Automatic tumour segmentation in brain MR images: moving towards clinical implementation

Akademisk avhandling

Som för avläggande av medicinsk vetenskap doktorsexamen vid Sahlgrenska akademin, Göteborgs universitet kommer att offentligen försvaras i hörsal Arvid Carlsson , Medicinaregatan 3, den 7 oktober 2022, klockan 13:00.

av Emilia Gryska

Fakultetsopponent:

Örjan Smedby, Professor

Kungliga Tekniska högskolan, Stockholm, Sweden

- I. **Gryska, E. A.**, Schneiderman, J., & Heckemann, R. A. Automatic brain lesion segmentation on standard MRIs of the human head: a scoping review protocol. BMJ open 2019; 9(2), e024824.
- II. **Gryska, E.**, Schneiderman, J., Björkman-Burtscher, I., & Heckemann, R. A. Automatic brain lesion segmentation on standard magnetic resonance images: a scoping review. *BMJ open*, *2021*; *11(1)*, *e042660*.
- III. Gryska, E., Björkman-Burtscher, IM., Jakola, A. S., Dunås, T., Schneiderman, J., & Heckemann, R. A. Deep learning for automatic brain tumour segmentation on MRI: evaluation of recommended reporting criteria via a reproduction and replication study. *BMJ open*, 2022; 12, e059000
- IV. Gryska, E., Hoefling, N., Laesser, M., Heckemann, R. A., Schneiderman, J., & Björkman-Burtscher, IM. Evaluation of contrast-enhanced tumour volume increase in glioblastoma patients: radiologists' perception of tumour segmentation and volumetry. *Submitted to European Radiology*
- V. Bergquist, M., Rolandsson, B., **Gryska, E.**, Laesser, M., Hoefling, N., Heckemann, R. A., Schneiderman, J., & Björkman-Burtscher, IM. Trust and stakeholder perspectives on the implementation of AI tools in clinical radiology. *Submitted to European Radiology*

SAHLGRENSKA AKADEMIN INSTITUTIONEN FÖR KLINISKA VETENSKAPER

Automatic tumour segmentation in brain MR images: moving towards clinical implementation

Emilia Gryska

Avdelning av Medicinska strålningsvetenskaper, Institutionen för kliniska vetenskaper, Sahlgrenska akademin, Göteborgs universitet, Sverige.

Abstract

The aim of this thesis was to examine and enhance the scientific groundwork for translating deep learning (DL) algorithms for brain tumour segmentation into clinical decision support tools. In **Paper II**, a scoping review was conducted to map the field of automatic brain lesion segmentation on magnetic resonance (MR) images according to a predefined and peer-reviewed study protocol (**Paper I**). Insufficient preprocessing description was identified as one factor hindering clinical implementation of the reviewed algorithms. A reproducibility and replicability analysis of two algorithms was described in **Paper III**. The original validation results were reproduced and replicated for one algorithm. Failure to reproduce the results of the second algorithm led to a suggested update to a commonly-used reproducibility checklist to highlight the importance of a thorough description of preprocessing. In **Paper IV**, radiologists' perception of DL-generated brain tumour labels in tumour volume growth assessment was examined. Ten radiologists participated in an MR examination reading/questionnaire session of 20 cases. The readers were confident that the label-derived volume change is more accurate than their visual assessment, even when the inter-rater agreement on the label quality was poor. In **Paper V**, the broad theme of trust in artificial intelligence (AI) in radiology was explored in a semi-structured interview study with twenty-six AI implementation stakeholders. Four requirements of the implemented tools and procedures were identified that promote trust in AI: reliability, quality control, transparency, and inter organisational compatibility. The findings indicate that current strategies to validate DL algorithms do not suffice to assess their accuracy in a clinical setting. Despite the recognition from radiologists that DL algorithms can improve the accuracy of tumour volume assessment, implementation strategies require more work and the involvement of multiple stakeholders.

Keywords: brain tumour segmentation, implementation, deep-learning, radiology

ISBN: 978-91-8009-935-6 (TRYCK) ISBN: 9 978-91-8009-936-3 (PDF) http://hdl.handle.net/2077/72056