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"It is not the critic who counts; not the man who points out how the strong
man stumbles, or where the doer of deeds could have done them better. The

credit belongs to the man who is actually in the arena, whose face is marred
by dust and sweat and blood; who strives valiantly; who errs, who comes

short again and again, because there is no effort without error and
shortcoming; but who does actually strive to do the deeds; who knows great

enthusiasms, the great devotions; who spends himself in a worthy cause; who
at the best knows in the end the triumph of high achievement, and who at the

worst, if he fails, at least fails while daring greatly, so that his place shall
never be with those cold and timid souls who neither know victory nor

defeat."

Theodore Roosevelt
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ABSTRACT
The aim of this thesis was to examine and enhance the scientific groundwork
for translating deep learning (DL) algorithms for brain tumour segmentation
into  clinical  decision  support  tools.  Paper  II describes  a  scoping  review
conducted  to  map  the  field  of  automatic  brain  lesion  segmentation  on
magnetic  resonance  (MR)  images  according  to  a  predefined  and  peer-
reviewed  study  protocol  (Paper  I).  Insufficient  preprocessing  description
was  identified  as  one  factor  hindering  clinical  implementation  of  the
reviewed  algorithms.  A  reproducibility  and  replicability  analysis  of  two
algorithms  was  described  in  Paper  III.  The  two  algorithms  and  their
validation  studies  were  previously  assessed  as  reproducible.  In  this
experimental  investigation,  the  original  validation results  were reproduced
and  replicated  for  one  algorithm.  Analysing  the  reasons  for  failure  to
reproduce validation of the second algorithm led to a suggested update to a
commonly-used  reproducibility  checklist;  the  importance  of  a  thorough
description  of  preprocessing  was  highlighted.  In  Paper  IV,  radiologists'
perception of DL-generated brain tumour labels in tumour volume growth
assessment  was  examined.  Ten  radiologists  participated  in  a
reading/questionnaire session of 20 MR examination cases. The readers were
confident that the label-derived volume change is more accurate than their
visual assessment, even when the inter-rater agreement on the label quality
was poor. In Paper V, the broad theme of trust in artificial intelligence (AI)
in radiology was explored. A semi-structured interview study with twenty-six
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AI  implementation  stakeholders  ws  conducted.  Four  requirements  of  the
implemented tools and procedures were identified that promote trust in AI:
reliability,  quality  control,  transparency,  and  inter-organisational
compatibility.  The  findings indicate  that  current  strategies  to  validate  DL
algorithms do not suffice to assess their accuracy in a clinical setting. Despite
the  recognition  from  radiologists  that  DL  algorithms  can  improve  the
accuracy  of  tumour  volume assessment,  implementation  strategies  require
more work and the involvement of multiple stakeholders. 

Keywords:  brain  tumour  segmentation,  implementation,  deep  learning,
radiology
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SAMMANFATTNING PÅ SVENSKA

I  klinisk  praxis  används  tumörvolym  som  ett  kriterium  för  att  bedöma
sjukdomsstatus. Volymen mäts sällan i exakta mått, istället skattas den ofta
visuellt.  Artificiell  intelligens (AI)  algoritmer  för  hjärntumörsegmentering,
som  automatiskt  avgränsar  en  tumör  i  en  bild,  skulle  kunna  ge
neuroradiologer exakta mätningar av tumörvolymen. Trots ett ökande antal
vetenskapliga  studier  som  hävdar  att  algoritmerna  har  hög  noggrannhet
används de inte allmänt som kliniska verktyg. I min avhandling undersöker
jag  klyftan  mellan  forskningen  och  kliniken  med  följande  frågor:  Ger
forskningen  belägg för  att  algoritmerna  kommer  att  fungera  väl  i  klinisk
rutin? Litar radiologer på AI-genererad information och anser de att den är
till  hjälp?  Vad  behöver  radiologer  för  att  kunna  lita  på  och  använda
verktygen?

Mina  resultat  visar  att  de  flesta  vetenskapliga  studier  inte  utvärderar
algoritmerna tillräckligt noga avseende deras prestanda i ett kliniskt scenario.
Många  studier  är  inte  reproducerbara:  en  oberoende  forskare  kan  inte
återskapa en algoritm, tillämpa den på samma bilder och få liknande resultat.
För  att  lösa  detta  problem har  jag  föreslagit  uppdaterade  riktlinjer  för  att
utforma studier så att de kan reproduceras. Utvärdering av noggrannhet och
tillförlitlighet är bara det första steget mot ett kliniskt införande. I slutändan
är  det  ändå  läkarna  som  avgör  om  den  AI-genererade  informationen  är
trovärdig  och  användbar.  Jag  fann  att  radiologer  tenderar  att  lita  mer  på
noggrannheten hos den AI-beräknade tumörvolymen, trots en stor variation i
den upplevda segmenteringskvaliteten, än på den egna visuella bedömningen.
Denna positiva inställning till AI är dock inte tillräcklig för att säkerställa att
de  framtida  kliniska  verktygen  faktiskt  kommer  att  få  förtroende  och
användas.  Jag identifierade fyra  specifika förtroenderelaterade villkor som
måste  uppfyllas  för  att  framgångsrikt  införa  AI-verktyg  inom  radiologi.
Verktygen och  implementeringen måste  vara  tillförlitliga  och transparenta
avseende  hur  informationen  genereras  och  hur  den  ska  tolkas.  Dessutom
måste verktyget lätt kunna implementeras i och vara kompatibelt  med den
kliniska verksamheten.

Resultaten  överbryggar  delvis  klyftan  mellan  forskningen  och  kliniken.
Framtida  forskning  bör  fokusera  på  att  pröva  algoritmer  på  ett  sätt  som
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fastställer starka bevis för segmenteringsnoggrannhet i en klinisk miljö och
hur radiologer använder den erhållna informationen i kliniska arbetsflöden.
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Automatic tumour segmentation in brain images: moving towards clinical implementation

1 INTRODUCTION

The outstanding performance of deep learning (DL – which falls under the
umbrella term of artificial intelligence (AI)) algorithms in scientific
validation studies1 generated high expectations that DL will revolutionise
radiology. The early ideas about the role of DL in medicine, as envisioned by
technologists, painted a futuristic picture of healthcare. A prominent venture
capitalist, Vinod Khosla, boldly expressed the vision in 2012:

“Eventually, we won’t need the average doctor and will have much better and
cheaper care for 90-99% of our medical needs. We will still need to leverage
the top 10 or 20% of doctors (at least for the next two decades) to help that
bionic software get better at diagnosis. So a world mostly without doctors (at
least average ones) is not only not reasonable, but also more likely than not.
There will be exceptions, and plenty of stories around these exceptions, but
what I am talking about will most likely be the rule and doctors may be the
exception rather than the other way around.”2

Understandably, clinicians became sceptical toward AI, fearing that the
technology would make them redundant. Ten years later, we see a shift in the
expectations of AI in healthcare. Rather than taking over the jobs, AI is now
expected to take over specific tasks to assist clinicians in decision-making.
Such support is welcome by radiologists3 whose workload has been
significantly increasing during the last two decades4.

The growing expectations of DL to be implemented as clinical decision
support (CDS) in radiology have been matched by the ever-increasing
number of scientific studies that propose and validate DL algorithms for
radiological image processing. However, scientific studies on the
implementation of the algorithms as clinical tools remain scarce; the
expansion of the field has only recently led to the availability of a few DL
tools in specific clinical workflows.

Moving away from proof-of-concept studies to validating the clinical
suitability of the tools is a complex and multifaceted challenge5. Recently, the
new European Medical Device Regulation (EU) 2017/745 became another
obstacle for researchers in the field; MDR practically limits the development
and implementation of DL tools for clinical utilisation to the commercial
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E. Gryska

sector. As a result, non-commercial, in-house validation and implementation
of such tools are practically infeasible. Despite this new obstacle, research on
the implementation and validation of DL CDS should not come to a halt.
Quite the opposite – many critical pieces of the implementation puzzle,
which will facilitate a sustainable uptake of AI tools in clinical radiology,
remain to be uncovered.

In my project, I focused on brain tumour segmentation (BTS) on magnetic
resonance (MR) imaging, one of the most common radiological applications
of DL addressed in research6,7. I used this sample application to identify some
missing pieces of the abovementioned puzzle. The abundance of research that
proposes and validates DL BTS algorithms contrasted with the scarcity of
available clinical tools determined the two main lines of inquiry of this
doctoral project: the scientific and clinical validity of the technical
developments in the field of DL BTS, and the tool users’ perception and trust
in tumour labels generated by AI.

In the following sections, I will introduce relevant topics that comprise the
background for this research, and also provide the reader with the necessary
understanding of the field and the research gaps I addressed. First, I will
briefly describe what BTS is, and its place and benefits for neuroradiological
tumour status evaluation. Then I will provide a basic description of the DL
technology for BTS, as well as its strengths and limitations from the clinical
implementation perspective. Then I will move on to introducing the topic of
technology assessment in diagnostic imaging, users’ perception of
AI-generated tumour labels, and trust in the technology.

1.1 BTS & NEURORADIOLOGICAL TUMOUR STATUS

EVALUATION

Image segmentation is the process of finding and labelling pixels/voxels that
belong to semantically distinct regions in an image8. BTS generates a tumour
label in a cranial image (Figure 1). MR imaging is one of the most commonly
used modalities for the neuroradiological assessment of patients suspected of
having, or diagnosed with, a brain tumour. This modality enables
visualisation of different tissue types, including tumour components, which

2
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are relevant for diagnosing and monitoring the disease and evaluating
treatment effects. MR images are, therefore, most often used as input for BTS
algorithms.

Figure 1. An example of a T1w-Gd brain MRI (left) with a contrast-enhancing tumour
label overlaid on the image (right).

BTS is clinically helpful for estimating tumour volume and planning
radiation therapy. Radiological tumour evaluation, including its size, is one
criterion that determines the disease status (regression, stable disease, or
progression). Accurately determined disease status is important not only for
the prognosis and therapeutic decisions but also the mental and emotional
state of the patient and their family.

In clinical practice, a tumour label would be typically acquired by a trained
rater via manually delineating tumour boundaries on each slice of a 3D
image. More recently, semi automatic tools that use image processing
algorithms became available for clinical use to improve the efficiency of the
process (e.g. “SmartBrush,” developed by Brainlab, Feldkirchen, Germany).
These tools, however, require user supervision, and the generated labels often
need editing. Whether manually or with the support of algorithms, the
boundaries of some brain tumours can be difficult to determine because of
their heterogeneous appearance on MRI. Even in the case of homogeneous
tumours with clear boundaries, manual or semi automatic delineation on

3
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multiple slices of an image is too time-consuming to be used routinely in
clinical practice. Furthermore, manual segmentation is subject to inter-rater
variability. Even findings of studies that assess inter-rater agreement are
variable. For gross tumours, the mean largest to smallest tumour volume ratio
calculated for nine physicians of 2.04 was recorded9 compared to Dice
similarity coefficient (DSC) of around 0.8 (indicating much better overlap
and therefore volume ratio)10. For enhancing tumour (ET) inter-rater DSC of
less than 0.6 to more than 0.8 was reported10,11.

Instead, established tumour size evaluation presently relies on visual
(qualitative) assessment and approximate quantitative estimations12. A few
metrics that estimate the size of a tumour have been developed to standardise
the reporting of treatment effects on tumours in clinical trials. Subsequently,
they were adopted in radiological practice13. These metrics include 1D and
2D measurements of the ET: the length of the largest diameter – RECIST14, a
product of the two largest, perpendicular diameters – MacDonald15. The
RANO16 criteria include the 2D measurement of ET and non-enhancing
lesions. Each metric indicates disease status according to established criteria
(Table 1).

Table 1. A comparison of the RECIST14, MacDonald15, and RANO16 response criteria for
brain tumour response evaluation. ET – enhancing tumour. T2/FLAIR – transverse
relaxation time/fluid attenuated inversion recovery.  Excerpt adapted from Chukwueke
and Wen (2019)20 available under CC BY-NC-ND 4.021.

Criterion RECIST MacDonald RANO

Measurement

1D ET: the largest
diameter/sum of the
largest diameters for
multiple lesions

2D ET: the product
of the largest
perpendicular
diameters

2D ET +
T2/FLAIR:  the
product of the largest
perpendicular
diameters

Progression ≥ 20% increase ≥ 25% increase in ≥ 25% increase

Response ≥ 30% decrease ≥ 50% decrease ≥ 50% decrease
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In Sweden, the guidelines for neuroradiological tumour evaluation17 do not
specify how to measure tumour size, but the tumour response is evaluated
according to the RANO criteria. The guidelines contain several items that
help the assessment; however, they do not impose any structure on the
report17. As a result, the reporting remains subjective and variable, as no
criteria are imposed in the national and international care program12,18. A
recent initiative, BT-RADS19, aims to standardise and simplify reporting and
evaluation of brain tumours by providing a simple list of criteria for the
clinician to fill and a resultant management recommendation. BT-RADS
adopted the tumour size measurement from RANO as well. Despite more and
more available algorithms for semi- or fully automatic tumour segmentation,
the change in tumour size is still measured using approximations.

Limited evidence supports the use of volumetric tumour size evaluations to
improve patient outcomes22–24. A substantial body of literature, however,
indicates that volumetric tumour size evaluation is more representative of
actual tumour growth (and thus progression) and less sensitive to subjective
factors. Fathallah-Shaykh et al.25 showed that the availability of automatically
generated tumour labels and the derived tumour volume resulted in earlier
detection of low grade glioma (LGG) progression (14 vs 44 months) at
smaller tumour sizes (57% vs 174% volume increase), as compared to visual
estimation25. Berntsen et al.26 compared the visual and 2D tumour volume
measurements to label-derived volume in patients suffering from
glioblastoma (GBM). They found that visual and 2D evaluation accuracy was
moderate – within the 66 to 68% range. Gui et al.27 and Jakol et al.28 indicated
that radiological reports still determine a stable disease when an ~11%
increase in tumour volume was present in patients with LGG. According to
RANO, this volume increase corresponds to stable disease. However, stable
disease, as determined on two consecutive examinations, may be, and often
is27,28, progressive disease when comparing the tumour volume in the latest
scan with the baseline examination.

The scanning conditions and image parameters may also impact accurate
tumour volume measurement. Studies by Schmitt et al.29 and Reuter at al.30

explored the impact of image slice thickness, head rotation, and placement in
the scanner on the accuracy of tumour response assessment. The authors
showed that measuring tumour size with 2D measurements was subject to
more variability and less reliability than volumetric segmentation when
analysing various scanning conditions.
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To sum up, volumetric tumour measurement is expected to find its way into
clinical workflow through automatic BTS tools. From a practical perspective,
providing clinicians with accurate measures of volume change will reduce
uncertainty in reporting. It will also provide a less variable basis for
evaluating the impact of volumetric measurements on patient outcomes.

1.2 DEEP LEARNING FOR BTS ON MR IMAGES

As in many other disciplines, supervised DL methods (in particular
convolutional neural networks – CNNs) have become the default choice of
algorithm for medical image segmentation31,32. The number of articles that
describe or validate a DL algorithm for BTS has been increasing at a
substantial rate in recent years (Figure 2).

Figure 2. PubMed search result of “brain AND (tumor or tumour) AND segmentation
AND (deep learning OR DL OR artificial intelligence OR AI)” on 6/05/2022.

One factor that facilitates the growth of the field is the availability of training
and testing images. The Brain Tumour Segmentation challenge BraTS33, held
annually since 2012, offers a publicly available, expanding database of
annotated training and testing images. In 2021, the database consisted of
images of 2000 patients34. Over the years, alongside the increasing number of
available images in the database, the performance of the best algorithms has
also been increasing1 (Figure 3).
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Figure 3. The best DSC scores achieved in the BraTS challenge in years 2012 – 2018. Adapted
from Ghaffari et al.1 © [2020] IEEE.

While BraTS is a crucial contribution to benchmarking DL BTS algorithms,
the results achieved on BraTS images themselves do not automatically
translate to the expected clinical performance. Before I describe the process
of evaluating the diagnostic efficacy of a DL BTS method7,35 in the next
chapter, I will provide basic information on how supervised artificial neural
networks work, which elements determine segmentation model performance,
as well as the strengths and limitations of DL BTS in clinical applications.

1.2.1 ARTIFICIAL NEURAL NETWORKS

An artificial neuron models the most basic properties of a biological one. Just
like in a biological neuron, it takes multiple inputs, sums up the incoming
weighted signals, and passes the signal on if the sum exceeds a threshold
(indicated by an activation function). Figure 4 shows a schematic
representation of an artificial neuron.

7



E. Gryska

Figure 4. A schematic representation of an artificial neuron (perceptron).

Artificial neural networks are built by stacking neurons in a layer and
stacking layers in a network. The number of neurons in a layer corresponds to
the number of features that this layer can learn; stacking multiple layers
together results in the network’s ability to learn more complex and abstract
features which best predict the correct output (discriminative features).

A CNN is a particular artificial neural network inspired by biological visual
processing36–38. The first computational model that mimics a cat’s visual
cortex – neocognitron – was proposed by Fukushima in 198036. The
biological model contains two types of hierarchically stacked cells: simple
and complex. The simple cell recognises simple features, e.g. lines, in a
specific orientation and location in the visual field. A simple cell layer,
therefore, has a cell for each location and orientation of the feature. The
complex cell takes input from multiple single cells of specific orientation at
different locations. As a result, a complex cell layer recognises features
regardless of its location in the visual field. This process was reconstructed in
the neocognitron, where layers of simple and complex cells were stacked
alternately. Stacking simple cell layers leads to recognition of global,
complex features in the deeper layers, while the complex cell layers impose
location-invariance of the detected features36. Computationally, location
invariant feature detection is equivalent to convolution with small kernels
followed by pooling38. Convolutional and pooling layers are the building
blocks of CNNs (Figure 5). The values of the kernels are the network
parameters that are determined during training a model.
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Figure 5. Comparison between the basic visual cortex structure37 and CNN operation. Simple
cells in cats' visual cortex (left, blue) respond to simple features in a specific orientation. A

complex cell (green) receives input from many simple cells making their responses more
spatially invariant. In the right image, CNN replicates these processes. In the first

convolutional layer (blue) image is filtered with a small filter (grey box) at every location
creating a simple feature map. The feature map is downsampled in a max-pooling operation,
which introduces a certain level of  rotation and shape invariance. Reprinted under CC BY

4.021 licence from Lindsay et al.39

Deep CNNs are built of multiple hidden layers. A hidden layer is any layer
other than the network’s input or output layer. Classical deep networks are
feed-forward models: they learn and recognise features hierarchically because
the output of one layer becomes an input to the next layer in the network; the
more layers in a network, the more complex and abstract features can be
recognised40. For example, suppose the outputs of the first convolutional
layer with two kernels are maps for vertical and horizontal lines in an image.
In that case, the second convolutional layer will result in feature maps that
combine the vertical and horizontal edges, e.g. crosses, corners or skewed
lines. The third layer would extract features that combine the crosses,
corners, lines, etc. The pooling layers in between, next to reducing the size of
the feature maps, reduce the network’s sensitivity to feature details, such as
translation or rotation, making it more robust.

The first CNN was proposed by LeCun et al. in 198938. The CNN architecture
resembled the model proposed by Fukushima36, but the training procedure
relied on backpropagation41. Backpropagation became a crucial component of
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training feed-forward networks as it efficiently calculates gradients of an
error between the predicted output and the true output for each parameter in a
network. Finding such network parameters that the error is minimised is at
the core of DL.

Overfitting is one of the pitfalls of DL models. A model that shows high
accuracy on training images but performs poorly on images not included in
the training set is overfitting. Such a model has learned features that are
specific to the training data but do not generalise well to the whole possible
distribution of best discriminating features. Several strategies have been
developed to minimise overfitting. If available, large and varied training sets
are advantageous. Otherwise, the model can be modified with regularisation
(penalising learning complex patterns) or dropout (setting certain parameters
to zero).

1.2.2 TRAINING

In an untrained network, the parameters (weights/kernels) are initialised as
random numbers. The training process adjusts the parameters to learn the
most discriminative features of the training data that best predict the output.
In our case, the output is labelled image voxels (e.g., tumour or not-tumour).
The training occurs in three steps that are iterated until the network can
perform the task with satisfactory accuracy:

I) the network processes a training image (i.e., a pre-labeled image,
but the labels are not fed to the network) and produces an output
based on current parameters,

II) the current output is compared to the true labels of the training
image by calculating an error between the output and the true labels,

III) the parameters are updated through backpropagation41 and an
optimisation algorithm so that the error between the output and the
true label is minimised.

The training procedure depends on several hyperparameters that determine
how effective and efficient the training will be. First, the function that
calculates the error between the current output and the true label (cost
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function) must be determined. Then, we must specify an optimisation
algorithm and learning rate to find the optimal parameters in each training
run to minimise the cost function. Other hyperparameters include the number
of training cycles to be run with all of the data (epochs) or whether all or a
sub-set of training images are passed in each training iteration (batch size).

1.2.3 DATA

The performance of DL models is directly connected to the quantity and
quality of the data used for training and validation; of particular importance is
how representative of the population the training data is. Therefore, data
preparation is one of the most critical and time-consuming tasks in
developing DL models42. A fundamental aspect of data preparation for DL
applications is preprocessing. Each feature in a processed image must be
represented by a similar value distribution across the whole data sets40.
Preprocessing is particularly important for segmenting MR images. For
example, tissue properties are typically discriminated based upon the contrast
between pixels/voxels rather than the value of pixel/voxel intensity. The
intensity profiles of several MR images can vary depending on the scanner
manufacturer, sequence, and acquisition parameters. They are also often
influenced by artefacts. Signal intensity, therefore, must be normalised across
images fed to a DL model for optimal performance.

In supervised learning, the images used for model training and validation
must be annotated. In BTS, high-quality reference segmentation labels must
be provided. As mentioned in Section 1.1, manual delineation of tumours is
resource-expensive, especially in large data sets that are usually required for
DL studies. The reference labels are furthermore subjective, even if done by
experienced professionals. Access to large data sets with reference
annotations may be particularly important for the segmentation of regions of
interest that vary in visual appearance, shape, size and location – such as
brain tumours. Therefore, the availability of high-quality data may be an
issue for model developers. Ethical and legal considerations of data
acquisition, use, and storage are other essential aspects that affect data
accessibility in DL applications for healthcare. Publicly available datasets
have been a significant catalyst for advancing the DL BTS field.
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1.2.4 ADVANTAGES AND LIMITATIONS

One of the most significant advantages of DL-based methods is their ability
to process high volumes of images quickly. Once trained, they can fully
process an individual input image in a few minutes or seconds32,33, compared
to average 10 minutes or more for manual segmentation43,44. Thanks to their
pattern-learning ability, these methods are expected to relieve clinicians from
repetitive and often laborious tasks. For medical image and brain tumour
segmentation, the DL models achieve expert-level accuracy, at least in
proof-of-concept and standalone diagnostic accuracy validation studies1,11.
Automatic segmentation algorithms are furthermore presumed to decrease
interrater variability, even when the segmentation labels need editing45.

The fundamental elements of DL design, which can lead to its exceptional
performance, are also the reason for its limitations. Data fed to an algorithm
is one such element. In Section 1.2.3, I described how the data is a part of the
model and determines how well the model will perform. A big concern with
DL models for MR image processing is the sensitivity of the model to the
variability in the data. The variability arises due to different image acquisition
parameters and protocols, scanner manufacturers, artefacts, etc.. Therefore,
comprehensive and efficient preprocessing is key to a successful
segmentation, although it can be challenging32,46.

The best solution to the problem is training a model with a large data set that
contains a representative sample of lesions, scanners, acquisition parameters
and clinical settings. Publicly available data sets, while providing an
ever-increasing number of available images, are curated and may not include
a representative sample of the whole population, potentially incurring biassed
outcomes. On the other hand, personal data protection laws heavily regulate
acquiring clinical images independently, which limits the accessibility of
clinical data. Independently collected data must also be labelled – another
previously described resource issue. The perceived quality of the annotations
may also, to some extent, be dependent on the local guidelines and, therefore,
may not be generalisable globally.

The potential for high accuracy of DL models comes at a price of complexity
of these algorithms. Currently, DL tools for healthcare applications do not
support domain experts in understanding the tool outcomes in a way that is
compatible with expert reasoning47. DL models are still “black boxes” to
physicians48. In high-stakes domains like healthcare – where the decisions are
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supposed to be based on sound and transparent reasoning – the correlational
principle of DL algorithms’ operation makes end-users reluctant to trust the
technology49,50. The sustainable uptake of DL CDS tools will depend on the
users’ acceptance of the tools and willingness to incorporate them into their
workflow.

1.3 DL IMAGE ANALYSIS TECHNOLOGY ASSESSMENT IN

RADIOLOGY

Neuroradiology as an evidence-based practice51,52 requires that diagnostic
imaging tools are thoroughly validated; the evidence of the tools’ accuracy
must be convincing. The tool's users must know how to use it and interpret
the information it provides53. Crucially, they must sufficiently trust that the
tool works accurately. Introducing AI/DL tools in clinical practice for CDS
poses a challenge not only from the technical point of view but also due to
the DL explainability challenge mentioned in the previous section. While
domain-tailored explanations and interpretations of DL tool outcomes may
presently be lacking, other solutions can be proposed to promote users’
acceptance and trust in the technology as important first steps.

Regardless of a clinical tool’s underlying technology or decision-making
principles, its validation must follow an evidence-based approach. The most
commonly referred to and used framework for evaluating diagnostic imaging
efficacy has been described by Fryback & Thornbury35. It proposes six levels
of efficacy: technical, diagnostic accuracy, diagnostic thinking, therapeutic,
patient outcome, and societal. Efficacy evidence at each level is meaningful
only when the previous levels were achieved. Van Leeuwen et al.7 refined this
hierarchical framework to accommodate diagnostic efficacy assessment of AI
tools for medical image analysis (Table 2).

Despite the explosion of the number of articles validating AI algorithms for
medical image processing and analysis, the evidence for their efficacy as
CDS tools is scant. Van Leeuwen et al.7 reviewed 100 CE-marked AI tools
for clinical radiology available at the time at the AI for Radiology website
(www.aiforradiology.com). The evidence for Level II diagnostic efficacy was
available for 36 products. Only 18 of the 100 products had published
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evidence at the third level or higher7. None of these tools, however, were
automatic BTS tools.

Table 2. The hierarchical model of diagnostic imaging efficacy proposed by Fryback
and Thornbury35 and refined to evaluate the impact of AI on diagnostic imaging
procedures. Adapted from van Leeuwen et al7 available under CC BY-NC-ND 4.021.

E�cacy level Description Measures of e�cacy

It – technical
Proof-of-concept validation shows
technical feasibility of the
tool/algorithm

Reproducibility, error rate

Ic – potential clinical
The tool/algorithm demonstrates the
feasibility of clinical application

Correlation to
established/other clinical
processes and examinations

II – diagnostic
accuracy

The standalone performance of the
tool/algorithm is evaluated

Standalone DSC, sensitivity,
speci�city, ROC analysis

III – diagnostic
thinking

The added value of the
tool/algorithm to the diagnostic
thinking process is demonstrated

Impact on radiologists
performance and judgement

IV – therapeutic
The added value of the
tool/algorithm to the patient
management process is demonstrated

E�ect on treatment and further
examinations

V – patient outcome
The added value of the
tool/algorithm to the patient
outcome is demonstrated

E�ect on life quality, survival,
or morbidity

VI – societal
The economic impact of the
tool/algorithm on society is evaluated

E�ect on cost adjusted for
quality of life

Another review by Ebrahimian et al.54 assessed 118 FDA-approved
AI/ML-based algorithms. The overview of the algorithms’ validation studies
focused on attributes of the technical (Level I) or diagnostic accuracy (Level
II) efficacy, such as the number of patients’ images used for training and
validation or the number of readers assessing the results. In 52/118
algorithms, the source or the number of images used for training and
validation were not described sufficiently – even when a study was referred
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to as being a clinical validation (n=35). Furthermore, most of the reviewed
algorithms’ validation studies (n=99) did not provide sufficient information
regarding the label annotators involved in the study54. Only one reviewed
algorithm was intended for BTS (VBrain by VYSIONEER55). The validation
studies available for that algorithm evaluate its diagnostic efficacy at Level
II56,57.

A recent (31st of May 2022) visit to the AI for Radiology portal revealed that
the number of available certified products nearly doubled (n=198) since van
Leeuwen et al. accessed the resource. Forty-seven of the listed products were
tools for processing neurological MR images, and two were for BTS (Sens.ai
by Graylight Imaging58 and Brain Tumours Application by BioMind59). Of
these two products, a peer-reviewed article presenting diagnostic accuracy
(Level II) validation was available only for the Sens.ai60. A search of
FDA-approved algorithms on the website used by Ebrahimian et al.54 did not
reveal any new BTS algorithms.

A crucial aspect that facilitates assessing the efficacy of the DL BTS
algorithms that was not explicitly named by Fryback and Thornbury,35 but
was recognised by van Leeuwen et al.7 is the reproducibility of the validation
studies. While various understandings of the term reproducibility occur in
different fields, the most common definition, which I will also follow, has
been proposed by the National Academies of Science, Engineering, and
Medicine:

“reproducibility is obtaining consistent results using the same input data;
computational steps, methods, and code; and conditions of analysis”61.

It may not always be possible to evaluate the reproducibility of commercially
available algorithms independently. As described above, diagnostic efficacy
validation studies are not always available for the products. When the
validation studies are available, the tool most likely must be purchased for
independent testing, and the training and validation images may not be
available. Still, the commercial products are likely based on scientifically
developed algorithms55,56. The reproducibility of scientifically validated
algorithms is imperative for producing sufficient evidence for their accuracy
in a clinical setup.

Reproducing DL algorithm validation studies is inherently challenging due to
the complex, multiparametric, and indeterminate nature of the algorithms31,62.
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Pineau et al.62 further pointed out that insufficient documentation of the
models and validation procedures hinders reproducibility. The authors63

proposed a checklist to aid the description of the DL models and validation
procedure to facilitate reproducibility. Pineau et al.’s checklist has been
adopted by one of the most influential societies in the field, the Medical
Image Computing & Computer Aided Intervention Society (MICCAI64),
which urges authors to fill the checklist upon submission to their conferences.

The topic has also been explored by Renard et al.31 in DL applications for
medical image segmentation. The authors explore the sources of variability in
DL models and performance assessment practices in a literature review. They
also propose recommendations that facilitate reproducibility. The
recommendations include items that should be reported in DL validation
studies. These items coincide with those proposed by Pineau et al. but are
grouped differently. Through the literature review, the authors identified only
three articles that provide sufficient description of the algorithm and
validation procedure (according to their recommendations) for reproducing
the results. Two algorithms65,66 were developed and validated for segmenting
brain tumours on MR images.

This last theoretical investigation raises questions regarding the documented
evidence for the diagnostic efficacy of the many DL algorithms proposed and
validated for BTS. The immense developments in the field have generated a
breadth of proof-of-concept studies that possibly lack the scientific
foundations required to assess their clinical suitability simply because they
are not reproducible.

1.4 CLINICAL RELEVANCE AND STAKEHOLDER

PERCEPTION OF DL BTS

Proof of standalone accuracy of a DL BTS tool (Level II of the diagnostic
efficacy model) alone does not guarantee trust and sustained use by
clinicians67,68; it is necessary to evaluate the impact of the tools on diagnostic
thinking or diagnostic processes (Level III)69. Such investigation will improve
the chances of a successful implementation and build the foundation for
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evaluating the usefulness of volumetric tumour assessment for patient
outcomes.

The number of studies that evaluate radiologists’ interaction with DL tools in
a clinical scenario or a clinical setup is scant70,71. van Garderen et al.72

assessed the accuracy and usefulness of LGG labels generated by a DL tool73

integrated into the clinical workflow – EASE. Of the 55 patient cases
evaluated with EASE, tumour labels in 36 cases were of acceptable quality to
be used in the disease status (stable or progressive) evaluation. These labels,
however, did not change the radiologist's decision about the disease status
compared to the visual assessment (32/36 patients were assessed as having
stable disease, which could explain why there was no difference in the
assessment between the visual and segmentation-based evaluation). While the
impact of the results themselves may be limited, the importance of carrying
out such work in order to increase utilisation is nevertheless paramount.

Assessing the accuracy of DL-generated lesion labels can be considered a
relatively simple case, as labels and source images are always available to
radiologists for quality evaluation71. In other applications, when an algorithm
makes a prediction based on a large amount of data that is beyond human
capacity to process, assessing the validity of DL output is not easily
accessible. In either case, an appropriate level of trust in the accuracy of the
prediction is imperative for sustained use of the tools. A well-known concern
in radiology that could influence the trust in DL BTS is inter- and intra-rater
variability74–76. The resulting variability in the “gold standard” reference
limits the accuracy with which an algorithm can be assessed. Similarly, there
is a risk that the same segmentation will be assessed differently by different
readers.

As described above, volumetric measurements have not been commonly
adopted for radiological tumour status assessment19. The availability of DL
tools for BTS and volume estimation in the diagnostic workflow will provide
a new metric for the radiologists in the decision-making process. Appropriate
levels of trust in the accuracy of the new information will be crucial for the
sustainable and beneficial adoption of AI in medical image assessment
workflow.

An appropriate level of users’ trust in computer-aided diagnosis (CAD) was
identified as an essential requirement for successfully implementing CAD
tools53. In healthcare, the decisions are expected to be algorithmic i.e., based
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on well-defined, evidence-based rules and traceable professional reasoning.
However, because AI, and especially artificial neural network-based tools,
generate results in a non-transparent way, future AI users will likely have to
develop appropriate levels of trust in AI without access to the same reasoning
for a decision as with another medical expert or rule-based CAD system77.
Still, specific demands that foster trust must be fulfilled to successfully
implement AI tools in radiological workflows78. What these demands are and
what trust entails in that context have not been agreed on79. It has also been
clear that a successful design and evaluation of the CDS tools requires
collaboration between the users and the developers80,81. Despite being the key
actors in the implementation process, the users are not the only ones that
should be involved. Developing successful implementation solutions that
foster building trust in AI requires identification of crucial stakeholders, their
engagement in the processes82 and their specific role in it.
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2 THESIS AT A GLANCE

In this doctoral project, I aimed to assess and advance the scientific
foundations and the evidence supporting the translation of DL algorithms into
clinically beneficial and acceptable tools for BTS on MR images. The
scientific work presented in this thesis follows four themes that address gaps
and issues described in the introductory chapter. The two angles of my
investigation included: an evidence-based technology assessment of BTS
algorithms (Themes I and II), and the stakeholder's perspective on the
information generated by BTS algorithms and a broad understanding of trust
in AI in radiology (Themes III & IV). Given the multidisciplinary nature of
the investigated problem, each theme follows a different methodological
approach. The themes, aims of each investigation, methodological approach,
and the results are presented in Table 3.

Table 3. The summary of the scientific work included in the thesis. P – paper number in
which the investigation was described.

Theme Aim Methodology Results P

I:
Mapping the

field

To map the field of
BTS on MR images
through the lens of
clinical relevance and
suitability.

A scoping
review
conducted
according to a
published
protocol.

The prevalent study
design in the field
provides evidence for
the technical accuracy
of the methods.
Preprocessing
descriptions are,
however, insufficient
to validate clinical
accuracy.

I
&
II

II:
Reproducibili

ty &
replicability

of BTS
algorithms

To reproduce and
replicate two
theoretically
reproducible BTS
methods;
to evaluate whether
established
reproducibility
criteria are sufficient.

Independent
implementation
and validation of
the methods
using the
original data set
and in-house
collected
images.

Only one method was
reproducible and
replicable.
Preprocessing of the
other one was not
sufficiently described.
The reproducibility
and replicability
criteria were updated.

III

III:
Radiologists’
perception of

To evaluate: (a)
radiologists' accuracy
and confidence in

A questionnaire
with 10
respondents who

Tumour labels
increase the accuracy
of the estimation; the

IV

19



E. Gryska

BTS labels estimating visual
tumour volume
increase, and (b) the
impact of tumour
labels on diagnostic
thinking (level III of
diagnostic efficacy).

assessed 20
unlabeled/
labelled patient
cases / 40 MR
examinations.

readers are more
confident that
label-derived volume
increase is more
correct than their
visual estimation.
There was a poor
inter-reader agreement
regarding the label
quality.

IV:
Trust in AI in

radiology

To identify the
knowledge gaps in
stakeholders’
perspectives on trust
in AI in radiology and
how to facilitate
building the trust.

Semi-structured
interviews were
conducted with
twenty-six
stakeholders and
analysed in an
iterative coding
process.

Four areas of trust
emerged that relate to:
the demand for
reliability,
transparency, quality
verification, and
inter-organizational
compatibility of AI
solutions.

V
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3 THEME I: MAPPING THE FIELD

3.1 KNOWLEDGE GAP & AIMS

While many literature surveys of automatic brain lesion segmentation
methods have been published83–88, a comprehensive and systematically
conducted review of the published and validated methods had been missing.
More importantly, assessment of the clinical suitability of the methods had
often been neglected. The aim of this investigation, therefore, was to: (1)
understand the clinical suitability of published segmentation algorithms and
their validation methods, (2) outline limitations, gaps, and challenges in the
field, and (3) suggest ways of facilitating translation of the research for
clinical use.

3.2 MATERIALS & METHODS

A scoping review methodology has been actively developed to facilitate
comprehensive and systematic mapping of a research field, to summarise and
synthesise evidence available in the field, and to identify research gaps89–92.
The standardised approach to conducting scoping reviews assures high
quality of the findings, which are often used to inform policies and practice92.
The scoping review methodology follows five (optionally six) well-defined
stages89,90,93 that should be defined in the protocol.

Stage 1: identifying research questions – at this stage, broad research
questions pertaining to the aim of a scoping review are defined.

Stage 2: identifying relevant studies – a search strategy, including databases
and query phrases, is proposed to identify all relevant literature; a procedure
and criteria that identify relevant studies are established.

Stage 3: selecting relevant studies – final exclusion criteria are identified
according to which non-eligible articles are excluded from the scoping
review.
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Stage 4: data charting – categories of information relevant to the study aims
and research questions to be extracted from eligible articles are proposed.

Stage 5: collating, summarising, and reporting the results – a strategy is
proposed to present the results so the research questions are answered.

Stage 6: consultation – this is an optional phase where relevant stakeholders
are consulted regarding the findings of previous stages to ensure the
applicability of the results in the scoped field.

Publishing a protocol prior to conducting the study can enhance the scientific
quality of the work. A peer-reviewed study protocol is exposed to scrutiny
and ideas of fellow researchers, which can further add to the value of
conducted research. Good research practice demands that the protocol is
designed separately and followed carefully during the actual literature review.
This separation also provides a basis for detailed documentation of any
divergence from the original protocol. As a result, any epistemic drift that
may occur has to be justified and thoroughly accounted for.

The epistemic drift in my work resulted from a discrepancy between my
initial method-oriented and quantitative understanding of the brain lesion
segmentation problem and what is necessary to advance the implementation
of the research findings into clinical practice. Publishing a study protocol
proved valuable in this situation; I followed the original protocol closely and
answered the original research questions to the extent possible while having
grounds to justify the changes meticulously.

The original research questions I posed concerned identifying:

1) common image processing steps in a segmentation framework
2) underlying mathematical and computational theories
3) efficacy of the algorithms
4) limitations of the methods concerning clinical use
5) commonly used MR images for algorithm validation.

A preliminary screening of articles identified in Stage 2 prompted me to
challenge the scientific and practical value of the answers to research
questions 1, 2, and 3. Many published reviews already describe algorithmic
approaches to medical imaging, specifically brain lesion segmentation83–88.
The scientific novelty of answers to questions 1 and 2 is therefore limited.
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Furthermore, a comparative evaluation of the efficacy of the proposed
methods (question 3) is complex and could not be done in the scoping review.

To harness the scientific value of the scoping review and ensure the novelty
of my work, I consulted clinicians at this stage. Doing so prompted me to
focus on the clinical relevance of the published studies – a perspective largely
overlooked in the scientific literature. I wanted to understand the suitability
of the proposed segmentation methods to be developed into clinical tools as
well as challenges and limitations that hinder clinical implementation, and
propose a way forward.

In Stage 2, the search strategy designed in the protocol was applied to three
databases (PubMed, IEEE Xplore, Scopus). To deal with many returned
articles efficiently, I screened the articles' titles, abstracts, and methods to
determine their eligibility in Stage 3. Next to a hierarchical approach to
identifying eligible studies described by Arksey and O’Malley (2005)89 and
Levac et al. (2010)90, the authors also propose a strategy for identifying the
most relevant eligibility criteria by screening the whole sample of articles
iteratively. This approach was not feasible for me, given the high number of
articles (n=2500) identified in Stage 2. Instead, I relied on the information
gleaned during the consultation. During the abstract screening phase, I also
refined the study selection process by identifying prevalent themes in a
randomly selected subsample of 100 abstracts. The whole sample was
subsequently screened according to the refined criteria. Data charting in stage
4 and data reporting in stage 5 were adjusted from the protocol to account for
the shift to a clinical focus of the review.

3.3 RESULTS

The following study design attributes gleaned from the eligible sample
(n=441) were the most common. A brain tumour segmentation (n=216)
algorithm that uses artificial neural networks (n=85) to perform the
segmentation is evaluated on data with reference segmentations available
either non-publicly (n=254) or publicly (n=217), or both. The data used to
validate the algorithm include multi-sequence (n=307) scans of 50 patients or
fewer. One or two expert raters provide the reference segmentations. The
images undergo the following preprocessing steps: intensity normalisation
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(n=224), bias field correction (n=192), brain extraction (n=190), and image
(co-)registration (n=179); however, it is not commonly stated whether these
steps are integrated with the automatic segmentation procedure or performed
independently. The automatically generated segmentation is evaluated by
comparison to the reference segmentation using overlap measures: DSC,
Jaccard coefficient, sensitivity, specificity, and positive predictive value
(PPV). The information regarding the average processing time performed on
the specified computational system is given (n=233), but the algorithm is not
available to download for independent testing (n=417).

The most significant limitation of the prevalent study design is an insufficient
description of methods (particularly preprocessing) to enable reproducibility,
and scarce online access to the whole processing chain to validate a method
independently.
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4 THEME II: REPRODUCIBILITY &

REPLICABILITY OF BTS

ALGORITHMS

4.1 KNOWLEDGE GAP & AIMS

Renard et al.’s work31 was the basis for my pursuit of an existing algorithm
that can be used as a prototype of a clinical tool. The study by Renard et al.31

provides recommendations for describing DL frameworks to facilitate
reproducibility. The authors also identified three studies that fulfil the
recommendations; two of those validated BTS methods on MR images65,66.

The proposed recommendations mention preprocessing; however, they only
highlight the need to report reasons for data exclusion and data augmentation
procedures. My scoping review32 indicated that a sufficient description of the
preprocessing does not receive due emphasis. An attempt to reproduce and
replicate the validation results of the two DL BTS algorithms65,66 allowed me
to:

a) substantiate the technical efficacy (Level I) and diagnostic
accuracy efficacy (Level II in the diagnostic imaging efficacy
model7,35) of the segmentation methods;

b) to verify whether the proposed reproducibility criteria are
sufficient in terms of preprocessing description.

4.2 MATERIALS & METHODS

The reproducibility of the two DL BTS algorithms: DeepMedic65 and an
algorithm developed by Pereira et al.66 (that I will refer to as ProfoundDoc)
was determined by implementing the algorithms and the preprocessing
pipelines according to the description provided in the original validation
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articles. In my reproducibility analysis, both algorithms were trained and
tested on the BraTS33 2015 data set that was used in the original studies. A
successful reproduction of the results meant that the mean values of DSC,
PPV, and sensitivity of the test set tumour labels generated by our
implementation were comparable to those reported originally. The
unsuccessful reproduction was investigated to identify the processing step(s)
that were not sufficiently described for reproduction.

Following a successful reproduction, the replicability of DeepMedic was
assessed by testing the model trained for the reproducibility analysis on an
in-house collected set of images. We then compared the segmentation
accuracy on the in-house set to the accuracy achieved on the BraTS testing
set. The in-house data were collected and handled according to the Swedish
Ethical Review Authority’s approval (DNR 702-18). The requirement for
informed consent for this secondary-use study was waived by the approval.
No other personal data than the images and tumour grade diagnosis were
used in this study.

4.3 RESULTS

The attempt to reproduce ProfoundDoc results did not succeed; I could not
implement the preprocessing procedure, even after consultation with the
leading developer of ProfoundDoc, since specific parameters were not
originally specified and could not be retrieved. This failed reproduction of the
preprocessing chain was the basis for updating the reproducibility and
replicability checklist for medical image segmentation. Because such
important information was available for DeepMedic, I successfully
reproduced and replicated the validation results originally reported with it
(Table 4).
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Table 4. Reproducibility and replicability analysis results for DeepMedic65. DSC – Dice
similarity coefficient, PPV – positive predictive value, WT – whole tumour, TC – tumour
core, ET – enhancing tumour, HGG – high grade glioma, LGG – low grade glioma.

DSC PPV Sensitivity

WT TC ET WT TC ET WT TC ET

Reproduction 0.85 0.68 0.64 0.85 0.83 0.62 0.88 0.64 0.70

Replication HGG – 0.77 – – 0.72 – – 0.88 –

Replication LGG 0.73 – – 0.83 – – 0.67 – –
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5 THEME III: RADIOLOGISTS’

PERCEPTION OF BTS LABELS

5.1 KNOWLEDGE GAP & AIMS

The evidence indicating that volumetric tumour growth assessment directly
translates to therapeutic benefits (Level IV of diagnostic efficacy) for patients
has not been established. An important intermediate step that needs to be
fulfilled for the therapeutic benefit to happen is a change in diagnostic
thinking35. If quantitative tumour growth evaluation results in a more accurate
assessment or more confidence in the tumour status assessment, it benefits
the diagnostic thinking process (Level III in the diagnostic efficacy model7,35)
and builds a foundation for evaluating therapeutic benefit.

In this line of investigation, we aimed to evaluate radiologists’ confidence
and accuracy in visual identification and quantification of ET growth. We
further assessed whether the availability of ET labels and their volumetric
measurements change the diagnostic thinking (Level III) efficacy.

5.2 MATERIALS & METHODS

In a structured reading/interview session, we asked ten radiologists to identify
and quantify ET volume increase in twenty pairs of GBM patient MR
examinations and assess their confidence in the accuracy of their assessment.
We then compared the accuracy of their assessment to their confidence in the
accuracy of automatically generated ET volume increase derived from ET
labels. The study design was refined following a pilot reading/interview
session with three certified neuroradiologists who were excluded from
participation. T1w images with contrast enhancement and corresponding ET
labels were retrieved from Brain-Tumor-Progression collection in The Cancer
Imaging Archive (TCIA)94.
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Since the clinical quality of the tumour labels available in the TCIA
collection was evaluated as insufficient in the pilot, a new set of ET labels for
the MR images was manually generated by one of the certified
neuroradiologists that participated in the pilot. The new set of labels was used
for the main data collection part of the study, and the labels were presented as
generated automatically by a DL algorithm. By doing so, I wanted to avoid
bias against the segmentation quality by simulating a scenario wherein
radiologists have access to an automatically generated tumour label of
expert-level quality. In a follow-up session, I asked the radiologists to rate the
quality of the same labels, which were then presented as generated manually.

We collected all interview data anonymously, so informed consent from the
participants was not needed. The images used in this study have been made
publicly available by TCIA94 in compliance with the United States Health
Insurance Portability and Accountability Act of 199695; therefore, no ethical
permit was needed for this study.

5.3 RESULTS

The results indicated that visual estimation of ET growth is difficult; the
readers tended to underestimate the percentage of ET growth, and their
confidence in the task was moderate. The readers had more confidence in the
accuracy of the automatically quantified ET volume increase than in their
assessment. Overall, we observed a positive impact of ET labels on MR
images on diagnostic thinking (Figure 6); however, not unanimously. The
quality assessment of the ET labels, presented as automatically generated,
showed poor inter-rater agreement. Re-evaluation of the same ET labels’
quality, but when the labels were presented as generated manually, did not
improve the inter-rater agreement.
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Figure 6. Results of visual estimation of ET volume increase for each case. The first point of
the blue dash shows a mean ET volume increase estimated for a given case based on MR
images only, while the second point shows the mean value estimated when ET label was

displayed.
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6 THEME IV: TRUST IN AI IN

RADIOLOGY

6.1 KNOWLEDGE GAP & AIMS

Appropriate levels of trust in AI are fundamental for successful
implementation and sustained use of the technology for CDS. Trust in AI is
often approached from the algorithm explainability and interpretability angle,
as a way to provide the users with some reasoning for the output. While the
users’ attitude towards CDS tools is crucial, building trust in new technology
requires a much more comprehensive approach and involvement of all
relevant stakeholders82. While the implementation challenges96,97 and
opinions of AI in healthcare among both the users and other stakeholders
have been investigated98,99, solutions and particular conditions that facilitate
trust need to be defined. In this study, therefore, we identified knowledge
gaps in the intersection of AI, trust, and stakeholders’ perspectives on AI, and
how trust in AI for radiological decision support can be improved.

6.2 MATERIALS & METHODS

A semi-structured interview study with a hand-selected sample of twenty-six
respondents was conducted to elicit stakeholders’ perspectives on trust in AI
tools for clinical radiology and healthcare. Nineteen interviewees participated
in implementation of AI solutions in their radiological practice while six
respondents were involved in deploying AI solutions in other healthcare
domains.

The interview questions explored the following three themes, while leaving
space for follow up questions tailored to the interviewees’ responses:

- current practices and how they will change with DL CDS,
- the relationship between decision-making and normative

responsibilities that guide the moral basis of professional thinking,
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- the role of management and organisational procedures in the
implementation of DL CDS in clinical practice.

The interviews were recorded and transcribed. The transcripts were analysed
in a three-stage, iterative coding procedure. The stages consisted of open
coding (identifying significant parts of the transcripts), thematic coding
(existing codes were aggregated to identify prevalent themes), and
theoretically informed coding (the codes were interpreted through the lens of
theoretical reflection).

6.3 RESULTS

The theme most commonly mentioned in the interviews concerned the
various demands of a given tool and its implementation procedure that
facilitate trust in AI. Four theoretically informed dimensions of trust emerged
that pertain to the demands for reliability, transparency, quality verification,
and inter-organizational compatibility. These dimensions can be divided into
substantial and procedural requirements. Within each of these dimensions,
specific aspects and conditions need to be fulfilled (Table 5)
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Table 5. The four demands to build trust with specific conditions that need to be fulfilled.

Demand Aspects

Substantial
requirements

Reliability
- Volume
- Granularity
- Bias

Quality veri�cation
- Methodological rigour
- Local validation

Procedural
requirements

Transparency
- Standards
- Traceability
- Explainability

Inter-organizational
compatibility

- Capacity
- Control
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7 DISCUSSION

In this thesis, I examined two dimensions of the scientific foundation that
facilitate the translation of scientifically validated DL BTS algorithms as
CDS tools. First, I assessed whether the standard BTS algorithm validation
procedure is sufficient to appraise the technology's suitability for clinical
applications. Mapping the field in the scoping review (Theme I) based on
441 articles revealed that insufficient image preprocessing description and
scant availability of the algorithms for independent validation pose a severe
obstacle to assessing the clinical suitability of most available BTS algorithms.
Experimental investigation of the reproducibility and replicability of DL BTS
algorithms described according to established reproducibility checklists
(Theme II) corroborated the suspicion: the requirements for preprocessing
description are insufficient. In this line of investigation, I identified one
reproducible and replicable DL algorithm for BTS.

The second dimension took the perspective of the users of the tools –
radiologists – on whether and how BTS labels change their diagnostic
thinking (Theme III), and a wider group of stakeholders on the conditions
that lead to trust in AI (Theme IV). We found that just the availability of the
tumour labels in general increases the accuracy of tumour volume increase
estimation. The radiologists have only moderate confidence in visual tumour
volume change assessment and tend to trust the label-derived volume
measurements more, even when there was a poor interrater agreement on the
quality of the labels. While quality verification will have to be a crucial step
in incorporating DL CDS in clinical workflow, other requirements of the
tools and the implementation infrastructure will have to be met to ensure
appropriate levels of trust in the tool, while minimising the inter-rater
variability effect and personal biases against DL. These requirements include
reliability of the tool, transparency of the decisions, and inter organisational
compatibility with the new workflows.

In the following sections, I will discuss these two dimensions in depth and
the results of my investigation.
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7.1 TECHNICAL AND CLINICAL VALIDITY OF DL BTS

VALIDATION STUDIES

In Theme I, I found that the prevalent design of BTS algorithm validation
studies provides a proof-of-concept level of evidence for diagnostic efficacy
(level I in the diagnostic efficacy model7,35). Even when an algorithm is tested
on unseen images acquired from sources different from the training images
(external validation, Level II of the diagnostic efficacy model7,35), it is not
sufficient to assess the performance of an algorithm in a clinical setting. The
scoping review findings highlighted a potential issue that limits the clinical
relevance of many studies: very few methods are sufficiently described31,32

and/or are available to download32 for independent reproducibility analysis.
Successful reproduction of the technical validation of an algorithm is a
cornerstone for evaluating its diagnostic efficacy7. Preprocessing is the
particular element of a segmentation pipeline that often does not receive
enough attention.

The need for improved reporting to facilitate reproducibility has been
recognised by Pineau et al.62 regarding ML studies in general. Renard et al.31

further proposed reproducibility criteria for studies that describe and validate
DL methods for medical image segmentation. However, in the investigation
described in Theme III, I showed that the established reproducibility criteria
neglected the preprocessing description. As a result, the criteria are
insufficient to facilitate clinical validation of DL BTS algorithms.

It can be speculated that the advances of automated BTS on MRI have been
driven by the BraTS33 challenges that, starting from 2012, have provided a
growing database of annotated MRI images. For many scientists and
algorithm developers, publicly available image repositories with reference
annotations are the only source of images to train and test their algorithms.
Even for researchers with close collaborations with hospitals, acquiring
clinical data is resource-expensive. BraTS, therefore, has become a standard
for evaluating DL BTS algorithms. The 2021 BraTS challenge provided the
participants with more than 2000 patients’ MR examinations100 – datasets of
this size are otherwise unachievable for most scientists. The more images are
available to test an algorithm, the better we can predict how well it will
perform on clinical images. There is, however, a caveat. To provide a basis
for comparing various segmentation algorithms, the images in BraTS are
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curated and already preprocessed to a certain extent33,100. A clinical image,
therefore, must undergo the BraTS preprocessing procedure as a first step to
assess the clinical performance of an algorithm trained and validated on
BraTS images. The preprocessing procedure is known and recently available
through online tools, such as BraTS Toolkit101 and Cancer Imaging
Phenomics Toolkit102–104 (https://cbica.github.io/CaPTk/). In the replicability
analysis described in Theme III, I uncovered potential problems with the
skull-stripping step in the BraTS Toolkit that affect the segmentation
algorithm. This issue would not be detectable in the BraTS image set as all
images available are screened for quality.

According to Papers II & III, many BTS methods require additional
preprocessing steps next to the BraTS pipeline for optimal algorithm
performance32,66. In the scoping review, I revealed that while the necessary
preprocessing steps tend to be mentioned, implementation parameters and
whether the pipeline is automatic and integrated with the segmentation
method are not commonly stated32. It appears that the focus in the field has
been on automating, innovating, and evaluating the segmentation algorithms
rather than the whole processing chain of steps applied to a raw image. While
this is acceptable and common in scientific validation studies, clinical
validation requires that the whole processing chain is described sufficiently to
be reproducible and replicable technical validation results on raw clinical
images acquired externally.

A successful reproducibility of the DeepMedic65 validation study and
satisfactory reproduction of the results on an independent clinical image set
indicate that DeepMedic is suitable for clinical testing. It was also, in fact,
also used in a commercial BTS tool55,105. My findings, however, do not imply
that there are no other reproducible DL BTS methods. For example, van
Garderen et al.71 successfully implemented a U-Net developed by Isensee et
al.106 in a clinical workflow. In the reproducibility study, I also relied on the
review of relevant and theoretically reproducible methods conducted by
Renard et al.31 and published in 2020. An independent review of the literature
to identify theoretically reproducible BTS algorithms might return more
studies, including the most recent ones. This, however, was outside of the
scope of that study and would not likely provide more insight to answer the
research question of whether the established reproducibility checklists
sufficiently address the description of preprocessing. Still, the number of
theoretically reproducible algorithms for BTS identified by Renard et al.31
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(n=2), of which only one was experimentally reproducible, contrasted with
the number of BTS algorithms included in the scoping review (n=214), gives
an idea of the fraction of reproducible studies in the field. It also could be one
of the factors contributing to the implementation gap. Even though the best
segmentation solutions may remain unpublished (the developers may want to
secure a chance of winning competitions that bring recognition and funding),
and clinical tools must be commercial products, widespread reproducibility
will likely contribute to a quicker translation of the scientific findings into
clinical benefits. Furthermore, the wider availability of reproducible
algorithms and reproducibility studies could also improve the attitudes
towards the algorithms for CDS.

7.2 USER’S PERCEPTIONS AND TRUST IN BTS

Even though estimating tumour volume change using RANO16 measurements
has become the proposed standard in clinical practice19, visual estimation is
still prevalent in clinical reports12,25,27,107. In LGG, a stable lesion tends to be
determined when a tumour has grown by approximately 11%, while a
progressive lesion becomes detectable at ~20% tumour volume increase27,28.
Even though RANO criteria require a 40% volume increase (corresponding
to a 25% increase of the diameter product)27 to determine a progressive
lesion, underestimated volume increase may delay the detection of
progressive disease and beneficial resection surgery108. In another study, an
analysis of retrospective radiological reports of imaging examinations of
patients diagnosed with LGG revealed that the median tumour volume
increase of 174% was needed for the radiologists to determine a progressive
disease. This number decreased to a 57% volume increase when tumour
segmentation and quantitative measures were available. In Paper IV, I
evaluated how much the visual perception of tumour growth differs from the
reference value in GBM patients treated surgically and with
chemoradiotherapy. My results are in line with the previous findings. Visual
volume increase estimations by radiologists differ on average by 80
percentage points from the value derived from manual segmentation. Even
though GBM lesions, especially post resection, have a much more
heterogeneous appearance resulting in even more difficult visual estimation,
tumour volume change assessment is not accurate based on standard
evaluation methods.
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The findings from Theme IV also indicate that just overlapping lesion labels
on MR images increases radiologists' accuracy in visual assessment of the
direction and extent of tumour volume increase (Figure 5). The volume
increase estimations are, on average, closer to the reference values (65
percentage points difference) and present better agreement. Even though the
reader’s confidence in the tasks is rather moderate and generally does not
change when the ET label is displayed, the radiologists tend to trust the
accuracy of label-derived values more than their assessment. This finding can
be a moderate indicator that the radiologists will trust the label-derived
volumetric information in a clinical workflow. In this study, however, the
labels were generated manually by a trained neuroradiologist. We decided to
do so to potentially limit inducing negative bias against DL-generated labels,
were they of insufficient quality. Still, some labels were assessed as having
limited diagnostic quality. Furthermore, there was a poor agreement
regarding segmentation quality among the radiologists.

These findings point to a potentially big challenge for sustained use and
acceptance of DL tools. On the one hand, the acceptance and trust in the BTS
tools will depend on the quality of the automatic segmentation71. On the other
hand, as shown in Paper IV, quality evaluation is very subjective. While it is
unlikely to effectively address the subjectivity of radiologists’ perceptions,
providing them with appropriate evidence for the accuracy of the tools and
benefits of using the volumetric estimates could improve their acceptance of
DL BTS tools and result in long-term use of the tools. As already discussed,
the evidence for accuracy efficacy is lacking for the majority of methods. The
lack of clinically implemented and evaluated tools also resulted in scarce
evidence that would indicate the impact of label-derived tumour volume on
diagnostic thinking efficacy. It is likely that only once DL BTS tools are
implemented and routinely used in radiological workflow, will we be able to
evaluate their impact on the therapeutic efficacy and higher levels of
diagnostic efficacy of such tools.

In Theme IV, we identified substantial and procedural requirements of
trustworthy AI tools and implementation procedures for radiological
applications. Fulfilling these conditions will require involvement of all
stakeholders. We found that trust in AI CDS tools is not based solely on the
consistent accuracy (cf. 6.3, demand for reliability and demand for quality
control) of the AI generated information; it requires the information is
clinically relevant, and can be compared to previous findings. Furthermore,
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the way the information if generated and analysed must also be transparent.
Here, the term transparency includes a broader spectrum of requirements
compared to the technical explainability of the decisions made by the tool.
The understanding of the “why” in a particular patient case and from a broad
perspective is crucial for developing appropriate levels of trust109,110.
Furthermore, explainability is built on radiologists’ expertise enhanced with
the CDS tools and evidence-based references. All those requirements must be
backed up by inter organisational compatibility framework – appropriate
infrastructure must be developed to govern data handling and provide control
over data and monitor how the data and the CDS tools are used.

Our findings overlap with some aspects of the theoretically derived AI
implementation framework proposed by Toreini et al. that supports trust in
AI110. They identified four features of technologies that constitute trustworthy
AI tools: fairness, explainability, auditability, and safety. Another
implementation framework that was evaluated in a use case was proposed by
Juluru et al. The authors identified the two elements also found in our
investigation: quality control and results database as a necessary component
of AI software. Our findings, however, take a broader look at the
implementation problem that involves not only trustworthiness of the tools
but the whole implementation framework. While particular solutions to fulfil
these requirements may not be generalizable, our work provides general
guidelines for successful implementation of AI tools in radiology that can
serve as a base for developing implementation frameworks tailored to
specific settings.
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8 CONCLUSIONS

The abundance of studies that validate DL BTS algorithms has not yet lead to
the abundance of DL tools in clinical practice. Commonly, these studies do
not publish the proposed and validated algorithms for independent
evaluation. Furthermore, the description preprocessing of images fed to the
algorithms tends to be insufficient to facilitate reproducibility. Prevalent
validation study design, therefore, does not facilitate clinical validation of
proposed algorithms. Thorough validation of the algorithms on routine
clinical images is necessary to build grounds for developing the algorithms
into clinically beneficial tools. Availability of tumour labels and derived
volumetric measurements will likely lead to a more accurate and confident
tumour growth assessment. In my work, I found that radiologists trust that the
AI-generated tumour volume information is more accurate than their visual
assessment and find it clinically helpful when the quality of the labels is
erceived as sufficient.

Quality assessment will be a crucial step in implementing DL CDS tools.
However, the quality assessment will be subject to inter-rater variability and
may also be influenced by a bias towards the technology. Strong evidence for
their reproducibility and replicability will likely increase trust in the DL
technology. It will provide knowledge of when the methods perform well and
when not, strengthen the evidence for diagnostic thinking efficacy and
provide a basis for evaluating the therapeutic efficacy of the availability of
CDS in tumour status assessment.

How the implementation process is designed and conducted on the
organisational level will play a crucial role in the implementation success. To
develop appropriate levels of trust towards DL tools for CDS, several
demands for the implementation framework and the tool itself will have to be
fulfilled. These demands concern not only the evidence for the tool's
accuracy and the users' attitudes but also the involvement of other relevant
stakeholders.
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9 FUTURE PERSPECTIVES

Through the findings of my work, a path leading to sustainable
implementation of DL BTS tools in clinical practice has emerged. Although
not as alluring as developing a state-of-the-art DL BTS algorithm,
reproducibility and replicability studies should be more common and
encouraged if we want the clinicians and the public to develop appropriate
levels of trust in DL CDS tools. Furthermore, extensive studies that assess
diagnostic thinking efficacy of DL BTS in a clinical scenario are needed.

While industry may be the crucial player in the final steps of the
implementation path, there are enormous opportunities for research to
contribute to safe, efficient, and sustainable implementation and use of DL
BTS tools. Collaboration between research and clinical units could lead to
development of pre-clinical testing “sand boxes” of DL algorithms. Such
sand boxes should allow us to assess accuracy of an algorithm in a simulated
clinical setting on a variety of cases. Furthermore, the sand boxes should
allow us to develop a framework for integrating the information in existing
workflow, accounting for quality assessment, and other requirements
discovered in my doctoral project. Such comprehensive evaluation should
prepare an algorithm for clinical validation and certification. Furthermore, it
could enhance the chances of a commercial product to be successfully
integrated in clinical workflows. Scientific studies can therefore diminish the
risk that enormous resources devoted by the commercial sector will be
wasted because an algorithm will not perform well enough or it will not be
accepted by users.

Another line of research that will facilitate tumour volumetry as a routine
measurement in neuroradiology is refining the response assessment criteria.
New criteria should be developed using BTS algorithms, not merely
approximating the correspondence of a 2D measurement to a volume. More
accurate tumour volume change estimation could also lead to more refined
treatment recommendations, improving patient care and quality of life in the
face of a serious, often terminal disease.
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