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Information Use in Embodied Question Answering Task
Yasmeen Emampoor
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
Embodied Question Answering (EQA) is a task in which an agent situated in vir-
tual environment navigates from its current position to an object (Navigation), and
then answer a question about it (Visual Question Answering, VQA), for example
“What color is the table in the table in the kitchen?” This project examines how
an agent modelled as a deep neural network uses semantic information from its lan-
guage model and visual information to answer questions in the second task. This is
important since due to the regular nature of the task and the dataset it could be
that the model is answering questions purely based on general semantic information
from its language model (tables are frequently brown) and not relying on the visual
scene, a phenomenon that is commonly known as hallucinating.
This project first examines the quality of the current task dataset, EQA-MP3D, and
presents a series of experiments where the visual information given to the model is
manipulated or corrupted. Next, this model is extended, giving it new sources of
information with an expectation that the model would use it to improve ground-
ing of questions and answers in perception. Structured information is found to be
particularly helpful, in the form of identified object regions.
Additionally, we examine the impact of question types on performance. The dataset
includes 3 distinct question types, color, color room, and location. The baseline
performance differs across types. The performance is also impacted by changes in
the input differently by question type.

Keywords: embodied question answering, visual question answering, multi-modality,
information fusion
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1
Introduction

Robots have the potential to be useful in many fields; they can perform tasks that
are dangerous for humans, as well as tasks that are simply tedious. These robots are
often operated based on pre-defined actions, or remotely. The potential increases
in efficiency from being able to give a goal or task in natural language and have
the robot interpret and determine how to carry out this task are huge. This would
make robots more accessible generally, since it would reduce the learning curve
for operating them. A patient in a hospital would likely find it much easier to
simply tell the robot ’I need water’, rather than having to find the ’water’ option
on some sort of touchscreen interface. It also would support situations where the
instructions being given are too complex for this kind of interface; one example of
this is human-robot teaming, in which groups of humans and robots cooperate to
achieve tasks in situations such as disaster scenarios [1]. Communication in natural
language can facilitate organisation where all of the humans are working with all of
the robots, rather than an individual human having control over one or many robots.
Situations like this require complex understanding of natural language instructions.
For a household agent, it would be beneficial to be able to interact with a robot in
a similar way to how one would with another person. However, this is only useful if
it is giving a relevant answer!

Human: Go get my computer from the office.
Robot navigates to the office, finds the computer, brings it back.
Human: Were my keys in the office?
Robot: I don’t know, I’ll go check.
Robot navigates to the office, finds the keys. Returns.
Robot: Yes, they are on the bookshelf.
Human: Thanks.

For this project, we consider a simpler conversation: the human asks a question,
and the robot answers.

Q: Where is the computer?
A: In the office.

In the Embodied Question Answering task, an embodied agent is asked a question,
has to navigate to the appropriate place to answer the question, and answers the
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1. Introduction

question. The project focuses on the question answering aspect of the task, after
navigation to the object or location has already been performed. In this project, we
examine how a simple agent model for the Embodied Question Answering task uses
information encoded in the features that have been chosen and trained upon. This
is an active area of research, since one concern with EQA models, and combined
visual/linguistic models in general, is how much they are actually using the visual
information, rather than relying on linguistic priors and biases. To be effective, an
agent needs to able to identify specific objects and locations, without being directly
trained on that environment, especially since environments change. Furniture might
move, a wall might be painted, and the agent needs to be able to adapt. Just
considering accuracy can give an inflated idea of an agent’s performance on the task,
since correct answers to questions could be due to linguistic biases or imbalances
in the dataset. This project uses a number of methods to try to determine what
features contribute to the model’s performance.

The contributions of this work are as follows:

• We examine the performance of the VQA portion of Das et. al’s EQA model.
We look at how it performs under feature ablation where the visual component
is blindfolded in several different ways.

• We study how additional additional structural and semantic representations
affects the performance of the model.

• Through this, we point out several shortcomings of the MP3D-EQA dataset
and identify possible directions for improvement.

Using a series of blindfolding experiments, experiments which disrupt the visual
input, on the model presented by Das et. al, we investigate how the model uses
the information given–visual (images from the end of navigation) and linguistic (the
question) [2]. We next explore giving the model new information, through added
input (semantic categories, object segmentation), modified points of view (turning
the camera at the end of navigation), and transfer learning (using an object detector
trained on a large image dataset). The main metrics considered in this project are
mean rank and accuracy on the MP3D-EQA dataset’s evaluation split [3].

The expectation was that the blindfolding experiments would show reduced perfor-
mance on these metrics if the model was using the visual information. This was
the case, and comparing the reductions across different blindfolding strategies gave
insights into how the visual information was being used. For the experiments that
increased or restructured the information available to the model, increases in per-
formance on these metrics would show that the new information or structure was
useful. Here we had mixed success. We found that the usefulness of information and
structures varied by question type. This builds on previous work that has mainly
discussed question types in terms of dataset generation, but has not heavily explored
the impact the question types have on performance [2][3].

The structure of this report is as follows: we begin with background on question
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1. Introduction

answering and embodied agents in Chapter 2, followed by an explanation and dis-
cussion of the tools and datasets used for the project in Chapter 3, the experiments
conducted in Chapter 4, and finally ending with discussion of the results and sug-
gested follow-up experiments in Chapter 5.
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2
Background

This chapter presents background on Embodied Question Answering and related
tasks, as well as the use of simulation in robotic research, with a presentation of the
project’s research questions in 2.6.

2.1 Grounding

Grounding is the process of giving symbols meaning. This is a fairly complicated
undertaking. In 1980, Searle, presented the ’Chinese Room Argument’ [4]. This
argument proposes a situation in which a person who does not read any Chinese
is put in a room and presented with a large amount of writing in Chinese. Next,
they are given a second batch of Chinese writing, along with rules, in English, for
how to connect the first batch to the second batch. Finally, they are given a third
batch of Chinese writing, again with rules in English to connect to the previous
batch, as well as how to produce ’responses’ in Chinese based on the third batch.
The participant is unaware that those providing the Chinese writing have set these
batches up as a ’script’, a ’story’, and ’questions’, and that the rules for the third
batch produce ’answers’. Searle then poses that the participant could become so
good at following the provided rules, that the answers they provide, in Chinese,
could be as good as answers they could provide in English (assuming that is their
native language), without ever understanding the content of the writing. Based
on this, Searle argues that an AI system performing this task can not be seen
to be understanding any more than this participant. From this, Harnad suggests
that some form of sensory input is required to give symbols meaning, and says
that ’there is really only one viable route from sense to symbols: from the ground
up" [5][6]. Grounding is key in creating robots that can interact with humans in
natural language. The robot must be able to link objects and actions to words. For
example, what does ’turn’ mean? In 2002, Lauria et al. presented a project in which
a robot was given natural language instructions, which were mapped to procedures
of identified primitives, such as ’turn’ [7]. More recently, Hermann et al. presented
a simulated embodied agent learning grounded language through a combination of
unsupervised and reinforcement learning, with minimal prior knowledge [8]. Another
approach with minimal prior knowledge was presented by Thomason et al., where
the robot learns through dialogue with a human [9].

5



2. Background

Grounding is also a challenge in tasks such as image captioning where models need
to produce labels for both the objects in the image and descriptions of the objects’
interactions with each other in natural language [10].

There has been argument that language models are able to encode perceptual in-
formation without grounding the text to perceptual input. [11] finds that large
language models, trained only on text, no visual input, are able to produce infor-
mation about color similarities/distances (e.g. red and orange are close colors).

2.2 Visual Question Answering
Visual Question Answering is a task in which an agent must answer a question
based on an image; these questions are "free-form and open-ended" [12]. This task
differs from image captioning in that answering these questions requires retrieving
directed information, considering both the image and the question. The question
may concern items that are not the obvious focus of the image. There is a huge
variety in possible question types in this task, including object detection ("how
many...?"), activity recognition ("Is this person doing ...?"), and knowledge-base
reasoning ("what is ... made of?"). VQA is a somewhat unusual natural language
processing task in that it is often implemented as a classification task, with the
agent choosing from a large number of potential answers, rather than generating an
answer. This means that the success of VQA can often be measured as accuracy to
the ground truth answer. However, VQA can also be implemented as a generation
task, for which other measures, like BLEU, which compares a generated output to
one or more good human outputs, can be used [13][14].

2.3 Navigation
Navigation is a common task for robots. Bonin-Font et. al describe it as "the
process of determining a suitable and safe path between a starting and a goal point
for a robot travelling between them"[15]. A variety of navigation strategies exist,
including map based strategies and strategies involving visual landmarks. Computer
vision researchers also are exploring how different representations of visual input
affect navigation [3].

One navigation task is Object Navigation, in which the agent, given an object’s
label, navigates to the object [16].

2.4 Embodied Question Answering
Embodied Question Answering combines the navigation and VQA tasks into one:
the embodied agent must navigate to find the object that the question refers to
[2]. For example, for the question ’What color is the refrigerator?’ the agent must
identify where the fridge is most likely to be, the kitchen, and navigate there be-
fore identifying the fridge and answering the color. EQA has been expanded to
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2. Background

Multi-Target Embodied Question Answering, in which questions can include mul-
tiple targets, allowing for comparison questions such as ’is the oven in the kitchen
the same color as the sink in the bathroom?’ [17]. Current approaches for this task
use templates for generating questions, due to the costs of collecting a large enough
dataset from humans. The EQA dataset includes nine question types: location,
color, color_room, preposition, existence, logical, count, room_count, and
distance, though the EQA-V1 dataset, used for the experiments by Das et.al in-
cludes only the first five question types [2]. The MT-EQA dataset adds six compar-
ison question types [17].

One concern with both EQA and VQA models is how much they actually incor-
porate the visual input in determining an answer. Anand et al. [18] conducted an
experiment on the EQAv1 dataset that found equivalent to slightly better perfor-
mance on the question answering task using simple question only models with no
visual input. This is interesting in that it suggests that the models are doing a good
job learning common sense knowledge from the textual content, but is a problem
in this particular task, since it means that the agent is not actually adapting its
answers to the specific situation. [19] creates a balanced VQA dataset, in which
each question is paired with two images with different answers. For example, ’Is the
umbrella upside down?’ has an image for yes, and an image for no. This dataset
reduces models’ ability to exploit language priors.

Another concern is the ’naturalness’ of the questions. This is more of a concern for
EQA; ’What color is the table in the living room?’ is just not a question that comes
up particularly often. Color questions are also likely to have language priors to
exploit. Although pink refrigerators exist, they are quite rare, and a model is likely
to get the answer correct quite often just by learning that appliances are usually
white or silver. A dataset with a number of unusually colored objects might be
beneficial in learning grounding in vision, but it is also important that the questions
also encourage use of vision. Prepositional questions, for example, would be useful
for this. Although there may be patterns in whether items are to the left or right
of something, they are not as strong as patterns in object colors.

An extended version of this task is Interactive Question Answering (IQA), in which
the questions require interaction with the environment, such as ’Do we need milk?’,
where the agent would have to open the refrigerator [20]. This extension should
overcome some of the concerns about EQA models, since the agent’s interactions
with the environment, such as opening the refrigerator, would be observable from
the outside. There is, however, still the concern that the model could learn patterns
such as ’people are more likely to ask if they need milk if there is little or no milk’.

2.4.1 Dialogue
VQA and EQA can be seen as simplified dialogue tasks. They contain a limited
number of question types, and the agent sticks to answering rather than employing
more sophisticated strategies, such as asking questions to acquire more information
when it is unsure. One interesting note about dialogue interactions between humans
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2. Background

and robots is that humans automatically adjust their strategies when interacting
with a computer. Tenbrink et al. found that people gave generally sparser commands
when interacting with a computer system than they did interacting with another
human, even when not given instructions to do so [21]. Humans also adjust while
speaking to each other. One important aspect of dialogue is reference. In dialogue,
references are often built by the participants together, via questions, clarifications,
and agreement, among other strategies [22]. This shows that there is a clear step
that will need to be taken between EQA and full interaction. Another important
note is that dialogue is often spoken, and in the situation of an embodied agent,
that would be the expectation. However, spoken language differs from written in a
number of ways, including pronunciation, false starts, and interruptions [23].

A current area of research is Visual Dialog, in which an agent holds a conversation
with a human about some visual content [24]. A relevant dataset for visual dialogue
in an interior setting is Meet Up!, a corpus of dialogue and images from where two
people played a game in a simulator–the participants were dropped into two separate
rooms, and had to navigate to each other by describing the rooms that they were
seeing [25]. A similar dataset is Where Are You (WAY), in which one participant
is the Observer, who has a first person view of the space, and the Locator, who
must determine where the Observer is in a top down map by asking the Observer
questions [26]. This task leads into another area of research, navigation based on
dialogue, in which the agent navigates based on language instructions, and can
ideally ask questions for clarification (making it a dialogue). Like visual dialogue,
datasets for dialogue-based navigation are often collected by having humans play
both roles. Cooperative Vision-and-Dialog Navigation is a dataset of over 2000
navigation dialogues [27]. It was collected via Mechanical Turk crowd-sourcing;
pairs used the Matterport3D simulator and a chat interface, with one person, the
oracle, able to see the ideal moves for the navigation task, giving natural language
instructions to the other person, the navigator’. The navigator could ask clarifying
questions. The oracle was also shown the navigator’s current visual frame. A similar
but smaller dataset is RobotSlang, consisting of 169 dialogues between a commander
referencing a static map and a human driver only able to see the camera view of
the robot they were controlling [28]. The commander relayed instructions to the
driver, based on their understanding of where the robot was. The driver was able to
ask clarifying questions, such as where exactly to turn, and the commander could
periodically ask localization questions, such as what color wall the driver could see.

2.5 Simulation
Working with embodied agents is resource intensive and makes reproducibility dif-
ficult to impossible, so simulation is beneficial for research. Within simulation,
environments can be kept consistent, allowing for both reproducibility of an exper-
iment and for comparison of different systems or methods. Simulation also allows
for the reuse of datasets of human descriptions or labels, which are time-consuming
and expensive to produce. Multiple simulation platforms for working with embod-
ied AI are available, including AI Habitat, MINOS, and RoboTHOR [29][30][31].

8



2. Background

Figure 2.1: A screenshot from the habitat sim interactive viewer

AI Habitat is used for this project. Habitat’s current main focus is navigation,
mainly through indoor spaces, but there is some ability for object interactions–for
example moving a chair from one point to another. New objects can also be added
to the space. Fig. 2.1 shows a screenshot from the habitat sim interactive viewer.
Habitat-PyRobot Bridge is a library, written by members of the Habitat team, to
support the transfer of a simulated agent in Habitat to a physical robot [32]. Various
scene datasets are supported by Habitat, the most used one being Matterport3D, a
dataset of real interiors with human annotation of objects [33]. Other datasets are
also available, such as Replica and Gibson [34][35].

2.6 Research Questions
Embodied Question Answering is interesting in that it requires specific identifica-
tions; people’s homes will have multiple tables, and if someone asks their embodied
agent about a specific table, they need the agent to be able to identify it. However,
it is also a situation where one does not want to have to train their agent from
scratch in every new location. If we see this as a step towards a house or office as-
sistance agent, the typical user cannot generate their own dataset for their location
and then spend days training the agent in its current environment. The agent needs
to be able to give specifics about objects it may never have seen before. So, we
need an agent to be able to leverage information from other locations or contexts,
while being able to be specific about the current location. Broadly, the questions
this project investigates are:

• What are the limitations of the current EQA dataset (in regards to the VQA
task)?

• Is the model using available information in the expected way?

9



2. Background

Is it identifying specific objects visually?
• Does a similar model given more information perform better?

Information from the same context?
Information from another context?

10



3
Toolbox

We are working with AI Habitat, a simulation platform for working with embodied
AI [29]. It consists of two parts, Habitat-Sim, the 3D simulator, and Habitat-Lab,
the library for embodied AI development.

3.1 The Model

We are starting with the Embodied Question Answering baseline in Habitat-Lab,
which consists of three parts, a Convolutional Neural Network (CNN) for initial fea-
ture extraction, a navigation module, called PACMAN, and a question answering
module [2]. The CNN feature extractor is trained on three tasks: RGB recon-
struction, semantic segmentation, and depth estimation. The navigation module
is trained to imitate shortest path navigation. The question answering module is
given the last five frames of navigation (in training taken during ground-truth short-
est path navigation, where a frame is the view the agent has after taking an action),
and then predicts an answer from a set of possible answers (approaching this as a
classification task). The training of the Habitat-Lab version of the model1 differs to
the version presented in the Embodied Question Answering paper [2]. For the orig-
inal model, the CNN, question answering, and navigation modules were all trained
separately, and then reinforcement learning was used to fine-tune the navigation
module and more strongly link the question answering and navigation modules, by
using successful question answering as part of the reward for the navigation module.
This reinforcement learning is missing from the habitat version of the model; the
components of the model are only trained separately.

A diagram of the Habitat version of the VQA portion of the baseline model can
be seen in 3.1. Fully connected layer refers to a sequence of a linear layer, a ReLU
layer, and a Dropout layer with p=0.5.

1available here: https://github.com/facebookresearch/habitat-lab/tree/master/
habitat_baselines/il
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Figure 3.1: VQA Model
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3.2 The Datasets
We are using the Matterport3D dataset, a dataset of real interiors with human
annotation of objects, as our scene dataset [33]. We are using the MP3D-EQA
task dataset, created using code to automatically generate questions and answers
to correspond with annotated scenes in the Matterport3D dataset2 [3]. An example
episode from the task dataset can be seen in Appendix B. The scene dataset is used
by Habitat to render the scenes. The task dataset is used to place the agent in the
scene, and snapshots (frames) are taken at each position in the navigation path.
These frames are then used as the visual input for the VQA model.

3.2.1 Interiors

3.2.2 MP3D-EQA Dataset
This dataset contains questions of three types: color_room: What color is the
<obj> in the <room>?, color: What color is the <obj>?, and location: What
room is the <obj> located in?. This dataset is based off of the EQA-V1 dataset,
which was developed by Das et al. and used in the development of the EQA model
described above3 [2]. There are some differences between the datasets, however.
The EQA-V1 dataset included a fourth type of question, prepositional questions:
What is <on/above/below/next to? the <obj> in the <room>?, but these are not
present in MP3D-EQA. They were removed because, [3] say, "we found those ques-
tions in MP3D to be relatively few, with strong biases in their answers". Existence
questions, Is there a <obj> in the <room>?, were also included in EQA-V1, but
[3] doesn’t mention them at all. Other question types were proposed in [2] but not
implemented. EQA-V1 was built based on the SUNCG scene dataset, which is no
longer available, due to a legal dispute [36].

The dataset has the most ’color_room’ questions, as shown in Tab. 3.1.

Table 3.1: Question Type Breakdown

question type percentage of training set percentage of evaluation set
color_room 69.85908 68.46154
color 15.91858 17.69231
location 14.22234 13.84615

The dataset has a fixed train/evaluation split. There is one object which only occurs
in the evaluation set (’toaster’), and one answer that only occurs in the evaluation
set (’gym’). More details about the answers can be found in Appendix C.

2The dataset is available in the habitat-lab repository here: https://github.com/
facebookresearch/habitat-lab/#data

3Code for generating EQA-V1 questions is available here: https://github.com/
facebookresearch/EmbodiedQA
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3.2.2.1 Limitations

The paper which introduces the MP3D-EQA dataset was mainly focused on the nav-
igation aspect of the task, and the question types reflect that. A color or location
question should theoretically be a good indication of whether or not the agent has
successfully navigated to the object. On the other hand, actually answering the
question may not require as complex of reasoning in that it shouldn’t require a long
memory to answer.

However, color identification is actually a very difficult task. One issue is purely
visual–an object’s color looks different in different lighting conditions, so someone
might see something as light grey in good light, but in dimmer light only see it as
grey. Another, more complex issue, is related to language: the way that humans
identify and refer to colors is context dependent. Monroe et al. created a dataset
of color descriptions using pairs of Amazon Mechanical Turk participants [37]. One
member of the pair was the speaker, the other was the listener. Both people could
see the same three color samples, and the speaker was given one of them as the
’target’, which they needed to convey to the listener. There were three possible
situations: baseline, or ’far’, where all three samples were very distinct, such as
pink, green, and yellow; split, where one of the other colors (called distractors) was
close to the target, such as two shades of blue, and then the last distractor was far,
for example yellow; and close, where both distractors were similar to the target (all
shades of blue, for example). They found that in the ’split’ and ’close’ conditions,
the speaker used more comparatives (i.e. lighter blue) and superlatives (i.e. the
lightest one), and also was more likely to use ’high specificity’ color terms, such
as ’magenta’ or ’teal’, using more basic terms, such as ’red’ or ’blue’, in the ’far’
condition. This suggests that people would adjust their descriptions of an object’s
color based on what is around it, which is not taken into account by this dataset.

Another color issue, specific to the MP3D-EQA dataset, is that the colors used
for annotation (done by Amazon Mechanical Turk workers), come from Kenneth L.
Kelly’s ’Twenty-two colors of maximum contrast’, with the addition of ’off-white’ and
’slate grey’, since they are very common in indoor scenes [38][3]. However, Kelly’s
colors were not designed to be natural color descriptions; they were developed as a
set of colors that could be used in situations where contrast was needed–for example
color coding of graphs. This is shown by the inclusion of both ’buff’ and ’yellowish
pink’ in the color set, both of which are unlikely to be common color descriptions.
(The names have been adjusted slightly in the EQA dataset. Buff is tan, and all of
the ’color-ish color’ names have been changed to simply ’color color’, making them
less natural.) Another issue is that the set contains ’white’ and ’off-white’, as well
as ’grey’ and ’slate grey’, pairs which are likely to be confused in different lighting
conditions.

Another issue with the dataset is the answer distribution. As can be seen in Fig. 3.2,
some answers, such as brown, are overrepresented in the dataset. The dataset was
developed in an experiment focused on navigation, so some items in the dataset are
identical except for the navigation path. For the VQA portion, this means that the
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Figure 3.2: Answer Distribution

images likely have limited differences from each other and the training of the VQA
model contains sets of 15 nearly identical training items for each base question.

The dataset of questions and answers for EQA in Habitat was automatically gen-
erated, and may contain some errors. One example of this is shown in Fig. 3.3, in
which the VQA model answered that the sofa in the living room is tan, but the
ground truth answer is that it is yellow. However, looking at the image, I see a tan
sofa and a yellow armchair. It seems that at some point, the armchair was annotated
as a sofa, but the model is identifying the tan sofa as the sofa being asked about.

Question: What color is the sofa in the living room?
Prediction: tan
Ground Truth: yellow

Figure 3.3: Error Example

One last issue with the dataset is that the render quality is sometimes poor. Most
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scenes render well, but an example of a very badly rendered scene is Fig. 3.4.

Question: What color is the plant in the kitchen?
Prediction: olive green
Ground Truth: green

Figure 3.4: Rendering Error Example
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4
Experiments

These experiments are designed to investigate different aspects of information given
to the agent, in order to improve performance in the question answering portion of an
embodied question answering task. The first experiment establishes the baseline for
comparison. The second experiment is really a series of experiments, in which visual
information is removed or disrupted, in order to establish how the baseline model
is making use of visual and textual information. The third experiment gives the
agent categorical information about the things it sees–another type of information
about its current location. The fourth experiment gives the agent new viewpoints
during question answering, broadening the visual information the agent has about
its current location. The fifth experiment replaces the original CNN with a pre-
trained object detector CNN, and experiments with different initial processing of
the visual information, as well as the use of transfer learning from a broader context.
Also included is a short study to determine the impact of the dataset imbalance on
learning by balancing the question types.
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4.1 Experiment 1: Baseline

4.1.1 Method
The first step is to train and evaluate the baseline to be used as the point of compar-
ison for all following experiments. This is the CNN and VQA portions of the EQA
baseline in habitat-lab, described in 3.1. A diagram of the baseline VQA model can
be seen in Fig. 3.1. An example of the input frames and question and output answer
can be seen in Fig. 4.1.

Question: What color is the fireplace?
Prediction: Brown
Ground Truth: Black

Figure 4.1: Example VQA Result

4.1.2 Results
Fig. 4.2 shows metrics for each batch during training, with a weighted average
shown in orange. Fig. 4.3 shows metrics averaged for each epoch during the baseline
evaluation. As can be seen in Fig. 4.4, the evaluation loss decreases until epoch 7,
where it spikes, the model achieves its lowest loss at epoch 8.

Table 4.1 shows the model’s epoch with the lowest loss.

Table 4.1: Lowest Loss Epoch During Baseline Evaluation

Checkpoint 8
Loss 2.204141
Overall Mean Rank 4.35231
Mean Rank on Color Room Questions 3.611236
Mean Rank on Color Questions 2.692754
Mean Rank on Location Questions 10.137037
Overall Accuracy 0.38
Accuracy on Color Room Questions 0.373783
Accuracy on Color Questions 0.527536
Accuracy on Location Questions 0.222222
Kappa Score -0.004667

The mean rank metric shows how well the model is ranking the answers. This is
a useful metric to consider, since the answer distribution is unbalanced, as seen in
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(a) Accuracy (b) Mean Rank

Figure 4.2: Training Metrics

(a) Accuracy (b) Mean Rank

Figure 4.3: Baseline Evaluation Metrics

Figure 4.4: Baseline Training and Evaluation Loss
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Fig. 3.2. For this metric, the lower the rank, the better. In this case, the maximum
possible rank is 35, because that is the number of possible answers. An average
mean rank of 35 would mean that the correct answer was in last place. We can
see that the baseline model performs slightly better on the color questions than on
color room, and much better than on location questions.

Figure 4.5: Baseline Correct Answers by Question Type

When exploring accuracy, there are a number of different factors to consider. One is
question type. As can be seen in Fig. 4.5, using accuracy as a metric, the question
type performance aligns with the performance considering mean rank.

Color is the simplest question type, requiring only that the object is recognized,
and that the color is recognized. This may help to explain its higher performance
compared to the other question types. Location questions in particular require
recognition of multiple features and objects to determine the room, rather than only
the target object. However, at this point, the color room question type should be
the same as color–the navigation to the correct room is already done. The extra
information in the question may be hampering performance. However, the reduced
performance could also be due to larger variety in the color room questions; the
category is much larger. An experiment reducing the size of the color room question
type category could be done to explore this further. One note here is that color
room questions might be more interesting in models with memory–a model where
the agent is not expected to be looking at an item when answering questions about
it.

Another factor to consider is the distribution of potential answers, since the problem
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is being attacked as a classification task. There is the possibility of getting the correct
answers by chance, and inflating the accuracy. A metric that takes this into account
is Cohen’s Kappa, shown in Eq. 4.1 [39].

κ = (p0 − pe)/(1 − pe) (4.1)

where p0 is the observed agreement, in this case accuracy, and pe is the expected
agreement, calculated by Eq. 4.2 [40] [41].

pe =
∑
k∈K

P (k|classifier) · P (k|ground_truth) (4.2)

A kappa value below zero means chance agreement, and the closer the value is to 1,
the higher agreement is found. Kappa is most commonly used in annotation tasks,
to measure inter-annotater agreement, but our case, one of the annotators is the
model, and the other is the ground-truth for the evaluation set. The kappa value
is a harsh metric, focused on how well the model is learning specifics. Learning
distributions is part of what the model is expected to do, but this metric factors
that out of the model performance, and estimates how much the model is able to
learn from features. Kappa values are also lower for imbalanced datasets, which, as
can be seen in Fig. 3.2, ours is.

A table showing suggested division for interpreting the strength of a kappa value,
suggested by Landis and Koch, can be seen in Table 4.2 [42]. As can be seen in
Table 4.1 the kappa score for the baseline model reports poor/chance agreement.
This range from Landis and Koch is designed for interpretation of kappa results for
human annotation, however, and does not address the issue of dataset balance.

Table 4.2: Kappa Interpretation

Kappa Statistic Strength of Agreement
<0.00 Poor
0.00-0.20 Slight
0.21-0.40 Fair
0.41-0.60 Moderate
0.61-0.80 Substantial
0.81-1.00 Almost Perfect
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4.2 Experiment 2: Manipulation of Visual Input

In this series of connected experiments, we examine if and how the model is using
visual input.

4.2.1 Blindfolded Evaluation

4.2.1.1 Method

In this experiment, we would like to determine if the model is actually considering
the visual input when answering questions. This is done via a blindfolding test.
There are a number of different ways to conduct blindfolding tests, depending on
what you want to test. In this case, to investigate what the model is learning
during training, an experiment is conducted in which the model is trained normally
(the baseline model was used), and then blindfolded only during evaluation. If the
model’s performs worse blindfolded, it is using and learning from visual information.

The model is given zeroes instead of the visual content of the scene. This is done by
duplicating and modifying the method that converts the .jpgs into numpy arrays to
be input to the model, so that it produces an array of zeroes of the same size instead,
sending a black image as the input to the model. An example can be seen in Fig. 4.6.
The point of this blindfolding is to determine if the VQA model is considering the
visual input when answering the questions. However, one consideration here is that
the incorrect visual input could be disruptive to the model. The corrupted images
are sent into the CNN at the beginning of the model, and the output values from the
CNN are propogated through the model. The question is multiplied by disrupted
values, and this output is what is sent to the classifier. This means that disrupting
the initial visual input also affects the language later. Fig. 4.7 shows the path the
information from this modified visual input takes through the model, highlighted in
red.

Question: What color is the plant in the hallway?
Prediction: green
Ground Truth: white

Figure 4.6: Example Blindfolded Result
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Figure 4.7: VQA Model with path of modified visual input traced in red
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4.2.1.2 Results

Table 4.3 shows the lowest loss epoch of the model when evaluated on black images.
We can see that, on black images, the model has reduced accuracy on all question
types except location, and higher mean rank on all types.

Table 4.3: Evaluation Metrics for Model evaluated on Black Images

Metric Value Difference from Baseline
Checkpoint 9 1
Loss 2.364372 0.160231
↓ Overall Mean Rank 5.507692 1.155382
Mean Rank on Color Room Questions 4.561798 0.950562
Mean Rank on Color Questions 3.086957 0.394203
Mean Rank on Location Questions 13.277778 3.140741
↑ Overall Accuracy 0.246154 -0.133846
Accuracy on Color Room Questions 0.258427 -0.115356
Accuracy on Color Questions 0.217391 -0.310145
Accuracy on Location Questions 0.222222 0
↑ Kappa Score 0.003501 0.008168

Evaluation results are reported for the lowest loss epoch during evaluation. The second column
indicates absolute difference from the baseline. We also report relative percent difference for mean
ranks. Green rows indicate improvement. Intensity of row color is scaled by magnitude of difference
from baseline. The same applies to all evaluation tables later in this report.

4.2.2 Blindfolded Training

4.2.2.1 Method

For this experiment, the same function used to blindfold the model in Experiment 1
is also applied during training, in order to to attempt to address the question of how
much the model is being confused by the ’new’ case of a black image after training
with normal images during Experiment 1, as well as to have a ’text-only’ baseline
without changing the architecture of the model. However, the pre-trained CNN is
not retrained.

4.2.2.2 Results

As can be seen in Table 4.4, the model trained on black images has reduced accu-
racy on all question types, but slightly lower mean rank on color and color room
questions. The loss is incredibly high. When trained on black images, the model’s
decrease in performance from baseline is less than when the model trained normally
is evaluated on black images, except for location questions, which are not effected
by the blindfolding in the first experiment, but have a 22% decrease in accuracy
here.
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Table 4.4: Evaluation Metrics for Model Trained and Evaluated on Black Images

Metric Value Difference from Baseline
Checkpoint 9 1
Loss 67201.890625 67199.686484
↓ Mean Rank 4.453846 0.101536
Mean Rank on Color Room Questions 3.157303 -0.453933
Mean Rank on Color Questions 2.26087 -0.431884
Mean Rank on Location Questions 13.666667 3.52963
↑ Overall Accuracy 0.323077 -0.056923
Accuracy on Color Room Questions 0.348315 -0.025468
Accuracy on Color Questions 0.478261 -0.049275
Accuracy on Location Questions 0 -0.222222
↑ Kappa Score 0.014279 0.018946

4.2.3 Random Noise

4.2.3.1 Method

In this experiment, instead of black images, which would give a static, theoretically
recognizable color, on evaluation the model is given images filled with random noise.
Like in the first blindfolding experiment, this is a new case for the model, since it
was trained on normal images from the dataset. Figure 4.8 shows an example.

Question: What color is the plant in the dining room?
Prediction: olive green
Ground Truth: green

Figure 4.8: Random Noise Example

4.2.3.2 Results

When evaluated on random noise, the accuracy is reduced on all question types,
and the mean rank is also higher across the board, with the most significant change
being to location types, where the mean rank has increased by around 8. These
differences from baseline are greater in magnitude than the differences from baseline
in evaluation with black images. This makes sense considering that this random
noise is a fully new case for the model. Although a fully black image is new for
the model in previous experiment, the model is still expecting dark areas, such as
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shadows, or even large sections of black, such as in the bad render shown in Fig. 3.4.
CNNs are designed to find patterns, and although black is a simple pattern, it is
still a pattern, unlike the randomness of the noise here.

Table 4.5: Evaluation Metrics for Model Evaluated on Random Noise

Metric Value Difference from Baseline
Checkpoint 2 -6
Loss 3.076424 0.872283
↓ Mean Rank 6.898974 2.546664
Mean Rank on Color Room Questions 5.51236 1.901124
Mean Rank on Color Questions 3.318841 0.626087
Mean Rank on Location Questions 18.32963 8.192593
↑ Overall Accuracy 0.211282 -0.168718
Accuracy on Color Room Questions 0.258427 -0.115356
Accuracy on Color Questions 0.194203 -0.333333
Accuracy on Location Questions 0 -0.222222
↑ Kappa Score -0.004550 0.000117

4.2.4 Shuffled Frames from the Dataset

4.2.4.1 Method

In this experiment, the model is given images from the dataset, but not the correct
images for the question. This gives the model visual structure, but still not actual
views on the objects. This is done to give insight into whether the model is actually
doing object recognition, or if it is learning other helpful patterns in the images.
Work in multi-modal (vision and language) machine translation has found that
multi-modal architectures are often insensitive to incongruent images [43].

This is done was by modifying the original dataset file, creating a new shuffled
one. As can be seen in Appendix B, episodes have a question, which includes
the question, answer, question type, and question and answer token IDs. These
questions are shuffled between episodes. Since there are duplicate questions, with
differing navigation paths, it is possible that a question could still have a valid set
of images (meaning a set of images originally matched to the same question), but
this possibility is low–for an individual question, the probability of a match is less
than one percent. An example episode result can be seen in Fig. 4.9.

4.2.4.2 Results

Table 4.6 shows the lowest loss epoch of the model evaluated on shuffled scenes.
Again, this disruption of the visual input results in higher mean ranks for all ques-
tion types, and reduced accuracy on all categories except location. However, the
decrease in performance is lower than the decrease in either the case of evaluation on
black images or evaluation on random noise, supporting the idea that the model is
using patterns in the images as support. [44] finds that models are not very good at
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Question: What color is the door in the kitchen?
Prediction: brown
Ground Truth: white

Figure 4.9: Example Shuffled Result

identifying conflicts between visual and linguistic information; models were bad at
identifying incorrect captions. This suggests that the issue of relevant visual input
extends beyond our model; the use of visual and linguistic information together is
an area for future work.

Table 4.6: Evaluation Metrics for Model Evaluated on Shuffled Scenes

Metric Value Difference from Baseline
Checkpoint 10 2
Loss 2.393173 0.189032
↓ Mean Rank 5.144615 0.792305
Mean Rank on Color Room Questions 4.157303 0.546067
Mean Rank on Color Questions 3.034783 0.342029
Mean Rank on Location Questions 12.722222 2.585185
↑ Overall Accuracy 0.266154 -0.113846
Accuracy on Color Room Questions 0.264419 -0.109364
Accuracy on Color Questions 0.307246 -0.22029
Accuracy on Location Questions 0.222222 0
↑ Kappa Score 0.012831 0.017498

4.2.5 Summary
These experiments do show that the model is learning to use visual information.
All methods of blindfolding or visual manipulation result in lower performance.
Beyond this, these experiments also suggest that the model is not just using the
visual information the way we as humans would expect, identifying objects and
their properties, but also is using patterns to support its predictions in some other
way. This is based on the fact that when given shuffled scenes from the dataset, the
decrease in performance was lowest (around 11.5%), and when given random noise,
the decrease was highest (around 17%).

These experiments also suggest that the visual information may not be used as much
as we would hope, since when the model is trained on black images, the decrease in
accuracy is only 5% (without the training the accuracy decreases by 13.5%). Since
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the model can tell you what color something is with only 5% less accuracy when it
can’t actually see it, the dataset appears to have a lot of exploitable biases.

Location questions generally appear to suffer less: there are likely two reasons for
this. One, initial performance was so bad that there isn’t as much room for decrease
in performance. Another is that there are only 15 distinct question-answer pairs in
the evaluation set. Of these, seven are also present in training, and two of these only
have one possible answer in training. This may result in more exploitable language
biases in this category than color or color room.
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4.3 Experiment 3: Basic Semantic Categories

4.3.1 Method
In this section we examine if supplying the model with additional knowledge about
objects in the scene can benefit its learning. Information fusion is an actively devel-
oping topic, focused on developing models that have and use more knowledge about
the real world [45]. Alongside perceptual knowledge, language is a useful source of
knowledge, since it is semantically dense [46]. In this experiment, we use ID-based
encoding as a simple form of semantic information.

Schüz and Zarrieß found that models with prior knowledge about objects were able
to make better predictions about those objects, and they found that an ’Early
Fusion’ strategy of integrating the object type information allowed the model to
make better predictions about atypical colors of common objects [47]. Since one
of the concerns with EQA models is that they are relying too heavily on common
sense knowledge of objects, this is exactly what we would like to achieve–improving
predictions about specific objects, which, if the prior knowledge about colors is not
correct for the object, may be of atypical color. Based on this, we combine category
information about objects in the scene with the visual features before attending
with the question, as shown in Fig. 4.10. The categorical information comes from
the ’semantic sensor’ of the agent in habitat-sim, which reads annotations from
the dataset. It reads annotations of object instances, which can then be mapped to
category ids. The list of category IDs can be found in appendix A. This new input
is a tensor with an integer category label for each pixel of the image.

The categories are broad, however there is overlap between the labelled categories
and the items that questions ask about. For example, fireplaces are labelled (27),
and the question ’What color is the fireplace in the living room?’ occurs in the
dataset. On the other hand, all appliances are labelled the same (37), but questions
ask about specific appliances, such as ’What color is the oven?’

4.3.2 Results
Table 4.7 shows the epoch with the lowest loss for the model given semantic cat-
egories. The model achieves slightly lower mean ranks for all categories, but also
around 1% lower accuracy for all question types except location, which has the
same accuracy as baseline. This means that the model is ranking answers better,
but the number one answer is wrong slightly more often. However, these differences
are so small, that, especially with the kappa values being below zero, no strong
conclusions can be drawn. From the improved mean ranks, we can see that the
model is trying to fuse information together, and that very basic semantic category
knowledge is helpful for ranking. A potential follow-up is discussed in 5.1.1.
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Figure 4.10: Model With Semantic Category IDs as 3rd input. Additions to
baseline model in yellow.
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Table 4.7: Evaluation Metrics for Model with Semantic Categories

Metric Value Difference from Baseline
Checkpoint 6 -2
Loss 2.108628 -0.095513
↓ Mean Rank 3.985128 -0.367182
Mean Rank on Color Room Questions 3.388764 -0.222472
Mean Rank on Color Questions 2.368116 -0.324638
Mean Rank on Location Questions 9.0 -1.137037
↑ Overall Accuracy 0.371282 -0.008718
Accuracy on Color Room Questions 0.365543 -0.00824
Accuracy on Color Questions 0.510145 -0.017391
Accuracy on Location Questions 0.222222 0
↑ Kappa Score -0.001182 0.003485
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4.4 Experiment 4: Look Around

4.4.1 Method
In this experiment we attempt to increase the usefulness of the visual information
being provided to the model. The VQA model takes in the last five frames of nav-
igation as its visual input. However, as seen in Fig. 4.1, these images are very
similar to each other, and often have odd angles of the object in consideration.
This experiment implements a look around procedure, where the agent takes a se-
ries of moves (look left, look right, etc) at the end of navigation, so that the last
five frames give more varied viewpoints of the room and object. The hypothesis
here is that the model should, given the larger visual context, perform better on
location questions. The ’frame queues’ for each episode are generated before be-
ginning training or evaluation, by saving the RGB (red-green-blue) observations of
the agent at specified positions and rotations 1. In the baseline model, this frame
queue is those last five frames of navigation. The attention section of the model
then chooses which frames to focus on when answering the questions–it weights the
most important frames. For the look around experiment, this queue is: the final
position and rotation of navigation, a frame from the same position turned 0.523599
radians (30°) to the left, same position turned 0.523599 radians (30°) to the right
(from the original rotation), same position turned up 0.2617995 radians (15°) (from
the original rotation), and the same position turned down 0.2617995 radians (15°)
(from the original rotation). As can be seen in Fig. 4.11, this gives more variation
in the final five frames.

Question: What color is the sofa in the living room?
Prediction: silver
Ground Truth: yellow

Figure 4.11: Look Around Example

Rotations are represented as quaternions which are a commonly used representation
in game animation and similar applications [48]. These quaternions are given as [x,
y, z, w]2. Although one of the benefits of quaternions is the ability to do rotation
around all axes at once, for this experiment, only one axis is ever rotated around at
a time. The equations below show the calculation for rotating around the y axis:

1These are given in a global coordinate frame.
2This corresponds to w + xi + yj + zk, where i, j, k are unit vectors pointing along the three

axes.
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o r i g i n a l _ r o t a t i o n = [ x0 , y0 , z0 , w0 ]
r o t a t i o n = [ 0 , 1 , 0 , rotation_amount ]
new_quaternion = o r i g i n a l _ r o t a t i o n ∗ r o t a t i o n

4.4.2 Results
Giving the model greater variety in views results in lower mean ranks, at the lowest
loss epoch, for all question types, and higher accuracy for color room and location
questions (as well as overall). Color questions have a decrease in accuracy. These
differences are very small, however. It is possible a look around that gives view-
points that vary more would provide more useful information for the model. A few
possibilities for this are discussed in 5.1.1.

[49] found that the visual context is not a large factor in a model generating referring
expressions. They suggest two potential conclusions from this: one, that humans
also do not consider the context when generating their references, so the models
don’t need it, or two, that the problem is too complicated to model with simple
representations of visual context. Our increase in performance could be due to
giving the model more patterns to latch onto and use, even if they aren’t being used
in a way recognisable to a person. Another possibility is that our visual context
is more complicated than that of [49], closer to that experienced by humans. In
our case, location questions were most improved by the increased visual context.
This could be due to the fact that locations are not identifiable ’objects’, they are
actually concepts built by multiple objects–yes, if you see a refrigerator, you are
probably in a kitchen, but this dataset actually includes a refrigerator in a lounge,
and to recognise this, you would need to notice other objects in the room, such as
the couch. The conclusion here is that the context required to answer a question
varies based on the task and question itself.

Table 4.8: Evaluation Metrics for Model using Look Around

Metric Value Difference from Baseline
Checkpoint 7 -1
Loss 2.140735 -0.063406
↓ Mean Rank 3.890256 -0.462054
Mean Rank on Color Room Questions 3.26367 -0.347566
Mean Rank on Color Questions 2.281159 -0.411595
Mean Rank on Location Questions 9.044444 -1.092593
↑ Overall Accuracy 0.405128 0.025128
Accuracy on Color Room Questions 0.40824 0.034457
Accuracy on Color Questions 0.492754 -0.034782
Accuracy on Location Questions 0.277778 0.055556
↑ Kappa Score -0.009582 -0.004915
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4.5 Experiment 5: Faster R-CNN
This experiment replaces the original CNN with an object detecting CNN, pre-
trained on a large image dataset.

4.5.1 Method
The object detecting CNN used is Faster R-CNN [50]. It uses a Region Proposal
Network to predict object bounds and likelihoods, and then region of interest pooling
to extract features for each bounding box. The version of Faster R-CNN used in this
experiment is the one described in [51]. This version is used together with ResNet-
101 [52]. The Faster R-CNN network is used to identify object bounds, regions
exceeding a confidence threshold are identified, and then these regions are given to
the ResNet-101 CNN to produce feature vectors representing the regions, giving a
set of V = {v1, ..., vm}, where vm ∈ R1×D, with M = 36 and D = 2048. (36 objects
from the Faster R-CNN network are used.) The model also produces attributes and
object labels, but these are not used in this experiment.

In this experiment, instead of using the last five frames of navigation as input,
only the final frame was used. The original model runs the images through a CNN
pretrained on the dataset, the CNN outputs features for the entire image, and the
rest of the model uses these as input. In this experiment, the final frame was run
through Faster R-CNN instead, and instead of features for the entire image, the set
of individual object features (V ) were used as input to the VQA model. The model
can be seen in Fig. 4.12. This change to the architecture means that the attention
portion, instead of weighting the five frames for relevance, weights the 36 objects
from the single frame.

One consideration here was the summation layer. In the original model, this was
used to combine the five frames, after the previous steps have determined the most
relevant ones. In this situation, the frames likely have very similar features–they’re
not fully distinct. However, in this experiment, we don’t have frames, we have
objects, and these objects are distinct. Combining these distinct objects, after the
relevant ones have been determined, could give a nice summary of the relevant
objects in the scene, or could cause objects to be combined in ways that make them
difficult to learn between scenes. Experiments both summing and not summing these
weighted object feature vectors would be beneficial, but, due to time constraints,
only the experiment with summation was done.

4.5.2 Results
This architecture improves some aspects of performance. As seen in Table 4.9, the
model using FRCNN object features performs similarly to baseline in terms of overall
mean rank, with decreased performance on color room and color questions, and
increased on location questions. The model also does 15% better than baseline on
location questions, but 5.9% and 10.7% worse than baseline on color and color
room type questions respectively. This suggests that individual object features are
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useful for determining location. The lowered performance on questions related to
color may be due to the way that the model summarizes the objects in the scene.
The kappa scores also show that the model’s performance is more likely to be due
to learning, rather than chance, compared to the baseline.

By identifying objects, we get a deeper semantic understanding of the scene. How-
ever, since we only use a single frame, we lose information from the previous frames.
This would be a concern, but for this model, it does not seem to have a great
impact. The original frames are all very similar, and even implementing the look
around procedure to expand the visual context had a limited effect.

Table 4.9: Evaluation Metrics for Model using FRCNN Object Features as Input

Metric Value Difference from Baseline
Checkpoint 18 10
Loss 2.116223 -0.087918
↓ Overall Mean Rank 4.294872 -0.057438
Mean Rank on Color Room Questions 3.931086 0.31985
Mean Rank on Color Questions 3.681159 0.988405
Mean Rank on Location Questions 6.877778 -3.259259
↑ Overall Accuracy 0.341026 -0.038974
Accuracy on Color Room Questions 0.313858 -0.059925
Accuracy on Color Questions 0.42029 -0.107246
Accuracy on Location Questions 0.374074 0.151852
↑ Kappa Score 0.019255 0.023922

One point to mention here is that the original CNN was designed to be used for
both question answering and navigation. Since this replacement CNN does not do
depth estimation, it likely wouldn’t work for navigation. Having two separate CNNs
makes this model bulkier.
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4.6 Study: Dataset Resampling
Since the model has varying accuracy by question type, as seen in Fig. 4.5 and the
question types are not balanced in the dataset, with the color room type being sig-
nificantly larger than the other two categories, we conduct an additional experiment
in which the other two categories are made larger, to match the size of the color
room question category. One note is that in previous experiments, color questions
actually perform highest, although they are not the largest category. This may be
due to them being a simpler question to answer, and they do share some possible
answers with the color room questions, which may make the impact of the dataset
imbalance lower on the color questions than the location questions.

Imbalanced datasets in classification problems often result in classifiers ignoring
smaller classes. There are a number of strategies to mitigate this, and one of the
simplest is sampling to adjust the dataset [53]. In this experiment, rather than
sampling based on the classes (the answers), we sample based on the question type.
This indirectly also affects the answer distribution, since, for example, ’brown’ is
not an answer for any location questions.

4.6.1 Method
The original training set contains 8031 color_room questions, 1830 color questions,
and 1635 location questions. Using random sampling with replacement from the
original dataset, the color and location types are bootstrapped to be contain 8031
questions as well3. The original baseline model is then trained on this larger dataset.
The new model is then evaluated on the original evaluation set.

4.6.2 Results
Evaluation metrics for this experiment can be seen in Table 4.10. Boosting the
smaller question types improves accuracy, but accuracy is reduced on color ques-
tions, and the overall boost is less than 1%. Color room and location improve
2.5% and 2.9% respectively. The positive kappa score does suggest that the model
is now performing better than random sampling from the distribution. This sug-
gests that bias has been reduced, which is interesting given that the category with
reduced performance here is not the one that was over-represented in the original
training set. This suggests that from the agent’s perspective, potential biases are
not as simple as one might assume. Another interesting note is that Mean Ranks
all suffer. This, combined with the accuracy increase, means that the model is right
more often, but when it is wrong, it is ranking the correct answers worse. The reason
for this is unclear, but it may be due to shifting distribution patterns. From this
experiment, we can see that adding more data per question type could significantly
improve the model’s learning.

3This was done using Imbalanced-learn’s RandomOverSampler [54]
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Table 4.10: Evaluation Metrics for Model trained on Boosted Dataset

Metric Value Difference from Baseline
Checkpoint 8 0
Loss 2.262098 0.057957
↓ Mean Rank 4.833846 0.481536
Mean Rank on Color Room Questions 4.248689 0.637453
Mean Rank on Color Questions 2.831884 0.13913
Mean Rank on Location Questions 10.285185 0.148148
↑ Overall Accuracy 0.388205 0.008205
Accuracy on Color Room Questions 0.399251 0.025468
Accuracy on Color Questions 0.452174 -0.075362
Accuracy on Location Questions 0.251852 0.02963
↑ Kappa Score 0.003186 0.007853
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5.1 Discussion
The questions posed at the beginning of this report were:

• What are the limitations of the current EQA dataset (in regards to the VQA
task)?

• Is the model using available information in the expected way?
Is it identifying specific objects visually?

• Does a similar model given more information perform better?
Information from the same context?
Information from another context?

We answer the first question, What are the limitations of the current EQA
dataset (in regards to the VQA task)?, via the examination of the dataset in
4.6, and in 3.2.2.1. We have found that the dataset is very unbalanced, both in terms
of question types and answer distribution. Basic resampling is unable to significantly
improve results, since the variety of questions is very limited. A resampling weighted
by an estimate of question difficulty might have better results, but due to the limited
number of questions in the dataset, this might not be worthwhile. The dataset also
focuses on the navigation aspect of the EQA task, with questions repeated with
different navigation paths. There are also some errors in annotation and issues with
rendering quality.

The second question, Is the model using available information in the ex-
pected way?, is addressed in 4.2, where we deliberately confuse the model by
manipulating the visual information given to it. We blindfold the model using two
methods, giving it black images and images filled with random noise. As a third
method of manipulation we change the view, so that the agent is being asked a
question about a location other than its current viewpoint. We found that the
model does rely on patterns in the visual information, and does seem to be relying
somewhat on identification of specific objects, since the shuffling experiment does
decrease accuracy. However, it appears that what is most important to the model is
the presence of patterns in the visual input, since the random noise experiment re-
sults in the worst performance. The shuffling experiment has a comparatively lower
magnitude decrease in accuracy to both the black and random noise blindfolding
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experiments. A contributing factor to this may be that even the correct final frames
may not be very helpful viewpoints on the objects, since they are chosen automat-
ically at the end of navigation. The blindfolding results suggest that the baseline
model is learning to use information from the images in some way. However, these
experiments do not address the fact that it may be possible to develop text only
models that perform equally well to models with visual input, as suggested by [18].
Even within these methods of using the same model with blindfolding functions, the
ideal learning parameters may vary based on how much vision is present.

The third question, Does a similar model given more information perform
better?, is addressed by experiments 3, 4, and 5. The subquestion about In-
formation from the same context? is addressed by all three. In Experiment
3, we provide additional information through object IDs from Habitat’s semantic
parser. Giving these labels results in lower accuracy, but also lower mean ranks.
This suggests that the model is ranking answers better, but the number one answer
has gotten slightly worse. However, the decreases in accuracy are very low, with a
0.87% decrease overall, so this decrease could just be due to chance. In comparison,
the overall improvement in mean rank is 8.5%. This suggests that semantic category
IDs are helpful, but not enough to overcome dataset bias. In Experiment 4, Look
Around, we give a broader visual context (from the same scene). The agent is given
new viewpoints from its final position, though these views are not guaranteed to
show the object the question is about. This model improved performance both in
terms of mean rank and accuracy. These results indicate that the broader view is
beneficial for the model. In Experiment 5, we use Faster R-CNN object features
from a single frame as input, instead of sending five frames through the original pre-
trained CNN. This model performs worse overall, but shows significant improvement
(15% increase on accuracy) on location questions, suggesting that object level fea-
tures are useful in determining location. Experiment 5 also attempts to address the
subquestion about Information from another context?, since it uses transfer
learning from large image datasets, but results here were inconclusive.

Model performance varies significantly from epoch to epoch, suggesting that the
parameters used for this model, such as learning rate, are not ideal to have a reliable
architecture. At the same time, keeping the model architecture as consistent as
possible while adjusting input sources, may also contribute to lack of stability.

We have found that different question types benefit from different sources of informa-
tion. For example, as mentioned above, object detections and object level features
are helpful in answering location questions, as is more visual knowledge, as shown
in 4.4. Generally, we can conclude that adding visual information, both in terms of
granularity of represenation (4.5) and a broader perspective (4.4), is beneficial. At
the same time, adding simple representations such as IDs of object categories in the
scene (4.3) improves the ranking of correct answers, suggesting that the model can
learn from more semantic information as well.

It is clear that there is room for continued work on the topic of EQA. The impact of
question types on performance is visible, so datasets with greater variety in question
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types will be important. Consideration of how to balance performance on each
question type will also be key–the current dataset strongly encourages focus on
color room questions due to its imbalance. These results suggest that models
synthesizing information from a variety of sources will perform better on this task.

5.1.1 Follow Up Experiments

As this was a series of connected experiments, there were of course other experiments
that could have been conducted, but were excluded due to time constraints.

• One of these is an extension of the Semantic Categories experiment. In that
experiment, categories were represented by integer IDs, rather than words.
This would allow the model to learn topic-level classifications for questions:
this question is about appliances, but would not give direct linking of the
objects to the question. Using word embeddings as input, using the same
embedding scheme as the questions, might provide more useful information
for the model.

• A few potential follow-ups are related to the Look Around experiment. One
potential experiment would be to add more rotations, using a larger frame
queue as the input. Another would be to take frames from different points in
the navigation. This would be particularly interesting given the dataset, since
by the end of the navigation, the frames for the same question given different
starting points are likely very similar, but frames sampled from other portions
of the navigation should have lower similarity. A potential hypothesis is that
pulling frames from earlier in the sequence could give better results on location
questions, since more of the room containing the object should be seen.

• There is quite a lot of room for follow-up on the Faster R-CNN experiment. As
well as examining the impact of summing the objects, Faster R-CNN produces
a number of other outputs which could be used as input, including textual
labels for the objects. One experiment would be to add these labels, potentially
using word2vec to create embeddings, and modifying the portion of the model
for question processing to also use word2vec, so that these labels could be
matched to words in the questions.

• Finally, although for this thesis experiments were designed to be self-contained
to better identify sources of improvement, combining aspects of all three ex-
periments could be interesting and potentially improve performance.

• The model used for this project was chosen due to the ease of introduction of
new inputs, but state-of-the-art models are more complex. Transformer based
models such as [55] perform better on question answering tasks. Conducting
similar experiments to the semantic category and look around experiments
with a complex model could be useful, to see if these new sources of information
can improve performance there as well.
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5.2 Conclusion
We find that the EQA dataset has room for improvement. It would benefit from
more balance in question types and possibly additional question types. It could
also use some human correction, as there are a few annotation errors or confusing
questions (a wardrobe in the closet?). We establish that the model does use visual
information, as manipulation of the visual input impacts performance. However,
we find that it is possible to train a model without visual information that achieves
only slightly reduced performance. We also establish that providing more informa-
tion can benefit the model, but the impact varies by question type. The Faster
R-CNN experiment suggests that structured information is beneficial. Although the
only category to improve in performance is location, the kappa score suggests that
the implied structure provided by object detections improves learning. In these ex-
periments, the model responds to both increased visual information and semantic
information, and tries to fuse them. Since both types of information are valuable, a
next step would be to combine increased visual information with semantic informa-
tion, potentially actual linguistic information, rather than simply objects.
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Appendices

I





A
Matterport3D Semantic

Categories

id category
0 void
1 wall
2 floor
3 chair
4 door
5 table
6 picture
7 cabinet
8 cushion
9 window
10 sofa
11 bed
12 curtain
13 chest of drawers
14 plant
15 sink
16 stairs
17 ceiling
18 toilet
19 stool
20 towel
21 mirror
22 TV monitor
23 shower
24 column
25 bathtub
26 counter
27 fireplace
28 lighting
29 beam
30 railing
31 shelving
32 blinds
33 gym equipment
34 seating
35 board panel
36 furniture
37 appliances
38 clothes
39 objects
40 misc
41 unlabelled

III



A. Matterport3D Semantic Categories

IV



B
Example Episode from Task

Dataset

The shortest path and viewpoint lists have been shortened for purposes of the ex-
ample.

1 {'episode_id ': '640',
2 'scene_id ': 'mp3d/5LpN3 gDmAk 7/5LpN3gDmAk 7.glb ',
3 'start_position ': [15.50573335967819,

↪→ -0.7660300302505512, 8.392731789742543],
4 'start_rotation ': [-5.312086480921031e-17,
5 -0.8526401643962381,
6 -0.0,
7 0.522498564647173],
8 'info ': {'bboxes ': [{'type ': 'object ',
9 'box ': {'centroid ': [13.2358, -14.5238, 0.497693],

10 'a0 ': [1.0, 0.0, 0.0],
11 'a1 ': [0.0, 1.0, 0.0],
12 'a2 ': [0.0, 0.0, 1.0],
13 'radii ': [0.593273, 0.243441, 1.68627],
14 'obj_id ': 305,
15 'level ': 0,
16 'room_id ': 18},
17 'name ': 'door ',
18 'target ': True},
19 {'type ': 'room ',
20 'box ': {'centroid ': [10.874245, -11.97072, 0

↪→ .5380600000000001],
21 'a0 ': [1.0, 0.0, 0.0],
22 'a1 ': [0.0, 1.0, 0.0],
23 'a2 ': [0.0, 0.0, 1.0],
24 'radii ': [3.1686549999999998, 3.26178, 1.95437],
25 'room_id ': 18,
26 'level ': 0},
27 'name ': ['kitchen '],
28 'target ': False }],
29 'question_meta ': [{'name ': 'color ', 'diffuse ':

↪→ 'grey '}],
30 'question_answers_entropy ': 0.8303560860446519,
31 'level ': 0},
32 'goals ': [{'position ': [13.2358, 0.4976929999999973,

V



B. Example Episode from Task Dataset

↪→ 14.5238],
33 'radius ': 0.6412771421234348,
34 'object_id ': 305,
35 'object_name ': 'door ',
36 'object_category ': 'object ',
37 'room_id ': 18,
38 'room_name ': 'kitchen ',
39 'view_points ': [{'position ': [12.985883260576134,
40 -1.246680130110505,
41 14.494095338174798],
42 'rotation ': [-2.855981544936522e-28,
43 -0.7071067811874078,
44 -0.0,
45 0.7071067811856873]},
46 ...
47 {'position ': [13.089462756345679,

↪→ -1.246680130110505, 13.976197859327065],
48 'rotation ': [-1.2227381688226952e-16,
49 -0.8910065241891411,
50 -0.0,
51 0.45399049973802935]}]}],
52 'start_room ': 'R22',
53 'shortest_paths ': [[{'position ': [15.50573335967819,
54 -0.7660300302505512,
55 8.392731789742543],
56 'rotation ': [-5.312086480921031e-17,
57 -0.8526401643962381,
58 -0.0,
59 0.522498564647173],
60 'action ': 2},
61 ...
62 {'position ': [13.042462387438766,

↪→ -0.7660300302505512, 13.951177365325918],
63 'rotation ': [-1.2227381690007914e-16,
64 -0.8910065242228339,
65 -0.0,
66 0.45399049967190386],
67 'action ': 3}]],
68 'question ': {'question_text ': 'what color is the

↪→ door in the kitchen ?',
69 'answer_text ': 'grey ',
70 'question_tokens ': [4, 5, 6, 7, 19, 9, 7, 10],
71 'answer_token ': [0, 0, 0, 0],
72 'question_type ': 'color_room '}}
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C
Instances of Answers in Training

Data

Answer Counts
brown 2352
white 2143
silver 1110
black 1031
off-white 855
tan 825
kitchen 600
grey 525
green 255
blue 240
bedroom 225
living room 165
bathroom 150
slate grey 135
olive green 105
laundry room 105
family room 75
closet 75
lounge 60
red 60
yellow green 45
purple 45
spa 45
light blue 30
office 30
hallway 30
purple pink 30
dining room 30
red brown 30
tv room 30
orange yellow 15
foyer 15
yellow 15
yellow pink 15

VII
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