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Abstract

In light of the Covid-19 pandemic, one of the most common interventions

used by countries was to shut down schools in the hope of mitigating virus

transmission. However, the effectiveness of school closures still lacks

consensus in the literature due to the seemingly difficult task of estimating

the causal effect of closing schools. This paper contributes to the literature

by providing both empirical evidence of the effect of school closures and

methodological guidance to isolate the effect of school closures. We exploit

variations in school closures across municipalities by utilizing a novel

dataset on Swedish lower secondary school closures to identify the causal

effect using a synthetic control method. We find evidence that closing

schools had a small and significant effect on the municipal transmission

of Covid-19. In addition, we show that only holding all students at home

simultaneously yielded mitigating effects on the transmission.
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1 Introduction

In the wake of the SARS-CoV-2 (henceforth Covid-19) virus, governments

worldwide have used various strategies to try and mitigate the virus transmission.

In addition to societal lockdowns, school closures have been one of the most

popular non-pharmaceutical interventions (NPIs), with more than 80 percent of

the world’s student population having to do their studies from home (Castex

et al. 2020).

Although there are reasonably some cross-country differences in the policy

implementation of school closures in how and to which extent schools have been

closed, the purpose of school closures has been to reduce societal transmission

or mitigate contagion clusters in schools to reduce the virus transmission.

Nevertheless, school closures have broad impacts, not only affecting the virus

transmission but also affecting the children in ways such as worsened learning

outcomes (Andrew et al. 2020, Engzell et al. 2021), physical and mental health

effects (Takaku & Yokoyama 2021, Yamamura & Tsustsui 2021), mothers labor

force participation (Collins et al. 2021) and increased discrepancies in social and

economic inequality due to seemingly disproportionate effects on less affluent

families (Andrew et al. 2020, Engzell et al. 2021, Hanushek & Woessmann 2020).

Therefore, it is essential to examine if the expected positive effects of school

closures outweigh the potential adverse effects documented in the literature. This

paper tries to contribute to the insights on this topic by empirically assessing

the effect of school closures on the Covid-19 transmission in Sweden. In contrast

to most other countries, Sweden did not implement universal school closures

for lower secondary schools. Instead, the decision to close schools was decided

on a municipal level — or in some cases, school level when there are a large

number of schools in the municipality — which has induced a variation across

municipalities in both the intensity1 of school closures and in absolute municipal

school closures. In this paper, we collect data on lower secondary school (grade

7-9) closures for 40 municipalities in Sweden with the purpose of exploiting

the variation in school closures across municipalities to compare the number of

Covid-19 cases after school closures.

By utilizing a synthetic control method (SCM) approach, we are able to

construct a synthetic control group from the municipalities that did not close

their schools and thereby get around the problem of municipality pre-treatment

heterogeneity in covariates when comparing outcomes. Using SCM, this paper

aims to measure the causal effect of school closures on the number of Covid-19

cases by comparing the outcome between the treated municipalities and the

1With intensity of school closures, we refer to the number of grades that are closed
simultaneously in a municipality. It is not necessarily the case that schools in the same
municipality have had the same intensity of school closures.
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synthetic control group.

Controlling for pre-trend covariates, we are able to construct a synthetic

control group for the treated unit that resembles the average treatment unit

before treatment in a way that makes it possible to evaluate the treatment effect

of school closures and simultaneously deal with the endogeneity of school closures.

We show that school closures among lower secondary schools in Sweden had a

small negative effect on municipal transmission rates across municipalities that

closed their schools. In line with Vlachos et al. (2021), our results suggest that

closing schools had a mitigating effect on transmission; however, the minuscule

effect shown by both this paper and Vlachos et al. (2021) suggest that school

closures had no greater effect on transmission rates on a societal and school

level. In addition, we also show that variations in the intensity of school closures

directly affect the mitigating effects induced by the closures of schools, and

only keeping all lower secondary school students at home simultaneously, on a

municipal level, provided enough contagion management to reduce the societal

transmission rate.

The rest of this paper is structured as follows. Section 2 provides a literature

review and illustrates potential gaps in the literature that this paper aims to

contribute to; section 3 gives a theoretical insight into why school closures would

decrease the number of Covid-19 cases using a modified SIER model; section

4 gives an extensive explanation of the dataset and provides a comprehensive

discussion of the empirical approach and how to reach identification using a

synthetic control approach; section 5 presents the result of this paper along with

robustness and heterogeneity analysis; lastly, section 6 gives a discussion on the

results, limitations, and a conclusion of the paper.

2 Literature Review

This paper’s primary concern is measuring the effect of school closures on the

transmission of Covid-19 in society. In light of the empirical evidence suggesting

adverse effects on students having to do their studies from home, it becomes

increasingly important to evaluate the actual effect of school closures on societal

transmission in order to disentangle the true cost of school closures. For the

case of Sweden, Vlachos et al. (2021) exploit the fact that in the initial response

to Covid-19, the Swedish government only required upper secondary schools to

close while all lower secondary schools still had on-site learning. By comparing

the outcome differences in the infection rate between children’s parents, teachers,

and teachers’ partners among lower and upper secondary schools, Vlachos et al.

(2021) finds that lower secondary teachers, their partners, and the children’s

parents were significantly more infected by Covid-19 than their upper secondary
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school counterparts. Although there is a statistically significant difference, the

difference is relatively small, which according to Vlachos et al. (2021) is an

indication that there only was a minimal effect of school closures on societal

transmission.

This paper builds on what is initially found by Vlachos et al. (2021). First, as

lower secondary schools were allowed to close, one could expect that the effect on

societal transmission would be more significant. Second, we capture the actual

cases of Covid-19 instead of using the parent’s infection rate to measure societal

transmission. Moreover, the detailed nature of the data used in this paper allows

for measuring the effect of closing schools more directly by isolating the effect of

school closures and utilizing variations across municipalities.

Svaleryd & Vlachos (2022) provides an extensive summary of the current

research insights on school closures and the transmission of Covid-19. It is

clear from Svaleryd & Vlachos (2022) that the literature on this topic provides

quite substantial heterogeneity in the estimated effect of school closures. For

example, using cross-country data for 130 countries, Liu et al. (2021) finds

that school closures are one of several NPIs that reduce societal transmission

of Covid-19. Similarly, Askitas et al. (2021) finds that school closures were an

effective measurement to mitigate transmission. In contrast, both Chernozhukov

et al. (2021) and Courtemanche et al. (2020) find no impact on school closures

on transmission rates.

The ambiguous effect of school closures may result from unsatisfactory

identification methods for both simulation and empirical studies: simulation

methods using the SIR framework2 are mainly a tool for predicting future

outcomes and provide little help in estimating the causal effect. In contrast,

empirical methods provide a better framework for estimating the causal effect of

school closures. Although the empirical work is interested in the effect, most

studies devote little focus to causal inference often lacking either (1) inclusion of

sufficient control variables to isolate the effect of school closures and (2) seldom

acknowledges the problem of reverse causality; that is, schools tend to close

in times of high transmission. Therefore, failing to account for these potential

problems would likely induce bias in the estimates.

The most straightforward approach in dealing with the endogeneity of school

closures would be to control for other NPIs; however, school closures are often

accompanied by other NPIs, making it difficult to isolate the effect of school

closures. A few studies try to circumvent these problems by exploiting variations

within family infection rates among students, close family members, and teachers

2SIR models are epidemiological models that explain how viruses transmit in society. In the
most simple SIR model, everyone is susceptible to the virus, infected, and eventually recovered.
Additional model extensions provide more dynamics, such as vaccinations and school closures.
See section 3 for a theoretical explanation of the SIER model.
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(Vlachos et al. 2021, Bravata et al. 2021). Since students living in close proximity

to each other face similar NPIs, variations in school closures could be used to

identify the effect on transmission by comparing the differences in family, student,

or teacher infection rates. However, within-household transmission is insufficient

to capture the full societal impact of school closures.

In the empirical literature examining the societal effects Fukumoto et al.

(2021) and Rauscher & Burns (2021) tries to account for the endogeneity problems

by utilizing matching methods. By using municipal variation in school closures

across Japan, Fukumoto et al. (2021) matches municipalities that closed their

schools with ones that did not close their schools. They found no evidence that

closing schools had any impact on societal transmission. Rauscher & Burns

(2021) estimates the timing of school closures and how it affects the death rates

in the US and finds that each day of delay in school closures leads to a 1.5-2.4

percent higher death rate.

Another way of dealing with the pronounced endogeneity used in the literature

is by examining school reopenings rather than school closures. Opening schools

is more likely to be exogenous since it often corresponds to a particular set of

pre-defined dates rather than being an effect of high transmission rates. Again,

school openings show fairly large heterogeneity in the estimated effect. Using a

synthetic control method approach, Reinbold (2021) studies the after-summer

school reopenings in Illinois and shows that counties with high distance teaching

or hybrid teaching experienced significantly fewer new cases than counties that

had a majority of schools on on-site learning. However, both Goldhaber et al.

(2020) and Harris et al. (2021) find no effect of school reopenings on the societal

transmission and number of hospitalizations.

As can be seen from the equivocal results from the empirical literature, the

effect of school closures and school openings on societal transmission is seemingly

still uncertain. As noted above, the results seem to be highly dependent on

the setting and how well the endogeneity of school closures, confounding, and

collinearity with other NPIs are handled. In addition, the usefulness of school

closures depends on the societal transmission as a whole, and the empirical

evidence suggests that reopening schools at low or modest levels of societal

transmission do not significantly affect any further spread of Covid-19. However,

as the level of societal transmission likely affects both precautionary measures and

endogenous behavioral responses, this conclusion should be regarded with caution.

Furthermore, the usefulness of school closures also depends on the strategy of

other NPIs; if, for example, students substitute their in-school interactions with

out-of-school interactions, the impact of closing schools will crucially depend

on the mitigating restrictions placed by other NPIs (Svaleryd & Vlachos 2022).

Thus, there still exists a gap in the literature to provide both methodological
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and empirical evidence on this topic. This paper aims to shed some light on

both these issues by providing a generalized synthetic control methodology to

empirically assess the effect of school closures in a relatively unique setting, as

Sweden’s strategy to mitigate the spread of Covid-19 through school closures

differs from most other countries.

3 Theoretical Effects of School Closures

To explain why school closures, at least theoretically, are a viable option to

mitigate virus transmissions, we develop an extension of the standard SEIR

(susceptible, exposed, infected, and recovered)3 model by allowing for school

closures as a measurement of social distancing and vaccinations.

Suppose that there are N agents that constitute the whole population.

The population can then be decomposed into five non-overlapping groups that

correspond to a different state of Covid-19. Firstly, let S(t) denote the part

of the population that is susceptible to the virus and let E(t) be the share of

the population that is exposed, that is, infected by the virus but does not yet

transmit the virus. Individuals infected by the virus can spread the virus and

are denoted by I(t). The share of the population recovered from the virus is

denoted by R(t). Lastly, the vaccinated share of the population is denoted V (t).

Figure 1 shows the expected dynamics of Covid-19 in society. In the beginning,

Susceptibles Exposed Infected Recoverd

Vaccinated

Figure 1. Dynamics of the SEIR Model with Social Distancing and Vaccinations

all agents in the economy are susceptible to the virus, then agents either get

exposed and thereafter infected and eventually recover from the virus, or the

agent becomes vaccinated and cannot become infected. Thus, in this simple

model, the vaccination plays a huge role in limiting the rate a which agents

become exposed to the virus. Moreover, when all agents in the economy are

vaccinated, the model predicts no more spread of the virus, explicitly assuming

that vaccinated agents cannot procure the virus and therefore not spread the

virus.

For simplicity, we assume that recovered agents cannot be infected again and

3See for instance Collins et al. (2021) and Mwalili et al. (2020)
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that all infected cases predicted by the model are the actual number of cases;

there are no unreported symptomatic individuals. Demographic processes in the

model are also neglected, and the death rate of those infected by Covid-19 is

assumed to be negligible.

Then, the dynamics of the model can be described as a system of ordinary

differential equations (ODEs)

ds

dt
= −(1− u)βsi− v′(t) (3.1)

de

dt
= (1− u)βsi− αe (3.2)

di

dt
= αe− γi (3.3)

dr

dt
= γi (3.4)

dv

dt
= v′(t) (3.5)

where each lower case letter corresponds to the fraction of the population in each

state i/N for each i = S,E, I,R, V. The terms β, α and γ are country-specific4

parameters, and 0 ≤ u ≤ 1 is the intensity of social distancing measurements. If

society is completely closed, u = 1 and no transmission will occur since there

will be no contact between susceptible agents.

Since school closures are a type of social distancing interventions, closing

schools will imply that u > 0, meaning that the number of susceptible agents in

the economy decreases. For an illustration of this, see Figure 9 in the appendix

for simulation results of equations (3.1)-(3.5).

4 Data and Methodology

4.1 Data

This paper utilizes a novel dataset on school closures among lower secondary

schools in Sweden during the Covid-19 pandemic. We have collected data on 40

out of Sweden’s 290 municipalities. The data includes information during which

periods each school in a specific municipality had distance teaching.5

To measure the intensity of school closures, we create a variable that takes

on values between 0 and 3, where a value of zero implies that all classes in that

particular school have on-site lectures, whereas a value between one and three

indicates the number of lower secondary grades at home; if one, then one grade is

4See appendix for explanation of parameters
5In Swedish, distance teaching is defined as either ”distansundervisning” or

”fjärrundervisning.”
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at home; if two, then two grades are at home; and if three, all three grades are at

home. The school-level data is aggregated to the municipality level by taking the

average intensity for each week per municipality. The treatment variable used in

this paper is derived from the intensity variable. If the school intensity is zero,

the treatment variable will be zero. In the baseline model, treatment occurs if the

intensity is equal to three; that is, when the average weekly municipal intensity

is equal to three, the treatment variable will be one. By deriving treatment

from the intensity variable, we are able to vary the intensity measurement to

investigate the sensitivity of the estimates derived in the baseline model. In

addition, this specification of treatment is also required since some school data

does not provide exact measurements of which grades had on-site learning, only

that a particular share of the grades were home or in school.

The period studied in this paper ranges from week 45 of 2020 until week 24,

2021. Using the selected period, it is possible to capture initial school closures

for a few schools in 20206 and all school closures up until the summer holiday

2021. In the sample, we identify two distinct periods where school closures

were particularly prevalent: the second week of January 2020, which is after the

winter holiday; the week after the ”sportlov,” which is a one week holiday that

occurs in late February or beginning of March depending on the municipality.

In the week after the Easter holiday in 2021, there was also a slight increase

in school closures. Figure 2 shows the mean weekly evolution of school closure

intensity and the mean number of new Covid-19 cases under the same period.

During the winter holiday, the societal transmission was high, so schools close

and then gradually opened up until the week after the sportlov when the number

of cases increased again. Likely, the increase in cases was due to the increased

mobility and in-country traveling following the sportlov. Moreover, the trends

in Figure 2 suggest that the effect of school closures — given that they have an

effect — comes with a lag; therefore, closing schools is hypothesized not to have

an immediate effect on virus transmission; instead, the effects are seen weeks

later.

4.1.1 Covariates and Raw Relationships

To isolate the variation of school closures, we include 12 different covariates.

The criteria for including covariates is that they both could affect the number

of Covid-19 cases and the likelihood of closing schools. Firstly, the weekly

number of Covid-19 cases before treatment is a strong predictor of the number

of weekly cases the week after. Therefore, we include a lagged variable for

the number of Covid-19 cases one week before the municipality close. We also

6In our sample no schools closed earlier than week 45 2020
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Figure 2. Weekly average school closure intensity and number of new Covid-19 cases

include regional dummies to control for unobserved characteristics across regions.

Although regions and municipalities most often followed state recommendations,

by including region dummies, it is possible to control for any unobserved

heterogeneity that differed between regions, including other non-pharmaceutical

interventions. Moreover, we include a range of predictors: demographic variables

(the population size, population density, and mean age to control for spread

around schools); geographic variables (municipality size and average net flow of

commuters across municipalities); labor and educational variables (employment

rate and student density); income variable (disposable household income); and

lastly vaccination variables indicating the share of individuals with at least one

and two doses of the Covid-19 vaccine.7

Table 1 shows descriptive statistics of each covariate for the population

and the treated and untreated samples. The treated sample, on average, is

significantly smaller in size compared to the population and the untreated

sample. However, the treated municipalities tend to have a higher population

density than the population and untreated ones. Municipalities with higher

intensity of school closures were, on average, larger in population size but lower

in area. Accordingly, the student density for the treated municipalities is also

higher than in the population and the untreated sample. In terms of the other

7For an extensive motivation of covariates see Appendix.
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covariates, the treated and untreated samples seem to be relatively similar to

the population.

Table 1. Descriptive Statistics

Population Treated Sample Untreated Sample

Obs Mean Std. dev. Obs Mean Std. dev. Obs Mean Std. dev.

Weekly new cases 10,560 89 121 224 86 103 1,078 87 120

Population size 10,560 95276 214027 224 112871 144692 1,078 107141 137571

Mean age 10,560 43 3 224 42 3 1,078 43 3

Size (km2) 10,560 1297 2341 224 568 452 1,078 910 935

Population density 10,560 439 1160 224 645 961 1,078 555 919

Income (100tsek) 10,560 219 24 224 213 15 1,078 216 17

Employment rate (change this) 10,560 0.008 0.0004 224 0.008 0.0006 1,078 0.008 0.0006

Commuters (in) 10,560 22672 65005 224 21931 31698 1,078 19823 30112

Commuters (out) 10,560 13117 28380 224 12638 14906 1,078 11558 14226

Student density 10,560 14 38 224 20 29 1,078 17 28

Share of, at least. 1 dose of vaccine 10,560 0.014 0.016 224 0.015 0.016 1,078 0.019 0.018

Share of, at least, 2 doses of vaccine 10,560 0.014 0.016 224 0.009 0.011 1,078 0.015 0.019

Note: The Population includes all 290 Swedish municipalities. The treated sample is defined as the municipalities in which the intensity of school closures is
equal to 3; the untreated sample is the rest. Table shows weekly averages of each variable.

The outcome variable of interest is new weekly cases for each municipality

during the chosen sample period. The collected data is from the Public Health

Agency of Sweden (Folkhälsomyndigheten). Figure 3 shows the raw relationship

between the mean number of weekly Covid-19 cases and the mean weekly

intensity of school closures. Each point in the figure represents the mean number

of Covid-19 cases against the weekly municipal average intensity of school closures.

We also draw the linear and quadratic regression lines on the underlying data.

Firstly, we observe a positive linear relationship between the weekly Covid-19

cases and school closures. The quadratic fit has an inverse U -shape suggesting

that the intensity of school closures does not mitigate the number of Covid-19

cases until an intensity of one. However, running these regressions, both the

quadratic and linear fit are highly insignificant with p = 0.9161 and p = 0.8658,

respectively.8

4.2 Identification

To identify the causal effect of school closures on the number of Covid-19 cases,

we employ a synthetic control method (SCM) to estimate the treatment effect

of school closures. To combat potential heterogeneity problems by comparing

treatment effects across municipalities, the SCM approach allows for the construction

8Running a region and time fixed-effect model using the covariates gives a positive and
significant (p = 0.025) estimate on the treatment dummy, suggesting that municipalities close
their schools in times of high transmission.
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Figure 3. Raw relationship between weekly Covid-19 cases and school closures

of a weighted average of the untreated units that closely match the treated units

in covariates.

The first part of this section will define some notation following the tradition-

al SCM framework introduced by Abadie & Gardeazabal (2003) and Abadie

et al. (2010). Secondly, we will expand the traditional framework following

Abadie (2021) by allowing for more than one treated unit. Doing this renders

the possibility to turn the aggregate municipality-specific effects into an average

treatment effect across all treated municipalities.

Suppose that there are t = 1, ..., T time periods, where T0 ∈ t denotes the

number of periods before school closures with 1 ≤ T0 < T . Furthermore, suppose

that we have data on j = 1, ..., J + 1 municipalities where, without any loss of

generality, we make the imposing restriction that municipality j = 1 is the only

treated unit, that is, the only municipality that closed their schools, and the

other j = 2, ..., J are untreated municipalities referred to as the ”donor pool.”

Following, Abadie et al. (2010), let YI
jt be a (T × J + 1) outcome matrix

describing the number of new weekly Covid-19 cases for municipality j at time

t. Decomposing the outcome matrix YI
jt into treated and untreated municipality

outcomes, the treated outcome becomes a (T × 1) vector denoted YI
1t and

the untreated outcomes become a (T × j) matrix denoted YN
jt . By considering

school closures as an exogenous variation, outcomes before treatment should
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be unaffected for both treated and untreated units; that is, for time periods

t ∈ {1, ..., T0} and for all municipalities j ∈ {1, ..., J + 1} it should be true that

YI
1t = YN

jt .
9 This assumption follows immediately in a theoretical setting where

YN
jt denotes the unobserved counterfactual outcome for the treated units.

For time periods t > T0, we are interested in the treatment effect between

the treated municipality and the untreated ones. Hence, for any time t =

T0 + 1, T0 + 2, ..., T , the treatment effect of school closures is determined by

τ1t = Y I
1t − Y N

jt . (4.1)

Rewriting equation (4.1) as Y I
1t = Y N

jt + τit and defining an indicator variable

Djt that takes the value 1 if municipality j is exposed to the treatment and 0

otherwise, the observed number of Covid-19 cases for any municipality j at time

t can be written as

Yjt = Y N
jt + τjtDjt. (4.2)

Since only municipality j = 1 is exposed to treatment after period T0, the

indicator variable is

Djt =

1 if j = 1 and t > T0

0 otherwise.
(4.3)

Since we are interested in the treatment effect of school closures, this implies

that we want to estimate the parameters

τ 1t = {τ1,T0+1, ..., τ1,T } .

The counterfactual outcome Y N
jt is unobserved for each treated unit j and has

to be estimated. Equation (4.1) therefore implies that the estimated treatment

effect is a function of the estimated counterfactual outcome of Y N
jt :

τ̂1t = Y1t − Ŷ N
jt . (4.4)

That is, the estimated treatment effect of school closures is just the difference

between the observed outcome for the treated municipality and the estimated

unobserved outcome.

To estimate the unobserved outcome, Abadie (2021) suggest using a weighted

average of the outcomes for the donor pool municipalities. That is, let W =

(w2, ..., wJ+1)
′ be a (j×1) vector of weights assigned to each untreated municipality,

9This assumption is essential for the determination of causality since it explicitly assumes
that before treatment outcomes are (virtually) identical implying that potential dispersion
after treatment is possibly due to treatment itself.
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with restrictions
∑J+1

j=2 wj = 1 and wj ≥ 0 ∀j ∈ {2, ..., J + 1}. Then, the

synthetic control estimator is given by

Ŷ N
1t =

J+1∑
j=2

wjYjt = Y0W, (4.5)

thus the treatment effect of school closures is just the difference between the

observed number of Covid-19 cases for the treated municipalities and the weighted

average outcome of Covid-19 cases generated by the synthetic control group10:

τ̂1t = Yit −
J+1∑
j=2

wjYjt. (4.6)

4.3 The Average Treatment Effect

In the framework presented by Abadie et al. (2010), we only observed one treated

unit (j = 1), which for the purposes of this paper is not enough. Since school

closures were not concentrated to only one municipality, there are more than one

treated unit. Following, Abadie (2021) the extension is fairly straightforward.

This extension allows us to examine the treatment effect when there is more

than one treated unit and allow the treatment to occur continuously during

the examined period. If treated units are indexed with g ∈ {1, ..., G} and J

denotes the donor pool that does not undergo treatment, the treatment effect

for a single municipality g is still given by τ̂gt. Taking the average across all

observed municipalities treatment effects yields the average treatment effect in

the sample:

τ = (τT0+1 + ...+ τT ) =
1

G

G∑
g=1

(τ̂g,T0+1, ...+ τ̂g,T ). (4.7)

That is, the average treatment effect is just the average of all individual treatment

effects for each treated municipality g. Notice here also that t > T0 is allowed to

vary for each g. This allows for continuous and heterogeneous treatment effects,

in our case, weekly treatment effects that get averaged out when computing τ .

4.4 Dealing with the Endogeneity of School Closures

The novelty of the synthetic control method in our setting is that it automatically

deals with the reverse causality problem that schools tend to close under

high transmission. By constructing a synthetic control group that fulfills the

assumption that the outcome between the average treatment unit and the

10See appendix for estimation of the donor pool weights.
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control group are identical before treatment, the number of Covid-19 cases will

be identical for both the treated and untreated municipalities. Therefore, we are

able to isolate the variation of Covid-19 cases and let treatment, that is, school

closures, be the only variation affecting the outcome.

5 Result

5.1 Average Treatment Effect

As discussed in section 4, the average treatment effect is calculated by computing

the average treatment effect for each municipality that closed its schools. To

decide which week should constitute treatment, the average weekly intensity

is aggregated over each week, and the week that received the highest intensity

was chosen as the treatment week. In line with what was shown in Figure 3,

the highest intensity was present during weeks 1-3 and 6-10. To extend the

pre-treatment period, week eight is chosen as the week where treatment occurs.
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Figure 4. Average treatment effect of school closures

Figure 4 displays the new weekly Covid-19 cases from week 45, 2020, to

week 24, 2021. Treatment here is indicated by the value zero. As we can see,

the synthetic control group tracks the average treatment unit relatively well

before treatment, which suggests that the synthetic control group is a good
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approximation of how the number of Covid-19 cases would evolve in the absence

of school closures. Furthermore, the similarities in pre-treatment trends also

suggest that the endogeneity problems with school closures are dealt with since

the nature of SCM controls the data so that the number of Covid-19 cases was

equal for the treated and untreated municipalities in the pre-treatment period.

To quantify the effect of school closures, we observe the difference between

the average treatment unit and the synthetic control group after treatment.

As we can see, Figure 4 suggests that the synthetic control group, that is,

the municipalities that did not close their schools had more weekly new cases

of Covid-19 after the other municipalities closed their schools. The average

treatment unit follows the synthetic control group relatively close in the number

of cases but remains lower during the examined period. The estimated magnitude

indicates that closing schools seemingly affected the difference in the number of

new weekly cases varying between 15 and 25 during the examined period.

5.2 Inference

The gap between the synthetic control group and the average treatment unit

indicates that school closures may have affected the transmission of Covid-19.

Although there is an observed difference, this observation is not sufficient to

prove that the difference is statistically significant.

To test the statistical significance of the estimates, we construct multiple

placebo tests where treatment is assigned to the untreated municipalities. By

creating a permutation distribution, we are able to extract the statistical

significance of the estimates obtained from the synthetic control (Abadie 2021).

By artificially assigning treatment to untreated units, the variation between

the true estimated effect and the synthetic controls should occur randomly.

Therefore, if the estimated magnitude of the placebo units is similar to the

estimated effect in the actual synthetic control, the estimated effect will be

statistically insignificant.

Figure 6 shows the estimated gap between the actual outcome for each of the

untreated units and the synthetic control group. The black line represents the

difference between the average treatment unit and the synthetic average treatment

unit, while the gray lines represent the difference between the true outcome

and synthetic control outcome for the placebo units. First we observe that

some of the untreated placebo units are not suitable matches to their synthetic

controls due to the large dispersion in the pre-treatment period. Second, for the

average treatment unit (black line), the deviation in the pre-treatment period

is close to zero. After the treatment, the line diverges from most of the other

lines suggesting that the average treated unit had fewer cases in relation to

17



-100

0

100

200

300
D

ev
ia

tio
n

-20 -10 0 10 20
Time

Figure 5. Placebo permutation distribution

its corresponding synthetic control group and other placebo units. However,

there is no substantial difference between the placebo units and the average

treatment unit, implying that the estimated difference displayed in Figure 4 is

not statistically significant.

To check the sensitivity of the placebo distribution, we remove municipalities

with a pre-treatment mean squared prediction error larger than two compared

to the synthetic average control unit. As can be observed in 4, this includes the

gray lines with substantial pre-treatment deviations from their synthetic control.

Removing these from the placebo distribution makes it easier to disentangle

the post-treatment effect of the average treatment unit since the potential large

dispersion across other placebos after treatment may be a result of poor fit

before treatment rather than a large effect after. Again, the difference is smaller

than most other placebo units, and now the difference is large enough to be

classified as statistical significant. That is, after removing municipalities with

a high MSPE, we find evidence that school closures among lower secondary

schools had a significant, albeit small, effect on the transmission of Covid-19

across Swedish municipalities.
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5.3 Robustness Checks

5.3.1 Time Placebo

First, we run six time-placebo tests where we artificially shift the treatment

date backward in time across the pre-treatment period prior to the selected

treatment date. This yields, in effect, fictitious school closure treatments across

all weeks at the beginning of 2021, excluding the two first where all schools were

off due to the winter holiday. The construction of the synthetic controls follows

immediately from an equivalent derivation to the one detailed in section 4. Since

the pre-treatment periods differ in length for the six placebos, the synthetic

control units will differ from the original; however, for the estimates to be robust,

there should be no substantial divergence between the actual control and the

placebos before treatment.

Figure 7 shows the time-placebo permutation distribution backdating the

intervention to the weeks before treatment. The black line shows the baseline

number of cases, and the gray lines represent the placebo controls. As can

be seen, the baseline synthetic closely follows the placebos before and after

treatment. This implies that there are no random variations before treatment

that are directly affected by selecting a particular treatment date. This result

provides credibility to the robustness of the estimated effect.
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Figure 7. Time-placebo permutation distribution

5.3.2 Restricting the Donor Pool

Second, we also check the robustness of the SCM estimates by restricting the

available control units when constructing the synthetic control group. To do

this, we iteratively omit municipalities from the donor pool that contribute with

more than one percent to the baseline model. Doing this tests the sensitivity of

changes in the donor pool.

In Figure 8 the black line shows the baseline synthetic control compared to

the subsequent treatment effects (gray lines) produced with the restricted donor

pool. We observe some variation in the estimated effect; however, the restricted

donor pools still center around the baseline model, suggesting that the baseline

estimates are seemingly robust to changes in the donor pool.

5.4 School Closure Heterogeneity

By defining treatment from the intensity variable, we are able to vary the

treatment intensity to investigate potential heterogeneous treatment effects

across municipalities with all two and one grade(s) at home. To do this, we use

the following difference-in-difference model

Yit = β0 + β1Tit + β2Dit + β3(Tit ×Dit) +X′γ + ϵit (5.1)
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where T is a time indicator, D is the treatment dummy, and X is a vector of

controls including the covariates presented in Table 1 for each time period t and

municipality i. Here, the outcome variable, Y , is the number of weekly Covid-19

cases for the baseline, medium, and low-intensity scenarios. The outcome of the

control group is derived from the synthetic control outcomes.

The estimates in Table 2 show that the number of Covid-19 cases in our

sample is increasing for each model; the insignificant estimates of the treatment

variable suggest that the difference in outcomes before treatment between the

actual value and the synthetic control group for each model was small. The

interaction estimate between the time indicator and treatment dummy gives us

the treatment effect of school closures. We can observe that it is only in the

baseline model where school closures significantly affected the number of Covid-19

cases. The negative value of the estimate implies that treated municipalities

that enforced all lower secondary students to work from home experienced lower

societal transmission. Furthermore, the estimated magnitude of the treatment

effect is consistent with what was observed in Figure 4.
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Table 2. Heterogeneous effects in intensity of school closures

Dependent variable

Baseline Medium Low

Time 0.930∗∗∗ 0.997∗∗∗ 1.009∗∗∗

(0.229) (0.243) (0.247)

Treatment 1.036 0.981 1.67
(3.966) (4.657) (7.857)

Time × Treatment -21.417∗∗∗ -13.332 -18.347
(5.926) (12.248) (16.252)

Observations 1302 18022 18022

Note: Standard errors in parentheses.*, ** and *** denotes significance level at 10, 5 and 1 percent,
respectively. The dependent variable is new weekly Covid-19 cases. The baseline model estimates the
treatment effect when school intensity is equal to three. The medium model and low model estimates
the treatment effect when school intensity is equal to two and one, respectively. The control variables
are the seen in 1.

6 Concluding Discussion

This paper investigates the effect of lower secondary school closures in Sweden

on the municipal transmission of Covid-19. Identification is reached by utilizing

school closure variations across 40 different municipalities. By regarding school

closures as an exogenous shock and using a generalized synthetic control method,

we are able to estimate the treatment effect of school closures, bridging both

empirical evidence on the effectiveness of school closures as a non-pharmaceutical

intervention and methodological guidance in how to deal with endogeneity and

confounding with other NPIs. In sum, we find that lower secondary school

closures had a minuscule effect on the municipal transmission of Covid-19 in

Sweden. We estimate that closing schools are associated with a reduction of

approximately 15-25 cases on a municipal level. The results are robust to both

time shifts and restrictions of the donor pool.

In addition to the baseline results, several insightful results are presented.

This paper investigates the effectiveness of different compositions of on-site contra

distance teaching. We find, interestingly, that only completely restricting student

interactions by enforcing all lower secondary school students to have distance

teaching simultaneously had a mitigating effect on municipal transmission. This

is in line with what is expected from theory; more restrictions imply less

transmission between individuals. On the contrary, our results also suggest

that only having one or two classes at home did not have any mitigating effect

on the societal transmission of Covid-19. We interpret these results to be in

line with what is previously found by Vlachos et al. (2021) in that closing

schools only had a minuscule effect on societal transmission and only hold under

specific circumstances. Moreover, we find no significant effects of municipal
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heterogeneity when comparing the effects on school closures for large and small

municipalities in terms of area, population, student density, and the number of

Covid-19 cases.11 Suggesting that the treatment effect for the municipalities

that closed their schools was relatively homogeneous.

These results provide important policy implications for the evaluation of

school closures, both in terms of information for the Covid-19 pandemic but also

for future pandemics. The results in this paper indicate that closing schools may

not have been as useful as initially thought, at least to the extent that it by itself

would relieve societal transmission. This is especially true when considering the

documented adverse effects of closing schools. In the case of Sweden, there is

still a lack of available studies examining the effect on children, such as learning

outcomes and mental health issues, as a result of school closures; thus, it is still

too early to conclude that closing schools were worth it in Sweden, despite our

results in this paper.

In terms of generalizability and external validity, our results should be

regarded with care since Sweden adopted a relatively unique strategy to mitigate

Covid-19. By taking a more lenient approach to imposing other NPIs, the effect

of closing schools could very much vary quite substantially compared to countries

that adopted a more restrictive policy on other NPIs. Likewise, we investigate

the effect during the second wave of the pandemic, and it would be reasonable

to believe that endogenous behavioral responses would have changed between

the first, second, and third waves, which could affect the effectiveness of school

closures.

Lastly, this paper also contributes to the literature by paying particular

attention to causal inference. In terms of internal validity, our results are robust

even in relatively small samples dealing well with both the endogeneity of school

closures and identification of a true school closure effect independent of other

NPIs.

11See appendix for result of municipal heterogeneity analysis.
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Appendix

Estimating the Synthetic Control Group

By partitioning the outcome vectors into two different vectors indicating pre-

and post-treatment Yj = (Ypre/Ypost), we can define a set of k pre-treatment

predictors X that includes a set of observable covariates Z and a set of M linear

combinations of pre-treatment outcomes Ypre. Likewise, X0 defines a (k × j)

matrix of predictors for the donor pool.

To estimate the weights assigned to the untreated units, Abadie et al. (2010)

suggest to assign the weights in such a way that minimizes the distance:

W∗ = min
W

∥X1 −X0W∥ =
√

(X1 −X0W)′V(X1 −X0W) (6.1)

subject to the restrictions put on the weights (sum to one and greater or equal

to zero), given a (k × k) symmetric positive and semidefinite matrix V.

It is clear from equation (6.1) that the choice of V affects the minimized

values of the weights W∗. Although, the inferential strategy is unaffected by the

choice of V, the optimal V should be chosen in such a way that it assigns the

optimal weights as a linear combination of the predictors and thus minimizing

the mean squared error of the synthetic control group. In this paper, V will

be chosen in such a way that the synthetic control matches the pre-treatment

outcomes for all M linear combinations of the treated units outcome,12

∥Ypre
1 −Ypre

0 W∥ = 0 = ∥X1 −X0W∥ . (6.2)

Calibration of SEIR Simulation

The simulation of the ordinary differential equations in (3.1)-(3.5) is done in

Python using the inbuilt ODE solver. For purposes of replication, let us consider

the calibration of the model.

Let t0 denote the start of the pandemic. Then, at time t0 there are no

exposed, infected nor vaccinated individuals. That is, E(t0) = 0, I(t0) = 0 and

V (t0) = 0. Naturally it also follows that R(t0) = 0. Furthermore, let τ∗ and τ⋆

denote the incubation time and the number of days that an individual is infected,

12Alternatively one could define a training period P ⊆ M that spans only half of the
pre-treatment period, and then validate the fit of the model trough out-of-sample validation on
the second half of the pre-treatment period. This method is also used in the paper to validate
the model fit and to reduce the chance of overfitting.
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respectively. The parameters α, γ and β in (3.1)-(3.5) are given by

α =
1

τ∗
, (A.1)

γ =
1

τ⋆
, (A.2)

β = R0γ, (A.3)

where α is the rate of change of going from exposed to infected; γ is the rate

of change of going from infected to recovered; and β is the rate of change of

going from susceptible to exposed. Here R0, in equation (A.3), tell us how many

individuals one person transmits the virus to. Table 3 shows the parameter

calibrations used in the model.

Table 3. SEIR parameter calibration

Parameter Value Description

τ∗ 5 Incubation time

τ⋆ 7 Infection time

R0 2.4
Number of people a given

person transmit the virus to

N 106
Number of individuals in

simulation

α 0.2
ROC of going from exposed

to infected

γ 0.143
ROC of going from infected

to recovered

β 0.343
ROC of going from susceptible

to exposed

Note: ROC is short for rate-of-change.

Using these parameter estimates, we are able to simulate different scenarios

in equation (3.1)-(3.5) by varying the intensity of school closures trough the

parameter u. Figure 9 shows this simulation in a low, medium and high intensity

scenario.

Municipal Heterogeneity

Table 4 show the estimated heterogeneous treatment effects across different

covariate samples. Here, S denotes a dummy variable that takes the value

one for a particular condition (as seen in the parenthesis in the table). If the

condition is fulfilled, then S = 1 and otherwise zero. It is reasonable to assume

28



0 50 100 150 200 250 300 350
0.0

0.2

0.4

0.6

0.8

1.0
Fr

ac
tio

n 
of

 P
op

ul
at

io
n

Susceptible low
Recoverd low
Susceptible med
Recoverd med
Susceptible high
Recoverd high

0 50 100 150 200 250 300 350
Time (days)

0.000

0.025

0.050

0.075

0.100

0.125

0.150

Fr
ac

tio
n 

of
 P

op
ul

at
io

n

Infective low
Exposed low
Infective med
Exposed med
Infective high
Exposed high

Figure 9. SEIR simulation

that the data generating process differs between the municipalities that fulfill

the condition and the ones that do not; therefore, the estimated coefficients in

Table 4 are the estimates obtained from the split sample difference-in-difference

regression in (5.1) conditional on the population mean as a threshold for each

condition.

As can be seen, we find no significant differences between small and large

municipalities in the municipal area, population size, student density, and no

differences between the municipalities that had high and low transmission. Partly,

our results are driven by low efficiency due to the small sample size when splitting

the data; indeed, for the split samples where we find significant effects, the sample

size exceeds 800 observations.13 Nevertheless, our results suggest that there are

no heterogeneous treatment effects across municipalities in the variables that

substantially differ between the treated and untreated samples.

131085 and 868 observations, respectively.
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Table 4. Heterogeneous municipal effects

New weekly Covid-19 cases

S = 1 S = 0 p-value

Municipal area -74.36 -16.952*** 0.626
(S = 1: Area> 1297) (114.6) (3.144)

Population size -25.05 -15.25 0.883
(S = 1: Population size> 95, 276) (37.18) (29.3)

Student density -14.70*** -16.84 0.920
(S = 1: Student density> 14) (1.935) (19.4)

Covid-19 cases -14.72 -24.1 0.826
(S = 1: Weekly Covid-19 cases> 89) (15,03) (27.8)

Note: Standard errors in parentheses.*, ** and *** denotes significance level at 10, 5 and 1 percent,
respectively. The dependent variable is new weekly Covid-19 cases. p-value refers to statistical
significance between the difference of coefficients. The estimates shows the heterogeneous treatment
effects of municipal size, population size, student density and Covid-19 cases

Motivation of Covariates

• Previous outcomes: The weekly number of Covid-19 cases before

treatment increases the likelihood of closing schools if the spread is high.

This data is collected from Folkhälsomyndigheten

• Region dummies: Although regions and municipalities most often

followed state recommendations, including region dummies, we can account

for any characteristics that differed between regions, including other

non-pharmaceutical interventions.

• Demographic variables: Population size, population density in a municipality

increase the potential number of Covid-19 cases, which increases the

likelihood of closing schools. This is be collected from Statistics Sweden

(Statistiska Centralbyr̊an)

• Geographic variables: The larger the inhabitable area and number

of bordering municipalities, the higher the number of Covid-19 cases is,

which will affect the likelihood of closing schools. This is be collected from

Statistics Sweden

• Municipality income and financial variables: Wealthier municipalities

tend to be more urban, which reduces the likelihood of ”natural” social

distancing, which increases the number of Covid-19 cases, and thus the

likelihood of closing schools. This is be collected from Statistics Sweden

• Educational Variables: More students in schools will likely increase

the number of Covid-19 cases, especially in schools, which increases the
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likelihood of closing schools. This is be collected from the Swedish National

Agency for Education (Skolverket)

• Labor variables: The higher the employment rate, the more interaction

between workers, which will increase the number of Covid-19 cases and

thus the likelihood of closing schools. This is be collected from Statistics

Sweden

• Medical Variables: Less vaccinated inhabitants will increase the outcome.

Expecting that, municipalities will close schools. This is be collected from

Folkhälsomyndigheten

• Movement across municipalities: The more people commute across

municipalities, the more Covid-19 cases there will be. Expecting that,

municipalities will close their schools. This is collected from Statistics

Sweden
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