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Detection of software incidents from large log material with the use of unsupervised
machine learning

DIMITRIOS ANASTASIADIS

JAKUB LENART

Department of Computer Science and Engineering

University of Gothenburg, Chalmers University of Technology

Abstract

Computer systems generate log files, which contain information on the various op-
erations performed by these systems. This information can support the process of
error/failure detection and debugging. Therefore, anomalies can be spotted in the
system through its produced log material. The task of anomaly detection can be
treated as a binary classification of log files, with the two classes being anomalous
and non anomalous. Due to the sheer volume of data and the complexity of the
task, it is not possible for it to be performed manually by humans, thus creating the
need for automation. Centiro, a Swedish software company, has decided to follow a
machine learning approach for automating the task of software incident detection.
In this thesis, we apply four machine learning models in order to detect anomalies.
These are namely the Local Outlier Factor (LOF), the Isolation Forest (IF), the
Principal Component Analysis (PCA) and the LSTM-Autoencoder. We make use
of four publicly available datasets as well as a dataset gathered from the produced
logs of the computer systems of the company. Preprocessing of the data and selec-
tion of the appropriate features are two tasks that needed to be carefully performed
for the successful implementation of the models. Precision, Recall and F-Score were
used as evaluation metrics to measure the performance of the models on the differ-
ent datasets. The model with the best and most stable overall performance on the
publicly available datasets is the LSTM-Autoencoder, therefore we decided to apply
it on the data of the company in order to detect any possible software incidents.

Keywords: binary classification, log, anomaly detection, machine learning, Local
Outlier Factor, Isolation Forest, PCA, LSTM-Autoencoder.
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1

Introduction

Anomaly detection is a task that has been researched and investigated thoroughly
over the past few years, since both the industry and the academia have valued its
increasingly high importance. This is because spotting anomalies on time can help
in the mitigation or even prevention of major damage or dysfunction in the sys-
tem. Therefore, several ways and methods have recently been applied by various
companies and research teams in order to detect anomalies that occur in computer
systems in real time [1]. The need for automation of this process is certain, as the
sheer amount of data produced and managed every day by the computer systems of
the companies is not amenable to manual manipulation performed by humans, due
to time consumption and complexity of the task.

Centiro, a software company based in Boras, Sweden, provided us with log data in
order for us to detect possible anomalies in their computer systems in the framework
of this thesis project. Logs that are produced by the computer systems contain use-
ful runtime information that can be analysed in order to extract relevant knowledge
about any possible anomalies that might have occurred over a certain period of time
[2]. For this reason, Centiro has taken a machine learning approach to gain insights
and detect anomalies that can be spotted in the log material of the system.

Selecting and preprocessing the appropriate log files are two crucial tasks for the
correct training and testing of the machine learning models that are used for anomaly
detection. Logs from different applications might be able to provide us with different
knowledge regarding the detection of software incidents. Furthermore, the selective
use of different features of the logs might increase or decrease the performance of
the machine learning models, as the features are not equally correlated to the fact
of a log being anomalous or not. The selection of machine learning techniques is
also of high importance, as some models yield in a better performance than others,
depending on the dataset and the selected features that are used [1]. Therefore, in
the framework of this thesis project, we investigate various alternatives in order to
find an appropriate and efficient way of detecting anomalies from large log material.

1.1 Problem Statement

Anomalies may occur in several stages of an operation that is running in a computer
system. The information that can be found in the log files of a computer system is
able to provide us with insights about the root cause of the problem, thus helping
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us get one step closer to being able to detect a software incident on time or even
prevent it from happening in the first place. When it comes to software companies
like Centiro, being able to detect anomalies in real time is important for the correct
function of the system and the successful operation of the company.

The main aim of this thesis project is the research and development of a model that
will be able to spot the potential anomalies by making use of Centiro’s produced
log material. In order to achieve that, we initially use publicly available datasets
by applying four different machine learning models on them, and then we apply
the best performing one on the dataset of the company. This is a contribution in
the field of Machine Learning with the use of four different approaches. The idea
behind the development of such a system would be to provide an accurate detection
of the anomalies of the system so that the company could have a clear insight
and try to fix or avoid system disruption or any damage that could be caused
in the future. This task requires effort in analysing the log files and extracting
information that might be useful for the process of spotting anomalies. This effort is
focused mainly on collecting the appropriate dataset, preprocessing the relevant log
information, developing the models for the task, applying them and finally measuring
and evaluating their performance.

1.2 Research Questions & Novelty of the Project

This thesis addresses the question of whether we can detect software incidents based
on the content of Internet Information Services (IIS) log files using techniques of un-
supervised machine learning. This question is answered by performing tests on the
log data of Centiro.

Another research contribution of this project is the comparison among four algo-
rithms on the task of anomaly detection on a combination of five datasets that have
different features and have been preprocessed in four different ways. Four of these
datasets are publicly available and the other one is the dataset of the company. The
four models are the Local Outlier Factor (LOF), the Isolation Forest (IF), the Prin-
cipal Component Analysis (PCA) and the LSTM-Autoencoder (LSTM-AE). From
that comparison, we can have a clear overview of the model with the most univer-
sally stable performance that can work decently for a variety of datasets.

Additionally, by performing the mentioned tests, we also investigate the change in
the performance of the models while the amount of anomalies included in the dataset
changes.

Furthermore, another element of novelty of this thesis is the investigation of the
usability of the feature sc-status in anomaly detection. This feature is present in
all IIS logs and we investigate whether it could lead us to detect anomalies that are
triggered by specific applications in the system. The sc-status is a protocol status
code further explained later.
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Lastly, a more general yet interesting question that this project deals with is how
machine learning models are utilized in order to detect software incidents. This
question is largely addressed based on a literature review and on our own imple-
mentation of machine learning models on publicly available datasets as well as the
dataset of Centiro.

1.3 Limitations

This thesis work is limited as far as time and resources are concerned. The amount
of log data produced every day by the software of the company is extremely large
and therefore, it is computationally impossible to deal with all of it using only the
available hardware resources. As a result, we deal with a subset of the data. This
may lead to possibly lower performance results than if we took all the data into
account. Also, specific features of the data were selected experimentally and based
on a literature review. The logs of the company are not labeled and the process
of labeling them would be labour intensive and would require a lot of time. For
that reason, we were unable to obtain a sufficient labeled dataset from the com-
pany. Therefore, we used four publicly available labeled datasets that are suitable
for anomaly detection tasks. We do this in order to observe and evaluate the perfor-
mance of the models. Then, we apply the best performing model on the unlabeled
dataset of the company. All four datasets come from different sources and differ in
terms of dimensionality and anomaly rate, however, they do share some characteris-
tics that allow us to compare them. Each of the four datasets is a multivariate time
series dataset with only numerical values, containing outliers defined as anomalies.
The diversity between these datasets can make the comparison more interesting as
well as universal.

Furthermore, we do not know what anomaly rate can be expected in the data of
the company. This depends, among others, on how we divide the data into time
windows, which will be further explained in the following sections. The log dataset
is highly unbalanced, in the sense that the number of anomalous logs is very small
compared to non-anomalous ones. Nevertheless, since we are only considering a
subset of the full data, the anomaly rate may be larger. We evaluate the performance
of the four models on the publicly available datasets in order to select the model that
will be used for detecting anomalies in the dataset of the company. The purpose
of using four datasets is to demonstrate empirically that the chosen model works
well on different types of datasets. Therefore, it is reasonable to apply this model
to the final dataset of the company, which we are unable to evaluate without the
assistance of company experts.
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Background

The task of unsupervised anomaly detection can be performed in several ways. In
this chapter, we present the theory behind it as well as the proposed methods.
General concepts of machine learning and its categories are presented in Section
2.1. In Section 2.2, the task of anomaly detection as well as its basic features and
the definition of anomaly are described. Next, in Section 2.3 lies the description of
log files and what they are used for in general as well as more specifically in the case
of the company of Centiro. A general description of the algorithms and models that
are used can be found in Section 2.4 and in Section 2.5 their evaluation metrics and
ways. Finally, in Section 2.6, some related work is described.

2.1 Machine Learning

Machine Learning is a subfield of Computer Science that is highly associated to
Artificial Intelligence (AI) and it is increasingly used in various tasks over the past
years. From social media services and language translation to Medicine and Life
Sciences, machine learning is involved in numerous applications over a wide range
of fields [3]. Consequently, it is applied in several methods and solutions in the field
of anomaly detection, which is the main research object of the present paper.

Machine learning includes algorithms and statistical models that can be used in
order to perform certain tasks without having to be explicitly programmed [4]. Pre-
diction and early detection of incidents (e.g. health disorders) can be achieved
through machine learning models that are trained on relevant available data. Ma-
chine learning can be divided into three main categories; Supervised, Unsupervised
and Semi-Supervised. This division is based on the presence or absence of data that
is tagged with one or more labels (labeled data). Unsupervised machine learning is
used for the purposes of the present project.

2.1.1 Supervised Machine Learning

Supervised machine learning requires a training dataset that has been labeled [5].
This means that in order to perform supervised learning, a data sample with correct
classification labels is needed [6]. An observation regarding the anomaly detection
task with the use of supervised machine learning is that the anomaly class is usually
much smaller than the non-anomaly one and therefore the dataset is highly unbal-
anced between the two classes. The general concept of supervised machine learning
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includes the application of past knowledge gained from previous labeled data to new
data [5].

2.1.2 Unsupervised Machine Learning

In contrast with supervised machine learning, performing unsupervised machine
learning does not require the use of a labeled dataset. When it comes to the task of
anomaly detection, we can assume that normal events occur much more frequently
than anomalous ones. In any other case we risk the occurrence of numerous false
alarms (false positives) [7]. A common approach of unsupervised machine learning
is clustering and there are many unsupervised models that follow this technique.
An example case of clustering can be about dividing the data points into several
clusters according to their distance from the centers of the clusters [5]. There are
more methods and approaches of unsupervised machine learning and later on we
analyze the ones used for anomaly detection in the framework of the present thesis.

2.1.3 Semi-supervised Machine Learning

Semi-supervised machine learning combines both supervised and unsupervised learn-
ing. That is because small amounts of labeled data might be used in semi-supervised
learning, but generally speaking, most of the data is unlabeled. Semi-supervised
learning was introduced in order to overcome the disadvantages of both supervised
and unsupervised machine learning. The drawback of supervised learning is that it
requires large amounts of labeled training data in order to accurately classify the
test data and the drawback of unsupervised learning is that clustering unknown
data can be sometimes relatively inaccurate. This is why semi-supervised is used in
some cases where it is reasonable for the models to learn based on a small amount
of labeled training data [8].

2.2 Log files

Generally speaking, logs are generated records that derive from a number of sources
and keep track of the history of the tasks that have been performed. Software
developers often use the log files in the debugging/troubleshooting process of ap-
plications. In case of a system of small scale, it is relatively easy for a human to
read the produced logs and understand if the behavior of the system is the expected
one. However, the system of a company might be of a larger scale and therefore
the size of the log material can make it impossible for one to read and process in
order to figure out if the system behaves as it is supposed to. Apart from that, the
complexity of the contents of the log files might be increased when dealing with a
computer system of a big company. Thus, the need for automation of this process
has grown bigger over the past few years, leading to innovative ways of log data
manipulation that often include the use of machine learning. Some preprocessing
and transformation of the data might be necessary in most cases in order for the
computer to be able to process it [9].



2. Background

The most typical form of logs is as timestamp based data that contain information
about the various processes that took place on specific instances [5]. They usually
include both messages and numerical values in the different fields of information
that they contain.

As far as the specific logs of Centiro are concerned, their structure may vary from one
application to another. The log files that are used in the framework of the present
thesis project derive from the Internet Information Services (IIS). This is a modular
network server application from Microsoft. The IIS web server runs on Windows
systems and it provides a platform that hosts and manages web applications and
serves the requests of HTML pages [10]. The log files that we use contain various
fields of information, such as timestamp, source code, level, time-taken and IP ad-
dresses of the client and the server. The platform used for accessing and quering in
Centiro’s log file database is Graylog. This platform is used to store and perform
real-time search and analysis in large amounts of log material produced every day by
the company’s computer systems [11]. Graylog makes use of a three-tier architecture
and a scalable storage that has its basis on Elasticsearch and MongoDB [12].

grayl.@g Search  Streams  Alerts  Dashboards  Enterprise ~ System~ @) :'g:g ;nut Z 0 &
< '
Unsaved Search x n ~  From: 2822-  Until: 2622~ Select streams the search shou.. ‘ »  Notupdating ~
04-13 04-13
i Create 11:00:00.000 23:00:00.000
Use the following options to add an . P ®, -
+ aggregation or parameters n Application:IIS [} Y¢Save [Dload &t Share @

(enterprise) to your search.

q Generic Aggregating ... <« X [# Vv
X; Aggregation 47'6701466
Predefined Aggregation Message Count R @ v

Message Count 800,000

Message Table 600,000

400,000
200,000

0
12:00 14:00 16:00 18:00 20:00 22:00

Apr 13,2022

Figure 2.1: Screenshot of Graylog’s function.

2.3 Anomaly Detection

Generally speaking, anomaly is called an abnormal instance that indicates any be-
havior different than the expected one [5]. The importance of anomaly detection lies
in the fact that by predicting or spotting anomalies, various errors on applications
can be fixed in short periods of time, thus helping the mitigation of the total damage
that could be dealt on the system’s performance.

More specifically in the framework of the present thesis project, an anomaly in a

computer system is an instance that does not follow the normally expected patterns.
Also, we can assume that anomalies occur in a very small percentage of the total

7
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instances. They can be spotted on logs produced from different applications and
they are usually connected to operations that have been executed in a way different
than what they were expected. Anomalies might be of various levels of importance,
according to which they can cause various degrees of damage in the system and
affect its interaction with humans.

Anomaly detection can take place based on different machine learning techniques;
supervised, unsupervised and semi-supervised learning. In this project, unsupervised
learning techniques are being utilized and they are described in later sections. The
following figure shows a simple example of anomaly detection based on the value of
one feature plotted against time.

4
Anomaly

il

TIME

VALUE

Figure 2.2: Example of anomaly detection with one feature.

2.4 Classification Models

Four unsupervised machine learning models were used in this thesis. These are
the Local Outlier Factor(LOF), the Isolation Forest (IF), the Principal Component
Analysis (PCA) and the Long Short-Term Memory Autoencoder (LSTM AE). These
models follow different methods of classifying rows of the dataframes, which makes
some of them more suitable for training and testing on specific datasets than others.
The task is binary classification as one row (or a group of rows) of the dataset can
be classified either as anomalous or non-anomalous.

2.4.1 Local Outlier Factor

Local Outlier Factor works as a density-based outlier detection algorithm which is
able to spot outliers (anomalies) by calculating the local deviation of a given data
point. This can be used among others, for outlier detection in unbalanced datasets.
Determining whether a data point is an anomaly depends on the density between

8
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the data point and its neighbors. In particular, the lower the density, the higher the
chance for the data point to be classified as anomaly [13]. The key-definitions of the
LOF algorithm are namely the k-distance of a data point p, the k-nearest neighbors
of p, the reachability distance of p with respect to o, the local reachability density
of p and the LOF score of p [14].

In order to define the k-distance, we need to explain how to distance between two
data points p and o is calculated. This distance is calculated by using a Euclidean
n-dimensional space with the following formula [14]:

d(p,0) = Z(pz —0;)? (2.1)

Let the k-distance(p) be the distance of a data point p to the k-th nearest neighbor,
where k is a positive integer. The k-nearest neighbors of p are all the data points
up to this k-distance(p) [5].

As for the reachability distance of p with respect to o, it is defined with the following
formula [14]:

reachdisty(p, o) = max (kdistance(o), d(p, o)) (2.2)

Regarding the local rechability density (LRD) of a data point p, we define m as
the minimum number of data points and we calculate the LRD of a data point as
follows [14]:

> 0eNm (p) T€AChdist  (p, 0)

) (2.3)

In the above equation, we make use of the average reachability distance based on
the m number of nearest neighbors of the data point p.
Taking all the above into account, the LOF score is calculated as follows [14]:

S neN () LRDy(0)
NENm(P) LRD,,
LOF,,(p) = pr] () (2.4)

If we get a LOF score that has a value of approximately 1, this is an indication that
the data point is comparable to its neighbors and therefore it is not considered as
an outlier. If the value is below 1, this is an indication that the data point is an
inlier. On the other case where the values are larger than 1, we have an indication
of outlier (anomaly) [15].
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o Normal data points
o Abnormal data points

-6 -4 -2 0 2 4 6

Figure 2.3: Anomaly Detection with the use of Local Outlier Factor.

2.4.2 Isolation Forest

We use the term 'isolation" here to describe the process of separation of a (po-
tentially anomalous) data point from the rest of the data points. Anomalies form
generally a small percentage of the total samples of a dataset and they have some
differences, therefore we are able to separate them from the rest of the normal data
points [16].

When detecting anomalies with an Isolation Forest, the data is sub-sampled and
processed within some tree structures (isolation trees). These trees perform random
cuts in the values of the features of the data points. These features are selected
randomly. The data points that go through the branches of the isolation trees and
end up deeper into the trees have a smaller chance of being anomalous. Data points
that travel in shorter branches of the trees are more likely to be anomalous [17].
This happens because anomalies will have shorter paths through this random parti-
tioning as they have more distinguishable values of their features and therefore they
are more likely to be isolated earlier than the rest of the data points [16]. Therefore,
when an isolation forest produces short paths for isolating some specific data points,
then these data points have high chances of being anomalies and thus, they are clas-
sified as such. We can see that the aggregated length of the tree branches gives us
the so-called “anomaly score” of a given data point which serves as a measure of
anomaly for this data point [17].

Concluding, in the process of anomaly detection with the use of Isolation Forest,
at first isolation trees are being built and then the data points pass through the
isolation trees that have been formed and an anomaly score for each data point is
obtained [16]. This anomaly score is used to classify whether each data point is an
anomaly or not.

10
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Isolation Forest

X P /‘
Outlier: Easy to isolate /\ /\ \ /\
e v
Regular data point: Difficult to isolate

Figure 2.4: Anomaly Detection with the use of Isolation Forest.

2.4.3 Principal Component Analysis

Principal Component Analysis (PCA) is a method that can be used for dimensional-
ity reduction. Given a dataset, PCA is based on determining the principal directions
of the data distribution. The construction of the data covariance matrix as well as
the calculation of the dominant eigenvectors are needed in order to determine the
principal directions. The eigenvectors are considered as the principal directions, as
they are the ones holding the most important information among all the vectors [18].

In other words, PCA is a process, through which the principal components of a
collection of data points are computed. These principal components are a sequence
of p unit vectors. The i-th vector is orthogonal to the first i-1 vectors and it is
the direction of a line that is the best fit for the data. Considering the average
squared distance from the data points to the line, we consider as the best fit the
line that minimizes this distance. PCA uses the computed principal components
in order to change the basis on the data [19]. It is able to reduce the big amount
of correlated features to a much smaller amount of uncorrelated principal compo-
nents [20]. Based on a literature review, there are certain cases where PCA takes
into account just the first few principal components and ignores the rest of them [19].

However, in this thesis project, PCA is used for anomaly detection. Therefore, it
is enhanced with a function that computes the anomaly scores of the data points
of a given dataset. Based on [21], this algorithm reduces the dimensionality of the
data and at the same time it tries to minimize the reconstruction error. Therefore, it
attempts to capture the most valuable information of the original features in order to
be able to reconstruct the original features from the reduced features as accurately
as possible. However, PCA is not able to capture all the information contained
in the original features as they move to a lower dimensional space. Thus, some
error is observed in the reconstruction process and this error is called reconstruction
error. The data points that occur the least often are very likely to yield the largest
reconstruction error and to be considered as anomalies. The reconstruction error of
each data point is computed by summing the squared differences between the original
feature matrix and the reconstructed matrix. We also refer to the reconstruction
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error of a data point as its anomaly score.
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Figure 2.5: Dimensionality Reduction with the use of PCA.

2.4.4 Autoencoder

Autoencoder (AE) is a machine learning model working in an unsupervised manner
which is a feed-forward neural network with an encoder-decoder structure [23]. The
main objective of the AE is to train the model to replicate input vectors {x(1),
x(2), ..., x(m)} as output vectors {Z(1), Z(2), ..., Z(m)} while minimizing the
reconstruction error, which is determined by the difference between the input and
output data [24]. The Autoencoder model consists mainly of two phases. The first is
an encoding step. This phase is in charge of mapping the input data to the model’s
hidden layer. During this process, the model reduces the dimensionality of the input
data, resulting in a latent representation of the data. The second phase of the model
is decoding whose objective is to decode the mapping from the hidden layer to the
output layer. Moreover, the model increases the dimensions of the transformed data
to its original size during the decoding phase [25]. The following formula can be
used to explain this procedure:

X = D(E(X)) (2.5)

Where X is the input data, E denotes an encoding step, D denotes the above-
described decoding step, and X indicates the model’s output. The model’s overall
goal is to train E and D to minimize the deviation between X and X [25]. An
Autoencoder model, in particular, might be considered as a solution to the following
optimisation problem:

min || X — D(E(X)) | 2.6)
In Figure 2.1, the architecture of the AE model is presented. According to [25], an
Autoencoder that consists of more than one hidden layer can be also called a deep
Autoencoder. The AE that is implemented in this project consists of hidden layers

that are built based on Long Short-Term Memory architecture, which is further
explained in the next section.

2.4.5 Long Short-Term Memory

Long Short-Term Memory, or LSTM for short, is a type of recurrent neural network
(RNN) that was developed in order to address the problem of long-term dependency
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Figure 2.6: Autoencoder architecture.

caused by vanishing gradients. The above-mentioned issue was encountered during
the process of training RNN [26]. While the model is being trained, the weights of
the network are being updated. In the situation of a vanishing gradient, the gra-
dient decreases gradually, until it eventually becomes vanishingly small, preventing
the weights from changing their values and so, stopping the neural network from
further training [27]. LSTM was a solution to this issue and its main objective was
to control the information flow within the neurons of the network. Long Short-Term
Memory introduces a gating mechanism that controls the process of adding, stor-
ing, and deleting information from the iteratively propagated cell state [28]. In the
gating mechanism, three gates are being used. Forget gate, input gate, and output
gate. In Figure 2.7, the architecture of the LSTM is presented.

Figure 2.7: LSTM architecture. [29]

In Figure 2.7, C; stands for cell state, h; for hidden state, which is an LSTM output,
and fy, 74, and o; denoting forget, input, and output gates, respectively. The forget
gate is in charge of determining how much information should be kept and how much
should be forgotten from the network. The decision of how much of the information
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is kept is based on the sigmoid function which results in values between 0 and 1.
LSTM unit remembers more from the past if the sigmoid result is near 1. Similarly,
the closer the outcome is to 0, the less memory from the past is retained by the
LSTM unit [30]. The following formula presents the operation of forget gate:

fi= (Wf : [ht—hxt] + bf) (2.7)

The input gate, on the other hand, is in charge of determining how much information
will be added to the cell state. The sigmoid function, like in the forget gate, is applied
to the new input and previous state to make this decision. The result is multiplied
by Ct, yielding a new vector of candidate values that can be added to the current
cell state [31]. Both operations can be described by formulas as follow:

it = (Wl . [htfl, xt} + bz) (28)

C~’t = tCLTLh(WC : [htfl, l’t] + bC) (29)

Before reaching the last gate old cell state has to be updated. This operation is
simply done by multiplying C;_; by f; and then adding i, multiplied by Ct [29].
This step can be shown with the formula as follows:

Co=fixCr—14i,%Ct (2.10)

The output gate is the LSTM unit’s third and final gate. This gate affects the h;
value and determines the LSTM output. In that unit, the sigmoid function is also
applied and works the same as in the previous gates. Firstly, the output gate is
activated, and based on its result, h; is computed. h; is computed by multiplying
the output gate’s output by the previously updated cell state [29]. Both operations
can be described with the following formulas:

Oy = (Wo : [ht_l, xt] + bo) (211)
ht = Ot * tanh(Ot) (212)

2.5 Performance Evaluation Metrics

In order to measure how well the models perform in the task of detecting anomalies,
we make use of some well-known evaluation metrics. In this project, we consider
Precision (also called positive predictive value), Recall (also known as sensitivity)
and F-Score (also called F1-Score or F-Measure). We avoid using Accuracy as an
evaluation metric in this task of anomaly detection, since the datasets that are used
are highly unbalanced. We already know that anomalies make up a very small
percententage of the total dataset. Therefore, in an example of a dataset that
consists of 99.5% non anomalies and only 0.5% anomalies, a dummy classifier that
would classify every incident as non anomaly would end up yielding an accuracy
of 99.5%. At first glance, that would seem like an outstanding performance, but it
does not actually provide us with any useful knowledge about the anomalies that
are to be detected.
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2.5.1 Precision

Precision takes into account the True Positives (TP) of the predictions and the
summation of TP with False Positives (FP). More specifically, when computing
Precision, the number of successful predictions of anomalies (i.e., TP) is counted
and divided with the total number of predictions (i.e., TP+FP). In other words,
Precision penalizes FPs, which are the incidents that the model wrongly classified
as anomalies (false alarms) [32]. Precision is computed with the following formula:

TP
P )S10N = ———— 2.13
recision = —FP ( )

2.5.2 Recall

Recall is computed by counting the number of successful predictions of anomalies
(i.e., TP) in proportion to the total number of anomalies (i.e., TP+FN). Therefore,
the key difference between Precision and Recall is that Recall penalizes FNs, which
are the incidents that the model wrongly classified as non anomalies even though
they are anomalies [32]. Recall is computed with the following formula:

TP
R — 2.14
Recall TP FN (2.14)

2.5.3 F-Score

F-Score is computed as the product of Precision with Recall divided by the sum of
Precision and Recall and all this multiplied by two. F-Score is the harmonic mean
of Precision and Recall and therefore provides a more combinatorial view of the
performance’s evaluation. F-Score has a highest possible value of 1.0 and a lowest
possible value of 0.0. In case the F-Score is 1.0, Precision and Recall are both perfect
(both have a value of 1.0) and in case the F-Score 0.0, either Precision or Recall is
equal to 0.0 [33]. F-Score is computed with the following formula:

Precision x Recall
FS =2 2.15
core * Precision + Recall ( )

2.6 Related Work

Based on the literature review conducted for the needs of this thesis, we observed
that there has been extensive research that achieved valuable progress in the field
of anomaly detection over the past few years. Here we describe the methods and
results of some papers that are relevant to our thesis work.

2.6.1 Unsupervised cluster evolution approach

In the paper [34], M. Landauer et al present an online anomaly detection approach
with the utilization of forecasting models that can spot instances that differ from
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normally expected behaviors. There is a clustering model that creates log line
clusters based on several static cluster maps. In that way it detects the transitions
among the different clusters. They evaluate the models by making use of metrics
that are security related. In the approach that is described in this paper, there
are some log lines that do not align with their expected periodicity, correlation and
average frequency. These are called contextual anomalies. With this approach, the
lines that were different and dissimilar could be detected and if they were occurring
once, then they were treated as outlier. Apart from that, the changes in the system’s
behavior over time were treated as temporal anomalies. It is worth mentioning that
any knowledge of the log data’s structure or the percentage of anomalies is not
needed beforehand as this approach is self-learning, similarly to the one we are
applying in this thesis with the use of unsupervised learning models.

2.6.2 Real-time anomaly detection with unsupervised meth-
ods

Ahmad et al., in the paper [35], present an unsupervised approach of detecting
anomalies in real time using streaming data. They compare various online unsu-
pervised algorithms and models with the use of a dataset that is called Numenta
Anomaly Benchmark. This dataset has been formed from data gathered from real-
world data streams. 11 different methods were compared in this paper. Some of
these methods were namely the Relative Entropy, the Bayesian Changepoint, the
Etsy Skyline, the Hierarchial Temporal Memory, the Sliding Threshold and the
Twitter ADVec. The highest evaluation metrics were achieved by the Hierarchial
Temporal Memory model, which uses neural networks and estimates likelihood of
the anomalies. The high latency requests’ frequency, the temperature of the ma-
chine system and the utilization of the client’s CPU were some numeric data that the
models were tested and evaluated on. It can be concluded from this paper that the
need for efficient anomaly detection algorithms is increasing, since the data stream
numbers are also getting increased and an automation of the process is needed, as
humans are not able of detecting anomalies manually in such sheer amounts of data.

2.6.3 Anomaly Detection in Access Logs

In the paper [36], M. Thrashini et al. reported a comparison of supervised learning
models against unsupervised learning ones regarding the task of anomaly detection.
The data that was used in this project derived from web access logs. They analyzed
various web access log files in order to be able to spot attacks that might seem as
anomalous incidents in the system. Detecting intrusions in real time is crucial for
the effective protection of the system and therefore developing a model that would
be able to do so is an important task. In this paper, access logs were considered
to be containing some useful indications of attacks and that is the main reason
they were chosen for this task. Naive Bayes Multinomial Text was the method that
achieved the highest evaluation results. That was an supervised learning approach.
Regarding the unsupervised one, a clustering model that made use of K-means
clustering algorithm was utilized.
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2.6.4 System Log Analysis for Anomaly Detection

H. Shilin et al., in the paper [37], which is an experience report, describe some
methods of anomaly detection and their use in different cases and provide a com-
parison of six state-of-the-art log-based anomaly detection methods, with three of
them being supervised and three unsupervised. The three supervised learning meth-
ods that were evaluated are Logistic Regression, Decision Trees and Support Vector
Machines (SVM). Furthermore, the three unsupervised learning methods that were
compared are Log Clustering, Principal Component Analysis (PCA) and Invariant
Mining. Taking into account the F-Scores of the methods, we can say that super-
vised learning methods performed better in general. Invariant mining was reported
to be the best performing method. Comparing the execution time, supervised learn-
ing methods needed much less as they were executed faster than the unsupervised
ones. Of course, the downside of the supervised learning methods is that their use
requires a labeled dataset. Regarding the unsupervised learning methods, PCA was
the fastest executed one, and it is also used for the needs of this thesis project.

2.6.5 USAD: Unsupervised Anomaly Detection on Multi-
variate Time Series

In this article [38] Audibert J. et al. propose a new method for unsupervised anomaly
detection on multivariate time series. This method is based on the AE architecture,
and the way the model learns is inspired by the Generative Adversarial Network
(GAN). The main objective of this method was to use the adversarial training which
allowed the model to learn how to magnify the computation of the reconstruction er-
ror of inputs containing anomalies while also improving the model’s stability, which
was superior to methods based on GAN architecture. The architecture of the USAD
model differs from that of a typical AE mainly due to the presence of two decoder
networks. The final architecture consists of two autoencoders that share a common
encoder but have separate decoders. The model was trained in two phases. Both
AEs were trained in the first phase to reconstruct normal inputs (not containing
anomalies), but in the second phase, AEs were trained in an adversarial manner,
which means that one autoencoder attempted to fool the other autoencoder. The
goal here was to train the second model to recognize whether the data was real,
that is, whether it was input from raw data or reconstructed output from the first
AE. The model was evaluated empirically, which means that it was tested on five
public and one internal dataset (the internal dataset comes from Orange). It was
then compared with the performance of other models using the same datasets. The
state-of-the-art models that were used in the comparison process were: IF, AE,
LSTM Variational Autoencoder (LSTM-VAE), Deep Autoencoding Gaussian Mix-
ture Model (DAGMM), and OmniAnomaly, a stochastic recurrent neural network
model. Precision, Recall, and F1-Score were the metrics used in the comparison
section. The tests revealed that USAD performs very well, achieving the highest
Fl-scores in the majority of used datasets, but also that AE performs exception-
ally well. Audibert et al. also investigate how different parameters such as down-
sampling rate, window size, anomaly percentage rate, and latent space Z dimension
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affect model performance. The proposed model achieved the following scores on the
final, internal dataset: Precision 74%, Recall 64%, and F1-score 69% and was able
to detect all significant incidents that occurred in the dataset.
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Methods

In this chapter, we present the methodology that was followed in order to complete
the tasks needed for this thesis project. In Section 3.1, the dataset selection, pro-
cessing and representation of the data are presented. In Section 3.2, the selection of
the used features is described. In Section 3.3, we describe the implementation of the
selected machine learning models that are used for anomaly detection. In Section
3.4, the methods used for the evaluation of the models’ performance are described.
Finally, in Section 3.5, we describe the software and hardware that we used in the
framework of this thesis.

3.1 Dataset

As mentioned in the Introduction, the datasets that were used in this thesis project
derived both from online sources as well as from the produced log material of the
company.

The first publicly available dataset that we used is called Credit Card Fraud De-
tection (CCFD) dataset. We obtained this dataset from Kaggle and it serves the
purpose of credit card companies being able to spot fraudulent transactions in or-
der for their customers to be protected from being charged for transactions that
themselves did not proceed with [39]. Transactions that are made by cardholders
in Europe in September 2013 are contained in this dataset. The dataset is highly
unbalanced, since only 492 of the total 284,807 transactions are fraudulent. This is
translated in an anomaly rate of 0.172%. This dataset contains numerical input val-
ues coming after a transformation with the use of PCA. It contains, among others,
"Time", "Amount" and "Class" features. Time is the number of seconds that elapsed
between each transaction and the first one. Amount is the money amount of the
transaction and Class contains the information of a transaction being fraudulent
(value 1) or normal (value 0) [39].

Moving on, the second used dataset that derived from online sources is called SWa'T
(Secure Water Treatment) dataset. This dataset is a scaled down version of a real-
world industrial water treatment plant producing filtered water. The SWa'T dataset
contains 11 days of continuous operation, of which 7 days are collected under nor-
mal operations and 4 days that include attack scenarios. The values of the dataset
were obtained from 51 sensors and actuators. Data was labelled according to nor-
mal and abnormal behaviour. The anomaly rate of the SWaT dataset is 11.98% [40].
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Next, we used a publicly available dataset called SMD (Server Machine Dataset).
This dataset consists of data that has been gathered over the period of five weeks
from the computer systems of a large Internet company. The data that has been
collected for this dataset comes from 28 different machines, thus it consists of 28
different subsets of data. This means that the different subsets should be trained
and tested separately. These subsets are all divided into training and testing parts,
which are of equal length. The train set is the first half part of each subset of the
dataset and the test set is the latter part of it. The testing parts include the labels
of whether each point is an anomaly or not [41].

Finally, the last dataset that was retrieved from online sources is called SKAB
(Skoltech Anomaly Benchmark). This dataset contains 35 individual csv-format
data files. Each one of the files represents a single experiment and it includes a
single anomaly. The data was collected as multivariate time series from sensors and
gathered in the SKAB dataset. The dataset involves 11 columns (variables), the last
one being the anomaly indication (0 for a non-anomalous and 1 for an anomalous
data point) [42].

As far as the dataset of the company is concerned, it has been formed by collecting
log data from internet-based applications that have been produced over the period
of 12 hours of a weekday. We focused on applications that fall under the Internet
Information Services (IIS) in order to create a dataset of logs that contain informa-
tion about the source status of the operations. Also, each log contains information
about the time of production (timestamp). All the logs that are collected are put
in chronological order. The data that is used for training the model consists of
about 24.6 million rows and the data that was used for testing the model consists of
about 22 million rows, before applying the time windows division. Below, we pro-
vide an instance of the dataset and its structure, firstly as seen through Microsoft
Excel and secondly as seen when loaded and managed as a dataframe in the Python
development environment Jupyter Notebook.

3.1.1 Features of the dataset of the company

In order to detect anomalies in the dataset of the company, the proper features need
to be selected. Forming a dataset that contains useful information and can be used
for anomaly detection is of high importance, therefore particular attention was given
to this task.

At first, a timestamp is included in the dataset, which holds the information of
the time that each log was created. Also, the timestamp is treated as an index
after dividing the data into time windows, which is explained later, in Subsection
3.2.4. Furthermore, the id of the logs is included in the dataset. This feature holds a
unique value for each log and it is used to fasten the process of identifying particular
logs in the dataset. Additionally, the dataset includes a feature called cs-uri-stem,
which holds the information of the files that are requested by specific applications
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in the system. This feature is useful for identifying the applications that could be
responsible for the detected anomalies.

Apart from the above, the last and most important feature of the dataset of the
company is called sc-status. This is a protocol status code that is returned from a
running application to the client. It contains the information of whether a request
is successful. In some cases of unsuccessful requests, we are able to associate the
returned sc-status code with a specific reason of failure. For instance, if the sc-
status includes a code that is of the form 4XX, where X € N, this is an indication
of an error that occurred on the client. The following table shows the messages
indicated by the specific codes of the sc-status [43].

Table 3.1: sc-status codes and their corresponding messages

Status code | Message

1XX Informational

100 Continue

101 Switching protocols
2XX Success

200 OK-Succeeded

201 Created

202 Accepted

203 Nonauthoritative information
204 No content

205 Reset content

206 Partial content
3XX Redirection

301 Moved permanently
302 Object moved

304 Not modified

305 Use proxy

307 Temporary redirect
4XX Client Error

400 Bad request

401 Unauthorized

402 Payment Required
403 Forbidden

404 Not Found

405 Method Not Allowed
406 Not Acceptable

407 Proxy Authentication Required
408 Not Acceptable

409 Request Time-Out
410 Conflict

411 Gone
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412 Length Required

413 Precondition Failed

414 Request-URL Too Large
415 Unsupported Media Type
5XX Server Error

500 Internal server error

501 Not Implemented

502 Bad Gateway

503 Out of Resources

504 Gateway Time-Out

505 HTTP Version not supported

In some cases, the sc-status code might be 0, which indicates that a possible con-
nection reset could have occurred and, as a result, the application did not send the
actual sc-status code.

3.2 Preprocessing

In order to train the models and to detect anomalies, we needed to preprocess the
datasets in a way that they can be fitted in the different models. In this project,
data preprocessing is divided into three main tasks, namely data scaling, anomaly
rate adjustment and one-hot encoding.

3.2.1 Data scaling

Data scaling is the first task, and it is applied to all five datasets. Many studies
clearly showed that different ways to scale data for anomaly detection tasks can be
used. Normalization of data was performed, for instance in [38], yielding good re-
sults. When the distribution of the features does not follow a gaussian distribution,
normalization is recommended [44]. However, we can see in [45] that normalization
is also very sensitive to outliers, which can be very impactful in anomaly detection
tasks, as outliers might be considered anomalies. As a result, standardization can be
also used to get satisfying results, as shown in [46]. Standardization is an especially
suitable choice for multivariate time series datasets, according to Shanker et al. [47].
As a result, we decided to use both approaches in this research. This means that for
each model, we first train it on normalized data and then compare the evaluation
scores with the results achieved from the model trained on a standardized dataset.
The Scikit-learn library was used in both scenarios, providing two scaling functions;
StandardScaler and MinMaxScaler.

The MinMazScaler scales the range of the data to a fixed value between 0 and 1,
or -1 to 1 if we want to allow for negative values. The operation of normalization
can be expressed by following formula:

Xnorm = 0 3.1
Xmax - szn ( )
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The StandardScaler transforms the data so that the mean p is zero and standard
deviation o is one. In the standardization formula 3.2, Z represents the standardized
data points and X the original data points.

(3.2)

3.2.2 Anomaly rate adjustment

The anomaly rate adjustment is only applied to one dataset, namely the SKAB
dataset. This procedure was used to reduce the amount of anomalies in the SKAB
dataset, which was originally roughly 53% when all subsets were combined.

This problem was handled by creating a function that takes each subset of SKAB
dataset, computing the rate of the anomaly in that subset, and adjusting its value
to our desired rate of 8%. In simple terms, the function was going through the rows
of the subsets, identifying where the anomalies begin, and then cutting everything
after that, leaving only the amount of anomalies that additionally makes up 8% of
the subset.

With the above process, we can ensure that, after the data is split into train and
test, the train set will not contain any anomalies. However, a downside of it is that
some non anomalous data was lost throughout this process. Nevertheless, as the
purpose of anomaly detection is to detect abnormalities as soon as possible, remov-
ing a portion of the subsets after an anomaly happened will have a little impact
on the performance of the models. We decided to reduce the anomaly rate of this
dataset to 8% in order to have datasets with evenly increasing anomaly rates, i.e.
0.17, 4, 8, and 12 percent.

3.2.3 One-hot encoding

One-hot encoding is the final task of data preprocessing. This task is also performed
on just one dataset. Specifically, it is carried out on the dataset of Centiro using
the Pandas library in order to compute sc — code occurrences during particular time
periods (data windows). This operation results in a dataset with 21 new columns,
where each one corresponded to a specific code. Figure 3.1 shows an example of a
one-hot encoding operation.

3.2.4 Data Windows

As part of preprocessing, the data has been divided into windows and each window
includes a number of rows of the dataset. In this way, we do not classify each row,
but a group of rows as anomalous or non anomalous. When the division into data
windows implemented based on the timestamps of the data points, we refer to these
windows as time windows.
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ID COLOR ID COLOR_BLUE COLOR_RED COLOR_GREEN
1 BLUE 1 1 0 0
2 RED One Hot Encoding 2 0 1 0
3 BLUE 3 1 0 0
4 GREEN 4 0 0 1

Figure 3.1: Example of One-Hot Encoding.

However, this division into data windows cannot be applied in the same way in the
different datasets that were used in this thesis. That is because the datasets contain
different information and they are used for different tasks. Below, we describe the
way that data windows are created in each of the datasets.

As for the CCFD dataset, it is the only dataset where division into windows was
not applied. The reason for this is that the dataset contains transactions from dif-
ferent cardholders that are not connected to each other in any way. Therefore, two
transactions that follow one another in the dataset are completely irrelevant to each
other and they it just happened that they took place at the same time. Thus, we
did not find it reasonable to split the data into time windows, but we rather run the
models on the dataset row by row.

Next, we have the SWa'T dataset. In this dataset, we applied time windows division
based on the timestamp feature. Fach time window contains information of 5 sec-
onds. We find it reasonable to split the data into time windows as the data points
that are close to each other time-wise are also connected to each other in terms
of indicating normal or abnormal behavior. Therefore, when we feed the models
with the data, this treats each time window as a data point and assigns a label to
it. This label occurs based on whether the model predicts that the time window is
anomalous or non anomalous.

Moving on to the SMD, this dataset does not contain any timestamp feature, there-
fore division into time windows was not feasible. However, we divided each of the
28 subsets of the dataset into data windows by number of rows. More specifically,
we included 20 rows in each window that were treated by the models as single data
points and the models were evaluated based on their predictions of the windows

labels.

As for the SKAB dataset, this included the timestamp feature, therefore we created
time windows similarly to the SWa'T dataset. The difference here is that the SKAB
dataset consists of 35 subsets, so each of these subsets is divided into time windows.
These time windows are treated also like data points and classified as anomalous or
non anomalous by the models.

Lastly, regarding the dataset of the company, we divided it into time windows of 5
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seconds, 30 seconds and 1 minute. Applying three different amounts of time for the
creation of time windows helped in the better evaluation of the model.

3.3 Model Implementation

As it was described above, we have utilized four models in total for the needs of this
thesis work. These are namely the Local Outlier Factor (LOF), the Isolation Forest,
the Principal Component Analysis (PCA) and the LSTM Autoencoder.

3.3.1 Train-Test Ratio

In this paper, two methodologies were used to partition datasets into training and
test sets. To begin, two datasets, namely SWaT and SMD, were already separated
into training and validation sets. As a result, splitting was not required in this case.
The Scikit-learn library was used to divide Credit Card Fraud Detection and SKAB
datasets. The split ratio for both datasets was 80/20, indicating that the training
set contained 80% of total data and the validation set 20%.

Even though we performed unsupervised learning, splitting the datasets into train
and test set was useful, since our goal was to train the models on data that is clean
from anomalies and evaluate them on data that is infected with anomalies. In that
way, the model was trained on observing the normal behavior of the system where
anomalous incidents do not take place, so that later it would be able to recognise
any abnormal behavior and spot the anomalies in the test dataset.

3.3.2 Local Outlier Factor

As described in 2.4.1, the LOF algorithm detects anomalies by taking into account
the density between the data points and their neighbors. Here we make use of the
sklearn.neighbors package of the Scikit-learn library [48] and the most important pa-
rameters that we need to investigate are the n_ neighbors and the contamination
[49]. The n_ neighbors parameter is the number of neighboring data points that
the internal clustering algorithms of LOF use. The contamination parameter is
the proportion of the most isolated data points (the points with the highest LOF
score in the dataset) which will be considered by the model as anomalous. The
contamination should be in the range (0, 0.5] [48]. Also, since we want to train the
LOF model on the train dataset and predict the labels of the test dataset, we set
the value of the parameter novelty to True.

Regarding the number of neighbors to be considered, this normally has to be greater
than the minimum number of data points that a cluster contains and smaller than
the maximum number of nearest data points that can potentially be considered
as anomalies. However, generally in practice, we do not possess such information
[49]. Therefore, we experimentally try different values for this parameter, values
that seem to be logical and appropriate for the used datasets. Keeping the default
n_neighbors=20 appeared to work decently well for the four publicly available
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datasets, thus we decided to keep this parameter equal to 20.

Since we are unable to know the proportion of anomalies in the dataset of the
company beforehand, we cannot specify with high confidence the contamination
parameter of the LOF model. We are only able to experimentally estimate this
parameter. When working with the publicly available datasets, we already know
the amount of anomalous data points in the whole dataset. Therefore, we are able
to set the contamination parameter equal to the quotient of the division of this
amount with the amount of total data points in the dataset. Indeed, this would
generally lead to better results in the performance of the model, than if we would
assign a random value to the contamination parameter or if we would attempt to
empirically approach it. In our implementation, this parameter is empirically set
equal to 0.01 when using the publicly available datasets. The reason behind this is
that we intend to check the performance of the models under realistic conditions,
where we do not have any information related to the labels or the contamination
rates of the datasets. Since we are not able of having such information when it comes
to the dataset of the company, then comparing the performance of the models under
the same conditions seems fair and reasonable. After all, this comparison is done in
order to decide for the best performing model that will be applied on the dataset of
the company. As we describe later, the LOF model did not achieve the best results
out of the four models, therefore we did not apply it on the dataset of the company.

3.3.3 Isolation Forest

The Isolation Forest model is an ensemble model that consists of a number of isola-
tion trees, as mentioned in 2.4.2. Therefore, each tree needs to be fit with a number
of samples from the train dataset. In our implementation, all samples of the train
dataset are used to fit all trees. We make use of the sklearn.ensemble package of
Scikit-learn library and the parameter that is responsible for the number of samples
that each tree will use is max_samples. Thus, we set this parameter equal to the
number of samples of the train dataset. This might lead to a slightly higher execu-
tion time than if we used a part of the train dataset for each tree. However, using
the whole train dataset for each tree yields better performance results. Another
parameter of the IF model that we need to consider is the contamination. It has
the same role as in the Local Outlier Factor, which means that it represents the
proportion of the anomalies in the dataset and it should be in the range (0, 0.5] [50].
The same logic that was described previously for the LOF model is also applied
here. Therefore, we set the contamination parameter equal to 0.01 for this model
as well. This is an empirical estimation of the proportion of anomalies that can be
found on the different datasets. We can assume that anomalies make up a (very)
small percentage of the whole dataset, even though this might vary from one dataset
to another.
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3.34 PCA

For the implementation of the PCA algorithm, the sklearn.decomposition package
of Scikit-learn library was used. The PCA algorithm is used to reduce the number of
components (dimensionality) as mentioned in 2.4.3, but here the model is enhanced
with a function that computes the anomaly scores of the data points.

At first, we fit the PCA with the train data. Then, the model computes the anomaly
scores of the test data based on the reconstruction error. Afterwards, a table (Pan-
das DataFrame) of data points along with their anomaly scores is created. This
table gets sorted in a descending order, starting from the point with the highest
anomaly score. Then, in order to compute the Precision of the model, the first 2%
of the data points of the sorted table is kept and these data points are considered
as the only anomalous ones, since they have the highest anomaly scores. We re-
fer to these first data points that are kept as "cutoff'. The decision to select the
first 2% of the data as a cutoff was based on the assumption that was previously
made regarding the contamination (i.e. proportion of anomalies in the dataset).
We estimated that anomalies could make up about 1% of the total data points.
Therefore, it seems reasonable to use a slightly larger percentage as a cutoff, since,
experimentally, we can assume that the model will most likely not predict perfectly
all the anomalies. This means, that it will probably not assign the highest anomaly
scores only to actual anomalous data points, but the first 1% of the sorted anomaly
scores table might also include some non anomalous data points. Therefore, our
estimation is that by taking a cutoff of 2%, we investigate more data points that
have relatively high anomaly scores and might be actual anomalies, thus increasing
the total number of TPs and providing a clearer overview of the performance of the
model. Furthermore, the larger the cutoff, the higher the amount of FPs, which
translates into a decrease in the Precision of the model. Hence, finding a proper
balance between increased TPs and FPs is important and our estimation is that a
cutoff of 2% is a reasonable choice for that matter.

Regarding the evaluation of the performance of the model, apart from the Precision
that was described above, we also compute the Recall and the F-Score. In order to
compute the Recall, the same cutoff as previously is used and the amount of TPs is
measured. However, all of the data points are taken into account when calculating
the sum of TPs and FNs. Recall is the quotient of the amount of TPs divided by
this sum. Finally, F-Score gets computed as it was described in 2.5.3.

An important parameter of PCA that needs to be properly tuned is the number
of components (n_components) that will be used by the model. However, there
is not one universal tuning approach that works the best in every case (dataset).
Therefore, we needed to experiment and decide on an approach that could work
decently for the datasets that we work on. In fact, we ended up using two ways for
estimating the number of components that PCA takes into account.

More specifically, for the SWaT and the CCFD datasets, we plot the diagram of
the numbers of components against their cumulative variance. As the number of
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components increases, the corresponding cumulative variance increases, as expected.
Based on [51] and [52], we can establish a threshold of about 60% to 99% of cumu-
lative variance in order to find the optimal number of components or a number of
components that is close to the optimal. In our case, we empirically used a thresh-
old of 95% and it yielded decently good performance results. The decision for this
threshold was based on visually approaching the point above which the cumulative
variance is about to be stabilized near 1.0. An example of this approach applied to
the normalized SWaT dataset is shown in Figure 3.2. A red line is drawn near the
point of stabilization of cumulative variance. This line corresponds to 95% of the
variance and the components needed to reach this percentage are 12. This method
for choosing the number of principal components is closely related to Kaiser’s stop-
ping rule, according to which, only the number of features that have eigenvalues
over 1.00 should be considered, as described in [52].

The number of components needed to explain variance

10 95% variance threshold P it st oL L EL LR S8 & 2 & ot ot ot ol
o=

Lo Components needed: 12

Cumulative variance (%)

1234567891 M112131415161718192021222324 2526272829 30313233 343536 37 38 3040 41 42 43 44 4546 47 48 49 50 51
Number of Components

Figure 3.2: Example of choosing the number of principal components based on
the percentage of cumulative variance.

As far as the datasets SKAB and SMD are concerned, a slightly different approach
was followed in order to determine the number of components. It is based on a
similar logic as the previous one. However these datasets consist of a number of
subsets, thus the need for automation of the process appeared. We iterate through
the subsets of these datasets, therefore it would not be efficient to visually approach
the stabilization point of cumulative variance and empirically set it equal to an
empirically reasonable percentage, as we did before. Thus, in this case, for every
subset we iteratively find the point where the cumulative variance does not have an
increase of more than 0.01 between a number of components and its following one.
For instance, the algorithm goes through the cumulative variance matrix of a subset
of SMD. In this matrix, it observes that the cumulative variance that corresponds
to 6 components is equal to 0.9238 and the one that corresponds to 7 components
is equal to 0.9289. Therefore, the increase of the cumulative variance between 6
components and 7 is less than 0.01. So, the number of components used in PCA
is set equal to 6. We decided on this threshold of 0.01 increase in a similar logic
that was applied in the previous method. We try to estimate the point where the
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cumulative variance stabilizes, which means that, above that point, adding more
components will not have an important increase in the variance. Therefore, the rest
of the components above that point can be ignored. We empirically found that 0.01
is a reasonable threshold and decided to proceed with using it in the datasets SKAB
and SMD.

3.3.5 LSTM-Autoencoder

Implementing the LSTM-Autoencoder, the input data has to be reshaped, as the
inputs to the layers of the LSTM architecture are expected to be 3-dimensional.
The reshape function of Numpy library was utilized in order to transform the input
data into a 3-dimensional array of the structure (samples, timesteps, features).
The samples variable corresponds to the amount of data points and the timesteps
variable defines how many past data points the model considers in addition to the
current data point. Finally, the features variable is the number of features that are
taken into account at each time step.

The python libraries Tensorflow and Keras were used for building the layers of the
LSTM-Autoencoder. The model’s architecture is made up of seven layers, five of
which are hidden layers. The data is compressed in the first two hidden layers, re-
ducing the feature sizes to the defined ones. This part of the model is the encoder.
The fourth and fifth hidden layers of the model decompress the data, restoring the
original size of the features. These layers are the mirror image of the encoder layers,
meaning that the layers of the decoder are stacked in reverse order of the layers
of the decoder. The third hidden layer is a RepeatVector layer, which works as a
"bridge" between the encoder and decoder modules. The purpose of this layer is to
replicate the encoded feature vector as many times as the timesteps variable that
was defined. It is performed in order to pass these vectors to the next layer. This
corresponds to the first out of two layers of the decoder module. The last output
layer is the TivmeDistributed layer, which generates a vector with the same length
as the number of features. This is a reconstruction of the input that was originally
received from the model.

The activation function used by all the layers is the Rectified Linear Unit (ReLU).
The optimizer used when compiling the model is the Adaptive Moment Estimation

algorithm (Adam) and the loss function of the model is based on the mean absolute
error (MAE).

The model gets trained for 100 epochs using the train dataset and early stopping is
applied. The early stopping is responsible for terminating the training of the model,
once it reaches a point, above which not any further essential improvement is being
observed. This is achieved by monitoring the validation loss of the model over the
training epochs. Once it is observed that this validation loss does not decrease more
than 0.0001 for 15 continuous epochs, the model stops the training and it keeps
the weights that yielded the lowest validation loss of the model. Finally, in order
to reduce overfitting of the model, weight regularization is applied to the input layer.
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The last step of deciding whether a data point is an anomaly is to define a classifi-
cation threshold. For this, we followed two different approaches. The logic behind
the two approaches is similar and it is based on the loss distribution computed on
the train set.

The first approach consists of visualizing the loss distribution by plotting the loss
against the density of the data. Afterwards, we manually choose the classification
threshold by analyzing the loss distribution and picking a point where the density
of the data becomes very close to zero. Thus, all data points above this threshold
are classified as anomalies. By using this method, we can ensure that the threshold
is set above the noise level of the data, so that we can avoid classifying normal data
points as anomalies. This approach is followed on the datasets SWa'T and CCFD.
An example of this approach is shown in Figure 3.3, where the threshold is manually
set equal to 0.225. When it comes to the datasets SKAB and SMD, we automate
the process of deciding on the threshold. It is set at the point where 98% of the
loss is reached. For finding this point, we use the quantile function provided by the
Numpy library. The reason behind following a different approach for the datasets
SKAB and SMD is that they consist of a number of subsets, unlike SWaT and
CCFD. Therefore, we need to automate the process of finding thresholds in each of
the subsets of the datasets SKAB and SMD. We iterate through the subsets and
we compute the 0.98 quantile of the density for each one of them. This automation
might yield slightly lower performance results than manually picking the threshold
as it was done in SWaT and CCFD.

Loss Distribution

Density
<]

0.225

0.00 0.05 0.10 0.15 020 0.25 0.30 0.35 040
Loss_mae

Figure 3.3: Example of loss distribution plot for choosing the classification
threshold.
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3.4 Evaluation Method

After preprocessing the data, selecting the appropriate features and training the
selected models, we evaluate their performance based on the evaluation metrics Pre-
cision, Recall and F-Score. It was previously mentioned that we train on the train
dataset that does not contain any anomalies and evaluate on the test dataset that
contains some anomalous data points. Therefore, at first, the models learn the
normal behavior of the system based on the clean from anomalies train dataset. Af-
terwards, when they encounter a data point of the test dataset that does not fit with
the rest and it seems like abnormal, this data point gets classified as anomalous. In
order to evaluate the performance of the models, we need to check how many of the
data points were correctly classified and more importantly, how many anomalous
data points were correctly classified (as anomalous). That is because the evaluation
metrics that we use depend on the proportion of correctly classified anomalous data
points (i.e., TP).

As we described previously, most of the datasets were divided into data windows.
Therefore, when evaluating the models, we need to take that into account. The
labels of the data windows are determined by the fact of whether they contain any
anomalies or not. Thus, a window that contains at least one anomalous row is la-
beled as anomalous.

Furthermore, two of the publicly available datasets (SMD and SKAB) consist of
a number of subsets, therefore the evaluation of the models on these datasets is
slightly different than on the others. The models are applied iteratively on each of
the subsets and their performance is counted with the use of the mentioned eval-
uation metrics. After this iteration is completed, we compute the average of the
evaluation metrics of all subsets. In that way, we end up with the final evaluation
metrics representing the performance of the models on the whole dataset.

As far as the dataset of the company is concerned, we do not have a fast and au-
tomatic way of measuring the performance of the models on it. The reason for
this is that we do not have the labels of the dataset of the company in contrary to
the publicly available datasets, where we were at least provided with the labels of
the test set. In fact, this is a real-world scenario where thousands of log files are
produced in a period of a few hours, therefore manually assigning labels for all of
them would require lots of valuable time and effort from a number of people. So, the
evaluation here is done in the following process. We select the model that had the
most stably satisfactory performance on the publicly available datasets. By stably
satisfactory, we mean the model that achieved decent evaluation metric results in all
four datasets, without having big fluctuations in its performance. After selecting the
mode,we fit it with data from the company that corresponds to a day, during which
there were not any observed anomalies. Then, we apply the model on the dataset of
the company that corresponds to another period of time, in which we want to detect
anomalies. The model returns the labels that were assigned to the data points of
this dataset. Afterwards, we provide the experts of Centiro with these labels, in

31



3. Methods

order for them to go through the logs and manually check which of the model’s
detected anomalous data points are actually anomalies. In this way, we compute
the evaluation metric results of the model’s performance on the data of the company.

The model that had the most stably satisfactory performance in the publicly avail-
able datasets is the Autoencoder. Moreover, checking the consistency of the results
is needed in order to reduce the factor of randomness in the models’ performance
results that were previously observed. Additionally, we perform this check in order
to measure the performance of the models on sets of data with different anomaly
rates and compare their results. The consistency check that we perform takes place
on the standardized SWaT dataset both with and without the use of time win-
dows division. The SWaT dataset is the largest of all and the only one where we
can divide the test set into ten parts and still each one of them to be big enough
for a valid evaluation. Apart from the above, the SWaT dataset is the only one
where each of the ten parts of the divided test set can contain a decent amount of
anomalies without the need of changing the order of the data. It is a time-series
dataset, therefore preserving the order of the data is important for the proper func-
tioning of the model. In the publicly available datasets, we can see that anomalous
data points appear in bunches next to each other after periods of normal behavior.
In the datasets SWaT, SKAB and SMD, the data was gathered continuously for
some period of time. For instance, when it comes to SWa'T, the data was gathered
continuously for 11 days. Therefore, changing the order of data could possibly de-
crease the models’ possibilities of finding abnormalities. This is also the case in the
log dataset of the company, where the order of the data needs to be preserved as well.

After dividing the test set into ten parts, we train the models on the train set and
we evaluate their performance iteratively on each of the ten sets. A visualization of
this division of the test set and the iterative evaluation is shown in Figure 3.4.

TEST

Figure 3.4: Division of the test set into 10 subsets and iterative evaluation on
each one of them.

It is observed that, generally, the performance of the models increases as the amount
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of anomalies in the test set increases. However, this is not a universal rule, but
it is rather an observation, which can also be seen later in the Results section
and specifically in Figure 4.5. By performing this consistency check, we confirmed
that the AE model has the most stably satisfactory performance and therefore it is
utilized for detecting anomalies on the data of the company.

3.5 Used Software and Hardware

For the needs of this thesis, Python 3.7 was used and the main integrated develop-
ment environment that was used is Jupyter Notebook. The python libraries that we
used are NumPy, Pandas, Matplotlib, Seaborn, Scikit-learn, Tensorflow and Keras.
Numpy is a library that includes high-level mathematical functions for the manip-
ulation of multidimensional arrays and matrices [53]. Pandas offers support for
numerical table and time series manipulation [54]. Matplotlib is a library used for
data visualization in Python and it is well integrated with NumPy and Pandas.
Seaborn uses some extra methods that support the creation of explanatory graphics
as an extension of Matplotlib and it is well integrated for Pandas DataFrame ma-
nipulation [55]. Scikit-learn (or sklearn) is a machine learning library that includes
various classification, regression and clustering algorithms [56]. TensorFlow is an
open-source library that is used for machine learning and artificial intelligence re-
lated tasks. It is mainly used for creating and training deep neural networks [57].
Keras is a library that supports the building of deep neural networks and runs on
top of TensorFlow [58].

The training and testing of models were performed on laptops provided by Centiro.

Among their specifications is an Intel(R) Core(TM) i7-10850H CPU @ 2.70GHz, a
32GB DDR4 memory and an Nvidia Quadro T1000 GPU.
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Results

In this section, we present the results of the four models on both the publicly avail-
able datasets as well as on the dataset of the company. The performance results
vary depending on the model, dataset and preprocessing method (i.e. normaliza-
tion, standardization, with/without time windows division). At first, the results of
applying the models on the publicly available datasets are presented. Afterwards,
the performance of the selected Autoencoder model on the dataset of the company
is described.

The following tables present the performance results of the models on each publicly
available dataset. The histograms that follow, visualize these results in order to
ease the comparison of the performance of the models. As it was previously men-
tioned, Precision, Recall and F-Score are the evaluation metrics that are used in
this project. The most important of the three metrics that we take into account in
order to evaluate the stability in the performance of the models is the F-Score. The
reason behind this is that the F-Score is a harmonic mean of Precision and Recall
as described in 2.5.3 and therefore, we found it to be the most proper metric for
performance comparison among the models.

As it was described in Section 3.4 regarding the evaluation method, we need to check
the consistency of the performance results that we get in order to reduce the factor
of randomness. In the subsection 4.5, we provide an example of this consistency
check performed on the AE model on the standardized, divided in time windows,

SWaT dataset.

Later, we describe the evaluation of the AE model on the dataset of the company
after dividing it into time windows. The process of its evaluation differs from the
one performed on the publicly available datasets, as we are not provided with any
labels for the dataset of the company.
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Table 4.1: Performance results on SWa'T dataset.

LOF
Case Precision Recall F-Score
Standardized & || 12.2% 99.5% 21.7%
No time windows
Normalized & No || 12.2% 99.9% 21.8%
time windows
Standardized & || 12.4% 99.2% 22.1%
time windows
Normalized & || 12.4% 98.9% 22.1%
time windows

IF
Case Precision Recall F-Score
Standardized & || 16.4% 88.3% 27.7%
No time windows
Normalized & No || 23.6% 81% 36.5%
time windows
Standardized & || 29.2% 75.1% 42%
time windows
Normalized & || 23% 81.3% 35.6%
time windows

PCA
Case Precision Recall F-Score
Standardized & || 98.7% 16.3% 27.9%
No time windows
Normalized & No || 97.8% 16.1% 27.7%
time windows
Standardized & || 97.3% 16% 27.5%
time windows
Normalized & || 98.7% 16.2% 27.8%
time windows

LSTM AE

Case Precision Recall F-Score
Standardized & || 81.4% 62.7% 1%
No time windows
Normalized & No || 30.1% 72.2% 42 5%
time windows
Standardized & || 82.1% 65% 72.6%
time windows
Normalized & || 62.5% 63% 62.8%
time windows
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Table 4.2: Performance results on SKAB dataset.

LOF
Case Precision Recall F-Score
Standardized & || 48.4% 78.9% 51.7%
No time windows
Normalized & No || 50.6% 79.2% 53.7%
time windows
Standardized & || 49.5% 75.2% 52.1%
time windows
Normalized & || 53.8% 78.4% 56.6%
time windows

IF
Case Precision Recall F-Score
Standardized & || 25.7% 72.9% 32.2%
No time windows
Normalized & No || 27.3% 74.3% 34.4%
time windows
Standardized & || 20.8% 46.2% 24.6%
time windows
Normalized & | 23.1% 49.4% 27.3%
time windows

PCA
Case Precision Recall F-Score
Standardized & || 71.7% 16.6% 26.9%
No time windows
Normalized & No || 69.2% 15.9% 25.8%
time windows
Standardized & || 77.5% 19.4% 31%
time windows
Normalized & || 76.5% 19.1% 30.6%
time windows

LSTM AE

Case Precision Recall F-Score
Standardized & | 68.5% 41.5% 44.4%
No time windows
Normalized & No || 66% 41.7% 43.4%
time windows
Standardized & || 65.5% 48.5% 50.1%
time windows
Normalized & || 66% 46.5% 48%
time windows
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Table 4.3: Performance results on SMD dataset.

LOF
Case Precision Recall F-Score
Standardized & || 69.3% 66.7% 10.6%
No time windows
Normalized & No || 75.8% 65.1% 10.8%
time windows
Standardized & || 55.3% 22.5% 20.7%
time windows
Normalized & || 62.1% 19.8% 20%
time windows

IF
Case Precision Recall F-Score
Standardized & || 54.4% 19.1% 21.3%
No time windows
Normalized & No || 55.8% 20% 22.1%
time windows
Standardized & || 53.5% 39.8% 32.3%
time windows
Normalized & || 55.2% 39.8% 32.9%
time windows

PCA
Case Precision Recall F-Score
Standardized & || 40.9% 29.3% 34.2%
No time windows
Normalized & No || 40.8% 29% 33.9%
time windows
Standardized & || 52.5% 31.5% 39.4%
time windows
Normalized & || 56.4% 33.7% 42.2%
time windows

LSTM AE

Case Precision Recall F-Score
Standardized & | 59% 42.5% 46.5%
No time windows
Normalized & No || 59.9% 40.9% 41.3%
time windows
Standardized & || 61.2% 58% 52.5%
time windows
Normalized & || 57.5% 55.6% 45.6%
time windows
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Table 4.4: Performance results on CCFD dataset.

LOF
Case Precision Recall F-Score
Standardized & || 2.7% 0.3% 0.5%
No time windows
Normalized & No || 5.3% 0.7% 1.2%
time windows

IF
Case Precision Recall F-Score
Standardized & || 69.3% 9.5% 16.8%
No time windows
Normalized & No || 64% 9% 15.5
time windows

PCA
Case Precision Recall F-Score
Standardized & || 5% 77.3% 9.6%
No time windows
Normalized & No || 5% 76% 9.4%
time windows

LSTM AE

Case Precision Recall F-Score
Standardized & || 11.4% 45.3% 18.2%
No time windows
Normalized & No || 22.8% 44% 30%
time windows
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4.1 SWaT dataset

As it can be seen in Figure 4.1, the Autoencoder model yields the highest F-Score out
of the four models and that is for all variations of preprocessing of the dataset. The
best performance of the AE model is observed in the standardized dataset. More
specifically, the standardized dataset that was divided into time windows led to
slightly better results than the one that was not undergone such windows division.
The second best overall performing model based on the F-Scores is the Isolation
Forest. We can see that also this model performs the best on the standardized
dataset that has been divided into time windows.
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Figure 4.1: Performance results on the SWa'T dataset.
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4.2 SKAB dataset

From Figure 4.2, we can observe that the LOF model yields slightly better results
than the AE model, which has the second best performance. More specifically, the
performance of the LOF model was the best on the dataset that was normalized and
divided into time windows. On the contrary, the AE model yielded better results on
the standardized dataset. This is the only case where LOF performed better than
the rest of the models. However, the results of the AE model on this dataset are
still reasonably good.
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Figure 4.2: Performance results on the SKAB dataset.
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4.3 SMD dataset

It can be seen in Figure 4.3, that the AE model performs the best out of the four
models for every variation of preprocessing of the dataset. The best performance of
the AE model is observed on the dataset that has been standardized and divided
into time windows. The model with the second best overall performance on this
dataset is PCA, which achieves its best F-Score on the dataset that is normalized
and divided into time windows.
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Figure 4.3: Performance results on the SMD dataset.
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4.4 CCFD dataset

From Figure 4.4, we can see that the models did not achieve as high performance
results as those that were previously observed on the other datasets. The peculiarity
of the CCFD dataset is that it was previously undergone a transformation through
a PCA algorithm. Furthermore, it has the lowest anomaly rate of all datasets, as
the anomalies make up only 0.17 percent of all data points. The model that yielded
the highest F-Score on this dataset is the AE model, which achieved its best results
on the normalized dataset. The model with the second best performance on this
dataset is the Isolation Forest.
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Figure 4.4: Performance results on the CCFD dataset.

4.5 Consistency check

As mentioned in the last part of Section 3.4 about the evaluation method of the
model, we perform a consistency check in order to ensure that the results that were
observed do not include much of randomness. In the example that is shown in Figure
4.5, we plot, in ascending order, the amount of anomalies that is included in each
subset of the SWaT dataset against the corresponding F-Score that the AE model
yielded for that subset. The dataset that was used for this consistency check is the
standardized SWa'T dataset. We can observe that, generally, the bigger the amount
of anomalies in the subset, the higher the F-Score that is achieved by the model.
In this example, this observation is valid for almost all subsets with a few excep-
tions, such as the one that appears pre-last in the left graph. It includes around
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10% anomalies and its corresponding F-Score is lower than that of the previous
subset, which includes 7.8% anomalies. This consistency check was also performed
for the rest of the models. However, the yielded results of the other models were,
in their majority, worse than those of the AE and, in some cases, their F-Score was 0.

Consistency check for AE, no time windows Consistency check for AE, with time windows

100

80 80

60

F-Score, %
F-Score, %

40

20 20

13 16 32 35 36 37 7 78 10 80 13 16 32 35 36 37 7 78 10 80
Anomaly rate, % Anomaly rate, %

Figure 4.5: Performing consistency check on the AE model.

4.6 Additional Precision-Recall Curve test

In order to gain a better view of the performance of the models, we include here
an additional test, which is based on the tradeoff between the yielded Precision and
Recall. The area under the Precision-Recall curve represents the average Precision
of the model. By doing so, we get a score that does not depend on a specific value
of classification threshold.

We perform this test on the standardized SWaT dataset for the same reasons that
were previously mentioned in Section 3.4 regarding the Consistency check. The test
was performed once on the original standardized SWaT dataset and once on the
same dataset that was divided into time windows.

From the definition of Precision that was described in Subsection 2.5.1, we can come
to the conclusion that the Average Precision shows how accurate is a model when
classifying actual anomalies as such without classifying a lot of normal data points
as anomalies (FP). Therefore, the higher the Average Precision of the model, the
better its ability of correctly classifying positives (anomalies).
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Figure 4.6: Precision-Recall Curve test on the standardized SWaT dataset,
without the use of time windows.

From Figure 4.6, we can see that the model that yielded the best performance re-
sults on the standardized SWa'T dataset that has not been divided into time windows
is the AE model, with an Average Precision of about 0.75. The second best per-
formance was achieved by the PCA model, which yielded a slightly lower Average
Precision of about 0.72. Similarly to the previous test, the LOF and IF models
yielded much lower performance results with an Average Precision of 0.08 and 0.07
respectively.

We can observe from Figure 4.7, that can be found in the following page, that
the model that achieved the best performance results on the standardized SWaT
dataset that has been divided into time windows is the PCA model, with an Average
Precision of about 0.71. The AE model yielded the second best results with a slightly
lower Average Precision of about 0.62. The other two models achieved relatively low
performance scores, namely 0.12 and 0.07 for LOF and IF model respectively.

4.7 Dataset of Centiro

The model with the most stably satisfactory performance was the LSTM-Autoencoder,
as it was mentioned in Section 3.4. Therefore, this model was applied on the dataset
of the company and here we describe its yielded results.

From the evaluation that was performed by the experts of the company, we got some

specific time periods, during which, it is valid to consider all the detected anomalies
as actual anomalies. Therefore, based on that assumption, we were able to confirm
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Figure 4.7: Precision-Recall Curve test on the standardized SWa'T dataset, with
the use of time windows.

the correct predictions (TPs) of the model. Additionally, we were able to spot the
FPs, which are the logs that the model classified as anomalies, but they are not
actual anomalies in the system. However, we were unable to obtain the amount of
TNs and FNs. This is because of the sheer amount of data that has been used,
and therefore, the detection of TNs and FNs would require a large amount of time
and effort from the company, since most of the data points were classified as non
anomalies. As a result, we are able to compute the Precision of the model, but not
the Recall and the F-Score.

More specifically, we divided the standardized dataset of the company into time
windows. The rationale for this choice is based on the fact that, in the majority
of the cases, the models yielded better results on the standardized datasets. At
first, we created 5-second time windows, then 30-second time windows and lastly,
1-minute time windows as mentioned in Subsection 3.2.4. Below, we refer to these
time windows as data points, since they are treated as such. The results that we
got are the following.

For 5-second time windows, the total amount of data points is 8641. Out of these, 63
were classified as anomalies, 39 of which were found to be actual anomalies (TPs).
Next, regarding the 30-second time windows, the total amount of data points is
1441. 13 were classified as anomalies and out of these, 9 were found to be actual
anomalies. Lastly, as for the 1-minute time windows, the total amount of data points
is 721. There were 9 detected anomalies, 6 of which were TPs. These results are pre-
sented in the table below, in which the yielded Precision of each test can also be seen.
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Table 4.5: Performance results on the dataset of the company.

LSTM AE
time windows division 5 seconds 30 seconds 1 minute
Data points 8641 1441 721
Detected anomalies 63 13 9
True Positives 39 9 6
Precision 61.9% 69.2% 66.7%

In the figures below, we present visualized model outputs, based on computed loss
distribution and set anomaly threshold in time between 9:00 and 21:00. From these
graphs we can clearly see that we are dealing with four peaks, around 10, 12:30, 15
and 19, which repeat among the performed tests. The threshold for the dataset of
the company was decided on both the computed value from the previously mentioned
quantile function as well as the manual investigation of the loss distribution with
respect to the density of the data.
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5
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Figure 4.8: AE output on 5 seconds time windows.
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Figure 4.9: AE output on 30 seconds time windows
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Figure 4.10: AE output on 1 minute time windows.
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Discussion

In this section, we discuss the results that were previously presented among the
different approaches that have been used. Furthermore, future work of this project
is discussed.

5.1 Approaches & Results

Based on the results provided in the section above, we can see that the LSTM-AE,
in most of the cases, outperformed the rest of the models. The only case where
the Autoencoder did not achieve the highest scores was the SKAB dataset. LOF
in yielded on average about 5% better results on the SKAB dataset. The highest
difference could be seen on the case where data was normalized and not divided into
time windows. We suspect that this phenomenon is caused by the transformation of
the data, which is an adjustment in the anomaly rate. It can be seen that for all the
other datasets, Local Outlier Factor is the most poorly performing model, therefore
we believe that the structure of the data after such transformation could be possibly
better for the nature of this density based algorithm. Because the performance of
LOF on this particular case drew our attention, we also performed one additional
test where we used original structure of SKAB dataset. From that, we could see
that LOF performed much worse comparing to LSTM-AE. Based on that, we could
ensure our reasoning on choosing LSTM-AE as our final model that was used for
IIS log dataset.

In Section 3.3, we explained the reasoning behind the choice of values for the param-
eters and variables that are connected to the anomaly rate of the datasets. One such
parameter is the contamination in LOF and IF models. When it comes to the PCA
model, the cutoff variable is connected to the estimation of the anomaly rates of the
datasets. For the AE model, the classification threshold that decides on whether a
data point is anomalous is also connected to our estimation of the anomaly rate.
In case we would like to measure the best performance of the models, using the in-
formation provided by the labels of the datasets, we would compute their anomaly
rates and adjust the parameters of the models accordingly. This approach would
lead to better performance results, however, it could not be applied in a real-life
scenario of unsupervised learning, where the available data is unlabeled. Experi-
mentally estimating the anomaly rate of the dataset of the company would require
relevant information from the experts, which, in most cases, is hard to be found.
When it comes to the publicly available datasets, we empirically approached the
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anomaly rate to 0.01. Therefore, the models are going to expect a lower number of
anomalies than the actual number for three datasets and a higher number of anoma-
lies for the other one. We could experimentally estimate the anomaly rates of the
datasets by running the models for different values of anomaly rate and observing
their performance results. However, this would require the use of the available labels
in order to compute the performance results. Previously, we mentioned the reason
why we do not want to make use of the labels, therefore, we excluded this option of
experimentally approaching the anomaly rate individually for every dataset.

In the case of the CCFD dataset, we are dealing with a problem commonly known
as extreme rare event classification. This task refers to highly unbalanced datasets,
where the positive class makes up less than 1% of the total data points. This type of
task is generally difficult to deal with. Deep learning has been extensively used in ex-
treme rare event classification in the recent years [59]. Nevertheless, LSTM-AE still
got some reasonably good results considering the above mentioned circumstances.

Having gathered all the results of the performed variations of tests, we can see that
preprocessing of the data, which is standardization and normalization, has little
impact on the model’s performance. The only significant difference in the results
between normalization and standardization can be observed on the performance of
LSTM-AE applied on the CCFD dataset. Nonetheless, the majority of the tests
performed better when the data was standardized.

Regarding the consistency check that was described in Section 4.5, we can observe
that the selected AE model contains a degree of unreliability, since its performance
depends on the anomaly rate of the dataset. However, this observation is valid for
the rest of the models as well. Even though the AE model is inconsistent in that
matter, it still yielded better performance results compared to the rest of the mod-
els. Therefore, after performing this consistency check, we became more confident of
our choice of model, since the AE model had the highest performance results when
tested on the ten subsets of the test set.

In terms of the results of the dataset of the company, we can conclude that LSTM-
AE was successful in detecting some of the actual anomalies of the system. The
developed model was able to properly describe the time periods during which the
anomaly occurred, reducing the amount of time required to identify the exact causes
of the issue. For the company, we were able to provide the file with all the appli-
cations that occurred in that precise time after establishing specified time windows
of anomaly emerging. Although our model was unable to identify the particular
application that caused the reported anomaly, we were able to reduce the number
of applications that needed to be investigated, saving time from the experts of the
company.

From the provided outputs of the model for 3 different time windows divisions, it
can be seen that as the time window size increases, the number of peaks in the graph

decreases. We can clearly observe 6 peaks that cross the defined threshold for the
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largest time window, that is 1 minute, but only 4 of them, between 12:00 and 16:00,
are actual anomalies. We can conclude, based on our investigation of the results,
that codes of levels 3, 4, and 5 have the biggest impact on the corresponding value of
the computed loss, where codes 4 and 5 are the messages defined as error messages
on the client and server sides, respectively.

5.2 Future Work

The work that can be done in order to improve and evolve this project includes the
steps that are described below.

First of all, we find it reasonable, that the amount of data we fit in the model can
affect its performance. Therefore, in the future we want to fit the model with data
that corresponds to more than one day of continuously produced log material. This
would require a bigger capacity of hardware resources. Apart from that, we would
need to know when a period of normal behavior of the system occurred for some
continuous days. This is because we want to train the model on a bigger amount of
anomaly-free data and test it on data that might include anomalies.

Furthermore, another step of future work would be to modify the model, so that it
would identify the exact applications that triggered the anomalies. This would ease
the process of its evaluation and let the company know which applications require
extra attention or updates. In order to do that, another approach of preprocessing
the data would be needed. To specify the exact application that was called in cer-
tain log, the division of the dataset into time windows through the aggregation of
the multiple data rows would not be applicable anymore. Therefore, the selection
of new features would be necessary.

The investigation of different models and the modification of the current ones would
be one more step that can be done in future work. More specifically, modifying the
architecture of the AE model could possibly lead to a change in the performance
of the model. When it comes to applying different models, our next step would be
to try the use of a different architecture of the Autoencoder model, which would
include convolutional layers.

Lastly, the development of a User Interface (UI) would allow the model to be used
by more people that are not relevant to Python programming. A user-friendly ap-
plication of anomaly detection could be beneficial for any organization that keeps
track of the logs that are produced by its software, as its use would require little
training from its technical engineers or other employees who have little knowledge
about the subject.
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Conclusion

This project investigated the use of four unsupervised machine learning models for
the task of anomaly detection. Four models were used, namely Local Outlier Factor,
Isolation Forest, Principal Component Analysis and LSTM-Autoencoder. For the
purposes of this thesis, we made use of four publicly available datasets as well as a
dataset provided by Centiro, the company that the project was in collaboration with.
The datasets derived from various anomaly detection related backgrounds, sharing
some common characteristics which made possible the comparison among the per-
formances of the models on these datasets. The reason for using public datasets
lies mainly in the fact that the dataset of the company was not annotated. Because
of that, the models could not be tested in order to compare their performances.
Therefore, the models were first tested on the four public datasets, namely SWaT,
SKAB, SMD and CCFD. Then, the model with the best and most stable perfor-
mance on these datasets was utilized in order to detect anomalies on the dataset
of Centiro. Two variations of data scaling were used on the datasets and these are
standardization and normalization. Also, most of the datasets were further divided
into time windows.

Performing the above described tests, we were able to choose the most successful
model, which was the LSTM-Autoencoder. This model outperformed the rest in the
majority of tests and, therefore, it was selected as the model to be applied on the
dataset of the company. The evaluation scores that the model achieved were not the
highest for all datasets, however, the AE model showed some significant differences
when compared to the rest, in terms of combining performance stability and good
results. Thus, we found it reasonable to use it for the final experiment. In addition,
based on the performed tests, the anomaly rate of the dataset is observed to have
an impact on the performance of the models.

The utilization of the LSTM-AE model in the final tests on the dataset of the com-
pany provided us with the time periods of detected potential anomalies. After the
investigation of these time periods from the experts of the company, we were able to
evaluate the performance of the model. The average yielded Precision of the model
was about 66%, a result that we find reasonably good.

Regarding the use of sc-status feature of the ISS logs, it was proved to be a reason-
able choice for finding patterns that could lead the model to detect abnormalities in
the system. However, the investigation of different features as well as preprocessing
techniques would be considerable for future continuation of this project.
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