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Abstract

We evaluate if monthly LOCADY returns on the London Metal Exchange
can be accurately predicted one, two and three months ahead. In total
ten models are constructed using time-varying parameters and bandwidth
optimization. The models are evaluated against one another using the fol-
lowing pseudo-out-of sample test statistics: Diebold and Mariano (1995),
Clark and West (2006), Giacomini and White (2006) and the Campbell
and Thompson (2008) out-of-sample R2. The test statistics generated are
inconsistent. A few models are able to generate positive out-of-sample
R2 values for one and two month predictions. No model significantly
outperforms a random walk for the three step ahead prediction.
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1 Introduction

Forecasting, as it pertains to commodity pricing is considered highly relevant
for different types of market participants. In this thesis we evaluate the copper
market as a proxy for metal commodity markets. The objective of the evaluation
is to determine what models are able to forecast, and which model is best
suited to forecast LME Copper returns. We implement various models such as
AR(p), MA(q), ARMA(p,q) and VAR(p) to forecast future copper prices. We
evaluate a range of the aforementioned forecasting model’s ability to accurately
predict out-of-sample observations in the short-, mid-, and long-term horizon.
We define short term as one month ahead, mid-term as two months ahead, and
long-term as three months ahead. The models are compared based on their
ability to forecast commodity prices, specifically monthly spot copper prices
from the London Metal Exchange, LME. Each model allows for time-varying
parameters which we operationalize by estimating them in moving windows with
an optimized bandwidth. We also create model ensembles and evaluate their
performance. The models forecast returns rather than prices to accommodate
the assumptions of stationarity related to the models and tests in question.

Forecasting of metal commodity prices is a frequently addressed topic in re-
search. Copper has been the focus of a range of sophisticated forecasting models
such as Liu et al. (2017) who apply a decision tree learning model, DTLM. They
find the DTLM to reliably forecast the price of copper deviating less then 4%
for horizons ranging from days to years. Further examples are Kriechbaumer
et al. (2014) who suggest their wavelet-ARIMA model approach to be a promis-
ing technique for forecasting metal prices with high accuracy. Notably, Buncic
and Moretto (2015) concludes that their dynamic model averaging and selection
(DMA/DMS) approach yields an out-of-sample R2 of 18.5% when forecasting
monthly returns on LME copper prices. Furthermore, Buncic and Moretto
(2015) found that a simple OLS method yields close to 10% out-of-sample R2.
The implications of a simple model having significant, and surprisingly large,
explanatory power for what is assumed to be a highly liquid market with in-
terest from a considerable amount of financial actors inspired us to attempt
to evaluate simple models with less information than the 18 variables used by
Buncic and Moretto (2015).

We contribute to existing literature through evaluating which type of model
provides the better forecasts for commodity returns. Considering our range of
more basic forecasting models the question arises as to whether one model con-
sistently outperforms the rest. Subsequently, the applicability of the models is
evaluated against a benchmark model. The Benchmark model follows a ran-
dom walk to forecast future prices. We compare the performance of the model
ensembles with the performance of the individual models. The aforementioned
models and model ensembles are evaluated through the lens of four different
tests: Clark and West (2006), Diebold and Mariano (1995), Giacomini and
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White (2006) and Campbell and Thompson (2008) out-of-sample R2.

Our thesis results are somewhat consistent with the findings in Buncic and
Moretto (2015) as our limited models, using less information, are found to pro-
duce positive out-of-sample R2 values, similarly to their simple OLS model.
Overall we find that the ARMA(1,6) and one of our model ensembles outper-
forms the historical average in the short- and mid-term. In the long-term none
of the models and model combinations outperform our benchmark model. The
only model indicated to outperform the random walk in two out of four tests is
the AR(1) model. However, the AR(1) model does not outperform the bench-
mark model in the short-term. Thus, none of the models consistently beats
the random walk across all three horizons. The internal ranking of the models
suggest the AR(1), ARMA(1,6), and TOP3 perform well according to two out
of the four tests. The definite ranking between the three are however not consis-
tent between tests. Subsequently, it is not clear that an ensemble consistently
performs any worse or better than the individual models. The Diebold and Mar-
iano (1995) test deviates from the other test statistics with far more conservative
outputs finding very few significant differences in forecasting accuracy.

The remainder composition of our thesis is as follows. Section 2 outlines the
theoretical framework upon which the thesis relays. Following the theoretical
framework, Section 3 provides an explanation of how we implement the theo-
retical framework. It outlines the selection of data, models and tests as as well
as how we have adapted relevant theory to construct our samples, models and
tests. Section 4 analyses the test results, considering the performance of models,
the discrepancies between the tests, and the relation to previous literature. The
analysis and findings are summarized in Section 5 and suggestions to further
research is detailed in Section 6.
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2 Theory

In this section we begin by introducing return predictability as we build forecast
models for asset returns, specifically monthly copper returns. We then proceed
with introducing loss functions which are the foundation for how the forecast
models are evaluated and as such also affects the construction of them. As the
forecasting model is constructed there are a number of challenges that need to
be dealt with. After introducing the challenges we include additional concepts
utilized in the construction of our forecast models such as, window selection and
stationarity. We proceed to introduce the different types of time-series models
that are implemented in the thesis. Lastly, the tests we execute to evaluate,
and compare, the models with one-another are outlined.

2.1 Return Predictability

Timmermann (2018) states that the most common prediction model for returns
used in empirical studies is a simple linear model where rt+1 is equal to the
excess return from holding an asset from t to t+ 1, i.e., one period

rt+1 = µ+ βxt + µt+1, (1)

where xt ∈ Ωt is a prediction variable that is known at time t. This linear
model in equation 1 can be derived from the general first order form in equation
2 under a few conditions.

Et[mt+1rt+1] = 0, (2)

where mt+1 is a pricing kernel. The pricing kernel that Cochrane (2009) use
is a positively valued stochastic discounting factor. Conditional expectations
given information at t are denoted by Et[·] = E[·|Ωt]. The assumptions that
need to hold for it to be possible to derive Equation (1) from Equation (2) as
Cochrane (2009) does. The assumptions are that cash flows are formed as linear
combinations of a finite-dimensional, stationary VAR, vector auto-regression,
no arbitrage and no transaction costs. This derivation is shown in detail by
Timmermann (2018) who achieves the same results as Cochrane (2009) but
instead utilizes a log linear asset pricing model. This suggest, generally, that
linear models are applicable for forecasting returns.

2.2 Loss Function

Constructing a prediction model that correctly forecasts the value at all times
is impossible. Therefore, all prediction models face estimation errors and need a
method to deal with them in different decision making processes. Loss functions
have been developed to formulate the trade-off, or rather, the cost associated
with a particular prediction error. A loss function is denoted as L(·) by Elliott
and Timmermann (2016) and describes how costly an imperfect forecast, f , is
in relation to an outcome, Y , and other data, Z .
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It is pivotal that the trade-offs between different prediction errors are reflected
accurately in the loss function. The choice of the loss function affects the pa-
rameter estimation and the evaluation of different forecast models. Typical loss
functions are symmetric and one-tailed loss functions. A symmetric loss func-
tion penalizes positive and negative forecast errors equally whereas a one-tailed
loss function only associates a loss with either a positive or negative forecast
errors. It is important to choose a loss function that approximately depicts the
most essential trade-off for the forecasting problem if not a specific loss function
is constructed for the problem at hand (Elliott and Timmermann, 2016; Lee,
2008). An example of when a one-tailed loss function is suitable is when you
consider if you should enter a call option contract by forecasting the spot price
at the exercise date of the option. If the predicted spot price is below a certain
level the payoff does not cover the cost of the contract and you would incur a
loss. You are not as concerned with how large a profit you might make but
rather that you make a profit. In this case you would want to construct the
loss function so that a overestimation would incur a loss and a under predic-
tion does not. Why does a under prediction not incur a direct cost? Since you
would not enter the contract in the first place if your forecast did not generate
a profit. However this level of reasoning fails to take opportunity costs in to
account. A more suited loss function in this case would be a two-tailed function
and depending on how you as an individual value realized losses against loss of
opportunity a weighting scheme is fitted to the deviations.

It is assumed that the loss function is minimized when the forecast equals
the outcome, minfL(f, Y, z) = L(y, y, z). Y denotes a continuous random vari-
able, y is the set of all potential outcomes and f denotes a point forecast. The
intuition behind that assumption is that the loss function is minimized when
the forecast is perfect. A perfect forecast implies that there is no forecast error.
When the loss function is not dependant on Z, which gives L(f, Y, Z) = L(f, Y ).
Then the loss can be normalized giving the minimum value of the loss function
at 0 (Elliott and Timmermann, 2016; Lee, 2007). Loss functions that only de-
pend on the forecast errors take the form of L(e) where e = y − f . These loss
functions can be summarized in three requirements as suggested by Granger
(1999):

L(0) = 0 (3)

L(e) ≥ 0 ∀ e (4)

L(e1) ≤ L(e2) if e2 < e1 < 0 and L(e1) ≤ L(e2) if e2 > e1 > 0 (5)

Requirement one, Equation (3), is interpreted as; if the there is no forecast
error the true value the loss function equals zero, i.e. no loss occurs. The second
requirement in Equation (4) implies that there cannot be any negative loss. The
second assumption is in place because profiting from having a deviation in the
forecast would be incongruous to the goal of generating accurate predictions.
The third requirement in Equation (5) states that a greater forecast error must
incur a greater loss.
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Loss functions can also take into account other properties such as symmetry,
homogeneity, boundedness, or differentiability amongst others. We are inter-
ested in symmetry as our loss is not dependent on whether the forecast over- or
underestimates the outcome, just how large the deviation is in absolute terms.
We utilize a symmetrical loss function as we do not want to weight deviations
differently from one-another and introduce a bias towards a certain type of es-
timation error in the model selection and creation. If a one-tailed loss function
where to be implemented a one percent underestimation may be less costly
than a two percent overestimation. This would result in a model, and model
selection process that favors a model that rarely under estimates the return but
more often overestimates the return. Symmetry of forecast errors is defined
as in Equation (6) by Elliott and Timmermann (2016); Fildes and Makridakis
(1988)

L(−e) = L(e). (6)

2.3 Challenges to Forecasting

There are a number of challenges that arise when constructing a forecasting
model. The following paragraphs cover the problems that arise due to weak
predictors, persistent predictors, model instability and over-fitting.

Weak Predictors are explanatory variables with low forecasting power. A
variable has low forecasting power if the signal to noise ratio is low. Weak
predictors are common when forecasting financial asset returns as markets are
highly competitive. If there is some explanatory power in a variable and it
can be used for forecasting the price development, financial actors will use the
explanatory power to trade until there is no profit to be made. Timmermann
(2018) suggest that if there are weak predictors in the model the estimation
errors are approximately of the same magnitude as the signals the variables omit.
Timmermann (2018) continues to argue that tests such as Diebold and Mariano
(1995) will be ineffective when evaluating predictive performance of returns in
such cases. The aforementioned uncertainty associated with weak predictors
creates difficulty in variable selection which may be difficult for conventional
selection methods to detect.

For variable selection which in most of our models is equivalent with lag se-
lection we use one out of two different information criteria. Heinze et al. (2018)
suggest using this method which involves selecting a model from a set of poten-
tial models. They then proceed to introduce two different information criterions,
Akaike information criterion (AIC) and Bayesian information criterion (BIC).
The AIC estimates the information loss under some distribution against the as-
sumed true data generating process. AIC uses a maximum likelihood approach
and rewards descriptive accuracy. However, Wagenmakers and Farrell (2004)
present two drawbacks of the AIC. Firstly, the AIC can lead to overly optimistic
assessments when the likelihood values are not highly concentrated around the
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maximum value. In other terms, the variability of the parameter is neglected.
Secondly, the probability of AIC recovering a true low-dimensional model does
not approach unity when the number of observations is very large. That is,
consistency does not hold for AIC (Bozdogan, 1987). An alternative method to
AIC is the BIC method. BIC allows for variability in the parameter and Wagen-
makers and Farrell (2004) states that it is consistent as sample size approaches
infinity. The main difference in assumptions is that BIC assumes that the true
model exists in the set of models whereas the AIC does not (Wagenmakers and
Farrell, 2004). Often AIC and BIC suggest similar lag orders. In this thesis we
base our lag orders on BIC. We do so because we want to allow for variability
in the parameter.

Persistent Predictors When forecasting for example stock returns forecast-
ers face persistent predictors. A persistent predictor is one for which a small
shock has a permanent effect on the parameter estimate. This affects future
predictions beyond the point of relevance of the shock. In the case of copper
prices, the relationship between different variables may change over time. If
these relationships change, the model may suffer as it includes parameter es-
timates based on outdated information. In which case, the estimated model
would be less suited to predict the future.

Stambaugh (1999) points out that such persistent predictors could lead to
biases in the slope coefficients, but only if the innovation of the predictors have
strong correlations between shocks and returns (Timmermann, 2018). Assuming
that E(ut|xs, xw) ̸= 0, s < t, so that the residuals, ut, in equation (1) are
correlated with past or future values of x, σuv = E[utvt] ̸= 0. Using the
aforementioned conditions, Timmermann (2018) shows that the finite-sample

bias in β̂ can be computed as:

E[β̂ − β] = (σuν/σ
2
ν)E[ρ̂− ρ] = (−σuν/σ

2
ν)((1 + 3ρ)/T ) +O(T−2). (7)

There is no finite-sample bias in β̂ if ut and vt are uncorrelated, but if σuν ̸= 0
Stambaugh (1999) shows that there can be a large finite-sample bias.

Model Instability Utilizing the same predictor variables and estimators over
an extended period of time might according to Timmermann (2018) not gener-
ate an optimal model. The selected set of predictor variables that are utilized
in a model may change over time. Therefore, there may be no model that
is superior at all times and forecast horizons. An example of when a model
needs to change variables is when the underlying pricing dynamics of the asset
change. For example, the model for copper returns might have included some
industrial production index to indicate the direction of demand but as techno-
logical advances where made the main driver of copper demand now stems from
electronics. Then we want to replace with the industrial production variable for
some index for electronics production. When new information is made public it
will affect the forecasts made by an asset managers. If the new price forecast is
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shared by the broader market the new set of information will be incorporated
into the market price through trading (Timmermann, 2018).

According to Timmermann (2018) conventional time-series regressions have
difficulty handling breaks. It is challenging to detect a break with only a few
post-break observations. As such building a model that quickly adjusts for
breaks is difficult. The difficulty lies within the parameter estimations on the
few data points that are available after the break. Timmermann (2018) says
that if this is not managed the end result could be erratic forecasts with very
large estimation errors rendering the model useless.

Over-fitting A model is over-fitted when the model uses too many param-
eters such that the model includes noise and thus performs poorly when esti-
mating out-of-sample data. Koehrsen (2018) states that an over-fitted model
can be viewed as too flexible. By that he means that the model adjust more
to the observed data points than the true model. The opposite of this is an
under-fitted model that instead is too rigid. To avoid using an over-fitted or
under-fitted model to produce forecasts, the models are evaluated using a test
sample, pseudo out-of-sample evaluation (Timmermann, 2018). It is important
to control for over-fitting as an over-fitted model would perform worse when
generating accurate out-of-sample forecasts.

2.4 Bandwidth selection for estimation of time-varying
parameters

In this section we introduce two methods for the bandwidth selection utilized
when estimating the parameters of the models. The first method is to implement
an expanding window implying that as t increases there are more observations
available for the parameter estimation. We then proceed to introduce a rolling
window method which utilizes the same size of window, but moves the window
ahead as t increases so that only the latest set of observations are used to
estimate the parameter values. However, the first step in sampling is to divide
the full sample size into a training set and out-of-sample test set. The reasoning
behind implementing an in- and out-of-sample split as argued by Hansen and
Timmermann (2015) is that a pseudo out-of-sample set is superior to an in-
sample test. Using an in-sample test increases the risk of selecting an over-fitted
model compared to if an out-of-sample test is used.

Expanding Data Window An expanding data window increases its band-
width with each observation. For instance, given that a training set consist of
100 observations the expanding window would vary. When the model estimates
the parameter values to generate the 50th prediction, it uses the previous 49
observations available. As the model estimates the parameters to predict the
100th observation it utilizes all 99 previous observations. In other words, the
number of observations used in the window increases with each observation and

7



estimation. Hansen and Timmermann (2012) suggest that in a stationary and
stable environment recursive estimation based on an expanding data window
makes most efficient use of the data. Their suggestion is stated to be applicable
specifically when dealing with linear models. However, the expanding window
encounters issues when applied to large time series data if the time-series is
not stable. The relation between two data-points may have drastically changed
over a period of ten years due to changes in the underlying market dynamics.
Therefore, it does not make sense to include data that is too old as it might
generate less accurate parameter estimations if the time-series is unstable.

Rolling Window Alternatively, Elliott and Timmermann (2005) suggest that
a commonly used method for addressing slowly moving data is to use a rolling
window sampling method. Elliott and Timmermann (2005) raise a concern in
regards to how the method removes data in an arbitrary fashion without basing
this decision on tests for breaks. For a model that is not believed to contain con-
stant parameters Pesaran and Timmermann (2002) suggest that a fixed rolling
window should be implemented. A rolling window is also implemented by Fama
and MacBeth (1973) to estimate security betas.

2.5 Stationarity

Stationarity implies that the properties of the time series are constant over time.
This increases the power of the models used in this thesis. Some of the tests and
models that we introduce and use assume that stationarity holds. A time series
is stationary when the moments do not change over two different consecutive
time series of the same variable if the two time series are of the same size
(Kwiatkowski et al., 1992). Stationarity can take two forms, weak and strong
stationarity. Strong stationarity implies that the distribution of a stochastic
process remains consistent over all time periods. Weak stationarity implies that
the mean in the two consecutive time series are identical but that the moments
depend on the size of the period evaluated. Palachy (2019) presents several types
of stationarity, some of them are: first order stationarity, cyclostationarity, trend
stationarity, joint stationarity.

The linear models used in this thesis require stationarity for the asymptotic
properties of the models to hold. Stationarity can be tested for using the Dickey
Fuller or the Augmented Dickey Fuller test. We use the Augmented Dickey
Fuller test for stationarity.

Augmented Dickey Fuller(ADF) test can be utilized when dealing with
larger and more complicated time series data since the augmentation allows for a
higher order of the regressive process according to Cheung and Lai (1995). The
null hypothesis of the Augmented Dickey Fuller test is that the time-series has a
unit root. If a time-series has a unit root it is equivalent to being non-stationary.
Thus, the alternative hypothesis is that the time-series is stationary. The ADF
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test evaluates stationarity by fitting the following ordinary least squares, OLS,
regression.

∆yt = ρyt−1 +

p∑
j=1

δj ,p∆yt−j + etp (8)

where etp is assumed to be an i.i.d. random variable with zero mean. Let σ̂(ρ̂n)
denote the standard deviation of the above OLS estimator, ρ̂, of ρ. The ADF
test statistic is computed as (Dickey and Fuller, 1981):

DF =
ρ̂n − 1

σ̂(ρ̂n)
. (9)

2.6 Forecasting models

In this section we briefly introduce the forecasting models that are evaluated
against one another in this thesis.

Autoregressive Models of order p ,AR(p), uses a time-series of the past
values of the response variable. An AR(p) is defined as:

yt = ϕ0 +

p∑
i=1

ϕiyt−i + εt (10)

where yt represents the variable being estimated, ϕ0 are the intercept, p denotes
the lag order of the model, ϕi’s are the the coefficients. The error term is denoted
as εt and it is typically assumed that it follows a normal distribution (Clark and
Ravazzolo, 2012; Elliott and Timmermann, 2016).

Moving Average models of order q, MA(q), are given as:

yt = εt +

q∑
i=1

θiεt−i (11)

where εt is the intercept and θi denotes the coefficients value associated with
each respective lag order i (Elliott and Timmermann, 2016).

ARMA(p,q) is a combination of an AR(p) and MA(q) model. An auto-
regressive moving average (ARMA) model therefore also only uses the past
values of the response variable to generate an estimate. The ARMA model is
considered to be a workhorse amongst forecasters and the popularity of ARMA
models can be explained by a few qualities according to Elliott and Timmermann
(2016): (i) one of the advantages is the minimal demand placed on the required
information set to generate the model. The model only needs historical data
for the variable and can be estimated even if the forecaster has no idea of
what fundamentals are driving change in the variable of interest assuming the
fundamentals do not change often/strongly. It is, (ii), commonly used as a
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benchmark against more complicated models to show if there is any added
value from using more advanced models. (iii) The utilization of ARMA models
is theoretically motivated by the Wold representation theorem showing that
all covariance stationary processes can be modeled as some moving average
process. (iv) ARMA models have proved to be hard to beat in empirical work
given that the lag order of the model is determined sensibly according to Elliott
and Timmermann (2016). They proceed to argue that ARMA models are well
suited for capturing persistence in economic variables. An ARMA(p,q) model
is specified as:

yt = ϕ1yt−1 + ...+ ϕpyt−p + εt + θ1εt−1 + ....+ θqεt−q (12)

where pth is the highest autoregressive order and qth is the highest MA order
that the model takes of the stationary variable yt (Elliott and Timmermann,
2016).

Vector Auto-regressive,VAR(p), models are, as previous models mentioned,
considered a workhorse within the field (Elliott and Timmermann, 2016). The
inputs needed from the modeler are what variables to include, yt, and the lag
order, p of said variables. It is also of importance that the modeler selects sen-
sible variables and imposes restrictions on the covariance matrix if needed. As
the VAR(p) model is multivariate, yt becomes a vector of size (n × 1) and the
information set is extended as well which gives Zt = (yit, yit−1, ...)

n
i=1. VAR

models can amongst other things be used to estimate a covariance stationary
multivariate process (Elliott and Timmermann, 2016). A vector auto-regressive
model of order p, VAR(p), is denoted as:

yt = c+

p∑
i=1

Aiyt−i + ut, (13)

by Elliott and Timmermann (2016) where, Ai is a matrix of size (n × n) con-
taining the auto-regressive coefficients for each i and E[utu

′
t] =

∑
. c is a vector

(n× 1) containing the intercepts.

2.7 Evaluating Forecast Methods and Models

Economists are often faced with the problem of determining the relative merit
of several forecasting methods according to Giacomini and White (2006). One
solution is to develop out-of-sample tests that compare the different forecasts
given that a general loss function is constructed. We consider four different
tests to evaluate the performance of the forecasting models used in this thesis.
The tests that we choose to use are; Diebold and Mariano (1995), DM, the
Clark and West (2007), CW, mean squared forecast error (MSFE) adjusted t-
statistic, Giacomini and White (2006), GW, and the Campbell and Thompson
(2008) out-of-sample R2.
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Campbell and Thompson (2008) propose an out-of-sample R2 statistic
for evaluation of forecast performance. They compute the out-of-sample R2

statistic on asset returns, r, as

R2
OS = 1−

∑T
t=1(rt − r̂t)

2∑T
t=1(rt − r̄t)2

, (14)

where r̂t is the predicted return at time, t and r̄t is the average return. If
R2

OS is greater than zero it implies that the prediction has generated a lower
mean squared prediction error than the benchmark average return. A small
positive R2

OS can generate large economic returns in-spite of having a relatively
modest explanatory power. It then implies that a large positive R2

OS most likely
is too good to believe. Quoting Campbell and Thompson (2008) ”The saying
”If you’re so smart, why aren’t you rich?” applies with great force here, and
should lead investors to suspect that highly successful predictive regressions are
spurious.” Campbell and Thompson (2008) find that their out-of-sample R2

increases with time horizon given that the predictor variable is persistent. As
horizons increase the denominator is subject to change, as the average return
changes with horizon. For a short horizon i.e. one day the average returns is
expected to be small and subsequently average return for a one month horizon
is expected to be larger.

Diebold and Mariano (1995) tests the hypothesis that there is no differ-
ence in accuracy between two different forecast models. The forecast errors
associated with the competing models are denoted as [oit]

T
t=1 and [ojt]

T
t=1 where

T is the sample size and t is time. The Diebold and Mariano (1995) test statistic
evaluates the null hypothesis:

E[dt] = 0 (15)

where, dt ≡ [g(oit)− g(ojt)] and g(·) denotes the loss function. The test use an
estimate dt which represents the difference between the loss associated with the
error for each of the two forecast models. Which results in the null hypothesis
that the population mean of d is equal to zero. Under the assumption that d
has a short memory and is covariance stationary the asymptotic distribution of
d̄ can be derived as follows according to Diebold and Mariano (1995):

√
T (d̄− µ)

d→ N(0, 2πfd(0)), (16)

where the sample mean d̄ is calculated as,

d̄ =
1

T

T∑
=1

[g(oit)− g(ojt)] (17)

and the density of d at frequency zero is given by,

fd(0) =
1

2π

∞∑
τ=−∞

E[(dt − µ)(dt−τ − µ)] (18)
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where the population mean loss differential is equivalent to µ. In large samples
the d̄ is assumed to be approximately µ and distributed as 2Φfd(0)/T . Thus
the Diebold and Mariano (1995) test statistic is computed as:

S1 =
d̄√

2Φf̂d(0)
T

(19)

where f̂d(0) is a consistent estimate of fd(0).

f̂d(0) = sum
(T−1)
τ=−(T−1)1(

τ

S(T )
)((1/T )

T∑
t=|τ |+1

(dt − d̄)(dt−|τ | − d̄)) (20)

where S(T ) denotes the truncation lag and the lag window is computed as
1(τ/S(T )) by Diebold and Mariano (1995) in the asymptotic test. Costantini
and Kunst (2011) argue that the Diebold and Mariano (1995) test statistic is
invalid when evaluating nested models because the asymptotic properties would
no longer hold. They argue that the test tends to be biased towards the simpler
model. Diebold (2015) clarifies that the test originally was not intended for
model comparison. However, the model is simple and it can easily be extended so
that the loss differential can be explained by external variables such as business
cycle, inflation rate. Such a change would result in the test moving conditional
to the external variable that we want to condition on.

According to Diebold (2015) the Diebold and Mariano (1995) is great at
comparing forecasts but when comparing models with several parameters the
situation calls for something more nuanced. The Diebold and Mariano (1995) is
still highly relevant in the situation but the test might not be optimal for model
comparison. Diebold (2015) argues that pseudo out-of-sample comparisons,
a category of tests including Diebold and Mariano (1995), might not be the
optimal route for model comparison. Furthermore, they state that full sample
comparisons seem preferable assuming that a true model exist.

Clark and West (2006) out-of-sample mean squared prediction error, MSPE,
tests whether or not there is a difference between two MSPEs. It does so by
evaluating whether the series follows a martingale difference or not. The test
is developed by Clark and West (2006) as an extension of existing tests to be
able to account for nested models. The null hypothesis of the Clark and West
(2006) test is that there is no difference between the populations of the two mean
squared prediction errors. In other terms there is zero difference in MSPEs.

H0(model 1) : yt = et (21)

HA(model 2) : yt = X ′
tβ + et (22)

i.e., β = 0 under the null hypothesis and β ̸= 0 under the alternative hypothesis.
Expectations based on current and past X ′s and e′s are expressed as Et−1 and
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Xt is a vector of variables. This thesis implements a one-tailed Clark and West
(2006) test with a null hypothesis of the mean squared forecast error of model
one being smaller or equal to the mean squared forecast error of model two.
The alternative hypothesis is thus that mean squared forecast error of model
one is larger than that of model two. If the null hypothesis is rejected model two
performs better than model one. et is assumed to be a zero mean martingale
difference under the null and alternative hypothesis:

Et−1et ≡ E(et|Xt, et−1, Xt−1, et−2...) = 0 (23)

Sample size is T+1. P observations are used for the predictions and R is the last
in-sample observation. The first prediction is denoted as (R+1), (R+2),..., with
the final prediction being T + 1. This gives us T + 1 = R + P . The prediction
errors of the models are given by:

σ̂2
1 ≡ P−1

T∑
t=T−P+1

y2t+1
= MSPE model 1 (24)

σ̂2
2 ≡ P−1

T∑
t=T−P+1

(y2t+1
−X ′

t+1β̂t)
2 = MSPE model 2 (25)

Clark and West (2006) use σ̂2
1 and σ̂2

2 to test the null hypothesis that σ̂2
1 −

σ̂2
2 = 0. They also suggest that one ought to use an adjustment to the MSPE

when testing the martingale difference hypothesis to be able to use a standard
normal distribution. The adjustment is given by E(X ′

t+1β̂t)
2). Including the

adjustment then generates the following formula to compute the Clark and West
(2006) test statistic:

σ̂2
1 − (σ̂2

2 − [p−1
T∑

t=T−P+1

(X ′
t+1β̂t)

2]) ≡ σ̂2
1 − (σ̂2

2 −adj.) = f̄(MSPE−adjusted)

(26)
One of the assumptions that Clark and West (2006) make is that stationarity
holds. If stationarity does not hold the calculations in equation 26 need to be
adjusted. The test favors models with more parameters. Meaning that even if
the test indicates that the model containing more parameters performs better
than a model with fewer parameters it does not imply that in any finite sample
the larger model is better at producing out-of-sample forecasts (Elliott and
Timmermann, 2016).

Giacomini and White (2006) propose a framework designed for use in
situations when the forecasting model is likely to be misspecified. The frame-
work they develop is to be used to evaluate out-of-sample predictive ability and
selection of forecast designs (Elliott and Timmermann, 2016). Expanding on
Diebold and Mariano (1995), Giacomini and White (2006) introduce two new
innovations: (1) The finite sample properties are preserved asymptotically in the
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environment in which they derive their test statistic. (2) Introducing accommo-
dations to evaluate different objectives, such as which model is more accurate
at a future date or which model has on average been more accurate.

The null hypothesis of the Giacomini and White (2006) test is that the differ-
ence in expected value of the loss function of model one and the expected loss
of model two is equal to zero (Elliott and Timmermann, 2016).

H0 : E[Lt+k(Yt+k, ft(β̂
∗
mt))− Lt+k(Yt+k, gt(β̂

∗
mt))|Gt] = 0 (27)

where m denotes the model, ft(β
∗
m), and gt(β

∗
m) are the forecasts for k steps

ahead Yt+k and Lt+k(·) denotes the loss function. The parameter estimates

are denoted as β̂∗
1 t and β̂∗

2 t and Gt is some information set available at time
t. In other words the null can be explained as: given the information available
at time t it cannot be predicted which model will generate the most accurate
estimate at time t+ k. The Giacomini and White (2006) test statistic follows a
Chi-squared distribution and the null is evaluated accordingly Th

m,n,k > χ2
q,1−α.

Where α equals the significance level and χ2
q,1−α is the (1−α) quantile of a χ2

q

distribution with k degrees of freedom. n is defined as n ≡ T − k−m+1 where
T is the entire sample size and m is the size of the estimation window. If the
test statistic is positive it implies that model two outperforms model one and if
the test statistic is negative the opposite is implied. The Giacomini and White
(2006) test statistic, Th

m,n,k, is computed as:

Th
m,n,k = nZ̄ ′

m,nΩ̃
−
n
1Z̄m,n (28)

where,

Z̄m,n ≡ n−1
T−k∑
t=m

htm,t+k, (29)

Ω̃n ≡ n−1
T−k∑
t=m

Zm,t+kZ
′
m,t+k + n−1

k−1∑
t=j

wn,j∗

T−k∑
t=m+j

[Zm,t+kZ
′
m,t+k−j + Zm,t+k−jZ

′
m,t+k]

(30)

where wn,j is a weighting matrix. As n → ∞ wn,j → 1 for each j = 1, ..., k − 1
(Newey and West, 1986; Giacomini and White, 2006).

The strength of Giacomini and White (2006) test allows for quite general
estimation methods to produce forecasts. In addition to that the test is able
to deal with both nested and non-nested models as well as capturing the effect
of estimation uncertainty on relative performance of different forecast models.
The primary drawback of Giacomini and White (2006) test statistic according
to Clark and McCracken (2010) is that the approach cannot be utilized with
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a recursive scheme. If no other restrictions/assumptions are imposed on β as

the sample size increases the estimated β̂t, assuming that β̂t is a pseudo-true
parameter, are going to be consistent with population β and thus there will
be no estimation error in the unconstrained case. In the mis-specified model
case the asymptotic characteristics only apply when the moving window being
implemented is small compared to the number of out-of-sample observations
(Clark and McCracken, 2010).
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3 Data and Implementation

In this section we will go over our data selection, sample construction, model
implementation, bandwidth selection, and testing procedures. To begin with,
we utilize a symmetric loss function as our goal is to estimate future prices and
we assume that over and under estimation in our case is equally costly. As the
goal of our thesis is to evaluate what forecast model produce the most accurate
estimates of future values, a symmetrical loss function is implemented. One of
the assumptions for several of our models, including the ARMA, and some of
our test, including the Clark and West (2006) test, is stationarity. In order for
the explanatory and response variables to be stationary we have modeled the
returns. The returns are tested for stationarity using the Augmented Dickey
Fuller test.

3.1 Data

We used monthly data for the LME copper spot prices (LOCADY) denoted
in United States Dollars (USD) retrieved from Bloomberg. We selected the
LOCADY as a proxy for industrial metal commodity markets. The LOCADY
was selected as the it is used by practitioners. Furthermore, Buncic and Moretto
(2015) also utilised monthly copper prices from LME, which makes the results
comparable.

In an attempt to reduce risk of autocorrelation in forecast errors for our
time series we have opted to use the last value every month to estimate our
models. Alternatively, we could have used daily data and estimate one month
ahead which would have increased our sample size significantly. However, the
autocorrelation between forecast errors for the one month estimate made on
March first and March second will be greater than that of two estimates made
on February first and March first.

In order to be able to test the models out-of-sample forecasting performance
the initial sample, containing 315 months of observations between November
1995 and January 2022, are divided into a training set, upon which the models
are estimated, and a testing set which makes up our out-of-sample observations.
We retain out-of-sample observations for evaluation in order to circumvent se-
lecting a over fitted model in the process of model evaluation. The training set
contains 265 observations between November 1995 and November 2017. The test
set contains 50 observations between December 2017 and January 2022. The
selection of sample split is made arbitrarily as the trade-of between allowing for
a large training sample to optimise the models is weighted against the value of a
larger amount of out-of-sample observations available for out-of-sample testing.
Given the emphasis we have selected to attribute to bandwidth optimization
we split the sample into training and test respectively containing 85% and 15%
of the entire sample. Resulting out-of-sample observations is 47 with the last
observation being October 2021.
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Figure 1: Monthly Spot Price of LOCADY on LME

Due to the assumptions of stationarity associated with several of our models,
for instance the ARMA processes, and our tests, for instance the Clark and
West (2006) test, we test the LOCADY training sample for stationarity using
an ADF test. The test indicated that the the LOCADY training sample contain
unit roots suggesting that it is not stationary, and therefore not appropriate for
our suggested methodology.

Figure 2: Monthly Returns of LOCADY

In order to overcome the lack of stationary properties for the LOCADY we
chose to construct percentage returns and test the newly created return training
sample for stationarity. We find that the returns training sample is indicated
to be stationary. It is visually apparent in Figure 2 that the returns display
mean reverting qualities as it oscillates around the mean represented by the
orange line. Furthermore, it is apparent that the mean returns are not equal
to zero. The mean return is 0.0061 which translates to 0.61% average monthly
return. 0.61% average monthly return cumulative over a year translates to
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approximately 7.57% yearly returns. Notably, we only test for stationarity in
the training sample as the information provided beyond this point is to be
considered unavailable to us if we want to maintain the integrity of the out-of-
sample observations, test data.

3.2 Implementation

A significant part of our implementation is about model selection. The model
selection is heavily affected by the transferability, and applicability of the mod-
els to other commodities and time series. Therefore, the vast majority of the
models, all except the VAR, utilize exclusively the historical spot price data
for the commodity it forecasts, in this case the LOCADY, as its information
set. The VAR(p) model utilizes additional explanatory variables apart from the
historical LOCADY data. In total we create 10 models that are then evaluated
against one another.

Model 1 is a simple auto-regressive model, AR(p). The order of the AR
model is decided using the Akaike Information Criterion, (AIC), and Bayesian
Information Criterion, BIC. AIC and BIC resulted in conflicting lag length
suggestions. AIC suggest a lag order of p = 11 and BIC suggests p = 1. We
decide to go with lag order p = 1 as indicated by the Bayesian Information
Criterion. We choose BIC over AIC, because BIC allows for variability in the
parameter. Below is our constructed model where t is time, p equals lag length,
a is a constant, ϕ is the coefficient and y is copper return.

yt+1 = a+ ϕ1yt + ϕi−pyt−p + εt (31)

Model 2 and Model 3 are moving average, MA(q), models. We use two
MA models. The first MA model is based on three months moving average and
the second on the six month moving average. We chose the orders three and six
since we have monthly data and wanted to evaluate the effect of one and two
quarters. We decided to not include three and four quarters to reduce model
size and computation time. Below is our constructed model where t is time, q
equals lag length, a is a constant, θ is the coefficient and y is copper return.

yt+1 = a+ θ1εt + θiεt−q + εt (32)

Model 4, Model 5 and Model 6 are auto-regressive moving average models,
ARMA(p,q). We construct an ARMA(1,1), ARMA(1,3) and ARMA(1,6) model.
As they consider data from the past month, the past quarter by month and the
past half a year. The pth order is selected using AIC as in Model 1 and the
order of q is selected as in Model 2 and 3. The forecast model utilized is:

ft1|t = ϕ1ft+h−1|t + ϕ2ft+h2|t + ...+ ϕp+h|t + θhεt + ...+ θqεt−q+h (33)
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Model 7 is a vector auto-regressive model which includes six variables. One
distinguishing feature separating the construction of the VAR model from the
other models is the sample size upon which it is trained and tested. The vari-
ables included in the model are selected based on previous literature. The model
utilizes the United States Dollar (USD) to Chilean Pesos (CHP) exchange rate
which is relevant since Chile is the largest exporter of copper in the world (Ot-
gochuluu et al., 2021). Additionally, the export of copper accounts for half of
Chile’s total exports (Dı́az et al., 2021). Therefore, one of the main drivers
of CHP should be external demand for copper. The trade of copper is con-
ducted in USD which suggests that the relationship between the two currencies
is correlated with the price of copper.

US Industrial Production Index is included, as Roache and Rossi (2010) find
that it to produces relevant coefficients for other metallic commodities. The
Michigan Surveys of Consumers sentiment index, (SENTI), is included as a
macro-variable as Nguyen and Walther (2020) find that SENTI has an effect
on commodities. Sethi et al. (2014) suggests that it is correlated with the price
of silver, which they classify as a very useful industrial commodity despite it
being defined as a precious metal. Kilian and Zhou (2018) global real economic
activity index is added as a variable due to its suggested ability to forecast
commodity prices and the argument made by Gargano and Timmermann (2014)
that commodity markets are global. The corresponding three months forward
contract of copper is included as it contains information about the markets
expectation of the future copper prices.

Lastly, the inventory levels of copper as reported for LME is included at-
tributed to the fundamental theories of supply and demand where change in the
supply of a given commodity, in this case copper, could have an affect on the
price of the commodity. Due to lower availability of historical data for some of
the six included variables, the VAR is created using data between January of
2012 and December 2021. We expect the variables to have an inter-temporal
effect on each other as there might be delayed effects from inventory changes,
forward contracts as well as from consumer sentiment and US industrial pro-
duction. The lag order of the VAR is selected in a similar manner to how the
bandwidth is determined, described in more detail in section (3.3). Instead of
running window size on the x-axis we have estimated the model for different
orders of p. MSFE in-sample is minimized when p=1 we therefore choose to use
a VAR(1) model.

Model 8 is a simple ensemble of models comprising of a combination of the
other forecast models. We generate the portfolio by equally weighting the
MA(3), MA(6), AR(1), ARMA(1,1), ARMA(1,3) and ARMA(1,6) models. We
refer to the combination as ”EQW”.
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Model 9 is an ensemble of three models. However, in this combination we only
utilize the top three models for each forecast horizon. They are ranked by their
in-sample R2 values after each model has been optimized. The ensemble then
contains the top three models that have been optimized individually. We refer to
the combination as ”TOP3”. In the short term ensemble the ”TOP3” contains
ARMA(1,6), MA(6) and MA(3). For the mid term forecast horizon ”TOP3” is
comprised of the AR(1), ARMA(1,1) and ARMA(1,6) model. Lastly, for the
three step ahead it consists of the AR(1), ARMA(1,6) and MA(3).

Model 10 is our benchmark. The benchmark is created from the notion that
current price is the best prediction for future price. If a model fails to outperform
the benchmark it indicates that the status quo is an equally or more accurate
estimate of future copper prices.

3.3 Bandwidth optimization

We implement a moving window to get time-varying parameters as a way to
deal with model instability (Johannes et al., 2014). Furthermore, a moving
window mitigates the effects of persistent predictors associated with an expand-
ing window. The bandwidth of the moving window is optimised by computing
the mean squared forecast error, MSFE, in-sample. In order to reduce compu-
tation time of the code the window size increases in jumps of 6 months which
drastically decreases the number of windows which are to be evaluated. We
chose to identify the minimum MSFE for each forecast horizon. We evaluate
the models on one, two and three month ahead forecasts. However, there is a
possibility of the MSFE being less accurate for the larger window sizes due to
less data-points being available to evaluate the bandwidth on. The reduction
in available observations in sample is a direct function of the window size being
implemented.

An example is seen in Figure 3.3 from which bandwidth selection is made for
the different forecast horizons of the AR(1) model. The number of data points
used to evaluate the in-sample MSFE is reduced as window size increases. Figure
3.3 indicates a drastic decrease in MSFE as bandwidth increases above 140. We
decide to evaluate amongst the window sizes below 140 to avoid having too few
data points to properly evaluate the MSFE in-sample. Subsequently, we select
a bandwidth of 138 observations for all three horizons of Model 1 as denoted in
Table 1. The bandwidth optimisation is conducted in the same manner for all
models subject to optimisation. Table 1 contains the bandwidths selected for
Model 1 to Model 7 for each forecast horizon.

Model 8, Model 9 and Model 10 are not subject to bandwidth optimiza-
tion. Model 8, and Model 9 are weighted combinations of the other models
and therefore do not use a specified bandwidth but rater consider the forecasts
made by the models they contains. Model 10 is a benchmark suggesting that
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Figure 3: MSFE for bandwidth from 0 to 180 for AR(1), MA(3), and MA(6)
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Table 1: Bandwidth selected for model and horizon
Model number Type of model Short-term Mid-term Long-term
Model 1 AR(1) 138 138 138
Model 2 MA(3) 42 42 42
Model 3 MA(6) 102 102 102
Model 4 ARMA(1,1) 30 42 42
Model 5 ARMA(1,3) 60 60 60
Model 6 ARMA(1,6) 136 136 136
Model 7 VAR(1) 36 30 30

the monthly returns are equal to zero for all periods and is as such not subject
to time-varying estimation and does not need a bandwidth.

3.4 Test implementation

In this section, we shortly explain how we have applied the tests introduced
in section 2.6. In the tables that the test are presented the column represents
model one and the rows represent model two implemented in the test. The
Campbell and Thompson (2008) out-of-sample R2 we compute ourselves in line
with the math presented in section 2.6. For the Giacomini and White (2006)
test statistic we utilize the original code file posted by Giacomini and White
(2006) in association with the paper. For the implementation and computation
of the Clark and West (2006) test statistic we utilize the function created by
Bang (2022). The Diebold and Mariano (1995) test is implemented via the
function created by Ibisevic (2022).
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4 Results

The results of the four tests are evaluated below, starting with the Campbell and
Thompson (2008) out-of-sample R2 test results. The out-of-sample R2 statistic
is followed by presentations and evaluations of the short-, mid-, and long-term
forecast performance. The test statistics for the Diebold and Mariano (1995)
test, Clark and West (2006) test, and Giacomini and White (2006) test are
presented for each forecast horizon. Lastly, there is a general discussion of the
models performance across the battery of tests and the discrepancies between
the tests.

4.1 Campbell and Thompson (2008) out-of-sample R2 test

We found that the most notable results in Table 2 is the positive out-of-sample
R2 value for the one-step-ahead forecast. The out-of-sample R2 is a test evalu-
ating the forecast performance for a given model relative to the average returns.
Evaluating the test results seen in Table 2 the columns contain the models
whereas the rows denote the forecast horizon. For example, in column six the
model is ARMA(1,6) and for row one which is the one-step-ahead forecast, we
observe a test statistics of R2 = 0.0326. The positive test statistic is surprising
as the surface level implication is that the rather simple models tested perform
well enough to profitably trade on. However, keeping in mind the warning from
Campbell and Thompson (2008) that a surprisingly good test statistic may in-
dicate issues with the data, the application of the test, false positives or the
models implying that results may in fact be too good to be true.

One possible explanation is that the monthly return on the spot price of
copper excludes some other costs associated with the trading of copper, such as
storage and transportation. In this case, it may not be possible to make profits
with any of our models due to the additional costs of shipping and storage,
for a minimum period of a month, exceeding the potential profits indicated
by our Campbell and Thompson (2008) test statistics. Correspondingly, the
financial actors in this market would not be relying on the predictions from a
forecasting model for trading unless the given model outperforms the historical
average with a margin large enough to cover the additional costs associated with
trading. Thus, a potential explanation for why we obtain positive test statistics
with relatively simple models, is that the market is unable to trade on their
low magnitudes of explanatory power due to additional costs of trading this
commodity.

Table 2: Out-Of-Sample R2

ma(3) ma(6) AR(1) ARMA(1,1) ARMA(1,3) ARMA(1,6) VAR(1)+ EQW TOP3 Random walk
1 step -0,0246 -0,0940 -0,0291 -0,1154 -0,0622 0,0326 -0,2889 0,0006 0,0127 -0,0224
2 step -0,1256 -0,1639 0,0138 0,0327 -0,1116 0,0485 0,0168 -0,0079 0,0470 -0,0224
3 step -0,1423 -0,2330 -0,0035 -0,0472 -0,1818 -0,0313 -0,0380 -0,0767 -0,0354 -0,0224

In an attempt to clarify if the positive results and support the aforementioned
notion that the test statistics are caused by unobserved trading costs, the same
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models and the Campbell and Thompson (2008) out-of-sample R2 statistic is
computed for the London Metal Exchange three-month-forward contracts. The
statistic is presented in Table A7, which can be found in the appendix. The
test on tree-month-forward contracts produces mostly negative out-of-sample R2

values. For the two-step-ahead MA(6), the two-steps-ahead ”EQW”, and the
two-steps-ahead ”TOP3” we find positive out-of-sample R2 values. A notable
observation in the test statistic is that the AR(1), VAR(6), ARMA(1,1) and
ARMA(1,6) models which generated positive R2 statistics for our original data
produce exclusively negative test statistics for the three-month-forward case.
Notably, as the positive values are produced by different models in this case
providing a slight indication that the potential flaw is not related to any one
model.

Alternatively, Campbell and Thompson (2008) find that out-of-sample R2

increases with time horizons when the predictor variables are persistent. Ap-
plying their findings can lend an explanation for the positive out-of-sample R2

statistics. However, as the forecast horizons being used are not particularly
short, ranging between one and three months, the length of the forecast horizon
is therefore not likely to be the source of the surprising results.

Another aspect which may contribute to, or cause the surprising values is if
the assumption of stationarity found within the training sample does not hold
for the test sample. Considering the time period in question, which is between
September 2017 and October 2021, when we experienced global turmoil across
most markets during the COVID-19 pandemic. The turmoil could have a large
enough impact on the price of copper to break the stationarity of returns. To
control for stationarity throughout the training and testing samples, we ran an
ADF test on the full sample containing all 315 observations. The test indicated
that despite the COVID-19 related noise in the market the percentage returns
on LOCADY still maintained stationarity.

Demonstrating the surprising results associated with the positive Campbell
and Thompson (2008) out-of-sample R2 values we applied a simple buy and
short scheme using our ARMA(1,6) short-run model. The scheme buys copper
when our ARMA(1,6) model indicates that the price will increase over the com-
ing month and shorts copper prices when the model indicates that the prices will
decrease the coming month. The scheme is simple and does not account for any
trading cost. In the test sample the investment scheme based on our ARMA(1,6)
predictions produces 14.84% average annual return. Given the simplicity of the
ARMA(1,6) model and the expected market engagement in the LME copper
market, 14.84% is highly surprising and should not be possible. Furthermore,
assuming that financial actors are only interested in the real returns on their
investment, the real profitability is still to be considered high. According to Ha
et al. (2021) and the World Bank database, the average yearly inflation globally
during the estimated period from 2017 through 2021 was 4.15%. Which means
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that that the yearly real returns would exceed 10%. The indicated high prof-
itability in our simple model supports the suggestion that there exists additional
costs associated with the trade of copper on the LOCADY.

The unlikely occurrence of positive out-of-sample R2 values may be also
caused by our small number of out-of sample observations n = 47. It is possible
that our out-of-sample R2 test results either are over or under estimated due
to our small group of out-of-sample observations deviating from the true pop-
ulation. However, given the notion that the practical trade of the spot prices
may carry additional costs, we do not find it evident that the Campbell and
Thompson (2008) test statistics are overestimated due to a small test sample.
Reconsidering the control test we ran on a smaller data set for three month
futures, and subsequently as a result on a smaller group of out-of-sample ob-
servations with nout−of−sample = 36. In this case for the three month future
contracts, which is assumed to be a market with extensive amount of interac-
tion from financial actors, most of the out-of-sample R2 are negative. The few
positive values are likely overestimates due to sample size and the sample in
question deviating from the population.

The Campbell and Thompson (2008) out-of-sample R2 results, despite the
surprising positive statistics, provides a ranking of the competing models for
each horizon as seen in Table A8 in the Appendix. Evaluating the different rank-
ings for each horizon we see that the short-term forecast favours ARMA(1,6),
the ”TOP3” and the ”EQW”. The benchmark performs above the remaining
six models. For the mid-term forecasts the ARMA(1,6) and the ”TOP3” main-
tain their rankings as the top two models. However, for the long-term forecast,
the AR(1) performs the best followed by the benchmark, the ARMA(1,6) and
then ”TOP3” in that order. The result indicates that the ARMA(1,6) and
the ”TOP3” consistently are amongst the best performers. Furthermore, the
ARMA(1,6) outperforms both of the ensemble’s for every h step ahead fore-
cast. It is also evident that no model outperforms the benchmark over all three
periods.

Comparing the different horizons, we note that six out of the ten competing
models increase their out-of-sample R2 statistic between the short-term and
mid-term forecast horizons. For example, the third column which is the AR(1)
model, has a greater reported out-of-sample R2 in the second row, representing
the mid-term forecast, than it does in the first row which is the short-term
forecast. The increase is surprising as our models are expected to perform worse
the further ahead we predict. Especially, since the models forecast monthly
returns which is assumed to be stationary and is tested for stationarity by
applying an Augmented Dickey Fuller test. Subsequently, the stationarity of
the monthly returns imply that the historical mean should hold and perform
better compared to the model forecasts as the forecasting horizon increases. The
long-term forecast do behave as expected and decrease relative to the mid-term
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forecasts. However, three of the ten models produce lower out-of-sample R2

values for the long-term than they do for the short-term horizon.

Despite the potential issues with the accuracy of the out-of-sample R2 values,
we do observe that Buncic and Moretto (2015) similarly found that a relatively
simple OLS model produced significantly larger explanatory powers than we
found in our models. Their result of close to 10% out-of-sample R2 for a simple
OLS model suggest that our simpler models producing just under 5% are in line
with their findings.

4.2 Short-term forecasts

The Clark andWest (2006) test, Diebold and Mariano (1995) test and Giacomini
and White (2006) tests are relative tests comparing the performance of one
forecasting model with the performance of another forecasting model.

Table 3: One step CW Test Statistic
MA(3) MA(6) AR(1) ARMA(1,1) ARMA(1,3) ARMA(1,6) VAR(1)+ EQW TOP3 Random Walk

MA(3) 2,3588*** 1,233 1,6089* 1,5392* 0,628 3,0122*** 0,4903 0,2248 1,122
MA(6) 0,2388 0,41 0,8112 0,268 -0,4769 2,611*** -1,3499 -1,0178 0,2328
AR(1) 1,1674 1,2036 1,8085** 1,1209 -0,1622 2,6523*** 0,4067 0,4392 0,3496
ARMA(1,1) 0,5702 0,4915 0,4136 0,4666 -0,3115 2,7477*** -0,5221 -0,8738 0,006
ARMA(1,3) 0,3449 1,3053* 0,8752 1,0936 0,0832 2,6487*** -0,1754 -0,1675 0,7861
ARMA(1,6) 1,5332* 1,8975** 1,3941* 2,3581*** 1,3104* 3,0869*** 1,3254* 1,3718* 1,5087*
VAR(1)+ 1,851** 1,2513 0,373 0,6736 1,2148 0,1789 0,6446 0,9929 0,3335
EQW 1,0833 1,9462** 0,925 1,6497** 0,9903 -0,0147 2,6366*** -0,3845 0,8633
TOP3 0,9946 1,7651** 1,1719 1,9935** 1,0034 0,3511 2,4422*** 0,7417 1,1319
Random Walk 1,1383 1,2024 0,5993 1,777** 1,0944 0,1182 2,8234*** 0,385 0,3647
* denotes that it is significant at 90%, ** denotes that it is significant at 95%, *** denotes that it is significant at 99%

+ estimated on a smaller sample

The Clark and West (2006) is a one-tailed-test which tests the null hypothesis,
that the MSPE of model one is equal to or smaller than that of model two. The
test results for the short-term forecasts are presented in Table 3 where model
one is denoted in the column and model two in the row. For example, in the
second column where model one is the MA(6) and the first row where model
two is the MA(3) we obtain the test statistic t = 2.3588 which is significant at
99% as indicated by the three asterisks. Significant test statistics indicate that
model two perform significantly better than model one at some significance level
which is represented in the table by asterisks. In this case it implies that the
MA(3) outperforms the MA(6).

Table 4: One step GW Test Statistic
MA(3) MA(6) AR(1) ARMA(1,1) ARMA(1,3) ARMA(1,6) VAR(1)+ EQW ”TOP3” Random Walk

MA(3) 0,427 6,465** -0,416 0,899 0,018 -1,718 0,128 -0,102 5,832*
MA(6) -0,427 4,756* -1,549 3,712 -0,293 -3,385 -1,076 -1,885 3,939
AR(1) -6,465** -4,756* -4,252 -12,296*** -4,844* -4,671* -9,744*** -9,078** 1,895
ARMA(1,1) 0,416 1,549 4,252 1,148 1,402 -2,899 1,973 0,985 5,359*
ARMA(1,3) -0,899 -3,712 12,296*** -1,148 -7,694** -2,969 -10,693*** -5,786* 9,682***
ARMA(1,6) -0,018 0,293 4,844* -1,402 7,694** -2,176 0,581 -0,379 2,388
VAR(1)+ 1,718 3,385 4,671* 2,899 2,969 2,176 3,296 2,687 5,171*
EQW -0,128 1,076 9,744*** -1,973 10,693*** -0,581 -3,296 -4,304 7,757**
TOP3 0,102 1,885 9,078** -0,985 5,786* 0,379 -2,687 4,304 8,652**
Random Walk -5,832* -3,939 -1,895 -5,359* -9,682*** -2,388 -5,171* -7,757** -8,652**
* denotes that it is significant at 90%, ** denotes that it is significant at 95%, *** denotes that it is significant at 99%

+ estimated on a smaller sample
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Both the Diebold and Mariano (1995) test and the Giacomini and White
(2006) test are two-tailed tests. The two models are presented using the same
structure. The test results for the short-term forecasts are presented in Table 5
for the Diebold and Mariano (1995) test statistics and in Table 4 for Giacomini
and White (2006) test statistic where model one is denoted in the column and
model two is denoted in the row. A positive result indicates that model two
outperforms model one. Negative test statistics indicate the opposite. For
example, in Table 4 the third column being the AR(1) and the fifth row being
the ARMA(1,3) we obtain a test statistic t = 12.296. The test statistic indicates
that the ARMA(1,3) outperforms the AR(1) as we reject the null hypothesis
with significance level of 99%. Due to the two-tailed nature of the tests switching
the models around yields the same test statistics but with the opposite sign.
For example, using our previous example but considering the fifth column being
the ARMA(1,3) and the third row being the AR(1) we obtain a test statistic
t = −12.296. The test statistic indicates that the ARMA(1,3), outperforms the
AR(1) as the null hypothesis is rejected with 99% confidence.

As the three tests compare two models at a time it indicates the relationship
between the two models. The relationships indicated by the tests are not trans-
ferable which can create inconsistencies. For example, in Table 4 ARMA(1,6)
outperforms the ARMA(1,3) at significance 95% and the ARMA(1,3) outper-
forms the benchmark at 95% significance. However, the ARMA(1,6) does not
outperform the benchmark with significance greater than 90%. This lack of
transferability of the relationships between models result in performance of each
model being evaluated with greater emphasis on the amount of other models
they outperform or are outperformed by, and less on individual relationships.

Evaluating the short-term forecast test statistics from each of the three tests
we observe that they deviate slightly from one another. The GW test statistics
indicate that the ”TOP3” and ”EQW” perform the best. Both models outper-
form three other models including the benchmark model at 95% significance.
Neither model is outperformed at significance greater than 90% by any of the
other models. The ARMA(1,6) outperforms two other models at significance
90%. The ARMA(1,6) does not outperform the benchmark. Similarly, the CW
test statistic indicates that ARMA(1,6), the ”EQW” and ”TOP3” perform well.
However, unlike the GW test the CW test indicates that the ARMA(1,6) out-
performs every other model at significance greater than 90%. Furthermore, the
CW test statistics indicates that the MA(3) outperforms more models than the
”EQW” whereas the GW test indicates that the ”EQW” performs slightly bet-
ter than the MA(3). The GW statistic deviates from the CW as the ARMA(1,3)
performs really well in the test but average in the CW test. Furthermore, the
CW test statistics deviate form the GW as it indicate both the VAR(1) and the
ARMA(1,1) are outperformed by the benchmark at significance greater than
95%.

27



Table 5: One step DM Test Statistics
MA(3) MA(6) AR(1) ARMA(1,1) ARMA(1,3) ARMA(1,6) VAR(1)+ EQW TOP3 Random Walk

MA(3) 0,3272 -0,4765 -0,2549 1,3977 -0,7034 0,4871 -0,5885 -0,6694 -0,4344
MA(6) -0,3272 -0,7458 -0,4889 0,6755 -1,1703 0,5498 -1,3303 -1,2519 -0,7124
AR(1) 0,4765 0,7458 0,8322 0,7329 -0,2149 1,3639 0,3221 0,1078 0,5434
ARMA(1,1) 0,2549 0,4889 -0,8322 0,5707 -0,8637 1,3088 -0,1385 -0,4651 -0,7136
ARMA(1,3) -1,3977 -0,6755 -0,7329 -0,5707 -0,9553 0,0563 -0,9542 -0,9635 -0,7102
ARMA(1,6) 0,7034 1,1703 0,2149 0,8637 0,9553 1,4498 0,9215 0,777 0,4546
VAR+ -0,4871 -0,5498 -1,3639 -1,3088 -0,0563 -1,4498 -1,2758 -1,0457 -1,3776
EQW 0,5885 1,3303 -0,3221 0,1385 0,9542 -0,9215 1,2758 -1,0026 -0,2198
TOP3 0,6694 1,2519 -0,1078 0,4651 0,9635 -0,777 1,0457 1,0026 0,0454
Random Walk 0,4344 0,7124 -0,5434 0,7136 0,7102 -0,4546 1,3776 0,2198 -0,0454
* denotes that it is significant at 90%, ** denotes that it is significant at 95%, *** denotes that it is significant at 99%

+ estimated on a smaller sample

The DM test statistics presented in Table 5 show no values with significance
greater than 90%. For reference, the CW test returns 29 significant results and
the GW test returns 31 significant results. The discrepancies imply that the
DM is more conservative than the other two tests.

4.3 Mid-term forecasts

The mid-term forecast test statistics are slightly inconsistent between the GW
test and the CW test. Considering the test results presented in Table A5 and
Table A3, both found in the appendix, we see that the GW test, favours the
ARMA(1,1) and the ”EQW”. The ARMA(1,6) and the ”TOP3” perform rather
poorly. For the CW test the ARMA(1,6) and the ”TOP3” performing the best
with the ARMA(1,1) doing well and the equally weighted portfolio performance
being average. We observe that the two test struggle to agree on what forecast-
ing model performs the best.

Evaluating the models mid-term forecast performances against the bench-
mark we find that the CW test results and the GW test results deviate slightly
but that they are mostly consistent. CW indicates that three models, the
ARMA(1,6), the ”TOP3”, and the AR(1) outperform the benchmark for the
mid-term forecast. The GW test statistics indicate that six of the models, in-
cluding ARMA(1,6), the ”TOP3”, and the AR(1), outperform the benchmark
model. Noticeably, the CW indicates that two models are out performed by
the benchmark whereas the GW test does not indicate that any model is out
performed by the benchmark. Generally, we find that the two tests agree on
the what model is stronger, however, they disagree on whether a relationship is
significant.

Taking into consideration the DM test, we find that the test produces fewer
significant results for the mid-term forecasts than the other tests. The DM
test produces more conservative test statistics which is consistent with what we
found for the short-run forecast. Notably, the mid-term forecast test statistics,
seen in Table A1, do contain three relationships with significance. The test
indicates that the AR(1) and the ”TOP3” outperform the benchmark model.
Furthermore the ”EQW” outperforms the MA(6). The increase in significant re-
sults, especially against the benchmark, supports the pattern seen in the Camp-
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bell and Thompson (2008) out-of-sample R2 that the models perform better in
the mid-term forecast than they do for the short-term forecast.

4.4 Long-term forecasts

For the long-term forecast the CW test seen in Table A6 in the appendix and the
GW test seen in Table A4 in the appendix both indicate that the ARMA(1,1)
and the ”TOP3” are amongst the best performing models. However, the GW
indicates that the ARMA(1,1) is the top performer whereas the CW test in-
dicates that it’s performance is average. Similarly, the AR(1) is indicated to
out-perform most other models in the GW test, whereas it is indicated to per-
form average in the CW test. The two tests are consistent in favouring the
”TOP3” as a top performer they do not however agree on which other models
perform well.

Notably, the CW test indicates that none of the models outperforms the
benchmark model. The benchmark is, however, indicated to outperform the
MA(6), the ARMA(1,3), and the VAR(1). The GW test alternatively indicates
that four models outperform the benchmark. The ”TOP3”, the ARMA(1,3),
the ARMA(1,6), and the AR(1) are all indicated to outperform the benchmark,
whereas the benchmark is not indicated to outperform any of the models. The
tests do not contradict each other as there is no overlap between the group indi-
cated to be worse than the benchmark in the CW test and the group indicated
to be better than the benchmark in the GW test. The test results do however
disagree on the significance in the individual relationships between models.

Evaluating Table A2, found in the appendix, it supports the notion that the
DM test is more conservative than the other tests. Similar to the short-term
forecast test statistics the long-term forecast test statistics do not indicate that
any model is better or worse than any other model.

4.5 General discussion

Considering the results of the Campbell and Thompson (2008) out-of-sample
R2 test, Clark and West (2006) test, Giacomini and White (2006) test, and the
Diebold and Mariano (1995) test performed on the ten models for short-term
forecast performance, mid-term forecast performance, and long-term forecast
performance, certain trends in model performance and discrepancies between
tests become evident.

The discrepancies between the tests can be a result of the test’s varying ability
to handle the different model designs. For instance, the GW test struggles with
accuracy if the moving window is not small in relation to the number of out-
of-sample observations as the assumed asymptotic characteristics of the test
may not hold any longer. With bandwidth for some of our models exceeding
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100, and the out-of-sample observation is n = 47, the test statistic might not
comply with the underlying necessary assumptions. Similarly for the DM test,
Costantini and Kunst (2011) suggest that the test is poorly suited for nested
models as it is biased towards the simpler models. The creators of the test
argue that the model struggles with comparisons of models containing multiple
parameters Diebold (2015).

Our small number of out-of-sample observations can cause either Type 1 or
Type 2 errors depending on how the different test are defined. Type 1 errors are
false positives which is the rejection of a null hypothesis when it should not have
been rejected. One example of a Type 1 error is if a DM test indicates that an
AR(p) model performs better than an ARMA(p,q) containing the AR(p) model.
Costantini and Kunst (2011) argues that the DM test is biased preferring simpler
models and struggles with nested models. If the test result indicates that the
AR(p) model outperforms the ARMA(p,q) model, when the the AR(p) model
actually perform worse or as well as the ARMA(p,q), this would be a Type
1 error. Type 2 errors are the opposite, that is the failure to reject a null
hypothesis that should have been rejected. For instance, if a GW test fails
to indicate that there is a difference in performance between an AR(p) and
a MA(q) model, when there actually is a significant difference in performance
between the two models. In this case, the models may have used a bandwidth
significantly greater than the testing sample which can result in the assumptions
for the test being violated. The broken assumptions in turn may render the test
unable to accurately compare the model performance, increasing the likelihood
of both Type 1 and Type 2 errors. The likelihood of either of the two types of
errors are negatively correlated with size of the test sample. Considering the
potential occurrence of Type 1 or Type 2 errors to our test statistics, with the
out-of-sample observations being limited to n = 47, it may be that the sample
does in fact deviate significantly enough from the true population. The cause
of deviation between the three test’s respective results may be due to Type 1
and Type 2 errors.

Both the CW test and the GW test produce overall rather consistent results.
The DM test on the other hand produces drastically more conservative test
statistics only indicating three significant relationships across all 135 tested
relationships. The deviation could either be due to Type 1 errors occurring
within both the CW test and the GW test. Alternatively, the DM test is subject
to Type 2 errors. Considering the findings in Buncic and Moretto (2015) who
used the CW test and found significant results compared to their benchmark,
which is consistent with our results of our CW test. It might be that our tests
have low power which increases the likelihood of Type 2 errors. The power of
a test indicates its ability to reject the null hypothesis when the alternative
hypothesis is true. The power of a test is positively correlated with sample size.
If the tests have weak power towards the alternative hypothesis that might
help explain the inconsistency of our test statistics. Assuming that sample size,
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effect and alpha remain unchanged a one-tailed test is more powerful than a
two-tailed test (Borenstein, 1998). Intuitively, we would expect the DM test to
be less powerful than the CW test as they contain the same data and the DM
is a two-tailed test whereas the CW is a one-tailed test. However, we do not
know what power the tests have against the alternative hypothesis as we do not
conduct a power analysis. The power of the tests will need to be verified in a
future study in order to determine whether power is the cause of the inconsistent
test results.

Despite the discrepancies some trends are consistent throughout the different
tests. The forecasts seem to perform better against the benchmark in the mid-
term than the short term across all four tests. The ARMA(1,6), the ”TOP3”,
and the ”EQW” do well in three of the four tests with the Diebold and Mariano
(1995) indicating that no model is significantly better or worse than any other
model in the short run. In the short-term these models also outperform the
benchmark consistently across three of the tests. The mid-term forecast test
results indicate that the ”TOP3” and the ARMA(1,1) perform the best con-
sistently across three out of the four test statistics. The top models yet again
outperform the benchmark across the three tests. However, the long-term test
statistics are less consistent across the tests, only consistently indicating that
the models are unable to outperform the benchmark model. Only one model,
the AR(1), outperforms the benchmark in more than one test.

Across the three horizons we see further discrepancies as the rankings and re-
lationships alter for all tests. For instance, the test results in the short-term gen-
erally favors the ARMA(1,6) model, whereas the ARMA(1,6) performs poorly
in the long-term. Similarly, the AR(1) model performs well in the mid,- and
long-term but struggles in the short-term relative to the other models. Over-
all the forecasts seem to perform decently in the short-term, they do better
in the mid-term, however, in the long-term they perform poorly struggling to
outperform the benchmark.
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5 Conclusion

Primarily, our results are consistent with Buncic and Moretto (2015) in that
several of our rather simple models produce positive out-of-sample R2 values.
The results indicate that the AR(1) and ARMA(1,6) are strong estimators for
the monthly returns of copper. However, the two models are not indicated to
consistently outperform the model combinations options, ”TOP3” and ”EQW”,
across the tests. It is evident that the models struggle to predict further than two
months ahead. The four different test statistics are inconsistent as the Diebold
and Mariano (1995) test indicates far less significant relationships than the re-
maining three tests. The other three tests are more consistent with one another
and, additionally, with the findings of Buncic and Moretto (2015). Lastly we
find, that the trading of LOCADY on the LME market may contain additional
costs potentially rendering the models unprofitable if implemented in a trading
scenario.

6 Further Research

Given the surprising tendencies demonstrated by the positive out-of-sample R2

values obtained by our rather standard models we suggest that further research
is appropriate to investigate why the LME copper market is susceptible to be
explained by basic models. Subsequently, considering models including addi-
tional cost of trading on the LOCADY may be appropriate to examine whether
it is actually possible to profit from trading. Furthermore, we suggest that the
power of our tests would need to be be verified. If the power of the tests are
weak, adapting our methodology on a larger data set or higher data frequency
could be interesting as it should increase the power of the tests and thus the
quality of the results.
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A Appendix: Additional plots and tables

Table A1: Two step DM Test Statistics
MA(3) MA(6) AR(1) ARMA(1,1) ARMA(1,3) ARMA(1,6) VAR(1)+ EQW TOP3 Random Walk

MA(3) -0,6302 -0,8448 -0,9249 -0,756 -0,959 -0,7571 -0,9452 -0,931 -0,7647
MA(6) 0,6302 -1,0525 -1,2493 0,5207 -1,452 -0,8332 -1,8463* -1,286 -0,8861
AR(1) 0,8448 1,0525 -0,8836 0,8544 0,1281 0,2376 0,5959 -0,6509 2,0879**
ARMA(1,1) 0,9249 1,2493 0,8836 0,9633 0,6423 0,6015 0,8728 0,5608 1,5714
ARMA(1,3) 0,756 -0,5207 -0,8544 -0,9633 -1,0141 -0,7457 -1,0168 -0,971 -0,7486
ARMA(1,6) 0,959 1,452 -0,1281 -0,6423 1,0141 0,0247 0,9883 -0,6378 0,5654
VAR(1)+ 0,7571 0,8332 -0,2376 -0,6015 0,7457 -0,0247 0,7865 0,1287 0,5095
EQW 0,9452 1,8463* -0,5959 -0,8728 1,0168 -0,9883 -0,7865 -0,8853 -0,2925
TOP3 0,931 1,286 0,6509 -0,5608 0,971 0,6378 -0,1287 0,8853 1,7962*
Random Walk 0,7647 0,8861 -2,0879** -1,5714 0,7486 -0,5654 -0,5095 0,2925 -1,7962*
* denotes that it is significant at 90%, ** denotes that it is significant at 95%, *** denotes that it is significant at 99%

+ estimated on a smaller sample

Table A2: Three step DM Test Statistics
MA(3) MA(6) AR(1) ARMA(1,1) ARMA(1,3) ARMA(1,6) VAR(1)+ EQW TOP3 Random Walk

MA(3) -0,477 -0,8954 -0,7291 -0,639 -0,9171 -0,9316 -0,8985 -0,9785 -0,8458
MA(6) 0,477 -1,1247 -0,8534 -0,3687 -1,2147 -1,1698 -1,3915 -1,477 -1,0709
AR(1) 0,8954 1,1247 0,4082 0,9926 0,7304 0,1507 0,86 0,7108 1,3184
ARMA(1,1) 0,7291 0,8534 -0,4082 0,7558 0,1104 -0,2118 0,4188 0,2554 -0,0647
ARMA(1,3) 0,639 0,3687 -0,9926 -0,7558 -1,0334 -1,0417 -1,1068 -1,2048 -0,9302
ARMA(1,6) 0,9171 1,2147 -0,7304 -0,1104 1,0334 -0,7208 0,7192 0,5234 -0,3233
VAR(1)+ 0,9316 1,1698 -0,1507 0,2118 1,0417 0,7208 0,8438 0,7194 0,3607
EQW 0,8985 1,3915 -0,86 -0,4188 1,1068 -0,7192 -0,8438 -0,8443 -0,6947
TOP3 0,9785 1,477 -0,7108 -0,2554 1,2048 -0,5234 -0,7194 0,8443 -0,4848
Random Walk 0,8458 1,0709 -1,3184 0,0647 0,9302 0,3233 -0,3607 0,6947 0,4848
* denotes that it is significant at 90%, ** denotes that it is significant at 95%, *** denotes that it is significant at 99%

+ estimated on a smaller sample

Table A3: Two step GW Test Statistics
MA(3) MA(6) AR(1) ARMA(1,1) ARMA(1,3) ARMA(1,6) VAR(1)+ EQW TOP3 Random Walk

MA(3) 4,924* 5,339* -3,168 0,521 -0,458 -4,363 -0,75 -2,005 7,159**
MA(6) -4,924* -2,496 -2,947 -10,266*** -2,463 -4,451 -3,904 -2,377 2,646
AR(1) -5,339* 2,496 -8,607** -6,85** -0,86 -2,185 -7,139** -3,545 22,037***
ARMA(1,1) 3,168 2,947 8,607** 3,022 5,939* 3,698 3,435 9,296*** 9,319***
ARMA(1,3) -0,521 10,266*** 6,85** -3,022 -4,054 -7,11** -5,253* -4,229 7,217**
ARMA(1,6) 0,458 2,463 0,86 -5,939* 4,054 -4,322 1,074 1,45 3,976
VAR(1)+ 4,363 4,451 2,185 -3,698 7,11** 4,322 0,876 0,95 2,482
EQW 0,75 3,904 7,139** -3,435 5,253* -1,074 -0,876 -2,412 7,971**
TOP3 2,005 2,377 3,545 -9,296*** 4,229 -1,45 -0,95 2,412 9,803***
Random Walk -7,159** -2,646 -22,037*** -9,319*** -7,217** -3,976 -2,482 -7,971** -9,803***
* denotes that it is significant at 90%, ** denotes that it is significant at 95%, *** denotes that it is significant at 99%

+ estimated on a smaller sample
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Table A4: Three step GW Test Statistics
MA(3) MA(6) AR(1) ARMA(1,1) ARMA(1,3) ARMA(1,6) VAR(1)+ EQW TOP3 Random Walk

MA(3) 4,842* 2,626 -0,142 4,528 -1,564 -5,016* 3,729 -1,445 4,424
MA(6) -4,842* -2,81 -8,527** -9,756*** -3,907 -4,982* -5,306* -5,416* -0,491
AR(1) -2,626 2,81 -3,385 3,417 -6,166** -2,037 0,399 -7,054** 32,597***
ARMA(1,1) 0,142 8,527** 3,385 8,576** -4,841* -3,339 9,402*** 8,713** 11,21***
ARMA(1,3) -4,528 9,756*** -3,417 -8,576** -7,423** -2,625 -9,658*** -9,275*** 2,665
ARMA(1,6) 1,564 3,907 6,166** 4,841* 7,423** -0,707 2,009 5,34* 9,572***
VAR(1)+ 5,016* 4,982* 2,037 3,339 2,625 0,707 2,965 1,697 4,298
EQW -3,729 5,306* -0,399 -9,402*** 9,658*** -2,009 -2,965 -5,314* 2,856
TOP3 1,445 5,416* 7,054** -8,713** 9,275*** -5,34* -1,697 5,314* 11,564***
Random Walk -4,424 0,491 -32,597*** -11,21*** -2,665 -9,572*** -4,298 -2,856 -11,564***
* denotes that it is significant at 90%, ** denotes that it is significant at 95%, *** denotes that it is significant at 99%

+ estimated on a smaller sample

Table A5: Two step CW Test Statistics
MA(3) MA(6) AR(1) ARMA(1,1) ARMA(1,3) ARMA(1,6) VAR(1)+ EQW TOP3 Random Walk

MA(3) 1,1701 0,1826 -0,0085 0,6516 -0,4102 1,2661 -0,4949 -0,2411 0,4084
MA(6) 0,199 -0,6781 -1,0583 -0,0584 -1,3373 1,1226 -2,4774 -1,3279 -0,3393
AR(1) 1,173 1,6967** 0,2258 1,2467 0,1963 2,3172** 0,6464 -0,6209 2,0072**
ARMA(1,1) 1,1969 2,0563** 0,8408 1,223 0,5722 2,0294** 0,8449 -0,0193 1,4204*
ARMA(1,3) 0,8787 1,5245* 0,2761 -0,0758 -0,3344 1,3335* -0,5077 -0,2147 0,5636
ARMA(1,6) 1,4253* 2,5455*** 1,1994 1,084 1,4988* 2,3815*** 1,5134* 0,5476 1,7218**
VAR(1)+ 1,4843* 1,933** 0,829 0,929 1,5995* 0,8941 1,0782 1,0795 1,2
EQW 1,147 2,98*** 0,2318 -0,0954 1,2381 -0,5466 1,672** -0,5136 0,6918
TOP3 1,2612 2,1334** 1,2173 0,8552 1,3253* 0,4227 2,0711** 0,9918 1,9248**
Random Walk 1,1019 1,5278* -1,6355 -0,1736 1,1788 -0,1332 1,9243** 0,397 -1,0604
* denotes that it is significant at 90%, ** denotes that it is significant at 95%, *** denotes that it is significant at 99%

+ estimated on a smaller sample

Table A6: Three step CW Test Statistics
MA(3) MA(6) AR(1) ARMA(1,1) ARMA(1,3) ARMA(1,6) VAR(1)+ EQW TOP3 Random Walk

MA(3) 1,5455* -0,2993 -0,1672 1,1478 -0,1717 0,7647 -0,4042 -0,7182 -0,2462
MA(6) -0,3509 -1,2505 -0,9868 -0,0464 -0,9595 0,3973 -2,0801 -1,89 -1,2675
AR(1) 1,2489 2,0944** 1,0883 1,7836** 1,0475 1,5092* 1,2985* 0,737 1,2029
ARMA(1,1) 0,8177 1,6969** -0,1688 1,215 0,4205 1,1819 0,5539 0,1846 0,132
ARMA(1,3) 0,0055 1,9544** -0,5941 -0,5623 -0,4044 0,5068 -1,1012 -1,0754 -0,5459
ARMA(1,6) 1,3356* 2,4182*** -0,0095 0,7629 1,9629** 1,3581* 1,3601* 0,5053 0,4301
VAR(1)+ 1,7315** 2,4161*** 1,025 1,1752 2,1559** 1,4522* 1,0495 1,1798 1,2641
EQW 0,905 2,5981*** -0,6347 -0,121 1,79** -0,2034 1,3751* -1,3791 -0,4807
TOP3 1,2985* 2,5977*** -0,2434 0,4809 2,1251** 0,2926 1,3545* 1,7823** 0,0653
Random Walk 1,192 2,0645** -0,8621 0,9074 1,7402** 0,7418 1,4179* 1,1784 0,5116
* denotes that it is significant at 90%, ** denotes that it is significant at 95%, *** denotes that it is significant at 99%

+ estimated on a smaller sample

Table A7: Forward contract out-of-sample R2

MA(3) MA(6) AR(1) ARMA(1,1) ARMA(1,3) ARMA(1,6) EQW TOP3
1 step -0,1303 -0,0687 -1,0506 -0,1650 -0,0356 -0,1346 -0,0664 -0,0373
2 step -0,0832 0,0936 -0,7729 -0,1218 -0,0306 -0,0891 0,0388 0,0168
3 step -0,2277 -0,0846 -1,5177 -0,0957 -0,1499 -0,2464 -0,1694 -0,0857
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Table A8: Out-of-sample R2 ranking from largest to smallest for each horizon
1step 2step 3step

Model R2 Model R2 Model R2

ARMA(1,6) 0,0326 ARMA(1,6) 0,0485 AR(1) -0,0035
TOP3 0,0127 TOP3 0,0470 Random walk -0,0224
EQW 0,0006 ARMA(1,1) 0,0327 ARMA(1,6) -0,0313
Random walk -0,0224 VAR(1)+ 0,0168 TOP3 -0,0354
MA(3) -0,0246 AR(1) 0,0138 VAR(1)+ -0,0380
AR(1) -0,0291 EQW -0,0079 ARMA(1,1) -0,0472
ARMA(1,3) -0,0622 Random walk -0,0224 EQW -0,0767
MA(6) -0,0940 ARMA(1,3) -0,1116 MA(3) -0,1423
ARMA(1,1) -0,1154 MA(3) -0,1256 ARMA(1,3) -0,1818
VAR(1)+ -0,2889 MA(6) -0,1639 MA(6) -0,2330

Table A9: Out-of-sample R2 rankings for horizon each and model
1step 2step 3step Average

ARMA(1,6) 1 1 3 1,67
TOP3 2 2 4 2,67
AR(1) 6 5 1 4,00
Random walk 4 7 2 4,33
EQW 3 6 7 5,33
ARMA(1,1) 9 3 6 6,00
VAR(1)+ 10 4 5 6,33
ARMA(1,3) 7 8 6 7,00
MA(3) 5 9 8 7,33
MA(6) 8 10 10 9,33
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Figure A1: MSFE ARMA(1,1)

Figure A2: MSFE ARMA(1,3)
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Figure A3: MSFE ARMA(1,6)
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