaviour of the 
ASiR algorithm it was also important to remember that the assessed image quality 
was only valid for the used noise level. Further, the observations of the subtle 
difference in general image quality between the ASiR levels indicated that a 
possible dose reduction should be carefully conducted. Hence, the suggested dose 
reduction made by some CT systems is often based on the standard deviation of 
the CT number estimated in an image of a cylindrical water phantom and may 




70   4 .  R ESULT S AND DISC USSIONS

 

4.3 General discussion 
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question of the diagnostic value of the image quality (Question 7 in both studies 
Table 2), as Question 7 summarised the general effect of ASiR on image quality 
well. An indication of this is that the pooled delineation of all anatomical 
structures would have indicated 80% ASiR to be the optimal level in Paper I. 
Hence, the degradation of ‘the cerebrospinal fluid space around the brain’ was 
shown to be considered when Question 7 was rated. Besides helping the observer 
to evaluate the image quality by forcing them to rate specific structures, the 
questions of the anatomical structures could potentially be used in the optimisation 
of other than the standard scanning protocol. 

A linear noise reduction algorithm reduces noise relatively homogeneously 
over the image, i.e. independently of the noise level or the imaged object. 
Increased smoothing using linear convolution kernels will increase the visibility 
of anatomical structures until the delineation of important structures is too low, 
when the increase in image quality obtained by reduction in noise can no longer 
compensate for the degradation in image quality caused by the reduction in spatial 

the noise, and the reduction is often estimated in an image of a water phantom. 
However, the increase in diagnostic image quality does not have to be proportional 
to the reduced noise estimated in the water phantom, as the algorithm is nonlinear 
and can reduce noise dependent on the anatomical structure as well as noise 
level.(131) Further, like a convolution kernel, the nonlinear ASiR algorithm may 
also degrade the spatial resolution. By the same reasoning, the degradation does 
not have to be the same for all anatomical structures. Furthermore, unlike the 
convolution kernel, the spatial resolution may be reduced as the absorbed dose is 
reduced and the reduction may also be disproportionate to dose reduction. Even 
though the task-based metric TTF describes the changes in resolution of sharp 
edges well,(64) it is possible that the resolution may be affected differently between 
various textures. Hence, for nonlinear systems, an assessment of the visibility of 
anatomical structures is crucially important to detect deviating effects of the 
reconstruction.  

           
observer evaluation studies worked well to identify structures that had been 
affected by the nonlinear ASiR algorithm. Due to the nonlinear behaviour of the 
ASiR algorithm it was also important to remember that the assessed image quality 
was only valid for the used noise level. Further, the observations of the subtle 
difference in general image quality between the ASiR levels indicated that a 
possible dose reduction should be carefully conducted. Hence, the suggested dose 
reduction made by some CT systems is often based on the standard deviation of 
the CT number estimated in an image of a cylindrical water phantom and may 

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statement is strengthened by phantom studies of nonlinear noise reduction 
algorithms that have shown the resolution and noise power spectrum to reduce 
differently between materials as the dose is reduced.(132–134) 

Noise reduction algorithms such as the ASiR algorithm investigated in Papers 
I and II are nonlinear, as a regularization step is used to remove noise.(15,135) 
nonlinear effect on image quality was proposed to originate from the distortion 
        ff  
investigated in conventional radiology, and the method of analysing distortion was 
implemented in CT in Paper III. Implemented in CT, the method described the 
total distortion caused by both the acquisition system and the reconstruction 
system (including the noise reduction). However, the distortion was analysed for 
sinusoids and could not be generalised to clinical CT images. Hence, in Paper IV 
a new method was developed to investigate distortion in clinical images. 
studies in Paper III and IV investigated relative basic nonlinear algorithms, as the 
purpose was to understand what the implemented and develop methods could 
show. For example, the nonlinear noise reduction algorithms were reducing the 
noise in the projection domain and not integrated in the updating procedure of the 
IRTs. However, it was found in Paper IV that the distortion induced by a nonlinear 
noise reduction algorithm investigated in Paper III consisted of distortion of both 
the object and the noise. Further, the method excluded the distortion caused by the 
CT acquisition system and concurrently separated the distortion of the object from 
the distortion of the noise. Furthermore, the resulting distortion was shown to 
consist of stochastic variation and structures reminding of the object. As long as 
the nonlinear noise reduction algorithm only induces distortion of stochastic 
variations, the system should be considered as linear. However, it may still be 
possible to consider a system to be linear with a small amount of distortion power 
correlated to the imaged object, which must be further investigated. Even if the 
whole CT system can be considered as linear, an image quality different from the 
one obtained using the traditional FBP reconstruction might still have a 
ffffwithin the scope of the 
present thesis and has yet to be investigated. However, optimisation of noise 
reduction algorithms has already focused on mimicking the appearance of the 
image quality obtained from FBP to accommodate this potential effect.(76) 

Dose reduction using nonlinear noise reduction algorithms has been shown to 
be possible in many radiological fields of CT imaging.(118–120,136–138) However, the 
evaluation of image quality of nonlinear algorithms is complex, as the imaging 
properties of these algorithms are not as predictable as for linear algorithms. It 
would thus be preferable if the changes in image quality induced by a nonlinear 
noise reduction algorithm could be traced and predicted in a similar way as for a 
linear system to be able to safely reduce the absorbed dose from CT examinations. 
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A report from the AAPM suggests using task-based metrics to evaluate the 
performance of new CT systems.(72) Hence, the task group assumes that nonlinear 
noise reduction algorithms could be approximated as linear. Such an assumption 
may be risky, as these recommended metrics ignore the fact that distortion effects 
induced by a nonlinear algorithm may differ between reconstructed objects. For 
example, the distortion obtained in the estimation of the resolution using the TTF, 
i.e. induced by a sharp edge, could not be assumed to be valid generally. Hence, 
the resolution must be estimated in the anatomical environment of the diagnostic 
task to better account for the distortion effects of the nonlinear noise reduction.(71) 
 TF and NPS has recently been modified to estimate the detectability of 
lesions in patient images, which indicated slight differences between phantom-
derived detectability and patient-derived detectability.(81,82) Even though the 
difference was not significant in this type of detection task, the study indicated the 
importance of evaluating image quality from nonlinear noise reduction in a 
clinical context.(81)  modified metrics could probably be used to predict 
image quality changes for specific diagnostic tasks in order to reduce absorbed 
dose to the patient. In contrast, the knowledge derived from the present thesis may 
potentially help in understanding the cause and appearance of the effect from 
nonlinear noise reduction algorithms. 
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5. Conclusions 

e effect of a nonlinear noise reduction algorithm on the diagnostic image quality 
was investigated in both paediatric cerebral and abdominal CT imaging. 
study also investigated the dependence of the diagnostic image quality of the same 
nonlinear noise reduction algorithm on the type of convolution kernel. 
nonlinear noise reduction algorithms in clinical CT imaging was indicated as 
inducing potential benefits of the perceived image quality for several anatomical 
structures. However, nonlinear noise reduction should be carefully implemented 
as the diagnostic image quality may be affected by nonlinear smoothing. he 
delineation of relevant structures in the images of CT examinations should be 
investigated to ensure that a satisfactory effect is achieved by implementation. 
delineation of ‘the cerebrospinal fluid space around the brain’ and ‘the liver 
delineation against the abdominal wall’ for cerebral and abdominal CT 
examinations respectively is shown to be affected negatively. Hence, these 
specific anatomical structures should be of concern in future development of 
nonlinear noise algorithms. 

Concerning nonlinear noise reduction algorithms which may be combined with 
different convolution kernels, a more edge-enhancing convolution kernel may be 
used to compensate for the smoothing of noise reduction. However, the increase 
in the perceived noise by the convolution kernel may be the limiting factor for 
image quality. Hence, image quality may still be equal to another combination of 
convolution kernel and nonlinear noise reduction algorithm. 

Using human observers as a tool to evaluate nonlinear noise reduction 
algorithms works well and is found to induce clear trends of the diagnostic image 
quality to the level of the nonlinear noise reduction for both cerebral and 
abdominal CT examinations. Despite the tedious process, human observers should 
be included in an evaluation of nonlinear noise reduction algorithms to analyse 
the psychophysical aspect and account for differences in the opinion of 
radiologists. is aspect is of great concern as the perceived image quality of a 
nonlinear noise-reduced image may be unfamiliar to the radiologist and may affect 
ability to detect and diagnose. 

 trics developed for resolution and distortion effect analysis in 
conventional radiology were implemented in nonlinear CT imaging. se 
objective metrics indicated the effects of nonlinear noise reduction algorithms on 
the image quality being caused by distortionwas dependent on the 
composition of the imaged object, and the distortion power might increase as the 
level of noise is increased. Further, the tendency of a nonlinear noise reduction 
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algorithm to cause distortion can be assessed by separating the spatial resolution 
(PFR) from the distortion (DPS) by analysing the response of the algorithm on 
sinusoids. Two ratios between the distortion power and the total output power 
(ΣDI and DI) may be used in combination to compare the distortion caused by 
nonlinear algorithms. 

A method was developed to visualise the distortion of object and noise caused 
by a nonlinear noise reduction algorithm in CT imaging. e distortion of the 
imaged object and the noise was analysed separately by the developed images 
(NLDobject and NLDnoise) visualising the location of distorted structures. 
analysis of the distortion should be considered if nonlinear noise reduction 
algorithms are to be used for a reduction of absorbed dose in CT imaging. 
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6. Future Perspectives 

An analysis of the effects of nonlinear noise reduction on image quality is complex 
and requires considerable attention. Here are a few examples of subjects that could 
be further investigated: 

• Distortion analysis of clinical nonlinear noise reduction algorithms. The 
performance of a nonlinear noise reduction algorithm is often compared to FBP 
and visualised in a subtraction image. Such an image does not present the 
distortion of the nonlinear algorithm, but the difference between the algorithms 
covered in noise as FBP does not reduce noise. In the present thesis, the 
nonlinear effect on image quality in existing systems has only been 
approximately estimated by NLD’object, since manufacturers are often reluctant 
to provide full access to the projection data. Hence, analysis of the distortion 
using NLDobject, NLDnoise, PFR, DPS, DI, ΣDI and DI has yet to be tested.  

• Approximation of nonlinear systems. No imaging system is strictly linear. 
However, a CT system using FBP can be approximated as linear and analysed 
using metrics of the theory of linear systems. This approximation has been 
shown to be invalid for nonlinear noise reduction algorithms, as resolution and 
noise vary with the object and noise level. The observed variations have been 
approximated to follow a linear relationship, such that the metrics can be 
modified to be task-specific. These metrics have been shown to be useful in 
estimating image quality in many cases. However, a nonlinear system could 
induce effects on image quality, which invalidates the approximation. Hence, 
criteria are needed to determine when a linear approximation of a nonlinear 
noise reduction algorithm is suited. The present thesis has developed methods 
analysing distortion, which may be one of the criteria. 

• Training of a neural network. Deep learning has been used to develop noise 
reduction algorithms, where a neural network is trained through comparisons 
between high and low noise images of the same object. A temporarily noise-
reduced image is compared to the low noise image to find differences which 
can be used to fine-tune the parameters in the noise-reducing neural network. 
To our knowledge, a neural network has never been trained to reduce the 
difference obtained by the images of NLDobject and NLDnoise, which may 
perhaps reduce the distortion caused by the algorithm at high noise levels. 
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‘… For there is a man 

whose labour is in wisdom, 

and in knowledge, and in equ 
yet to a man that hath not laboured 

therein shall he leave it for his portion…’ 

Ecclesiastes 2:18-26 KJV 
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