

Department of Computer Science and Engineering
UNIVERSITY OF GOTHENBURG
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2021

Testing in microservice systems
A repository mining study on open-source
systems using contract testing
Bachelor of Science Thesis in Software Engineering and Management

HARTMUT FISCHER

Department of Computer Science and Engineering
UNIVERSITY OF GOTHENBURG
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2021

The Author grants to University of Gothenburg and Chalmers University of Technology the
non-exclusive right to publish the Work electronically and in a non-commercial purpose make
it accessible on the Internet.
The Author warrants that he/she is the author to the Work, and warrants that the Work does
not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Author has
signed a copyright agreement with a third party regarding the Work, the Author warrants
hereby that he/she has obtained any necessary permission from this third party to let
University of Gothenburg and Chalmers University of Technology store the Work
electronically and make it accessible on the Internet.

Studying the use of testing best practices in MSA-based open-source systems

© HARTMUT FISCHER, August 2021.

Supervisor: HAMDY MICHAEL AYAS
Examiner: Richard Berntsson Svensson

University of Gothenburg
Chalmers University of Technology
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

Testing in microservice systems:
a repository mining study on open-source systems

using contract testing
Hartmut Fischer

Department of Computer Science and Engineering
University of Gothenburg

Gothenburg, Sweden
gusfisha@student.gu.se

Abstract— Context: There is a trend in the software industry to
migrate systems from a monolithic to a microservice architecture
(MSA) due to the gains in agility and scalability. An MSA-based
system consists of a suite of small microservices which can be
developed, tested, and deployed independently.

Problem: MSA puts challenges on software testing due to
the complexity caused by the integration of many autonomous
microservices into one system. New best practices with testing
strategies in terms of test types and test proportions (pyramid
shape) emerged, but are only studied in isolated cases.

Objective: The aim of this study is to explore microservice
testing in a real-life context and to compare it to best practices.

Approach: Repository mining is used to identify open-source
MSA-based systems. Consumer-driven contract testing (CDC),
a method recommended by MSA practitioners, was selected as
inclusion and system identification criteria. Four systems with
overall 22 microservices were analyzed.

Results: The recommended five test types were identified, but
not in all systems. The bigger a microservice, the better its test
strategy aligned to the pyramid shape, but the test proportions
also dependent on the microservice’s distinct function in the
system. Using CDC tests seems to minimize the number of system
tests.

Index Terms—Microservice architecture, integration test,
consumer-driven contract test, test pyramid, repository mining

I. INTRODUCTION

In recent years, microservice architecture (MSA) has gained
increasing popularity, especially for large scale web-services
with high traffic rates. In MSA-based applications, the sys-
tem is divided into small, independent microservices [1].
The individual services are loosely-coupled and communicate
through platform-independent interfaces with [2]. Therefore,
the individual microservices can be developed, tested, and
deployed independently [3] which enables the services to
evolve autonomously. The video-streaming platform Netflix
was one of the pioneers in migrating its system from a
monolithic architecture to MSA. Today Netflix’s platform is an
enormous system of hundreds of microservices [4]. Another
example is the technology company Uber which is famous for
its ride-sharing service. Uber’s platform is a system of circa
2200 microservices [5].

The autonomy of the individual microservice is one of
the key principles of MSA that has to be incorporated in

the complete software development life-cycle. Without auton-
omy, microservices cannot be independently developed and
released, and the system loses its flexibility and agility. The
autonomy is reflected in the system by the loosely-coupling of
the microservices as well as organizational (i.e., independent
development teams per microservice). Nevertheless, to become
part of the actual system, the individual microservices have to
interact with each other through synchronous or asynchronous
messaging. To validate that these interactions work properly,
testing and, in particular, integration testing is essential.

Integration testing, besides security- and data storage-related
issues, is stated as one of the major challenges in MSA-
based applications in academic and grey literature [6], [7].
It is the result of the increased complexity caused by the
distribution of the system’s functionality across services and
the necessary, additional infrastructure for communication.
The challenge with integration tests is also rooted in the aim
to run the tests in isolation (i.e., without dependent services)
while validating the correctness of the interactions with exact
these services. Currently, different approaches are used to
tackle this discrepancy.

One way is the use of test doubles (i.e., stubs or mocks)
during testing to replace the depending services with which
the service under test (SUT) is interacting. Interactions with
downstream services that the SUT is consuming (i.e., receiving
data from) are substituted with the help of test doubles.
These tests imply a certain untrustworthiness as they cannot
guarantee that the latest state of the interactions and dependent
interfaces is reproduced by the test doubles [8].

Another option is to test the interactions and inter-
communication in a staging environment with only the re-
quired microservices [9], or, the entire system deployed [10].
In a (partly) running system, defects cannot only be caused
by the services themselves or their inter-communication but
also by failures in the infrastructure (e.g. network latency or
outages). This makes the testing process time-intensive, less
reliable and it gets more difficult to track down defects to their
origin.

A third approach is consumer-driven contract (CDC) testing.
CDC testing is described as a potential solution [10] or addi-

1

tion [11], [12] to handle the challenges of integration testing.
In CDC tests, the consumer of a downstream microservice
states which responses it expects for certain requests from
the provider (i.e., its API). The providing service verifies that
it can fulfill these expectations and both parties enter into a
contract. Provider and consumer use this contract to test their
interfaces independently.

Waseem et al. [6] state that current MSA testing literature
that discusses new or MSA-adapted testing approaches, like
CDC testing, consists mostly of experiments and (single-case)
case studies and lack an evaluation in a real-life context. Thus,
for this research, CDC testing was used as a starting point and
inclusion criteria to study microservice testing.

The objective of this paper is to explore the test strategies
of in-production or production-ready MSA-based applications.
The focus lies hereby on systems that are using CDC testing as
a test type appropriate for the special requirements of MSA.
The research is conducted by repository mining to identify
relevant open-source projects. This will help to get a better
understanding of how microservices systems are tested and
how well they follow best practices.

This paper is organized as follows. Section II provides the
background about MSA and testing relevant for this paper,
and Section III discusses related work. In Section IV the
research methodology including the research questions, and
the data collection and data analysis process are described.
The results are presented in Section V, and, Section VI
provides an analysis of the thesis’ findings. Threats to validity
and the measures to mitigate them are presented in Section
VII. Finally, SectionVIII concludes this thesis and describes
directions for future work.

II. BACKGROUND

A. Microservice Architecture Style

The microservice architecture (MSA) style describes a sys-
tem that consists of a suite of small, independent, interacting
microservices. In contrast, applications with a traditional,
monolithic architecture consist of a single, unified unit (see
Figure 1).

Client

Module 1 Module 2

Module 3 Module 4

Monolithic architecture

API Gateway

Microservice 1 Microservice 2

Microservice 3 Microservice 4

Client

Microservice architecture

Database Database (MS3) Database (MS4)

Fig. 1. Exemplary architecture of a monolith and a microservice system
(adapted from Savchenko et al. [13])

The MSA style has similarities with the service-oriented
architecture (SOA) style that emerged about 15 years ago as
both styles focus on service orientation. Some scholars state
that MSA is a particular implementation of SOA [2], and
that MSA adopted a significant number of patterns and design
principles from SOA [14]. Newman even calls MSA as SOA
“done right” [3]. On the contrary, other authors see substantial
differences between SOA and MSA, and they classify MSA
as a new, independent architectural style (e.g., [1], [15]).

Even though MSA is used in many systems nowadays,
there exist no general definition of it. The following properties
and principles, however, can be found in the majority of
descriptions [2], [3], [16], [17]:

• Microservices are small and organized around business
capabilities.

• Microservices are self-contained. They encapsulate their
data and account for their own data persistence.

• Microservices are technology- and programming
language-agnostic.

• Microservices have fine-grained interfaces and use
lightweight mechanisms to communicate (like RESTful
HTTP). The (inter-)communication can be conducted
synchronously or asynchronously.

• Microservices are loosely-coupled. Dependencies within
a microservice system are minimized.

• Microservices can be independently developed, built,
tested, and released.

• Microservices’ autonomy reflects on the organization
with decentralized governance and independent developer
teams, and its promotion of DevOps culture.

MSA gained popularity due to several advantages enabled
by these properties and principles. The small size of the
individual services makes it easier to understand the code
and its function, and, thus, facilitates the onboarding of new
developers [18]. The services’ autonomy makes it possible to
choose the optimal technology stack for a specific task of a ser-
vice (e.g., machine learning related services in Python, com-
mon user administration in Java). The independence and the
loosely-coupling also help to isolate failures. A single service
that fails does not necessarily take down the whole system.
The system can continue working with limited service until
the failing part is restarted or replaced [2]. The services’ au-
tonomy facilitates also the scalability of microservice systems.
Depending on traffic and demand, services can be replicated
or stopped through horizontal scaling. With containerization
of services (e.g., Docker) and tools for container-orchestration
(e.g., Kubernetes), MSA is predestined for running in a cloud
environment.

Nevertheless, MSA is not a “silver bullet” and has its chal-
lenges. Microservices’ strict autonomy implies that services
have their own independent data persistence. Through this,
data consistency across services becomes complicated. Data
that would be stored together in one place in a monolith
system might get spread out on several databases connected
to dedicated microservices (see Figure 1).

2

The biggest challenge of MSA is the significant increase
in the complexity of a system [7]. The internal complexity
of an application is transferred to its outside and, thus, to
its infrastructure [13]. The system relies on the functionality
of the services’ interfaces and the connections between them.
Failures (e.g., long latency) caused by the infrastructure can
compromise the system’s functionality. Moreover, the expo-
sure of a multitude of APIs increases the attack surface and,
therefore, the risk of intrusion into the system.

All these aspects influence an MSA-based application and
have to be taken into account during the testing of the
individual microservice and the whole system.

B. Testing of microservice systems
The aim of software testing is to validate that the sys-

tem works as expected. Software testing is nowadays not
seen anymore as an inconvenient task after writing code but
became an essential part of the software development and
maintenance life-cycle. New development practices, like test-
driven development, caused a shift of the focus to testing
and testable code. Moreover, developers strive to automate
testing as far as possible as it simplifies test execution and
enables fast feedback while decreasing costs, and accelerating
development. Manual testing is time-consuming, unreliable,
and seen only as last resort for tests that cannot be automated
(e.g., certain UI tests) or dedicated exploratory testing [19].
In traditional software architecture, like monolith architecture,
testing processes are well established and researched. It is
widely agreed that a combination of unit, integration, and
system tests is needed to assure that a system fulfills the
expected functionality [20].

With a new architectural style, like MSA, the way of testing
has to be adapted. Mainly due to the autonomy of the single
services and the complexity of the inter-connections, the test
granularity needs to be adjusted for MSA-based applications
[12]. The granularity of tests is reflected in different test types,
also referred to as “test levels”. There is no strict definition
of the different test types and, therefore, scope and layout
can vary between systems [11]. The following test types are
suggested by Clemson [12] for MSA-based applications.

1) Unit Testing: A unit test aims at validating that the
“smallest piece of testable software in the application” behaves
as expected [12]. The size of a “unit” is not clearly defined
but in object-oriented languages, it usually does not exceed
a single class. If other methods or components are needed to
test the unit, they are replaced by test doubles which mock
their behavior. Unit tests can always run in isolation as they
do not leave the scope of a single microservice.

2) Integration Testing: An integration test verifies that
modules interact correctly with infrastructure and external
services. In MSA-systems, these interactions are with data
persistence (i.e., databases) or other microservices, within
the application or beyond. Examples of integration tests in
MSA-systems are API gateway integration testing or data
persistence integration testing [12]. Integration tests leave the
scope of the single microservice. Therefore, they either need

test doubles to mock external services or must be conducted
in a staging/testing environment with the dependent services
deployed.

3) Consumer-Driven Contract Testing: Contract testing is
based on the paradigm of creating contracts that determine the
communication between services. By testing against contracts,
the tests verify that a consumer (i.e., a microservice that sends
a request) and a provider (i.e., the microservice that responds)
can integrate and successfully communicate. However, they
do not aim at testing the functionality or business logic of
the respective services. The contracts can be driven by the
consumer or the provider, depending on which side has the
power to set the rules. Nowadays, the most common way
is consumer-driven contracts where the consumer states its
expectations to the provider. The provider confirms that it can
fulfill these expectations and they become contractual. The
contract is accessible to both parties for independent testing.
Changes in the contract have to be communicated between
the involved parties [11]. CDC tests leave the scope of the
individual service as they require the communication and
collaboration between the interacting microservices’ teams,
but the actual testing can be conducted in isolation.

4) Component Testing: “A component is any well-
encapsulated, coherent and independently replaceable part of
a larger system.” [12]. In MSA, the components are the mi-
croservice themselves. Therefore, component tests are black-
box tests of the individual microservice’s functionality. To be
able to test the whole component in isolation and without the
effects of the infrastructure, all interacting components (i.e.,
microservices or external APIs) are replaced with test doubles.

5) System Testing: With system (or “end-to-end”) tests the
functionality of the whole application is tested. They shall
prove that the application and all its microservices fulfill the
high-level requirements. To run such tests on a microservice
system, all services and the infrastructure have to be up and
running. This makes the tests expensive, time-consuming and
flaky (e.g., prone to infrastructure failures). Defects are hard to
track to the origin due to the large number of involved parts. A
common way to run these tests is to simulate certain use cases
or scenarios either by using the UI or, with headless systems,
by calls to the application’s public API [12]. As these tests
will test the behavior of the whole system, they cannot be run
in isolation and require a staging or testing environment.

C. Test pyramid
The test pyramid is a best practice recommended by Cohn

[21] which describes the proportions of automated tests on
the different levels in an application’s testing portfolio. The
original pyramid only took into consideration the execution
time and test costs. In an MSA-based application, it is also
relevant that tests can be run in isolation and how reliable they
are. Unit tests are cheap and fast but validate only a very small
part of the system. A test with a wider scope, like a system test,
that uses all components of the system, will give the developer
more confidence that the system works as intended. Figure 2
shows the test pyramid for MSA-based systems with, ideally,

3

unit test

component test

integration test*
(contract test)

system
test

flaky

reliable

slow,
expensive

fast,
cheap

number of tests

isolated

integrated

*isolation depending on implementation

Fig. 2. Test pyramid for MSA-based applications (adapted from Clemson
[12])

many unit tests and few system tests. The test pyramid is seen
as best practice for MSA-based applications by a variety of
practitioners (e.g. [3], [11], [12]).

The proportions of the different test types (i.e., the shape
of the “pyramid”) are controversial. While many practitioners
support the pyramid shape (see above), other proportions, e.g.
a honeycomb shape with a higher focus on integration testing
and less on unit testing[22], are suggested. Nevertheless, there
is a general agreement that an inverse pyramid [3] or, more
figuratively, an “ice-cream cone” shape [11] is an anti-pattern
that should be avoided.

III. RELATED WORK

In this section, related work that is relevant for this study
is presented.

In their systematic mapping study about testing of MSA-
based applications, Waseem et al. [6] acknowledge an increas-
ing number of articles on the topic in recent years. Most of
these articles are based on case studies or experiments. They
note that the most frequently mentioned test types are unit and
integration tests but they claim that these types are not enough
to test a MSA-based application thoroughly. Furthermore, they
detected a trend towards new kinds of testing approaches (e.g.,
model-based approaches). However, none of these approaches
has been used or investigated outside an experimental re-
spective case study environment. The authors identify several
challenges in microservice testing of which test automation,
faster test feedback, and inter-communication testing are the
most frequently mentioned. This study addresses the authors’
suggestion to look into MSA-adapted test types, like CDC
testing, and their implementation, in an in-production, real-
world context.

Lehvä et al. [10] investigate how a microservice-system can
be tested more effectively. They evaluate the existing testing
approach with unit, component, and system tests and introduce
CDC tests to facilitate the testing of integration and inter-
communication of services in the system. This change has
two main positive effects: Improved defect detection than with
established component tests, and increased isolation of testing
due to less system tests. They conclude that for the system of

their case study the optimal testing strategy consists of unit,
component, CDC, and system testing. Traditional integration
testing can be successfully replaced by faster and more reliable
CDC tests. Chen [9] describes the experiences of a company
that migrated a large application to MSA to improve deploy-
ability and modifiability. For testing, the company uses CDC
tests to ensure that integration points (APIs) work as expected.
Additionally, it uses an always-online system-integration test
environment that has all services deployed to test dependent
endpoints. Chen reports also that instead of system tests, “test
in production” and monitoring are used to validate the system
as a whole. Chen’s paper shows that CDC tests might not
be enough to replace traditional integration testing, as stated
by Lehvä et al. [10], but to complement it. Moreover, new
approaches might be needed to test whole microservice system
efficiently.

Current studies are mostly based on single cases and ex-
periments. They suggest rather different approaches in their
test strategies for complete integration testing. This study is
exploring which test types apart from CDC tests and in which
proportions are used in open-source systems.

IV. RESEARCH METHODOLOGY

MSA-based applications and, in particular, the testing of
them is a rather new research area. Its development is mainly
driven by practitioners. Therefore, collecting and analyzing
the existing work of practitioners by mining publicly available
software repositories seems an appropriate way to gain new
knowledge. Mining software repositories (MSR) is getting
more and more popular in software engineering research.
Repository mining offers access to a wide range of valuable
data, like source code, issues, review comments and commit
messages [23]. MSR has already been applied in MSA-related
studies, for example, to identify design patterns in systems [14]
or to analyze the issues in projects [24]. In this study, MSR is
used to collect the source code and, especially, testing-related
code artifacts from open-source projects. The collected code is
the basis of a postmortem analysis [25]. Postmortem analysis
is used for historical data and to study the past but still has
the focus on its context of occurrence. Its aim is to “capture
the knowledge and experience from a specific case or activity
after it has been finished” [25, p. 32].

The process is conducted in three phases. In the first phase,
the research questions that steer the process are defined. In
the second phase, the data sources are identified and the data
are collected. In the third and final phase, data analysis is
conducted on the collected data (see Figure 3).

A. Phase I: Research questions

This study aims at exploring and understanding the testing
strategies in MSA-based systems that use CDC tests in a
real-life, production-ready context and compare it to best
practices. Therefore, the following research questions need to
be answered:

4

Phase I : Research Questions

RQ 1:

System's test
types

GitHub API

Search for
open-source

projects

Define
keywords and

relevant files for

CDC testing

Apply in- and
exclusion

criteria

Filtering

5933 repositories 132 repositories

Remove
e.g. duplicates

Cleaning

16 repositories

Summarize
repositories to

projects

3 + 1 projects
Shortlist

Phase II : Data source and data collection

Phase III : Data analysis

Select data
source

and access to

GitHub

RQ 2:

Alignment with
test pyramid

Categorize tests (RQ 1)

Extract repository's metadata & test files

Aggregate frequencies of test types (RQ 2)

1

2

In projects that use CDC testing

3

Fig. 3. Phases of the research process

RQ 1: What test types are used in the open-source, MSA-
based systems that implement CDC tests?

This question aims to explore which different types of
tests are used for the validation of open-source systems
apart from consumer-driven contract testing. These types
can then be used to compare with suggestions in the literature.

RQ 2: How does the testing strategy of open-source, MSA-
based systems that implement CDC tests align with the test
pyramid?

This research question aims to compare the number of test
cases of the different test types and their proportions with the
model of the test pyramid (see Section II-C) to evaluate how
well the best practice is followed.

TABLE I
QUERIES USED TO FIND PACT AND SPRING CLOUD CONTRACT (SCC)

IMPLEMENTATIONS

Filename Extension Keyword Framew. # of results

pom xml pact Pact 1393
build gradle pact Pact 968

docker-compose yml pact Pact 348
groovey Contract Make SCC 3224

B. Phase II: Data source and data collection
Phase II was conducted in five steps.
1) Selecting a data source: To answer the research ques-

tions, the source code of MSA-based, open-source systems
should be used. GitHub was selected as source for repositories
as it is the biggest source code hoster with approximately 200
million repositories. GitHub is used for source code storing
and sharing by hobby developers, professionals, and compa-
nies (e.g. Microsoft, Netflix, or Google). To find repositories,

three different ways of access to GitHub’s data are suggested
in the literature: GHTorrent1, GH Archive2 or GitHub’s REST
API3 [26]. GHTorrent and GH Archive are databases generated
from regular data dumps from the GitHub API. They offer
stable datasets that are easy to query and are replicable.
Especially GHTorrent is often used for academic research
(e.g., [24]). However, neither GHTorrent nor GH Archive offer
to query within the code base but only within metadata (e.g.,
number of commits, programming language), tags, issues,
or commit messages. Furthermore, GHTorrent’s most recent
dataset (available during this research) dated from June 2019.
As it was necessary to search within the code basis (see next
step), GitHub’s REST API was chosen despite its limitations
(e.g., query rate and result limits). These limitations have been
considered in the further process.

2) Identifying repositories through keywords: During the
initial searches, it became obvious that searching by topic or
label (as used to tag repositories) to identify microservices
using CDC testing was not going to lead to satisfactory results.
Not all repository owners used correct and/or standardized
labels and, especially, the way of testing was rarely indicated.
Therefore, it appeared most appropriate to focus the search
on the used technology and its footprint in the source code.
Consumer-driven contract testing requires additional code for
implementation on the provider and the consumer side. It is
possible to write own CDC test implementations as Selleby
[27] shows. However, it is more common and convenient to use
established solutions, like Pact4 and Spring Cloud Contracts5

which are both open source [28]. It was decided to focus

1https://ghtorrent.org/
2https://www.gharchive.org/
3https://docs.github.com/en/rest
4https://pact.io/
5https://spring.io/projects/spring-cloud-contract

5

on these two frameworks as they are well-documented and
are the frameworks most frequently mentioned and discussed
in practitioners’ blogs (e.g., [29], [30]) and books (e.g., [3],
[31]). Through the study of the documentation and tutorials,
important keywords and code artifacts, and their occurrence
in relevant files (see Table I) were identified.

3) Searching on GitHub: The keywords and filenames were
used to construct search strings to query the GitHub REST
API. The queries were run during May 2021. To circumvent
the API limitations (i.e., maximum 1000 results per query), the
file size was used as an additional parameter to receive smaller
batches of results. The initial number of results can be seen
in Table I and a spreadsheet with the all found repositories
is available online6. The keywords were returning primarily
microservices written in Java. The Spring Cloud Contract
framework only exists for Java and, although Pact supports
a range of languages, the files “pom.xml” and “build.gradle”
constrained the search to implementations in Java projects.
Even though this focus on Java limited the number of results,
it facilitated the comparability of the projects and the results
in the further process.

4) Filtering: The aim was to include only production-ready
or in-production microservice systems in the analysis. An
important role to fulfil this requirement played the repository
owner type. GitHub distinguishes between the owner type
“organization” and “user”. Owner type “organization”7 seemed
appropriate to detect projects with collaborating developers
how it is common for professional projects. In more detail,
the following inclusion and exclusion criteria were applied:

• Inclusion criteria:
– system is using the microservice architecture style

(see Section II-A)
– CDC testing is implemented
– public repository
– repository’s owner type is ”organization”
– main programming language is Java

• Exclusion criteria:
– missing or only minimal documentation
– school projects
– proof of concepts
– forks or copies of tutorials/demos

A combination of automated filtering (e.g., repository’s owner
type, search by keywords like ”example”, ”sample”) and
manual inspection of the results was used to apply these
criteria on the initial dataset with the results of the queries.

5) Cleaning: Depending on the project’s code structure, the
initial search was triggered several times (e.g., a dependency
in pom.xml file and a Pact Broker docker image in docker-
compose.yml) on different files so that the same repository
appeared more than once. These duplicates were removed.
Some repositories could not be allocated to a (whole) MSA-
application (i.e., only one single service/repository without a
system) and were also removed. The final results also included

6https://bit.ly/MSA-testing-mining
7https://bit.ly/2VLEMwZ

a (third) governmental system which was excluded because of
its size. Having over 60 microservices8, it did not seem a
feasible candidate for the used analysis method. As there was
no project using the Spring Cloud Contracts framework in the
shortlist, a reference implementation (P4) was added which
was initially excluded.

TABLE II
LIST OF IDENTIFIED PROJECTS

Description Framew. # of MS

P1
IoT application for an intelligent
football table

Pact 2

P2
Public service platform for
online payments

Pact 6

P3
Governmental platform for licensing
of exporting and importing

Pact 7

P4
Microservice reference implementation
Food delivery service

SCC 7

6) Summarizing to projects: A complete microservice sys-
tem can be stored in one repository (i.e., every service in a
different folder) or distributed over several repositories (i.e.,
one microservice per repository). To take this into account, the
remaining repositories were summarized into projects. Every
project reflects a single microservice system consisting of
several microservices (see Table II). Every microservice was
stored in a separate repository in P1, P2, and P3; only P4 had
the source code of all services stored in one repository.

C. Data analysis
The data analysis was conducted in three steps (Figure 3).
1) Extracting metadata and test-related files: The reposi-

tories of all selected projects were downloaded in June 2021.
For every repository, the (main) programming language was
checked and the lines of code (LOC) were extracted by
using the tool CLOC9 to illustrate the size of the individual
microservices. Additionally, the tool TREE10 was used to get
an overview of the file and directory tree structure of the
respective repository. Through this, the folders containing files
that are relevant for testing were identified. Files that could
help to understand the project’s CI/CD pipeline or supported
automated testing were also included.

2) Categorizing tests: In every repository, the testing-
related files were inspected. For every file, a defined set
of data items was extracted (see Table III). The test type
categorization is guided by test type descriptions in Section
II-B. The main focus lied on the scope and the level of inter-
action and communication within and between the individual
microservices. Frameworks and testing tools, apart from Pact
and Spring Cloud Contract, were also taken into consideration
for the categorization. The analysis was conducted in a manual
and semi-automatized way. At first, several test files were

8https://hmcts.github.io/reform-api-docs/
9https://github.com/AlDanial/cloc
10http://mama.indstate.edu/users/ice/tree/

6

TABLE III
DATA ITEMS EXTRACTED FROM TEST FILES

Data item Description

D1 Index ID of the test
D2 Filename Name of the test file
D3 Test type Category of the test
D4 Quantity Number of test cases in file

D5 Use of test doubles
Indicates the use of mocks or stubs
(if applicable)

D6 Interactions
Identifies which external services
the test interacts with (if applicable)

manually inspected to identify patterns. For the larger projects
(P2 and P3), a Python script was used to identify keywords and
assist with categorization. The automatized categorization was
verified by manual inspection as recommended by Hemmati
et al. [23]. The results of D3 and D5 were used to answer RQ
1.

3) Aggregating frequencies of test types: For RQ 2, the
test cases per test type (determined in D3) were counted. To
identify test cases in the test files, the “@Test”-annotation
of the test framework JUnit11 that all projects implemented
was used. Consequently, a test case with several assertions
only counted as one test case. If a “@ParameterizedTest”-
annotation or “@Parameters”-annotation was used, every input
parameter was counted as an individual test case. The data
(i.e., data items D3 and D4) were aggregated on microservice
and system level. These data were then used to compare with
the test pyramid (see Section II-C). D6 was finally only used
to get a better understanding of the individual microservices.

V. RESULTS

In the following section, the results from the collected and
analyzed data are presented.

A. RQ 1: Test types in MSA-based projects
The answer to this research question is extracted from the

source code of the four analyzed projects with altogether 22
microservices. In the projects, the following five types of tests
are identified (see Figure 4).

1) Unit test: With unit tests, single methods or classes are
tested. Unit tests do not exceed the scope of one microservice.
In the most narrow case, with this kind of test only a method
is validated (e.g., a test validates the correct functionality of
a telephone number validator method (P2)). If a unit under
test is dependent on other classes within the microservice,
these classes are replaced by test doubles that return predefined
values. In the projects, a frequently used framework to create
test doubles is Mockito12. In all the projects which have a
publicly accessible CI/CD pipeline (P2, P4), unit tests were
the first tests to be run. Unit tests were identified in 21
microservices.

11https://junit.org/junit4/javadoc/latest/org/junit/Test.html
12https://site.mockito.org/

2) Integration test: With integration tests, the interaction
with external modules that belong to the individual microser-
vice is tested. In the analyzed projects, this test type is found
for interactions with data persistence and a message queue
service. To test these interactions, a Docker container with a
database (P2, P4) or the Queue Service (P2) is created, or
an ”in-memory” database (P3) is used to run the test cases.
To validate the interactions with a data persistence different
transactions are tested (e.g., save and load, find all, etc.).
Not all microservices implement integration tests because they
either do not have any data persistence (P1) or the interactions
with data persistence are validated in component tests (P3)
instead. Integration tests were identified in 8 microservices.

3) Component test: With component tests, the functionality
of a single microservice is tested, usually by API requests or
messages. Different component tests are used to test particular
parts of a service (e.g., by calling different endpoints). In
the projects, this was conducted by running the service and,
if necessary, the data persistence. Downstream microservices
(i.e., their APIs) which the service under test depends on are
replaced by test doubles. This applied to downstream services
within the microservice system and system external services.
Two projects used Wiremock13 to create test doubles (P2, P3);
Docker (Compose) is used in P4. In P1, the publishers to
simulate incoming messages are mocked locally.

The component tests have a quite wide scope in all projects
as they cover the microservice’s functionality, interactions with
data persistence, and (mocked) communication with external
services (i.e., with services within and beyond the system).
Component tests were identified in 14 services. Only in P4 do
the developers distinguish between integration and component
tests in the code. In the three other projects, integration and
component tests were marked as integration tests (i.e., filename
containing “IT” or “IntegrationTest”). Consequently, compo-
nent and integration tests would be executed simultaneously.

4) Consumer-driven contract test: With the consumer tests,
the projects validate the actual communication and integra-
tion with other services of the system. CDC tests are used
to validate synchronous communication via HTTP requests
(P2, P3, P4), but also asynchronous messages (e.g. in a
publish/subscribe setup or a Message Queuing Service) (P1,
P2, P3, P4). Through the contracts between consumer and
provider, the correctness of the endpoints and the payload of
the requests is verified. For asynchronous interactions, this
implies, for example, the correct (subscription) topic. The
contracts specify the expected return status and headers of
a response, but use “matchers” to check if the type and the
format (e.g., in key-value-pairs) in the response or message
body are as expected.

The same contract is used in two services: On the consumer
side, the contract is created and verified against the actual
system. On the provider side, the contract is tested as an API
request while the service is in a predefined state (e.g., “User
667 exists in the database” in the service “connector” in P2).

13http://wiremock.org/

7

Upstream
Service A

Module under test

data
persistance

Test double
downstream

Service A

Module B

Method under test

Module A

Mockito

Interaction under test

Wiremock

Downstream
Service A

Consumer

Provider
Microservice

under test

(a)synchronous
communication

under test

Microservice system under test

Contract

Contract

Pact / SCC

Pact / SCC

ProviderConsumer

external
Service/API
(beyond the

system)

Test double
external

Service/API

Wiremock

Test double
Module A

Test types:

Integration test

System test

Contract test

Component test

Unit test
found in 21 of 22 repositories

found in 8 of 22 repositories

found in 14 of 22 repositories

found in 22 of 22 repositories
(inclusion criteria)

found in 2 of 4 projects

Temporary
test db

Docker /
In-memory db

Fig. 4. Test types and auxiliary tools/frameworks identified in the projects

The response is compared to the expectations in the contract.
The contracts are stored in a shared folder in a repository (P1,
P4), or a designated service (i.e., Pact Broker14) for storing
and administrating the contracts is implemented (P3, P2). CDC
tests were found in all analyzed microservices as it was one
of the inclusion criteria.

5) System test: With system (or end-to-end) tests, the whole
microservice system is tested for certain scenarios. In the
analyzed projects, only in two projects, end-to-end tests were
found (P2, P4). They are conducted either through mocked
actions on the user interface or a row of API calls simulating a
user journey through the system. For these tests, all microser-
vices of the system and necessary additional services (e.g.,
databases) are deployed in containers with docker-compose.
Services beyond the system are replaced by containerized test
doubles (P2).

14https://github.com/pact-foundation/pact broker/

B. RQ 2: Comparison of test proportions with test pyramid

For this research question, the number of test cases per test
type on the repository level is aggregated (see Table A1-A4).
Then it is converted to proportions to facilitate the comparison
with the test pyramid. For a better understanding of the results,
the characteristics of each project are outlined briefly.

1) P1: P1 (see Figure 5; for absolute numbers see Table
A1) consists of four microservices. Two of these services are
written in Java and were analyzed. The main characteristic
of this system is that the services only communicate via
asynchronous messaging using the publish/subscribe-pattern
and a MQTT broker. None of the services has a database
thus there is no need to test interactions with data persistence
(i.e., no integration tests). To test the individual services
(component tests), an instance of the MQTT is started and
different messages are published to the broker to test the
service’s correct reaction and output.

As Figure 5 shows, P1 is the smallest system with quite
small microservices. The size is also reflected in the low

8

Unit

Integr.

Comp.

CDC

System

cognition ledcontrol

Microservice

Te
st

 T
yp

e

Test Case
proportions
(per microservice)

20 %

35 %

50 %

Fig. 5. Test proportions in P1

Unit

Integr.

Comp.

CDC

System

adminusers d.−d.−connector products
connector ledger publicapi

Microservice

Te
st

 T
yp

e

Test Case
proportions
(per microservice)

5 %

20 %

35 %

50 %

Fig. 6. Test proportions in P2

number of tests. The service “cognition” has a large base of
unit tests, a few component tests, and proportionally many
CDC tests. The high number of CDC tests and, thus, con-
tracts, indicate a high number of possible interactions up-
and downstream as it is acting as consumer and producer for
other microservices. The test frequencies of the second service,
“ledcontrol”, appear rather in the shape of a honeycomb.
In this case, the developers focused more on testing the
functionality of the whole service than the internal modules.
In the repositories, no system tests were found. They might
be conducted manually or the developers reached enough
confidence about the system with the other tests. Looking
at the total number of automated tests conducted in P1 (see
Figure 9), there is a big base of unit tests, and less component
and CDC tests.

2) Project P2: P2 (see Figure 6; for absolute numbers,
see Table A2) consists of ten microservices of which six are
written in Java and implement CDC testing. These six services
are part of the analysis. P2 is the largest analyzed project -
in terms of services’ size and the total size of the system.
It allows extended insights into its CI/CD pipeline with a
separate public CI/CD repository15.

All microservices of P2 apart from the “publicapi” have
their own data storage which are tested with integration tests.
The communication between services is mostly conducted
via HTTP calls with some additional communication via a
message queue system to communicate events (e.g., payments)
from “connector” to “ledger” service. The AmazonSQS Queue
service is used for message implementation. The queue service
is seen as a service in the sphere of a microservice, like
databases, and tests covering the interactions to it were coded
as integration tests.

The “connector” service has several connections to ex-
ternal payment services that are replaced by test doubles.
Communication with the internal service “publicAuth” is also
always replaced by test doubles and not tested with CDC

15https://github.com/alphagov/pay-ci/

tests. The same applies to some interactions with the internal
service “direct-debit-connector”. Several of the CDC tests are
establishing contracts with frontend services, like “selfservice”
or “product-ui”, which are not in the scope of this analysis as
they are written in JavaScript.

All microservices follow well the test pyramid’s shape
except for “publicapi”. They have a broad base of unit tests and
a very small number of system tests. Like in the other projects,
the number of integration tests varies and is not always directly
proportional to the microservice’s size. Although the system
has quite large individual services and is sufficiently complex,
the developers obviously reach enough confidence with unit,
integration, component, and CDC tests to validate the system’s
functionality so that only a minimal number of system tests
is needed before deployment. The effort for system tests is
further decreased as the number of these tests depends on
the actual newly deployed microservice. Interestingly for this
project is that publicly accessible coding guidelines encourage
developers to follow the test pyramid16.

3) Project P3: P3 (see Figure 7; for absolute numbers, see
Table A3) consists of seven services that are all written in
Java and implement CDC testing. The service “permission-
finder” operates as frontend and, therefore, contains HTML
code. Three services (“user”, “customer”, “country”) work as
a proxy and cache calls to a system external API (“SPIRE”).
For testing purposes, all requests to “SPIRE” are replaced by
test doubles and are not covered by CDC tests as the API
is outside of the control of P3. The services communicate
via HTTP calls, apart from a message queue to between the
“permissions-finder” and “notification” services. P3 includes
no publicly accessible, data or files describing the CI/CD
pipeline of individual microservices or the system. For this
reason, it is not clear whether the project uses system tests.

As Figure 7 shows, “permissions-finder” conducts the most
CDC tests which indicates that it has many interactions with
other services. It is mostly a consumer of other services, apart

16https://bit.ly/3ABbcc2

9

Unit

Integr.

Comp.

CDC

System

country notification permission−finder user
customer OGEL permissions

Microservice

Te
st

 T
yp

e

Test Case
proportions
(per microservice)

5 %

20 %

35 %

50 %

Fig. 7. Test proportions in P3

Unit

Integr.

Comp.

CDC

System

Accounting Consumer Order Restaurant
API−Gateway Kitchen Order−History

Microservice

Te
st

 T
yp

e

Test Case
proportions
(per microservice)

5 %

20 %

35 %

50 %

Fig. 8. Test proportions in P4

from a publishing function with the “notification” service.
“Permissions-finder”, like “notification” and “customer”, is not
validated by any component tests. The services that act as
proxies do not test databases or caches specifically but include
these interactions in their component tests. The “OGEL”
service validates its interactions with data persistence also only
by component tests.

Comparing the individual services with the test pyramid,
the results are ambiguous. While the largest backend service
“permissions” follows well the pyramid shape, other services
have a more dominant number of component respectively CDC
tests, especially compared to the number of unit tests. In total,
for the whole system (see Figure 9), there is a pyramid shape
recognizable when disregarding the low number of integration
tests.

4) Project P4: P4 (see Figure 8; for absolute numbers, see
Table A4) is a reference implementation of a microservice
system and is the only project that uses the Spring Cloud
Contract framework for contract testing. It consists of eight
microservices where only seven were included. The service
“Delivery” service was excluded as it did not implement CDC
tests. As it is a reference implementation, there is a focus on
the implementation of different test types but not on high test
coverage, unlike in a production system. As Figure 8 and 9
show, this results in proportionally many tests with a large
scope and few unit tests. Therefore, it was decided to exclude
the system from the analysis for RQ 2. It cannot be an adequate
representation for an in-production system and does not return
realistic results for a comparison.

VI. DISCUSSION

In this section, the results of the four analyzed projects
with overall 22 microservices are discussed. The limited
number of projects is caused, on the one hand, by the narrow
inclusion and exclusion criteria, and, on the other hand, by the
limited number of production-ready microservice applications
publicly available on GitHub. The curated list of MSA-based

Unit

Integr.

Comp.

CDC

System

P1 P2 P3 P4

Project

Te
st

 T
yp

e

Test Case
proportions
(per project)

5 %

20 %

35 %

50 %

Fig. 9. Aggregated test proportions on project level

systems by the researcher Davide Taibi17 counts only ten
professional open-source systems; none of them is using CDC
testing. MSA is still used mainly by large, commercial actors
who have the need for scalability and flexibility, but also
have the financial and personnel capacities to handle the
MSA’s complexity and necessary infrastructure. These actors,
of course, rarely make their code open source. On the other
hand, certain government agencies have open-source policies
which explains why two of the identified projects are public
service platforms.

A. RQ 1: Test types

In the analyzed projects, five testing types have been iden-
tified: unit, integration, component, CDC, and system tests.
The identified testing types follow, for the most part, the
definitions in Section II-B, but have been slightly adapted to
the analyzed systems. The biggest adaption is made in regard
to the integration test. They are found to be used only for

17https://github.com/davidetaibi/Microservices Project List

10

testing interactions with data persistence and queue services,
and not specifically for testing inter-communication with other
services. In the analyzed systems, this was expected as all
systems implemented CDC tests that could take care of testing
the inter-communication with services in the system. However,
several exceptions were identified, for example, in P2 where
communication with the Authentication service (“publicAuth”
service) was not covered with CDC tests. It could not be deter-
mined why not all inter-service communication was covered
by contracts. It might be caused by missing collaboration with
the other team or potential challenges using CDC testing with,
for example, authentication services.

The integration respectively communication with external
services is to a certain extend also covered in component tests.
Component tests can be described as black-box system tests
on microservice level as they validate certain functionality or
endpoints of a whole microservice. If external services are
needed for such tests, they are replaced by test doubles. A
challenging aspect is the trustworthiness of these test doubles
[8]. Component tests can still pass and, thus, miss defects if
a test double did not get adapted to changes in a downstream
service’s API. This is also stated by Lehvä et al. [10] as
an possible issue with component tests. Furthermore, for
testing the communication with external services which are
beyond the system, there are no alternatives to test doubles,
as Vocke [11] states. In the analyzed projects, this is seen,
for example, with external payment services (P2) and a third-
party service (P3). For external services within the system, the
inter-communication can explicitly be verified with a CDC
test which should break if a downstream service changes
its API unknowingly. This raises the question which tests
to prioritize in the testing pipeline; CDC tests to validate
the inter-communication or component tests to validate the
functionality of the microservice itself. A possible solution
could be to use the contracts to also verify the correctness of
the mocks. This would solve the trustworthiness issue but add
another level of complexity.

A general aspect to consider are the test types themselves.
Test types are not standardized and are often open to the
developers’ interpretation as mentioned in Section II-B. The
scopes and implementations of the tests, especially of unit,
integration, and component tests, can differ between systems
and even between microservices (i.e., because of teams’
autonomy to decide about their own testing strategy). This
observation matches with Vocke’s [11] and Fowler’s [32]
remarks on the various interpretability of unit respective inte-
gration/component tests. Because of this ambiguity, Newman
suggested a more pragmatic approach and declared all tests
between unit test and end-to-end test (system test) level as
“service” tests [3]. In the analyzed systems, this could be
observed in the missing differentiated between integration and
component tests, according to the naming of the files. As
component tests are not common in monolithic architecture,
the absence of the distinct naming of “component tests” might
root from a missing adaption of testing processes to the distinct
characteristics of MSA. However, a differentiation might be

very useful in practice to detect defects as soon as possible in
the testing process by defining clear testing layers or levels.
For example, a failing integration test will clearly pinpoint to
a problem with the interaction with the data persistence. It
would stop the test pipeline from running more tests with a
bigger scope, like component tests.

B. RQ2: Alignment with test pyramid
The comparison between the test pyramid and the test

proportions in the project’s microservices gives an ambiguous
picture. In the smaller systems with small services and few
tests, the pyramid shape is not very distinctive, if existent at
all. However, in bigger systems with larger microservices, the
pyramid-shaped proposition becomes rather obvious.

A closer look at P2, the largest analyzed system, shows
that most of its microservices follow the pyramid shape
quite distinctly. The pyramid of the individual microservice
is “topped” by only between zero to two system tests. The
small number of system tests implies that the other tests that
can be conducted in isolation from the remaining system give
enough confidence that not only the microservice itself works
as expected but also that its interactions and integration into
the whole system do. These results match with the findings
of the case study by Lehvä et al. [10]. CDC tests help to
decrease the number of flaky and expensive system tests and,
at the same time, extend the possibility of isolated tests to
also cover the services’ communication. For P1 and P3, this
cannot be confirmed or denied as it is not clear whether
they implemented system tests. Still, it can be assumed that
the CDC tests helped the isolated testing of the individual
services, otherwise the developers would probably not have
implemented them.

In general, there are several aspects to consider when
using the test pyramid as reference that became obvious from
the results. These aspects might be especially relevant for
practitioners.

First, with the increasing size, a microservice’s complexity
amplifies and, thus, the need for testing of an increased number
of parts. This is reflected in particular in the number of unit,
component, and, to a certain degree, CDC tests. For integration
tests, which were not found in all microservices, a relation
to the size is less marked. The actual function and its use
of data persistence seem more relevant for the number of
integration tests. For CDC tests, the role of the service in
the system (e.g., a gateway with communication with many
services) influences the number of necessary tests. Therefore,
the number of integration and CDC tests often does not show
the same proportional relation to a microservice’s size as the
other tests. This fact can be found in several microservices
that have either no number of integration tests due to no data
storage or a proportionally high number of CDC tests due to
central inter-communication function.

Second, the system’s size is to consider. The projects that
are part of this study are rather small compared to systems
of larger companies, like Netflix. In the analyzed systems, it
is observed that the test type proportions aligned better to the

11

pyramid shape with increasing system and microservice size.
For an MSA-based application an increase in size means that
the number of microservices (i.e., their quantity) increases.
The individual microservices should still follow the principle
of being “small” and not exceed a certain size. On the
microservice level, the size of the system does therefore
not significantly influence the number of unit, integration,
and component tests. Here, the pyramid can account as a
valid reference. However, with the size, the number of inter-
connections, the service integration effort, and the general
system complexity will increase. To a certain extent, it will be
feasible to cover these points with CDC tests and system tests.
But, above a certain system size, as Chen[9] and Sridharan
[33] note, these tests might have to be replaced or supported
by other methods, like in-production testing and extended
monitoring.

Finally, there is no consensus in the literature about the
order of test types between unit and system tests. In Section
V), the test type order from Lehvä et al. [10] was applied. It
arranges the test types according to the decreasing isolation of
the tests and, thus, their increasing scope. Whereas Clemson
[12] (see Figure 2) focuses with “his” pyramid more on the
effort (e.g., time and costs) and stability of the test types.
The deviating recommendations which are also related to the
discussion in RQ 1 (VI-A) about test types. This ambiguity
might make it difficult for practitioners to adopt test pyramid
as guideline.

VII. THREAT TO VALIDITY

In the following section, threats to the internal and external
validity of this study are presented and the countermeasures
which were applied to mitigate them are described.

A. Internal validity

Internal validity refers to the methodological strategy to
minimize bias in the data collection and analysis, and, ulti-
mately, in the results. Three potential threats to the internal
validity of this research have been identified: (i) the selection
of CDC frameworks and search terms for these frameworks,
(ii) filtering and selection of projects, (iii) categorization of
test types. The following steps were taken to mitigate these
threats:

• Bias on the selection of CDC test frameworks and search
terms: The two frameworks were carefully selected ac-
cording to discussions on practitioners’ blogs (e.g., [30])
and in research literature [28]. They seemed most relevant
for a study aiming for in-production or production-ready
projects. Deprecated frameworks, like Pactio, or self-
written implementations of CDC testing exist [27], so
that there is a risk that projects using “isolated solu-
tions” might have been missed. The queries to identify
the frameworks were thoroughly selected and tested in
different combinations of keywords and filenames. It was
still a trade-off between too broad (i.e., too much noise)
and too narrow search queries.

• Bias on filtering and selection of projects: For the search
results, transparent exclusion and inclusion criteria were
formulated. The filtering and selection process was con-
ducted in a multi-step approach (described in IV-B4)
to minimize possible threats. Furthermore, a spreadsheet
with the raw data and the results after each step is
available online18. Additionally, links, version tags and
commit hashes of all inspected repositories can be found
in Appendix B1.

• Bias on test type categorization: To avoid bias in the
categorization procedure, it was conducted in an iterative
way as new knowledge was gained continuously from
additional test cases. The categorization criteria were
constantly adapted and updated. Furthermore, a Python
script was used to facilitate and automatize the categoriza-
tion process. The results of the automated categorization
were inspected and manually verified as recommended
by Hemmati et al. [23]. A spreadsheet with the test files
and the results for all projects is provided online19.

B. External validity
Threats to external validity are concerned with the potential

generalization of the results. It describes to what extent the
findings are applicable beyond this paper and the analyzed
projects. The research was scoped, among other factors, to
systems using CDC tests (i.e., Pact or Spring Cloud Contract
Framework) and written in Java. Furthermore, it was limited
by the number of publicly available open-source projects.
With the resulting (small) number of projects from only one
source code hoster (GitHub), findings cannot be statistically
generalized. Nevertheless, an analytical generalization that
allows the transfer of the results to projects with similar
characteristics seems possible. That means that the results of
this study could be applied to microservice systems which are
using a CDC implementation, are written in Java and have a
comparable number of microservices.

VIII. CONCLUSIONS

In this paper, the testing strategies of MSA-based in-
production or production-ready open-source systems that are
using consumer-driven contract testing were studied and com-
pared to the test pyramid. By mining software repositories
on GitHub, four different projects with altogether 22 relevant
microservices were identified and analyzed.

In these microservices, five test types could be classified:
unit, integration, component, CDC, and system tests. These
test types were mostly equal to the test types described in
the literature. However, integration testing focused on testing
interactions with data persistence or queue services, thus, with
modules related to the individual service, and not to test com-
munication with other services in the system. This was instead
mostly covered by CDC tests. Less than half of all systems
used integration tests. In three of four projects, developers
did not distinguish between integration and component tests.

18https://bit.ly/MSA-testing-mining
19https://bit.ly/MSA-testing-results

12

This might lead to the use of more “expensive” component
tests, instead of finding the defect in an earlier state with
less complex integration tests. It was suggested that this could
be caused by a missing adaption of testing strategies from
monolithic to microservice architecture.

The aggregated tests per test types were compared to the
test pyramid. The test pyramid indicates the best practice to
test a system with a proportional high quantity of fast unit
tests and a very small number of slow, expensive system
tests. The comparison showed that the larger the system and
the individual microservices, the better test proportions align
with the pyramid shape. Nevertheless, it also became obvious
that the pyramid itself is not an ideal reference for every
microservice as the test types can depend on the services’ role
and function. The exact proportions (i.e., the pyramid’s shape)
and the test types’ order in the pyramid are under discussion
by scholars and practitioners. These discussions might lead
to further adaptions of best practices regarding test types and
test proportions to the microservices architecture, especially
for large-scale systems.

Future work should compare the testing strategy between
MSA-systems with and without CDC tests and what the
differences are in terms of implemented test types and number
of, especially, component and system tests. Moreover, another
aspect for future research could be the influence of the
system’s size on the testing strategy and, whether alternative
testing methods and techniques (e.g., in-production-testing,
extended monitoring and logging) have to be considered.

ACKNOWLEDGMENT

First of all, I would like to thank my supervisor, Hamdy
Michael Ayas, for his continuous support and feedback, and
his guidance during this thesis writing process. I also would
like to thank Richard Berntsson Svensson, my examiner, for
the valuable feedback. Last but not least, I have to thank my
parents and my friend who backed my decision to change
careers and read this bachelor’s program.

REFERENCES

[1] J. Lewis and M. Fowler, Microservices, 2014. [On-
line]. Available: https : / / martinfowler . com / articles /
microservices.html (visited on 11/15/2020).

[2] O. Zimmermann, “Microservices tenets: Agile approach
to service development and deployment,” Computer
Science - Research and Development, vol. 32, no. 3-
4, pp. 301–310, Jul. 2017.

[3] S. Newman, Building microservices: designing fine-
grained systems, 1st. Beijing Sebastopol, CA: O’Reilly
Media, 2015.

[4] GOTO 2016 • Microservices at Netflix Scale: Principles,
Tradeoffs & Lessons Learned, Feb. 2016. [Online].
Available: https : / / www . youtube . com / watch ? v =
57UK46qfBLY (visited on 03/25/2021).

[5] A. Gluck, Introducing Domain-Oriented Microservice
Architecture, Jul. 2020. [Online]. Available: https : / /
eng . uber . com / microservice - architecture/ (visited on
07/25/2021).

[6] M. Waseem, P. Liang, G. Márquez, and A. D. Salle,
“Testing Microservices Architecture-Based Applica-
tions: A Systematic Mapping Study,” in 2020 27th Asia-
Pacific Software Engineering Conference (APSEC),
Dec. 2020, pp. 119–128.

[7] J. Soldani, D. A. Tamburri, and W.-J. Van Den Heuvel,
“The pains and gains of microservices: A Systematic
grey literature review,” Journal of Systems and Software,
vol. 146, pp. 215–232, Dec. 2018.

[8] V. Lenarduzzi and A. Panichella, “Serverless Testing:
Tool Vendors’ and Experts’ Points of View,” IEEE
Software, vol. 38, no. 1, pp. 54–60, 2021.

[9] L. Chen, “Microservices: Architecting for Continuous
Delivery and DevOps,” in 2018 IEEE International
Conference on Software Architecture (ICSA), Apr. 2018,
pp. 39–397.

[10] J. Lehvä, N. Mäkitalo, and T. Mikkonen, “Consumer-
Driven Contract Tests for Microservices: A Case
Study,” in Product-Focused Software Process Improve-
ment, X. Franch, T. Männistö, and S. Martı́nez-
Fernández, Eds., Cham: Springer International Publish-
ing, 2019, pp. 497–512.

[11] H. Vocke, The Practical Test Pyramid, Feb. 2018.
[Online]. Available: https://martinfowler.com/articles/
practical-test-pyramid.html (visited on 02/04/2021).

[12] T. Clemson, Testing Strategies in a Microservice Ar-
chitecture, Nov. 2014. [Online]. Available: https : / /
martinfowler.com/articles/microservice-testing/ (visited
on 01/30/2021).

[13] D. Savchenko, G. Radchenko, T. Hynninen, and O.
Taipale, “Microservice Test Process: Design and Im-
plementation,” vol. 10, p. 12, 2018.

[14] G. Márquez and H. Astudillo, “Actual Use of Archi-
tectural Patterns in Microservices-Based Open Source
Projects,” in 25th Asia-Pacific Software Engineering
Conference (APSEC), 2018, pp. 31–40.

[15] D. Gupta, M. Palvankar, and C. T. Solutions, “Pitfalls &
Challenges Faced During a Microservices Architecture
Implementation,” Tech. Rep., Feb. 2020, p. 21.

[16] S. Eismann, C.-P. Bezemer, W. Shang, D. Okanović,
and A. van Hoorn, “Microservices: A Performance
Tester’s Dream or Nightmare?” In Proceedings of the
ACM/SPEC International Conference on Performance
Engineering, Edmonton AB Canada: ACM, Apr. 2020,
pp. 138–149.

[17] M. Waseem, P. Liang, and M. Shahin, “A System-
atic Mapping Study on Microservices Architecture in
DevOps,” Journal of Systems and Software, vol. 170,
p. 110 798, Dec. 2020.

[18] J. Lotz, A. Vogelsang, O. Benderius, and C. Berger,
“Microservice Architectures for Advanced Driver Assis-
tance Systems: A Case-Study,” in 2019 IEEE Interna-

13

tional Conference on Software Architecture Companion
(ICSA-C), Mar. 2019, pp. 45–52.

[19] D. Spinellis, “State-of-the-Art Software Testing,” IEEE
Software, vol. 34, no. 5, pp. 4–6, 2017.

[20] M. Pezzè and M. Young, Software testing and analysis:
process, principles, and techniques. Oct. 2008. (visited
on 01/30/2021).

[21] M. Cohn, Succeeding with agile: software development
using Scrum, ser. The Addison-Wesley signature series.
Upper Saddle River, NJ: Addison-Wesley, 2010.

[22] A. Schaffer and R. Dybeck, Testing of Microser-
vices, Blog, Jan. 2018. [Online]. Available: https : / /
engineering . atspotify . com / 2018 / 01 / 11 / testing - of -
microservices/ (visited on 02/16/2021).

[23] H. Hemmati, S. Nadi, O. Baysal, O. Kononenko, W.
Wang, R. Holmes, and M. W. Godfrey, “The MSR
Cookbook: Mining a decade of research,” in 2013 10th
Working Conference on Mining Software Repositories
(MSR), May 2013, pp. 343–352.

[24] M. Waseem, P. Liang, M. Shahin, A. Ahmad, and A. R.
Nasab, “On the Nature of Issues in Five Open Source
Microservices Systems: An Empirical Study,” p. 11,
2021.

[25] C. Wohlin, M. Höst, and K. Henningsson, “Empirical
Research Methods in Software Engineering,” in Em-
pirical Methods and Studies in Software Engineering:
Experiences from ESERNET, ser. Lecture Notes in
Computer Science, R. Conradi and A. I. Wang, Eds.,
Berlin, Heidelberg: Springer, 2003, pp. 7–23.

[26] T. Mombach and M. T. Valente, “GitHub REST API vs
GHTorrent vs GitHub Archive: A Comparative Study,”
Tech. Rep., 2018, p. 8.

[27] F. Selleby, “Creating a Framework for Consumer-
Driven Contract Testing of Java APIs,” Bachelor’s The-
sis, Linköping University, Linköping, Sweden, 2018.

[28] J. P. Sotomayor, S. C. Allala, P. Alt, J. Phillips, T. M.
King, and P. J. Clarke, “Comparison of Runtime Test-
ing Tools for Microservices,” in 2019 IEEE 43rd An-
nual Computer Software and Applications Conference
(COMPSAC), vol. 2, Jul. 2019, pp. 356–361.

[29] A. Weiss, How to Test Microservice Integration with
Pact, Oct. 2017. [Online]. Available: https://codefresh.
io / docker - tutorial / how - to - test - microservice -
integration-with-pact/ (visited on 03/22/2021).

[30] M. Sokola, How to test Microservices with Consumer-
Driven Contracts? 2018. [Online]. Available: https : / /
hackernoon . com / how - to - test - microservices - with -
consumer- driven - contracts - 9bf5c2c05349 (visited on
03/11/2021).

[31] A. Soto Bueno, A. Gumbrect, and J. Porter, Testing
Java microservices: using Arquillian, Hoverfly, AssertJ,
JUnit, Selenium, and Mockito. Shelter Island, NY: Man-
ning Publications Co, 2018.

[32] M. Fowler, IntegrationTest, Jan. 2018. [Online]. Avail-
able: https : / / martinfowler. com / bliki / IntegrationTest .
html (visited on 07/07/2021).

[33] C. Sridharan, Testing Microservices, the sane way,
Blog, 2017. [Online]. Available: https://copyconstruct.
medium . com / testing - microservices - the - sane - way -
9bb31d158c16 (visited on 05/24/2021).

14

APPENDIX A
RESULT TABLES

TABLE A1
TEST STRATEGY OF PROJECT P1

Microservice Language LOC
Unit
tests

Integration
tests

Component
tests

CDC
tests

System
tests

Additional
tests

cognition Java 4210 58 0 5 6 0 architecture
ledcontrol Java 2125 7 0 9 5 0

Total – – 65 0 14 11 0

TABLE A2
TEST STRATEGY OF PROJECT P2

Microservice Language LOC
Unit
tests

Integration
tests

Component
tests

CDC
tests

System
tests*

Additional
tests

products Java 9231 94 21 52 7 1 smoke tests
ledger Java 19800 177 99 64 34 1 smoke tests
publicapi Java 26255 241 0 256 37 2 smoke tests
adminusers Java 21198 677 37 139 12 1 smoke tests
connector Java 84760 1635 118 543 48 1 smoke tests
direct-debit-connector Java 22809 342 126 77 1 0 smoke tests

Total – – 3166 401 1131 139 6
* Two generic system tests (“card”, “products”); test(s) selection depends on deployed microservice

15

TABLE A3
TEST STRATEGY OF PROJECT P3

Microservice Language LOC
Unit
tests

Integration
tests

Component
tests

CDC
tests

System
tests

Additional
tests

permissions Java 7310 94 11 18 13 0
customer Java 2562 15 0 0 20 0
user Java 2852 79 0 23 2 0
country Java 2746 41 0 43 5 0
OGEL Java 4287 48 0 47 8 0
permission-finder Java/HTML 10559 61 0 0 31 0
notification Java 766 13 0 0 1 0

Total – – 351 11 131 80 0

TABLE A4
TEST STRATEGY OF PROJECT P4

Microservice Language LOC
Unit
tests

Integration
tests

Component
tests

CDC
tests

System
tests*

Additional
tests

Accounting Java 515 1 0 0 1 2
API Gateway Java 459 0 0 2 2 2
Consumer Java 436 3 0 0 1 2
Kitchen Java 858 2 0 0 3 2
Order History Java 1092 1 12 0 1 2
Order Java 3306 12 4 1 4 2
Restaurant Java 440 2 0 0 1 2

Total – – 21 16 3 13 14
* Same system tests are run for every service

16

APPENDIX B
PROJECT DATA

TABLE B1
LINKS, TAGS AND COMMIT HASHES OF ANALYZED PROJECTS

Project Microservice URL Tag Hash

P1
cognition https://github.com/smart-football-table/smart-football-table-cognition n/a 6e2945c
ledcontrol https://github.com/smart-football-table/smart-football-table-ledcontrol n/a e348446

P2
adminusers https://github.com/alphagov/pay-adminusers alpha release-879 fca2f16
connector https://github.com/alphagov/pay-connector alpha release-2253 04c7a69
direct-debit-connector https://github.com/alphagov/pay-direct-debit-connector alpha release-716 43ed155
ledger https://github.com/alphagov/pay-ledger alpha release-860 032039d
products https://github.com/alphagov/pay-products alpha release-563 3fc69c8
publicapi https://github.com/alphagov/pay-publicapi alpha release-846 4717ef6

P3
permissions https://github.com/uktrade/lite-permissions-service 20190501.093137 f736aee
customer https://github.com/uktrade/lite-customer-service 20190501.091218 5311b07
user https://github.com/uktrade/lite-user-service 20190430.153446 38fe944
country https://github.com/uktrade/lite-country-service 20190430.155728 0f009ac
OGEL https://github.com/uktrade/lite-ogel-service 20190430.101159 fd5abd3
permission-finder https://github.com/uktrade/lite-permissions-finder 20200128.120620 ecd87ab
notification https://github.com/uktrade/lite-notification-service 20200128.120829 8bf0932

P4
Accounting
API Gateway
Consumer
Kitchen
Order History
Order
Restaurant

https://github.com/microservices-patterns/ftgo-application* 0.1.0.RELEASE a835e23

* All microservices stored in a single repository

17

