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Emil Hietanen
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Abstract
This thesis addresses the issue of vulnerable underlying assumptions used in option
pricing methodology. More precisely; underlying assumptions made on the financial
assets and markets make option pricing theory vulnerable to changes in the financial
framework. To enhance the robustness of option pricing, an alternative approach
using artificial intelligence is introduced.
Artificial intelligence is an advantageous tool for pricing financial assets and instru-
ments, in particular; the use of deep neural networks as one does not have to make
any assumptions. Instead, the neural network learns the underlying patterns of the
asset and market directly from the input data.
To test the proposed pricing alternative, an error metrical analysis, a log-returns
distribution fit, and a volatility-smile fit is performed. Four mathematical option
pricing models are used as reference models; Black–Scholes, Merton jump-diffusion
model, Heston stochastic volatility model and Bates stochastic volatility with jumps.
In addition, three types of neural networks are used; multilayer perceptron (MLP),
long short-term memory (LSTM), and convolutional neural network (CNN).
All methods included in the thesis require some predefined set of parameters, there-
fore, a parameter calibration method is required. A non-linear least square method
can be used for cases where the number of combinations is sufficiently small. How-
ever, as the possible number of parameter combinations increases, the method be-
comes too computationally heavy. To combat this, an evolutionary reinforcement
machine learning algorithm is introduced to find a set of calibrated parameters in a
more efficient approach.
First versions of option pricing neural networks show great promise, with signif-
icantly better results than the reference models. In addition, the networks show
good coherence to existing stylized facts of options, in terms of the empirical fre-
quency distribution of log-returns and volatility smile fit.

Keywords: Options, calls, puts, pricing, artificial neural networks, models, volatility,
comparison.
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1
Introduction

This first section begins with a background description that explains the problems
with existing option pricing models. Thereafter the aim is stated which specifies the
intended outcome, and, lastly, the limitations of the thesis are declared.

1.1 Background
At the beginning of the 20th century, the first option pricing model was introduced
by Louis Bachelier, which laid the foundation for using mathematics when pricing
options. Since the first introduction, there have been several advances in the field,
with Black–Scholes being one of the most prominent models. However, there are
several problems concerning the assumptions of the newly introduced model. For
example, the model assumes constant values for the risk-free rate of return and
volatility over the option duration, which is not the case in the real world. Another
issue was recognized in the middle of 2020, where the WTI oil futures dropped below
zero [34]. This was problematic for oil options since one of the assumptions is that
the price of the underlying asset follows a geometric Brownian motion, which is non-
negative. Thus, contradicting the assumption and making the option pricing models
obsolete. This caused huge problems since firms and investors could not correctly
perform risk assessments. Instead, investors and firms had to switch to the Bachelier
model, which does not assume that the underlying assets are non-negative.

There are potential problems with most of the existing mathematical option pricing
models, i.e., underlying assumptions incoherent to real-world market behavior [5,
11, 44, 47, 61]. The threat to the validity of the option pricing models can be
exaggerated through history. When Bachelier introduced the option pricing model,
many investors and academians were skeptical about modeling the stock dynamics
with a Brownian motion, which allows for underlying negative values [61]. Thus,
when the Black–Scholes model was introduced, the majority was positive towards
the change for not allowing negative values for the underlying assets, as negative
values were seen as nonsensical. As described in the previous paragraph, the price
of an underlying asset went negative. Thus, we can conclude that there is always a
threat to the validity when making assumptions, even though the alternative might
seem nonsensical.

As there could be an issue with the robustness of making an assumption on the
financial market, it seems logical to use as few assumptions as possible. This is where
the advances in the field of artificial intelligence could be useful – more specifically,
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1. Introduction

deep neural networks – which make no underlying assumption. Instead, the networks
use historical input data to learn the structure of the data. Thus, such a network
could theoretically learn the statistical properties of the financial instrument, asset,
and market [30].

1.2 Aim
This master’s thesis aims to investigate possible AI alternatives for pricing options.
More specifically, we can divide the purpose into three parts:

i. Calibrate the set of parameters for each model and neural network.
ii. Evaluate a metric error analysis for the performance of the AI alternatives with

mathematical option pricing models as reference.
iii. Investigate how the different methods fit two common stylized facts of option

prices; the frequency distribution of log-returns have heavy tails and the option
prices form a volatility-smile 1.

1.3 Limitations
The exploration of possible neural network structures is limited to investigate three
different neural network architectures:

i. multilayer perceptron,
ii. long short-term memory,
iii. convolutional neural network.

Furthermore, the number of possible reference option pricing models is limited to
four:

i. Black–Scholes model,
ii. Merton (jump-diffusion) model,
iii. Heston (stochastic volatility) model,
iv. Bates (stochastic volatility with jumps) model.

1.4 Thesis outline
Section 2 initially introduces the financial framework used in the thesis. Thereafter,
the section resumes by presenting an overview of each included option pricing model.

Section 3 gives a theoretical foundation of the included neural network architectures.

Section 4 briefly introduces the two selected parameter calibration methods; non-
linear least squares and genetic algorithm.

1A graph shape, where the forecasted standard deviation of a sequence of returns, known as
implied volatility, against the strike prices creates a convex-shaped graph, refereed to as a smile.
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1. Introduction

Section 5 presents the data gathered and how the data is processed.

Section 6 presents the error metrical and stylized coherence results of each option
pricing approach.

Section 7 confers the result.

section 8 presents potential future work.
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2
Financial Foundation

This chapter presents the underlying financial foundation of the thesis. In the first
section, the financial framework used in the thesis is stated. In section 2.2, the
included reference mathematical option pricing models are introduced together with
a brief theoretical explanation.

2.1 Financial Framework
Let’s consider a filtered probability space (Ω, F , {Ft}0≤t≤T , P), where {Ft}0≤t≤T
is a filtration which satisfies FT = F , while T ∈ R+ represents the maturity of
all investments, and P represents a real-world probability measure. We assume
that there are two types of assets in the market: a risk-free asset and a risky asset
whose related prices are respectively modeled by the following Ft-adapted stochastic
processes: {Bt}0≤t≤T , and {St}0≤t≤T . The risk-free asset guarantees a pre-specified
future interest rate, which models the money market account. Let’s consider a
stock to be the underlying risky asset of a European style option, which is a type of
contract that gives its holder the right, but not the obligation, to buy, or sell, one
unit of the underlying stock for a predetermined strike price K > 0, at maturity
time T . The payoff of such an option that gives the holder the right to buy one
unit, referred to as a call option, is defined by

(ST −K)+ =
{
ST −K if ST > K,

0 if ST ≤ K.

Suppose that ST > K, the holder will exercise the option and make a profit equal
to ST −K, buying the stock for K and selling it immediately at the market price
ST . If ST ≤ K, the option is not exercised.

The payoff of a European option that gives the holder the right to sell one unit,
referred to as a put option, is defined by

(K − ST )+ =
{
K − ST if ST < K,

0 if ST ≥ K.

Suppose that ST < K, the holder will exercise the option and make a profit equal
to K − ST , selling the stock for K and buying it immediately at the market price
ST . If ST ≥ K, the option is not exercised.

Following [20] and [41], we make various assumptions concerning the financial market
characteristics. More specifically,
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2. Financial Foundation

• the risk-free interest rate r > 0 is known and constant through time;
• the stock does not pay dividends;
• frictionless markets: trading occurs continuously in time, with no restrictions

on borrowing and short selling and with no transaction costs nor taxes;
• there are no risk-free arbitrage opportunities. Shortly, it means that there is

no way of trading on the stock so that an agent has a probability equal to one
to gain a strictly positive quantity of money.

We will consider four different ways to model the asset dynamics, each of which
leads to various pricing formulas for the same European option.

Remark 2.1.1 None of the assumptions made are used by any of the NNs consid-
ered in this thesis.

2.2 Mathematical Option Pricing Models

2.2.1 Black–Scholes
In the early 1970s, Fischer Black and Myron Scholes developed a mathematical
model, the Black–Scholes (BS) model, to treat specific financial quantities, publish-
ing related results in the article ”The Pricing of Options and Corporate Liabilities”
[20]. The model quickly gained popularity, as the model had an easy-to-use closed-
form solution. However, the BS model is founded on the so-called risk-neutral
pricing assumption, significantly simplifying the associated derivatives analysis. In
particular, in the classical BS model, we assume:

• The volatility1 σ is assumed to be constant over all times t.
• The returns on the underlying asset are log-normally distributed.
• The returns Xt are assumed to be an infinitesimal random walk with drift.

Given the underlying assumptions of the Black–Scholes model, the stock price dy-
namics is given by

dSt = µStdt+ σStdWt, 0 < t ≤ T, S(0) = S0 > 0, (2.1)

where µ is the expected infinitesimal rate of return on the stock, σ is the volatility
and St is the price of the asset at time t and {Wt}0≤t≤T is a Brownian motion
under P, see [25], [33] and [52] for further details related to stochastic calculus (e.g.
Brownian motion, Itô calculus, etc.). Now, using the Itô’s lemma, which appears as
lemma 4.4.4 in [52], one obtains the exact solution

St = S0 exp
{

(µ− σ2

2 )t+ σWt

}
, 0 ≤ t ≤ T. (2.2)

1For any asset that evolves randomly with time, volatility is defined as the standard deviation
of a sequence of random variables, where each of these random variables is the return of the asset
over some corresponding sequence of times.
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2. Financial Foundation

We recall that this is the definition of a geometric Brownian motion (gBm) [25].
Moreover, since the distribution of a gBm at time t is log-normal, for 0 ≤ t ≤ T , we
have

log(St) = log(S0) + σWt + (µ− σ2

2 )t (2.3)

∼ N
(

log(S0) + (µ− σ2

2 )t, σ2t

)
,

where N denotes the normal distribution. Then, the log-returns are given by

Xt = log(St)− log(S0) = σWt + (µ− σ2

2 )t ∼ N
(

(µ− σ2

2 )t, σ2t

)
. (2.4)

Given this framework, it is well known that the market model is complete, see, e.g.,
[52]. Mathematically, a complete market means that any contingent claim can be
replicated as a stochastic integral of a sequence of semi-martingales. Indeed, guar-
anteeing the existence and uniqueness of the martingale measure Q, which makes it
possible to perfectly hedge a short position, see, e.g., [52]. Thus, the given martin-
gale dynamic gives us {

S0 = S0 > 0,
dSt = rSt dt+ σSt dW

Q
t ,

(2.5)

where
WQ
t := Wt + µ− r

σ
t, 0 ≤ t ≤ T,

is a Q-Brownian motion, by the Girsanov theorem, which appears as theorem 5.1 in
[25].

The risk-neutral pricing formula, which expresses the European call option price at
time t with underlying price x , is given by

C(t, x) = e−rτ Ẽ[(ST −K)+|St = x ], τ = T − t, (2.6)
where Ẽ denotes the expectation under Q. Equation (2.6) can then be simplified
to gives us the Black–Scholes formula, see, e.g., [52]. In particular, indicating with
CBS the call price under the Black–Scholes approach, we have

CBS(t, x) = xΦ(d+(τ, x))− e−rτKΦ(d−(τ, x)), (2.7)

where Φ is the cumulative distribution function for the standard normal random
variable, namely

Φ(z) = 1√
2π

∫ z

−∞
e−

y2
2 dy,

and
d±(τ, x) := 1

σ
√
τ

{
log

(
x

K

)
+
(
r ± σ2

2

)
τ

}
.

The pricing formula for put options follows directly from put–call parity with dis-
count factor Dt = e−r(T−t).
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2. Financial Foundation

Theorem 2.2.1 (Put–call parity for European styled options [26]) If the mar-
ket gives no risk-free arbitrage opportunities, then the relationship between a put and
a call is given by

C(t, x)− P (t, x) = St −K ·Dt. (2.8)

Thus, using (2.8) we obtain the BS put formula

PBS(t, x) = Ke−r(T−t) − St + CBS(t, x). (2.9)

2.2.2 Merton Jump-Diffusion
After the Black–Scholes publication, the model was met with skepticism towards
the assumptions of the model and the actual financial markets. As of today, there
is a consensus among empirical studies that volatility changes through time, exhibit
volatility clustering, and most often returns are not log-normally distributed [5,
11, 44, 47, 61]. These stylized facts were not considered in the original BS model.
However, in 1976 Robert C. Merton published a new model to capture one of these
facts with the use of jumps [41].

Remark 2.2.1 Parameters that are not specifically defined share the same defini-
tions as previous models.

The Merton model makes the same assumptions on the underlying asset as the BS
model, except for log-normally distributed returns.

We shall use the notation t− to indicate a time right before the index in question.
In other words, when writing St− we mean the same as

lim
s→t−

Ss,

i.e., the left limit.

Let us introduce what follows the Merton approach, as in the original specification
of the model [41], starting with the stock price dynamicsS0 = S0 > 0,

dSt = (µ− λk)St dt+ σSt dWt + St−Qt, 0 < t ≤ T,
(2.10)

where λ is the intensity of the Poisson process, µ is the yield, k is the mean random
percentage jump size conditional on the jump occurring, {Wt}0≤t≤T is a Brownian
motion, and {Qt}0≤t≤T is a compound Poisson process

Qt =
Nt∑
i=1

(Yi − 1), (2.11)

where

Yi = STi
STi−

> 0, i ∈ N, (2.12)

8



2. Financial Foundation

is the price ratio associated with the i-th jump of the stock price at random time
Ti > 0. Moreover, we assume that the random variables {Yi}i∈N are independent
and identically distributed (i.i.d.) and that they are also independent of both Wt

and Nt, where Nt is a Poisson process with intensity λ > 0. We also assume that

Vi := log Yi ∼ N (m, δ2),

with probability density

fV (y) = 1
δ
√

2π
e−

(y−m)2

2δ2 , y ∈ R.

Hence,
E[Qt] = λkt, 0 ≤ t ≤ T,

where
k := E[Yi − 1] = em+ δ2

2 − 1,
independent of i and therefore well defined. This gives us that equation (2.10) with
the compensated version of Qt, by definition is a martingale [41]. As in the BS
model we use this fact together with the risk-neutral pricing formula, to get the
explicit solution

St = S0 exp{σWt +
(
µ− λk − 1

2σ
2
)
t}

Nt∏
i=1

Yi, 0 ≤ t ≤ T. (2.13)

Let the log-returns for the Merton model be conditional on the event {Nt = j}, then

log(St)− log(S0) = σWt +
(
µ− λk − 1

2σ
2
)
t+

j∑
i=1

Vi

∼ N
(

(µ− λk − 1
2σ

2)t+ jm, σ2t+ jδ2
)
, (2.14)

which gives us its probability density as a quickly converging series. Indeed, for an
arbitrary A ⊆ R,

P
(

log
(
St
S0

)
∈ A

)
=
∞∑
j=0

P
(

log
(
St
S0

)
∈ A|Nt = j

)
P(Nt = j),

with the related probability density at time t as follow

φt(y) = e−λt
∞∑
j=0

(λt)jexp
{
− (y−(µ−λk− 1

2σ
2)t−jm)2

2(σ2t+jδ2)

}
j!
√

2π((σ2t+ jδ2))
, y ∈ R, (2.15)

expressed as a weighted sum of normal densities.

Contrary to the BS model, such a jump-diffusion model is not complete, in which the
set of probability measures under which the discounted stock price is a martingale
is infinite. Hence, we can choose different martingale measures, Q ∼ P, such that

9



2. Financial Foundation

the discounted price e−rtSt is a martingale [52]. In particular, we can with direct
computation get another martingale for the discounted price e−rtSt as

d(e−rtSt) = e−rt(µ− r − λk)St dt+ e−rtt (dWQ
t − θ dt) + e−rtSt− dQt

= e−rt(µ− r − λk − σθ + λQkQ)St dt
+ e−rtσSt dWQ

t + e−rtSt−d(Qt − λQkQt), (2.16)

and setting the differential of (2.16) equal to zero, we obtain the market price of the
risk equation

µ− r − λk − σθ + λQkQ = 0, (2.17)

where θ is such that
WQ
t := Wt + θt, 0 ≤ t ≤ T,

is a Q-Brownian motion, by the Girsanov theorem, see theorem 5.1 in [25], while
λQ > 0 is the new arrival rate of jumps and k := Ẽ[Yi − 1]. Merton proposed the
following choice for the change of measure:

λQ = λ,

fQ
V (y) = fV (y),
kQ = k,

θ = µ− r
σ

.

Merton justified leaving the jump segment unchanged, with the assumption that
the jump risk is diversifiable and no risk premium is attached to it. Thus, the risk-
neutral properties of the jump segment of the process St are assumed to be the same
as its statistical properties. In particular, the dynamics of the stock price under Q
are then

St = S0exp
{
σWQ

t + (r − λk − 1
2σ

2)t
} Nt∏
i=1

Yi, 0 ≤ t ≤ T. (2.18)

We can rewrite the European call price formula, assuming that the jumps are of
Gaussian type length [41], as

CM(τ, x) =
∞∑
j=0

e−λτ
(λτ)j
j! Ẽ[e−rτ (ST −K)+|St = x]

=
∞∑
j=0

eλτ
(λτ)j
j! CBS(τ, x), (2.19)

where

σ2
j = σ2 + jδ2

τ
and xj = xexp

{
jm+ jδ2

2 − λτe
m+ δ2

2 + τ

}

are used in CBS(τ, x).

Remark 2.2.2 If λ = 0 then CM(τ, x) = CBS(τ, x), with all the terms in the sum
equal to 0, except for j = 0, when x0 = x and σ0 = σ.

10
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2.2.3 Heston
In 1993, Steven Heston proposed a model with stochastic volatility, where an asset’s
price and volatility follow a Brownian motion process [47]. Thus, the model intro-
duced by Heston could incorporate the three known stylized facts presented in the
previous section: volatility is not constant through time, returns are non-normally
distributed, and volatility clusters.

Let us introduce what follows the Heston, or stochastic volatility, approach, starting
with the stock price dynamics

dSt = rSt dt+
√
VtSt dW1t, (2.20)

dVt = κ(θ − Vt)dt+ σ
√
Vt dW2t,

where the newly introduced parameters are defined as

•
√
Vt : volatility of the volatility of the asset price;

• θ: long-term price variance;
• κ: rate of reversion to the long-term mean price variance;
• W1t: Brownian motion of the asset price;
• W2t : Brownian motion of the asset’s price variance;
• ρ: correlation coefficient for W1t and W2t.

For the last two option pricing models (Heston and Bates), we will use the Lewis
framework, see [4], which takes advantage of the fact that each probability density
function (PDF) can be described using a characteristic function. Now, before we
consider such methods, it is worth mentioning why we would consider such an ap-
proach. First, recall from Section 2.1 that the price of a European call option on a
single asset ST can be written as:

C = E[(ST −K)+]. (2.21)

As (2.21) is an expectation, it can be calculated via integration, given that we know
the PDF in closed-form (as with the BS model). However, for multiple models, the
PDF is either unknown in closed-form or quite unmanageable. Then, its character-
istic function is often much easier to work with, which is the case for Heston and
Bates.

Definition 2.2.1 A characteristic function for a random variable X is defined by

φX(u) = E(eiuX)

for arbitrary real numbers u, where i =
√
−1.

If fX(x) is the PDF of the random variable then the integral

φX(u) =
∫ ∞
−∞

eiuxfX(x) dx, (2.22)

11



2. Financial Foundation

is the expected value and is by definition, see Section 2.1 in [45], the Fourier trans-
form of the density function fX(x) denoted by F[fX(x)]. For a given u, φX(u) is a
single random variable and for −∞ < u <∞ we have a stochastic process.

We know that Itô’s lemma in the three variable case for a general stochastic differen-
tial equation (SDE) involving a time dependent stochastic process of three variables,
t, Xt and Vt, is given by the following system of two standard stochastic differential
equations

dXt = µx dt+ σx dW1t,

dVt = µv dt+ σv dW2t. (2.23)

Now, letW1t andW2t have correlation ρ, where −1 ≤ ρ ≤ 1. For a given continuous,
twice differentiable, scalar function g(Xt, Vt, t), we want to find the derivative. With
the multi-variable Taylor series expansion of 2nd order and omitting the higher
order terms, we get that the derivative of a function of three variables involving two
stochastic processes equals the following expression:

dg(Xt, Vt, t) =
[
µxgx + µvgv + gt + gxvσxσvρ+ 1

2(gxxσ2
x + gvvσ

2
v)
]

dt

+ [σxgx] dW1t + [σvgv] dW2t.

To get a sense of why higher order terms can be omitted, see the proof of Itô’s
lemma, which appears as lemma 4.4.4 in [52].

The characteristic function of the Heston model is a function of St, Vt, and t, where
Itô’s lemma can be used to get the derivative of the characteristic function. Also,
we know that the characteristic function for a three variable stochastic process has
the following exponential affine form [47]:

φSt,Vt(u) = E[eA(T−t)+B(T−t)St+C(T−t)Vt+iuSt ].

Letting T − t = τ, the explicit form of the Heston model’s characteristic function
appears below.

φSt,Vt(u) = E[eA(τ)+B(τ)St+C(τ)Vt+iuSt ], (2.24)

where

A(τ) = riuτ + κ

σ2

[
−(ρσiu− k −M)τ − 2 ln(1−NeMτ

1−N )
]
,

B(τ) = 0,

C(τ) = (eMτ − 1)(uσiu− κ−M)
σ2(1−NeMτ ) ,

M =
√

(ρσiu− κ)2 + σ2(iu+ u2),

N = ρσiu− k −M
ρσiu− κ−M

.

12



2. Financial Foundation

With the known characteristic function, we can use the Lewis methodology. How-
ever, we will first need some basic knowledge of Fourier transformation.

Let us introduce the inversion theorem as it is the fundamental theorem of the
theory of characteristic functions since it links the characteristic function back to
its probability distribution via an inverse Fourier transform.

Definition 2.2.2 (Absolutely Integrable Functions) A function f is absolutely
integrable if the integral of its absolute value over R is finite, i.e.,∫ ∞

−∞
|f(x)| dx <∞. (2.25)

Absolutely integrable functions give us an important relation since for a Fourier
transform and its inverse to exist, then the condition in equation (2.25) must hold
[32].

Another important property of characteristic functions is their one-to-one relation-
ship with distribution functions. In particular, every random variable possesses a
unique characteristic function, and the characteristic function indeed characterizes
the distribution uniquely [32].

With the fundamental results from Lévy [45], who gave a general inversion formula,
Gil-Pelaez [27] developed a useful representation of the Inversion Theorem.

In the following, we use the form given by Gil-Pelaez. See [32] for a review on
inversion methods.

Theorem 2.2.2 For a univariate random variable X, if x is a continuity point of
the cumulative distribution function FX then

FX(x) = 1
2 −

1
2π

∫ ∞
−∞

[eiuxφX(u)]
iu

du. (2.26)

From (2.26) we note that have a distribution function expressed as an integral in
terms of the characteristic function. Taking the derivative of FX(x) yields the prob-
ability density function fX(x)

fX(x) = F−1[φX(u)] = 1
2π

∫ ∞
−∞

e−iuφX(u)du, (2.27)

where F−1[φX(u)] denotes the inverse Fourier transform of the characteristic func-
tion.

Next, some relevant properties of Fourier transforms.

Theorem 2.2.3 (Elementary Properties of the Fourier Transform [46]) We
denote the Fourier transform from f(x) as f̂(u) = F[f ](u)

13
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• Linearity. For arbitrary a, b the transform is a linear operator

F[af(x) + bg(x)](u) = af̂(u) + bĝ(u). (2.28)

• Translation. The Fourier transform turns a multiplication by a variable x0
into translation

F[f(x− x0)](u) = eiux0 f̂(u). (2.29)

• Differentiation. If n > 0 is an integer, f (n) is piecewise continuously dif-
ferentiable, and each derivative is absolutely integrable on the entire real line,
then

F[f (n)](u) = (−iu)nf̂(u). (2.30)

Thus, a differentiation converts to multiplication in Fourier space.
• Convolution. Define the convolution by

(f ∗ g)(x) =
∫ ∞
−∞

f(x− y)g(y) dy, (2.31)

where ∗ denotes the convolution operator. Then

F[f ∗ g](u) = f̂(u)ĝ(u), (2.32)

and

F[fg](u) = f̂(u) ∗ ĝ(u). (2.33)

We have until now defined the characteristic function in terms of real-valued trans-
form variables u. However, we could also integrate a characteristic function along
the complex plane u → z ∈ C by a line parallel to the real axis. Then, character-
istic function is well-behaved, i.e., Lipschitz continuous [15]. The set of values for
z = zr + izi for which the expectation in Eq. (2.22) is well-defined and within some
strip of regularity SX with a < =[z] < β parallel to the real z − axis.

With the extension to the complex plane, φT (z) is called the generalized Fourier
transform, with the inverse of this generalized Fourier transform

f(x) = 1
2π

∫ izi+∞

izi−∞
e−izxφ(z) dz. (2.34)

Generally, the properties for the ordinary Fourier transform also apply with little or
no modification to the generalized Fourier transform.

Theorem 2.2.4 (Plancherel–Parseval identity) If the function f and g are Lip-
schitz continuous at zi, then by an integration along a straight line parallel to the
real axis∫ ∞

−∞
f(x)ḡ(x) dx = 1

2π

∫ ∞
−∞

F[f(x)](zr + izi)F[g(x)](zr + izi) dzr. (2.35)

14
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For more detailed information on the theory of characteristic functions, see [15], and
for a more detailed discussion in the context of Fourier transforms, see [17, 59].

Now, with the brief explanation of Fourier transforms, we introduce the Lewis frame-
work. The idea is to express the option value as the convolution of generalized
Fourier transforms and then apply the Plancherel–Parseval identity.

For each option there exists a known payoff function w(ST ). The payoff function for a
call option is given by w(x) = (ex−K)+ with x = lnST . Lewis suggested that every
payoff function could also be represented in Fourier space ŵ(z) =

∫∞
−∞ e

izxw(x)dx.
However, (ex−K)+ is an unbounded function, which does not belong to L1. Thus, as
the defining integral is not finite when ŵ(z) = F[w(x)]→∞ the Fourier transform
does not exist. If we use a modified payoff, we have a regular Fourier transform, since
(ex −K)+e−zix → 0 as x→∞ for some appropriate zi. This approach corresponds
integrating a characteristic along the complex plane by a line parallel to the real
axis. Hence, the call option payoff yields

ŵ(z) =
∫ ∞
−∞

eizx(ex −K)+ dx

=
∫ ∞

lnK
eizx(ex −K) dx

=
(
e(iz+1)x

iz + 1 −K
eizx

iz

)x=∞

lnK
titch, rudin

= 0−
(
Kiz+1

iz + 1 −K
Kiz

iz

)

= − Kiz+1

z2 − iz
, (2.36)

where z is a complex-valued number. The upper limit x =∞ only exists under the
condition that =(z) > 1 implying that the Fourier transform is Lipschitz continuous
only within a certain strip of regularity Sw in the complex domain. Note that the
transformed payoff for a put option has the same functional form, but is defined in
a different strip in the complex plane with zi < 0.

If we assume that the characteristic function φT (z) is Lipschitz continuous with
z ∈ SX with a transformed payoff ŵ(z), z ∈ SX , and an arbitrary price dynamic
and a we can apply martingale pricing, which gives us the option value

V (S0, K, T ) = e−rtEQ[w(x)]

= e−rT

2π EQ
[∫ izi+∞

izi−∞
eizxŵ(z) dz

]
= e−rT

2π

∫ izi+∞

izi−∞
EQ

[
eizx

]
ŵ(z) dz

= e−rT

2π

∫ izi+∞

izi−∞
φT (−z)ŵ(z) dz.

(2.37)
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Note from above that we have stated that the extended characteristic function φT (z)
with z ∈ C is Lipschitz continuous in SX . However, the reflection symmetry prop-
erty for a real-valued function φ̄T (z) = φT (−z̄), φT (−z) is also Lipschitz continuous
in the conjugate strip of regularity S̄X , where the real z-axis is the line of symmetry.
If we get a z ∈ (S̄x ∩ Sw) then the whole integral would be Lipschitz continuous.
In addition, if we take the inversion contour along S̄x ∩ Sw, then the integral con-
verges absolutely, and we were allowed to change the order of integration by Fubini’s
theorem, see theorem 2.3.2 in [15].

Using the payoff transform of a call option (2.36), the call price is given by

C(S0, K, T ) = −Ke
−rt

2π

∫ izi+∞

izi−∞
e−izkφT (−z) dz

z2 − iz
, (2.38)

with k = ln S0
K

+ rT in the phase factor e−izk and zi ∈ SV .

The call price in (2.38) is regular in the strip S̄V , excluding for when z2− iz is zero,
which will occur at two poles, at z = 0 and z = i. For the pole at z = i, the residue
is given by

Res(i) = lim
z→i

[
(z − i)

(
−Ke

−rT

2π e−izk
φT (−z)
z2 − iz

)]
= SφT (−i)i

2π = iS

2π . (2.39)

Recall that z = zr + ii, then if we move integration contour to zi ∈ (0, 1), then the
valuation function for a call option must equal the integral along =(z) = zi − 2πi ·
Res(i) = S, according to the Cauchy’s residue theorem, which appears as theorem
3.2.5 in [32]. Hence, we get

C(S0, K, T ) = S0 −
Ke−rT

2π

∫ izi+∞

izi−∞
eizkφT (−z) dz

z2 − iz
. (2.40)

For the put option a similar contour can be used, however, the strip is then defined
by =(z) < 0. By shifting the contour crossing both poles at z = 0 and z = i we
additionally pick up the residue for z = 0 and find that

Res(i) = lim
z→0

[(
−Ke

−rT

2π e−izk
φT (−z)
z2 − iz

)]
= e−rTKφT (0)i

2π = iKe−rT

2π . (2.41)

With the use of Cauchy’s residue theorem, we obtain the formulation for the put
option

P (S0, K, T ) = Ke−rT − Ke−rT

2π

∫ izi+∞

izi−∞
e−izkφT (−z) dz

z2 − iz
. (2.42)

The introduced framework can now be used with substituting in the Heston char-
acteristic function (2.24) at time T to obtain prices for call and put options.

For further details on the Lewis framework, see [3, 4].
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2.2.4 Bates
The Bates model (1996) incorporates both stochastic volatilities similar to the Hes-
ton model and jump-diffusion similar to the Merton model [14]. Analogously to the
Heston model, the Bates model embodies the three known stylized facts presented
in Section 2.2.2.

Let us introduce what follows the Bates, or stochastic volatility with jump-diffusion,
approach, starting with the stock price dynamics.

dSt = (r − λk)Stdt+
√
VtStdW1t +QtSt, (2.43)

dVt = k(θ − Vt)dt+ σ
√
VtdW2t. (2.44)

Similarly to the Heston model, we can use the Lewis framework and use the char-
acteristic function for the Bates model instead of the Heston model.

The characteristic function for the Bates model [14] with τ = T − t is given by

φSt,Vt(u) =

exp
{

(C +Dσ + iu lnSt)
[
λτ

(
(1 + r)iφ exp

{
δ2(−1

2iu+ (iu)2

2 )
}
− 1

)
− λτriu

]}
,

where

C = riφτ + kθ

σ2

[
(b− ρσiu− d)τ − 2 ln

(
1− εe−dτ

1− ε

)]
,

D = b− ρσiu− dk
σ2

(
1− e−dτ
1− εe−dτ

)
,

ε = b− ρσiu+ d

b− ρσiu− d
,

d =
√

(b− ρσiu)2 − σ2(−iu− u2),
b = k + λ− ρσ.
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3
Neural Networks

This section consists of a theoretical foundation for understanding the selected neural
network (NN) architectures. Furthermore, as each network is different from the
other, a theoretical subsection for each network is included. However, to get an
adequate theoretical foundation, the section initially covers the perceptron before
reviewing the selected networks.

3.1 Perceptron
The perceptron [21], also referred to as a McCulloch–Pitts neuron, is the first and
simplest NN model, making it a natural starting point. Furthermore, extending this
model with multiple neurons will result in the so-called Rosenblatt’s single-layer
perceptron, used for the classification of linearly separable patterns [21].

3.1.1 One-neuron perceptron
For a one-neuron perceptron [21], the network topology is shown in Fig. 3.2, and
the net input to the neuron is given by

net =
n∑
i=1

wixi − θ = wTx− θ, (3.1)

ŷ = g(net), (3.2)

where x = [x1, x2, ..., xn]T are the inputs, w = [w1, .., wn]T are the weights, n are the
number of inputs, θ are the bias and g is the activation function.

The one-neuron perceptron with an activation function can be used for the classifica-
tion of a vector x into two classes. Moreover, the classification process is determined
by the decision areas, separated by a hyperplane,

wTx− θ = 0,
where the threshold θ ∈ R is a parameter used to shift the decision boundary away
from the origin.

The activation functions are used as functions that help the network adapt to com-
plex patterns in the data. The activation function is attached to each neuron in the
network and determines whether it should be activated or not. This decision is made
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based on whether the input for each neuron is relevant for the model prediction [9].
The simplest form of an activation function is a linear function, but there are also
non-linear activation functions. The two most popular ones are [55]:

rectified linear unit (ReLU)

g(z) = max(0, z), g′(z) =
{

1, z > 0,
0, z ≤ 0, (3.3)

and the sigmoid

g(z) = (1 + e−z)−1, g′(z) = g(z)(1− g(z)).

The reason one might use a non-linear activation function is that they introduce
non-linearity into the network. Therefore, if one is working with non-linear data it
is necessary to use a non-linear function, and this is the case no matter the depth of
the network [9]. We can illustrate the problem of trying to classify non-linear data
with a linear activation function through a graphical example in Fig. 3.1. From the
figure, we note that the data are not classifiable by a linear activation function, but
can be done with a non-linear activation function.

(a) (b)

Figure 3.1: Comparison of classifying positives (blue) and negatives (orange) by
a hyperplane, based on (a) a non-linear activation (ReLU) function or (b) a linear
activation function.

20



3. Neural Networks

w1

w2

wn

x1

x2

xn

∑ ŷ
g(·)

θ1

Figure 3.2: Network topology of the McCulloch-Pitts neuron with one output.

3.1.2 Single-layer perceptron
When more neurons are added to the perceptron network from the previous section,
we obtain a single-layer perceptron, the network topology is shown in Fig. 3.3.

x1

x2

xn

∑
ŷ

g(·)

θθθ1

∑
g(·)

W

Figure 3.3: Rosenblatt’s single-layer perceptron with one output.

Compared to the one-neuron perceptron, the single-layer perceptron can be used to
classify input vector x into more than two classes [21]. For a perceptron with n
inputs and m neurons, the state is updated by

net = WTx− θθθ, (3.4)
ŷ = g(net), (3.5)

where W is the weights matrix, net = (net1, ..., netm)T is the net input vector,
ŷ = (ŷ1, ..., ŷm)T is the output vector, and θθθ = (θ1, ..., θm)T is the biases in the
second layer. The adaptation of W is error driven, and this process is known as a
learning algorithm. To learn the basics of a learning algorithm, we shall look closer
at one specific algorithm, Rosenblatt’s perceptron learning algorithm [21, 22].
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3.1.2.1 Perceptron learning algorithm

In what follows, we introduce Rosenblatt’s perceptron convergence theorem for clas-
sification problems [21]. Let us start with defining two key concepts, linear separa-
bility and gradient descent.

Definition 3.1.1 (Linear separability) A data set is said to be linear separable
if there exists a weight vector x∗, and a bias term θ∗, such that all features x in the
training data X have predicted sign equal to their true class label l [21].

Definition 3.1.2 (Gradient descent method) The weights are updated by

∆wjk = α
∂Er
∂wj,k

= α
N∑
i=1

ρ(εi, β) ∂εi
∂wj,k

, (3.6)

where α ∈ R+ is the learning rate, β ∈ R+ is the cutoff parameter, εi is the estimated
error for input i, i.e., the network residuals and ρ : R × R+ → R is the influence
function, given by

ρ(εi, β) = ∂σ(εi, β)
∂εi

, (3.7)

where σ is the loss function, which is a symmetric function with a unique minimum
at zero. The loss function represents a loss associated with an event, for example a
squared error loss function [9].

Theorem 3.1.1 (Perceptron convergence) Given a one-neuron perceptron and
input x ∈ X from two linear separable classes. Let the patterns be presented in an
arbitrary sequence of update cycles, also known as epochs. Then, starting from an
arbitrary initial state, the perceptron learning procedure always converges and yields
a decision hyperplane between the two classes in finite time .

For a proof we refer readers to [21, 22].

The theorem states that the weight of the perceptron will converge to a fixed point
within a finite number of epochs for a separable data set. Therefore, we can use
the theorem to understand the learning algorithm, which is used in the proof of the
theorem.

Remark 3.1.1 The perceptron convergence theorem can be extended to the single-
layer perceptron by extending the perceptron learning algorithm from one neuron to
multiple neurons [13, 38].

The perceptron learning algorithm is given as

nett,j =
J1∑
i=1

xt,iwij(t)− θj = wT
j xt − θj, (3.8)

ŷt,j =
{

1, nett,j > 0,
0, nett,j ≤ 0, (3.9)

et,j = yt,j − ŷt,j, (3.10)
wij(t+ 1) = wij(t) + αxt,iet,j, (3.11)
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where J1 is the number of neurons in layer 1, i = 1, 2, ..., n, is the number of inputs,
j = 1, 2, ...,m are the neurons, and α is the learning rate. All weights are initialized
randomly and continuously updated until the errors, given by equation (3.10), are
sufficiently small. Thus, one could interpret the equations (3.8)-(3.10) as a loop that
breaks for a given level of error, et,j.

The selection of learning rate, α, does not affect the stability of perceptron learning,
meaning, the learning algorithm will converge, independent of the learning rate.
Instead, the learning rate only affects the convergence speed of the nonzero initial
weight vector [21, 22].

3.2 Multilayer perceptrons
Multilayer perceptrons (MLPs) are feedforward networks with one or more layers of
units between the input and output layers. The network topology is illustrated in
Fig. 3.4, where M is the number of layers.

1 1

x1

x2

xn

g(·)∑

∑

∑

g(·)

g(·)

g(·)

g(·)

g(·)

g(·)

∑

∑

∑

∑

θθθ(1)
θθθ(M−1)

W(1) W(M−1)

O(1)

O(M)

O(M−1)

ŷ

Figure 3.4: Multilayer perceptrons with one output.

For m = 2, ...,M and the pth node we have the following relations:

ŷp = O(M)
p , O(1)

p = xp, (3.12)

net(m)
p =

[
W(m−1)

]T
O(m−1)
p − θθθ(m), (3.13)

O(m)
p = g(m)(net(m)

p ), (3.14)

where O(m) is an output vector for each layer.

It has been shown that a three-layer sigmoid activated MLP with an arbitrary
number of neurons is a universal approximator, i.e., the MLP can approximate any
continuous multivariate functions to any accuracy [24].

3.2.1 Backpropagation learning algorithm
Backpropagation (BP) learning is the most popular learning rule for performing
supervised learning tasks [9]. It is not only used to train feedforward networks such
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as MLP but also is adapted to recurrent neural networks (RNNs). Moreover, the
perceptron convergence theorem (theorem 3.1.1) can be extended for MLPs, stating
that the BP algorithm converges to an optimal solution for linearly separable input
data with no upper bound on the learning rate [13, 38].

The BP algorithm propagates backward the error between the desired signal and
the network output through the network. After providing an input pattern, the
output of the network is then compared with a given target pattern, and the error
of each output unit is calculated. This error signal is propagated backward, and a
closed-loop control system is thus established. The weights can be adjusted by the
use of a gradient descent algorithm.

To implement the BP algorithm, a continuous, nonlinear, monotonically increasing,
differentiable activation function is needed [13]. In the following, we derive the BP
algorithm for MLP with a ReLu activation function.

Remark 3.2.1 BP algorithms for other neural network models can be derived sim-
ilarly [13, 38].

The objective function for optimization, given a sample size N and a training set S,
is defined as the mean square error (MSE) between the actual network output yp
and the desired output ŷp for all the training pairs (xp,yp) ∈ S. Thus, the objection
function for the size of the sample set N can be written as

E = 1
N

∑
p∈S

Ep = 1
2N

∑
p∈S
||ŷp − yp||2, (3.15)

where

Ep = 1
2 ||ŷp − yp||2 = 1

2e
T
p ep, (3.16)

and

ep = ŷp − yp. (3.17)

Remark 3.2.2 The factor 1
2 is used in Ep for the convenience of the derivation.

The network parameters W(m−1) and θ(m) for layers m = 2, ...,M can be defined
as the matrix of the combinations, W = [wij]. This means that the bias term for
the error function represented by (3.15) or (3.16) can be minimized using gradient
descent, see definition 3.1.2. Thus, minimizing Ep gives us

∆pW = −α∂Ep
∂W

= −α ∂Ep
∂wij

, (3.18)

Using the chain rule on (3.18) gives the expression

∂Ep

∂w
(m)
uv

= ∂Ep

∂net
(m+1)
p,v

∂net(m+1)
p,v

∂w
(m)
uv

, (3.19)
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where the second factor is derived from (3.13)

∂net(m+1)
p,v

∂w
(m)
uv

= ∂

∂w
(m)
uv

(
Jm∑
ω=1

w(m)
ωv O

(m)
p,ω + θ(m+1)

v

)
= O(m)

p,u , (3.20)

and Jm is the number of neurons in layer m.

The first factor of (3.19) can be derived using the chain rule and (3.14)

∂Ep

∂net
(m+1)
p,v

= ∂Ep

∂O
(m+1)
p,v

∂O(m+1)
p,v

∂net
(m+1)
p,v

= ∂Ep

∂O
(m+1)
p,v

g(m+1)
v

(
net(m+1)

p,v

)
. (3.21)

If we consider two situations for the output unit (m = M − 1) and for the hidden
unit (m = 1, ...,M − 2) we can solve the first factor of (3.21):

∂Ep

∂O
(m+1)
v,p

= ep,v = yp,v − ŷp,v, (3.22)

for m = M − 1, and

∂Ep

∂O
(m+1)
p,v

=
Jm+2∑
ω=1

(
∂Ep

∂net
(m+2)
p,ω

∂net(m+2)
p,ω

∂O
(m+1)
p,v

)

=
Jm+2∑
ω=1

[
∂Ep

∂net
(m+2)
p,ω

∂

∂O
(m+1)
p,v

(
Jm+1∑
u=1

w(m+1)
uω O(m+1)

p,u + θ(m+2)
ω

)]

=
Jm+2∑
ω=1

∂Ep
∂netm+2

p,w

wm+1
vω , (3.23)

for m = 1, ...,M − 2. Let us define the delta function as

δ(m)
p,v = − ∂Ep

∂netp, v(m) , for m = 2, ...,M. (3.24)

Now, we substitute (3.19), (3.23) and (3.24) into (3.51), obtaining the output units
and hidden units

δ(M)
p,v = −ep,vg(M)

v

(
net(M)

p,v

)
, m = M − 1, (3.25)

δ(m+1)
p,v = g(m+1)

v

(
netm+1

p,v

) Jm+2∑
ω=1

δ(m+2)
p,ω w(m+1)

vω , m = 1, ...,M − 2. (3.26)

With the use of (3.25) and (3.26) we have a recursive method to solve δ(m+1)
p,v for the

whole network. Thus, the weights W can be adjusted by

∂Ep

w
(m)
uv

= −δm+1
p,v O(m)

p,u . (3.27)
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Remark 3.2.3 An adjustment of the weights W refers to the process of adding the
weight adjustments ∆W to the old weights W. Furthermore, from (3.18) we know
that ∆W is the product of the learning rate α > 0 and the gradient, multiplied by
−1, which implies that the objection function Ep always decreases.
In addition to updating the weights, we can also update the biases. Let’s first define
two key concepts.

Definition 3.2.1 (Autocorrelation) Let {Xn, n ∈ N} be a sequence of random
variables. The autocorrelation coefficient between two terms of the sequence Xn and
Xn+k is

ρ(n, n+ k) = Cov[Xn, Xn+k]√
Var[Xn]Var[Xn+k]

.

Definition 3.2.2 (Eigenvalue) Let A be a matrix. If there is a vector X ∈ Rn 6= 0
such that

AX = λX,
for some scalar λ, then λ is called an eigenvalue of A with corresponding (right)
eigenvector X.

The biases can be updated with the gradient descent method concerning θθθ(m), by
following the above methodology. However, the biases can be treated as a special
kind of weight, which are usually omitted in practical applications.

The BP algorithm given by (3.19) can be rewritten as

∆pW(t) = −α∂Ep
∂W

. (3.28)

The algorithm is convergent in the mean if α > 0 is two times smaller than the
inverse of the largest eigenvalue of the autocorrelation matrix, which is a square
matrix giving the autocorrelation between each pair of elements of a given random
input vector x, denoted by R. However, if α is too small, the likelihood of getting
stuck at a local minimum of the error function increases. If instead, the learning
rate is too high the likelihood of falling into oscillatory traps is higher, i.e. swinging
backward and forward like a pendulum without any progress [8]. The difference in
learning rates can be visualized with synthetic data by a simple illustration, see Fig.
3.5.

Remark 3.2.4 In practice, α is usually chosen between 0 and 1 [9].

Figure 3.5: Descent in weight space, the space of all possible weight values, for a
(a) small learning rate and (b) large learning rate. The smaller learning rate takes
more, but smaller, steps to converge to the center. The larger learning rate takes
less, but larger, steps to converge to the center.
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A pseudo algorithm flowchart for a three-layer MLP is shown in Pseudo Algorithm
3.1.2.

Pseudo Algorithm 3.1.2 (BP for three-layer MLP).
Let all units have the same activation function g, and all

biases be combined into the weight matrices.
1. Initialize W(1) and W(2).
2. Use (3.15) to calculate E.
3. For each epoch:

• Use (3.15) to calculate E.
• If E is less than a threshold ε, return weights.
• For all xp, p = 1, ..., N :

(a) Forward pass:
(i) Compute net(2)

p by (3.13) and o(2)
p by (3.14).

(ii) Compute net(3)
p by (3.13) and o(3)

p = ŷp by (3.14).
(iii) Compute ep by (3.17).

(b) Backward pass (learning), for all neurons:
(a) Compute δ(3)

p,v by (3.25).
(b) Update W(2) by (3.28).
(c) Compute δ(2)

p,v by (3.26).
(d) Update W(1) by (3.28).

4. End.

3.3 Long short-term memory
Long short-term memory (LSTM) is an artificial recurrent neural network (RNN)
architecture [39, 42]. Unlike the standard feedforward neural networks, see the
previous section, RNN has feedback connections. These feedback connections enable
the propagation of data from the earlier event to the current processing, which builds
a memory of time-dependent events.

3.3.1 Basics
RNNs range from partly to fully connected, see Fig. 3.6 and Fig. 3.7. The Elman
network is a simple RNN similar to a three-layer MLP network, with an addi-
tional layer for saving the outputs of the hidden layer in so-called context cells, see
Fig. 3.8 [35, 28]. Then the output of these context cells is fed back to the hidden
neurons along with the originating signals.

The difference in structure between the standard feedforward neural networks and
recurrent ones also means that they also need to be trained differently. This is
because, for RNNs, information needs to be propagated through the recurrent con-
nections inbetween steps. In this thesis, we will examine two common learning al-
gorithms for supervised temporal learning, backpropagation through time (BPTT)
and real-time recurrent learning (RTRL) [39, 42]. The original formulation of LSTM

27



3. Neural Networks

networks used a combination of BPTT and RTRL. Therefore, we will cover both
learning algorithms in short.

Figure 3.6: Partly connected RNN. The input comes from the left and goes through
the feedback connections in the hidden layer which enable the propagation of data
from the earlier event to the current processing and then return outputs.

Figure 3.7: Fully connected RNN. In addtion to having feedback connection in
the hidden layers as a partly connected RNN, a fully connected RNN have feedback
connections everywhere.
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Figure 3.8: Elman network.

3.3.2 Backpropagation Through Time
For a finite period of time, there is a feedforward network identical to every RNN
[39]. Thus, the BPTT uses this fact by unfolding the RNN in time. Fig. 3.9 (a)
shows a fully recurrent neural network with one two-neuron layer. The corresponding
feedforward neural network, shown in Fig. 3.9 (b), consists of separate layers for
each given timestep with the same weight for all layers. Hence, if the weights are
identical, both networks show the same behavior.

(a) (b)

Figure 3.9: (a) shows a fully recurrent neural network with a two-neuron layer.
Same network structure but unfolded trough time is shown in (b).

As the unfolded network is an MLP network, it can be trained using the same
backpropagation algorithm described in Section 3.2.1.

We use the following iterative backpropagation algorithm to calculate the error signal
for a unit for all steps in a pass. We consider discrete timesteps τ = 1, 2, 3... The
network starts at a point in time t′ and runs until a final time t. Now, we let U
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be the set of non input units, and let gu be the non-linear differentiable, sigmoid
function of the unit u ∈ U ; the output yu(τ) of u at time τ is given by

yu(τ) = gu(zu(τ)), (3.29)

with the weighted input

zu(τ + 1) =
∑
l

W[u,v]X[l,u](τ + 1)

=
∑
v

W[u,v]yv(τ) +
∑
i

W[u,i]yi(τ + 1)yv(τ), (3.30)

where W[u,v] are the weight connected to neurons u and v, l ∈ K(u), K(u) is the set
of units v that proceeds u, v ∈ U ∩K(u) and i ∈ I, which is the set of input units.
The inputs at τ + 1 to u are of two types: the recurrent output from all non-input
units in the network produced at time τ and the environmental input that arrives at
time τ + 1 by the input units. Thus, if the network is fully connected we have that
U ∩K(u) is equal to the set U of non-input units. If T (τ) is the set of non-input
units for which, at time τ , the output value yu(τ) of the unit u ∈ T (τ) is equal
to the target value du(τ). The cost function is the sum of all errors Etotal(t′, t) for
the epoch t′, t′ + 1, ..., t and we want to minimise this cost function using a learning
algorithm.

Hence, the total error is defined by

Etotal(t′, t) =
t∑

τ=t′
E(τ), (3.31)

with the error E(τ) at time τ defined using the squared error as an objective function
by

E(τ) = 1
2
∑
u∈U

(eu(τ))2,

and with the error eu(τ) of the non-input unit u at time τ defined by

eu(τ) =

du(τ)− yu(τ), if u ∈ T (τ)
0, otherwise

We update the weights, using the error signal ψu(τ) of a non-input unit u at a time
τ , which is defined by

ψu(τ) = ∂E(τ)
∂zu(τ) . (3.32)

When we unroll ψu over time, we obtain the equality

ψu(τ) =

g′u(zu(τ))eu(τ), if τ = t,

g′u(zu(τ))(∑k∈U W[k,u]ψk(τ + 1)), if t′ ≤ τ < t.
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When the backpropagation is performed until time t′, we calculate the weight update
∆W[u,v] for the recurrent version of the network:

∆W[u,v] = −α∂Etotal(t
′, t)

∂W[u,v]
, (3.33)

with

∂Etotal(t′, t)
∂W[u,v]

=
t∑

τ=t′
ψu(τ) ∂zu(τ)

∂W[u,v]
(3.34)

=
t∑

τ=t′
ψu(τ)X[u,v](τ). (3.35)

For more details on BPTT see [39, 13, 43].

3.3.3 Real-Time Recurrent Learning
For the RTRL algorithm, we do not require error propagation. Instead, all necessary
information for the computation of the gradient is collected using an input stream.
Thus, we do not need dedicated training intervals. This approach also comes with a
high computational cost, and the information is not stored locally, which means that
we need a notion for the sensitivity of the output. However, the memory required
is only dependent on the size of the network and not the input.

The network units v ∈ I∪U and u, k ∈ U , with the timesteps t′ ≤ τ ≤ t. We assume
the existence of a labeled data point dk(τ) at every time τ for every non-input unit
k. Hence, the training objective is to minimize the overall error, which is at timestep
τ given by

E(τ) = 1
2
∑
k∈U

(dk(τ)− yk(τ))2. (3.36)

From equation (3.31) we note that the gradient of the total error is equal to the sum
of the gradient of all previous steps and the current:

∆WEtotal(t′, t+ 1) = ∆Etotal(t′, t) + ∆WE(t+ 1), (3.37)

where ∆W is the gradient of the weights.

When presenting the time series to the network, we need to collect the gradient for
each timestep, which also means that we can track the deltas, or weight changes,
∆W[u,v](τ). Thus, the overall deltas for W[u,v] is given by

∆W[u,v] =
t∑

τ=t′+1
∆W[u,v](τ). (3.38)
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To obtain the deltas, we must calculate

∆W[u,v](τ) = −α ∂E(τ)
∂W[u,v]

, (3.39)

for each timestep t, where α is the learning rate. Using the expansion by gradient
decent together with equation (3.36), we get

∆W[u,v](τ) = −α
∑
k∈U

∂E(τ)
∂yk(τ)

∂yk(τ)
∂W[u,v]

(3.40)

= −α
∑
k∈U

(dk(τ)− yk(τ))
(
∂yk(τ)
∂W[u,v]

)
. (3.41)

Since the error ek(τ) = dk(τ)− yk(τ) is known, we only need to calculate the second
factor. The measure of sensitivity are given by

pkuv(τ) = ∂yk(τ)
∂W[u,v]

, (3.42)

where yk(τ) is the output of unit at time τ to change in the weightW[u,v]. Since unit
k does not have to be connected with the weight W[u,v], it makes the algorithm non-
local. In RTRL, the gradient information is forward propagated. Using equations
(3.29) and (3.30), the output yk(t+ 1) at timestep t+ 1 is given by

yk(t+ 1) = gk(zk(t+ 1)), (3.43)

with the weighted input

zk(t+ 1) =
∑
l

W[k,l]X[k,l](t+ 1) =
∑
v∈U

W[k,v]yv(t) +
∑
i∈I

W[k,i]y(t+ 1), (3.44)

where l ∈ K(k) with K(k) denoting the set of units with connections to a unit k,
and X[k,l] denotes the input of unit u coming from a unit v.

We differentiate equations (3.42), (3.43) and (3.44) to calculate the results for all
timesteps ≥ t+ 1 with

pkuv(t+ 1) = ∂yk(t+ 1)
∂W[u,v]

= ∂

∂W[u,v]

gk
 ∑
l∈Pre(k)

W[k,l]X[k,l](t+ 1)


= g′k(zk(t+ 1))
 ∂

∂W[u,v]

 ∑
l∈K(k)

W[k,l]X[k,l](t+ 1)


= g′k(zk(t+ 1))
 ∑

l∈K(k)

∂W[k,l]

∂W[u,v]
X[k,l](t+ 1)

+
 ∑
l∈K(k)

W[k,l]
∂X[k,l](t+ 1)
∂W[u,v]


= g′k(zk(t+ 1))

δukX[u,v](t+ 1) +
∑
l∈U

W[k,l]
∂yl(t)
∂W[u,v]

+
∑
i∈l
W[k,i]

∂yi(t+ 1)
∂W[u,v]


= g′k(zk(t+ 1))

δukX[u,v](t+ 1) +
∑
l∈U

W[k,l]p
l
uv(t)

 , (3.45)
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where δuk is the Kronecker delta, i.e.,

δuk =
{

1, if u = k,
0, otherwise.

Assuming that the initial network state has no functional dependency on the weights,
the derivative for the first step is given by

pkuv(t′) = ∂yk(t′)
∂W[u,v]

= 0. (3.46)

Equation (3.45) shows how pkuv(t + 1) can be calculated in terms of pkuv(t). Thus,
we have an incremental learning algorithm, which allows for learning in real-time
instead of using backpropagation through time.

Given the initial value for pkuv at time t′ from (3.46), we can recursively calculate
pkuv for the first and all subsequent timesteps using (3.45). Note that pkuv(τ) uses
the values of W[u,v] at t′, and not values inbetween t′ and τ . Using the combination
of these two values with the error vector e(τ) and (3.14), we get the negative error
gradient ∆WE(τ). The final deltas for W[u,v] can be calculated using equations
(3.14) and (3.13).

For a more detailed description of the RTRL algorithm, see [42] and [43].

3.3.4 Vanishing Error Problem
Backpropagation error signals tend to change with each timestep. Hence, if we
propagate over many steps, the error typically blows up or vanishes [60, 50]. A
standard RNN cannot bridge more than 5–10 timesteps [18]. If the error blows
up, it leads straight to oscillating weights, while a vanishing error leads to learning
taking an unacceptable amount of time or does not work at all.

Using the standard backpropagation algorithm, we update the weights from time t′
to time t using the formula

∆W[u,v] = −α∂Etotal(t
′, t)

∂W[u,v]
, (3.47)

with

∂Etotal(t′, t)
∂W[u,v]

=
t∑

τ=t′
ψu(τ)X[u,v](τ),

where the backpropagated error signal at time τ (with t′ ≤ τ < t) of the unit u is

ψu(τ) = g′u(zu(τ))
(∑
v∈U

Wvuψv(τ + 1)
)
. (3.48)
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Assuming that we have a fully recurrent neural network with a set of non-input
units U , the error that occurs at any output-layer neuron o ∈ O, at time-step τ , is
backpropagated through time for t−t′ time-steps, with t′ < t to an arbitrary neuron
v. Thus, the error is scaled by the following factor:

∂ψv(t′)
∂ψ0(t) =

{
g′v(zv(t′))W[o,v], if t− t′ = 1,

g′v(zv(t′))
(∑

u∈U
∂ψu(t′+1)
∂ψ0(t) W[u,v]

)
, if t− t′ > 1. (3.49)

We unroll the above equation over time and let uτ be a non-input-layer neuron in
one of the replicas in the unrolled network at time τ for t′ ≤ τ ≤ t . Now, by setting
ut = v and ut′ = o, we obtain

∂ψv(t′)
∂ψ0(t) ) =

∑
ut′∈U

· · ·
∑

ut−1∈U

 t∏
τ=t′+1

g′uτ (zuτ (t− τ + t′))W[uτ ,uτ−1]

 . (3.50)

It follows

|guτ (zuτ (t− τ + t′))W[uτ ,uτ−1]| < 1, (3.51)

for all τ , the error vanishes, as the product decreases exponentially [18]. In other
words, as each iteration receives a weight proportional to the partial derivative of
the error function with respect to the current weight, the update will become so
small that the weights can not be changed. Thus, the network is unable to learn
within an acceptable time period or in some cases not at all [51]. Moreover, the sum

∑
o∈O

∂ψv(t′)
∂ψ0(t) , (3.52)

indicates that if local error vanishes, then the global error also vanishes.
For a more detailed analysis of the problem, see [51].

One solution to the vanishing error problem is to use a gradient based method;
more specifically, we can use a long short-term memory (LSTM) [49, 48, 18, 19].
The LSTM network can bridge time lags of more than 1000 discrete timesteps. This
is due to constant error carousels (CECs), which enforce a constant error flow within
special cells.

3.3.5 Constant Error Carousel
Let u be the only unit connected to itself. Then, from (3.48) it follows that the local
error backflow of u at a timestep is given by

ψu(τ) = g′u(zu(τ))W[u,u]ψu(τ + 1). (3.53)

From equations (3.50) and (3.51), we note, if we want to ensure a constant error
flow through u, we must have

g′u(zu(τ))W[u,u] = 1, (3.54)
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and by integration we have

gu(zu(τ)) = zu(τ)
W[u,u]

. (3.55)

Hence, gu is linear and the output of unit u is given by

yu(τ + 1) = gu(zu(τ + 1)) = gu(yu(τ))W[u,v]) = yu(τ), (3.56)

remains constant over time. Using the identity function gu = id and settingW[u,u] =
1 ensures the linearity and consistency over time, which is the so-called constant
error carousel (CEC). CEC is a key feature of the LSTM network, which allows
for short-term memory to be stored over extended periods [18]. However, the CEC
does not consider the connection from other units to u, which is where the different
components of LSTM emerge.

3.3.6 Memory Blocks

We note from the previous section that the CEC’s backflow is constant if there are
no new cell inputs. However, this is not a realistic assumption as the CEC is a part
of a neural network, which means it is also connected to other units in the network
[49]. Therefore, we need to account for these in- and outputs. Furthermore, the
incoming connection to a neuron can be conflicted by weight update signals since
the same weights can be used to control the storage and discernment of inputs.

The LSTM networks address the problem with conflicting weight updates by im-
plementing input and output gates connected to the input layer and other memory
cells, referred to as a memory block.

The input gates control the signals from the network to the memory cells by scaling
them with the use of a sigmoid activation function ranging between 0 and 1 [48]. The
input gates can also learn to discard irrelevant signals to preserve the stored content.
The output gates control the access to the memory cell contents, which can protect
other memory cells from irrelevant information originating from u. Therefore, we
note that the functionality of the gates is to either allow or deny access to the
constant error flow via the CEC.

See Fig. 3.10 for a illustration of a standard LSTM memory block.
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Figure 3.10: A standard LSTM memory block. The block contains (at least) one
cell with a recurrent self-connection (CEC)

3.3.7 Training LSTM
The original LSTM network used a combination of the two learning algorithms:
BPTT to components located after the cells and RTRL to train cells and components
located before the cells.

Remark 3.3.1 We assume that the gradient of the cells is only allowed to be prop-
agated through time, limiting the rest of the gradients for the other recurrent con-
nections.

Suppose that we have discrete timesteps in the form τ = 1, 2, 3, ..., where each
step has a forward- and backward pass. The forward pass is used to calculate the
output/activation of all units, and the backward pass is used to calculate the error
signals for all weights.

3.3.8 The Forward Pass
Let W[u,v] be a weight connecting unit u to unit v, M be the set of memory blocks
and mc be the c−th memory cell in the memory block m.

As in the original LSTM formulation, we suppose that each memory block m is
associated with one input gate inm and one output gate outm. Moreover, the internal
state of a memory cell mc at time τ + 1 is updated in relation to its state smc(τ)
and in coherance with the weighted input zmc(τ + 1) multiplied by the activation
of the input gate yinm(τ + 1). Then, the activation for output gate zoutm(τ + 1) is
calculate for the activation of the cell ymc(τ + 1).

Recall that K(u) denotes the set of units with connections to a unit u,W[v,u] denotes
the weight that connects the unit v to the unit u, yu denotes the output of unit u,
zu denotes the weighted input of unit u, gu denotes the activation function of unit
u, U is the set of non input units, I is the set of input unit and X[v,u] denotes the
input of a unit u coming from a unit v.
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The output of the input gate is computed as

yinm(τ + 1) = ginm(zinm(τ + 1)), (3.57)

with the gate input

zinm(τ + 1) =
∑
u

W[inm,u]X[u,inm](τ + 1)

=
∑
u∈U

W[inm,v]yv(τ) +
∑
i∈I

W[inm,i](τ + 1), (3.58)

where u ∈ K(inm) with K(inm) denoting the set of units with connections to a
input gate unit m. The output of the output gate is computed as

youtm(τ + 1) = goutm(zoutm(τ + 1)), (3.59)

with

zoutm(τ + 1) =
∑
u

W[outm,u]X[u,outm](τ + 1)

=
∑
v∈U

W[outm,v]yv(τ) +
∑
i∈I

W[outm,i]yi(τ + 1), (3.60)

where u ∈ K(outm). Then, the gates are scaled using the non-linear activation
function ginm = goutm = g, defined by

g(s) = 1
1 + e−s

, (3.61)

so that they are within the range [0, 1]. Hence, the input for the memory cell will
only pass if the signal at the input gate is sufficiently close to one.

For a memory cell mc in the memory block m, the weighted input zmc(τ+1) is given
by

zmc(τ + 1) =
∑
u

W[mc,u]X[u,mc](τ + 1) =
∑
v∈U

W[mc,v]yv(τ) +
∑
i∈I

W[mc,i]yi(τ + 1).

(3.62)

The internal state smc(τ+1) of the unit in the memory cell at time τ+1 is computed
differently, as mentioned before. The corresponding equation is

smc(τ + 1) = smc(τ) + yinm(τ + 1)g(zmc(τ + 1)), (3.63)

with smc(0) = 0 and the non-linear activation function for the cell input

g(z) = 4
1 + e−z

− 2, (3.64)

which scales the result to within the range [−2, 2].
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We get the output ymc by using the output function and multiplying smc by youtm

ymc(τ + 1) = youtm(τ + 1)h(smc(τ + 1)), (3.65)

with the non-linear activation function

h(z) = 2
1 + e−z

− 1, (3.66)

with the range [−1, 1].

Suppose we have layered RNN with standard input, standard output and hidden
layer consisting of memory blocks. Then the activation of the output unit o is given
by

y0(τ + 1) = go(zo(τ + 1)), (3.67)

where

zo(τ + 1) =
∑

u∈U−G
W[o,u]yu(τ + 1), (3.68)

where U is the set of non input units and G is the set of gate units.

3.3.9 Forget Gates
In order to preserve cell state over time, the self-connection of a regular LSTM has
a fixed weight of 1. However, the cell states grow linearly during the continued
progress of the input stream, which can lead to the network losing its memorizing
property, and function like a regular RNN.

We could limit the growth by manually resetting the state of the cell at the beginning
of each sequence. While this seems to be a simple solution, it is not practical for
continuous inputs as there would be no way of distinguish the start of a sub-sequence
from the whole sequence.

One possible solution to this problem is to attach an adaptive forget gate to the self-
connection [18]. The forget gates can learn to reset the cell state if the information
is not needed. Thus, we can replace the weight of one for the self-connection from
the constant error carousel (CEC) with a forget gates activation yφm of memory
block m, given by

yφm(τ + 1) = gφm(zφm(τ + 1) + bφm), (3.69)

where g ∈ [0, 1] is the activation function from equation (3.61), bφm is the bias of
the forget gate, and

zφm(τ + 1) =
∑
u

W[φm,u]X[u,φm](τ + 1) (3.70)

=
∑
v∈U

W[φm,u]yv(τ) +
∑
i∈I

W[φm,i]yi(τ + 1). (3.71)
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We fix bφm to 1 for improved performance of the LSTM [40].

The internal cell state smc updated with a forget gate is given by

smc(τ + 1) = smc(τ)yφm(τ + 1) + yinm(τ + 1)g(zmc(τ + 1)), (3.72)

with smc(0) = 0, yφm(τ+1) = 1 if there is no forget gate, and the activation function
is given by equation (3.64), within the range [−2, 2]. If we replace equation (3.63)
with equation (3.72), we get an extended forward pass.

Initially, the bias weight of the input is set to be negative, while the weights for the
forget gate are initially positive. Thus, the forget gate activation will be close to 1 at
the beginning of the training. Then the memory cell behaves like a standard LTSM,
which prevents the network from forgetting when it has not yet learned anything.

3.3.10 Backward Pass
We separate units into two groups: those whose weight is computed with BPTT
and those calculated with RTRL. This separation is considered in this thesis since
an LSTM network incorporates both BPTT and RTRL [39, 42].

Using the notations from previous subsections, and with the use of equations (3.31)
and (3.32), we express the overall network error at timestep τ as

E(τ) = 1
2
∑
o∈O

(do(τ)− yo(τ))2, (3.73)

where do(τ)− yo(τ) = eo(τ) and O is the set of output units.

We initially consider the units that use the BPTT. We define the notion of individual
error of a unit u at time τ by

ψu(τ) = − ∂E(τ)
∂zu(τ) , (3.74)

where zu is the weighted input of the unit. In addition, we we also define notion of
weight update as

∆W[u,v](τ) = −α ∂E(τ)
∂W[u,v]

(3.75)

= −α∂E(τ)
∂zu(τ)

∂zu(τ)
∂W[u,v]

, (3.76)

where ∂zu(τ)
∂W[u,v]

is the input signal that comes from unit v to unit u. However, depend-
ing on the essence of u, the individual error varies. Let us consider u equal to an
output unit o, then

ψo = g′o(zo(τ))(do(τ)− yo(τ)). (3.77)
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Then, the weight contribution of output units is given by

∆W[o,v](τ) = αψoX[v,o](τ). (3.78)

If u is equal to a hidden unit h located between cells and output units, then

ψh(τ) = g′h(zh(τ))
(∑
o∈O

W[o,h]ψo(τ)
)
, (3.79)

where O is the set of output units, and the weight contribution of hidden units is

∆W[h,v](τ) = αψh(τ)X[v,h](τ). (3.80)

Finally, if u is equal to the output gate outm of the memory block m, then

ψoutm
truncated= g′outm(zoutm(τ))

( ∑
mc∈m

h(smc(τ))
∑
o∈O

W[o,mc]ψo(τ)
)
, (3.81)

where truncated= is defined as; the equality only holds if and only if the error is trun-
cated, i.e., the error from propagating is not allowed to go backwards to its unit via
its own feedback connection.

For the output gates, the weight contribution is given by

∆W[outm,v](τ) = αψoutm(τ)X[v,outm](τ). (3.82)

Let us now consider units that use RTRL. We define the individual error of the cell
mc of the memory block m by

ψmc(τ) truncated= −∂E(τ)
∂smc

+ ψmc(τ + 1)yφm(τ + 1)

truncated= ∂ymc(τ)
∂smc

(∑
o∈O

∂zo(τ)
∂ymc(τ)

(
−∂E(τ)
∂zo(τ)

))
+ ψmc(τ + 1)yψm(τ + 1)

truncated= youtm(τ)h′(smc(τ))
(∑
o∈O

W[o,mC ]ψo(τ)
)

+ ψmc(τ + 1)yφm(τ + 1),

(3.83)

where ψmc(τ + 1)yφm(τ + 1) is a recurrent connection.

Note that propagating back in time only accounts for the error through its recur-
rent connection, with the influence of the forget gate. Thus, the following partial
derivatives expand the weight contribution for the cell as

∆W[mc,v](τ) = −α ∂E(τ)
∂W[mc,v]

= −α∂E(τ)
smc(τ)

smc(τ)
∂W[mc,v]

= αψmc(τ) ∂smc(τ)
∂W[mc,v]

, (3.84)
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and the weight contribution for forget and input gates as

∆W[mc,v](τ) = −α ∂E(τ)
∂W[mc,v]

= −α
∑
mc∈m

∂E(τ)
smc(τ)

smc(τ)
∂W[u,v]

= α
∑
mc∈m

ψmc(τ)∂smc(τ)
∂W[u,v]

. (3.85)

where ∂smc (τ+1)
∂W[u,v]

depends on the the unit u. If u is equal to the cell mc, then

∂smc(τ + 1)
∂W[u,v]

truncated= ∂smc(τ)
∂W[u,v]

yφm(τ + 1) + g′(zmc(τ + 1))ginm(zinm(τ + 1))yv(τ).

(3.86)

If u is equal to the input gate inm, then

∂smc(τ + 1)
∂W[inm,v]

truncated= ∂smc(τ)
∂W[inm,v]

yφm(τ + 1) + g(zmc(τ + 1))g′inm(zinm(τ + 1))yv(τ).

(3.87)

Finally, if u is equal to a forget gate φm, then

∂sφc(τ + 1)
∂W[φm,v]

truncated= ∂smc(τ)
∂W[φm,v]

yφm(τ + 1) + smc(τ))g′φm(zφm(τ + 1))yv(τ), (3.88)

with smc(0) = 0.

For a more detailed version of the LSTM backward pass, see [18].

A pseudo algorithm flowchart for an LTSM network is shown in Pseudo Algorithm
3.1.3.
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Pseudo Algorithm 3.1.3 (Training for a LSTM memory block).
Let all units have the same activation function g, and all

biases be combined into the weight matrices.
1. Initialize Weights.
2. For each epoch:

• Use (3.36) to calculate overall network error, E.
• If E is less than a threshold ε, return weights.
• For all inputs xp, p = 1, ..., N :

(a) Forward pass:
(i) Compute input gate (3.57) and output gate (3.59).

(ii) Compute forget gate (3.72).
(iii) Compute output unit (3.67).
(iii) Compute cell output (3.62).

(b) Backward pass (learning):
– BPTT:

(i) Update output units (3.78).
(ii) Update hidden units (3.80).

(iii) Update output gates (3.82).
– RTRL:

(i) Update input gates (3.85).
(ii) Update forget gates (3.85).

(iii) Update cells (3.84).
3. End.

3.3.11 Bidirectional LSTM
Standard RNNs use just one direction for a given point in a sequence: the past.
The work published in [2] explores extending a standard RNN to also incorporate
future values as well, refereed to as bidirectional. We can use this to extend the
regular LSTM to a bidirectional LSTM. A bidirectional LSTM presents input values
backwards and forward to two different LSTM networks, which are both connected
to the same output layer. As the LSTM in this thesis aims to learn financial data,
we want to preserve information from both past and future which would make
the network better suited for predictions on time dependent data [2]. Note, when
mentioning future values, it is used to describe values contained in its training data
sequence while still positioned ahead of the current input value.
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3.3.12 Convolution Neural Network
In this section, we shall briefly introduce a one-dimensional (1D) convolution neural
network (CNN). CNNs are a fundamental tool of deep learning and are most often
used within image/object recognition and classification [40]. However, 1D CNN’s
can be used for time series, which also have certain advantages. One of the essential
advantages is their low computational requirements, making the 1D CNN more
suitable for applications in real-world conditions where the only operation with
significant computation cost is the 1D convulsions [40, 29, 35].

Let f be an input vector and g a vector, which is slid across f and multiplied with
the input such that the output is enhanced in a certain desirable manner, also know
as a kernel. Let f have length n and g have length m. Then the convolution f ∗ g
of f and g is given by:

conv1D(f, g) := (f ∗ g)(i) =
m∑
j=1

g(j) · f(i− j +m/2). (3.89)

The 1D CNN is predominantly trained using the forward- and backward propagation
method, sharing the same fundamental as previously introduced. Moreover, the
linear operation, 1D convolution, can run in parallel with the forward- and backward
propagation, making the learning process significantly faster.

The structure of typical 1D CNN, as illustrated in Fig. 3.11, consists of:

1. CNN layers;
2. Pooling;
3. MLP Layers.

The MLP component of the CNN is identical to the network introduced in Sec-
tion 3.4. Thus, we shall only focus on the details of the other components; more
specifically the forward- and backward propagation in CNN layers.

Input Conventional Layer Pooling Layer Flatteing MLP Layer 1 MLP Layer 2

Figure 3.11: A typical 1D CNN configuration with 1 CNN layer and 2 MLP layers.
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3.3.13 Forward and backward propagation in CNN-layers
For each CNN layer, 1D forward propagation (FP) is expressed as follows:

xlk = blk +
Nt−1∑
i=1

conv1D(wl−1
ik , sl−1

i ), (3.90)

where xlk is the input, blk is the bias of the kth neuron at layer l, sl−1
i is the output

of the ith neuron at layer l − 1, wl−1
ik is the kernel from the ith neuron at layer

l − 1 to the kth neuron at layer l. In addition, we note that the conv1D given by
(3.89) has no zero-padding. Zero-padding refers to the process of adding zeros on
the edges of the input data to keep the dimensions of the input the same after the
operation. Hence, the input array dimension is less than the output array dimension,
and the intermediate output, ylk, can be expressed by the input xlk passing through
the activation function, f ,

ylk = f(xlk) and slk = ylk ↓ ss, (3.91)

where slk is output of the kth neuron of the layer, l, and ↓ ss is the down sampling
operation, also refereed to as pooling, with a scale factor ss.

The backpropagation (BP) algorithm error starts from the output MLP layer. Let
l = 1 for the input layer, l = L for the output layer, and NL be the number of
classes in the data. Given an input vector p, let the target be given by tp and the
output vectors be given by [yl1, ..., ylNL ]T . Thus, with the MSE as the error metric,
we express the total error Ep as

Ep = MSE(tp, [yl1, ..., ylNL ]T ) =
NL∑
i=1

(yLi − t
p
i )2. (3.92)

Next, we calculate the delta error, ∆l
k = ∂Ep

∂xl
k

which is used for updating the bias
of that neuron and all weights of the neurons in the preceding layer. Using the
chain-rule of derivatives, we obtain

∂Ep

∂wl−1
ik

= ∆l
ky

l−1
i , (3.93)

∂Ep
∂blk

= ∆l
k. (3.94)

From the first MLP layer to the last CNN layer, the regular BP is performed as

∂Ep
∂slk

= ∆slkyl−1
i =

Nt+1∑
i=1

∂Ep

∂xl+1
i

∂xl+1
i

∂slk
=

Nt+1∑
i=1

∆l+1
i wlki. (3.95)

When the first BP is executed for l, the BP for the next layer, l + 1, is executed,
and once the BP is performed for l + 1, then the input layer l can carry over the
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delta error ∆l
k. Let the zero-order up-sampled map be uslk = up(slk); then the delta

errror is given by

∆l
k = ∂Ep

∂ylk

∂ylk
∂xlk

= ∂Ep
∂uslk

∂uslk
∂ylk

g′(xlk) = up(∆slk)βg′(xlk), (3.96)

where β = (ss)−1. The BP of the delta error can then be expressed as,

∆slk =
Nt+1∑
i=1

conv1Dz(∆l+1
i , rev(wlki)), (3.97)

where rev() is used to reverse the array and conv1Dz() is used to perform full 1D
convolution with zero-padding. We can express the weight and bias sensitivities by

∂Ep
∂wlik

= conv1D(slk,∆l+1
i ) and ∂Ep

∂blk
=

Nt+1∑
i=1

∆l
i. (3.98)

The weight and bias sensitivities can be used to update biases and weights with the
learning factor, α, as

wl−1
ik (t+ 1) = wl−1

ik − α
∂Ep

∂wl−1
ik

and blk(t+ 1) = b′k(t)− α
∂Ep
∂blk

. (3.99)

A pseudo algorithm flowchart for a CNN is shown in Pseudo Algorithm 3.1.4.

Pseudo Algorithm 3.1.4 (Training for a CNN).
Let all units have the same activation function g, and all

biases be combined into the weight matrices.
1. Initialize Weights.
2. For each epoch:

• Use (3.92) to calculate overall network error, Ep.
• If Ep is less than a threshold α, return weights.
• For all inputs xp, p = 1, ..., N :

(a) Forward propagation:
(i) Compute outputs of each neuron at each layer by

(3.90).
(b) Backward propagation:

(i) Compute delta error for output layer by (3.96).
(ii) Backpropagate the delta error to the first

hidden layer using (3.97).
• Compute the weight and bias sensitivities by (3.98).
• Update the weights and biases by (3.99).

3. End.

For further details of the CNN learning algorithm, see [36].
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4
Parameter Calibration

This chapter presents two methods for calibrating the fixed parameters of each
included method. The first calibration method is a non-linear least squares method.
The second calibration method is a genetic algorithm, which is a method that relies
on evolutionary reinforcement machine learning techniques.

4.1 Non-linear least squares
The first method calibrates the parameter using a non-linear least squares problem

ψm = arg minθ∈Ψ

N∑
i=1

(Ci − Cm
i )2, (4.1)

where m is the option pricing model (see section 2.2), N is the number of options,
Ψ is the set of parameters, Ci is the option price of option i, Cm

i is the option price
of option i obtained by model m. We approximate the bounds of each parameter,
see table 4.1, using economic intuition of financial markets [6].

σ λ m v ρ κ θ v0

B–S [0, 1]
Merton [0, 1] [0, 10] [−1, 1] [0, 1]
Heston [0, 1] [−1, 1] [0, 1] [0, 1] [0, 1]
Bates [0, 1] [0, 10] [−1, 1] [0, 1] [−1, 1] [0, 1] [0, 1] [0, 1]

Table 4.1: Intuitively approximated bounds for each option pricing model.

If we want to calibrate a model with a sufficiently small set of parameters on a
sufficiently small data set, the method is viable. Trying to calibrate a model with
multiple parameters on a large data set makes a non-linear least square method
untenable due to computational intensity [10]. However, the notion of sufficiently
small is in the eye of the beholder and could therefore theoretically be applied in
all cases. In addition, the approximated bounds of the parameters can be wider
or smaller. For this thesis, we do not consider the method viable for models with
multiple parameters and/or an extensive data set. Thus, we take a random sample
of 10% from the training data set to calibrate on and then extrapolate to the whole
data set.
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4.2 Genetic algorithm
The genetic algorithm is a machine learning search algorithm. The algorithm uses a
biologically evolutionary process when searching for the best solution as introduced
in [62].

Let us start by introducing the method. First, we note that each solution, i.e. a set
of calibrated parameters, is represented in a binary string. For example, if we have
the solution ψ = (1, 2, 3, 4), it is represented as

1 10 11 100.
The algorithm starts by creating a population of random possible solutions that
are binary represented. The next step is the evolutionary aspect, which refers to a
solution evolving over multiple generations in the pursuit of a better solution. The
evolution step starts with a new empty population, referred to as next generation,
that gets populated by solutions based on a probability collection process that adapts
over each generation, where the fittest solutions are more likely to be picked into
the next generation. Fitness is determined by a pre-defined objective function, for
example, minimizing the MSE. After the population collection process, i.e., the
next generation is full, each solution gets randomly paired with another solution
in the next generation, the pair is then referred to as parents. The parents are
then crossed over, which creates two new individuals, referred to as children. The
children adopt the binary characteristics of the parents with some randomness for
non-shared characteristics of the parents, referred to as a mutation. Solutions can
mutate in each generation with a pre-determined probability, where the mutation
is the process of changing one random bit in the representation of the solution.
The algorithm stops when obtaining a pre-determined level of fitness or number of
generations.

Compared to the previous calibration method, the genetic algorithm is far less com-
putationally heavy. Partly due to the inexpensive binary operations, but primarily,
due to the searching configuration. Instead of testing each possible solution, the al-
gorithm only looks at a fraction of possible solutions. The reason that the algorithm
only needs to look at a fraction of solutions is induced by the reinforcement learning
principle, which is to learn from each iteration. In addition, as the method uses
reinforced learning, it does not require labeled data, making the method applicable
in cases where data is unlabeled. Note, the performance is determined by the set
level of fitness which is similar to determining the parameters for the non-linear
method. Thus, both methods could achieve the same level of fitness but at different
rates [62, 10].

As the genetic algorithm can be incorporated into the mathematical option pricing
models, they inherit advantages of a machine learning approach, making the models
a hybrid version. The hybrid versions can solve common problems of calibrating
the regular option pricing models. For example, a common investor practice is to
take a rolling average of the historical volatility as the implied volatility 1 input

1Implied volatility is the forecasted volatility.
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parameter. The practice works if one assumes that the market is a random walk
or a market with the perfect competition since the historical volatilities should be
the same independent of the rolling average window since otherwise there exist
arbitrage opportunities. However, research suggests that market inefficiencies exist,
indicating that the historical volatility depends on the window size for the rolling
average of the historical volatility, presenting the investor with an additional choice
[6]. Thus, choosing input parameters can be a complex issue, where a machine
learning approach only use historical values to find the most suitable value regardless
of mathematical formulas.

A pseudo algorithm flowchart for the genetic algorithm is shown in Pseudo Algorithm
4.2.

Pseudo Algorithm 4.2 (Genetic Algorithm).

1. Collect a population of random candidate solutions.
2. For each generation until conditions met:

(a) Create new empty population (next generation).
(b) While the new population is not full:

i. Choose two solutions at random from the population,
where the fitness determines the likelihood of
being picked.

ii. Cross-over the two solutions to produce two new.
(c) Let each solution in the new population have a random

chance to mutate.
(d) Replace the population with the new population.

3. Select the solution with the highest fitness.

For more details and examples, see [54]
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5
Data

The historical option price used in this thesis is written on Nifty 50, a weighted index
for the 50 largest companies listed on India’s National stock exchange [37]. The data
set provides information about maturity date T , strike price K, and observed stock
price S at T . In addition, we have complemented the option prices with a proxy
for risk–free income and the past 30 days from T of stock prices. For the risk-free
proxy r, we use the Indian 10-year bond yield [16]. In order to find the best proxy
for r, we use the yield that is closest to maturity T .

For the option pricing models presented in section 2.2 we need to adjust the data
to fit with the underlying assumptions of the financial framework. Furthermore,
Anders et al. [56] and Stark [31] suggest using exclusion criteria to remove the
”non-representative” options of the market. These would, for example, be illiquid
or extraordinary option circumstances. However, these criteria will not be applied
since this thesis aims to see the actual real-world application. Consequently, the data
was only cleaned enough not to violate any underlying assumptions, see section 2.2,
i.e., not contradicting any of the model assumptions. The data used by the neural
network will not be cleaned at all and just presented in its entirety.

The data set contains around 2.2 million European-style options between the periods
2020-06-01 and 2018-06-01, where roughly half are call options, and the other half
are put options.

For the partition of the data into training and test data, we use 5% of the data set
as test data, and the remaining 95% is used as training data. Note, the partitioning
to test data is based on maturity data T . Thus, no future data can be included in
the training data.
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6
Results

This chapter contains the result of the thesis. In the first section, we define the
general NN option pricing architecture. In section 6.2, the calibrated parameters
for each method are presented. In section 6.3, the error metrical analysis is pre-
sented, concurrently with a definition of each metric. Lastly, section 6.4 presents
the empirical frequency distribution of log-returns and resulting volatility smile fit.

6.1 Neural Network Architecture
With the acquired underlying theory of neural networks, we introduce the overall
pricing network structure (see Fig. 6.1). The network configuration can be separated
into two parts. The first part of the network will be one of the three neural networks
presented in section 3. The second part of the network is a fully connected network,
or an MLP, see section 3.2, which uses the input from the first part of the network as
a feature to train on, together with time to maturity, risk-free rate, and strike price.
The second part of the network then outputs the computed price of the option.

St

ST
X
T
r

Stock price
dynamics

NN

fully
connected

NN

Price of
option

Figure 6.1: General neural network architecture for pricing an option.

6.2 Calibration
We have two structurally different option pricing methods that ought to be cali-
brated:

1. mathematical option pricing models, and
2. neural networks.
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The calibration methods are described in section 4. Let us start with the calibration
for the neural networks.

6.2.1 Neural Networks
The option pricing network architecture contains two separated neural networks,
implying two sets of hyperparameters ought to be calibrated, one for each part. One
could theoretically first calibrate the stock price dynamic network on the historical
stock prices and then use the resulting parameters for the complete network and
calibrate the second part of the network on option prices. However, these should
be calibrated in conjunction since the output depends on both parts of the network
simultaneously. Furthermore, the calibrated parameters for the first part of the
network do not necessarily need to be the best calibrated parameters for the overall
network performance.

We note that the put-call parity theoretically explains the relationship between calls
and puts, one could therefore assume that the calibrated hyperparameters for one
option type should be viable for the other type of the option — this relies on the
notion that a neural network should learn such a relationship. However, as the
purpose of this thesis is to investigate an alternative for option pricing that uses no
underlying assumptions, we separate the calibration by calls or puts. In addition,
the choice to separate between the two option types allows for a comparison in
performance for each option type.

Each neural network have an unlimited number of possible hyperparameters com-
binations; we, therefore, make some simplifying restrictions to make the calibration
less computation-intensive:

1. batch size is 4900,
2. ADAM is used as optimization algorithm1,
3. loss function is a mean-squared error,
4. learning rate is 0.0001,
5. the activation functions is a ReLU (see equation (3.3)), and
6. each hidden layer has the same number of neurons.

The resulting sets of calibrated hyperparameters is presented in table 6.1.

Stock Price dynamics NN fully connected NN
Network type Layers Neurons Layers Neurons
LSTM 4 8 11 3008
MLP 3 147 5 100
CNN 6 38 12 673

Table 6.1: Calibrated hyperparameters for each neural network type.
1The ADAM optimization algorithm is an extension to the stochastic gradient descent method,

which is used to change the attributes of your neural network.
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6.2.2 Mathematical Option Pricing Models
For the mathematical option pricing models, we can see the resulting calibrated
parameters in table 6.2.

σ λ k δ2 ρ κ θ v0

C
al
l

BS 0.23
BS1 0.25
Merton 0.19 1.01 1.70 0.45
Merton1 0.13 0.06 0.51 0.03
Heston 0.34 0.91 0.22 0.15 0.05
Heston1 0.46 -0.16 0.09 0.23 0.07
Bates 0.80 0.70 0.14 0.01 0.91 0.92 0.01 0.08
Bates1 0.76 2.10 0.04 0.07 -0.91 0.37 0.06 0.19

P
ut

BS 0.24
BS1 0.25
Merton 0.16 0.96 1.06 0.32
Merton1 0.13 0.06 0.51 0.03
Heston 0.41 0.78 0.31 0.22 0.08
Heston1 0.46 -0.16 0.09 0.23 0.07
Bates 0.80 0.61 0.19 0.04 0.94 0.56 0.03 0.06
Bates1 0.76 2.10 0.04 0.07 -0.91 0.37 0.06 0.19

1Calibrated with the genetic algorithm.

Table 6.2: Calibrated parameters for each option pricing model.

Recall that σ is the volatility, λ is the intensity, δ2 is the variance of the jumps, ρ is
the correlation between W1,t and W2,t, k is the mean jump size conditional on the
jump occurring and v0 is the initial variance of the asset.

Note that the parameters are not the same for the two calibration methods, given
any of the pricing models, which is not enough to make any reasonable comparison.
Although the parameters in each model are intended to capture some observable
behavior in the market, one could make an argument for which model that is the
most reasonable but that entails assumptions on financial markets and assets, which
contradicts the purpose of the thesis. Thus, we strictly look at the metrics and do
not apply any financial intuition to the results.

6.3 Error Analysis
Our error analysis for all models are reported in Table 6.3, where the error metrics,
with θ denoting the actual data point and θ̂ denoting the predicted data point, are
defined as follows;
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Root mean square error (RMSE) =
√
E((θ̂ − θ)2), (6.1)

Absolute percentage error (APE) = 100 ∗

∣∣∣∣∣∣ θ̂ − θθ
∣∣∣∣∣∣ , (6.2)

Average absolute percentage error (AAPE) = 100 ∗ E (APE) , (6.3)

Median absolute percentage error (MAPE) = 100 ∗median(APE), (6.4)

Median percent error (BIAS) = 100 ∗median( θ̂ − θ
θ

), (6.5)

Percent error within the ±X% of the actual price (PEX) =
100
n
∗

n∑
i:APE<X

i. (6.6)

From Table 6.3, we can select the best performing neural network and mathematical
option pricing model for call options.

Error metric Neural network Option pricing model Option pricing model
NN

RMSE LSTM Bates 67.3%
BIAS LSTM Bates 88%
APPE LSTM BS1 8.9%
MAPE LSTM Heston 74.9%
PE5 LSTM Merton 28.8%
PE10 LSTM Heston 36.6%
PE20 LSTM Bates 49.9%

Table 6.4: Best performing neural network and option pricing model for pricing
European styled call options.

The result in table 6.4 suggests that the LSTM is the best performing neural network,
regardless of included metric, while the best performing option pricing model varies
for each metric. The comparison between the two best performers indicates that
the best performing neural network, the LSTM, is significantly better performing,
with a minimum of 9% less error in the APPE and a maximum of 88% less BIAS.
For the capturing metrics, we note that the best performing option pricing model
capture 28% less of the options within ±5%. In addition, we note that the gap
in capture performance increases towards the tails, indicating that the LSTM is
better at capturing out-of-money options, deep in the money options, and options
with extraordinary conditions. Furthermore, as the training RMSE is close to
the testing RMSE there is no reason to suspect any overtraining for the neural
networks.
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Analogously, we can make a similar comparison for the put options, see
Table 6.5.

Error metric Neural network Option pricing model Option pricing model
NN

RMSE LSTM Bates 71.9%
BIAS LSTM Heston1 88.8%
APPE LSTM BS1 6.8%
MAPE LSTM Bates 73.2%
PE5 LSTM Bates1 28.2%
PE10 LSTM Heston 35.61%
PE20 LSTM Bates 52.8%

Table 6.5: Best performing neural network and option pricing model for pricing
European styled put options.

Similarly to call options, the result in table 6.4 suggests that the LSTM is the best
performing neural network, regardless of included metric, while the best performing
option pricing model varies for each metric. The comparison between the two best
performers indicates that the best performing neural network, the LSTM, is signif-
icantly better performing, with a minimum of 6.8% less error in the APPE and
a maximum of 88.8% less BIAS. For the capturing metric, we note that the best-
performing option pricing model capture 28.2% less of the options within ±5%.
Similarly to the call options, we note that the gap in capture performance increases
towards the tails, indicating that the LSTM is better at capturing out-of-money op-
tions, deep in the money options, and options with extraordinary conditions. Also,
as the training RMSE is close to the testing RMSE there is no reason to suspect
any overtraining for the neural networks.

Note that an option is a leveraged financial instrument, meaning that a shift in the
price of the underlying asset can induce a much larger shift in the price of the option.
Thus, the financial effects of pricing an option wrongly could be highly leveraged,
and thus potentially more harmful to investors, making any small error in pricing a
potentially large financial loss.

We observe that the two different calibration methods make a difference in the
resulting parameters. However, one should note that the calibration with non-
linear least squares was calibrated on a sample of the data and extrapolated, which
means that the overall performance could potentially be lowered. Although the error
metrics could be potently lowered, it is not realistic to implement such a method in a
real-world environment since the computation is too expensive for implementation.
Hence, the genetic algorithm, although not always better performing, is more robust,
not as expensive, and does not need to be calibrated on any labeled data.

The overall result of the error analysis indicates that the use of neural networks in
option pricing significantly outperforms the historical mathematical option pricing
models, both for call and put options. Comparing the best performing NN for calls
and puts indicates a slight advantage for the pricing put option but not large enough
to make any conclusions.
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6.4 Empirical Frequency Distribution of
Log-returns and Volatility Smile

In addition to error metrical analysis, we also investigate how the neural networks
perform in terms of stylized facts, more specifically; the distribution of the log-
returns and the volatility smile fitting.

For the empirical frequency distribution, we illustrate the resulting frequency distri-
bution of log-returns for each method and the true distribution as a reference point
in Fig. 6.2.
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Figure 6.2: The empirical frequency distribution of log-returns for the NIFTY 50
index prices against each theoretical prices.

For a more concrete metrical comparison, we use the sum of squared residuals (SSR):

SSR =
∑
i=i

(θ̂i − θi)2. (6.7)

In what follows, we see the resulting SSR for each method in table 6.6.
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SRR
Black-Scholes 0.197
Black–Scholes1 0.274
Merton 0.634
Merton1 0.736
Heston 4.169
Heston1 0.184
Bates 2.419
Bates1 1.118
LSTM 0.175
CNN 0.180
MLP 0.208

Table 6.6: Sum of squared residuals for the true log-returns of NIFTY50 against
the theoretical log-returns of each option pricing method.

From table 6.6, we note that LSTM is the best performer which might be as expected
as the network is created to learn order dependence in sequences [39, 42]. Also, on
average, the NN outperforms the classical option pricing models in terms of fit to
the true values. Moreover, we can see from Fig. 6.2 that option pricing models
with incorporated jumps have heavier tails, that is Merton and Bates, than their
counterparts, which is to be expected since they have been modeled to have larger
kurtosis. In addition, as the stylized facts of stock dynamics support heavy tails
characterization of the frequency distribution of log-returns rather than a normal
distribution, see section 2.2, it seems reasonable to introduce jumps. However, this
might not always be the best-performing model. More specifically, we note that
both the Merton and the Bates model perform worst, in terms of SSR, out of all
methods. In addition, the jump models do not perform best in the overall error
analysis either. Thus, we note that coherence to stylized facts does not necessarily
determine the overall performance.

For the IV smile fitting, let’s assume that the market prices come from the use of the
Black–Scholes model. Then, we can use that the Black–Scholes model has a closed
analytical formula for pricing calls and puts. Thus, equation (2.7) can be used to
choose the implied volatility that minimizes the difference between the theoretical
price and the true value. Note that all input values in the BS models are known from
the data, i.e., we can fix all values and only let implied volatility be the unknown.

Recall that equation (2.7) gives the call price under the BS approach,

C = xΦ(d+(τ, x))− e−rτKΦ(d−(τ, x)). (6.8)

We want to minimize
σIVi = argminσi∈Ψ(Cm

i − Ci)2, (6.9)

where Cm
i is the calculated theoretical price of method m for option i and Ci are the

BS calculated option price for option i. The bounds are arbitrarily set to [0, 1] but
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the implied volatility could theoretically much lager than 1. The non-linear least
squares method is then used to find the IV for each option.

As the volatility smile is a graphed form, we need to visualize the outcome. Thus,
we choose a limited number of three randomly selected sets of fixed values, i.e option
type, writing date, time to maturity.
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Figure 6.3: IV against strike price for all call options in the data set with 8 days
to maturity and written on the same date.
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Figure 6.4: IV against strike price for all put options in the data set with 14 days
to maturity and written on the same date.
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Figure 6.5: IV against strike price for all call options in the data set with 48 days
to maturity and written on the same date.

From Fig. 6.3, 6.4 and 6.5, we note that all but one option pricing model, the BS
model, seem to display a smile-shaped feature. The reason the BS model has a
constant IV is due to the assumption that the BS price is the market price, which
was necessary to calculate the IV of the other methods. Although the output of
the methods could be considered relative close, it is important to remember how
IV impacts options prices; a lower IV would make the option less expensive, and
a higher IV would make the option more expensive. In addition, options are a
leveraged financial instrument. Thus, incremental differences in IV could drastically
affect the price.

One could also calculate a metric for the best fit to the true IV given by the data
set. However, the true IV values are still a forecast of future volatility. Thus, there
is no advantage to being close to the true IV if it was not correctly forecasted, which
is unknown. Instead, the IV was only used to see if the NN priced options follow
real-world market behavioral patterns.
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Conclusion

In this thesis, we have compared the performances of NNs and mathematical option
pricing models, in terms of fit to stylized fact and error metrical analysis. The
four related mathematical market models are similar in many aspects, particularly
because the financial assumptions behind them are largely the same. Financial
assumptions have in the past been contradicted, see Section 1.1. The robustness of
all mathematical option pricing models can therefore be questioned. Simultaneously,
the NNs make no assumptions at all. However, NN is still viewed as a black box
which makes them less reliable. Nevertheless, NNs are applied in different high-risk
aspects of society, e.g. medicine, military, and self-driving cars [1, 57, 23]. Thus,
one could assume that NNs could reach a high level of reliability.

It has been shown that in addition to being a more robust alternative, the NNs
significantly outperforms its counterparts in terms of error metrics. One could ar-
gue that the lack of data cleaning meant that the mathematical models were not
subjected to the best type of data. However, as the used data were actual market
data, there is no reason to exclude it. In real-world practice, a pricing model should
price the asset, independent of underlying market conditions. Moreover, the data
was partly cleaned to fit the underlying assumption on the market and asset. For
example, an option that posed as an arbitrage opportunity or was only traded on its
intrinsic value was not allowed for mathematical models. Yet, all options included
in the data set were still included in the NNs. Thus, in addition to outperforming
the mathematical models, the NNs priced more options under more complex options
conditions.

The NNs coherence to the chosen stylized facts further strengthens the NNs as a
viable alternative, indicating that the NNs can learn market behaviors and asset
structures. However, as discussed, coherence to stylized facts does not necessarily
imply a better overall result.
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Future work

In this section, some questions that have been raised during the work are mentioned
and discussed as possible future work.

• NNs depend on the input data, which most often determines the performance,
in terms of learning the input data patterns. In this work, we were able to use
a large amount of historical data. However, for future research, it would be
interesting to see the effects of including more data features, e.g. ESG data,
related financial assets, and macro economical variables.

• Implementations of the NNs in a production environment seem promising,
but as the presented alternatives are only a first prototype, there are a lot
of improvements to be made with fine-tuning but also testing alternative NN
types.

• The included option were European-styled but it would be interesting to see
how NNs would perform when pricing more complex option styles, e.g. barrier
options, Bermuda options and quantity-adjusting options.
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