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Abstract

ESG investing is an active area of interest, both for the investment and academic communities.

However, research is inconclusive on the financial benefits of integrating ESG factors in portfolio

construction. In this thesis, we propose a novel approach to examining the informational content in

ESG data using an infinite Hidden Markov framework to capture market regimes. Our objective is

to find if ESG factors can increase a portfolio’s risk-return characteristics by capturing additional

effects that other factors do not. We build a baseline model with the factors Value, Quality, Growth,

Momentum, and Risk. Next, we add layers of ESG data to the baseline model and analyze the

effect on portfolio performance. Our findings show that the infinite Hidden Markov Model portfolios

consistently outperform the market index EURO STOXX 50. However, we do not observe value

added by ESG scores in our regime-switching factor investing framework.
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1 Introduction

Environmental, Social, and Governance (ESG) factors are increasingly integrated into traditional port-

folio management as demand from investors for ESG portfolios has increased. Asset managers deploy

ESG strategies, using methodologies from screening-based exclusions to a comprehensive integration of

ESG factors into the security selection and portfolio development process. Meanwhile, academia has

inconclusive empirical evidence of the financial benefits of integrating ESG factors into the investment

process. ESG scores are widely considered the best proxy for companies’ ESG behavior. It is, therefore,

crucial for asset managers and investors to understand ESG scores’ informational content, and research-

ing ESG datasets in asset allocation requires further consideration. While numerous ESG strategies are

analyzed to find if they generate alpha, e.g., Nagy, Kassam & Lee (2016); Chen & Mussalli (2020); Bruno,

Esakia & Goltz (2021), there is less research on ESG factors’ financial performance in regime-switching

models, despite evidence of a varying impact of ESG investing in different regimes. In this thesis, we use

a regime-switching infinite Hidden Markov Model (iHMM) to build a dynamic stock-picking portfolio

using ESG factors and traditional factors1. We contribute to the growing body of literature on ESG

in asset allocation by examining whether the informational content of ESG scores improves portfolio

performance in terms of returns, volatility, and other performance measures when dynamically adjusted

for market conditions.

Analyzing ESG data with an iHMM is a subject of interest given empirical evidence that ESG

portfolios have displayed discrepancies in financial performance across regimes. Ma (2019) finds that

ESG ratings have a larger effect on stock returns in bear markets than in bull markets in the short run.

Specifically, Ma (2019) finds that high ESG-rated stocks generally outperform low ESG-rated stocks in

terms of abnormal returns in a sluggish market and vice versa. Giese, Nagy & Lee (2020) separates

ESG scores into their respective pillars to examine their effect independently, establishing that the E,

S, and G pillars have a varying impact on simulated portfolios depending on the investment horizon.

These findings imply that the aggregated ESG scores may pick up individual ESG pillars’ effects across

different regimes. It is, therefore, worth investigating further by using both aggregated ESG scores and

the E, S, and G pillar scores as factors separately to break down ESG datas’ informational content even

further.

This thesis also contributes to the growing literature on factor investing using regime-switching mod-

els. The iHMM extends the Hidden Markov Model (HMM) using a Hierarchical Dirichlet Process to

make the regime specifications data-driven. Previous research using HMMs, e.g., Fons et al. (2021);

Nguyen & Nguyen (2021), has required the number of regimes to be specified in advance, typically done

through Bayesian Information Criterion (BIC) or by selecting the model with the highest performance,

1”Traditional factors” refer to the five investment style factors Value, Growth, Quality, Momentum, and Risk. We refer
to these factors as ”traditional factors” for the remainder of the thesis.
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resulting in a different number of regimes used through papers. It is noteworthy that the HMM has

shown properties that improve model performance more than traditional investment methods only using

factor investing (Kim, Jeong & Lee 2019). Fons et al. (2021) and Nguyen & Nguyen (2021) use an HMM

with factor investing to fully utilize HMM’s ability to capture nonlinearity in time series data, yielding

superior financial performance in line with Kim et al. (2019) findings. Therefore, not only do we consider

the iHMM as a means to adjust for ESG factors’ financial performance across regimes but also as a model

that has empirically yielded better financial performance than typical factor investing models.

By deploying an iHMM using traditional factors, we create a baseline stock portfolio model and

compare it to an index. The comparison will confirm if the iHMM is a suitable factor model capable

of yielding satisfactory financial performance. Next, we add layers of ESG factors to the model. Our

aim is not to create ESG portfolios with a certain ESG score threshold but to investigate whether the

informational content of our ESG data affects the constructed portfolios and picks up any effects that

the traditional factors do not. By comparing performance metrics of the portfolios integrating ESG

factors to the baseline portfolio model, we discern the usefulness of ESG data in asset allocation when

dynamically adjusting stock allocations to changes in market conditions. The results are of interest for

investors focusing on portfolios’ risk-return characteristics. To the best of our knowledge, this paper

is the first study using mentioned approach to analyze the informational content of ESG data across

regimes. Rather, previous research has focused on if ESG factors behave differently across regimes, or

compares low to high rated ESG portfolios in different markets, e.g., Ma (2019); Singh (2020).

This thesis is motivated by several articles and research divided into two main groups: (i) regime-

switching Hidden Markov Models used for stock selection, and (ii) ESG factor investing. Our primary

sources in the first category are the work of Wang, Lin & Mikhelson (2020), Nguyen & Nguyen (2021),

and Fons et al. (2021). Nguyen & Nguyen (2021) uses an HMM to create a global stock selection using

five stock factors in which the regimes of the six global economic indicators are predicted using an HMM.

The author’s portfolio outperformed the trading portfolios based on stocks in the All Country World

Index, replicating their successful work in their previous paper Nguyen & Nguyen (2015) focusing on

the S&P 500. Similarly, Wang et al. (2020) observes that using an HMM for asset allocation can yield

superior portfolio returns compared to traditional factor models, e.g., Fama-French Three-factor Model

or Carhart Four-Factor Model. As noted, empirical evidence favors the HMM for stock selections. Fons

et al. (2021), however, highlights the issue that the number of latent states has to be known in advance

or selected through BIC, which is not always effective, or by using a greedy approach, in which the

model with the best performance is chosen. Fons et al. (2021) suggests an iHMM to address this. The

second source of motivation is papers that analyze if ESG factors can generate alpha. Bruno et al.

(2021) researches common strategies empirically shown to generate alpha (e.g., ESG Momentum Alpha,

ESG Combined Alpha, and ESG Overall and Component Alpha). Bruno et al. (2021) finds that these
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strategies, indeed, generate alpha. However, risk-adjusting these results shrink the alphas close to zero.

The authors imply that failure to properly risk-adjust the results is the source of alpha in previous

literature. Thus, we formulate our research question as follows:

How does ESG data affect portfolios’ risk-return characteristics in an infinite Hidden Markov Model?

We examine Western European equities over the period 2003 to 2022 as a leading geographical market

regarding ESG questions, both in investments and company behavior. European investors have shown

greater sentiment toward ESG investing. Their US counterpart has remained skeptical about the benefits

of sustainable investments for financial performance and consequently is less inclined to incorporate ESG

factors in their investment process (Kaiser 2020). 22% of US investors, compared to 8% of European

investors, believe that ESG data is not material for investment purposes, and enforcing ESG selection

on their portfolios would violate their fiduciary duty (Amel-Zadeh & Serafeim 2018).

The iHMM is used to predict the regimes of five macroeconomic variables (stock market index, implied

and actual volatility index, inflation index, and GDP per Capita) and finds the time periods in the past

during which these indicators have a combination of regimes that is similar to those predicted. We use

the factors Value, Quality, Growth, Momentum, and Risk to create the baseline portfolio model before

successively adding layers of ESG factors provided by the Refinitiv Eikon ESG dataset. The factors are

given weights through Fama-MacBeth regressions. A selection of 50 stocks is used based on how well

they score given the weights in regime i. We rebalance the portfolios when the iHMM predicts a new

regime before iterating the process again, creating a dynamic stock selection based on market conditions.

We do not find evidence of ESG factors providing additional information to the model that increases

the portfolio risk-return characteristics. Our results indicate that ESG data do not capture additional

information that our traditional factors do not. The results also show that the baseline portfolio model

has the best financial performance over the full period 2003 - 2022 and a more recent period 2019 - 2022.

The rest of this study is organized as follows: Section 2 discusses previous literature on regime-

switching models, factor investing, and ESG in asset allocation. Section 3 provides the theoretical

framework. Section 4 presents the data and ESG scoring methodology. Section 5 outlines the method-

ology of our study. Section 6 provides an analysis and evaluation of the model, and the results are

discussed in Section 7. Finally, the conclusion and potential future research are presented in section 8.
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2 Literature review

This section provides a review of the existing literature in the research area. First, we present literature

in the field of ESG investments. ESG is a broad concept, and we map out different applications of ESG

in investments and research related to the definition and financial performance of ESG metrics. Second,

literature on HMMs in finance and stock selection is presented, followed by literature on Factor and

Smart beta investing.

2.1 Environmental, Social, and Governance information in Investments

ESG investing is a broad field, and there is no universal measurement for the E, S, and G scores. Discrep-

ancies are also found in ESG portfolio investing, where different investment approaches address various

objectives. A high-level breakdown can divide ESG investing into three primary categories depending

on the investment objective: First, ESG integration to improve a portfolio’s risk-return characteristics.

Second, there is value-based investing, aiming to align an investor’s portfolio with a set of values, norms,

and beliefs. The third is impact investing, in which investors use their capital to push for a better change

in ESG areas (Giese et al. 2019). This thesis focus on the first objective.

Amel-Zadeh & Serafeim (2018) finds that the most common reason for using ESG data is to improve

investment performance in accordance with the first objective. Secondary motivations were client de-

mand, product strategy, bringing change in companies, and ethical reasons last, coinciding with the three

objectives described by Giese et al. (2019). For ESG to be material to investment performance, corpo-

rate ESG implementation requires economically meaningful effects, which studies have documented. For

instance, Cheng, Ioannou & Serafeim (2014) finds that ESG disclosure is associated with lower capital

constraints and lower cost of capital (Dhaliwal, Li, Tsang & Yang 2011). Furthermore, industry-specific

materiality classifications identify ESG information that is value relevant and predictive of firms’ future

financial performance, and the disclosure of such information is linked to less stock price synchronicity

Amel-Zadeh & Serafeim (2018).

As studies document significant economic effects, other research studies the relationship between ESG

characteristics and traditional risk factors. Melas, Nagy & Kulkarni (2017) discovers that ESG scores

have a positive correlation with size, quality, and low volatility. Furthermore, Melas et al. (2017) finds

that ESG integration generally improves the historical risk-adjusted performance of many typical passive

and factor investment strategies and tilts the strategies toward larger companies with higher profitability,

more stable earnings, lower leverage, and lower volatility. These studies imply that ESG datasets may

not have additional informational content not already captured by traditional factors.

Academia finds empirical evidence both for and against the financial benefit of ESG factor integration

in asset allocation. Halbritter & Dorfleitner (2015) investigates the relationship between corporate social
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and financial performance based on ESG ratings. The authors examine different portfolios with low and

high ESG scores, analyzing compound ESG scores and respective pillar scores. Neither the ESG portfolio

nor pillar portfolios show significant return differences between companies featuring high and low ESG

rating levels. As such, the relationship between ESG ratings and returns is questioned, and Halbritter

& Dorfleitner (2015) concludes that investors should not expect abnormal returns by trading different

portfolios of high and low-rated firms.

Giese et al. (2020) hypothesized that ESG pillars are unlikely to have an equal impact on company

stock performance. In their publication, the authors find that the E, S, and G pillars relate differently

to companies’ financial performance. For instance, depending on the time horizon, industry, and weight-

ing scheme, the relationship between the simulated portfolios and performance varied in contrast to

Halbritter & Dorfleitner (2015) observations. The Governance pillar proved to be far more significant

than Environmental or Social over a short period (one year). Environmental and Social indicators were

more significant over long periods and notably visible in companies’ stock performance. While research

prior to Giese et al. (2020) already examine individual pillar scores’ financial performance, e.g., Alessan-

drini & Jondeau (2020), Bruder et al. (2019), and Drei et al. (2019), Giese et al. (2020) findings have

an important implication for research on ESG data, serving as a further foundation for breaking down

aggregated ESG scores into its’ pillars to analyze ESG data more profoundly. Following these findings,

Bruno et al. (2021) uses both aggregated ESG ratings and E, S, and G variables independently in their

models, with results varying in magnitude for the different pillars when testing different ESG strategies

for stock selection.

2.2 Hidden Markov Models in Finance

Baum & Petrie (1966) described the HMM in a series of statistical publications, and the HMM is since

applicated in various fields, notably in finance. Hamilton (1989) introduced the HMM in finance by

proposing the use of regime-switching models to identify economic cycles using GNP series. The HMM’s

popularity in finance stems from the HMM’s ability to capture various properties from financial return

series, such as time-varying correlations, skewness, and kurtosis while offering a reasonable approxima-

tion even if the underlying model is unknown. For instance, Bae, Kim & Mulvey (2014) deploys an

HMM to identify market regimes using different asset classes and manages to reduce the risk during left

tail events in the portfolio with the regime information. As for regime specification, the HMM requires

manual input. Basic intuition of financial markets classifies regimes as states in which the market goes

up, down, or remains unchanged. Following this intuition, Liu, Xu & Zhao (2011) and Ma, MacLean, Xu

& Zhao (2011) analyze time-varying risk premiums using a regime-switching model with three regimes.

However, regime specifications are based on informational data on macroeconomic variables, and classi-

fying regimes could use more complexity. Accordingly, Guidolin & Timmermann (2008) finds evidence

5



of four economic regimes rather than three in size and value factors that capture time variations in mean

returns, volatilities, and return correlations. Difficulties selecting the number of states is one of the

limitations of the HMM, therefore, other models require consideration, such as the iHMM.

Beal, Ghahramani & Rasmussen (2002) discusses the standard HMM and its limitations. First,

the maximum likelihood estimation approach ignores the model’s complexity, resulting in difficulties in

avoiding over-or underfitting. Secondly, as stated, the model’s structure requires definition in advance.

Attempts to approximate a full Bayesian analysis of the HMM that integrates across rather than optimizes

the parameters are motivated partially by mentioned challenges. For most real-world issues, the basic

HMM modeling assumes that data is generated by some discrete state variable and can take one of the

multiple values, which is a strong assumption. Beal et al. (2002) proposes an HMM with a limitless

number of hidden states, namely the infinite Hidden Markov Model, to address the limitations of the

HMM. They show that it is possible to extend an HMM to have a countably infinite number of hidden

states. Through the theory of Dirichlet processes, they implicitly integrate out the infinitely many

transition parameters, leaving only three hyper-parameters that are data-driven. These three hyper-

parameters define a hierarchical Dirichlet process capable of capturing a rich set of transition dynamics.

The iHMM is yet to see a widespread application in financial studies, although the HMM is used in

many finance pieces of research, particularly to predict financial market regimes. To date, little work

has been done on the impact of regime-switching models on factor investing, though gaining popularity

in recent years, e.g., Kim et al. (2019), Wang et al. (2020), Fons et al. (2021), and Nguyen & Nguyen

(2021). These studies deploy HMMs and have resulted in more robust models that outperform traditional

factor strategies. Specifically, Wang et al. (2020) uses an HMM that rotates between two-factor models.

The results yield superior model performance to that of either factor model it is based on and enhances

portfolio performance. Fons et al. (2021) addresses the concerns of smart beta strategies, specifically,

sensitivity to market fluctuations and often severe short-term drawdown (peak-to-trough decline) with

fluctuating financial performance across cycles. They build a dynamic asset allocation system using

an HMM to manage the short-term risk of cyclicality and under-performance. Kim et al. (2019) uses

an HMM to identify the phases of individual assets and propose an investment strategy using price

trends yielding superior financial performance, noting that the HMM reflects the asset selection effect

in Jensen’s alpha, Fama’s Net Selectivity, and Treynot-Mazuy model. Finally, Nguyen & Nguyen (2021)

uses an HMM to select stocks from the global stock market that outperform the All Country World

Index (ACWI), any single stock factor, or the simple average of a set of five stock factors.

Further use of regime-switching models, albeit scarcely, has been in ESG asset allocation research.

For instance, Ma (2019) finds that in a regime-switching model, higher ESG rating stock portfolios sig-

nificantly outperform their lower counterpart in bear markets, implicating a positive financial effect of

ESG in a downward economy. More recent work involves different regimes that capture financial and
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non-financial crisis periods during the Covid-19 pandemic. Pluciennik & Janik (2022) studies sustainable

stock indices using a Markov Switching Approach in which the first regime identifies as normal market

conditions and the second regime as pandemic conditions. The two regimes display different mean, stan-

dard deviation, kurtosis, and skewness, indicating differences in financial performance over the regimes.

Similarly, Singh (2020) analyzes regime switches and finds that ESG asset allocation results in overper-

formance and improves during the pandemic due to the ESG approach proving to be more resilient in an

uncertain environment and a ”safer” bet for investors. Other research has also shown discrepancies in

the performance of ESG portfolios in comparison to conventional portfolios in times of distress or under

Bull/Bear regimes, e.g., Nofsinger & Varma (2014) and la Torre-Torres et al. (2019).

2.3 Factor Investing

Factor investing refers to two main types of factors: macroeconomic and style. Macroeconomic factors

and equity returns have been researched extensively with an established correlation, e.g., Ratanapakorn

& Sharma (2007) and Sirucek (2012). Integrating macroeconomic factors into models has also led to

the identification of different economic regimes by capturing the mean and variance of the market index,

typically called bull- and bear market regimes (Kole & Van Dijk 2017). Style factors have earned a

premium over long periods, reflecting exposure to systemic risk, and are grounded in the academic

literature Bender et al. (2013). The Capital Asset Pricing Model (CAPM) is one of the early factor

models that attempts to explain what drives equity returns. The CAPM has a single risk factor to

model the risk premium of an asset class and established a foundation of modern financial theory in

the 1960s (See Treynor (1961), Sharpe (1964), Lintner (1965), and Mossin (1966)2). While the CAPM

proposes a single factor, it later set the groundwork for multi-factor models. Ross (1976) developed the

Arbitrage Pricing Theory (APT), which infers that a financial asset’s projected return is represented as a

function of numerous macroeconomic factors or theoretical market indexes. Unlike the CAPM, the APT

does not specify what these factors should be. The number and character of these variables are expected

to fluctuate over time and between marketplaces. As a result, the issue of developing factor models

became, and continues to be, mostly empirical. Fama & French (1992) and Carhart (1997) introduce

other common factors models (three-factor and four-factor models) based on the ATP to capture new risk

premia. For instance, fundamental factors are most prominent today and are based on the multi-factor

models, namely equity factors such as Value, Quality, Growth, Size, and Momentum (Bender et al. 2013).

2Sharpe (1964) submitted the initial version of his CAPM to the Journal of Finance. However, it was rejected and
not published until after a revision. Other authors’ supplementary contributions to Sharpe’s (1964) paper resulted in the
established CAPM, thus the joint recognition regarding the development of the CAPM.
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Smart beta is a low-cost, systematic implementation of factor investing in which securities are chosen

based on exposure to a factor historically linked to greater returns. Portfolio development with Smart

beta strategies induces opportunities to beat market returns over a longer period compared to cap-

weighted index constructions, as shown by Blitz & Swinkels (2008) and Meziani (2014). Similarly, Amenc

et al. (2015) finds significant evidence that systematic Smart beta strategies outperform cap-weighted

benchmarks in the long run. An issue with Smart betas has been lacking robustness due to data mining

and non-robust weighting methodologies that typically arise when back-testing Smart beta strategies.

Still, Fons et al. (2021) tests a variety of portfolio construction techniques using smart beta strategies,

and the portfolios show an improvement in risk-adjusted returns, especially on more return-oriented

portfolios when used in an HMM.
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3 Theoretical Framework

This section maps out the theoretical framework that is the foundation of our model. First, we describe

Markov Chains that build the framework for the HMM, followed by detailing the HMM’s process and

simple regime-switching models. Next, the Dirichlet Process (DP) framework is outlined for transition

sequences, followed by the Hierarchical Dirichlet Process (HDP) that bridges the HMM and iHMM.

Lastly, we outline the theoretical framework for the iHMM and the Fama-McBeth regression framework

for factor scoring.

3.1 Markov Chain

Markov Chain is primarily a mathematical tool in stochastic processes and is today employed in various

fields. It is a stochastic process that meets the Markov property, which states that while the present

is known, the past and future are independent. It suggests that by having knowledge of the current

state of a process, extra information about its previous states is not needed to make the best possible

forecast about the future. Following this logic, predictions about a stochastic process’s future state

become simplified (Sericola 2013).

There are two main types of Markov Chains: Discrete and Continuous. The Discrete Markov Chain

is an evolving system through time steps in which the changes only occur at a discrete-time value. For

example, take a board game such as Snakes and Ladders. The pieces move around the board according

to a die roll. It does not matter how the pieces arrive at their current position (i.e., the history of the

system) at the beginning of round n. What matters is the current stage of the board and the positioning

of the pieces (i.e., the current state of the system). This illustrates how a change in discrete chains only

occurs during someone’s turn, i.e., at a discrete-time.

Changes in the Continuous Markov Chain can occur at any given time along with a continuous

interval. For example, a number of customers visiting a supermarket can occur at any time t during

operating hours, and the visits are independent. Knowing the total number of customers at a specific

time does not give any predictability for future customer visits (assuming the visitations follow a Poisson

Process).
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In accordance with Sericola (2013), we define the Discrete Markov chain (Definition 1 ) and the Con-

tinuous Markov chain (Definition 2) in mathematical terms as:

Definition 1. A stochastic process X = {Xn, n ∈ N} in a countable space S is a discrete-time Markov

chain if:

For all n ≥ 0, Xn ∈ S

For all n ≥ 1, Xn and for all i0, ..., in−1, in ∈ S, we have:

P{Xn = in|Xn−1 = in−1, ..., X0 = i0} = P{Xn = in|Xn−1 = in−1}

Definition 2. A stochastic process X = {Xt, t ∈ R+} with values in a countable space S is a

continuous-time Markov chain if:

For all n ≥ 0, Xn,For all instant 0 ≤ s0 < ... < sn < t, and for all states i0, ..., in, i, j ∈ S, we have:

P{Xt = j|Xs = i,Xsn = in, ..., Xs0 = i0} = P{Xt = j|Xs = i}

3.2 Hidden Markov Model

An HMM is a stochastic process following a Markov chain/process described in the previous section but

in which the underlying Markov process is not observed (hidden). It can, however, be observed through

another set of stochastic processes. Let us call the hidden Markov process X and the observable process

Y for which outcome is influenced by X in some way. Then, the objective is to learn about X by

observing Y (Rabiner & Juang 1986).

To illustrate, we present how a Markov Process (Diagram 1) can be extended into an HMM (Diagram

2) as described by Blunsom (2004). Diagram 1 illustrates a simple model for a stock market index. The

model has three states, Bull, Bear and Even, and three index observations up, down and unchanged.

The model is a finite-state automation with a probabilistic transition between states. Given a sequence

of observations, for example, up-down-down, we can easily verify that the state sequence that produced

those observations is Bull-Bear-Bear and the probability of the sequence is simply the product of the

transitions, in this case, 0.2 × 0.3 × 0.3.
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Diagram 1: Markov process example (Blunsom 2004)

Diagram 2 extends the previous example of the Markov process into an HMM. The revised model

permits each state to emit all observation symbols with a finite probability. The model becomes more

expressive and capable of representing the intuition that, for example, a bull market has both up and

down days but has a higher probability of ”up”. The main distinction is that if we have the same ob-

servation up-down-down, we cannot determine which state sequence created these observations, hence

the name ”Hidden” Markov Model. It is still possible to calculate how likely the model is to generate

the sequence and which state sequence was most likely to generate the given observation (Blunsom 2004).

Diagram 2: Hidden Markov Model example (Blunsom 2004)
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Rabiner (1989) characterizes an HMM by five elements:

1. There are a finite number N of states in the model that have measurable distinctive properties

within the states, even if the states are hidden or not rigorously defined as to what a state is. The

states are denoted as S = {S1, S2, ..., SN} and the state at time t as qt.

2. There are a finite number M of distinct observation symbols per state. The individual symbols are

denoted S = {v1, v2, ..., vM}.

3. There is a state transition probability distribution A = {aij} where the increments aij are defined

as:

aij = P (qt−1 = Sj |qt = Si), 1 ≤ i, j ≤ N (1)

4. There is a corresponding observation symbol probability distribution in state j, B = {bj(k)}, where

the increments bj(k) are defined as:

bj(k) = P (vk at t|qt = Sj), 1 ≤ j ≤ N, 1 ≤ k ≤ M (2)

5. There is an initial state distribution π = {πi} where:

πi = P (q1 = Si), 1 ≤ i ≤ N (3)

In short, the values {N,M,A,B, and π} provide a complete specification of the HMM where N and

M are the model parameters and {A,B, and π} are the probability measures. Using these provides the

observation sequence O = {O1, O2, ..., OT } as follows:

1. Choose the initial state q1 = Si in accordance with the initial state distribution π

2. Set t = 1

3. Set Ot = vk in accordance with the symbol probability distribution in state Si; bi(k)

4. Transit to the new state qt + 1 = Si in accordance with the state transition probability distribution

for state Si; aij

5. set t = t+ 1; and return to step 3 until t = T

12



3.3 A Simple Regime Switching Model

A basic Markov State Switching model allows parameters to switch states. We call it a Simple Regime

Switching Model (SRSM). Put an SRSM in the context of a simple financial market. The mean and

variance that are Markov switching would change depending on the state of the market. A classic ex-

ample is the stock market following a Bull or Bear market pattern. A Bull market has a positive trend

with low volatility, and investors typically go long. In contrast, a Bear market has a negative trend and

higher volatility than a Bull market, and investors tend to go short or be more defensive. It is known

in the SRSM that the markets follow the characteristics described in Bull and Bear markets, in which

a positive mean and low volatility is expected in a Bull market, and vice versa. In short, the SRSM

provides the mean, volatility, and probability for the two different states (Hardy 2001).

The return for an SRSM is assumed to be as follows:

rt = µst + σstεt (4)

where rt is a time series of returns, St is a Markov chain with k possible states, and the error term εt is

an i.i.d process with t = 1, ..., T . Assume k = 2, meaning there are two different regimes or states. We

define St as:

St =


1 with probability π,

2 with probability 1− π,

(5)

The transition matrix for the Markov chain is:

P ∗ =

p11 p21

p12 p22

 (6)

Looking at equation 6, the diagonal value p11 and p22 represent the probability of staying in regime 1

or 2, respectively. This implies that p12 = 1 − p11 and p21 = 1 − p22, which in turn represents the

probabilities of switching from regime 1 to 2 and regime 2 to 1. rt is modeled as follows:

rt =


µ1 + σ1εt if St = 1,

µ2 + σ2εt if St = 2,

(7)

for the two states. The error terms εt are i.i.d N(0, 1) and:

εt ∼


N(µ1, σ

2
1) if St = 1,

N(µ2, σ
2
2) if St = 2,

(8)
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The outlined framework is a basic version that has been used with a different number of regimes

to capture time variations in mean returns, volatility, and return correlations. Furthermore, traditional

factor investing has also deployed the model as discussed in the literature review. The model has a

shortcoming in which it is necessary to know the structure in advance, which can be addressed using an

iHMM. We continue this section with the theoretical framework building up the iHMM.

3.4 Dirichlet Process

First, we examine the statistics of the hidden state transitions from a specific state st = i with k

finite number of states. The transition probabilities given the i:th row in the transition matrix can be

interpreted as mixing proportions for st + 1 that we define as π = {π1, ..., πk}. Drawing n samples

{c1, ..., cn} from a discrete indicator variable can have the values {1, ..., l} with the properties π. The

joint distribution of these indicators is multinomial:

P (c1, ..., cn|π) =
k∏

j=1

π
nj

j , with nj =

n∑
n′=1

δ(cn′ , j) (9)

where the Kronecker delta function (δ(a, b) = 1 ⇐⇒ a = b and otherwise 0) is used to count the number

nj times that st+1 = j has been drawn. It becomes possible to see what happens to the distribution of

these indicators when integrating out the mixing proportions π under a conjugate prior. Providing the

mixing proportions a symmetric Dirichlet prior with positive concentration hyperparameter β yields:

P (π|β) ∼ Dirichlet(β/k . . . β/K) =
Γ(β)

Γ(β/k)k

k∏
j=1

π
β/k−1
j (10)

where π is restricted to be on the simplex of mixing proportions that sum to 1. Integrate out π under

this prior to get:

P (c1 . . . , cn|β) =
∫

dπP (c1 . . . cn|π) =
Γ(β)

Γ(n+ β)

k∏
j=1

Γ(nj + β/k)

Γ(β/k)
(11)

Thus, the probability of a particular sequence of indicators is only a function of the counts {n1 . . . nk}.

The conditional probability of an indicator cd given the setting of all other indicators (c−d) is given by:

P (cd = j|c−d, β) =
n−d,j + β/k

n− 1 + β
(12)

where n−d,j is the count as in equation 9 with the d:th indicator removed. The self-reinforcing property

of equation 12 (cd) is more likely to choose a state that is already popular. A key property of the Dirichlet

Process that is at the very heart of the model is the expression for equation 13 where we take the limit
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as the number of hidden states k goes to infinity:

P (cd = j|c−d, β) =


n−d,j

n−1+β j ∈ 1 . . .K i.e., represented,

β
n−1+β for all unrepresented j combined

(13)

where K is the number of represented states that cannot be infinite since n is finite. β is interpreted

as the number of pseudo observations of π = {1/k . . . 1/k}, i.e., the strength of belief in the symmetric

prior. β is the ”innovation” or error parameter in the infinite limit that controls for the tendency of the

model to populate a previously unrepresented state.

3.5 Hierarchical Dirichlet Process

The Hierarchical Dirichlet Process is a set of DPs coupled through a shared random base measure also

drawn from a DP. More specifically, Gk ∼ DP (α,Go) with a shared base measure G0, interpreted as

the mean of Gk, and α > 0 as the concentration parameter which governs the variability around G0. A

smaller α implies a larger variability. The shared base measure itself is given a DP prior: G0 ∼ DP (γ,H),

with H as the global base measure. The stick-breaking construction for the HDP demonstrates that the

random measures can be expressed as:

G0 =

∞∑
k′=1

βk′δϕk′ (14)

and

Gk =

∞∑
k′=1

πkk′δϕk′ (15)

where δ ∼ GEM(γ) is the stick-breaking construction for DPs πk ∼ DP (α, β) and each ϕk′ ∼ H

independently.

3.6 Infinite Hidden Markov

By identifying each Gk (see equation 15) by describing both the transition probabilities πkk′ from state

k to k’ and the emission distributions parameterized by ϕk∗, we can formally define the iHMM as:

β ∼ GEM(γ),

πk|β ∼ DP (α, β),

ϕk ∼ H,

(16)

st|st−1 ∼ Multinomial(πst−1
),

yt|st ∼ F (ϕst),

(17)
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which is illustrated graphically in Figure 3.

Figure 3: Visualisation of the iHMM model (Van Gael et al. 2008)

Thus, it becomes possible to move from a model with a finite number of states, which has to be pre-

specified, to a model with an infinite possible number of states. The iHMM opens for possibilities beyond

the basic bull-bear framework, using a data-driven approach to set the number of states.

3.7 Fama McBeth Regression

We use cross-section regression as the base for our scoring system in our algorithm through the Fama-

MacBeth two-step approach outlined by Fama & MacBeth (1973). We use the method to investigate the

effect of factors on the returns. The two-step parameter estimation is as follows:

1. Regress each n asset returns against the m proposed risk factors:

R1,t = α1 + β1,F1F1,t + β1,F2F2,t + · · ·+ β1,FmFm,t + ε1,t

R2,t = α2 + β2,F1
F1,t + β2,F2

F2,t + · · ·+ β2,Fm
Fm,t + ε2,t

...

Rn,t = αn + βn,F1
F1,t + βn,F2

F2,t + · · ·+ βn,Fm
Fm,t + εn,t

(18)

2. Regress all asset returns for each time period T against the previous estimates to determine the risk

premium for each factor:

Ri,1 = γ1,0 + γ1,1β̂i,F1
+ γ1,2β̂i,F2

+ · · ·+ γ1,mβ̂i,Fm
+ εi,1

Ri,2 = γ2,0 + γ2,1β̂i,F1
+ γ2,2β̂i,F2

+ · · ·+ γ2,mβ̂i,Fm
+ εi,2

...

Ri,T = γT,0 + γT,1β̂i,F1 + γT,2β̂i,F2 + · · ·+ γT,mβ̂i,Fm
+ εi,T

(19)
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4 Data

This section follows a description of the data and the motivation behind the selected data. To summarize,

the datasets are collected mainly from Refinitiv Eikon, from which ESG data, factor scores, stock data,

and stock index data build our panel data. We use two different sets of weekly data. (i) Stock data

with factors for the portfolio construction, and (ii) Macroeconomic data for the iHMM. The ESG data is

collected on a yearly basis as reported. Complementary macroeconomic data is collected from Eurostat.

The stock and factor data ranges from 2003 until 2022 over 17 countries in Western Europe, totaling

1839 different equities across 29 sectors. The equity data includes companies that have been delisted,

thus reducing survivorship bias. The macroeconomic data for the iHMM ranges from 1999 to 2022. The

handling of the data has been through Python.

4.1 Stock data

The stock data consists of equities from 17 countries based on Refinitiv’s definition of Western Europe,

with 1839 equities across 29 sectors (see Table 1 for country details). More European investors believe

that ESG is material to investment decisions compared to their US counterparts, as noted by Amel-Zadeh

& Serafeim (2018), hence the use of European stock data in this thesis. The geographical area of Western

Europe is considered to be the more developed area of Europe with robust financial markets (Refinitiv

Eikon 2022b). Thus, equities are liquid and available to most institutional and other investors whereas

other parts of Europe, such as eastern Europe, have other types of risks and may be more restrictive

to investors (for example, the Russian/Ukraine conflict in 2022 that resulted in regulated markets in

Russia). The countries in focus are also classified as high-income and developed countries by the World

Bank, further increasing the robustness of the dataset. For the same reasons, the included equities have

a market capitalization of a minimum of 100 million euros to use a dataset of liquid equities available

for all investors.

Table 1 presents changes in the dataset from before to after the screening of companies. Pre-screening

consists of all listed companies with over 100 million euros in market capitalization. Post-screening

companies have an ESG rating and fulfill the requirements to obtain factor scores (for example, companies

without earnings are removed as they cannot get a Value score). 2275 companies in total are removed

from the final dataset. While it is a substantial percentage of the companies (-55%), we deem the

remaining set sufficient for our study. Moreover, we include all companies that fulfill our requirements in

the dataset for the period they do, even if they are delisted at a later stage since we use dynamic stock

picking. See Table A.1 in the appendix for sector details.
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Table 1: Distribution of companies per country

Country # Companies pre-screening # Companies post-screening Change

Austria 47 29 -38%
Belgium 93 45 -52%
Denmark 84 59 -30%
Finland 102 65 -36%
France 492 152 -69%
Germany 675 239 -65%
Iceland 22 4 -82%
Ireland 20 13 -35%
Italy 205 101 -51%
Luxembourg 12 1 -92%
Netherlands 118 53 -55%
Norway 216 79 -63%
Portugal 23 14 -39%
Spain 143 68 -52%
Sweden 369 225 -39%
Switzerland 281 158 -44%
United Kingdom 1212 534 -56%

Total 4114 1839 -55%

4.2 Time period

The main concern of this study is the effect of ESG data and is the primary motivation for the time

period selected for data gathering. While stock and factor data is available for an extensive period, ESG

data is more restrictive. Still, Refinitiv’s ESG database stretches back to 2002 and provides a sufficient

time frame for this study, including a range of possible market regimes for the iHMM. More specifically,

the data consists of points from 2002-01-01 up to 2022-04-01. Moreover, a uniform ESG disclosure

has not been and still is not a requirement across companies (some European countries have imposed

requirements in recent years), and ESG data may in general not be adequately available nor robust before

the beginning of the 2000s. We use macroeconomic data ranging from 1999 to 2022. Macroeconomic

data is used to train the iHMM model. Thus, it becomes advantageous to use more data if it is available

to have a larger training set, resulting in more robust regime predictions and motivating the wider range

of data used compared to the ESG and stock data.

4.3 Factor Scores

We use six different factor scores; the five traditional scores Value, Quality, Growth, Momentum, and

Risk, calculated using individual factors, and ESG factor scores. Fons et al. (2021) uses 25 different fac-

tors from the five factor families (Value, Growth, Momentum, Quality, Size, and Volatility/Risk/Beta).

Similarly, Nguyen & Nguyen (2015) and Nguyen & Nguyen (2021) also use factors but a different set

(Free cash flow/Enterprise value, Earnings/Price, Sales/Enterprise, and Long-term sale growth). The

selected composition of the traditional factors is based mainly on Fons et al. (2021) by taking a smart
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beta investing approach. See Table 2 for the scores and factor breakdown selected for this thesis.

Table 2: Score factor components

Score Components

ESG: ESG, Environmental, Social, and Governance

Value: Price to Earnings, Price to Book, Price to Cash flow, and Free Cash flow Yield

Quality: Return on Assets, Return on Equity, EBIT margin, and Operating Margin

Growth: Price to Sales growth, Enterprice Value to Sales growth, Free Cash flow growth,
and Earnings per Share growth

Momentum: 1, 3, 6 and 12 months stock price momentum

Risk: 1, 3, 6, and 12 months stock price volatility

In contrast to Fons et al. (2021), we do not include ”Size” in our factors, even though it is one of

the most prominent in factor models. Since we are using a Z-score methodology (described in detail in

section 5, methodology) for all our variables, it means that in the case of company size, we have to take

a stance on if larger companies or smaller companies should receive a higher score. Some investors prefer

larger and safer companies with a lower expected return, while others prefer smaller companies that are

riskier but have a larger expected return. Thus, to keep the analysis more neutral and avoid any bias,

we decide not to include company size as a factor. We investigate whether we exclude vital information

from the model when removing Size by conducting robustness tests in section 6.4. The results yield

worse performance for all portfolios and verify that we can proceed with our method.

Table 3 displays a correlation table for all factor scores. Overall, the correlation between the tradi-

tional factors is low, indicating that the indicators are independent in representing the economics, while

the ESG factors show a higher correlation within each pillar. See the Table A.3 in Appendix A for

descriptive statistics.

Table 3: Factor scores correlation table

Variables Momentum Risk Value Quality Growth ESG Environmental Social Governance
Momentum 1.00
Risk 0.03 1.00
Value -0.15 0.01 1.00
Quality 0.06 0.30 -0.05 1.00
Growth 0.22 0.01 -0.04 0.06 1.00
ESG -0.04 0.11 0.09 -0.03 -0.01 1.00
Environmental -0.04 0.10 0.13 -0.03 0.00 0.84 1.00
Social -0.04 0.11 0.09 -0.03 -0.01 0.89 0.70 1.00
Governance -0.03 0.05 0.04 -0.02 -0.01 0.71 0.40 0.43 1.00
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4.4 Macroeconomic data

We acknowledge the potential challenge of deciding on proper representative macroeconomic factors due

to the diversity of Europe compared to, for example, a single country such as the United States. There is

also the issue of selecting x number of variables to use in the model. Using few macroeconomic indicators

may result in the model being too basic. However, use too many, and it may become difficult for the

model to identify patterns in the historical data as more regime combinations become possible, especially

with the use of an iHMM.

Nguyen & Nguyen (2015) finds that the S&P 500 performs significantly differently across various

states of four macroeconomic variables: inflation (consumer price index), industrial production index

(INDPRO), stock market index (S&P 500), and market volatility (VIX). The underlying explanation

is that these macroeconomic variables exhibit at least two states: bull/bear for the stock index, infla-

tion/deflation for inflation, and low/high volatility for market volatility. In accordance with Nguyen

& Nguyen (2015), but with a focus on European markets, three macroeconomic variables are selected

based on their significant effects on stock prices; one for the European stock market, the corresponding

volatility index, and European inflation. We also add a fourth variable measuring the actual market

volatility in order to give the model more depth. Furthermore, following Zhou et al. (2020) findings

that there is a correlation between firm-level ESG practices and GDP per capita, we add an additional

macroeconomic variable, GDP per Capita, as a proxy for the ”ESG market”, ending up at a total of five

macroeconomic factors. See table 4 for details.

Table 4: Macroeconomic factor details

Macroeconomic factors Details

Stock Market Index: EURO STOXX 50 index created by STOXX. Owned by Deutsche
Börse Group. Weekly close prices of the index are used as the
stock market indicator.

Implied Volatility Index: Weekly data. VSTOXX index based on EURO STOXX 50 real-time
option prices. Reflects the market expectations of near-term to
long-term volatility by measuring the square root of the implied
variance across all options of a given time to expiration.

Actual Volatility: Used to capture the actual volatility to complement implied volatility.
We calculate the weekly volatility of the EURO STOXX 50 index.

Inflation Index: Calculated monthly. Based on the Harmonized Index of Consumer
Prices for the European Economic Area. Used by ECB to calculate
inflation levels.

GDP per Capita: GDP per Capita for the EU. Calculated on quaterly basis.

We scale the data by normalizing it. We calculate the percentage difference for all the variables
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besides inflation, which is already the change in the Harmonized Index of Consumer Prices, to have all

macroeconomic data in the same unit.

4.5 Refinitiv Eikon’s ESG database

ESG scores by Refinitiv Eikon are widely used, both in academic research and the investment manage-

ment industry. Refinitiv ESG data has been mentioned in over 1,200 academic papers by October 2020,

and assets managers such as BlackRock use the database. The World Economic forum referenced Refini-

tiv ESG data in a whitepaper in 2019 and the ESG data was analyzed as one of three key rating providers

(Berg, Fabisik & Sautner 2020); (Boffo & Patalano 2020); (Eltogby, Brown & Corrigan 2019). Accord-

ingly, Refinitiv ESG offers ”one of the most comprehensive ESG databases in the industry”, covering

over 80% of the global market cap across more than 10,000 global companies in 76 countries (Refinitiv

2022). Given the richness of Refinitiv Eikon’s ESG database, we select the database for this thesis.

The ESG scores build upon relative performance. Scores are based on Environmental and Social per-

formance in a given company’s sector, and the Governance score is based on the country of incorporation.

Given the variety of importance of the different E, S, and G factors across industries, Refinitiv map each

metrics’ materiality for each industry. The core of Refinitivs’ methodology is company disclosure with

applied weighting based on material or immaterial data points to either negatively or positively impact

company reporting. The data is continuously updated on a weekly basis. However, ESG disclosure by

companies is typically done on a yearly basis, resulting in the ESG data updating once a year. Following

this, we use yearly ESG data points in this thesis. An overview of the ESG methodology is presented in

Figure 4.

Figure 4: Refinitiv ESG Score structure, based on Refinitiv Eikon (2022a)
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The score structure is as follows: over 500 company-level measures with a subset of 186 of the most

comparable and material measures per industry compiles the overall company assessment and scoring

process3. These data points are grouped into ten categories on which each ESG pillar score is based

upon. For Environmental, we have Resource use, Emissions, and Innovation. Social in ESG covers the

categories Workforce, Human rights, Community, and Product responsibility. Lastly, for Governance,

we have Management, Shareholders, and Corporate social responsibility (CSR) strategy (see Table A.2

in the appendix score definitions). The respective ESG pillar score is normalized to percentages ranging

between 0 and 100, and a relative sum of the category weights is calculated based on the sector a given

company operates within. Lastly, an aggregated ESG score is given to reflect a company’s overall ESG

performance.

Figure 5 presents the monthly development of ESG scores. The y-axis is the average ESG score

across our stocks and the x-axis shows datestamps. There is a clear positive development in the average

ESG score until 2019, where the average score somewhat declines. Notably, the average ESG score has

increased more than 30% from 37.5 to north of 50 during 2002 to 2022. This is in line with the positive

trajectory of ESG integration and awareness. We take this into account and create two portfolios to

compare the results, one with the full period and another portfolio using more recent data.

Figure 5: Average ESG score development

3Details of the 500 company-level ESG measures and the subset of 186 measures is available upon request at Refinitiv.
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4.5.1 Limitations of ESG Dataset selection

A key challenge in conducting ESG activities, either research or portfolio construction, prevails in mea-

suring a firm’s ”ESG quality”. There is a need for quantifiability of how well a firm performs with

respect to ESG criteria, hence the use of ESG scores constructed by professional data providers. While

ESG scores are the best proxy available, they are not without issues. Amel-Zadeh & Serafeim (2018)

discusses the important limitation to using ESG information, namely, the lack of reporting standards.

Consequently, there is a lack of comparability, reliability, quantifiability, and timeliness. Other papers

are written on this, for example, Billio et al. (2021) finds that there is a lack of commonality in the defi-

nition of ESG (i) characteristics, (ii) attributes, and (iii) standards in defining E, S, and G components.

Billio et al. (2021) also provides evidence that heterogeneity in rating criteria can lead to agencies having

opposite opinions on the same evaluated companies and consequently creating different benchmarks.

These issues are evident in Refinitiv Eikon’s ESG database. Berg, Fabisik & Sautner (2020) compares

ESG scores with a sample between 2011 and 2017 to the same sample extracted in September 2020 in

Refinitiv Eikon’s ESG database. During this period, Refinitiv Eikon adjusted its scoring methodology,

which came into effect on April 6, 2020, and retroactively modified historical scores in the database. 13%

of the sample was subject to an upgrade, and 87% downgraded. No score remained constant. The overall

ESG scores in the rewritten version showed on average 20,6% lower scores than the initial version.

The results presented by Berg et al. (2020) give weight to the other literature mentioned on the

issue of ESG databases. The implications for this research are a lack of comparability to research before

Refinitiv Eikons re-scoring and other ESG databases commonly used (such as the MSCI ESG database).

Since the ESG data vendors do not provide a full breakdown of the scoring process and are ever-changing,

the reliability of empirical studies may be questionable in the long run. The method proposed in this

paper will add ESG data as a layer of information to find if it is informational or not, thus, will be able

to process and compare different datasets.
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5 Methodology

This section presents the methodology of our study. First, the reader is given an overview of the

algorithm to better understand the different steps taken in the model. Next, we break up the different

parts of the model and present them more in-depth, starting with Z-scoring, followed by a description

of the iHMM iteration process, factor scoring through Fama-MacBeth regression, portfolio building, and

finally, portfolio evaluation metrics.

5.1 An overview of the algorithm

We describe the algorithm as follows: The algorithm starts with five years (1999-2003) worth of weekly

data and runs the iHMM with our five macroeconomic variables as inputs for initial model training.

The iHMM predicts all the regimes for every week of data input based on the macroeconomic variables.

For each week of regime prediction, the portfolio rebalances if the predicted regime is different from the

prior regime. The model segments and takes all the available stocks when rebalancing occurs up until

that point and only keeps the data in which the historical regimes are the same as the current regime,

building a temporary dataset. The model runs a Fama-MacBeth regression on the factors and returns

to give them a value based on their effect on the returns. The factors are ranked, with the highest

values receiving the highest scores. For example, in the baseline model, we have five stock factors ranked

through Fama-Macbeth regression from highest to lowest: [5,4,3,2,1] and divided by 5+4+3+2+1 = 15

in order to yield a factor weight for a given time point and is used to calculate a composite score for each

stock. The model then calculates a composite score for all the stocks based on the latest 12 weeks of data

available. The top 50 stocks based on the composited score are selected in the portfolio and weighted

equally. EURO STOXX 50 is the market index for our comparison and compromises of 50 stocks, hence

the same number of stocks in our portfolio to enable comparability. Finally, the algorithm iterates the

process described so far by adding one week of data until the model predicts a regime change, followed

by rebalancing the portfolio before iterating again. We apply a 3% trading cost each time the portfolio

is rebalanced. See Figure 6 for an illustration of the algorithm.
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Figure 6: Illustration of the algorithm

5.2 Z-scores

First, we optimize our large amount of raw data before using it in our model. We optimize by using a

methodology in which we transform our six standard factors and four ESG factors. We follow Asness

et al. (2019) framework and standardize factor variables and group them into a Z-score, resulting in one

score for each of our factors.
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In accordance with Frey (2018), the Z-score calculation is as follows:

Zi
N =

V i
N − µi

σi
(20)

where Zi
N is the standardized score for factor i of stock N, V i

N is the factor value for for factor i of stock

N, µi is the cross-sectional mean, and σi is the standard deviation of factor i. The factor score equals:

ScoreiN =
Z1
N + Z2

N , ..., Zi
N

n
(21)

where n is the number of factors. Each Z-score is calculated based on each week in the data to avoid

future ”unobserved” data affecting observed data. We build the portfolios based on the Z-scores and

historical performance in the different regimes.

5.3 Infinite Hidden Markov Model iterations

After optimizing our data, we feed it to the iHMM, starting with the five macroeconomic variables using

weekly data input from 1999 to 2003. Every weekly datapoint will generate one regime based on the

five macroeconomic variables. Predicting a new regime compared to the previous regime results in a

rebalancing of the portfolio and potentially changes the stock composition of the portfolio based on the

scores. A continuation of a regime results in no portfolio adjustment, and another week of data is input

as the model loops. We utilize an expanding window, meaning that we continuously add new data to

the model while keeping the older data. This process allows the iHMM to get more robust predictions

as more macroeconomic data is processed while the factor data stays relevant as we cannot tell how far

back the data for the same regime will be. Figure 7 displays an illustration of the expanding window.

Figure 7: Illustration of an expanding window
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We utilize the iHMM’s ability to decide the optimal number of regimes based on data rather than pre-

determining them in contrast to previous research using an HMM. The result is that each iteration can

have a different number of regimes. For example, iteration n0 may have three different regimes [1,2,3,1,3],

and n1 can have five [5,4,3,2,1,3]. It is a result of the expanding window in which newly available

macroeconomic data continuously trains the model, and future iterations may alter the previously defined

regimes. We do not rebalance the portfolio for changes in the previously defined regime. In the mentioned

example, the portfolio stays unchanged as the latest regime in n0 (3) is the same as the predicted regime

in iteration n1 (3), even though the previously defined regimes are changed. We also have one security

feature built into the model. If the model detects a new regime, but that regime has not yet been found

historically, the model will not rebalance the portfolio. Another week of data is added instead, and

the model is rerun. This process eliminates noise in the model, and because once the model scores the

stocks, it would only have one week of data available, i.e., the latest week added, and may result in poor

allocations due to the lack of data.

5.4 Factor scoring and portfolio building

Once a new regime is predicted, the model temporarily strips the dataset of all stock and factor data for

periods that do not match the regime. The model runs a Fama-MacBeth regression on the temporary

dataset. Each week yields a regression output only used for scoring and is thus not interesting to analyze

from a statistically significant point of view since all factors are utilized in the model regardless. How-

ever, the signs are of interest as they are used to rank the values from smallest to largest. To account

for the possibility of negative values in the Fama-MacBeth regression, we allow weights to be negative,

showcasing that certain factors have a negative impact on returns. The values are divided by the total

sum, resulting in weights that add up to 100%. Similarly to Nguyen & Nguyen (2021), we keep the 12

most recent week’s data (one quarter) to avoid look-back bias and avoid having the same stock selec-

tion continuously in the portfolio. This step addresses the risk of having stocks selected in the coming

portfolio constructions due to receiving an exceedingly high score early in the model, even if they would

be deemed a poor pick in later stages. The result is a panel data set with stocks, their respective factor

scores, and the calculated factor weight. Next, each factor score is multiplied by the corresponding factor

weight, and each stock receives a composite score. The model picks the top 50 stocks with the highest

composite scores based on the results and adjusts the portfolio. Since new data is added by the end of

each trading week, the rebalancing of the portfolios occurs at the beginning of the following trading week.

Each stock is equally weighted independent of the composite scores. Table 5 presents the portfolio models.
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Table 5: Portfolio models

Model Model breakdown

Base Model: Momentum, Risk, Value, Quality and Growth factors

ESG Model: Base + ESG, Environmental, Social and Governance factors

E,S,G Model: Base + Environmental, Social and governance factors

ESG, no E,S,G Model: Base + ESG factor

Environmental Model: Base + Environmental factor

Social Model: Base + Social factor

Governance Model: Base + Governance factor

By comparing the five different ESG models with the Base model, we observe if different ESG factor

compositions can enhance the portfolio performance and if the ESG factors add value to the portfolio

building framework.

5.5 Portfolio performance evaluation metrics

We select the following seven metrics to compare and evaluate the portfolio’s performances:

• Compounded annual growth rate (CAGR): CAGR is the rate of return required for an

investment to increase from its initial balance to its final balance, providing profits are reinvested

at the conclusion of each period of the investment’s life span. The formula for CAGR is as follows:

CAGR =

(
Ending value

Start value

) 1
n

− 1 (22)

• Annual Volatility The pace at which a stock’s price rises and falls over a given period is referred

to as volatility. It is the same thing as the weekly returns’ standard deviation. The riskier an

investment is, the higher the stock volatility. Volatility is often measured in years. The formula

for Annual volatility is as follows:

σA = Weekly standard deviation ∗
√
52 (23)

• Sharpe Ratio The Sharpe ratio measures the return on investment per unit of risk. A greater

Sharpe ratio indicates superior risk-to-reward performance. We divide the annualized return by
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the annualized standard deviation to get the annualized Sharpe ratio:

SR =
Rp −Rf

σA
(24)

• Information Ratio Similar to the Sharpe Ratio, the Information ratio is an indicator of risk-

adjusted returns. However, the information ratio uses a benchmark return such as an index instead

of a risk-free return (in this case, the EURO STOXX 50 index). A higher Information Ratio implies

a better portfolio with a higher return in excess of the benchmark, given the risk taken.

IR =
Portfolio return− Benchmark return

σ(Portfolio return− Benchmark return)
(25)

• T-test For the t-test, we use a Dependent t-test for paired samples. This test is utilized when

the samples are dependent, that is, when only one sample has been examined twice (repeated

measurements) or when two samples have been matched or paired. We test the null hypothesis

that the two samples, the ESG factor portfolio models and the Base portfolio model, have identical

average (expected) values. The formula for the t-test is:

t =
X̄D − µ0

SD/n
(26)

• Average ESG score We look at the average ESG score for the portfolios for the whole period to

examine if adding ESG factors will result in a portfolio with higher ESG scores. The formula for

the average ESG score is:

µESG =
ESG1 + ESG2 + ...+ ESGn

n
(27)

• Multi-factor Alpha Following Bruno et al. (2021), we use a multi-factor model to analyze port-

folio alphas. A positive and significant alpha implies improved risk-adjusted returns. that the

portfolios enable investors to improve their risk-adjusted returns. We deploy a standard time series

regression to measure the level of returns of the ESG models that do not come from exposure

to traditional factors. The multi-factor model includes seven factors: the market (MRK), value

(HML), size (SMB), robust (RMW), conservative (CMA), and momentum (WML) factors. We

estimate alpha in time-series regressions of weekly ESG portfolio returns (in excess of the risk-free
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rate) on factor returns:

rS,t − rf,t = αs + βMKT,S(rM,t − rf,t) + βSMB,S(SMBt) + βHML,S(HMLt)

+ βRMW,S(RWMt) + βCMA,S(CMAt) + βWML,S(WMLt) + εS,t (28)

The six factor’s data is obtained from French, Kenneth R (2022).
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6 Results and analysis

This section presents the results and analysis of our study using two periods, one for the full range of

data (2003-2022) and one using recent years (2019-2022) to discern any differences in more recent years

given the increase in ESG awareness. We need historical stock data to create the composite scores, thus

the first year of data (2002) is not used for portfolio construction. First, we present the regimes iterated

through the iHMM. Next, the Fama McBeth regression outputs are presented, which describe the weight

of the returns allocated to each factor in the portfolios. Finally, the performance of our constructed

portfolios is presented based on our metrics as described in the methodology.

6.1 Final iHMM iteration results

We run the iHMM weekly and experience regime switches frequently. On average, the model results in

14-15 regimes per iteration. Table 6 presents the final iteration and the regime breakdown. Regimes 0,

2, and 6 are the most typical regimes, while 5, 11, and 14 are the most uncommon. Furthermore, we can

see the different average levels of growth for each of our macroeconomic variables in the given regimes.

Figure A.1 in appendix A illustrates the regime switches and the stock index performance.

Table 6: Final iHMM iretation results

Regime Count Stock index Implied volatility Actual volatility Inflation GDP/Cap
0 205 0.11% -0.67% 1.23% 0.17% -5.16%
1 50 2.77% -10.83% 4.11% 0.23% -6.82%
2 338 0.41% -0.70% 0.75% 0.21% 4.60%
3 32 -4.80% 29.96% 3.18% 0.30% -2.01%
4 23 -3.23% 19.83% 5.26% -0.10% -2.65%
5 1 -12.33% 168.11% 8.40% 0.20% -8.33%
6 240 0.16% -0.31% 1.53% 0.06% -0.27%
7 118 2.06% -11.00% 2.99% 0.22% 4.57%
8 20 -3.96% 7.42% 3.40% 0.22% -6.72%
9 8 6.95% -16.42% 9.78% 1.19% 3.36%
1 23 3.55% -6.10% 6.39% 0.05% 1.10%
1 6 -1.48% 23.13% 1.29% -0.32% -1.91%
1 11 0.15% -5.44% 1.57% -0.24% 10.95%
1 132 -2.24% 12.49% 2.54% 0.21% 4.52%
1 4 -10.70% 51.45% 10.89% 0.00% 0.28%

6.2 Average Factor score weights

Table 7 presents the average allocated factor weights through the Fama-Macbeth regressions for the

entire duration of our study (2003-2022). The top row displays the different constructed portfolios, and

the leftmost column displays the factors. We can see that Momentum and Growth are allocated the

largest weight on average in all portfolios, while the Risk and Quality factors have the lowest overall.
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The allocated ESG weights are relatively low compared with the traditional factors.

Table 7: 2003-2022 Average Factor score weights

2003-2022 Base ESG ESG, no E,S,G E,S,G Environmental Social Governance

Momentum 66.67% 80.00% 42.86% 44.44% 42.86% 42.86% 42.86%
Risk -66.67% -40.00% -28.57% -22.22% -28.57% -28.57% -28.57%
Value 33.33% 60.00% 28.57% 33.33% 28.57% 28.57% 28.57%
Quality -33.33% -20.00% -14.29% -11.11% -14.29% -14.29% -14.29%
Growth 100.00% 100.00% 57.14% 55.56% 57.14% 57.14% 57.14%
ESG - 20.00% 14.29% - - - -
Environmental - -60.00% - -33.33% 14.29% - -
Social - -80.00% - 11.11% - 14.29% -
Governance - 40.00% - 22.22% - - 14.29%

Table 8 displays the average allocated factor weights from the Fama-MacBeth regression for 2019-

2022. Momentum and Growth still have the largest weights on average, except for Growth in the ”ESG”

model, in which the ESG pillar factors have the largest weights. Similarly, Risk and Quality are on

the lower end. The results are generally unchanged for the ESG factor’s weights in the other models

compared to the entire period results, except for the Environmental pillar in the ”E,S,G” portfolio, which

changes sign and weight with the Social pillar. Initially, it would seem that ESG scores are more promi-

nent in recent years for portfolio construction, given their weights in the Fama-MacBeth regression. The

following section will present the model’s performance in detail.

Table 8: 2019-2022 Average Factor score weights

2019-2022 Base ESG ESG, no E,S,G E,S,G Environmental Social Governance

Momentum 66.67% -60.00% 42.86% 44.44% 42.86% 42.86% 42.86%
Risk -33.33% 20.00% -14.29% -11.11% -14.29% -14.29% -14.29%
Value 33.33% -40.00% 28.57% 33.33% 28.57% 28.57% 28.57%
Quality -66.67% 40.00% -28.57% -22.22% -28.57% -28.57% -28.57%
Growth 100.00% -80.00% 57.14% 55.56% 57.14% 57.14% 57.14%
ESG - -20.00% 14.29% - - - -
Environmental - 80.00% - 11.11% 14.29% - -
Social - 60.00% - -33.33% - 14.29% -
Governance - 100.00% - 22.22% - - 14.29%

6.3 Portfolio Performance

6.3.1 Full period performance (2003-2022)

Figure 8 illustrates the different portfolio’s performances for 2003-2022. We note that all the constructed

portfolios outperform the market index EURO STOXX 50. The Base portfolio outperforms ESG fac-

tor portfolios in cumulative returns. The ESG factor portfolios also show discrepancies, notably in the

”E,S,G” and ”Environmental” portfolio models, in which we can observe relatively poor performance.
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Figure 8: 2003-2022 Portfolio performance

Table 9 presents the results in detail and outlines the differences. The Base portfolio model has the

highest CAGR of 19.09%, and the closest performing portfolio is ”Governance” with an 18.50% CAGR.

The volatilities of the portfolios are similar, ranging from ”Environmental” 19.79%, which is lower than

the Base portfolio’s volatility of 20.36%, to ”E,S,G” 21.81%. The Base portfolio also displays the best

Sharpe ratio of 0.91 and the highest Information Ratio of 0.77. However, none of the ESG factor portfolio

return’s t-tests against the Base portfolios’ return are statistically significant, i.e., we cannot reject the

null hypothesis that the two samples have identical average (expected) values.

Table 9: 2003-2022 Portfolio Performance

2003-2022 CAGR Volatility SR IR t-test P-value α α P-value ESG score
Base 19.09% 20.36% 0.93 0.77 - 0.32% 0.000 43.67
ESG 16.09% 21.81% 0.73 0.63 0.43 0.26% 0.012 43.55
ESG, no E,S,G 18.33% 20.19% 0.90 0.75 0.53 0.31% 0.001 43.73
E,S,G 16.09% 21.81% 0.73 0.63 0.43 0.26% 0.012 43.55
Environmental 17.55% 19.79% 0.88 0.72 0.15 0.29% 0.001 44.41
Social 18.36% 20.07% 0.91 0.75 0.51 0.30% 0.001 43.75
Governance 18.50% 20.14% 0.91 0.76 0.61 0.30% 0.001 43.72
Market 2.38% 21.10% 0.11 - - - - -

We observe positive and statistically significant alphas, implying that the returns in the ESG factor

portfolios not arising from the traditional factors are significant. The alphas, however, are low in terms
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of raw percentage, ranging from 0.26% in ”E,S,G” to 0.31% in ”ESG, no E,S,G”. Notably, we can

observe positive and significant alphas in the Base portfolio model too with an alpha of 0.32%. Following

these results, we consider that the alphas in the ESG factor portfolio models may not be due to ESG

information as the Base portfolio model with the highest performance also generates similar alpha. Thus,

the returns may instead be a result of the regime-switching iHMM.

Finally, we observe that the average ESG scores for the portfolios are similar without a substantial

deviation to the Base portfolio model. Stocks with higher ESG scores do not seem to be allocated more

to the portfolios on average. Furthermore, the ”ESG” and ”E,S,G” portfolios results are identical, i.e.,

the algorithm has allocated the same stocks to both models. A possible explanation is a high correlation

in the two sets of ESG data, where ESG is a compounded score of the E, S, and G pillars, meaning that

models do not benefit from including both sets of factors simultaneously.

6.3.2 Recent years performance (2019-2022)

Figure 9 displays the performance of our constructed portfolios for the period 2019-2022. All portfolios

beat the market index EURO STOXX 50, similar to the results for the full period, where the Base

portfolio outperforms the other portfolios. Table 10 presents the results in detail.

Figure 9: 2019-2022 Portfolio performance
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Table 10: 2019-2022 Portfolio Performance

2019-2022 CAGR Volatility SR IR t-test P-value α α P-value ESG score
Base 30.92% 20.28% 1.52 0.84 - 0.46% 0.027 45.25
ESG 28.01% 23.30% 1.20 0.82 0.91 0.64% 0.013 44.98
ESG, no E,S,G 26.39% 21.60% 1.22 0.68 0.26 0.43% 0.052 45.03
E,S,G 28.01% 23.30% 1.20 0.82 0.93 0.65% 0.012 44.98
Environmental 26.75% 21.53% 1.24 0.70 0.28 0.43% 0.049 45.09
Social 29.68% 21.23% 1.39 0.79 0.76 0.45% 0.037 45.02
Governance 25.60% 21.40% 1.19 0.66 0.16 0.42% 0.053 45.12
Market 8.66% 23.56% 0.36 - - - - -

The Base portfolio model has the highest CAGR of 30.92%, followed by the ”Social” portfolio with

29.68%. Interestingly, the worst-performing portfolio is the ”Governance” with a CAGR of 25.60%,

whereas it has the second-best performance in the full period. The Base model portfolio displays lower

volatility of 20.28% compared with the benchmark market with a volatility of 23.56%, and ESG factor

portfolios have volatilities in between.

In the other performance metrics, we can observe that all portfolios display a Sharpe ratio excess

of 1 compared with the full period in which all portfolios have a Sharpe ratio less than 1. The Base

portfolio model has the highest Sharpe ratio and Information ratio of 1.52 and 0.84, respectively. We

note that none of the ESG portfolio’s returns t-tests against the base model returns are significant, i.e.,

we cannot reject the null hypothesis that the two samples have identical average (expected) values. As

for average ESG scores for the portfolios, the portfolios have a similar score for the period 2019-2022 as

2003-2022 despite the higher average ESG scores in our dataset (see Figure 5). The average ESG score

of the portfolio is approximately 45 and is significantly lower than the average of the dataset for the

same period, which is slightly above 50.

All portfolios display positive and significant alphas at a 10% significance level or lower. Accordingly,

this implies that the returns in the portfolios not coming from the traditional factors are significant.

Based on the same reasoning for the alphas as in the full period results, we do not conclude that the

ESG scores’ informational content explains the alpha generated.

6.4 Robustness tests

We perform additional tests to analyze the robustness of our results. First, we have discussed reasons to

exclude size as a factor in our risk scores. We run a model including a Size factor score to analyze if model

performance improves and ensure that our model does not exclude vital information. Unlike the other

factors, we do not imply if larger or smaller companies shall receive a better score. By having a factor

score built on a single factor (Size), the model itself will determine the factor effect. This methodology

is used solely for the purpose of robustness checking. Investors typically follow an investment thesis and

would select if a smaller or larger company would receive a higher weight in the Score factor. Second,
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we have highlighted the issue of selecting macroeconomic variables to represent Western Europe. For

example, the United Kingdom is no longer part of the EU post-Brexit, hence not included in all GDP

calculations, but UK data is still a large part of our dataset presented in Section 4, Data. Therefore, we

run additional tests using only UK equities and macroeconomic variables for the UK. Finally, we run a

final analysis including only Sweden as they, in general, are perceived as front-runners in terms of ESG

(Morningstar 2021). Note that Sweden keeps more companies post-screening in Table 1 relative to the

other major economies (a 39% reduction compared with the 55% average). These robustness checks will

be analyzed using full-period data. The tables of results for the robustness tests can be found in section A.

Size The inclusion of Size as a factor results in all portfolios having worse performance in the selected

metrics (see Appendix A, Table A.4 and Table A.5). Furthermore, the allocated weights from the Fama-

MacBeth regressions are on the lower end for all portfolios. Our results imply that other factors are

more important in our model, whereas Size added noise.

United Kingdom We tailor the macroeconomic factors for running a UK model. We use FTSE 100

for the stock index, FTSE Implied Volatility Index Series, inflation, and GDP per Capita. The results

are presented in (Appendix A, table A.6). Most portfolios outperform the baseline model except for the

”ESG” and ”E,S,G” portfolio models. Overall, the portfolios with only UK stocks do not outperform

the original portfolios, implying that the effect of including the UK is not dominant in our results.

Sweden We tailor the data for Sweden similar to the UK tests. We use the macroeconomic variables

OMX30 as the stock index, inflation, and GDP per Capital for Sweden. There is no implied volatility

index for Sweden, thus, the VSTOXX 50 is selected as we use it in the original models. The results are

presented in appendix A, table A.7. The results align with the original dataset in which the base portfolio

model has the best performance. Identical to the UK tests, using a Swedish dataset with Swedish equities

yields lower performance than the original model for all portfolios.
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7 Discussion

Our findings show that the iHMM portfolios consistently outperform the market index EURO STOXX

50, both for the full period portfolios (2003-2022) and the more recent period portfolios (2019-2022).

The results verify that the iHMM is capable of satisfactory financial performance, similar to the work

on HMM in stock selection, e.g., Nguyen & Nguyen (2021) and Wang et al. (2020). In terms of ESG

factor performance, we conclude that the regime-switching iHMM does not utilize ESG factors in a way

that generates ESG-specific alphas. To analyze the portfolios, we first consider the full period. We

observe that the models using ESG factors fail to outperform the base model constructed using the

traditional factors in the performance metrics, albeit insignificant t-tests for all ESG factor portfolios.

Giese et al. (2020) finds evidence that the environmental and social pillars have a significant positive

impact on companies’ stock performance in the long run and governance in the short run. Based on our

main results, we do not find the suggested effect to be captured in ESG scores’ informational content in

addition to what may already be explained by traditional factors. However, we observe slightly different

results in the robustness tests, notably for the UK. The respective pillar model portfolios outperform the

base model portfolio, suggesting that country-specific effects may have an impact. Still, we do not draw

any conclusions based on the UK results considering the t-tests’ insignificance and the small alphas. The

results could be of interest to more niche investors in specific markets and researched further.

The results for the more recent period do not differ from the full period results, only in magnitude.

We constructed two sets of results based on an increase in ESG activities and the positive movement

in recent years, which could affect high-ESG score companies’ stock prices. We do not document such

effects. A possible explanation is that heavy recent ESG investments have a drawback on financial

performance in the short run given the costs of implementing company ESG measures. Such explanation

would have additional weight if, in contrast, the full period portfolios generated meaningful alphas. It

is, therefore, more reasonable to conclude that ESG scores’ informational content is already captured

by traditional factors, and ESG scores do not provide additional meaningful effects that improve the

portfolio models’ financial performance. Indeed, Melas et al. (2017) document a positive correlation

between ESG scores and traditional factors, and the implications that ESG strategies tilt towards risk

factor style investments could explain our findings.

We use Bruno et al. (2021) approach to risk-adjust the results and analyze the alphas. We observe

statistically significant alphas for all portfolios in contrast to Bruno et al. (2021) results, albeit low

alphas. We theorize that the iHMM generates the alphas and not the integration of ESG scores, aligning

our findings with Bruno et al. (2021). Furthermore, the results suggest that the additional information

provided in our model through the ESG dataset is not significant, i.e., the ESG factors do not explain

additional returns. These findings also align with Halbritter & Dorfleitner (2015), who fails to observe

a relationship between ESG ratings and returns, and we conclude that ESG integration is not a source
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of outperformance. Neither does the inclusion of ESG scores seem to provide lower volatility as a ”safer

bet” per Ma (2019) and Melas et al. (2017), who find that ESG factors have a positive relationship with

low volatility. In contrast, the ”ESG” and ”E,S,G” models have the highest volatilities for both periods

with a lower CAGR.
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8 Conclusion

This thesis investigates whether ESG data affects portfolios’ risk-return characteristics in an infinite

Hidden Markov Model. We analyze ESG scores’ informational content by developing a baseline portfolio

model using traditional factors (Value, Quality, Growth, Momentum, and Risk), then expand the model

by adding layers of ESG factors. This method allows us to observe whether ESG scores capture additional

effects that traditional factors do not. The study uses equity data for Western European stocks for the

period 2003-2022, and the results are divided into a full period study and a study using more recent

year’s data (2019-2022) to investigate if the ESG phenomenon changes the results.

Firstly, consistent with previous research on stock selection using regime-switching models, we find

that the iHMM is capable of satisfactory financial performance when compared to EURO STOXX 50

as a benchmark. This study has contributed to the existing literature by expanding on the HMM into

the iHMM for stock selection and factor investing. With the use of an iHMM, the regime specification

becomes data-driven, overcoming previous challenges of proper specification, which has used inefficient

methods or greedy approaches.

Secondly, we investigate the performance metrics of constructed portfolios using different layers of

ESG factor data compared with the baseline model. The Base portfolio model outperforms all portfolios

constructed with ESG factors in terms of CAGR with lower volatility than almost all portfolios. The

ESG portfolios’ returns t-tests against the Base portfolio’s return are not significant, i.e., we cannot

reject the null hypothesis that the two samples have identical average (expected) values.

Lastly, we risk-adjust our results and analyze the alpha. We observe statistically significant alphas,

albeit low. The Base portfolio model display similar alpha as the other ESG models, thus, we conclude

that ESG scores are not the source and contribute the alpha to the iHMM. Furthermore, we conclude

that ESG scores do not capture effects that improve portfolios’ risk-return characteristics that traditional

factors do not.

The main implication of our study is that in an iHMM regime-switching framework, investors in

the Western European market should not utilize ESG scores to attempt to improve the risk-return

characteristics of their portfolios. Rather, investors may want to consider other objectives, for example,

aligning their portfolios with their values and norms or as a means to impact investing. Furthermore,

investors cannot imply that they have ”ESG portfolios” simply by integrating ESG factors in their

models. Evidently, doing so did not significantly impact our portfolio’s average ESG score, which hardly

increased compared to the baseline model.
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8.1 Further research

We note that our results rely on the ESG data provider Refinitiv Eikon for this thesis. The methodology

for the ESG scoring differs among the providers, and Billio et al. (2021) provides evidence of heterogeneity

in rating criteria. We suggest recreating this research using another prominent ESG dataset, such as the

ESG dataset provided by MSCI, to find whether the results are robust. Additionally, further research may

analyze the ESG scores in-depth, using data that constructs the compounded score, such as emission data.

It may neutralize bias in rating providers’ methodologies and value gains possibly found in respective

company metrics. Furthermore, based on the results of the robustness tests, notably for the UK, our

model can be applied to other geographical markets to verify further the robustness of the results and

possibly capture country-specific effects.

We are entering unprecedented times where climate risks are increasingly taking physical form as

drought, floods, and other natural disasters. It may have an impact on ESG investing, where it becomes

more material as regulatory interventions increase. Companies well-positioned may face a lower risk

of being affected by regulations and disruptions. Consequently, we cannot say that our results have

timelessness, as noted by Amel-Zadeh & Serafeim (2018). Future research may want to replicate this

study if the conditions have drastically changed and expect different results.
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A Appendix

Table A.1: Distribution of industries

Industry # Companies pre-screening # Companies post-screening Change

Academic Educational Services 6 3 -50%
Applied Resources 52 39 -25%
Automobiles Auto Parts 59 45 -24%
Banking Investment Services 377 175 -54%
Chemicals 68 48 -29%
Collective Investments 236 7 -97%
Consumer Goods Conglomerates 11 11 0%
Cyclical Consumer Products 151 99 -34%
Cyclical Consumer Services 162 103 -36%
Energy - Fossil Fuels 107 63 -41%
Financial Technology (Fintech) 15 7 -53%
Food Beverages 143 76 -47%
Food Drug Retailing 32 21 -34%
Healthcare Services Equipment 114 69 -39%
Industrial Commercial Services 235 160 -32%
Industrial Goods 254 183 -28%
Insurance 60 46 -23%
Investment Holding Companies 71 13 -82%
Mineral Resources 90 63 -30%
Personal Household Products 17 11 -35%
Pharmaceuticals Medical Research 145 72 -50%
Real Estate 291 110 -62%
Renewable Energy 31 9 -71%
Retailers 91 60 -34%
Software IT Services 252 123 -51%
Technology Equipment 125 77 -38%
Telecommunications Services 45 32 -29%
Transportation 95 65 -32%
Utilities 87 49 -44%
Other 692 -

Total 4114 1839 -55%
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Table A.2: Refinitiv ESG Score definition (Refinitiv Eikon 2022a)
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Table A.3: Descriptive statistics

Variable count Mean Std. Dev. min max
Momentum 1mo 1655170 0.01 0.20 -0.98 80.87
Momentum 3mo 1655170 0.03 0.38 -0.98 98.00
Momentum 6mo 1655170 0.07 0.81 -0.99 579.00
Momentum 12mo 1655170 0.15 1.63 -0.99 476.00
Volatility 1mo 1655170 3.56 10.12 0.00 4011.61
Volatility 3mo 1655170 4.34 11.07 0.00 2467.61
Volatility 6mo 1655170 4.59 11.61 0.00 1780.67
Volatility 12mo 1655170 4.80 12.24 0.00 1414.30
P/E 1537736 24.35 21.78 4.72 88.69
P/B 1537736 2.67 2.67 0.30 14.13
Price to cash flow 1537736 427.36 751.11 2.10 2452.74
Free cash flow yield 1537736 4.51 13.60 -33.27 51.65
ROE 1636413 11.30 18.79 -55.00 63.40
ROA 1636413 4.92 8.18 -22.35 27.12
EBIT Margin 1636413 16.06 28.80 -88.36 92.46
Operating Profit Margin 1636413 14.58 33.02 -109.67 108.11
Price to Sales per Share Growth 1509674 0.00 0.05 -0.16 0.18
EV to Sales Growth 1509674 0.00 0.05 -0.19 0.21
EPS Share Growth 1509674 0.06 1.70 -7.00 9.25
Free cash flow growth 1509674 -0.14 4.90 -23.48 26.86
ESG Score 829339 50.30 20.82 0.43 95.71
Environmental Pillar Score 829339 46.79 28.30 0.00 99.14
Social Pillar Score 829339 52.45 23.84 0.12 98.63
Governance Pillar Score 829339 50.61 22.87 0.29 99.33
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Figure A.1: Regime switches
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Table A.4: Results including size factor

2003-2022 CAGR Volatility SR IR t-test P-value α α P-value ESG score
Base 15.04% 30.71% 0.49 0.40 - 0.0039 0.055 44.73
ESG 5.89% 22.47% 0.26 0.19 0.12 0.0029 0.054 44.67
ESG, no E,S,G 14.51% 32.24% 0.45 0.36 0.85 0.0027 0.071 44.46
E,S,G 5.89% 22.47% 0.26 0.19 0.12 0.0029 0.054 44.67
Environmental 13.65% 32.42% 0.42 0.34 0.49 0.0024 0.119 44.46
Social 14.29% 32.18% 0.44 0.36 0.72 0.0026 0.075 44.46
Governance 13.47% 32.64% 0.41 0.33 0.39 0.0024 0.114 44.46
Market 2.38% 21.10% 0.11 - - - - -

Table A.5: Fama-MacBeth results including size factor

2003-2022 Base ESG ESG, no E,S,G E,S,G Environmental Social Governance
Momentum 42.86% 45.45% 33.33% 33.33% 33.33% 33.33% 33.33%
Risk -28.57% -18.18% -16.67% -13.33% -16.67% -16.67% -16.67%
Value 28.57% 36.36% 25.00% 26.67% 25.00% 25.00% 25.00%
Quality -14.29% -9.09% -8.33% -6.67% -8.33% -8.33% -8.33%
Growth 57.14% 54.55% 41.67% 40.00% 41.67% 41.67% 41.67%
Size 14.29% 18.18% 16.67% 20.00% 16.67% 16.67% 16.67%
ESG - 27.27% 8.33% - - - -
Environmental - -27.27% - -20.00% 8.33% - -
Social - -36.36% - 6.67% - 8.33% -
Governance - 9.09% - 13.33% - - 8.33%

Table A.6: Results for UK

2003-2022 CAGR Volatility SR IR t-test P-value α α P-value ESG score
Base 15.77% 26.39% 0.59 0.37 - 0.0053 0.000 44.45
ESG 11.85% 28.12% 0.42 0.24 0.25 0.0044 0.006 42.88
ESG, no E,S,G 16.06% 26.94% 0.59 0.37 0.86 0.0055 0.000 42.79
E,S,G 11.85% 28.12% 0.42 0.24 0.25 0.0044 0.006 42.88
Environmental 16.61% 26.58% 0.62 0.39 0.70 0.0057 0.000 42.79
Social 16.54% 26.67% 0.62 0.39 0.73 0.0057 0.000 42.79
Governance 16.09% 26.61% 0.60 0.38 0.87 0.0055 0.000 42.79
Market 3.63% 17.17% 0.21 - - - - -

Table A.7: Results for Sweden

2003-2022 CAGR Volatility SR IR t-test P-value α α P-value ESG score
Base 15.14% 28.54% 0.53 0.20 - 0.0049 0.003 48.86
ESG 11.97% 29.81% 0.40 0.11 0.22 0.0040 0.024 49.42
ESG, no E,S,G 13.99% 28.52% 0.49 0.17 0.14 0.0046 0.007 49.19
E,S,G 11.97% 29.81% 0.40 0.11 0.22 0.0040 0.024 49.42
Environmental 14.42% 28.50% 0.50 0.18 0.39 0.0047 0.005 49.19
Social 13.01% 28.41% 0.45 0.14 0.03 0.0043 0.010 49.19
Governance 14.79% 28.73% 0.51 0.19 0.58 0.0048 0.005 49.19
Market 7.96% 19.65% 0.40 - - - - -
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