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Abstract 
MRI data have the advantage of being excellent in soft tissue contrast, 
therefore having an increasing imaging role in external radiation therapy (RT). 
Lately, attention has been directed towards MRI-only workflows, with the 
approach of completely excluding the original CT data as a pre-treatment 
imaging modality. Instead, the RT workflow is based solely on MRI data. To 
access the electron densities needed for calculation of the absorbed dose 
distribution, synthetic CT data (sCT) are generated utilizing image processing 
or deep learning (DL) based methods. Besides purely anatomical information 
for guidance of a RT workflow, many functional and microstructural 
properties, such as cell density, microvascular structure, perfusion, and 
oxygenation of the tumor, could be highly relevant for RT treatment guidance 
and early RT assessment. It has been proven that hypoxia has an essential role 
in treatment outcome for HN cancer patients receiving radiation therapy. The 
potential to monitor hypoxia by functional and anatomical MRI (i.e., 
multiparametric MRI) is sparsely evaluated, and more studies are required to 
be able to establish robust MRI-derived hypoxia biomarkers.   

The research within this thesis aimed to validate the MRI-only workflow for 
head and neck (HN) cancer, by evaluating sCT data generated by a  nowadays 
commercially available DL-based method. The geometric and dosimetric 
properties were compared to the original CT data (Paper I), and as they were 
similar it was concluded that sCT can be used for dosimetric purposes. Further, 
both 2D and 3D patient setup verification based on sCT data was evaluated by 
comparison of the verification registrations with the registrations obtained 
when using the original CT data (Paper II).  As the registrations for sCT and 
CT obtained similar patient positions, it was concluded that sCT data can be 
used for patient setup verification. As the generation of sCT data is based on 
complex models, a quality assurance (QA) process was developed to assess the 
quality of sCT data for prostate cancer (Paper III). A comparison between 
calculated absorbed dose distributions based on sCT and cone beam CT 
(CBCT) acquired for treatment setup verification, was shown to detect 
intentionally introduced errors within the sCT data. In addition, the research 
within this thesis aimed to implement and evaluate the potential of Oxygen-
Enhanced (OE) MRI, intravoxel incoherent motion (IVIM), and diffusion 
kurtosis imaging (DKI) to monitor hypoxia, and their potential as useful tools 
for early response assessment in HN cancers (Paper IV). Each of these MRI 
pulse sequences was optimized and successfully implemented within a clinical 
RT setting. By comparing MRI-derived biomarkers acquired before and during 
RT for HN cancer patients, changes could be monitored during the course of 
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treatment. Further work regarding correlations of relative changes in these MR 
derived biomarkers to the treatment outcome is required to conclude the 
prediction value of OE-MRI and IVIM/DKI imaging for early response 
assessment.  

The research presented in this thesis contributed to the clinical feasibility of 
MRI-only radiation therapy for multiple cancer types. In addition, the research 
showed that it is possible to implement multiparametric MRI for tumor 
characterization and treatment follow-up in the radiation therapy process for 
the complex HN region. 

  

 

Sammanfattning 
Extern strålbehandling är en metod som används för att bekämpa cancer. Syftet 
med extern strålbehandling är att behandla tumörområdet och samtidigt skona 
omkringliggande känsliga organ. Ett viktigt steg vid planering av extern 
strålbehandling är att bestämma tumörens position i kroppen på ett så korrekt 
sätt som möjligt. Detta görs genom att studera anatomiska bilder och sedan i 
dessa bilder rita ut både tumören och de känsliga organen i närheten av 
tumören. Magnetkamerabildtagning (MR) har stor betydelse för utritning av 
tumörer eftersom den har god förmåga att visuellt särskilja olika mjukdelar i 
kroppen. MR kan även användas för att ta fram bilder som avspeglar biologiska 
egenskaper. Detta kallas för funktionell MR och kan spegla egenskaper som 
till exempel blodflöde. När både tumör och känsliga områden i kroppen har 
ritats ut i bilderna räknas det på hur strålbehandlingen ska genomföras. Till 
detta steg används röntgenbildtagning i form av datortomografi (DT eller den 
engelska förkortningen CT). En CT ger information om kroppens 
elektrondensitet vilket krävs för att man ska kunna beräkna hur 
strålbehandlingen ska levereras. CT används även vid varje 
behandlingstillfälle för att kontrollera att patientens kropp placeras likadant 
varje gång. Detta görs genom att använda sig utav ytterligare en bild (”cone-
beam CT”) som jämförs med CT-bilden.  

På senare tid har ett nytt arbetssätt presenterats där enbart MR-bilder används 
för att planera strålbehandlingen. Att utesluta CT-bilder från 
behandlingsplaneringen minskar den totala stråldosen till patienten. Dessutom 
kompletteras oftast CT ändå med en MR-undersökning för att kunna definiera 
tumören tydligt i bilderna. Inom det nya arbetssättet krävs fortfarande 
information om elektrondensiteten i kroppen, som tidigare erhölls från CT-
bilden. Därför används metoder för att omvandla MR-bilder till CT-liknande 
bilder (syntetisk CT) med hjälp av bildbehandling eller artificiell intelligens 
(AI). Användandet av AI inom medicin har visat sig vara ett bra verktyg och 
användningsområdena ökar konstant. Vid användning av AI inom 
strålbehandling och framtagande av nya arbetssätt är det viktigt att kontrollera 
att det nya arbetssättets resultat blir lika bra (eller bättre) som för det gamla 
arbetssättet. Detta för att säkerställa att det ges en minst lika bra behandling till 
patienten som tidigare.  

Studierna i denna avhandling fokuserar kring användandet av syntetisk CT 
inom det nya arbetssättet där enbart MR-bilder används för att planera 
strålbehandling. Det undersöktes om syntetisk CT ger likvärdigt resultat som 
den traditionella CT-bilden när den användes för att räkna på hur 
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strålbehandlingen ska genomföras. Det undersöktes också om syntetisk CT ger 
lika resultat som den traditionella CT-bilden när den användes för att bekräfta 
att patientens kropp placeras likadant vid varje behandlingstillfälle. Dessa 
delarbeten har hjälpt till att visa att AI-baserad omvandling av MR-bilder till 
syntetiska CT-bilder är användbart inom strålbehandling. Vidare är det viktigt 
att säkerställa att omvandlingen från MR till syntetisk CT är korrekt varje gång. 
Därför utvecklades en metod som kontrollerade kvalitén hos den syntetiska 
CT-bilden genom att jämföra den med ”cone-beam CT”. Vidare 
introducerades funktionell MR-bildtagning inom strålbehandling för att öka 
möjligheten att tidigt upptäcka hur patienten svarar på behandlingen. Metoder 
som har möjligheter att indirekt ge information om vävnadens syresättning, 
genomblödning och mikrostruktur infördes för huvud-halscancer. MR-bilder 
med funktionell information togs vid två tillfällen; en första gång innan 
behandling och en andra gång två veckor in i behandlingen. Jämförelse av 
bilderna från de två olika MR tillfällena visade vissa skillnader, men vidare 
undersökningar är nödvändiga för att ta reda på vad dessa skillnader i 
biologiska egenskaper betyder.    

Forskningen som presenteras inom denna avhandling bidrog till möjligheten 
för kliniskt införande av MR-baserad strålbehandling. Den bidrog också till 
möjligheten att få tillgång till funktionell information för att tidigt uppdaga hur 
patienten svarar på behandlingen. 
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Introduction 
The number of new cancer cases and cancer deaths during 2020 has been 
estimated to be 19.3 million and 10 million cases respectively, where prostate 
cancer was the fifth leading cause of cancer death among men (375 000 deaths 
worldwide) and head and neck (HN) cancers combined were ranked ninth in 
cancer mortality overall (367 555 deaths worldwide)1. Most prostate and HN 
cancer patients undergo external beam radiation therapy (RT), with the purpose 
to deliver a sufficiently high absorbed dose of ionizing radiation to the tumor 
to control disease, while limiting the absorbed dose to surrounding healthy 
tissue for minimal radiation toxicity. Control of the absorbed dose to the tumor 
and surrounding healthy tissue during RT is crucial and require high geometric 
accuracy throughout treatment preparation and daily setup of the patient at the 
treatment device. In order to reach the full potential of RT, there is an 
increasing demand for functional and anatomical imaging techniques2, and 
ideally, functional tools for treatment monitoring and early response 
assessment.   

At present, computed tomography (CT) is the gold standard imaging modality, 
constituting the basis for the entire RT treatment course3. This imaging 
modality provides the correlation between Hounsfield units (HU) and the 
electron densities necessary for absorbed dose calculation during treatment 
planning. Magnetic resonance imaging (MRI) is a non-ionizing imaging 
modality with multiple and superior soft tissue contrasts compared to CT. Due 
to its excellent soft tissue contrast, MRI is established as the preferred imaging 
modality for contouring tumor and organs at risk (OAR) during treatment 
planning where a precise definition is needed4. Due to the increasing role of 
MRI in RT, attention has been directed towards RT planning using MRI data 
solely, often referred to as an MRI-only workflow. The MRI-only workflow 
aims to reform the treatment preparation process by completely excluding CT 
data from the RT course, resulting in the elimination of both multiple patient 
imaging sessions and the otherwise required MR to CT registration5. However, 
the gap of nonexistent electron density information in the MRI data must be 
bridged in order to implement a complete MRI-only workflow. One suggested 
solution is to convert MRI data to so-called synthetic CT data (sCT), having 
the same physical characteristics as CT data. Various approaches for sCT 
generation have been proposed6-8 and require validation against the original CT 
before MRI-only workflows can be safely implemented in the clinic.  

Besides providing anatomical information, MRI offers functional imaging 
methods that reflect functional and microstructural information of biological 
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tissue9. In addition to the anatomical image-based MRI-only workflow for 
improvement of the accuracy of the RT workflow, the combination of 
functional and anatomical MRI techniques (i.e., multiparametric MRI) 
increases the information available for treatment response assessment at 
follow-up, and potentially also during the treatment course. Relative changes 
of MRI derived functional and microstructural information during treatment 
might be a predictor of treatment response and long-term outcome and hence 
act as a non-invasive tool for individualized RT10. A potential marker for early 
treatment response assessment is tumor tissue hypoxia, a comparatively fast-
changing condition known to cause resistance of the tumor to RT treatment11,12.  

Within the research presented in this thesis, numerous steps within the MRI-
only workflow have been explored. Treatment planning (Paper I) and patient 
setup verification (Paper II) were validated using a commercial sCT generation 
method (MriPlanner). Since the sCT generation is technically challenging and 
standardized quality assurance (QA) programs have not yet been established, 
an independent QA method to detect potential errors in the generated sCT 
using cone beam CT was investigated (Paper III). In addition, the functional 
MRI techniques Oxygen-Enhanced (OE) MRI, intravoxel incoherent motion 
(IVIM), and diffusion kurtosis imaging (DKI) was implemented to monitor 
hypoxia changes during the course of HN treatment (Paper IV). 
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Aims 
This thesis aimed to evaluate and validate MRI-only prostate and head and 
neck radiation therapy as well as implement and evaluate the feasibility of 
multiparametric head and neck MRI in radiation therapy, with the ultimate goal 
to improve the clinical feasibility of MRI in radiation therapy. 

The specific aims of the papers included in this thesis were:  

• to validate the geometric and dosimetric accuracy of MRI-only head 
and neck cancer treatment planning when based on a commercial 
deep learning-based synthetic CT generation method (Paper I) 

• to validate MRI-only head and neck patient setup verification when 
based on a commercial deep learning-based synthetic CT generation 
method (Paper II) 

• to develop and evaluate a quality assurance method for synthetic CT 
data in MRI-only prostate radiation therapy (Paper III) 

• to implement and evaluate the feasibility of using Oxygen-Enhanced 
MRI, intravoxel incoherent motion, and diffusion kurtosis imaging 
for early response assessment in head and neck cancers (Paper IV) 
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Magnetic resonance imaging in radiation 
therapy 
There were 19.3 million new cancer cases reported worldwide in 2020, where 
prostate cancer was ranked the third most commonly diagnosed cancer 
(1 414 259 cases), and HN cancers combined were ranked as the eighth 
(747 316 cases). In addition, prostate cancer was the fifth leading cause of 
cancer death among men (375 000 deaths worldwide) while HN cancers 
combined were ranked ninth in cancer mortality overall (367 555 deaths 
worldwide)1. In high-income countries, mortality rates have decreased for 
prostate cancer since the mid-1990s, probably a reflection of the advances in 
treatments and increased screening for earlier detection. However, high-
resource countries now have signaled a stabilization in the prostate mortality 
decline1. External beam radiation therapy (RT) is a common treatment method 
for both prostate and HN cancer. The advances in RT towards 3D treatment 
methods, such as intensity-modulated RT (IMRT) and volumetric-modulated 
arc therapy (VMAT), have resulted in conformal treatment plans. A 
prerequisite for the introduction of 3D treatment methods was the transition 
from 2D to 3D imaging13, offering more information about the target volume 
and surrounding healthy tissue. The advanced 3D RT courses used today 
include numerous steps, i.e., immobilization of the patient in RT position, pre-
treatment imaging (e.g., CT, MRI, and/or positron emission tomography 
(PET)), contouring of treatment volume and organs at risk (OAR), treatment 
planning, patient-specific quality assurance (QA), treatment delivery, and 
patient follow-up.  

During contouring, the radiation oncologist delineates the tumor as the gross 
target volume (GTV). Before treatment planning, a margin is added to the GTV 
to assure inclusion of undistinguishable subclinical spread of disease, creating 
the clinical target volume (CTV). To account for uncertainties within the RT 
course and ensure coverage of the CTV, an additional margin is added 
generating the planning target volume (PTV) (figure 1). The delineation of the 
treatment volume has been identified as the weakest link within the RT 
course14, and as this step relies on high geometric accuracy of the pre-treatment 
image data that serve as a basis for the contouring, these data are an essential 
component for optimal treatment delivery. The increasing demand for precise 
contouring of treatment volume and OARs has brought the introduction of pre-
treatment MRI in RT about, as this modality provides multiple and increased 
contrast information compared to the traditional CT data, which depends only 
on the attenuation of x-rays within tissue, measured in Hounsfield Units (HU).  
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The role of pre-treatment MRI in radiation therapy  
The current gold standard image basis for RT workflows is CT data. In CT 
data, tissues with considerably different HU (e.g., air, soft tissue, and bone) 
can be readily distinguished, while there are difficulties in differentiating soft 
tissues with similar HU (e.g., tumor and adjacent soft tissue) (figure 1). MRI 
is a non-ionizing imaging modality that can produce images with many 
different anatomical contrasts (e.g., T1-weighted, T2-weighted, and PD-
weighted) by altering different basic pulse sequence parameters (e.g., 
repetition time (TR), echo time (TE), and flip angle (α)). The most commonly 
used MRI contrasts within RT are T1- and T2-weighting (figure 1), which 
provide complementary anatomical information as different tissues possess 
different T1 and T2 relaxation time properties. This flexibility in creating 
contrast in MR images improves the ability to distinguish both between 
adjacent soft tissues with similar electron densities and tissue with 
considerably different electron densities. Further, acquisition of MR images 
can be conducted in any oblique planes, which may improve the delineation of 
the target boundary in the cranio-caudal direction compared to CT data that is 
limited to axial acquisition. 

By introduction of MRI during contouring, and with that enhanced contrast 
visibility of tumors, OARs, and their boundaries, the target volumes for RT 
have been shown to increase for brain cancer15,16 while decreasing for 
prostate17-19 and HN cancer19-21. A change in defined target volume by the 
introduction of MRI data into the RT course indicates that the use of CT alone 
for delineation of targets may underestimate or overestimate the target volume. 
In addition to the image quality, the accuracy of the target delineation is also 
dependent on the expertise and training of the physician. There are no general 
guidelines regarding volume delineation for RT, causing a vast variability in 
delineation within and between radiation oncologists. Introduction of MRI data 
during delineation led to smaller interobserver differences for volumes 
outlined on MRI than on CT data for brain16,22, prostate23, and HN24 cancer. In 
addition to anatomical information, MRI may also provide functional and 
microstructural information by implementation of enhanced MRI sequences 
such as diffusion-weighted imaging (DWI) and dynamic contrast-enhanced 
(DCE) MRI, representing incoherent water molecular motions and blood flow 
respectively. These noninvasive functional MR techniques map tumor 
functions in their entirety, as opposed to the regionally limited tissue 
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information available via biopsy, and might be able to identify distinct target 
regions that would benefit from an absorbed dose boost during treatment25,26.  

Figure 1. a) T1-weighted head and neck (HN) magnetic resonance image (MRI), b) 
T2-weighted prostate MRI, and c-d) corresponding computed tomography (CT) 
images. Delineated are gross target volume in HN (dark red), clinical target volume 
(light red), and planning target volume (light blue). 

Considerations for implementation of pre-treatment 
MRI 
In the standard multi-modality RT course, pre-treatment MRI data are 
registered to a planning CT, hence allowing for MRI-based delineation 
together with CT-based treatment planning. To achieve a high-quality inter-
modality registration, it is desirable to have identical patient positioning during 
both imaging sessions, as well as identical patient external and internal 
geometry. This, however, is unachievable, and the existing differences will 
impact the quality of the MR to CT registration. To mitigate the registration 
errors by avoiding large differences in the patient geometry, both data sets are 
preferably acquired in close time to each other. In addition, to obtain as 
identical patient RT position as possible, MRI scanners dedicated to RT should 
preferably be equipped with an indexed flat tabletop, MRI-compatible patient 
immobilization devices, coil bridge supports, and external lasers for alignment. 
All these adaptations constitute MRI signal challenges and ultimately impact 
the image quality, e.g., the immobilization devices used for brain and HN 
cancer require a wide-bore MRI scanner and prevent the use of high-
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regions that would benefit from an absorbed dose boost during treatment25,26.  

Figure 1. a) T1-weighted head and neck (HN) magnetic resonance image (MRI), b) 
T2-weighted prostate MRI, and c-d) corresponding computed tomography (CT) 
images. Delineated are gross target volume in HN (dark red), clinical target volume 
(light red), and planning target volume (light blue). 

Considerations for implementation of pre-treatment 
MRI 
In the standard multi-modality RT course, pre-treatment MRI data are 
registered to a planning CT, hence allowing for MRI-based delineation 
together with CT-based treatment planning. To achieve a high-quality inter-
modality registration, it is desirable to have identical patient positioning during 
both imaging sessions, as well as identical patient external and internal 
geometry. This, however, is unachievable, and the existing differences will 
impact the quality of the MR to CT registration. To mitigate the registration 
errors by avoiding large differences in the patient geometry, both data sets are 
preferably acquired in close time to each other. In addition, to obtain as 
identical patient RT position as possible, MRI scanners dedicated to RT should 
preferably be equipped with an indexed flat tabletop, MRI-compatible patient 
immobilization devices, coil bridge supports, and external lasers for alignment. 
All these adaptations constitute MRI signal challenges and ultimately impact 
the image quality, e.g., the immobilization devices used for brain and HN 
cancer require a wide-bore MRI scanner and prevent the use of high-



Advances in MRI-based radiation therapy 

8 

performance receiver coils, leaving the user to less efficient flexible phased 
array coils. In addition, to preserve the outer body contour for not immobilized 
cancer patients (e.g., prostate cancer), the flexible coils are mounted on coil 
bridges, adding an air gap between the patient and the receiver coils. An 
alternative, recently presented by GE Healthcare (Chicago, Illinois, USA), is 
the lightweight flexible air coils as they should be light enough to preserve the 
patient outer body contour. Furthermore, the use of immobilization devices 
during MRI causes additional patient discomfort, and the scanning session 
should therefore consist of carefully selected sequences to limit the total scan 
time. 

In comparison to diagnostic MRI, MR images used in RT have higher demand 
on geometric accuracy as they are used for precise contouring of tumor and 
OAR, and therefore will affect the amount of healthy tissue that is irradiated. 
The sources of geometric distortion in the MRI data can be separated into two 
components, i.e., system-dependent, and patient-dependent distortions. The 
main contribution of system-dependent distortions is nonlinear gradient fields, 
disturbing the spatial encoding and causing the origin of the MRI signals to be 
mislocated, which makes the reconstructed images spatially distorted. The 
magnitude of the distortions is typically negligible within a small field of view 
(FOV) at the MR-system isocenter but increases with increasing distance from 
the isocenter. As MRI in RT often requires large FOV, quantification of the 
geometric distortions by a QA process utilizing a phantom object is essential. 
However, system-dependent geometric distortions have been extensively 
evaluated and vendor-supplied algorithms are available to reduce the 
geometric distortions to clinically accepted levels, although not completely 
removed27,28. Patient-dependent distortions arise as a result of the magnetic 
properties of the patient, i.e., different magnetic susceptibility for different 
tissues within the body. Unlike system-dependent geometric distortions, 
patient-related geometric distortions are difficult to predict since the magnetic 
properties of two patients are not the same, and therefore more difficult to 
correct for28. To generate pre-treatment MRI data with high geometric 
accuracy, MR images used in RT are typically acquired with higher readout 
bandwidth compared to diagnostic imaging, at the expense of a lower signal-
to-noise ratio.  

Although thriving towards both identical patient positioning for the imaging 
modalities and high MRI geometric accuracy, geometric uncertainties related 
to the MR-CT registration will still be present29-34. There are numerous causes 
for this, such as imperfect registration algorithms, as well as internal body 
movements (e.g., breathing, or intestinal motions) which are hard to correct for 
during the imaging sessions. These geometrical uncertainties will introduce a 
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systematic error during the treatment planning stage, affecting each treatment 
fraction, and propagating through the entire treatment course. The added PTV 
margin has accounted for these (and other) uncertainties, ensuring coverage of 
the clinical target volume during the whole RT course. 
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Implementation of MRI-only  
This chapter is mainly related to Paper I, Paper II, and Paper III.  

In Paper I, acquired HN data was used to validate treatment planning for 
synthetic CT data (sCT) in an HN MRI-only workflow by comparing 
geometrical and absorbed dose differences between sCT and original CT data. 
Acquisition of training HN data contributed to the development of the used 
deep learning (DL) based sCT generation algorithm. 

In Paper II, methods to compare sCT-based treatment setup verification to CT-
based treatment positioning for HN MRI-only workflow were developed and 
evaluated.    

In Paper III, a method for quality assurance (QA) of a hybrid-based generated 
sCT was presented and evaluated for a prostate MRI-only workflow.  

The most common clinical integration of MRI in RT is as a secondary source 
of information, used for delineation and co-registered towards the planning 
CT. MRI data, however, have potential of being the primary source of 
information and used for both delineation and treatment planning. This is often 
referred to as the MRI-only workflow and has the approach of completely 
excluding the CT as a pre-treatment imaging modality. In such workflow, all 
preparation steps are then carried out using MRI data solely, hence eliminating 
the MR to CT registration and, with this, also the correlated systematic 
geometric uncertainties that otherwise propagate throughout the entire 
treatment workflow. In addition, the reduction of the number of imaging 
sessions in the MRI-only workflow eases the patient's discomfort, especially 
for those immobilized in RT position as well as for young pediatric patients 
that avoid multiple anesthetics. 

Before implementing an MRI-only workflow in the clinic, development and 
validation of methods allowing for both treatment planning and treatment setup 
verification are essential. In addition, it is necessary to estimate the impact on 
delineation when using MRI data as the only imaging modality, together with 
the impact of MRI geometric distortions propagating to treatment planning. 
Finally, procedures for QA in the MRI-only treatment planning process must 
be established as there are no CT data available for evaluation. To date, few 
centers worldwide have implemented, and treated patients, in an MRI-only 
workflow35-39.  
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Synthetic CT generation methods 
The absorbed dose calculation performed during the treatment planning 
process requires electron density information for the anatomical area of 
interest. CT data inherently possess electron density information as it derives 
from the attenuation of x-rays within the tissue. MRI data have no such direct 
relationship to electron density, but several methods have been proposed to 
generate so-called synthetic CT data (sCT) (also called pseudo-CT, substitute-
CT, or virtual-CT) based on MRI data that would enable absorbed dose 
calculation and patient setup verification within an MRI-only workflow. The 
general concept of sCT generation is creation of data that resembles CT data, 
i.e., that has the same physical characteristics (HU-values) as CT data, but with 
the additional benefit of being generated directly in the MRI frame of reference 
(FoR). Current methods to generate sCT data either rely on tissue information 
available in the MRI data (voxel-based), are built on conversion methods 
relying on the correlation between paired MRI-CT data sets (atlas-based), or 
are based on deep learning40. Synthetic CT has been developed and evaluated 
for multiple treatment regions, but most extensively for the brain and pelvis 
(prostate) regions.      

Voxel-based sCT generation 

Voxel-based methods for sCT generation are built on tissue classification, 
mainly by segmentation of the MRI data into classes depending on signal 
intensity of each voxel and subsequent assignment of a homogenous electron 
density value to each class6-8,40. The simplest approach is to define only one 
tissue class and assign the HU value of water within the entire body contour. 
Such homogeneous methods have the advantage of very fast sCT generation 
but at the cost of absent bone structures needed for treatment setup verification. 
More advanced methods utilize multiple tissue classifications (e.g., bone, air, 
and soft tissues), creating a more heterogenous sCT by manual contouring or 
(semi)auto-segmentation of the tissues in CT or MRI data6,7,41,42. An issue of 
multiple tissue classification-based methods is the difficulty to separate air and 
bone tissues in standard MRI pulse sequences, as the short T2* relaxation time 
of bone tissue will lead to low signal values which can be mistaken as the signal 
void caused by air. Hence, time-consuming manual bone or air contouring is 
often necessary which is not practical for clinical use7. Another approach for 
separation of bone and air in MRI is the utilization of ultrashort echo-time 
(UTE)7,8,42 or zero echo-time (ZTE)42 pulse sequences to generate sCT data, 
either as the sole pulse sequence or in combination with other standard MRI 
pulse sequences6,7. Additional voxel-based techniques to generate sCT data 
utilize statistical methods, such as clustering or regression models6-8,42.  A 
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benefit of voxel-based methods to generate sCT data is the robustness towards 
atypical anatomy, but with the disadvantage of often requiring multiple pulse 
sequences.  

Atlas and patch-based sCT generation 

Atlas-based methods rely on the correlation between matching MR and CT 
images, where an atlas consists of one or more co-registered MRI and CT pairs. 
For creation of sCT data, the MRI data in the atlas are typically registered to 
the incoming MRI data, generating transformation matrixes and deformation 
fields that are applied to the CT, hence generating a corresponding sCT data 
set6-8,40,42,43. If an atlas consists of multiple pairs, one approach is to register the 
MR data sets within the atlas, creating an average MRI data set and a 
corresponding average CT data set. Another approach is to contain the data in 
the atlas separated and register each atlas MR data set to the incoming MRI 
data followed by fusing of the propagated atlas CT data sets (e.g., voxel patch 
comparison). The advantage of atlas and extended patch-based sCT data 
generation is its dependence on only one single standard MRI pulse sequence, 
although the large number of registrations makes it time-consuming, and it is 
also insensitive to atypical anatomy within the patient MRI data.   

Hybrid-based sCT generation 

The introduction of hybrid-based methods to generate sCT data combines 
multiple generation methods to take advantage of the benefits of the different 
generation methods. One proposed hybrid-based method utilizes a statistical 
decomposition algorithm (SDA)44 (used in Paper III), which combines tissue 
segmentation with a multi-atlas-based approach to generate sCT data. In a 
prostate cancer example, this method auto-segmentate the prostate, bladder, 
colon, bones, and fat structures in the incoming MRI. The segmentation is 
followed by a nonlinear warping procedure, where a deformable registration 
algorithm aligns each segmented structure in the atlas with the automatically 
segmented structures. Subsequently, linear deformations are applied to the 
atlas data, both within and between the structures, followed by a constrained 
deformation to align fine-grained structures of each deformed MRI within the 
atlas to the incoming MRI. The resulting deformation fields are then applied 
to the corresponding CT data of each atlas case,  finally generating a sCT data 
set by voxel-vise calculation of the weighted median HU value44.               
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Deep learning-based sCT generation 

Deep learning (DL) methods for sCT data generation are based on neural 
networks trained on the relationship between MRI signal intensities and HU 
values40,45. The currently foremost used DL-based sCT generation strategy is 
the generator-only model convolutional neural network (CNN)45, consisting of 
an input layer, multiple hidden layers, and an output layer40,45. The hidden 
layers within the CNN convolve the input matrix with trainable convolutions 
kernels, generating a feature map passed to the next layer. The input matrix is 
restricted by an activation function, defining the output of the layer given an 
input, where the most common function is the nonlinear activation function 
ReLU (rectified linear units)40,46. In addition, batch normalization (i.e., 
rescaling of the input to a standard distribution), as well as dropout layers, are 
commonly applied to obtain a robust and fast convergence of the model and to 
reduce the probability of overfitting, respectively46. To reduce the number of 
trainable parameters and the amount of computer memory needed, insertion of 
pooling layers in between layers, down-sampling the feature maps by dividing 
the data into rectangular pooling regions, and calculating for example the 
maximum of each region (max-pooling) is commonly used40,43,46. The aim of 
the CNN training is to minimize an objective function called a loss 
function40,45,46, which in sCT generation is an intensity-based similarity 
measurement between the generated sCT and the corresponding ground truth 
CT data40. The training consists of iterative adjustments on the kernel weights 
until a minimized loss function is achieved46. Once the training session is 
completed, the sCT generation can be validated by comparing sCT data with 
independent CT data, not included in the training data set. A proposed DL-
based method to generate sCT data is the so-called transfer function estimation 
(TSE) algorithm47 (used in Papers I and II). The TSE algorithm generates 
spatially variant coefficients of an affine transfer function utilizing deep CNNs 
which are fed to the transfer function and applied to the incoming MRI, 
generating the sCT data. The TSE algorithm consists of several 3D CNNs with 
multiple convolutional layers and residual connections (also called skip 
connections). The TSE algorithm used in Papers I and II was trained using a 
multi-center database with paired MRI and CT datasets that were augmented 
during training47. The benefit of DL-based sCT generation is the fast 
generation. However, as the training of the CNN is based on a training data set, 
the quality of the output from the CNN depends on the quality of the training 
data as well as the similarity between the input MR and training data.  
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Commercial sCT generation methods 

The TSE algorithm is a commercially available solution, presented within 
MriPlanner47 (Spectronic Medical AB, Helsingborg, Sweden). There are 
several additional commercially available solutions for sCT generation 
utilizing different generation methods, simplifying the standardization of the 
MRI-only workflow. Multiple tissue classification methods such as 
MRCAT48,49 (Philips Healthcare, Cleveland, OH, USA) and Synthetic CT 
solution in RT image suite50,51 (Siemens Healthcare, Erlangen, Germany) are 
examples of previously presented solutions. There are also hybrid-based 
generation methods such as the SDA via MriPlanner44,52 (Spectronic Medical 
AB, Helsingborg, Sweden), as well as DL-based generation methods such as 
Synthetic CT solution in RT image suite53 (Siemens Healthcare, Erlangen, 
Germany).   

Treatment planning using synthetic CT data  
In the traditional RT workflow, the acquired planning CT data are imported 
into the treatment planning system. The CT data in combination with the 
delineated structures are then used to plan the delivery of the treatment 
radiation beam by tracking and modulating the absorbed dose distribution 
using certain calculation algorithms. In an MRI-only workflow, the sCT will 
instead be used as the calculation base throughout the treatment planning 
process. Currently, extensive evaluations of the geometric and dosimetric 
accuracy of generated sCT data as the basis for RT treatment planning have 
been conducted7,8,40,45,46,54. The most common metrics used within the 
evaluation of dosimetric agreement are the gamma pass rate, the relative point 
dose differences, and dose-volume histograms (DVH) comparisons6,42,43. For 
evaluation of the geometrical agreement, common metrics are the mean 
absolute error (MAE) and the Dice similarity coefficient (DSC)6. The MAE 
here describes the absolute voxel-vise difference in HU between sCT and CT 
data and is defined as  
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where n is the number of segment voxels. The MAE estimates the magnitude 
of the HU difference between the imaging sets while over- or underestimation 
of HU-values is not estimated. The DSC evaluates the similarity between the 
segmented volumes in the sCT and CT data, defined as  



Advances in MRI-based radiation therapy 

14 

Deep learning-based sCT generation 

Deep learning (DL) methods for sCT data generation are based on neural 
networks trained on the relationship between MRI signal intensities and HU 
values40,45. The currently foremost used DL-based sCT generation strategy is 
the generator-only model convolutional neural network (CNN)45, consisting of 
an input layer, multiple hidden layers, and an output layer40,45. The hidden 
layers within the CNN convolve the input matrix with trainable convolutions 
kernels, generating a feature map passed to the next layer. The input matrix is 
restricted by an activation function, defining the output of the layer given an 
input, where the most common function is the nonlinear activation function 
ReLU (rectified linear units)40,46. In addition, batch normalization (i.e., 
rescaling of the input to a standard distribution), as well as dropout layers, are 
commonly applied to obtain a robust and fast convergence of the model and to 
reduce the probability of overfitting, respectively46. To reduce the number of 
trainable parameters and the amount of computer memory needed, insertion of 
pooling layers in between layers, down-sampling the feature maps by dividing 
the data into rectangular pooling regions, and calculating for example the 
maximum of each region (max-pooling) is commonly used40,43,46. The aim of 
the CNN training is to minimize an objective function called a loss 
function40,45,46, which in sCT generation is an intensity-based similarity 
measurement between the generated sCT and the corresponding ground truth 
CT data40. The training consists of iterative adjustments on the kernel weights 
until a minimized loss function is achieved46. Once the training session is 
completed, the sCT generation can be validated by comparing sCT data with 
independent CT data, not included in the training data set. A proposed DL-
based method to generate sCT data is the so-called transfer function estimation 
(TSE) algorithm47 (used in Papers I and II). The TSE algorithm generates 
spatially variant coefficients of an affine transfer function utilizing deep CNNs 
which are fed to the transfer function and applied to the incoming MRI, 
generating the sCT data. The TSE algorithm consists of several 3D CNNs with 
multiple convolutional layers and residual connections (also called skip 
connections). The TSE algorithm used in Papers I and II was trained using a 
multi-center database with paired MRI and CT datasets that were augmented 
during training47. The benefit of DL-based sCT generation is the fast 
generation. However, as the training of the CNN is based on a training data set, 
the quality of the output from the CNN depends on the quality of the training 
data as well as the similarity between the input MR and training data.  

 

 

Palmér 

15 

Commercial sCT generation methods 

The TSE algorithm is a commercially available solution, presented within 
MriPlanner47 (Spectronic Medical AB, Helsingborg, Sweden). There are 
several additional commercially available solutions for sCT generation 
utilizing different generation methods, simplifying the standardization of the 
MRI-only workflow. Multiple tissue classification methods such as 
MRCAT48,49 (Philips Healthcare, Cleveland, OH, USA) and Synthetic CT 
solution in RT image suite50,51 (Siemens Healthcare, Erlangen, Germany) are 
examples of previously presented solutions. There are also hybrid-based 
generation methods such as the SDA via MriPlanner44,52 (Spectronic Medical 
AB, Helsingborg, Sweden), as well as DL-based generation methods such as 
Synthetic CT solution in RT image suite53 (Siemens Healthcare, Erlangen, 
Germany).   

Treatment planning using synthetic CT data  
In the traditional RT workflow, the acquired planning CT data are imported 
into the treatment planning system. The CT data in combination with the 
delineated structures are then used to plan the delivery of the treatment 
radiation beam by tracking and modulating the absorbed dose distribution 
using certain calculation algorithms. In an MRI-only workflow, the sCT will 
instead be used as the calculation base throughout the treatment planning 
process. Currently, extensive evaluations of the geometric and dosimetric 
accuracy of generated sCT data as the basis for RT treatment planning have 
been conducted7,8,40,45,46,54. The most common metrics used within the 
evaluation of dosimetric agreement are the gamma pass rate, the relative point 
dose differences, and dose-volume histograms (DVH) comparisons6,42,43. For 
evaluation of the geometrical agreement, common metrics are the mean 
absolute error (MAE) and the Dice similarity coefficient (DSC)6. The MAE 
here describes the absolute voxel-vise difference in HU between sCT and CT 
data and is defined as  

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑛𝑛𝑛𝑛
�|𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖|
𝑛𝑛𝑛𝑛

𝑖𝑖𝑖𝑖=1

 

where n is the number of segment voxels. The MAE estimates the magnitude 
of the HU difference between the imaging sets while over- or underestimation 
of HU-values is not estimated. The DSC evaluates the similarity between the 
segmented volumes in the sCT and CT data, defined as  
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𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑠𝑠𝑠𝑠 =  
2|𝑉𝑉𝑉𝑉𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ∩ 𝑉𝑉𝑉𝑉𝑠𝑠𝑠𝑠𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶|
|𝑉𝑉𝑉𝑉𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶| + |𝑉𝑉𝑉𝑉𝑠𝑠𝑠𝑠𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶| 

where |𝑉𝑉𝑉𝑉𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶| and |𝑉𝑉𝑉𝑉𝑠𝑠𝑠𝑠𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶|are the binary masks of the segmented structure in CT 
and sCT data, respectively, and |𝑉𝑉𝑉𝑉𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 ∩ 𝑉𝑉𝑉𝑉𝑠𝑠𝑠𝑠𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶| the volume of their intersection. 
A DSC value of 1 represents perfectly overlapping structures and a value of 0 
no overlap at all. DSC calculated for small structures can be sensitive to HU 
generation errors as it depends on the size of the structures. It is noteworthy 
that all the metrics described here are not directly comparable between studies, 
as different studies are designed with e.g., unrelated absorbed dose calculation 
algorithms and different threshold values for bone segmentation.  

Treatment plans based on sCT data generated using homogeneous water-
equivalence methods resulted in acceptable dosimetric agreement compared to 
CT-based treatment plans for both prostate and brain6,7,41. However, treatment 
plans where the beam passed through internal air (e.g., for HN and thorax) 
obtained nonacceptable dosimetric disagreement7,41. The introduction of 
multiple tissue classifications for sCT generation improved the dosimetric 
agreement compared to single bulk-density assignment7,8. The hybrid-based 
method to generate sCT data used in Paper III has been dosimetrically 
validated in a multi-center multi-vendor study for prostate cancer patients52. 
The conclusion was that the sCT-based absorbed dose distributions were 
similar to those based on CT data, and in line with previously published results 
for atlas- and voxel-based sCT generation methods6,7.   

In Paper I, the reliability of DL-based sCT generation for HN treatment 
planning was evaluated by comparing the geometrical and absorbed dose 
differences between sCT and original CT data55. The HN sCT data were 
generated using a pre-released version of a now commercially available DL-
based method utilizing a TSE algorithm (MriPlanner) (figure 2). The 
dosimetric agreement between sCT and CT data was evaluated by analyzing 
gamma pass rates and relative local absorbed dose differences for a subset of 
DVH parameters. The original CT dose plan was recalculated on sCT data 
using identical beam parameters, resulting in a mean absorbed dose difference 
range from -0.3% to 0.02% for all DVH parameters. The 3D gamma evaluation 
(2%/1 mm criteria) presented a 99.4% mean gamma passing rate for sCT 
against CT dose distributions. The results from the dosimetric evaluation were 
in line with previously presented DL-based sCT generation methods within the 
HN region56-59. Extensive metrics were presented to evaluate the geometrical 
agreement, i.e., the difference in mean error (ME) and MAE, DSC, and 
Hausdorff distance (HD) for overall body, soft tissue, bone, and air segments. 
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The ME here describes the voxel-vise difference in HU between sCT and CT, 
defined as 
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The ME evaluation enables detection of over- or undergenerated HU values 
within a tissue segmentation. The HD describes the similarity between the 
segmented volumes in the sCT and CT data, resulting in an estimation of the 
distance between the respective tissue segments in sCT and CT, defined as  

𝐻𝐻𝐻𝐻𝐷𝐷𝐷𝐷(𝑀𝑀𝑀𝑀,𝐵𝐵𝐵𝐵) = max �ℎ(𝑀𝑀𝑀𝑀,𝐵𝐵𝐵𝐵),ℎ(𝐵𝐵𝐵𝐵,𝑀𝑀𝑀𝑀)� 

with 

ℎ(𝑀𝑀𝑀𝑀,𝐵𝐵𝐵𝐵) =  max
𝑎𝑎𝑎𝑎∈𝐴𝐴𝐴𝐴

min
𝑏𝑏𝑏𝑏∈𝐵𝐵𝐵𝐵

‖𝑎𝑎𝑎𝑎 − 𝑏𝑏𝑏𝑏‖ 

where ℎ(𝑀𝑀𝑀𝑀,𝐵𝐵𝐵𝐵) is the directed HD from surface structure voxels in CT data 𝑀𝑀𝑀𝑀 
to the surface structure voxels in sCT data 𝐵𝐵𝐵𝐵. Intuitively, ℎ(𝑀𝑀𝑀𝑀,𝐵𝐵𝐵𝐵) identifies 
voxel 𝑎𝑎𝑎𝑎 in 𝑀𝑀𝑀𝑀 as the furthest from any voxel in 𝐵𝐵𝐵𝐵 and measures the distance 
from 𝑎𝑎𝑎𝑎 to the nearest neighbor in 𝐵𝐵𝐵𝐵. Further, each voxel in 𝑀𝑀𝑀𝑀 is ranked based 
on the distance to the nearest neighbor in 𝐵𝐵𝐵𝐵 where the largest ranked voxel and 
corresponding distance is the directed HD60. Finally, 𝐻𝐻𝐻𝐻𝐷𝐷𝐷𝐷(𝑀𝑀𝑀𝑀,𝐵𝐵𝐵𝐵) is the 
maximum of ℎ(𝑀𝑀𝑀𝑀,𝐵𝐵𝐵𝐵) and ℎ(𝐵𝐵𝐵𝐵,𝑀𝑀𝑀𝑀). As HD depends on the maximum value, it 
is sensitive to HU generations errors. The difference in water equivalent depth 
(WED) between sCT and CT data was also presented, defined as 
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where ∆𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖 is the physical photon distances of voxel 𝑖𝑖𝑖𝑖 to isocenter and 𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖 is the 
electron density, i.e.,  WED represents both geometric and dosimetric 
properties6. The results from the geometrical evaluation of the generated sCTs 
were comparable to previously published DL-based HN data56-59,61-63. The 
study concluded that the utilized TSE algorithm generates sCT data suitable 
for absorbed dose calculations in an MRI-only workflow for HN RT. At the 
time, only a small number of studies had focused on HN DL sCT generation40. 
Paper I in this thesis presented and evaluated a nowadays commercially 
available and CE-approved DL-based sCT generation method, increasing the 
clinical accessibility to MRI-only HN RT compared to in-house developed 
DL-based generation methods previously published.   
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A DSC value of 1 represents perfectly overlapping structures and a value of 0 
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that all the metrics described here are not directly comparable between studies, 
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Treatment plans based on sCT data generated using homogeneous water-
equivalence methods resulted in acceptable dosimetric agreement compared to 
CT-based treatment plans for both prostate and brain6,7,41. However, treatment 
plans where the beam passed through internal air (e.g., for HN and thorax) 
obtained nonacceptable dosimetric disagreement7,41. The introduction of 
multiple tissue classifications for sCT generation improved the dosimetric 
agreement compared to single bulk-density assignment7,8. The hybrid-based 
method to generate sCT data used in Paper III has been dosimetrically 
validated in a multi-center multi-vendor study for prostate cancer patients52. 
The conclusion was that the sCT-based absorbed dose distributions were 
similar to those based on CT data, and in line with previously published results 
for atlas- and voxel-based sCT generation methods6,7.   

In Paper I, the reliability of DL-based sCT generation for HN treatment 
planning was evaluated by comparing the geometrical and absorbed dose 
differences between sCT and original CT data55. The HN sCT data were 
generated using a pre-released version of a now commercially available DL-
based method utilizing a TSE algorithm (MriPlanner) (figure 2). The 
dosimetric agreement between sCT and CT data was evaluated by analyzing 
gamma pass rates and relative local absorbed dose differences for a subset of 
DVH parameters. The original CT dose plan was recalculated on sCT data 
using identical beam parameters, resulting in a mean absorbed dose difference 
range from -0.3% to 0.02% for all DVH parameters. The 3D gamma evaluation 
(2%/1 mm criteria) presented a 99.4% mean gamma passing rate for sCT 
against CT dose distributions. The results from the dosimetric evaluation were 
in line with previously presented DL-based sCT generation methods within the 
HN region56-59. Extensive metrics were presented to evaluate the geometrical 
agreement, i.e., the difference in mean error (ME) and MAE, DSC, and 
Hausdorff distance (HD) for overall body, soft tissue, bone, and air segments. 
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The ME here describes the voxel-vise difference in HU between sCT and CT, 
defined as 

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑛𝑛𝑛𝑛
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where ∆𝑑𝑑𝑑𝑑𝑖𝑖𝑖𝑖 is the physical photon distances of voxel 𝑖𝑖𝑖𝑖 to isocenter and 𝜌𝜌𝜌𝜌𝑖𝑖𝑖𝑖 is the 
electron density, i.e.,  WED represents both geometric and dosimetric 
properties6. The results from the geometrical evaluation of the generated sCTs 
were comparable to previously published DL-based HN data56-59,61-63. The 
study concluded that the utilized TSE algorithm generates sCT data suitable 
for absorbed dose calculations in an MRI-only workflow for HN RT. At the 
time, only a small number of studies had focused on HN DL sCT generation40. 
Paper I in this thesis presented and evaluated a nowadays commercially 
available and CE-approved DL-based sCT generation method, increasing the 
clinical accessibility to MRI-only HN RT compared to in-house developed 
DL-based generation methods previously published.   
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Figure 2. a) Magnetic resonance image (MRI), b) deep learning-based generation of 
synthetic computed tomography (sCT), c) computed tomography (CT) data, and d) 
the corresponding difference (sCT-CT) in Hounsfield units (HU). The largest 
differences in HU can be seen around the ear canals, an area sensitive to 
susceptibility effects.  

Patient setup verification using synthetic CT data 
To ensure that a linear accelerator delivers geometrically correct RT to the 
patient, daily imaging is performed at the treatment machine. Using these 
images, the anatomy of the patient is adjusted to match the patient position 
employed during pre-treatment imaging for absorbed dose planning. This 
adjustment is achieved by registration of the daily images to the reference 
image used for treatment planning, followed by an adjustment of the treatment 
couch according to the obtained translation and rotation differences. Usually, 
2D orthogonal x-ray images are acquired and registered with digitally 
reconstructed radiographs (DRR) originating from the planning CT (figure 3). 
The 2D orthogonal x-ray images depicture bony anatomy well but have almost 
no soft tissue visualization. The introduction of 3D cone beam CT (CBCT) on 
the treatment machine allowed for 3D visualization of both bony anatomy and 
soft tissue and can be registered directly to the planning CT, allowing for 3D 
patient setup verification (figure 3). Once patient setup is adequately verified, 
the daily RT absorbed dose can be delivered. In an MRI-only workflow, where 
the sCT is the basis for treatment planning, patient setup verification is 
performed by registering the 2D orthogonal x-ray images with synthetic DRR 
(sDRR) and 3D CBCT with the sCT, respectively (figure 3).  

Recently, extensive evaluations have demonstrated promising results for the 
dosimetric performance of generated sCT data, whereas the accuracy and 
precision of treatment setup verification utilizing sCT data have been less 
reported5,46. It could therefore be argued that more attention and validation 
should be directed toward other steps in the MRI-only workflow than the 
dosimetric accuracy, such as treatment setup verification using sDRR or sCT 
data. As homogeneous water-equivalent methods to generate sCT data have no 
information about bony structures, treatment setup verification using such 
sDRRs is not possible. However, as the methods for sCT generation were 
refined, these structures become available and some studies have validated 
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bone-based treatment setup verification using sDRR and/or sCT for different 
treatment sites and generation methods48,64-69. Only a few studies have 
investigated HN sCT-based treatment setup verification57 and DL-based sCT 
generation methods are in general sparsely reported for all anatomical 
regions39,57,70,71. The few numbers of available publications focusing on HN 
patient setup verification might be a result of the heterogeneity in tissue 
structures and complex freedom of motion for this anatomical region. Paper II 
aimed to evaluate the use of sCT and sDRR for patient setup verification in 
HN RT for the now commercially available TSE algorithm (MriPlanner)72. 
Here, the metrics used to evaluate treatment setup verification were DSC 
together with translation and rotation differences for a reference point between 
sCT/sDRR and the original CT/DRR. The methodology is presented in figure 
3. The 2D manual and 3D automatic registration techniques used in the study 
were the same techniques used for treatment setup verification in the clinical 
setting. In addition, for easy interpretation and illustration of combined 
translation and rotation differences, the Euclidean distance was presented. The 
mean translation and rotation differences between CT and sCT-based treatment 
setup verification found were <0.7mm and <0.3° in all directions for both 2D 
and 3D setup verification. The translational differences using 2D orthogonal 
projections were in line with previously presented studies evaluating patient 
setup verification for HN cancer57. As there were no previously published data 
for 3D patient setup verification in the HN region available, these results were 
related to and showed to be in line with other anatomical sites65,66,68,69,71. Paper 
II in this thesis showed that the utilized commercially available DL-based 
method generates sCTs that can be used as a reference for both 2D and 3D 
MRI-only treatment setup verification for the complex HN anatomy.  
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should be directed toward other steps in the MRI-only workflow than the 
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information about bony structures, treatment setup verification using such 
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bone-based treatment setup verification using sDRR and/or sCT for different 
treatment sites and generation methods48,64-69. Only a few studies have 
investigated HN sCT-based treatment setup verification57 and DL-based sCT 
generation methods are in general sparsely reported for all anatomical 
regions39,57,70,71. The few numbers of available publications focusing on HN 
patient setup verification might be a result of the heterogeneity in tissue 
structures and complex freedom of motion for this anatomical region. Paper II 
aimed to evaluate the use of sCT and sDRR for patient setup verification in 
HN RT for the now commercially available TSE algorithm (MriPlanner)72. 
Here, the metrics used to evaluate treatment setup verification were DSC 
together with translation and rotation differences for a reference point between 
sCT/sDRR and the original CT/DRR. The methodology is presented in figure 
3. The 2D manual and 3D automatic registration techniques used in the study 
were the same techniques used for treatment setup verification in the clinical 
setting. In addition, for easy interpretation and illustration of combined 
translation and rotation differences, the Euclidean distance was presented. The 
mean translation and rotation differences between CT and sCT-based treatment 
setup verification found were <0.7mm and <0.3° in all directions for both 2D 
and 3D setup verification. The translational differences using 2D orthogonal 
projections were in line with previously presented studies evaluating patient 
setup verification for HN cancer57. As there were no previously published data 
for 3D patient setup verification in the HN region available, these results were 
related to and showed to be in line with other anatomical sites65,66,68,69,71. Paper 
II in this thesis showed that the utilized commercially available DL-based 
method generates sCTs that can be used as a reference for both 2D and 3D 
MRI-only treatment setup verification for the complex HN anatomy.  
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Figure 3. The methodology for Paper II. The digitally reconstructed radiographs 
(DRR) and the synthetic DRR originate from the planning computed tomography 
(CT) and synthetic CT, respectively. The 2D manual and 3D automatic registration 
techniques used in the study were the same techniques used for treatment setup 
verification in the clinical setting. 

Quality assurance of synthetic CT data 
As MRI-only workflows are not yet routinely used and are considered new 
technology, implementation of such a workflow in a clinic setting requires 
QA73, and as the workflow removes the CT from the pre-treatment imaging 
session there is no sCT/CT comparison available to assure the accuracy of the 
generated sCT data. As the generation of sCT data incorporates complex 
models and is not fully transparent when utilizing DL-based models, there 
might be scenarios where generation errors are introduced within the sCT data. 
In addition to technical circumstances, errors might occur due to other 
conditions such as accidental changes in the MRI pulse sequence parameters 
related to the sCT generation, or atypical patient anatomy or artifacts not 
included in the generation models. The generated sCT data can be visually 
inspected to detect potential errors, however, the introduction of an 
independent tool for QA of the sCT data would be desirable68,69, preferably 
before or in close connection to the start of RT. One QA approach is to use a 
secondary independent sCT generation method73,74. An additional approach is 
to use the fact that both the sCT and CBCT data, acquired for treatment setup 
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verification, consist of HU-values. This enables a comparison of the 
attenuation information from the two modalities and has been suggested as an 
independent patient-specific QA68,69. This method could be further extended to 
evaluate also the dosimetric differences between the sCT-based dose 
distribution and a recalculated CBCT dose distribution, which has been 
presented for prostate75 (Paper III), HN76 (presented abstract no.1), and brain77 
cancer patients. The evaluations for prostate and HN concluded that a simple 
recalculation of the dose distribution using CBCT data acquired at the first 
treatment fraction is comparable to the dose distributions for CT as well as sCT 
data. The sCT generation method for prostate was the SDA (MriPlanner) and 
for HN an early version of the TSE algorithm (MriPlanner). The prostate study 
also introduced simple artificial errors within the sCT data to demonstrate the 
feasibility of the method to flag unacceptable sCT generation errors for clinical 
use, although, suggesting an action level requires a more extensive evaluation. 
A study evaluating CBCT-based QA for DL-generated sCT data of the brain 
proposed two action levels: a 3% absorbed dose difference with corrective 
action applied before the next fraction and a 2% absorbed dose difference with 
the corrective action applied within the next three fractions77. Such suggested 
levels need to be considered for other tumor sites, and possibly tailored for a 
specific clinical site before being implemented. Paper III in this thesis 
concluded that CBCT data can be used as a tool for QA to detect gross errors 
within the sCT generation in MRI‐only RT, and as CBCT imaging is a 
routinely used imaging technique for treatment setup verification it constitutes 
a clinically practical tool for QA in MRI‐only workflows without introduction 
of new imaging sessions. 

High geometric accuracy for MRI in RT is desirable and achieved by carefully 
designed MRI sequences. In an implemented MRI-only workflow, no CT data 
are available to monitor the MRI data. In addition, as sCT data are generated 
from the MRI, any geometric distortions in the MRI data will propagate to the 
sCT data, and hence affect the entire RT course. For this reason, 
characterization of the geometric distortions for each sequence used in an MRI-
only workflow is necessary5. Previous studies have evaluated the impact of 
geometric distortions on the dosimetric distribution for MRI pulse sequences 
used for sCT-generation and concluded that the geometric distortions have a 
minor dosimetric impact78,79 except for whole-breast RT27. As the geometric 
distortion varies between pulse sequences and MRI systems, they should be 
quantified for any MRI pulse sequence used for sCT generation before MRI-
only workflow implementation. The MRI pulse sequences used to generate 
sCT in Papers I, II, and III showed negligible system-depended geometric 
distortions80,81. Further analysis regarding patient-related geometric distortions 
is needed and is proposed to be conducted by calculation of field distortion 
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concluded that CBCT data can be used as a tool for QA to detect gross errors 
within the sCT generation in MRI‐only RT, and as CBCT imaging is a 
routinely used imaging technique for treatment setup verification it constitutes 
a clinically practical tool for QA in MRI‐only workflows without introduction 
of new imaging sessions. 

High geometric accuracy for MRI in RT is desirable and achieved by carefully 
designed MRI sequences. In an implemented MRI-only workflow, no CT data 
are available to monitor the MRI data. In addition, as sCT data are generated 
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sCT data, and hence affect the entire RT course. For this reason, 
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maps82 (presented abstract no.5) from the dual-echo T1-weighted Dixon data 
used to generate HN sCT data in Papers I and II. As the geometric distortion 
may vary over time, it would be desirable to measure the geometric distortions 
for the MRI pulse sequence used for sCT generation, preferably integrated into 
the clinical quality control (QC) of the MRI system73. 
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Multiparametric magnetic resonance 
imaging in radiation therapy 
This chapter is mainly related to Paper IV.  

In Paper IV, methods to acquire OE-MRI and IVIM/DKI MRI for HN cancer 
were developed. The feasibility of these techniques was evaluated regarding 
their potential use as an early treatment assessment tool for HN radiation 
therapy. 

As mentioned, in addition to anatomical information, MRI can also provide 
functional and microstructural information through implementation of 
advanced MRI sequences such as DCE, DWI, and OE-MRI. Besides purely 
anatomical information for guidance of an RT workflow, many functional and 
microstructural properties, such as cell density, microvascular structure, 
perfusion, and oxygenation of the tissue, could be highly relevant for RT 
treatment guidance9,26,83 as it increases the information available for 
assessment of treatment response at follow-up and potentially also during the 
treatment course9,83. However, a combination of functional and anatomical 
MRI techniques (multiparametric MRI) is currently not routinely used in a 
clinical RT setting, as rigorous quantification and validation of the methods 
are still required9,83. 

Tumor hypoxia    
Tumor hypoxia arises due to an imbalance between the tumor oxygen supply 
and demand, which depends on the extent of tissue perfusion together with the 
oxygen consumption of the tumor cells84. Inadequate and heterogenous oxygen 
supply often found in tumor tissue is caused by numerous factors such as 
limitation in diffusion distance of oxygen through tissue (chronic hypoxia), 
and reduced tissue perfusion due to temporary closing of tumor blood vessels 
caused by malformed vasculature (acute hypoxia)85,86. It has been shown that 
cells are more sensitive to x-ray radiation in the presence of molecular oxygen 
compared to under hypoxia86. As the presence of tumor hypoxia could affect 
the treatment outcome following RT, this measure has become an interesting 
factor to consider regarding treatment response, and correlations have been 
observed between hypoxia and angiogenesis, tumor aggressiveness, local 
recurrence, and metastasis11.  

There are invasive techniques available to identify hypoxia, e.g., Eppendorf 
measurements and immunohistochemical staining11,12, which have been used 
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maps82 (presented abstract no.5) from the dual-echo T1-weighted Dixon data 
used to generate HN sCT data in Papers I and II. As the geometric distortion 
may vary over time, it would be desirable to measure the geometric distortions 
for the MRI pulse sequence used for sCT generation, preferably integrated into 
the clinical quality control (QC) of the MRI system73. 
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Multiparametric magnetic resonance 
imaging in radiation therapy 
This chapter is mainly related to Paper IV.  
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cells are more sensitive to x-ray radiation in the presence of molecular oxygen 
compared to under hypoxia86. As the presence of tumor hypoxia could affect 
the treatment outcome following RT, this measure has become an interesting 
factor to consider regarding treatment response, and correlations have been 
observed between hypoxia and angiogenesis, tumor aggressiveness, local 
recurrence, and metastasis11.  

There are invasive techniques available to identify hypoxia, e.g., Eppendorf 
measurements and immunohistochemical staining11,12, which have been used 
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to associate tumor hypoxia with poor survival prognosis for HN cancer patients 
treated with RT87. In addition, promising investigations have been published 
evaluating hypoxia using positron emission tomography (PET)11,12,88, where 
18F-labeled fluoro-misonidazole (18F-FMISO) probably is the most extensively 
used PET imaging agent for hypoxia11. By repeated acquisition of 18F-FMISO 
PET data for HN cancer patients during the RT course, it was shown that the 
reoxygenation for HN cancer starts early (approximately within 1-2 weeks) 
and that hypoxia is correlated to the treatment outcome89-91. Another approach 
for non-invasive assessment of hypoxia could be utilization of functional MRI 
techniques, which potentially even would be able to provide spatial mapping 
of hypoxic subregions in individual whole tumors11,12. Tissue hypoxia is a 
consequence of inadequate oxygen supply to the tumor tissue, caused by, for 
example, impaired diffusion and reduced tissue perfusion. This makes 
functional MRI techniques like DCE, IVIM, DKI, and OE-MRI (described 
below) promising tools for monitoring tumor characteristics causing hypoxia 
and, with that, allow for earlier RT treatment response assessment.   

DCE MRI 
DCE-MRI is a conventional perfusion technique that relies on intravenous 
injection of a gadolinium (Gd) based contrast agent (CA) and builds on 
dynamic T1-weighted MR imaging before, during, and after the CA 
injection92. As the Gd-CA is paramagnetic, the signal of the dynamic DCE-
MRI increases with CA accumulation due to a T1-shortening effect92. After 
CA injection, an initial concentration increase is observed for all tissue types, 
usually followed by a washout (decreased concentration) of the CA from the 
tissue. The Gd-CA immediately inhabits the blood plasma and is assumed to 
passively diffuse across the inner cellular lining of veins and capillaries and 
the tissue extracellular extravascular space (ESS). The CA diffusion depends 
on the volume transfer constant between blood plasma and ESS (Ktrans) and the 
rate constant between ESS and blood plasma (kep). As Gd-CA does not enter 
cells, the CA concentration also depends on the fractional volume of blood 
plasma (vp) and the fractional volume of ESS (ve). Hence, the change in CA 
concentration over time depends on the volume fractions of the tissue 
compartments and physiological microvascular properties such as blood flow 
and capillary leakage92. DCE-MRI is often preceded by a quantitative T1 
measurement (T1-mapping), allowing for a model-based quantification of 
Ktrans, kep, ve, and vp. For patients with contraindications for CAs, or planned 
for multiple perfusion MRI examinations, the extended DWI MRI model 
denoted intravoxel incoherent motion (IVIM) is an interesting alternative to 
the traditional DCE MRI for perfusion estimation as it does not require an 
intravenous injection of CA.  
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DWI, IVIM, and DKI MRI 
The conventional DWI-MRI signal is sensitive to incoherent water molecular 
motions (e.g., diffusion), where the signal strength decays as a function of the 
amount of diffusion-weighting applied (described by the so-called b-value). 
By obtaining at least two DWI images with different b-values the average 
magnitude of diffusion for a voxel can be quantified, i.e., the metric apparent 
diffusion coefficient (ADC) can be calculated93. Tissue with high cell density 
(e.g., malignant tumor) characteristically restricts water diffusion, and as ADC 
is inversely proportional to the tissue cell density94 malignant tumors have 
lower ADC-values compared to benign tumors which often have lower cell 
density95-98. 

The more complex diffusion model IVIM MRI includes both tissue water 
diffusion and blood microcirculation (perfusion)99. In a tissue voxel, both water 
diffusion and perfusion are present, where the perfusion mimics a fast diffusion 
process and, hence, also impacts the DWI measurement100. The IVIM MRI 
technique separates these two physical phenomena without contrast agent 
involvement, quantifying tissue microstructural and vascular-specific 
characteristics such as diffusion of water (D), diffusion of water in the 
blood (D*), and capillary perfusion fraction (f) in the voxel99. IVIM MRI 
requires acquisitions of at least four DWI measurements with different b-
values followed by a fitting of the IVIM model to the acquired data  

𝐷𝐷𝐷𝐷𝑏𝑏𝑏𝑏 =  𝐷𝐷𝐷𝐷0 �(1 − 𝑓𝑓𝑓𝑓)𝑒𝑒𝑒𝑒−𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + 𝑓𝑓𝑓𝑓𝑒𝑒𝑒𝑒−𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏∗)�  

where 𝐷𝐷𝐷𝐷𝑏𝑏𝑏𝑏 is the acquired signal at a specific b-value and 𝐷𝐷𝐷𝐷0 is the signal without 
diffusion weighting. The fitting process of the equation above has been shown 
to be sensitive to noise and may inaccurately estimate the IVIM parameters101. 
A simplified IVIM model, without estimation of the pseudo diffusion 
coefficient (D*), can be used if only estimates of the perfusion fraction (f) and 
diffusion coefficient (D) are of interest. This model is described as 

𝐷𝐷𝐷𝐷𝑏𝑏𝑏𝑏 =  𝐷𝐷𝐷𝐷0 �(1 − 𝑓𝑓𝑓𝑓)𝑒𝑒𝑒𝑒−𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑏𝑏𝑏𝑏)� 

where δ(b) is the discrete delta function where δ(b = 0) = 1 and δ(b ≠ 0) = 0. 
The simplified IVIM model assumes that the signal loss with increasing b-
value caused by D* is fast compared to the signal loss due to D (D*>> D), and 
hence, the signal intensities used to estimate the IVIM parameters are where 
𝑒𝑒𝑒𝑒−𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏∗ is either 1 (b = 0 s/mm2) or negligible (b ≥ than an assessed tissue-
specific b-value threshold)102. The simplified IVIM is a faster method 
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to associate tumor hypoxia with poor survival prognosis for HN cancer patients 
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for non-invasive assessment of hypoxia could be utilization of functional MRI 
techniques, which potentially even would be able to provide spatial mapping 
of hypoxic subregions in individual whole tumors11,12. Tissue hypoxia is a 
consequence of inadequate oxygen supply to the tumor tissue, caused by, for 
example, impaired diffusion and reduced tissue perfusion. This makes 
functional MRI techniques like DCE, IVIM, DKI, and OE-MRI (described 
below) promising tools for monitoring tumor characteristics causing hypoxia 
and, with that, allow for earlier RT treatment response assessment.   
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DCE-MRI is a conventional perfusion technique that relies on intravenous 
injection of a gadolinium (Gd) based contrast agent (CA) and builds on 
dynamic T1-weighted MR imaging before, during, and after the CA 
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MRI increases with CA accumulation due to a T1-shortening effect92. After 
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tissue. The Gd-CA immediately inhabits the blood plasma and is assumed to 
passively diffuse across the inner cellular lining of veins and capillaries and 
the tissue extracellular extravascular space (ESS). The CA diffusion depends 
on the volume transfer constant between blood plasma and ESS (Ktrans) and the 
rate constant between ESS and blood plasma (kep). As Gd-CA does not enter 
cells, the CA concentration also depends on the fractional volume of blood 
plasma (vp) and the fractional volume of ESS (ve). Hence, the change in CA 
concentration over time depends on the volume fractions of the tissue 
compartments and physiological microvascular properties such as blood flow 
and capillary leakage92. DCE-MRI is often preceded by a quantitative T1 
measurement (T1-mapping), allowing for a model-based quantification of 
Ktrans, kep, ve, and vp. For patients with contraindications for CAs, or planned 
for multiple perfusion MRI examinations, the extended DWI MRI model 
denoted intravoxel incoherent motion (IVIM) is an interesting alternative to 
the traditional DCE MRI for perfusion estimation as it does not require an 
intravenous injection of CA.  
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process and, hence, also impacts the DWI measurement100. The IVIM MRI 
technique separates these two physical phenomena without contrast agent 
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where δ(b) is the discrete delta function where δ(b = 0) = 1 and δ(b ≠ 0) = 0. 
The simplified IVIM model assumes that the signal loss with increasing b-
value caused by D* is fast compared to the signal loss due to D (D*>> D), and 
hence, the signal intensities used to estimate the IVIM parameters are where 
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specific b-value threshold)102. The simplified IVIM is a faster method 
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regarding measurement time since fewer b-values are required when D* is not 
estimated. 

The simplified IVIM model is eligible for a two-step (segmented) fitting 
process. In a first step, an assumption that the signal contribution from the 
perfusion compartment is negligible for high b-values is made, which makes it 
possible to use a monoexponential diffusion model expressed as 

𝐷𝐷𝐷𝐷𝑏𝑏𝑏𝑏 = 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀−𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 b>bthreshold  

In a second step, f is estimated as 𝑓𝑓𝑓𝑓 = 1 − 𝑀𝑀𝑀𝑀/𝐷𝐷𝐷𝐷0 where 𝐷𝐷𝐷𝐷0 is the signal intensity 
at b = 0. The benefit of segmented fitting is the robustness with less variability 
and hence fewer potential calculation errors101,103. The determination of the b-
value threshold at which pure diffusion is assumed is a crucial part of the 
segmented fitting process, and no general value can be used as this depends on 
the biological characteristics of the evaluated tissue type101.  

The IVIM model can be further extended by incorporation of the diffusional 
variance effects104,105. In previous models, the diffusion displacement 
probability distribution is assumed to have a Gaussian shape, however, the 
introduction of strong diffusion weighting (high b-values) causes the 
distribution to deviate from a Gaussian shape due to the complexity of various 
tissue structures (e.g., cellular compartments and membranes)104. The 
deviation from a Gaussian distribution can be determined by the kurtosis 
model, often denoted as diffusion kurtosis imaging (DKI)104,105, described as 

𝐷𝐷𝐷𝐷𝑏𝑏𝑏𝑏 = 𝐷𝐷𝐷𝐷0((1− 𝑓𝑓𝑓𝑓)𝑀𝑀𝑀𝑀−𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏+
1
6𝑏𝑏𝑏𝑏

2𝑏𝑏𝑏𝑏2𝐾𝐾𝐾𝐾 + 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑏𝑏𝑏𝑏))  

where K is the kurtosis effect which represents the degree of non-Gaussian 
diffusion105. 

OE-MRI 
An additional proposed method for mapping and quantification of tumor 
hypoxia is OE-MRI, also denoted Tissue Oxygenation Level Dependent 
(TOLD) MRI12. This MR imaging technique is based on quantification of 
temporal changes in the longitudinal relaxation rate (ΔR1) during inhalation of 
oxygen (O2). These changes in R1 caused by the paramagnetic O2 can be 
assessed by dynamic acquisition of T1 maps (where R1 = 1/T1) while breathing 
air (baseline) and while breathing 100% O2 and calculation of the difference 
between the two maps as per 
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∆𝑅𝑅𝑅𝑅1(𝑡𝑡𝑡𝑡) = 𝑅𝑅𝑅𝑅1(𝑡𝑡𝑡𝑡) −  𝑅𝑅𝑅𝑅1(0)  

where R1(t) is the relaxation rate at time t after switching to 100% O2 breathing 
and R1(0) is the relaxation rate at baseline breathing air. In theory, a T1-
shortening would be found for well-oxygenated tissue while breathing 100% 
O2, caused by an excess of dissolved paramagnetic O2 molecules in the blood 
plasma and surrounding interstitial space, resulting in a positive ΔR1 (oxygen-
enhancing (Oxy-E) voxels). However, in hypoxic tissue, the excess of O2 
molecules during 100% O2 breathing binds to the unsaturated 
deoxyhemoglobin (Hb) molecules, leaving only a few dissolved O2 molecules 
in the tissue and thus resulting in a ΔR1 close to zero12. The latter is also 
expected for necrotic tissue, as it is non-perfused. In order to distinguish 
between hypoxic and necrotic tissue it is suggested to utilize the difference in 
perfusion between the tissues. By combining data from OE-MRI and DCE-
MRI measurements, tumor hypoxia can be identified as tissue that is oxygen 
refractory while still being perfused (perfused Oxy-R)106.  

Radiation therapy treatment assessment using 
multiparametric MRI 
To date, the most common method to assess the treatment effect of RT for solid 
tumors is to measure the tumor size reduction within anatomical images 
(RESIST)107. However, as tumor size changes are a late effect these evaluations 
often take place several months after completed treatment and are therefore not 
suitable for treatment adaptations. It would be highly advantageous for earlier 
treatment assessment to identify non-responsive HN patients based on pre-
treatment multiparametric MRI or early treatment-induced changes during RT. 
The information from pre- or mid-treatment multiparametric MRI could 
further also enable individual adaptation of the treatment88. However, few 
MRI-derived biomarkers have yet been adopted for clinical use. There is a 
critical need to develop quantitative imaging for RT purposes and evaluate the 
potential of these biomarkers for early response assessment, preferably with 
large study cohorts and external validation of the derived biomarkers9,83. 

In paper IV, MRI pulse sequences were optimized for estimation of imaging 
biomarkers from IVIM/DKI and OE-MRI for RT of HN tumors. These MRI 
sequences were acquired before RT delivery and during RT (approximately 2 
weeks of delivered RT) for evaluation of their potential as a tool for early 
guidance of RT treatment response assessment. The post-processing was 
conducted using an evaluation pipeline, where all data (except DWI) was 
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regarding measurement time since fewer b-values are required when D* is not 
estimated. 

The simplified IVIM model is eligible for a two-step (segmented) fitting 
process. In a first step, an assumption that the signal contribution from the 
perfusion compartment is negligible for high b-values is made, which makes it 
possible to use a monoexponential diffusion model expressed as 
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segmented fitting process, and no general value can be used as this depends on 
the biological characteristics of the evaluated tissue type101.  
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probability distribution is assumed to have a Gaussian shape, however, the 
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distribution to deviate from a Gaussian shape due to the complexity of various 
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where K is the kurtosis effect which represents the degree of non-Gaussian 
diffusion105. 

OE-MRI 
An additional proposed method for mapping and quantification of tumor 
hypoxia is OE-MRI, also denoted Tissue Oxygenation Level Dependent 
(TOLD) MRI12. This MR imaging technique is based on quantification of 
temporal changes in the longitudinal relaxation rate (ΔR1) during inhalation of 
oxygen (O2). These changes in R1 caused by the paramagnetic O2 can be 
assessed by dynamic acquisition of T1 maps (where R1 = 1/T1) while breathing 
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where R1(t) is the relaxation rate at time t after switching to 100% O2 breathing 
and R1(0) is the relaxation rate at baseline breathing air. In theory, a T1-
shortening would be found for well-oxygenated tissue while breathing 100% 
O2, caused by an excess of dissolved paramagnetic O2 molecules in the blood 
plasma and surrounding interstitial space, resulting in a positive ΔR1 (oxygen-
enhancing (Oxy-E) voxels). However, in hypoxic tissue, the excess of O2 
molecules during 100% O2 breathing binds to the unsaturated 
deoxyhemoglobin (Hb) molecules, leaving only a few dissolved O2 molecules 
in the tissue and thus resulting in a ΔR1 close to zero12. The latter is also 
expected for necrotic tissue, as it is non-perfused. In order to distinguish 
between hypoxic and necrotic tissue it is suggested to utilize the difference in 
perfusion between the tissues. By combining data from OE-MRI and DCE-
MRI measurements, tumor hypoxia can be identified as tissue that is oxygen 
refractory while still being perfused (perfused Oxy-R)106.  

Radiation therapy treatment assessment using 
multiparametric MRI 
To date, the most common method to assess the treatment effect of RT for solid 
tumors is to measure the tumor size reduction within anatomical images 
(RESIST)107. However, as tumor size changes are a late effect these evaluations 
often take place several months after completed treatment and are therefore not 
suitable for treatment adaptations. It would be highly advantageous for earlier 
treatment assessment to identify non-responsive HN patients based on pre-
treatment multiparametric MRI or early treatment-induced changes during RT. 
The information from pre- or mid-treatment multiparametric MRI could 
further also enable individual adaptation of the treatment88. However, few 
MRI-derived biomarkers have yet been adopted for clinical use. There is a 
critical need to develop quantitative imaging for RT purposes and evaluate the 
potential of these biomarkers for early response assessment, preferably with 
large study cohorts and external validation of the derived biomarkers9,83. 

In paper IV, MRI pulse sequences were optimized for estimation of imaging 
biomarkers from IVIM/DKI and OE-MRI for RT of HN tumors. These MRI 
sequences were acquired before RT delivery and during RT (approximately 2 
weeks of delivered RT) for evaluation of their potential as a tool for early 
guidance of RT treatment response assessment. The post-processing was 
conducted using an evaluation pipeline, where all data (except DWI) was 
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registered to the T1-weighted image acquired within the baseline OE-MRI 
sequence (figure 4).  

Figure 4.  A subset of anatomical and functional magnetic resonance imaging (MRI) 
techniques acquired within paper IV. a) T1-weighted MRI acquired within the 
baseline Oxygen-Enhanced (OE) MRI sequence, b) water-suppressed T2-weighted 
Dixon MRI image, c) dynamic contrast-enhanced MRI data at 30 seconds after 
gadolinium-contrast agent injection, d) diffusion-weighted imaging (DWI) data at 
b=0 s/mm2, e) DWI data at b=1500 s/mm2 and f) calculated T1-map at OE-MRI 
baseline.    

IVIM and DKI MRI  

The conventional DWI-MRI metric ADC has shown potential as a quantitative 
imaging biomarker to predict treatment outcome for HN cancer, where tumors 
with lower pre-treatment ADC values correlated with favorable treatment 
outcome108-110. Regarding characterization of early treatment response using 
mid-RT imaging, a larger increase in ADC values has been observed for 
tumors with encouraging treatment response95,110. An increase in ADC value 
following RT indicates changes within the extracellular and/or intercellular 
space, however, the underlying biological mechanisms of the increased water 
diffusion are hard to interpret since ADC is sensitive to many aspects of the 
tissue microstructure.  
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The IVIM/DKI model is more complex than the conventional ADC model and 
since it is sensitive to both water diffusion within tissue, blood 
microcirculation, and the degree of non-Gaussian diffusion, it has the potential 
to separate a larger number of tissue transformations. The IVIM/DKI model 
was applied in paper IV where DWI-MRI data were successfully acquired for 
all enrolled study cases, using a single shot echo planar imaging (ssEPI) 
sequence with four b-values (b = 0, 110, 650, and 1500 s/mm2, number of 
repeated acquisitions = 1, 2, 3, 2). It has been suggested that careful 
optimization of b-values and the number of repeated acquisitions of each b-
value minimize the uncertainties during estimation of D and f111. Within Paper 
IV, the b-values and number of repeated acquisitions per b-value were 
optimized using a framework previously presented by Jalnefjord et al.111, now 
extended to also include K in the optimization. The ranges of expected D, f, 
D*, and K for various HN cancers were obtained from available literature112-

118. From the optimization process, a b-value scheme for DWI data can be 
determined via error propagation and bias estimation for subsequent 
determination of the IVIM parameters with the segmented fitting process. As 
both error propagation and bias estimation is utilized, the b-value threshold for 
pure diffusion can be established as the lowest non-zero b-value (i.e., 110 
s/mm2 in this study). However, numerous things impact the specified IVIM 
parameters ranges and subsequently the optimized b-value scheme and b-value 
threshold. If the optimized b-value threshold is set too low, it would cause the 
D-values to be overestimated and the f-values to be underestimated. However, 
the ranges of D, f, D* obtained from literature and used in the optimization 
could be of variable quality as the number of studies reporting IVIM 
parameters is sparse for HN cancer, the methods for parameter estimation are 
varying, the HN cancer type is a heterogenous group with multiple sub-cancer 
types, and study patients were both HPV positive and negative. 

The IVIM/DKI parameters evaluated in paper IV were D, f, and K, where an 
increase of D and f between imagining sessions indicates an increase in the 
mobility of water and microvascular blood volume, and a decrease in K implies 
a progression towards reduced microstructural heterogeneity. Four study cases 
out of seven had IVIM/DKI parameters with this changing pattern, indicating 
a positive treatment outcome112. Previously reported changes in tumor mean f-
values before and during RT show various patterns, as both increasing112,118,119 
and decreasing120 changes for positive treatment outcomes have been observed. 
For negative treatment outcomes, both increasing119 and decreasing112,118,120 
changes were similarly observed. Inconsistent results for f-values changes 
following RT have been presented in the relatively few studies published, 
which might be due to numerous reasons, such as heterogeneous and HPV-
positive or negative HN cancer types, different MRI measurement methods as 
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registered to the T1-weighted image acquired within the baseline OE-MRI 
sequence (figure 4).  

Figure 4.  A subset of anatomical and functional magnetic resonance imaging (MRI) 
techniques acquired within paper IV. a) T1-weighted MRI acquired within the 
baseline Oxygen-Enhanced (OE) MRI sequence, b) water-suppressed T2-weighted 
Dixon MRI image, c) dynamic contrast-enhanced MRI data at 30 seconds after 
gadolinium-contrast agent injection, d) diffusion-weighted imaging (DWI) data at 
b=0 s/mm2, e) DWI data at b=1500 s/mm2 and f) calculated T1-map at OE-MRI 
baseline.    

IVIM and DKI MRI  
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well as differences in signal modeling methodology. This emphasizes the need 
for further evaluation of how to interpret IVIM-derived parameters regarding 
early treatment response and the biological effect of RT. To become a 
clinically applicable approach, the IVIM/DKI technique must be standardized 
(measurement as well as signal modeling methods) and requires large-scale 
research studies. 

OE-MRI  

In paper IV, six out of seven enrolled study patients had successfully acquired 
OE-MR data. One patient was excluded since the patient did not fit within the 
head coil with the breathing mask applied. The OE-MRI measurements were 
performed by acquisition of five dynamic MP2RAGE scans (i.e., dynamic 
TOLD series) with breathing of 100% O2 during dynamic 2-4 (figure 5). T1-
maps were derived from the dynamic TOLD series data using the Bloch 
equations for the MP2RAGE sequences and used for calculation of ΔR1 within 
the tumor volume at both pre- and mid-RT. In addition, DCE data were used 
to classify voxels as perfused or non-perfused, and the perfused voxels were 
further classified as either perfused Oxy-E (normoxia) or perfused Oxy-R 
(hypoxia). Hence, for all study cases with available DCE data (three cases), all 
voxels within the GTV were classified as either perfused Oxy-E, perfused 
Oxy-R, or non-perfused (necrosis).  

To ensure successful delivery of O2 to the patients, ΔR1 of the Oxy-E voxels in 
the dynamic TOLD series was monitored and expected to increase with O2 
inhalation (figure 5). This was indeed the case for all study patients and was 
also confirmed by an external pulse oximeter. However, independent quality 
control of oxygen delivery using the aorta121 or nasal concha122 might be 
valuable in the future. One drawback, however, of using the aorta or nasal 
concha as reference tissue could be the challenge of accurately delineating 
those small tissue volumes within the HN FOV. By dividing the tumor tissue 
into two subtypes; Oxy-E and Oxy-R, and analyzing the dynamic TOLD series 
of each subtype separately, an evaluation of the oxygen delivery was facilitated 
without the need for additional delineation.  

The OE-MRI evaluation is dependent on the accuracy of the calculated T1 map, 
and within Paper IV the T1 maps were obtained via a lookup table generated 
with the Bloch equation for the MP2RAGE sequence123. As this T1-mapping 
technique is highly affected by the choice of sequence parameters, these were 
carefully selected to incorporate the transformation of signal to T1-values for 
both tumor and OARs124. 
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A decrease in the amount of tumor hypoxia, corresponding to an increased 
mean ΔR1, during the course of treatment is expected to be related to a positive 
RT treatment outcome. However, no relative change in population means ΔR1 
for pre- and mid-RT tumors were found for this study cohort in contrast to 
previously published data where an increase was reported for non-small cell 
lung cancer121 and anal squamous cell carcinoma125. The individual evaluation 
showed an increase of the tumor mean ΔR1 between initial and mid-treatment 
for two study cases, where one of those study cases also had IVIM parameters 
corresponding to a prediction of a positive treatment outcome (increase of D 
and f, decrease of K). The remaining study cases had a decrease (three cases) 
or no change (one case) between the initial and treated tumor mean ΔR1. The 
sparsely reported OE-MRI-derived changes of RT highlight the need for 
further evaluation of the potential of this biomarker, and investigation of how 
to interpret the changes in relation to hypoxia during the course of RT.   

Figure 5.  Illustration of Oxygen-Enhanced (OE) MRI for one study case. a) Five 
dynamic MP2RAGE images and the corresponding longitudinal ∆R1 parameter maps 
(A-E) normalized towards MP2RAGE #1. The ∆R1 parameter maps together with 
DCE data were used to classify perfused voxels as oxygen-enhancing (Oxy-E) or 
oxygen-refractory (Oxy-R). b) The mean ∆R1 for Oxy-E classified voxels and Oxy-R 



Advances in MRI-based radiation therapy 

30 

well as differences in signal modeling methodology. This emphasizes the need 
for further evaluation of how to interpret IVIM-derived parameters regarding 
early treatment response and the biological effect of RT. To become a 
clinically applicable approach, the IVIM/DKI technique must be standardized 
(measurement as well as signal modeling methods) and requires large-scale 
research studies. 

OE-MRI  

In paper IV, six out of seven enrolled study patients had successfully acquired 
OE-MR data. One patient was excluded since the patient did not fit within the 
head coil with the breathing mask applied. The OE-MRI measurements were 
performed by acquisition of five dynamic MP2RAGE scans (i.e., dynamic 
TOLD series) with breathing of 100% O2 during dynamic 2-4 (figure 5). T1-
maps were derived from the dynamic TOLD series data using the Bloch 
equations for the MP2RAGE sequences and used for calculation of ΔR1 within 
the tumor volume at both pre- and mid-RT. In addition, DCE data were used 
to classify voxels as perfused or non-perfused, and the perfused voxels were 
further classified as either perfused Oxy-E (normoxia) or perfused Oxy-R 
(hypoxia). Hence, for all study cases with available DCE data (three cases), all 
voxels within the GTV were classified as either perfused Oxy-E, perfused 
Oxy-R, or non-perfused (necrosis).  

To ensure successful delivery of O2 to the patients, ΔR1 of the Oxy-E voxels in 
the dynamic TOLD series was monitored and expected to increase with O2 
inhalation (figure 5). This was indeed the case for all study patients and was 
also confirmed by an external pulse oximeter. However, independent quality 
control of oxygen delivery using the aorta121 or nasal concha122 might be 
valuable in the future. One drawback, however, of using the aorta or nasal 
concha as reference tissue could be the challenge of accurately delineating 
those small tissue volumes within the HN FOV. By dividing the tumor tissue 
into two subtypes; Oxy-E and Oxy-R, and analyzing the dynamic TOLD series 
of each subtype separately, an evaluation of the oxygen delivery was facilitated 
without the need for additional delineation.  

The OE-MRI evaluation is dependent on the accuracy of the calculated T1 map, 
and within Paper IV the T1 maps were obtained via a lookup table generated 
with the Bloch equation for the MP2RAGE sequence123. As this T1-mapping 
technique is highly affected by the choice of sequence parameters, these were 
carefully selected to incorporate the transformation of signal to T1-values for 
both tumor and OARs124. 

Palmér 

31 

A decrease in the amount of tumor hypoxia, corresponding to an increased 
mean ΔR1, during the course of treatment is expected to be related to a positive 
RT treatment outcome. However, no relative change in population means ΔR1 
for pre- and mid-RT tumors were found for this study cohort in contrast to 
previously published data where an increase was reported for non-small cell 
lung cancer121 and anal squamous cell carcinoma125. The individual evaluation 
showed an increase of the tumor mean ΔR1 between initial and mid-treatment 
for two study cases, where one of those study cases also had IVIM parameters 
corresponding to a prediction of a positive treatment outcome (increase of D 
and f, decrease of K). The remaining study cases had a decrease (three cases) 
or no change (one case) between the initial and treated tumor mean ΔR1. The 
sparsely reported OE-MRI-derived changes of RT highlight the need for 
further evaluation of the potential of this biomarker, and investigation of how 
to interpret the changes in relation to hypoxia during the course of RT.   

Figure 5.  Illustration of Oxygen-Enhanced (OE) MRI for one study case. a) Five 
dynamic MP2RAGE images and the corresponding longitudinal ∆R1 parameter maps 
(A-E) normalized towards MP2RAGE #1. The ∆R1 parameter maps together with 
DCE data were used to classify perfused voxels as oxygen-enhancing (Oxy-E) or 
oxygen-refractory (Oxy-R). b) The mean ∆R1 for Oxy-E classified voxels and Oxy-R 



Advances in MRI-based radiation therapy 

32 

classified voxels for each timepoint in the dynamic TOLD series, both before and 
during RT treatment. This study case shows successfully acquired OE-MRI data as 
Oxy-E classified voxels showed an increasing mean ∆R1 while breathing 100% O2, 
not observed for Oxy-R classified voxels.  

Challenges of multiparametric MRI in radiation 
therapy 
Even though there are numerous multiparametric MRI techniques available for 
diagnostic purposes today, a direct translation from diagnostic MRI to a 
radiation therapy setting cannot be applied. For example, patient positioning 
during the MRI session for RT purposes is ideally acquired identical to the one 
at the treatment device. Although this was not the case for this study as the 
SNR in the DWI data became insufficient using the coil bridge support 
allowing for immobilization of the patient in RT position to be used for HN 
MRI. Instead, the standard head coil was used, leading to no treatment 
immobilization devices during the acquisition of the research pulse sequences.  

Further, image distortion caused by the rapid image readout for some 
functional MRI techniques might be a challenge for proper implementation 
into radiation therapy. MRI-guided RT requires high geometric fidelity of the 
MRI data as violation of the spatial integrity of the anatomy within the MRI 
data might influence the precision of the treatment response assessment. The 
rather complex HN region has relatively high local susceptibility differences, 
leading to higher-order internal magnetic field inhomogeneities that influence 
the geometric accuracy of the MRI data, especially for single-shot EPI (ssEPI) 
which is used in most IVIM/DKI applications126. An alternative to ssEPI 
acquisition is diffusion-weighted turbo-spin-echo (DW-TSE), which uses 
multiple radio frequency refocusing pulses and, hence, is less prone to 
susceptibility effects but with a longer scan time compared to ssEPI127. Another 
alternative for DWI acquisition is multi-shot (segmented) EPI, which is less 
prone to susceptibility variations (i.e., reduced geometric distortions), and 
gives a possibility for improved spatial resolution, compared to ssEPI, 
although having a prolonged scan time. However, geometric correction of 
DWI images acquired with ssEPI could be conducted by calculation of field 
distortion maps82 using the dual-echo T1-weighted Dixon data already 
acquired in the clinical MRI protocol for the HN study patients, hence the 
correction could be conducted without the need for additional imaging.  

Another important aspect of MRI in RT is the limitation of examination time 
to minimize patient discomfort, especially when the imaging is performed in 
immobilized treatment positioning. During the OE-MRI, acquisition of two 
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baseline measurements would enable a voxel-wise statistical analysis of Oxy-
E/R classification121, hence avoiding the population-based classification used 
in Paper IV but would come with the cost of extended imaging scan time. The 
use of multiple MP2RAGE sequences to acquire longitudinal T1 maps has the 
benefit of a large spatial coverage, often needed for RT purposes, but has a 
rather long total acquisition time. One way of shortening the total acquisition 
time is to use sequences that acquire more than two data points with different 
inversion times within one sequence scheme such as the modified Look-
Locker inversion recovery (MOLLI) sequence or the saturation recovery 
single-shot acquisition (SASHA) sequence128. These types of sequences are 
often used for 2D mapping within cardiovascular MRI where there is a 
considerably smaller need for large spatial coverage. 
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Conclusions  
This thesis includes validation of synthetic CT data (sCT) usage in a number 
of individual steps of the radiation therapy (RT) process, all significantly 
contributing to increased feasibility of clinical implementation of MRI-only 
based RT for several different cancer types. In addition, the thesis addresses 
the possibility of implementing multiparametric MRI for tumor 
characterization and treatment follow-up in the RT process for the rather 
complex head and neck (HN) region. 

Specifically, it was shown that  

• a deep-learning generated sCT has comparable geometric and 
dosimetric performance as genuine CT data and hence can be used in 
HN cancer treatment planning (Paper I)  

• the deep-learning generated sCT has comparable 2D and 3D patient 
positioning registrations as the original CT data and hence can be 
used for HN treatment positioning (Paper II)  

• recalculated dose distribution using cone beam CT data from prostate 
cancer patients provides comparable dosimetric results as the 
calculated sCT-based dose distribution and can be used as a feasible 
quality assurance tool to detect gross generation errors within the 
sCT data (Paper III) 

• it is clinically feasible to implement Oxygen-Enhanced (OE) 
MRI, intravoxel incoherent motion (IVIM), and diffusion 
kurtosis imaging (DKI) within MRI in RT for HN cancers and 
these methods are promising tools for early response 
assessment (Paper IV). 
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Future perspectives 
The use of MRI in RT is increasing and recently hybrid MRI-linear 
accelerators have been presented, combining a linear accelerator with an MRI 
simulator. This provides MRI-guided radiation therapy (MRgRT) with real-
time MR imaging and subsequently real-time tracking of soft tissue for 
intrafraction motions adaptation as well as adaptation of the treatment plan on 
a day-to-day basis129,130. Clinical translation from the traditional workflow to 
MRI-only workflow is ongoing, and few clinics worldwide have implemented 
an MRI-only workflow without any additional imaging modalities recquired42. 
The clinics that do have a genuine MRI-only workflow implemented have 
reported results from treatment of prostate and brain. Additional clinics have 
MRI-only workflows implemented for prostate42 and brain39 but still acquired 
CT for QA purposes. Approximately half of the reported studies utilized a 
commercial sCT generation method, simplifying the standardization of the 
MRI-only workflow. As the current implementations and sCT generation 
methods mainly have been focused on prostate and brain, it is essential to 
perform validations for other treatment sites in order to move towards a broader 
implementation of MRI-only workflows. As the HN area is a complex region 
and hence has difficulties with reproducible repositioning and co-registering 
between different imaging modalities131, it might highly benefit from transition 
to an MRI-only workflow, reducing the multimodal imaging registration 
uncertainties. However, further studies are required to fully establish the 
potential gain. As MRI is the only modality available once CT is excluded from 
the treatment workflow, it is essential to evaluate potential changes in 
delineation of target and OARs. For example, a decreased delineation volume 
of the prostate has been reported for an MRI-only workflow compared to the 
traditional MRI and CT-based workflow132. A reduced treatment volume as an 
outcome of an MRI-only prostate workflow provides potential to deliver less 
radiation to adjacent OARs and hence fewer side effects for this patient group. 
However, whether such observed changes in delineation will be observed for 
other anatomical regions requires further studies.  

The development of multiparametric MRI to assess and characterize 
physiological heterogeneity within the tumor and OARs could be a key factor 
for development of new radiation therapy approaches targeting heterogeneity 
and improving treatment outcomes. By visualization of hypoxic regions within 
the tumor through parameter maps (e.g., perfused Oxy-R classified voxels, low 
D and f, and high K), RT planning of localized treatment intensification or de-
escalation strategies could be applied and thereby enable an adaptive and 
individualized RT-treatment. A voxel-based evaluation of the correlation 
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between IVIM parameters and OE-MRI parameters would be of interest. 
However, this requires MRI data with high geometric accuracy and spatial 
resolution, which today is limited by the current system performance. In 
addition, before implementing individualized RT, the biological reflection of 
each biomarker must be determined, which requires substantial evaluations 
with standardized multiparametric MRI methods, preferably worldwide. It has 
been shown that f and tumor blood flow correlates for HN cancer where 
segmented fitting had a better correlation than direct fitting133, although 
contraindications for other tumor sites excist134. Further evaluation of the 
correlation between f and DCE is of major interest as it could enable non-
invasive IVIM data to be used to classify hypoxic areas within the OE-MRI 
data, hence avoiding the need for Gd-CA administration to the patient. 

Palmér 
 

39 

Acknowledgment 
I would like to express my gratitude to all the people who in many ways have 
supported and helped me during this education. It would not be feasible to 
complete this thesis without you.  

I am so grateful to my main supervisor Maja Sohlin, for taking a chance on me 
as your first PhD student. I will always appreciate the opportunity you brought 
to work with MR in radiation therapy. Also, thank you for your patience, 
continuous support, and the invaluable contributions you have made in our 
many discussions.  

I would also like to thank my co-supervisors, Anna Karlsson, Fredrik 
Nordström, and Karin Petruson, for your knowledge that has made an 
important impact on my work. A special thanks to Maria Ljungberg, for your 
advice and expertise, and for constantly being available to hear me out. 

Thanks to the staff at the radiation department, especially Mariana and Mitra, 
for sharing your skills and the endless fun conversations. Without your support, 
there would not be any data for me to evaluate.  

My roommates Frida, Louise, Jens, Lukas, and Mikael, thank you for the great 
company and the nicest coffee breaks. You are the reason our office is as 
enjoyable as it can be. I would also like to thank my colleagues in the MR 
physics group, Kerstin, Jesper, Oscar, Nicolas, Linnéa, Evin, Stefanie, Stefan, 
Göran, Jonathan, Christian, Lars, and Frida, for making it such a welcoming 
and pleasant place to work at. No doubt you bring joy to the lunches.  

To my fellow PhD students and the permanent staff at the department of 
medical radiation sciences, thank you for all the good times, both in and out of 
office. 

Till mina fantastiska vänner och underbara familj, jag kan inte tacka nog för 
alla aktiviteter, konversationer och öl som har inmundigats de senaste åren. 
Allt är ljusare och lättare med er i min vardag.   

 

 

 



Advances in MRI-based radiation therapy 

38 

between IVIM parameters and OE-MRI parameters would be of interest. 
However, this requires MRI data with high geometric accuracy and spatial 
resolution, which today is limited by the current system performance. In 
addition, before implementing individualized RT, the biological reflection of 
each biomarker must be determined, which requires substantial evaluations 
with standardized multiparametric MRI methods, preferably worldwide. It has 
been shown that f and tumor blood flow correlates for HN cancer where 
segmented fitting had a better correlation than direct fitting133, although 
contraindications for other tumor sites excist134. Further evaluation of the 
correlation between f and DCE is of major interest as it could enable non-
invasive IVIM data to be used to classify hypoxic areas within the OE-MRI 
data, hence avoiding the need for Gd-CA administration to the patient. 
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