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ABSTRACT

Quantum systems are adversely affected by noise due to interac-
tions with the environment. Quantum error correction is a technique
that relies on the principle of redundancy to encode logical informa-
tion in additional qubits to better protect the system against noise,
and is required in order to design a viable quantum computer. One
of the most popular classes of quantum error-correcting codes are
topological stabilizer codes, which use repeated local measurements
to detect and correct errors on the code.

In this thesis, we present a novel topological stabilizer code, the
XYZ? code, which is implemented on a hexagonal grid of qubits and
encodes a logical qubit with the help of weight-six and weight-two
stabilizer measurements. This code has the advantage of having a
quadratic distance (2d?) for pure Z noise and pure Y noise, where d
is the minimum distance of the code that utilizes 2d? physical qubits.
The code demonstrates high thresholds and reduced logical failure
rates for biased noise error models simulated under perfect stabilizer
measurement conditions.

We also present a maximume-likelihood decoder for stabilizer codes,
called the effective weight and degeneracy (EWD) decoder. The EWD
decoder uses Metropolis-based Monte Carlo sampling to find the most
likely equivalence class for a given error syndrome, whose implemen-
tation depends on the bias of the noise model and is independent
of the physical error rate of the qubits. The EWD decoder is a near-
optimal decoder that is efficient, fast and can be easily modified to
characterize new topological stabilizer codes, such as the XYZ? code.
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PART I
BACKGROUND



2 INTRODUCTION

1 Introduction

Communication is an indispensable part of human life. Modern com-
munication takes place through technologies that facilitate transmis-
sion of data over a medium, and storage of data, which can be thought
of as transmission over time instead of space. While we rely on the
storage and transmission of information in almost every aspect of our
lives, the data is repeatedly subjected to adverse effects of noise that
gets inevitably added by interactions with the environment. Thank-
fully, decades of research has resulted in a robust technique of dealing
with noise, through what is known as error correction.

Reliable transmission of information is achieved through the use
of error-correcting codes. As an example, modern communication
systems use a class of error-correcting codes known as Low Density
Parity Check (LDPC) codes for various techniques, such as digital
video broadcast (DVB S2), wireless local-area networks (802.11n), and
wireless metropolitan-area networks (802.16e) [1].

While the growth of classical technologies has been tremendous,
there are fundamental limits to what can be achieved with a classical
computer. The realization that even simple quantum systems cannot
be simulated efficiently on the most powerful classical computers, led
to the emergence of quantum computing in the early 1980s [2]. The
field of quantum computing deals with utilizing quantum systems
for information processing, and as such offers to provide solutions to
problems far beyond the reach of classical computing, at least in a rea-
sonable amount of time. Some examples of algorithms that promise
this advantage are in the fields of cryptography [3], quantum simula-
tion [4], machine learning [5, 6], etc. [7, 8].

While classical computers represent information as 0 and 1 bits,
quantum computing deals with two-level quantum systems known as
qubits (quantum bits). Similar to classical computing, however, quan-
tum computing is also susceptible to noise during its implementation.
In fact, compared to the error rates of modern classical computers
(~ 10717) [9], current Noisy Intermediate-Scale Quantum (NISQ) de-



vices [10] are highly vulnerable to interactions with the environment.
In order for quantum processors to circumvent this issue of noise,
and to make use of the inherent capacity of quantum computing, we
require quantum error correction.

Naively replicating the methods of classical error correction does
not work for quantum computing due to the underlying principles of
quantum mechanics — arbitrary quantum states are prohibited from
being duplicated due to the no-cloning theorem [11, 12], measure-
ments on qubits destroy the information held by them, and errors
are continuous, correcting which would require infinite precision.
Fortunately, Peter Shor demonstrated in 1995 that quantum error cor-
rection is possible by introducing the first quantum error-correcting
code [13]. Andrew Steane independently introduced another quan-
tum error-correcting code [14] in 1996. Shor’s nine-qubit code made a
generalization of the classical repetition code to quantum computing,
while Steane’s seven-qubit code was inspired by the popular classical
Hamming code. In the following years, further research into stabilizer
codes and topological structures gave rise to various promising new
frontiers of quantum error correction, that aim to reduce the effects of
noise on quantum systems and make quantum advantage realistically
possible.

One of the most studied and promising candidates of topologi-
cal stabilizer codes is the surface code, introduced by Kitaev in 1997
[15, 16, 17]. The surface code boasts high performance for quantum
computers with the added benefits of local measurements and low
connectivity between qubits. Over the years, there have been many
variants of the surface code, tailored to particular noise models or
specific desired properties [18, 19, 20, 21, 22].

As of today, the field of quantum error correction is not only the-
oretical in nature, evidenced by the many successful experimental
realizations of quantum error-correcting codes [23, 24, 25, 26, 27, 28,
29, 30, 31, 32, 33, 34, 35].

In this thesis, we provide the background for the two appended
papers, which introduce a novel topological stabilizer code on the
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honeycomb lattice, and a new maximume-likelihood decoder for topo-
logical stabilizer codes. We start the discussion by looking at the
basics of classical error correction in Chapter 2. This provides the
background knowledge necessary to understand how various classical
error-correction techniques were adapted to quantum codes, at the
same time serving as an analogy when discussing the difficulties of
the adaptation.

In Chapter 3, we give the fundamental concepts of quantum com-
puting, sticking to concepts necessary for understanding the next
chapter on quantum error correction. Chapter 4 starts with the sim-
plest example of a quantum repetition code, inspired by its classical
counterpart. Using this example, we illustrate the challenges faced by
quantum error correction, and how they are overcome with the help
of clever constructions. In the next section, we give the motivation for
relying on stabilizer codes for quantum error correction, and describe
some noise models necessary for understanding the appended papers.
Afterwards, we introduce topological stabilizer codes, and explain its
basic concepts with the help of two examples. Finally, in the last sec-
tion, we explain the principles of decoding as is used in quantum
error correction, and describe a few metrics used in the evaluation of
quantum error-correcting codes.

Chapter 5 gives a short summary on the two appended papers,
while Chapter 6 provides the conclusion of the thesis and an outlook
for future research.



2 Classical error correction

Most digital data in the world is coded into sequences of bits, which
can take the values 0 and 1. These sequences can then be stored to pre-
serve information, or transmitted to send and receive messages over
a communication channel. Physically, the bits can be implemented
by using the low and high voltage levels of an electrical signal, two
electronic states of a flip-flop circuit, or (historically) punched and un-
punched hole positions on a punched card. Any of these techniques
is susceptible to faults in its implementation, e.g., the signal carrying
a bit 1 (high voltage level) might be subjected to environmental noise
during storage or transmission and change to a 0 (low level).

An error in data transmission occurs when the intended message
is modified by the channel in such a way that the receiver receives an
altered message. A simplified error model for classical bits is the binary
symmetric noise channel (see Fig. 2.1), which in the case of error
converts a transmitted bit 0(1) to 1(0) with probability p, specified by
the message channel.

1 1

1-p

Figure 2.1: Binary symmetric noise channel

In order to prevent the effect of noise on classical data, we use error-
correcting codes to protect the message by adding redundancy to the
message bits. One of the simplest error-correcting codes that uses the
principle of redundancy is the class of repetition codes.
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2.1 Repetition codes

Repetition codes use the redundancy of sending duplicate information
through the channel and decoding the incoming information using a
majority rule. For example, instead of sending 0 or 1, we can encode
the information by adding two redundant bits as

0— 000 2.1)
1—111 2.2)

and send 0 or 1 instead. For a binary symmetric channel, a single bit-
flip on the encoded bits will occur with probability 3p(1—p)?, and can
easily be detected and corrected by using a majority-rule decoding.
The three encoded bits in this example are called the physical bits,
whereas 0 and 1 bits are the logical bits. 000 and 111 are called the
codewords of the code.

Error correction fails, however, in the event of two or three simulta-
neous bit-flips. This occurs with a probability 3p?(1— p)+ p3, which
is less than the physical error rate for error probabilities less than half.
Sending a logical bit instead of a physical bit through the channel
would then be beneficial only in the case of p < 0.5. The event of
three bit flips takes the logical bit from 0 to 1 or vice versa, and is
undetectable by the code.

The Hamming distance between the codewords, i.e., the minimum
number of errors on the physical bits that translates to a logical error
on the logical bits, is called the distance of the code. In the above
example, the distance of the code is d = 3. The distance d of an error-
correcting code is directly related to the maximum number of errors a
code can detect, d —1, and can correct, |(d —1)/2]. As such, increasing
the distance of a code also improves its error-correcting properties.
For repetition codes, the distance of a code is equal to the number
of physical bits, and it is easy to see that for physical error rates less
than 0.5, the logical error rate is reduced by increasing the number of
encoded bits.
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Repetition codes are a fairly simple example in the family of error-
correcting codes called linear block codes.

2.2 Linear block codes

Linear block codes are defined as codes that encode blocks of mes-
sages into larger sequences and for which any linear combination of
the codewords also forms a codeword. For any linear block code, the
family of codes can be labelled by the parameters [n, k, d], where n is
the number of physical bits, k is the number of logical bits, and d is
the distance of the code. For repetition codes, this family is given by
[n,1,n].

For a binary [n, k, d] linear code, there exist k linearly independent
codewords, g,,8,,...8;_;, such that all possible codewords are linear
combinations of these [1]. Given a length-k initial message to be
encoded,

u=_(ugy, Uy,..., Up_y), (2.3)

the length-n encoded message is given by
V=1Uggy+ U8+ Up_ 18- (2.4)

As u; € {0,1}, there are 2* distinct codewords that can be gener-
ated. Arranging the n-bit long, k linearly independent codewords,
8, 8- 811 as therows of a k x n matrix gives us the generator matrix
G of the code.

Alogical data sequence u which is encoded into a vector v can then
be expressed using the generator matrix as:

v=u-G (2.5)

Another important matrix associated with a linear block code is the
(n— k) x n parity-check matrix H, which is related to the codewords
as:

v-H' =0 (2.6)
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The encoded codewords v are transmitted through the message
channel which introduces an error sequence e for the code. This error
e can be expressed as a vector of length-n and modifies the codeword
to become

vV=v+e (2.7)

Mapping the transmitted message back into the allowed codewords
of the code to find the original message is called decoding.

Given v’, maximum-likelihood (ML) decoding finds the codeword
v that maximizes the conditional probability P(v’|v). For the binary
symmetric channel, ML decoding is equivalent to minimum-distance
decoding, thatis, finding the codeword v with the minimum Hamming
distance to v’. While ML decoding is an optimal decoding technique, it
becomes highly complex for large code sizes, which is the case for prac-
tical purposes. There are various sub-optimal decoding algorithms
that can be used in this case, which give sufficiently good performance
with reduced complexity.

Using the parity-check matrix, we can check the transmitted se-
quence V’ for detectable errors by calculating:

s=v-H'

=v-H' +e-H

—e-HT (2.8)
If e is a valid codeword, s turns out to be a length-(n — k) zero vector;
otherwise, the errors are indicated as non-zero values in s, called the
syndrome of the parity checks. With the help of the syndrome, we can
find out the most-likely codeword that was transmitted to perform
syndrome decoding.

As an example, for the [3,1,3] repetition code illustrated in Sec-
tion 2.1, the generator matrix is given by the 1 x 3 matrix

G=[1 1 1] (2.9)

and the parity-check matrix is the 2 x 3 matrix

1 10
H:lo 1 1] (2.10)
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For binary codes, all operations are performed modulo 2:

0+0=0 1+1=0 0x1=1 1x0=1

0-0=0 1-1=1 0-1=0 1-0=0 (2.11)

Hence, the 2 =2 codewords, 0 and 1 are encoded as
0: v=0-G=[0 0 0] (2.12)
I: v=1-G=[1 1 1] (2.13)

Ifan error corresponding to a bit-flip on the first bit occurs, e =[1 0 0],
the transmitted message is modified to

0: v=v+e=[1 0 0] (2.14)
I: v=v+e=[0 1 1] (2.15)

Now, to detect errors on the transmitted sequence, we can calculate
the syndrome of the code. In the case the original information was 0,
the syndrome is given by

10
s=[1 0 0]-|1 1|{=[1 0] (2.16)
01

which indicates that an error has occurred during transmission. For
repetition codes, the syndrome checks are equivalent to checking
the parity of consecutive pairs of bits, and so, it is easy to create a
simple look-up table to decode the error. In this example, we can
easily decode that a bit-flip error occurred on the first bit.

Decoding would have failed, however, if the error sequence added
by the message channel was e =[1 1 1], as this changes the codewords
from 0 to 1 or vice versa, and is undetectable by the syndrome. For
the 3,1, 3] repetition code, the maximum number of bit-flip errors
the code can detect are d — 1 = 2 and the maximum number of errors
it can correctly decode and correct are (d —1)/2 =1.
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There exist better linear codes than repetition codes that, for ex-
ample, are tailored for different noise channels and message charac-
teristics, increase the distance, optimize the code rate k/n, or reduce
the logical failure rates during transmission. Nevertheless, for our
purpose, simple repetition codes are enough to explain the link to
quantum error correction. Before delving into that, however, we will
look at the basics of quantum computing.
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3 Quantum computing

Continuing the analogy with Classical Computing, where the funda-
mental unit of information is a bit, Quantum Computing uses quan-
tum bits, or qubits, as their basis. As these basic units have widely
different properties, the laws governing classical and quantum com-
puting differ greatly, both for better and for worse.

The advantage that quantum computing possesses over its classi-
cal counterpart came into the picture in the early 1980s, when Paul
Benioff [36], Richard Feynman [2] and Yuri Manin [37] put forward the
idea of quantum computers (Benioff proposed a quantum mechanical
model of the Turing machine; Feynman and Manin proposed quan-
tum computing as a solution to the problems faced when simulating
quantum systems). It was in 1994, however, when Peter Shor devised
his ingenious factoring algorithm [3], that a quantitative and concrete
advantage of quantum computing came into view. Since then, there
has been a lot of research into algorithms that could improve upon the
computations of a classical computer [9, 38, 39, 40, 41, 42]. It would
be worthwhile to note, however, that these advantages are still mostly
theoretical in nature. The restrictions that we face in implementing
these algorithms can be understood by looking at the properties of
qubits.

3.1 Quantum states

A qubit is a two-level system that follows the postulates of quantum
mechanics. Physical realization of a qubit can be the spins of an
electron, polarization of photons, trapped ions, etc. For the current
work, we will only focus on the theoretical framework that defines a
qubit.

Similar to the 0 and 1 states of a classical bit, a qubit has orthogonal
computational states |0) and |1) (where the ket |-) notation is used
for quantum states), which can be represented as vectors in the com-
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plex Hilbert space. Any arbitrary quantum state in the 2-dimensional
Hilbert space can then be written as a “superposition” of the basis
states as

) =al0)+ B 1) 3.1)

where |0) = ((1)) and |1) = ((1)), 3.2)

and a, f € C. Measuring the state in the |0) /|1) basis would destroy
any superposition with the outcome being |0) with probability |a/|?
and |1) with probability |S]?.

As probabilities sum to one, |a|* +|8]* = 1, and Eq. (3.1) can be
re-written (up to irrelevant global phase factors) as

0 . 0
Ilp):cos§|0)+e‘¢sin5|1). 3.3)

As a consequence, a qubit state can be represented graphically as a
point on a 3-dimensional sphere, called the Bloch sphere, with the
point specified by the parameters 8 and ¢ (see Fig. 3.1). The compu-
tational basis states |0) and |1) lie on the positive and negative z-axes,
respectively.

Multiple isolated qubits can be written as tensor products of pure
states (individual vectors) as

) elg)=1y)|p) (3.4)

For example,

0)®10) =10)[0) = 00) = G)@G) =

For two-qubit systems, the computational basis states are |00), [01),
|10) and |11) and any two-qubit state can be written as a linear super-
position of these states.

(3.5)

S O O -
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Figure 3.1: Bloch sphere representation of a qubit.

In addition to tensor product states, there also exist multiple qubit
states that are entangled, and hence cannot be written as separable
vectors under tensor product. One common example is the two-qubit
Bell state.

1
+\ —

) 1/§(|00)+|11>) (3.6)
It is easy to see that such states cannot be written as a tensor product
of multiple pure quantum states. Measurements on an entangled state
are not as straightforward as in the case of pure states, as measuring
an entangled qubit disentangles it from the rest and also projects the
state of the other qubits based on the measurement outcome. For
example, for the given Bell-state |®*), measuring the second qubit in
the state |0) also projects the first qubit to |0).

Another formulation for describing quantum systems is through
density matrices, p. In addition to describing pure states, density
matrices can be used to represent open systems, i.e., quantum states
which are not necessarily isolated and are allowed to interact with the
environment. Density matrices can be written as

P:ZPiWi)('#iL 3.7)
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where the vectors [/;) are pure states with corresponding probabilities
p; and the bras (1 ;| are the conjugate transposed vectors of their ket
counterparts. These density matrices which are a mixture of numerous
pure quantum states are also called mixed states. For pure states, the
quantum system can exist in only a single state [') with probability
p =1, and the density matrix of a pure state is

p =)l (3.8)

Density matrices follow the following conditions,
p=p' (3.9)
Trp =1, (3.11)

i.e., they are positive semi-definite matrices with trace 1. Here, p >0
signifies that the matrix has non-negative eigenvalues, and Trp =1
follows as probabilities sum to 1:

Tip = () ()= D pi=1. (3.12)

3.2 Quantum operators

In order to create a working quantum computer, we need to be able
to initialize and modify the information carried by qubits. Similar to
initializing classical bits as 0 or 1 and acting on them with classical
gates to perform operations, we can (in principle) initialize qubits into
arbitrary quantum states and act on them with quantum operators.
In quantum computing, any unitary matrix forms a valid quantum
gate.

In analogy with the classical NOT gate that takes a 0 to 1 and vice
versa, we have a quantum NOT gate, X, that takes state |0) to |1) and
|1) to |0). In matrix representation, the X gate can be written as

01
X= (1 0), (3.13)
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We can show the evolution of a quantum state graphically with
the help of a quantum circuit diagram, with single “lines” (quantum
wires) representing single qubits, and “blocks” representing quantum
operators. The action of the quantum NOT gate can then be visualized
as in Circuit 3.1.

a|0)+ 1) al1)+p10)

Circuit 3.1: Pauli-X gate

While the classical NOT gate is the only non-trivial single-bit gate
in classical computing, for a single qubit, valid quantum gates in-
clude the group of all 2-dimensional unitary matrices. For the sake of
simplicity, however, we can first consider the most important gates
— the Pauli matrices. These include the Pauli- X gate which we have
seen above in Eq. (3.13), and the following Pauli- Y and Pauli-Z gates,
represented graphically in Circuit 3.2.

0 —i

y:(i 0) (3.14)
1 0

Z:(O _1) (3.15)

Pauli-Z is also called the phase-flip gate, as it flips the phase of |1) to
—|1) and leaves |0) unchanged. The three Pauli matrices, in addition
to the Identity matrix I which acts trivially on all qubits, form a nice
error basis [43], i.e., any unitary matrix can be expressed as a linear
combination of these four. It is sufficient to look at the action of the
Pauli matrices on the orthogonal basis states |0) and |1), as they span
the complex vector space.

The Z, X and Y matrices all have eigenvalues +1 and —1, and have
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|0)+f 1) ia|l)—if0)
al0)+ 1) alo)—pB 1)

Circuit 3.2: Pauli- Y and Pauli-Z gates

respective eigenvectors |0) &|1), |+) &|—) and |i) &|—i), where

_10)+]1) _\_10)—11)
[+) = 7 |—) = 7 (3.16)
A 10)+1i]1) . _0)=il1)
|l>_—\/§ | l)_—ﬁ (3.17)

In the context of quantum error correction, it is also important to
note that the Pauli matrices anticommute with each other, and are
related to each other as,

ZX=—XZ=1Y
YZ=—ZY=iX (3.18)
XY=-YX=iZ

Here, the operators are acting on the same single qubit. Pauli matrices
can also act on multiple qubits at the same time and their operation
is defined with the help of a tensor product. For example, if Pauli-X
acts on qubits 1 and 2, we can denote the operation by

(X; ® X,)(10), ®10),) = X, X, [00) =[11) (3.19)

In the sections pertaining to quantum error correction, we will often
write such a tensor product simply as X; X, = X X. The distinction
between Pauli operators acting on single or multiple qubits will be
clear from their usage in the discussion.

Another important single-qubit gate is the Hadamard gate (see Cir-
cuit 3.3), which maps the eigenvectors of Pauli- Z to the corresponding
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eigenvectors of Pauli- X:

H—111 3.20
=—=l1 o) (3.20)

al|0)+f 1) al+)+p1-)

Circuit 3.3: Hadamard gate

Unitary matrices can also act as quantum operators on multiple
qubits, with the most common two-qubit gate being the CNOT (Controlled-
X) gate. The action of the CNOT gate corresponds to performing a
bit-flip (X gate) on the second qubit, conditioned on the first qubit
being in state [1).

o O -
(= ]

CNOT = (3.21)

— o O O

0
0
1
00 0

The action of the CNOT gate on an arbitrary two-qubit state is (where
the first qubit is the control qubit and the second is the target qubit):

a|00)+ 5 101) +7[10) + & |11)
JCNOT

@[00)+ B 101) +7|11) +&|10). (3.22)

Circuit 3.4 shows the circuit representation of the CNOT gate.

The CNOT gate is used to introduce entanglement between isolated
qubits. Other two-qubit gates that operate on the same principle are
Controlled-Z and Controlled- Y, which perform a Pauli gate on the
target qubit conditioned on the state of the control qubit.

Similar to the single-qubit case, the group of all 4-dimensional
unitary matrices make up the set of valid quantum gates acting on two
qubits. However, in practice, we only need a subset of these gates in
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1) ——— 1)

1) —&— [0)

Circuit 3.4: CNOT gate acting on two qubits with the control and target
states set to |1)

order to achieve universal quantum computation. Specifically, we only
need an entangling gate, such as the CNOT, together with single-qubit
gates, to create any arbitrary multiple-qubit quantum gate.

3.3 Quantum measurements

Measurements in quantum computing are carried out by interacting
with the system to gain knowledge of its properties. While there are
philosophical differences in the interpretation of measuring a quan-
tum system, the common ground rests upon the fact that measure-
ments give us some information about the state of the system. In gen-
eral, measurements can be defined using POVMs (Positive-Operator
Valued Measures), which are a set of elements E,, following

E,=E' (3.23)

E,>0 (3.24)

Z E,=1. (3.25)
m

The last restriction is required in order for the measurement probabil-
ities to sum to 1, as for a given density matrix p,

Pm =Tr(E,,p), (3.26)

where p,, is the probability of observing an outcome m. A special
case of POVM, and the one most widely used in the context of quan-
tum computing, is the Projection-Valued Measure (PVM). In this case,
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the POVM elements are an orthogonal set of projectors, P,,’s, such
that P,,P,,, =0, P,. For a d-dimensional system, there are d such
elements which can be defined by the set of eigenvectors |e,,) of an
observable M as P, =|e,,) (e, |.

Measuring a state in the PVM basis gives an outcome as the corre-
sponding eigenvalue m with probability

p(m)= (| Py 1) (3.27)

As an example, consider the observable Z, with eigenvectors |0)
and |1) and the corresponding eigenvalues +1 and —1, respectively. A
Z measurement on an unknown quantum state [¢) =« |0) + 3 |1) will
give the outcome +1 with probability

pi1 = ([0) (0ly) = |l (3.28)

and outcome —1 with probability

poy = (Y1) (1Y) =B (3.29)

Projective measurements project the state of the qubit to one of
its eigenvectors. Measuring an observable M on a qubit will destroy
the superposition, and also disentangles it from the environment.
Projective measurements perform an important role in the theory of
quantum error correction, as we will see in the next Chapter.
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4 Quantum error correction

Quantum computation requires devices that can generate, store, and
perform calculations on quantum systems. Research in the direction
of achieving this has looked at realizations of qubits using supercon-
ducting circuits [44, 45, 46], trapped-ion devices [47, 48], photons [49],
etc [50, 51]. Different architectures use different techniques to imple-
ment the fundamental blocks of quantum computing - initialization
of qubits, evolution of states through quantum gates, and measure-
ment of quantum systems. All of these, however, are susceptible to
noise by interaction with the environment. While there is an ongoing
effort to reduce the effects of noise as much as possible, we need addi-
tional protection against noise in order to fully harness the potential
advantages of a quantum computer. Quantum error correction is a
technique that introduces redundancy in order to protect quantum
information from the adverse effects of noise.

Looking back at the case of a simple three-bit repetition code used
in classical computing, one might naively try to repeat the same pro-
cedure. However, the principles of quantum mechanics restrict us
from using the same technique for quantum systems:

1. No-cloning theorem

The basic idea behind a repetition code is to duplicate the data
numerous times so as to send multiple bits containing the same
information over the same channel. In quantum computing,
however, the no-cloning theorem[11, 12] prohibits us from doing
this. The no-cloning theorem states that it is impossible to cre-
ate a single cloning device that can copy an arbitrary unknown
quantum state.

2. Continuous quantum errors
While it is possible to describe any error operation through a
linear combination of the “nice error basis” operators, the set of
errors that actually occur on qubits are continuous.
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3. Measurement destroys superposition

Decoding of a classical linear code happens after taking into
account the “measured” received messages. For example, in the
case of a repetition code, a simple decoding technique is to use
the majority rule on the incoming messages. This is not possible
in quantum computing as measuring a quantum state in a given
basis destroys its superposition and hence the knowledge held
by the qubit.

4.1 Quantum repetition code

Although the situation looks dire, there is a known solution of overcom-
ing the challenges posed by quantum computing. Given an arbitrary
single-qubit state |¢)) = & |0) + 3 |1), it is prohibited by the no-cloning
theorem to create a logical state as copies of [):

1) Z 1) 1) ). (4.1)

Nevertheless, we can instead create a state made up of three con-
stituent qubits which creates a logical state

Y1) =al000) + B [111), (4.2)

with a simple encoding circuit, shown in Circuit 4.1.

)
0) D H ) =a000)+ B [111)
0) S

Circuit 4.1: Encoding circuit for the three-qubit repetition code

Instead of simply repeating the state a few times, we can generate
logical states of the computational basis states and encode [) in these
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three physical qubits.

|0,) =1000) (4.3)
I1;)=|111). (4.4)

Now, for simplicity and analogy with the classical repetition code,
suppose we have a single bit-flip (X) error on one of the physical
qubits:

11X

l,) —= a]001)+ B [110). (4.5)
The error operator acting on the stateis I; ® ,® X; = I I X. This operator
flips the state of the third qubit. Instead of measuring the qubits to
decode with the majority rule as in the classical case, in this case we
can simply look at the parity of the Z, Z, and Z,Z; observables on the
state. In the case of no error, the parity measurements give eigenvalues
of (+1,+1) and for a single bit-flip error on the third qubit, the parity
checks give the outcome (+1,—1).

In fact, for a single bit-flip error and perfect parity check measure-
ments, we can uniquely identify the error configuration applied to the
initial state by the parity measurement outcomes, which are called
the syndrome of the code, and apply an identical recovery operation
on the same qubit (as X2 = I):

+1 41 | a]000)+ f|111) 111
+1 —1| a|001)+ f|110) 11X w6
—1 +1 | a|100)+B|011) XII '
—1 -1 al010)+B|101) IXI

The above look-up table will work only when we are certain a sin-
gle bit-flip error has occurred. In the event of two or more bit-flips,
the correction given by the look-up table fails and the state ;) is
transformed to another (+1,+1) eigenstate of the observables ZZ1
and I ZZ. We define the event of an error correction failure as a logical
error:

XII

@|000)+ B1111) =5 @[011) + B |100) ——— g [111) + 8 |000).
(Correction)
4.7)
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Under the restriction of bit-flip errors, this code works completely
like the classical repetition code, and is often called the quantum
repetition code. It is important to note that this repetition code is
unable to protect the state against phase-flip errors, which will go
unnoticed by the parity checks measurements. For a repetition code
that protects against only phase-flip errors instead, we can encode
the basis states as |0;) = |+++) and |1;) = |-——) and equivalently
measure the parities of the observables X X and 1 X X.

Measuring parity checks on the qubits as observables to gain in-
formation about the eigenvalues does not affect the superposition of
the logical state. In fact, during the whole process we are unaware of
the values of ¢ and 8 and can detect and correct errors with only the
knowledge of the syndrome.

A method of measuring the parity of the observables in the three-
qubit repetition code without measuring the actual physical qubits
is through the help of extra ancilla qubits which can be made to in-
teract with the logical state to determine the parity measurements.
Given a single-qubit operator M which is both Hermitian and unitary,
with eigenvalues £1, we can construct a circuit which measures the
observable M with the help of a Controlled-M gate and single-qubit
Hadamard gates [9] (see Circuit 4.2).

0) —] (H—A

1) M

Circuit 4.2: Circuit for measuring an observable M with eigenvalues +1
using an ancilla qubit (top).

The ancilla qubit is initialized in the |0) state and made to inter-
act with the logical state ;). It is then measured after the end of
the circuit to give the eigenvalue of the observable as the outcome.
This circuit implements a projective measurement of observable M
without destroying the superposition of the initial logical state.
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After addressing the issues of the cloning and measurement prob-
lems, we are still left with the fact that errors in quantum computing
are continuous. This issue is also addressed by the parity measure-
ment scheme. Given a particular code with a logical state [} ), we can
assume that instead of a single bit-flip error on a qubit, a small rotation
around the x-axis occurs. As the parity check operators are projective
measurements, they project the state of the measured qubits into an
eigenvector of the projector, giving the corresponding eigenvalue as
the outcome. Then, measuring the observable after the application
of a small rotation either projects the state into one with no error, or
an X applied on the qubit, which, for example, can be corrected by a
bit-flip repetition code.

This argument can be generalized to any single-qubit error matrix
which is projected to either an Identity operation I, a bit-flip error X,
a phase-flip error Z, or (up to global phase factors) a bit-phase-flip-
error Y. Hence, instead of keeping track of the infinite continuous
error possibilities, we can correct any arbitrary single-qubit error, if
we can correct X, Y, and Z errors on the code.

4.2 Stabilizer formalism

Analogous to the linear codes of classical computing, stabilizer codes
form a set of error-correcting codes for quantum computing. For the
design of stabilizer codes, the Pauli operators take a very important
role. The n-qubit Pauli group is defined as the tensor product of
single-qubit Pauli operators acting on n qubits P, =(I, X, Y, Z)®".

Any unitary operator U that acts on a pure quantum state |y) with-
out modifying it is called a stabilizer of the state.

Uly)=Iy) (4.8)

In other words, a unitary U stabilizes all states which are its eigen-
vectors with eigenvalue +1. For example, the stabilizer of |0) is Z, the
stabilizer of |+) is X, |00) is stabilized by ZI and I Z, and (|00) + |11)) /+/2
is stabilized by XX and ZZ.
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Taking a subgroup S of P, such that all its elements commute with
each other, and ensuring that —I ¢ S, we can define a set V5 of qubit
states as being stabilized under S, if for all |y) € V&:

glp)y=IyY)Vges (4.9)

These vectors form the codewords for the stabilizer code and span
the logical subspace. The condition that the elements of the stabilizer
group commute with each other and do not contain —I is required to
ensure a non-trivial vector subspace V.

In the stabilizer formalism, instead of describing quantum pro-
cesses through the evolution of quantum states, we use stabilizers
that specify the codespace, and operators that describe the evolu-
tion of the states stabilized under the stabilizer group. A stabilizer
code which encodes k logical qubits into n physical qubits is uniquely
identified by the generators of its stabilizer group (g,, &, .-, &n—k)-

Such a code can be used for its error-correcting properties, under
conditions specified by a theorem [9] which states that: A set of errors
{E;} € P, are correctable by a stabilizer code if

E]T E, ¢ N(S\SV j, k. (4.10)
For a stabilizer group S, N (S) defines the normalizer of the group:
N(S)={NeP,|SNS'eS}. (4.11)

In order for a code to detect these errors, the generators of the
stabilizer code acting on the n physical qubits are measured with the
help of ancilla qubits, as specified in Circuit 4.2. For any generator
g; which acts on a qubit i, an error E; € {X, Y, Z} acting on qubit i
will flip the eigenvalue of the measured stabilizer if g; anticommutes
with E;. Hence, measuring all the generators (g;,85,...,&n,—«), give
the outcome +1 or —1 on the ancilla qubits, depending on the error
configuration on the physical qubits. In other words, if a stabilizer
commutes with the error chain, its eigenvalue remains +1, otherwise
itis flipped to —1. The latter stabilizers signify that errors exist on the
code and are called syndromes.
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The logical operators of the stabilizer code S, that is, the Pauli oper-
ators that can create a logical error in the code, are defined as C(S)\S,
where C(S) is the centralizer of the stabilizer group:

C(S)={ceP,lcg=gcV geS}. (4.12)

In other words, the logical operators of a stabilizer code are the opera-
tors in P,, that commute with each stabilizer but are notin S, and as a
result are not detectable by the stabilizer code.

The logical operators also follow the properties and commutation
rules for single-qubit Pauli operators:

X=7z'=1 (4.13)
XLZL:_ZLXL' (4.14)

For quantum error-correcting codes, we can define the distance
of the code as the minimum number of single-qubit Pauli errors that
can create a logical error. In the stabilizer formalism, the distance
translates to the minimum weight of the logical operators. A family
of quantum error-correcting codes can be labelled as an [[n, k, d]]
code, which encodes k logical qubits into n physical qubits and has
a minimum distance of d. Here, the double brackets signify that the
code is quantum.

Similar to the classical coding formulation, a quantum code of
distance d can detect d — 1 and can correct |(d — 1)/2] single-qubit
Pauli errors.

Taking the three-qubit repetition code as an example again, recall
that the computational basis states |0;) and |1;) were encoded into
logical states |000) and |111) respectively. As we saw earlier, these two
states are common eigenvectors of the observables ZZ1 and IZZ
with eigenvalues +1.

Hence, for the three-qubit repetition code, the stabilizers of the
logical statesare S={I11,Z7Z1,1Z7,7Z1Z}, where we can choose the
set of generators tobe (ZZ1,1Z7).

The logical operators for this code are (XX X) and (Z11). As the
operator (X X X) takes |0;) to |1;), we can refer to it as the logical X,



NOISE MODELS 27

and similarly (Z11) as the logical Z operator:

X, = XXX (4.15)
Z,=ZII. (4.16)

The minimum weight of logical operatorsis 1 (Z; = ZI1), and so
the code has a minimum distance of 1 and can be labelled asa[[3,1,1]]
code. It has an error-detecting capacity of d —1 =0, which is evident
as it cannot detect any phase-flip errors.

However, the code can detect and correct bit-flip errors. In fact, the
set of X errors which anticommute with at least one of the generators
(ZZI1,1ZZ) s

{(XII,IXI,IIX,XXI,IXX,XIX}. (4.17)

Considering the case of only bit-flip errors, which we can call pure X
noise, the onlylogical operator allowed is X; = X X X, and the distance
of the code for pure X noise becomes dy = 3. Consequently, the three-
bit repetition code can detect dy —1 = 2 X errors, and can correct
(dy—1)/2=1 X error.

4.3 Noise models

Errors in quantum computing are any unwanted operations that result
from the interaction between the quantum system and the environ-
ment. While the experimental effects of noise on the qubits depend
on the physical realization of the quantum system among other things,
in theory, a simplified error model is sufficient for the analysis of quan-
tum error-correcting codes. In this work, we will assume that errors
occur on qubits independently as single-qubit Pauli operations and
are described by the process

p—EP)=0—plp+pxXpX+p, ZpZ+pyYpY (4.18)

where py, py, and p, are respectively the probabilities of an X, Y, or
Z error occurring on the qubit, and (1 —p)=(1—px — py —p,) is the
probability that no errors occur.
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A general error model widely used for simulating quantum error-
correcting codes is depolarizing noise. In this case, X, Y, and Z errors
are equally likely to occur, i.e., pxy = py =p, =p/3.

For this work, we are also interested in looking at biased noise,
that is, when a single Pauli error is more likely than the other two.
Biased noise error models are of relevance for several physical qubit
systems [52, 53, 54]. Considering only X errors, such that py = p
and p, = py = 0 creates the bit-flip channel, also known as pure X
noise. Similar models exist for pure Z noise (phase-flip noise) and
for pure Y noise. These models are important when considering the
error-correcting properties of many stabilizer codes, as we will see in
Section 4.4.2.

A possible choice for parameterizing noise bias is through ), which
is used commonly in many works exploring biased noise [21, 22]. For
phase-biased noise, as an example, 1) is defined as

__ bz
Px +py

Taking ) = 10 would signify that a Z error is 10 times more likely to
occur than an X or Y error. For n=0.5, p, = pxy = py and the channel
becomes depolarizing noise. Similarly, to create a pure Z noise model,
1 can simply be set to co.

n (px = py)- (4.19)

4.4 Topological stabilizer codes

Topological codes are usually implemented on a 2D lattice of physical
qubits, which encode quantum information in global degrees of free-
dom, but with geometrically local parity check operators [16, 55, 56].
Stabilizer codes that incorporate a topological structure in their parity
checks possess the desirable quality of having low-weight and local
stabilizer measurements. Local stabilizer measurements are needed
to keep the physical design of the chip simple, as higher connectiv-
ity leads to complicated fabrication design. In addition, low-weight
checks prevent the propagation of local errors to cascade throughout
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the grid of physical qubits with subsequent parity check operations.
Topologically inspired stabilizer codes can also assist in characteriz-
ing the properties of stabilizer codes by looking at the corresponding
statistical physics model and finding out the transition characteristics,
although we will not explore this property of topological stabilizer
codes in this work.

The archetypical topological code is the toric code [16, 17, 57], a sta-
bilizer code that is formed using two classical error correcting codes. It
is an [[O(d?),2, d]] code with periodic boundary conditions. It demon-
strates desirable error-correcting properties with a distance that scales
with the number of physical qubits, and has been one of the most stud-
ied codes in quantum error correction research. Here, we will focus
on a variant of the toric code, called the rotated surface code.

4.4.1 The rotated surface code

The rotated surface code [18, 19, 21] with boundaries is a stabilizer
code placed on a square grid of physical qubits, with code parameters
[[d?,1,d]]. It consists of alternating weight-four XXX X and ZZZZ
stabilizers on the square faces of the grid, called plaquettes. On the
boundaries, it contains weight-two half-stabilizers X X and ZZ (see
Fig. 4.1).

X(Z) errors on the rotated surface code are detected through the
Z(X) stabilizers; Y errors are detected by both X and Z stabilizers.
The code has a minimum distance d which translates to the linear
dimension of the code. Hence, while the rotated surface code will
protect a single logical qubit, the code distance increases by increasing
the size of the code block.

The smallest logical operators on the rotated surface code are hor-
izontal and vertical chains of Pauli-Z and Pauli- X operators respec-
tively, as shown in Fig. 4.2.
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Figure 4.1: Rotated surface code for distance d = 5. Each vertex of
the square grid represents a physical qubit. Orange and blue plaque-
ttes denote the weight-four X X X X and Z Z Z Z stabilizers, respectively.
Weight-two half-stabilizers X X and ZZ are shown on the boundaries.

4.4.2 The X7ZZX surface code

The XZZX surface code [22] is a variant of the rotated surface code
defined similarly on a square lattice with code parameters [[d?,1,d]].
This code can be obtained from the rotated surface code, by applying
a Hadamard transformation on every other qubit. The operation of a
Hadamard gate on X transforms it into a Z, and similarly transforms
aZtoan X:

HZH'=X (4.20)
HXH'=2Z7. (4.21)

So, the alternating XXX X and ZZZZ plaquette stabilizers of the
rotated surface code get transformed to uniform XZZ X plaquette
stabilizers on each square (see Fig. 4.3). This simple rotation leads to
many desirable properties in comparison to the rotated surface code.

The logical operators on the XZZX code get transformed into verti-
cal and horizontal chains of mixed X Z operators. While the minimum
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Figure 4.2: Logical operators on the rotated surface code. (a) Weight-d
X; formed by a vertical chain of pure X'’s. (b) Weight-d Z; formed by a
horizontal chain of pure Z’s. (c) Weight-d? pure Y; formed by applying
a Y on all qubits.

distance of the code remains d, dy = d, = d, and dy = d?, similar to
the rotated surface code, this transformation reduces the number of
smallest logical operators for pure noise. The only pure chain of X;
and Z; on the code are the operators lying on the two diagonals of
the grid (see Fig. 4.4). As a consequence, for any error chain E under
pure X noise, there is only a single corresponding chain E’ with the
same syndrome pattern, where E’ is given by X; E and X; is the pure
X logical operator. A similar behaviour is shown by error chains under
pure Z noise.

Due to the mixed nature of the stabilizers, and the fact that the
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Figure 4.3: XZZX surface code for distance d = 5. Each vertex of the
square grid represents a physical qubit. Yellow plaquettes denote the
weight-four X ZZ X stabilizers. Weight-two half-stabilizers X7 and Z X
are shown on the boundaries.

stabilizers are uniform on all plaquettes, the XZZX code has an inter-
esting syndrome property. For isolated X or Z errors on any physical
qubit, the syndromes appear only in a unique diagonal direction, de-
pending on whether the error is an X or a Z. This creates the potential
to use the uni-directional syndrome information while decoding the
error, as done in [22]. However, Y errors do not follow this property,
and an isolated Y error on a qubit generates syndromes on all four
neighbouring plaquettes.



DECODING AND CHARACTERIZATION OF QUANTUM
ERROR-CORRECTING CODES 33
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Figure 4.4: Logical operators on the XZZX surface code. (a) Weight-d
X; formed by a diagonal chain of pure X’s. (b) Weight-d Z; formed by a
diagonal chain of pure Z’s. (c) Weight-d? pure Y; formed by applying a
Y on all qubits.

4.5 Decoding and characterization of quantum
error-correcting codes

4.5.1 Decoding

So far, we have looked at how stabilizer codes can be used for encoding
logical information in a number of physical qubits. We have also
mentioned some popular topological stabilizer codes which have
desirable properties. A complete error-correction procedure, however,
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requires the detection of errors on the code, and a successful recovery
applied to take the system back to its logical codespace.

Consider an [[n, k, d]] stabilizer code with stabilizer group S and
generators (g, g, ..., 8n—t)- Anerror chain E € P, that anti-commutes
with at least one stabilizer takes the code out of its logical subspace. In
order to correct the error, we need to find a recovery operation R € P,,
such that RE € S. Note that the recovery is not a unique operation for
stabilizer codes; instead, any chain that is equivalent to E up to some
stabilizers results in successful error correction.

A failure in error correction occurs if the recovery operation takes
the code to a logical subspace different from the initial. That is, if
RE € LS, where L is the set of possible logical operators {X;,Z;, Y; }.
After applying the recovery, no detectable errors would remain on the
code, as each element in L commutes with S. However, the logical
information incurs a logical error.

As we cannot measure the final states of the physical or logical
qubits without losing the quantum information contained in the sys-
tem, we rely on syndrome measurements to correct errors on stabilizer
codes. Syndrome decoding using a look-up table is an optimal but
computationally complex method as it requires checking 2("~* entries
for an [[n, k, d]] code, which becomes impractical for large code sizes.

Another optimal decoding technique is called maximum-likelihood
(ML) decoding. Similar to the the classical case, the ML decoder maxi-
mizes the probability of an error chain given a measured syndrome.
Given a particular syndrome configuration, we can divide the set of
error chains possible for the syndrome into equivalence classes based
on their action on the logical subspace. For instance, given an error E
which leads to the syndrome, the set of all possible error chains can
be divided into cosets as

{EIS}U{EX,S}U{EZ,S}U{EY,S}. (4.22)

Due to the degeneracy of solutions for quantum error-correcting
codes, it is sufficient to find the equivalence class of the error chain
with the maximum probability. Then, any error configuration in this
equivalence class gives the optimal recovery operator.
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While evaluating the complete set of possible error solutions has
an exponential complexity in the number of physical qubits, there are
approximate ML methods that make use of clever sampling techniques
to find out the distribution of possible error chains. Although this
reduces the computational complexity of implementing the decoder,
dynamic error correction schemes would require even faster decoding
techniques in practice.

Another popular and widely used decoder is the minimum-weight
perfect matching (MWPM) decoder [57, 58, 59]. The MWPM is a graph-
theory algorithm introduced by Jack Edmonds in 1965 [60, 61]. Given
a graph G with a set of vertices V and edges E, a matching refers to
pairing the vertices by their edges, such that no two pairs have any
vertices in common. A perfect matching would correspond to having
paired all vertices in V. Now, considering that the edges in E have a
weight assigned to them through some specific criteria, the minimum-
weight problem is to find a perfect matching of the all vertices in V,
that minimize the total weight of the chosen edges.

Decoding a stabilizer code using the syndrome information can be
mapped to an MWPM problem, and solved efficiently in polynomial
time [62, 63]. In the given context, the syndromes of a code can be
thought of as vertices on a graph, connected by edges weighted by
the distance between these vertices, or a modified procedure that
takes into account the bias levels of the noise. Assuming X and Z
errors to act independently on the qubits, decoding is achieved by
perfectly matching the two graphs separately, and applying the cor-
rection operators along the edges chosen in the matching that result
in minimum-weight (as Y = X 7).

MWPM used for topological stabilizer codes is a sub-optimal de-
coder. Nevertheless, it is an efficient and fast decoding method that
performs very close to optimal decoders for surface codes. Other
examples of decoders used for stabilizer codes are [64, 65, 66, 67, 68].
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4.5.2 Characterization

Quantum error-correcting codes are labelled by the parameters [, k, d]],
which characterize the code family to an extent. As mentioned earlier,
the distance d of the code quantitatively determines the number of
single-qubit errors that can be be corrected without the possibility of

a logical error. Hence, for a given number of physical qubits 7, the
code with a higher d should perform better. However, there are other
factors that should be taken into consideration before comparing the
performance of stabilizer codes.

An important metric in the evaluation of quantum error-correcting
codes is the error threshold. The threshold theorem[15, 69, 70] states
that if the physical error rate of a code is below a certain threshold
value, py,, the logical failure rate can be made arbitrarily small by
increasing the code size. Here, the logical failure rate refers to the
probability of a logical error occurring on a code, given that the qubits
are subjected to a particular noise model. Clearly, a code with a high
error threshold is advantageous as scaling up the number of qubits will
give better performance. The threshold error rate depends upon the
code under consideration, the inherent noise model, and the decoder
being used for the error-correction scheme.

For instance, considering depolarizing noise on the physical qubits,
and simulating under the assumption of perfect and noiseless stabi-
lizer measurements, the rotated surface code gives an error threshold
of about 18.8(2)% [21]. A more realistic estimation of the actual thresh-
old can be carried out by allowing noisy encoding and measurement
circuits, also called circuit-level noise. While the threshold decreases
down to about 1% [71] when including the effect of circuit-level noise,
it is still high enough to make the surface code a popular and effi-
cient candidate for quantum error correction. For perfect stabilizer
measurements, The XZZX code also exhibits similar behaviour for
depolarizing noise, with a threshold of 18.7(1)% [22]. Looking at pure
noise for the XZZX code, taking pure X noise as an example, the thresh-
old observed is 50%, a consequence of the lack of degeneracy in the
logical operators for pure X noise. In contrast, the rotated surface
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code shows a threshold of 10.8(1)% for pure X noise, which is far worse
than that for depolarizing noise.

The threshold error rate alone is not sufficient to evaluate the per-
formance of a code. For practical purposes, it may be beneficial to
compare codes by the logical failure rate they exhibit at a given phys-
ical error rate. Taking the XZZX code as an example again, pure X
noise, pure Z noise, and pure Y noise all show a threshold of 50%.
Nevertheless, the logical failure rate is highly suppressed for pure Y
noise owing to the quadratic distance dy = d?, compared to the other
two noise channels, dy =d, =d.

Finally, the logical failure rates and the threshold error rates depend
on the decoder being implemented. For the rotated surface code,
the optimal maximum-likelihood decoder gives an error threshold of
18.8(2)% for depolarizing noise; however, using a sub-optimal decoder,
such as the MWPM decoder, demonstrates a threshold of about 14.88%
[59].
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5 Summary of research papers

5.1 Research paper A

In paper A [72], we introduce a new quantum error-correcting code,
the XYZ? hexagonal stabilizer code, which is based on the class of
“matching codes” introduced by Wootton [73]. By introducing bound-
aries to a particular example of a matching code, we show that a single
logical qubit can be encoded in a hexagonal grid of physical qubits, to
create a quantum error-correcting code with parameters [[2d?, 1, d]].

Figure 5.1: The XYZ? code for distance d = 5. The stabilizers of the code
are weight-six X Y Z X Y Z on each hexagonal plaquette, weight-two X X
on each vertical link, and weight-three X YZ on the boundary. Also
shown are the unidirectional syndromes (red) for isolated X, Y, and Z
errors.
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The XYZ? hexagonal stabilizer code is a topological code with mixed
weight-six X YZ X Y Z plaquette stabilizers on each hexagonal face,
and weight-two X X stabilizers on each vertical pair (or link) of qubits
(see Figure 5.1). Following the reasoning of Sec. 4.4.2, the mixed sta-
bilizers of the XYZ? code give rise to uni-directional syndromes for
isolated single-qubit Pauli errors; the XYZ? code extends the direc-
tional syndrome property shown by Pauli-X and Pauli-Z in the XZZX
code, to include Pauli- Y errors as well.

We give a theoretical basis of the novel stabilizer code, and show
that the XYZ? code exhibits a quadratic distance (2d?) for both pure
Z and pure Y noise, given a grid consisting of 2d? physical qubits.
We also show how the rotated surface code can be transformed into
the XYZ? code by applying rotations to create a YZZY surface code
and replacing each physical qubit of the resulting code by an effective
qubit, i.e., a logical qubit made up of two physical qubits stabilized
under an X X stabilizer.

Finally, we compare the properties of the XYZ? code with the XZZX
code, focusing mainly on the error thresholds and the logical failure
rates for different noise models. For pure X, pure Y, and pure Z
noise, the threshold and exact logical failure rate can be calculated
analytically. The XYZ? code exhibits a threshold of 50% for all three
pure noise models, equivalent to that of the XZZX code. However, the
logical failure rate is much higher for pure X noise, a disadvantage for
the XYZ? code, while the rates are highly suppressed for pure Z noise.
This advantage can be controlled by changing the link stabilizers to
get another variation of the XYZ? code. For example, if we measure
Z 7 stabilizers on the links instead (with an appropriate rotation of the
plaquette stabilizers), the logical failure rate will be highly suppressed
for pure X noise.

For depolarizing noise and biased noise, we simulate the perfor-
mance of the code using maximum-likelihood decoding under the
assumption of perfect stabilizer measurements. We use the EWD
decoder of paper B for the calculations on the XYZ? code, and the
MPS [74, 75] decoder for the XZ7ZX code.
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For depolarizing noise, we observe a threshold of about 18% and
see that the logical failure rates depend largely on the code distance
below the threshold. For biased noise parameterized by 1), and taking
n =10, we observe error thresholds around 28% for all three biases,
matching those shown by the XZZX code. Similar to the observations
of the pure noise model, the XYZ? code performs worse for X -biased
noise, but better for Z-biased noise when comparing by the number
of physical qubits. For Y -biased noise, the logical failure rates depend
on the number of physical qubits for both the XYZ? code and the XZZX
code. As stated above, the XYZ? code can be tailored to the inherent
noise model. For example, for a system with X-biased noise, we would
measure the link stabilizers as Z Z, to get a better performance under
X-biased noise.

For each of the noise models, we observe that the thresholds of
the XYZ? code matches those of the XZZX code. The advantage of the
XYZ? code reveals itself in the logical failure rates, which are highly
suppressed for Z-biased noise on the XYZ? code, compared to the
XZZ7ZX code, when comparing a similar number of data qubits. An-
other benefit that posits itself arises from the hexagonal nature of the
plaquettes, suggesting that the XYZ? code might be more suitable to
certain qubit architectures.

5.2 Research paper B

In paper B [76], we introduce a new approximate ML decoder for topo-
logical stabilizer codes, called the “effective weight and degeneracy”
(EWD) decoder. This decoder is based on counting the most likely er-
ror chains in each equivalence class to find the most likely equivalence
class corresponding to an error syndrome.

Similar to the ML Markov-chain Monte Carlo (MCMC) decoder
[77, 78], the EWD decoder is based on the Metropolis algorithm for
sampling error chains in each equivalence class using the degeneracy
in possible error chains caused by the stabilizers of the code. However,
in contrast to the MCMC decoder, the EWD decoder is more efficient
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as it is “error-rate agnostic”, i.e., it works independently of the physical
error rate, and only requires information about the bias of the noise
model. Hence, it can sample chains at a higher error rate than the
physical error rate. In this sense, the EWD decoder is an intermediate
approach between ML decoders and the MWPM decoder, as the latter
does not account for error probabilities in its implementation.

We apply the EWD decoder to the rotated surface code and the
XZ7ZX code, for different noise models and compare with the MCMC
decoder, the MPS decoder [74], and exact analytical expressions. We
observe that the performance of the EWD decoder matches that of
maximume-likelihood decoders for moderate code sizes or low error
rates. In addition to this, the EWD decoder is a flexible decoder that
can be used to evaluate the performance of novel stabilizer codes, as
is evidenced by its usage in paper A.
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6 Conclusions and Outlook

In this work, we have given the background for studying quantum
error-correcting codes. Quantum error correction is necessary to pro-
tect quantum systems against noise and to harness the computational
power of current NISQ devices. We focus mainly on topological stabi-
lizer codes, as they possess desirable qualities of local and low-weight
stabilizer measurements.

We have introduced a novel [[2d?, 1, d]] topological stabilizer code,
the XYZ? hexagonal code. This code is inspired by the Kitaev honey-
comb model and is implemented on a hexagonal grid containing 2d?
physical qubits, where the distance of the code is d. For pure Z and
pure Y noise, we demonstrate that the code has a quadratic distance
of 2d?, which leads to significantly reduced logical failure rates. The
XYZ? code demonstrates high threshold rates that match those of the
XZZX code, for depolarizing as well as biased noise.

We also present the EWD decoder, an approximate ML decoder,
whose implementation depends on the bias of the error model and
is independent of the actual physical error rate. It is an efficient and
flexible decoder which matches the performance of ML decoders for
moderate code sizes or low error rates.

The threshold values for the XYZ? code were obtained by simulat-
ing the performance of the code using the EWD decoder, under the
assumption of perfect stabilizer measurement conditions. In order for
the benefits of the XYZ? code to be of practical value, it is necessary to
consider circuit-level noise as well to get a better picture of the actual
threshold rates.

Compared to the weight-four plaquette stabilizers of the rotated sur-
face code and the XZZX code, the XYZ? code has weight-six plaquette
stabilizers, which in general might perform worse under circuit-level
noise [79]. However, the XYZ? code also has weight-two link stabilizers,
which make up about half of the stabilizers on the code. The effect of
these stabilizers on circuit-level noise is also something to be explored
in the future. This would require the development of a decoder that
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is reliable and efficient while handling circuit-level noise, which can
also take into account the fact that the link stabilizers do not occur in
pairs, and hence cannot be matched using decoders such as MWPM.

Additionally, while we illustrate the tri-directional property of syn-
dromes under X, Y, and Z noise, an efficient decoder needs to be
implemented that can exploit this property. The XYZ? code can be
represented as a concatenation of numerous two-qubit error detec-
tion codes and the YZZY surface code. A way of handling the decoding
problem could be to use this fact to optimally decode the concatenated
code block using a message-passing algorithm [80].

A future approach could be to modify the EWD decoder to include
weights corresponding to faulty stabilizer measurements as well to
evaluate circuit-level noise. Another direction for future work could be
to combine the EWD decoder with supervised deep-learning methods
to create a fast decoder which is flexible to the overall error rate, or to
provide an accurate reward function for deep reinforcement learning
approaches [67, 68].

The XYZ? code has already shown a promising performance, on
par with other prominent stabilizer codes in recent research that aim
to deal with biased noise. The current work opens the potential for a
deeper analysis of the performance of the code, and creates a path for
the development of more efficient, flexible, and reliable decoders.
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