

SAHLGRENSKA ACADEMY

Region-based analysis of magnetic
resonance brain images: integrating
statistical analysis and visualization.

Yu-Ping Hsu

Essay/Thesis: 30 hp

Program and/or course: RFA900 V21 självständigt arbete i radiofysik

Level: Second Cycle

Term/year: Spring 2021

Supervisor: Rolf A. Heckemann

Examiner: Magnus Båth

Report no:

Abstract
Essay/Thesis: 30 hp

Program and/or course: RFA900 V21 självständigt arbete i radiofysik

Level: Second Cycle

Term/year: Spring 2021

Supervisor: Rolf A. Heckemann

Examiner: Magnus Båth

Report no:

Keywords: Neuroimage, Brain segmentation, Statistical analysis, and
visualization

Purpose: The purpose of the project was to develop a processing toolchain that takes MR brain
images and their anatomical segmentations as input and produces image visualizations,
data visualizations, and statistical analyses in a unified manner for the users who work
with neuroimaging and quantitative brain anatomy, including pathological anatomy. A
secondary aim was to package and release the software publicly as open source.

Theory: The purpose of data analysis is to inspect, clean, transform and model raw data in order
to discover salient information which can be used to build knowledge. Image
visualization is defined as the process of converting data, such as pixel values or voxel
values, into two- or three-dimensional graphical representations. Data visualization
presents data in a graphical format. In the field of quantitative brain anatomy, data
analysis, image visualization, and data visualization take place in separate systems.
Integrating data analysis, image visualization, and data visualization in a platform
makes it possible for users to analyze region-based MR brain images more efficiently.

Method: To develop a toolchain that meets practitioner’s needs, another master student and my
supervisor were consulted. Functions were developed iteratively based on feedback.
By combining the developed functions, a workflow for region-based MRI brain image
analysis was designed. Documentation and examples for all functions were written
using R Markdown. Flowcharts for developed functions were drawn.

Result: An R package implementing image visualization, data visualization and statistical
analysis functions was developed, including functions and a web app for region-based
analysis of MR brain images. Functions were combined into a toolchain; data analysis
and image visualization were integrated on the same platform. A workflow for region-
based MR brain images analysis was designed.

Conclusion: The workflow design, programmed functions, and unified analysis platform for MR
brain images are unique and novel contributions achieved in this master’s project.

Sammanfattning

Dataanalys innebär att inspektera, rengöra, transformera och modellera rådata för att upptäcka viktig
information som kan användas för att bygga kunskap och stödja beslutsfattande. Bildvisualisering
innebär att konvertera data som pixelvärden eller voxelvärden till två- eller tre-dimensionell grafisk
representation. Datavisualisering består i att presentera data i ett grafiskt format. Inom området av
kvantitativ hjärnanatomi sker för närvarande dataanalys, bildvisualisering och datavisualisering
vanligtvis i separata system. Genom att integrera statistisk analys och bildvisualisering i en plattform
blir det möjligt för användare att analysera regionbaserade MR-hjärnbilder mer effektivt.

Syftet med projektet var att utveckla en verktygskedja som använder MR-hjärnbilder och deras
anatomiska segmenteringar som indata och producerar bildvisualiseringar, datavisualiseringar och
statistiska analyser i en och samma plattform för användare som arbetar med Neuroradiologi och
kvantitativ hjärnanatomi, inklusive patologisk anatomi. Ett sekundärt mål var att packa funktionerna och
publicera dem som öppen programvara.

Under utvecklingen av R-paketet som innehåller funktionerna för bildvisualisering, datavisualisering
och statistisk analys var en annan mastersstudent och min handledare mina kravställare. Grundläggande
modellering upprättades genom att diskutera med ovanstående personer för att fastställa deras behov.
Funktioner utvecklades iterativt baserat på återkoppling från ovan nämnda personer. Genom att
kombinera de utvecklade funktionerna designades ett arbetsflöde för analys av regionbaserade MR-
hjärnbilder. Dokumentation och exempel för alla funktioner skrevs med R Markdown. Flödesscheman
för de utvecklade funktionerna ritades.

Ett R-paket och en webapplikation för regionbaserad analys av MR-hjärnbilder utvecklades. Utvecklade
funktioner kombinerades till en verktygskedja; dataanalys och bildvisualisering integrerades i en och
samma plattform. Ett arbetsflöde för regionbaserad MR-hjärnbildsanalys designades.

Designen av arbetsflödet, den utvecklade programvaran och den enhetliga analysplattformen för MR-
hjärnbilder är ett nytt och unikt bidrag som uppnåtts i detta självständiga arbete.

Table of contents
1. Introduction 1

1.1. Data analysis.. 1

1.1.1. Volumetric analysis ... 1

1.1.2. Z-score .. 1

1.1.3. Asymmetry .. 1

1.1.4. Similarity ... 2

1.2. Image visualization .. 2

1.2.1. Viewing segmentations ... 2

1.2.2. Segmentation comparison ... 3

1.3. Data visualization .. 3

1.4. Aim .. 4

1.5. Structure of this report ... 4

2. Material and method 4

2.1. Material ... 4

2.1.1. R language... 4

2.1.2. R packages .. 5

2.1.3. Atlas .. 6

2.2. Method .. 6

3. Result 8

3.1. Workflow .. 8

3.1.1. The first path ... 10

3.1.2. The second path .. 13

3.1.3. The third path .. 16

3.1.4. The fourth path .. 18

4. Discussion 21

4.1. Contextualization... 21

4.1.1. Integration platform .. 21

4.1.2. Easy install .. 21

4.1.3. Flexible functions .. 22

4.1.4. Documentation and workflow ... 22

4.2. Choices/limitations .. 22

4.2.1. Small number of consulted users .. 22

4.2.2. Why Jaccard indices? .. 22

4.3. Future work ... 24

5. Conclusion 24

References 25

5

6. Acknowledgement 26

Appendix 1 - IKUB Documentation 27

Appendix 2 - Flowchart of function 39

1

1. Introduction
Thanks to the rapid progress of science and technology in the field of medical imaging and the increased
interest in machine learning, more medical images are now available in the medical field. Magnetic
resonance imaging (MRI) is the best-suited modality for structural brain imaging because the images
show exquisite contrast between different soft tissues, enabling the distinction between physically and
functionally distinct brain regions.

The interpretation of images currently relies on experts, visual review based on their professional
experience. However, with the increase in the number of medical images, the workload of radiologists
continues to increase. Fully automatic image interpretation will remain unattainable in the near future.
A more direct and promising method to support radiologists is computer assisted analysis of MR brain
images in parallel to visual review. Quantitative measures based on the automatic analysis, for example
volumetry of anatomical regions, can then aid the radiologist’s interpretation.

1.1. Data analysis
The purpose of data analysis is to inspect, clean, transform and model raw data in order to discover
salient information which can be used to build knowledge [1]. In this project, MR brain images and
their segmentations have been analyzed using the approaches listed in this section.

1.1.1. Volumetric analysis

The intention behind volumetric analysis is to detect and quantify characteristic features of brain
diseases in an objective and automatic fashion [2]. For example, many studies have shown that the
hippocampal volume of patients with Alzheimer’s disease is significantly reduced [3].

1.1.2. Z-score

By itself, the volume measurement of an anatomical region in an individual is not meaningful. Only by
comparison with a normative reference does it become informative. Biological and measurement
variability need to be taken into account; therefore, the normative reference should be derived from a
reasonably large sample of measurements from individuals with known characteristics (for example
healthy adults). The sample will follow a certain distribution, which in the case of brain volumetry is
approximately normal in most cases. To carry out the comparison, the central tendency of this
distribution needs to be modelled, as well as the dispersion. A suitable measure (assuming normality)
for the central tendency is the arithmetic mean μ; for the dispersion, it is the standard deviation σ.

A raw score x, which in this case is the volume of a brain region, is converted into a standard score (Z-
score) using Equation (1).

Z =
𝑥 − 𝜇

𝜎
 (1)

Intuitively, the Z-score represents whether a measurement is normal (between –2 and 2) or abnormal
(deviating more strongly from the reference).

1.1.3. Asymmetry

In healthy adults, the right hemisphere of the brain is slightly heavier than the left hemisphere, but the
left hemisphere has more grey matter than the right hemisphere. Normal asymmetry characteristically
follows a pattern described as torque [4]. In the study of obsessive-compulsive disorder in the
child/adolescent group, there is a significant difference in the volume asymmetry of the thalamus and
the pale bulb [5].

2

Brain asymmetry index 𝐴 is calculated using Equation (2).

𝐴 =
2|𝑉 − 𝑉 |

𝑉 + 𝑉
 (2)

where:

𝑉 is the volume of the right brain.

𝑉 is the volume of the left brain.

A higher asymmetry index indicates a higher degree of asymmetry in the specific structure.

1.1.4. Similarity

Dice coefficients and Jaccard indices can be used to measure the similarity between two segmentation
labels. The Jaccard index, also known as the Jaccard similarity coefficient, is defined as the size of the
intersection divided by the size of the union of the sample sets. Its value range is between 0 and 1. A
Jaccard index of 0.7 means two samples are 70% similar. Assuming that the target area predicted by
model 1 is A and the target area predicted by model 2 is B, then the Jaccard index can be calculated
using the Equation (3).

The number of pixels in the intersection of A and B

Number of pixels of A + Number of pixels of B − The number of pixels in the overlapping area of A and B
 (3)

The value range for Dice coefficient is also between 0 and 1. A Dice coefficient value of 1 means
segmentation in the two the samples are a perfect match. Dice coefficient can be calculated using the
Equation (4).

2 × The number of pixels in the intersection of A and B

Number of pixels of A + Number of pixels of B

(4)

1.2. Image visualization

Image visualization is defined as the process of converting data, such as pixel values, voxel values, and
numerical measurements into two- or three-dimensional graphical representations. A typical
visualization of the three-dimensional MR data shows a two-dimensional section in one of three standard
orientations (axial (transverse), coronal, or sagittal). To appreciate the third dimension, the reader scrolls
through a stack of such images. Most software programs for viewing also offer various levels of
advanced visualization, for example selecting a non-standard orientation, thick-slab rendering (viewing
a limited number of sections at once), volumetric surface rendering (generating a three-dimensional
impression on a two-dimensional display), and animated modes.

1.2.1. Viewing segmentations

When an image has been segmented, the resulting label image can be viewed using the same display
modes as the source image. Combined viewing modes are, however, more suitable for understanding
and evaluating segmentations in the spatial context of the source image. A simple combined viewing
mode superimposes the segmentation labels on the source image. Users will turn the overlay on and off
repeatedly to appreciate the spatial relationship between the source image and the segmentation labels.
More advanced software allows the user to assign a transparency value to the overlay, regulated via a
graphical slider element.

3

An even more useful mode for viewing segmentations (depending on user preference) can be a contour
display. Instead of superimposing a whole label, only its contour or outline are overlaid. This mode
enables assessment of, for example, accuracy and level of detail with which the structure in question is
delineated. With the help of segmentation contours, users will be able to see where the segmenter or the
algorithm placed the boundaries of the region in question within the anatomical context, and whether
they agree with the anatomical interpretation that this placement represents. Figure 1 shows an example
of segmentation contour.

Figure 1: A contour for OL lateral remainder occipital lobe R.

1.2.2. Segmentation comparison

A viewing task of special interest in this work is comparing pairs of segmentations of the same region.
A user may want to assess the quality of an automatically generated label with reference to a trusted
reference label. If, for example, one segmentation label is larger or smaller than the other, the user should
be able to tell whether the over- or under-estimation is localized or whether the boundary disagreement
occurs around the region as a whole. To my knowledge, no viewing software currently offers features
to support this type of task.

1.3. Data visualization

Data visualization presents data in a graphical format [6]. A data visualization method that takes a
prominent role in this project is the violin plot. A violin plot shows the data distribution and its
probability density. The width of the curve corresponds to the density of data points in each region. The

Q3

Q1

maximum

minimum

outliers

outliers

median

Figure 2: Violin plot with a boxplot

4

violin plot is mainly used to show the distribution shape of data. A violin plot can be advantageously
combined with box plot. The example in Figure 2 shows the maximum, minimum, median, upper and
lower quartiles of a dataset, as well as the outliers. The two ends of the box are the first quartile (covering
25% of the robust range of the data) (Q1) and the third quartile (covering 75% of the robust range) (Q3).
The middle line of the box is the median, which represents the boundary between the top and bottom
50% of the robust range. The thin black lines (“whiskers”) extending from the two ends of the box
represent robust range of the data. The upper end point of the solid line above the box is the robust
maximum value, and the solid line under the box shape is the robust minimum value. Circles outside
the solid line indicate outliers.

At present, data analysis, image visualization, and data visualization take place in separate systems.
Users need to discover functions in various software packages to analyze data, visualize images, and
visualize data. Different platforms may require different data formats. Conversion or preparation of data
for another platform often requires a significant effort. In the process of data transmission between
different platforms, data may be lost or distorted. This can cause problems in the analysis. If the data
analysis, image visualization, and data visualization could be integrated in one and the same platform,
region-based MR brain image analysis would be made more efficient, and the workload of image
analysts would be reduced.

1.4. Aim
The purpose of the project was to develop a processing toolchain that takes MR brain images and their
anatomical segmentations as input and produces image visualizations, data visualizations, and statistical
analyses in a unified manner for the users who work with neuroimaging and quantitative brain anatomy,
including pathological anatomy. A secondary aim was to package and release the software publicly as
open source.

1.5. Structure of this report
The structure of this report is as follows:

The material section briefly describes the material that was used for development of the functions, and
the method section consists of a first-person narrative account of the development. The result section
contains a brief description of each function and the relevant theory. A workflow chart is also provided.
The contextualization and choices/limitations for this project are presented in the discussion section.
Appendix 1 includes the documentation of the package. Flowcharts for functions are included in
Appendix 2.

2. Material and method

2.1. Material

2.1.1. R language

The R programming language and software environment was designed by Ross Ihaka and Robert
Gentleman of the University of Auckland in New Zealand and is now maintained by the R Core Team
at the R Foundation [7]. It is an open-source statistical programming language that is often used to
develop statistical and data analysis software systems. Its functions can be expanded by installing
packages. In recent years, due to big data, data science, and the popularity of artificial intelligence, R
has become widely used by statisticians and data scientists. Moreover, matrix analysis speed for the R
language is comparable to the free software GNU Octave and the commercial software MATLAB. R
provides the requisites for building a toolchain that integrates statistical analysis and image visualization
in one platform. According to the TIOBE index for March 2021 indicating the popularity of

5

programming languages, the R language ranks 13th. Competing programming languages on the same
index are Python (2), MATLAB (15th), SAS (22nd), and Julia (34th).

2.1.2. R packages

An R package is a collection of R functions, compiled code, and sample data, typically for a single
purpose or type of endeavour. R packages are stored in a directory named "library" in the R language
environment. CRAN, an acronym for the "Comprehensive R Archive Network", is a network of ftp and
web servers around the world that store identical, up-to-date versions of code and documentation for R.
There are 10,000+ packages in CRAN which can be downloaded and installed in R. R developers can
benefit from the work of others by downloading packages and either using its functions as they are, or
to develop their own improvements and extensions.

The packages which I have used for developing functions are as below.

2.1.2.1. EBImage

EBImage is a package for image processing and analysis. It can be used to process objects in matrices
or arrays.

2.1.2.2. misc3d

The misc3d package contains functions for processing 3D data.

2.1.2.3. neurobase

neurobase is a package which enables reading and writing of image data in the NIfTI format
(Neuroimaging Informatics Technology Initiative), an open file format, having an .nii or .nii.gz file
extension, widely used in neuroimaging research. The package defines a class 'nifti' and offers a variety
of functions for interacting with objects of this type.

The neurobase package depends on the oro.nifti package, which provides functions to read and write
images with nifti format.

2.1.2.4. rgl

The rgl package is a tool for rendering three-dimensional graphics.

2.1.2.5. tidyverse

The tidyverse is a collection of R packages that together implement a modern approach to data
analysis work. This project made use of dplyr, magrittr, plyr, purr, tibble, tidyr, ggplot2, and shiny, in
particular. The latter two deserve a more detailed explanation.

ggplot2 is a powerful graphics visualization R package which uses a layer concept to create graphics.
Additional layers can be overlaid on already existing objects of a drawing. For example, a boxplot can
be overlaid on a violin plot to visualize the relation of the two graphs [8]. In addition, the ggplot2
package provides a considerable degree of flexibility so that the output by this project can be easily
adapted to user requirements.

The ggplot2 package provides a large number of default color schemes and manual color matching
options. The official instructions point out that the viridis palette in the ggplot2 package provides colour
maps that are perceptually uniform in both color and black-and-white. The viridis palette is designed to
be recognized by viewers with color blindness [9]. For this reason, it was selected for this project.

6

2.1.2.6. shiny

Shiny is a package used to develop interactive web applications in R. Shiny makes it possible to create
appealing presentations that interact with existing R packages such as ggplot2 and tidyverse.

In addition, the tidyverse defines the tibble datatype, a variant of the classical dataframe type with added
functionality that makes it convenient to work with.

2.1.3. Atlas

The Hammers Atlas Database (www.brain-development.org) is a publicly shared resource centered
around MR brain images and manual segmentations. These data are free to use for academic purposes,
non-commercial research, and teaching. The data used in this project is the Adult Individual Atlases.
The database contains 30 individual manually drawn, carefully verified segmentation label sets (95
regions each), created by experts on T1-weighted 3D magnetic resonance brain scans of 30 healthy
adults [10]–[13].

In addition, automatic segmentations of the same images are also available; these have been generated
using MAPER, software that segments magnetic resonance brain images into anatomical regions.
MAPER, is developed by Heckemann et al. [14].

2.2. Method

To develop an R package which contains image visualizations, data visualizations and statistical
analysis functions working as a toolchain, the data processing functions and working characteristics of
the R language must be studied. I started my study by reading a book called R for Data Science [15]. I
then examined the neurobase package to find out what kind of data I was going to process and how to
process it. Due to the fact that I did not know much about region-based MRI brain image analysis, the
function development was difficult at first. After consulting with my supervisor, I decided to talk with
potential users of the package in order to understand their needs. Another master student, who was
working on a project on brain morphometry in Parkinson’s disease and my supervisor became my
consultants for package development. Having discussed and understood their needs, I researched
available packages which were suitable for developing functions. I surveyed existing software suites,
such as convert3D [16], NiftySeg [17] and MIRTK [18], to see if any of them met the requirements.
However, I had difficulty installing MIRTK and NiftySeg on my computer.

The packages mentioned in section 2.1.2. were used to develop the functions included in the toolchain.
The neurobase package was used to read NIfTI files. The plyr package was used to split NIfTI files
into matrices. After that, data were predominantly stored as tibble objects. Functions in the dplyr
package were used to process data. The pipe function in the magrittr package was used to achieve high
readability of the code, and the map series functions in the purrr package were used for improving
efficiency. Functions in readr package were used to convert the processed data into wide table(s) that
were easy to read.

I encountered some difficulties in dealing with the users’ requirements concerning image
visualization. CRAN contains many packages that can be used for image visualization. After installing
several packages, I found that most image processing packages cannot be used to process data in
matrix or array formats. After doing a lot of research, I found functions in EBImage downloaded from
the Bioconductor website (http://www.bioconductor.org/) that could be used directly on objects with
matrix or array formats. I therefore chose to develop two 2D image visualization functions. The rgl
and misc3d packages were used to enable 3D image visualization requirements according to the users’
requirements.

7

While working on the development of data visualization and statistical analysis functions, I decided to
adopt an interactive data presentation method after discussing with my supervisor. The shiny package
was chosen. Although this package provides ready-made components for data display, charts, and
models on the web, I found that these did not meet the requirements. Therefore, I spent some time
taking online courses on advanced use of the shiny package. In my interactive application, readr
package functions load the CSV files (comma-separated values) generated by the previously
developed functions. The ggplot2 package was used for graphics visualization. The viridis palette in
the ggplot2 package was also used in the application in order to enable colorblind-friendly graphics
visualization.

MR files and manual segmented files from Hammers Atlas Database as well as auto-segmented files
were used to test the functions. The sample images used in this project are 3D T1-weighted magnetic
resonance images acquired at 1.5 Tesla. Acquisition details are of minor importance in the context of
the project, as the software places no restrictions on the modality or sequence, as long as the images
represent a 3D object volumetrically and are available in, or can be converted to, NIfTI format. The
manual segmentation labels in the sample have been produced by experts following rigidly defined
and validated public protocols [10]–[13] . The automatic segmentation labels have been prepared by
the supervisor using MAPER software [14] on the basis of the manual segmentation labels in a leave-
one-out cross-comparison setup; ie., each atlas image was used in turn as the target image and
segmented using the other 29 atlases as training data.

For some functions, such as regcount, labelnaming and bsimilarity, I compared the results with outputs
from Convert3D to ensure that the calculations were correct. After the completion of a function
(including code description), I uploaded it to github (https://github.com/yupingikub/IKUB) for the
student consultant and my supervisor to download and test. All functions were developed iteratively
based on feedback. Figure 3 shows the procedure for the iterative development. After confirming that
the developed functions met the requirements, the function description and function flowcharts were
created. Documentation for the package were written using R Markdown. It contains examples for
every function.

The workflow design, programmed functions, and unified analysis platform for MR brain images are
unique and novel contributions achieved in this master’s project.

Figure 3: Iterative development

8

3. Result
An R package, a shiny application and a workflow were developed for providing tools that take MR
brain images and their anatomical segmentations as input and produces image visualizations, data
visualizations, and statistical analyses. According to the stakeholders’ requirements, the developed R
package named IKUB and the shiny application implement the following functions:

1. Calculate total counts and total volumes for all regions for one supplied NIfTI file.
2. Calculate volumes for all regions with label names for one or more supplied NIfTI files.
3. Calculate mean and standard deviation for all regions for a user-defined reference group.
4. Calculate Z-scores of all regions for one or more NifTI-files, using the reference group.
5. Calculate Dice coefficients and Jaccard indices for a supplied NIfTI file pair.
6. Calculate asymmetry index/indices for one or more supplied NIfTI files.
7. Extract numbers of slices for one or more supplied label numbers.
8. Display label segmentation differences in 2D and 3D view.
9. Display anatomical segmentation contours in 2D view.
10. Display anatomical surface in 3D view.
11. Generate analytical data.
12. Plot generated data as violin plots and box plots in the shiny app.

3.1. Workflow
As part of this project, a workflow was designed to process from NIfTI files to different outputs. The
workflow shown in Figure 4 is a proposed procedure. Most of the functions in this package can be used
independently. Users can design their own workflows to suit their needs.

All functions in the designed workflow are briefly described in this section. For detailed function usages,
please refer to the documentation in appendix 1. A selection of use cases of the workflow (Figure 4) are
described in the following.

The author made use of the Hammers Atlas Database, © Imperial College of Science, Technology and
Medicine 2007. All rights reserved. The resource is available from www.brain-development.org [10]–
[13]. In the demonstrations of the segcomparison function and the segcomparison3D function, NIfTI
files generated by MAPER were also used.

9

Figure 4: A suggested workflow which contains four paths.

10

3.1.1. The first path
The red line in Figure 5 shows the first workflow path. The functions used in the first path are described
in this subsection. The first path is designed for the brain volumetric analysis.

Figure 5: The first path of the designed workflow.

3.1.1.1. regcount function

The first path is designed so that users begin with the regcount function to obtain the statistics for all
label numbers which are included in a supplied NIfTI-file. The function returns total volumes and total
counts for all regions in the R console. Output from the regcount function is shown in R_Output 1.

regcount('a01-seg.nii.gz')

A tibble: 96 x 4
filename Label_No counts vol_mm3
<chr> <int> <int> <dbl>
1 a01-seg.nii.gz 0 4248688 3495212.
2 a01-seg.nii.gz 1 2154 1772.
3 a01-seg.nii.gz 2 1873 1541.
4 a01-seg.nii.gz 3 1524 1254.
5 a01-seg.nii.gz 4 1543 1269.
6 a01-seg.nii.gz 5 9845 8099.
7 a01-seg.nii.gz 6 9010 7412.
8 a01-seg.nii.gz 7 5789 4762.
9 a01-seg.nii.gz 8 4325 3558.
10 a01-seg.nii.gz 9 5627 4629.
... with 86 more rows

3.1.1.2. labelnaming function

The regcount function can be used to calculate total counts and volume for all regions for a supplied
NIfTI file. Meanwhile, the output returned from the regcount function contains only statistics for all
label numbers. The second step of this path is to prepare a label name tibble which has correct format
and unique columns. Then, users input the label name tibble and one or more NIfTI-files into the

11

labelnaming function which returns volumes for all regions with label names in the R console. Output
from labelnaming is shown in R_Output 2.

filename<-c(paste('a0', 1:9, '-seg.nii.gz', sep=''), paste('a', 10:29, '-seg.nii.gz', sep='
'))
labelnaming(filename)

A tibble: 95 x 32
Label_No Label_name `a01-seg.nii.gz` `a02-seg.nii.gz` `a03-seg.nii.gz`
<int> <chr> <dbl> <dbl> <dbl>
1 1 TL hippocampus R 1772. 1952. 1999.
2 2 TL hippocampus L 1541. 1949. 2037.
3 3 TL amygdala R 1254. 1411. 1212.
4 4 TL amygdala L 1269. 1375. 1374.
5 5 TL anterior temp~ 8099. 7276. 8510.
6 6 TL anterior temp~ 7412. 4835. 7732.
7 7 TL anterior temp~ 4762. 3121. 5066.
8 8 TL anterior temp~ 3558. 1840. 4553.
9 9 TL parahippocamp~ 4629. 4864. 4517.
10 10 TL parahippocamp~ 4414. 4882. 4744.
... with 85 more rows, and 27 more variables: a04-seg.nii.gz <dbl>,
a05-seg.nii.gz <dbl>, a06-seg.nii.gz <dbl>, a07-seg.nii.gz <dbl>,
a08-seg.nii.gz <dbl>, a09-seg.nii.gz <dbl>, a10-seg.nii.gz <dbl>,
a11-seg.nii.gz <dbl>, a12-seg.nii.gz <dbl>, a13-seg.nii.gz <dbl>,
a14-seg.nii.gz <dbl>, a15-seg.nii.gz <dbl>, a16-seg.nii.gz <dbl>,
a17-seg.nii.gz <dbl>, a18-seg.nii.gz <dbl>, a19-seg.nii.gz <dbl>,
a20-seg.nii.gz <dbl>, a21-seg.nii.gz <dbl>, a22-seg.nii.gz <dbl>,
a23-seg.nii.gz <dbl>, a24-seg.nii.gz <dbl>, a25-seg.nii.gz <dbl>,
a26-seg.nii.gz <dbl>, a27-seg.nii.gz <dbl>, a28-seg.nii.gz <dbl>,
a29-seg.nii.gz <dbl>, a30-seg.nii.gz <dbl>

3.1.1.3. labelnaming2 function

The labelnaming2 function is used to generate data for brain segmentation volume analysis. The
function works similarly to the labelnaming function but prepares the output for further analysis in the
shiny app. Users should save labelnaming2 output as a CSV file.

3.1.1.4. Violin plot-shiny app

The next step is to upload the CSV file to the online shiny app to visualize data. The link to the online
shiny app is https://alisonhyp.shinyapps.io/shiny_violinplot/

A violin plot combined with a box plot can show many details. Sometimes it may provide too much
distracting information. Therefore, the interactive app is designed so that users can select or deselect
certain options to display the data flexibly. Users can also manually assign a title, label names for x- and
y-axis for the figure. By selecting the plot option – annotate outlier, the app will display which data
points are outliers. Figure 6 shows output from the interactive shiny app.

12

Figure 6: Shiny app data visualization created from the output of the labelnaming2 function. Four
regions are selected to construct a combined violin-box plot. Two outliers, a19-seg and a05-seg, in the
right amygdala region are highlighted.

3.1.1.5. extractsliceno function

In statistics, an outlier is a value in the dataset that is strongly different from the other values. Outliers
in statistical data should be handled carefully. They can occur at random, but sometimes they are caused
by systematic processes that interfere with the processes under study. By following up on outliers, users
may be able to detect and safeguard against, or eliminate, such confounding processes.

On this workflow path, users can use the shiny app to detect outliers, then use the extractsliceno function
to extract slice numbers. Users can input a NIfTI-filename and one or more target label numbers into
the extractsliceno function. The function will return the numbers of the slices that include the supplied
target label number(s) for the supplied NIfTI file. Figure 6 shows that two data points, a19-seg and a05-
seg, are outliers in the right amygdala region. To determine in which slices this region occurs, users
apply the extractsliceno function to extract slice numbers for the target label number. Output is shown
in R_Output 3.

extractsliceno('a19-seg.nii.gz', 3)

[1] 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
64

3.1.1.6. segcontour function

The segcontour function is designed to display anatomical contours for one or more label numbers in a
medical MR image. According to output from the extractsliceno function, users can use the segcountour
function to examine the contours in these slices. Users can study these images and try to find out the
reasons for data deviation. Figure 7 shows the output from the segcontour function.

13

Figure 7: Using output from extractsliceno as slice_no input. Input for region-based NIfTI file and MR
NIfTI file are a19-seg.nii.gz and a19.nii.gz. Target label number is 3. Images in transverse plane are

shown.

3.1.1.7. segsurface3D function

The segsurface3D function can display anatomical segmentation contours of a medical MR image in a
3D view for one or more supplied label numbers. The 3D view can be rotated by dragging the mouse
and zoomed in or out by scrolling the mouse scroll wheel. The 3D image provides rough depictions of
segmented regions.

Figure 8 shows output from segcontour3D function.

Figure 8: 3D view for region TL amygdala R in NIfTI file a19-seg.nii.gz.

3.1.2. The second path

The second path of the workflow is shown in Figure 9. The second path is also designed for Z-score
analysis. The procedure from the start point to prepare a label name tibble has been mentioned earlier,
so the description begins with preparing NIfTI files from a reference group.

14

Figure 9: The second path of the workflow is marked with red color.

3.1.2.1. refmeanstd and bzscore function

Output from the labelnaming function provides a general description of the volume in each region. To
calculate the Z-scores for supplied NIfTI files, the refmeanstd function is first used to calculate the mean
and standard deviation for all regions in a reference group. A result calculated by the refmeanstd function
is shown in R_Output 4. The bzscore function use Equation (1) to calculate Z-scores. Output from the
refmeanstd function is used as one of the inputs for the bzscore function. The bzscore function returns
Z-scores of all regions for one or more NIfTI files. R_Output 5 shows the result returned from the
bzscore function.

reflabels<-c(paste('a0', 1:9, '-seg.nii.gz', sep=''), paste('a', 10:29, '-
seg.nii.gz', sep=''))
refstats <- refmeanstd(reflabels)

A tibble: 96 x 3
Label_No mean std
* <int> <dbl> <dbl>
1 0 3535557. 248326.
2 1 2261. 328.
3 2 2072. 285.
4 3 1410. 209.
5 4 1509. 317.
6 5 7274. 1311.
7 6 6814. 1038.
8 7 3933. 899.
9 8 3654. 1020.
10 9 4704. 679.
... with 86 more rows

15

bzscore(c('a01-seg.nii.gz', 'a02-seg.nii.gz'), labelnametibble, refstats)

A tibble: 95 x 4
Label_No Label_name `a01-seg.nii.gz` `a02-seg.nii.gz`
<int> <chr> <dbl> <dbl>
1 1 TL hippocampus R -1.49 -0.942
2 2 TL hippocampus L -1.86 -0.432
3 3 TL amygdala R -0.747 0.00529
4 4 TL amygdala L -0.757 -0.425
5 5 TL anterior temporal lobe medial ~ 0.630 0.00206
6 6 TL anterior temporal lobe medial ~ 0.577 -1.91
7 7 TL anterior temporal lobe lateral~ 0.922 -0.903
8 8 TL anterior temporal lobe lateral~ -0.0939 -1.78
9 9 TL parahippocampal and ambient gy~ -0.110 0.236
10 10 TL parahippocampal and ambient gy~ -0.731 -0.0597
... with 85 more rows

3.1.2.2. bzscore2 function
The bzscore2 function is used to generate standard score data for all regions for supplied NIfTI-files.
The function works like the bzscore function. The output from the bzscore2 function must be exported
in CSV format for further analysis in the shiny app-violinplot.

In the next step, the CSV file is uploaded to the shiny app to visualize the data. The result is shown in
Figure 10.

Figure 10: Violin plots with included boxplots as produced by the shiny app. Two outliers, a19-seg
and a05-seg, for the right amygdala are annotated.

As in Path one, the segcontour and segsurface3D functions can be used to display one or more specific
label numbers for a selected NIfTI file.

16

3.1.3. The third path

Figure 11 shows the third path of the design workflow. This path is designed for users who are
interested in anatomical asymmetry of the brain.

Figure 11: Workflow path for brain asymmetry analysis

Concerning the first part of the procedure and the bzscore function, please refer to the sections above.
The description of the functions in the third path begins with the basymmetry function.

3.1.3.1. basymmetry function
The basymmetry function uses Equation (2) to calculate asymmetry indices for paired regions in one
or more supplied NIfTI-files. Output_R 6 presents asymmetry indices for the left and right regions for
two NIfTI files.

basymmetry(c('a01-seg.nii.gz','a02-seg.nii.gz'),labelnametibble, 2)

A tibble: 46 x 3
item `a01-seg.nii.gz` `a02-seg.nii.gz`
<chr> <dbl> <dbl>
1 caudate nucleus 0.0229 0.0089
2 cerebellum 0.0224 0.0638
3 CG anterior cingulate gyrus 0.508 0.0510
4 CG posterior cingulate gyrus 0.0297 0.0146
5 FL anterior orbital gyrus 0.00912 0.159
6 FL inferior frontal gyrus 0.191 0.0147
7 FL lateral orbital gyrus 0.145 0.245
8 FL medial orbital gyrus 0.111 0.0197
9 FL middle frontal gyrus 0.114 0.0864
10 FL posterior orbital gyrus 0.0792 0.188
... with 36 more rows

17

3.1.3.2. basymmetry2 function

Users can use the basymmetry2 function to generate and export data to CSV format for further analysis
in shiny app-violinplot.

Upload the CSV file to the shiny app for further analysis. The data visualization result from the shiny
app is shown in Figure 12.

Figure 12: Asymmetry index plotted by the shiny app. Caudate nucleus and cerebellum are selected.
Two outliers are annotated for the cerebellum region.

Users can use the segcontour and segsurface3D functions to perform further analysis. Suppose users are
interested asymmetry in cerebellum in a05-seg.nii.gz. Users can use the extractsliceno function to obtain
slices numbers for cerebellum R and cerebellum L, then input the output from the extractsliceno function
to the segcontour function. The output from segcontour function is shown in Figure 13. The output from
segsurface3D is shown in Figure 14.

Figure 13: Contour in red color represents cerebellum R and contour in green color
represents cerebellum L. cerebellum R and cerebellum L are included in slice
number from 3 to 73. Only slice number from 5 to 51 are displayed.

18

Figure 14: Displays 3D view for cerebellum R and cerebellum L for a05-seg.nii.gz.

3.1.4. The fourth path

The fourth path shown in Figure 15 is designed for comparing pairs of segmentation label images.
This would be used to assess, for example, the level of agreement between an automatic segmentation
result and a trusted reference. The user inputs a pair of NIfTI-files generated from the same source
image.

Figure 15: Shows the fourth path which is marked in red color for the workflow.

3.1.4.1. bsimilarity function

The bsimilarity function is used to calculate Dice coefficients and Jaccard indices for a supplied file pair.

R_Output 7 as below contains the output from the bsimilarity function.

19

bsimilarity('a01-seg.nii.gz', 'a1.nii.gz', labelnametibble)

A tibble: 95 x 4
Label_No Label_name dice.coefficient jaccard.index
<int> <chr> <dbl> <dbl>
1 1 TL hippocampus R 0.844 0.731
2 2 TL hippocampus L 0.85 0.74
3 3 TL amygdala R 0.788 0.65
4 4 TL amygdala L 0.833 0.714
5 5 TL anterior temporal lobe medial par~ 0.872 0.773
6 6 TL anterior temporal lobe medial par~ 0.84 0.725
7 7 TL anterior temporal lobe lateral pa~ 0.748 0.598
8 8 TL anterior temporal lobe lateral pa~ 0.695 0.533
9 9 TL parahippocampal and ambient gyrus~ 0.86 0.754
10 10 TL parahippocampal and ambient gyrus~ 0.867 0.765
... with 85 more rows

3.1.4.2. bsimilarity2 function

The bsimilarity function calculates Dice coefficients and Jaccard indices for one file pair. To compare
one or more file pairs, users invoke the bsmilarity2 function. bsmilarity2 returns Jaccard indices for all
regions for all supplied NIfTI file pairs. The generated output must be exported to CSV format in
order to be made available for further analysis in shiny app-violinplot.

The next step is to upload the csv file to the shiny app. The output from the shiny app is shown in Figure
16.

Figure 16: Violin plots with included boxplots, showing Jaccard indices for four regions and 30
participants

20

3.1.4.3. segcomparison function

After having used the shiny app to analyze the csv file from the bsimilarity2 function, users may be
interested in the similarity of a specific region. The segcomparison function displays segmentation
differences between two NIfTI files with regard to a label, identified by number. Voxels labelled as
the region in filename_seg1 only are displayed in green, those labelled as the region in filename_seg2
only are displayed in blue, and labelled as the region in both files are displayed in red.

Suppose that users are interested in TL hippocampus R in the file pair (a16-seg.nii.gz and a16.nii.gz).
The segcomparison function can be used to display segmentation differences. The output from the
segcomparison function is shown in Figure 17.

3.1.4.4. segsurface3D function

The IKUB package includes statistical and visualization functions for brain segmentation images. With
these functions, users can obtain information such as counts, volumes, and Z-scores for all regions,
asymmetry indices for whole brain or all regions. Users can also evaluate the similarity for a pair of
segmentations generated from the same source. By uploading generated csv files to shiny app, data
visualization and statistical analysis can be accomplished. The designed workflow can be used to process
analysis for region-based MR brain images.

Figure 18 shows the output from segsurface3D function. The same file pair and label number as in
subsection 3.1.4.3 are used.

Figure 18: Segmentation differences in 3D view. Target label is TL hippocampus R.

Figure 17: Displays segmentation differences in all slices including region TL hippocampus R for the
file pair. Images display in the transverse plane.

21

4. Discussion
The software developed in this project comprises the IKUB package and the shiny web app. The IKUB
package includes statistical and visualization functions for brain segmentation images. With these
functions, users can obtain information such as counts, volumes, Z-scores, and asymmetry scores for all
regions, asymmetry indices for whole brain or all regions. Users can also evaluate the similarity of a
pair of segmentations generated from the same source. By uploading generated csv files to the shiny
app, data visualization and statistical analysis can be accomplished. The designed workflow can be used
to process analysis for region-based MR brain images.

4.1. Contextualization
The development addresses the following needs that no other software covers:

4.1.1. Integration platform

This development integrates data analysis, image visualization, and data visualization in one platform.
Users do not need to transfer data between platforms for different analysis tasks. The output from one
function can become the input for another function, while the data stays on the same platform. In terms
of analyzing the standard score (Z-score), the output from the refmeanstd function becomes one of inputs
for the bzscore2 function. A csv file produced by the bzscore2 function becomes input to the shiny app.
Users obtain a data visualization as result of this processing chain. The processing chain is shown in
Figure 19.

Figure 19: Sample processing chain, going from the data input via the refmeanstd function to the data
visualization output from the violin plot shiny app.

4.1.2. Easy install

After having installed R and RStudio, users only need to install the IKUB package and load the
package as a library. The build tools are integrated in R and the installation process is automated.

22

4.1.3. Flexible functions

The developed functions have a high degree of functional flexibility. Users can supply different
arguments for functions to obtain the desired result. Take the volume calculation as an example. The
commands -dup and -lstat in Convert3D are used to calculate the total counts and volumes for all
regions for one NIfTI file. The labelnaming function in the package can be used to perform the same
calculations on multiple files. Output from Convert3D provides only label numbers, but output from
the labelnaming function includes both the label numbers and label names. Having label names in
output can provide more direct information to users. Most of the functions in the package have been
developed so that users can use multiple elements for each argument - this is one of the advantages
over other software.

4.1.4. Documentation and workflow

The documentation for the package contains the description of the functions and arguments. It also
provides examples for functions which are used in the workflow. Documentation was written using R
Markdown and can be knitted to pdf, word, and html formats. The documentation in html format has a
floating table of contents. This can help users quickly find the function descriptions they need. By
reading examples, the users can rapidly learn how to use the functions.

A workflow was designed as part of the development. Users can analyze data, visualize images, and
visualize data according to the suggested workflow to increase efficiency.

4.2. Choices/limitations

4.2.1. Small number of consulted users

At present, there is no standard workflow in the field of brain segmentation data analysis. The workflow
that was designed in this project is based on discussions with another master student and my supervisor.
Because of the small amount of user-feedback, the workflow may only be applicable to a small number
of users. As the package is now released, it can be hoped that other researchers will download it, install
it, use it, and provide feedback on their experience. This will enable me to improve the workflow and
make it applicable to a larger number of users.

4.2.2. Why Jaccard indices?

The Jaccard index is similar to the Dice coefficient, but it provides better geometrical description.
Suppose there are two segmentation results: label X, which we trust, and label Y, which we want to test.

Figure 20: The black box represents the segmentation result which we trust, and the dash line box
represents the segmentation result which we are testing. The yellow region in the figure represents
pixels that only exist in label X, the blue region represents pixels that only exist in label Y, and the
green region represents pixels that exist in both labels.

23

According to Equation (4), the Dice coefficient is derived using Figure 20 producing the following
formula.

𝐷𝑖𝑐𝑒 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =
2 × 𝑏

2 × 𝑏 + 𝑎 + 𝑐
=

2 × 𝑏

(𝑎 + 𝑏) + (𝑏 + 𝑐)

and Jaccard index can be derived using Figure 20 and Equation (3) producing the following formula.

𝐽𝑎𝑐𝑐𝑎𝑟𝑑 𝑖𝑛𝑑𝑒𝑥 =
𝑏

𝑎 + 𝑏 + 𝑐

The Jaccard index divides the region of interest into a, b, and c and expresses the proportion of b to the
total region of interest. With increasing b, the Jaccard index also increases. Dice index is the proportion
of the intersection to the average of the two label volumes. To me, the derivation of Jaccard index is
more intuitive in terms of geometric description than Dice coefficient.

Similarity refers to the distance between two samples. The other reason that the Jaccard index is chosen
is that the Dice coefficient does not satisfy the triangle inequality. The triangle inequality describes the
following observation, valid in Euclidean systems: Suppose there are three sets A={a}, B={a}, and
AB={a, b}.

Dice distance 𝑑 is defined as the following equation:

𝑑 = 1 −
2 × The intersection of A and B

Number of A + Number of B

(5)

𝑑 (𝐴, 𝐵) = 1 −
2 × 0

𝑎 + 𝑏
= 1

The distance between set A and set B is 1.

∵ Image of real segmentation and image which is predicted by the system have the same size.

∴ 𝑎 = 𝑏

𝑑 (𝐴, 𝐴𝐵) = 1 −
2 × 𝑎

𝑎 + 𝑎 + 𝑏
= 1 −

2 × 𝑎

2𝑎 + 𝑏
= [𝑎 = 𝑏] =

1

3

𝑑 (𝐵, 𝐴𝐵) = 1 −
2 × 𝑏

𝑏 + 𝑎 + 𝑏
= 1 −

2 × 𝑏

𝑎 + 2𝑏
= [𝑎 = 𝑏] =

1

3

The distance between the third set and each of the other are one-third.

According to the triangle inequality, the sum of the lengths of any two sides must be greater than or
equal to the length of the remaining side.

∵ 𝑑 (𝐴, 𝐵) ≰ 𝑑 (𝐴, 𝐴𝐵) + 𝑑 (𝐵, 𝐴𝐵)

∴ The Dice coefficient does not satisfy triangle inequality.

The Jaccard distance 𝑑 is defined as the following equation:

𝑑 = 1 −
𝑇ℎ𝑒 𝑖𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝐴 𝑎𝑛𝑑 𝐵

𝑇ℎ𝑒 𝑢𝑛𝑖𝑜𝑛 𝑜𝑓 𝐴 𝑎𝑛𝑑 𝐵
= 1 −

𝐷𝑖𝑐𝑒 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡

2 − 𝐷𝑖𝑐𝑒 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡

24

So that,

𝑑 (𝐴, 𝐵) = 1 −
0

2 − 0
= 1

𝑑 (𝐴, 𝐴𝐵) = 1 −
2/3

2 − 2/3
=

1

2

𝑑 (𝐵, 𝐴𝐵) = 1 −
2/3

2 − 2/3
=

1

2

𝑑 (𝐴, 𝐵) ≦ 𝑑 (𝐴, 𝐴𝐵) + 𝑑 (𝐵, 𝐴𝐵)

The Jaccard distance satisfies triangle inequality.

4.3. Future work
The IKUB package and a shiny app were developed in this project. The advantage of the interactive
shiny app is that users are able to use the developed functions without installing R or having
knowledge of R. If all functions were to be redeveloped in the form of shiny app, it will attract more
users.

In addition, developing new functions and adjusting the workflow according to the feedback from the
users who download the IKUB package in order to improve the performance of the package. User
feedback may also include ideas for new functionality. As the user base expands, I will seek to address
their needs by developing additional functions. The functions on the IKUB package should be
regularly maintained. Regular maintenance will ensure that all functions in the IKUB package work
properly and are up-to-date.

Gathering systematic results on runtime performance was outside the scope of the project. The runtime
performance analysis will be included in the future work in order to improve the processing efficiency.

5. Conclusion
A unified processing toolchain in R that takes MR brain images and their segmentations as input and
produces image visualizations, data visualizations, and statistical analyses was developed in a unified
manner. The developed functions included in the resulting toolchain were assembled as the IKUB
package and released as open-source software. The complete source code can be download from Github
(https://github.com/yupingikub/IKUB). The documentation contains descriptions and examples for the
functions. A suggested workflow was also designed and included in the documentation. For the future
function maintenance, the flowcharts of the functions are also drawn.

There is currently no standard workflow for brain image segmentation analysis. The designed workflow
is a step towards standardizing. Future work for this project includes developing new functions and
adjusting the workflow according to the feedback from the users who download the IKUB package in
order to improve the performance of the package. In addition, maintaining the functions in the package
in a timely manner ensures that the package is up-to-date.

The workflow design, programmed functions, and unified analysis platform for MR brain images are
unique and novel contributions achieved in this master’s project.

25

References
[1] B. Selene Xia and P. Gong, “Review of business intelligence through data analysis,”

Benchmarking Int. J., vol. 21, no. 2, pp. 300–311, Jan. 2014, doi: 10.1108/BIJ-08-2012-0050.
[2] Dr. Nakamur, Dr. Leverenz, and Dr. Wang, “Making the Most of Brain Imaging Through

Quantitative Volumetric Analysis,” Cleveland Clinic, Jan. 2018. [Online]. Available:
https://consultqd.clevelandclinic.org/making-the-most-of-brain-imaging-through-quantitative-
volumetric-analysis/

[3] A. Vijayakumar and A. Vijayakumar, “Comparison of Hippocampal Volume in Dementia
Subtypes,” ISRN Radiol., vol. 2013, p. 174524, Dec. 2012, doi: 10.5402/2013/174524.

[4] P. I. Yakovlev and P. Rakic, “Patterns of decussation of bulbar pyramids and distribution of
pyramidal tracts on two sides of the spinal cord.,” Trans Am Neurol Assoc, no. 91, pp. 366–367,
1966.

[5] X.-Z. Kong et al., “Mapping Cortical and Subcortical Asymmetry in Obsessive-Compulsive
Disorder: Findings From the ENIGMA Consortium,” Biol. Psychiatry, vol. 87, no. 12, pp. 1022–
1034, Jun. 2020, doi: 10.1016/j.biopsych.2019.04.022.

[6] “Data Visualization,” Statistical Analysis Software. https://www.sas.com/en_us/insights/big-
data/data-visualization.html

[7] “R Core Team (2020). R: A language and environment for statistical computing. R Foundation for
Statistical Computing, Vienna, Austria.” https://www.R-project.org/

[8] H. Wickham, D. Navarro, and T. L. Pedersen, “ggplot2: Elegant Graphics for Data Analysis.”
https://github.com/hadley/ggplot2-book

[9] “Viridis colour scales from viridisLite.” https://ggplot2.tidyverse.org/reference/scale_viridis.html
[10] A. Hammers et al., “Three-dimensional maximum probability atlas of the human brain, with

particular reference to the temporal lobe,” Hum. Brain Mapp., vol. 19, no. 4, pp. 224–247, Aug.
2003, doi: 10.1002/hbm.10123.

[11] I. S. Gousias et al., “Automatic segmentation of brain MRIs of 2-year-olds into 83 regions of
interest,” NeuroImage, vol. 40, no. 2, pp. 672–684, Apr. 2008, doi:
10.1016/j.neuroimage.2007.11.034.

[12] I. Faillenot, R. A. Heckemann, M. Frot, and A. Hammers, “Macroanatomy and 3D probabilistic
atlas of the human insula,” NeuroImage, vol. 150, pp. 88–98, Apr. 2017, doi:
10.1016/j.neuroimage.2017.01.073.

[13] H. M. Wild, R. A. Heckemann, C. Studholme, and A. Hammers, “Gyri of the human parietal lobe:
Volumes, spatial extents, automatic labelling, and probabilistic atlases,” PLOS ONE, vol. 12, no.
8, p. e0180866, Aug. 2017, doi: 10.1371/journal.pone.0180866.

[14] R. A. Heckemann, S. Keihaninejad, P. Aljabar, D. Rueckert, J. V. Hajnal, and A. Hammers,
“Improving intersubject image registration using tissue-class information benefits robustness and
accuracy of multi-atlas based anatomical segmentation,” NeuroImage, vol. 51, no. 1, pp. 221–227,
May 2010, doi: 10.1016/j.neuroimage.2010.01.072.

[15] H. Wickham and G. Grolemund, R for Data Science. 2017. [Online]. Available:
https://r4ds.had.co.nz/index.html

[16] Convert3D. [Online]. Available: http://www.itksnap.org/pmwiki/pmwiki.php?n=Downloads.C3D
[17] NiftySeg. [Online]. Available: https://github.com/KCL-BMEIS/NiftySeg
[18] MIRTK. [Online]. Available: https://github.com/BioMedIA/MIRTK

26

6. Acknowledgement
I dedicated this R package to my beloved father-in-law, Ivan Krizsan, who was born in Budapest,
Hungary. Thanks to my supervisor for his patience and help. Thanks to Rebecca Henrysson for
providing suggestions on package development. Finally, I appreciate the support from my family and
friends.

27

Appendix 1 - IKUB Documentation
IKUB-DOCUMENTATION

Yu-Ping Hsu

2021-04-25

The ‘IKUB’ package includes functions that interact with MR brain images of class ‘NIfTI’,
implemented by package ‘oro.nifti’, and their segmentations as input in order to produce
image visualizations, data visualizations and statistical analyses.

The author made use of the Hammers Atlas Database, © Imperial College of Science, Technology and
Medicine 2007. All rights reserved. The resource is available from www.brain-development.org [1]–
[4]. In the demonstrations of function segcomparison() and segcomparison3D(), NIfTI files
generated by MAPER [5] were used in order to compare segmentation regions differences. Due to
copyright issues, all examples in this documentation do not return output. Users can download
the atlas from the above link and use the relevant functions to return the results. This package
should not be used for clinical diagnosis.

The suggested workflow for using developed functions in this package is attached at the end of this
document for users’ reference.

The packages and versions of packages used in this package are as follows.

dplyr (1.0.5)
EBImage (4.32.0)
graphics (4.0.4)
grDevices (4.0.4)
magrittr (2.0.1)
misc3d (0.9-0)
neurobase (1.29.0)
plyr (1.8.6)
purrr (0.3.4)
rgl (0.105.22)
stats (4.0.4)
tibble (3.1.1)
tidyr (1.1.3)

Users can install the development version of IKUB from GitHub with:

Install the devtools package
install.packages('devtools')
Install the IKUB package
devtools::install_github("yupingikub/IKUB", build_vignettes = TRUE, force=
TRUE)

Please install the following packages before using the IKUB package:

Install packages from CRAN
install.packages(c('tidyverse', 'oro.nifti', 'neurobase', 'rgl', 'misc3d')
Installation of EBImage package
install.packages("BiocManager")
BiocManager::install("EBImage")

28

basymmetry()

Brain asymmetry index 𝐴 is calculated using the following equation:

𝐴𝑟 =
2|𝑉𝑅 − 𝑉𝐿|

𝑉𝑅 + 𝑉𝐿

where:

𝑉𝑅 is the volume of the right brain region.

𝑉𝐿 is the volume of the left brain region.

The function calculates asymmetry index/indices for one or more supplied NIfTI-files. It takes as input
a label name tibble with correct format and unique label numbers and label names. Option one returns
one or more asymmetry indices for whole brain for supplied NIfTI-file(s). Option two returns
asymmetry indices for the left and right regions for supplied NIfTI-file(s).

Usage:

basymmetry(filename, labelnametibble, option)

Arguments:

• filename: One or more NIfTI-files.

• labelnametibble: A label name tibble with correct format and unique columns. First column of
the label name tibble should contain an integer label number and second column should
contain a label name string. Label numbers and label names must be unique. The trailing
characters of label names must be R or L.

• option: 1: Returns asymmetry indices for whole brain. 2: Returns asymmetry indices for the
left and right regions. Default is 1.

option=1
basymmetry(c('a01-seg.nii.gz','a02-seg.nii.gz'),labelnametibble, 1)

option=2
basymmetry(c('a01-seg.nii.gz','a02-seg.nii.gz'),labelnametibble, 2)

basymmetry2()

Takes a label name tibble with correct format and unique label numbers and label names. First
column of the label name tibble should be an integer label number and second column should
be a label name string. The trailing characters of label names must be R or L. The function
returns asymmetry index/indices for one or more supplied NIfTI-files. The generated output
must be exported to CSV format in order to be made available for further analysis in shiny
app-violinplot.

Usage:

basymmetry2(filename, labelnametibble)

Arguments:

• filename: One or more NIfTI-files.

29

• labelnametibble: A label name tibble with correct format and unique columns. First column of
the label name tibble should contain an integer label number and second column should
contain a label name string. Label numbers and label names must be unique. The trailing
characters of label names must be R or L.

filename <- c(paste('a0', 1:9, '-seg.nii.gz', sep=''), paste('a', 10:30, '
-seg.nii.gz', sep=''))
output <- basymmetry2(filename, labelnametibble)
Gets a temporary directory to store the CSV file in.
path <- tempdir()
Name of the CSV file that the output will be stored in.
file_n <- 'asymmetry'
file_p <- file.path(path, paste0(file_n, ".csv"))
Exports the output from basymmetry2 function to a CSV file.
write.csv(output, file_p, row.names = FALSE, na = "NA")

bsimilarity()

Calculates Dice coefficients and Jaccard indices for a supplied NIfTI file pair. Only regions
which are in the label name tibble, target labels will be included in the result.

Usage:

bsimilarity(filename1, filename2, labelnametibble)

Arguments:

• filename1: A filename for one NIfTI-file.

• filename2: A filename for one NIfTI-file.

• labelnametibble: A label name tibble with correct format and unique columns. First column of
the label name tibble should contain an integer label number and second column should
contain a label name string. Label numbers and label names must be unique.

bsimilarity('a01-seg.nii.gz', 'a1.nii.gz', labelnametibble)

bsimilarity2()

The function is used to generate Jaccard indices for all regions for one or more file pairs. The
generated output must be exported to CSV format in order to be made available for further
analysis in shiny app-violinplot.

Usage:

bsimilarity2(filename1, filename2, labelnametibble)

Arguments:

• filename1: One or more NIfTI-files.

• filename2: One or more NIfTI-files.

• labelnametibble: A label name tibble with correct format and unique columns. First column of
the label name tibble should contain an integer label number and second column should
contain a label name string. Label numbers and label names must be unique.

30

filename1 <- c(paste('a0', 1:9, '-seg.nii.gz', sep=''), paste('a', 10:30,
'-seg.nii.gz', sep=''))
filename2 <- c(paste('a', 1:30, '.nii.gz', sep=''))
output <- bsimilarity2(filename1, filename2, labelnametibble)
Gets a temporary directory to store the CSV file in.
path <- tempdir()
Name of the CSV file that the output will be stored in.
file_n <- 'Jaccardindex'
file_p <- file.path(path, paste0(file_n, ".csv"))
Exports the output from bsimilarity2 function to a CSV file.
write.csv(output, file_p, row.names = FALSE, na = "NA")

bzscore()

Converts a raw score x into a Standard score (Z-score) using the following equation:

𝑧 =
𝑥 − 𝜇

𝜎

where:

𝜇 is the mean of the reference group.

𝜎 is the standard deviation of the reference group.

Calculates Z-scores of all regions. Inputs one or more NIfTI-files from one or more individuals, for
which Z-scores are to be calculated, a label name tibble and a tibble including mean values and
standard deviations from the reference group for one or more individuals. Returns Z-scores with label
names for regions which are in the label name tibble.

Usage:

bzscore(filename, labelnametibble, refstats)

Arguments:

• filename: One or more NIfTI-files for individuals from which Z-scores are to be calculated.

• labelnametibble: A label name tibble.

• refstats: A tibble which was previously calculated by the refmeanstd function.

Restore refstats tibble saving in computer
refstats <- readRDS("refstats.rds")
bzscore(c('a01-seg.nii.gz', 'a02-seg.nii.gz'), labelnametibble, refstats)

bzscore2()

Calculates Z-scores of all regions. Inputs one or more NIfTI-files from one or more
individuals, for which Z-scores are to be calculated, a label name tibble and a tibble including
mean values and standard deviations from the reference group for one or more individuals.
Generates output including Z-scores with label names for regions which are in the label name
tibble. The generated output must be exported to CSV format in order to be made available
for further analysis in shiny app-violinplot.

Usage:

31

bzscore2(filename, labelnametibble, refstats)

Arguments:

• filename: One or more NIfTI-files for individuals from which Z-scores are to be calculated

• labelnametibble: A label name tibble.

• refstats: A tibble which was previously calculated by the refmeanstd function.

filename <- c(paste('a0', 1:9, '-seg.nii.gz', sep=''), paste('a', 10:30, '
-seg.nii.gz', sep=''))
output <- bzscore2(filename, labelnametibble, refstats)
Gets a temporary directory to store the CSV file in.
path <- tempdir()
Name of the CSV file that the output will be stored in.
file_n <- 'zscore'
file_p <- file.path(path, paste0(file_n, ".csv"))
Exports the output from bzscore2 function to a CSV file.
write.csv(output, file_p, row.names = FALSE, na = "NA")

check_label()

Checks if Label_No and Label_name columns exist. Checks if label number is an integer and
if there are any duplicate label numbers or label names in the tibble. First column of the label
name tibble must contain an integer label number and the second column must contain a label
name string. Label numbers and label names must be unique. Returns an error message or a
label name tibble.

check_label_RGB()

Checks if Label_No, Label_name, R, G and B columns exist. Checks if label number is an
integer and if there are any duplicate label numbers or label names in the tibble. First column
of the label name tibble must contain an integer label number and the second column must
contain a label name string. Label numbers and label names must be unique. Returns an error
message or a label name tibble.

element_count()

Calculates total number of counts in both images and counts for overlap. Inputs one slice
number and one label number. The function calculates counts for total number of pixels in
both images, pixels for overlap, pixels only in image1 and pixels only in image2 in the given
slice for the given label number. This function is primarily used by other functions.

extractsliceno()

Extracts slice numbers for one or more supplied label numbers and anatomical plane. Users
input one NIfTI-file and one or more target label numbers and anatomical plane. The function
returns slice numbers which include supplied target label(s) for supplied anatomical plane.

Usage:

extractsliceno(filename, target_label, anatomical_plane)

32

Arguments:

• filename: One NIfTI-file.

• target_lable: One target label number.

• anatomical_plane: 1 for coronal plane, 2 for sagittal plane and 3 for transverse plane. Default
is 3.

extractsliceno('a01-seg.nii.gz', 15:16)

files_element()

Inputs a file pair. The function returns total number of counts in both images and counts for
overlap, counts only in image1, counts only in image2 for given filenames. This function is
primarily used by other functions.

labelnaming()

Calculates volumes for all regions with label name. User inputs one or more NIfTI-files and a
label name tibble. Returns total volumes, with label names, for all regions in the supplied
NIfTI-file(s). A label name tibble must have correct format and unique columns. First column
of the label name tibble must contain an integer label number and second column must
contain a label name string. Label numbers and label names must be unique. Only regions
which are in the label name tibble will be included in the result.

Usage:

labelname(filename,labelnametibble)

Arguments:

• filename: One or more NIfTI-files.

• labelnametibble: A label name tibble.

labelnaming(c('a01-seg.nii.gz', 'a02-seg.nii.gz'), labelnametibble)

labelnaming2()

Calculates volumes for all regions with label names. User inputs one or more NIfTI-files and
a label name tibble. Saves total volumes, with label names, for all regions in the supplied
NIfTI-file in a csv file in the working directory. A label name tibble must have correct format
and unique columns. First column of the label name tibble must contain an integer label
number and second column must contain a label name string. Label numbers and label names
must be unique. Only regions which are in the label name tibble will be included in the result.
The generated output must be exported to CSV format in order to be made available for
further analysis in shiny app-violinplot.

Usage:

labelname2(filename,labelnametibble)

Arguments:

• filename: One or more NIfTI-files.

33

• labelnametibble: A label name tibble.

filename <- c(paste('a0', 1:9, '-seg.nii.gz', sep=''), paste('a', 10:30, '
-seg.nii.gz', sep=''))
output <- labelnaming(filename, labelnametibble)
Gets a temporary directory to store the CSV file in.
path <- tempdir()
Name of the CSV file that the output will be stored in.
file_n <- 'brainvolume'
file_p <- file.path(path, paste0(file_n, ".csv"))
Exports the output from labelnaming2 function to a CSV file.
write.csv(output, file_p, row.names = FALSE, na = "NA")

refmeanstd()

Calculates mean and standard deviation for all regions in a reference group. Reference group
must contain at least two NIfTI-files. Returns the mean values and standard deviations for all
regions.

Usage:

refmeanstd(filename)

Arguments:

• filename: At least two NIfTI-file filenames.

Generating the refstats tibble from a certain reference group and saving it will allow for reuse
across sessions that uses the same reference group which will save time and effort.

reflabels<-c(paste('a0', 1:9, '-seg.nii.gz', sep=''), paste('a', 10:29, '-
seg.nii.gz', sep=''))
refstats <- refmeanstd(reflabels)
head(refstats,6)

Gets a temporary directory to store the RDS file in.
path <- tempdir()
Name of the RDS file that the output will be stored in.
file_n <- 'refstats'
file_p <- file.path(path, paste0(file_n, ".rds"))
Use function saveRDS() to save refstats tibble in an RDS file.
saveRDS(refstats, file=file_p)

regcount()

Calculates total counts and total volumes for all regions in the supplied NIfTI-file.

Usage:

regcount(filename)

Arguments:

• filename: A NIfTI-file filename.
regcount('a01-seg.nii.gz')

34

segcomparison()

Displays label segmentation differences in supplied MR image for the supplied label number.
Region only present in filename_seg1 is displayed in green color. Region only present in
filename_seg2 is displayed in blue color. Region present in both files is displayed in red
color.

Usage:

segcomparison(filename_MR ,filename_seg1, filename_seg2, Label_No, anatomi
cal_plane, rowno, colno)

Arguments:

• filename_MR: A NIfTI-file of a MR image.

• filename_seg1: First NIfTI-file of segmentation.

• filename_seg1: Second NIfTI-file of segmentation.

• Label_no: One label number for which region is to be displayed.

• anatomical_plane: 1 for coronal plane, 2 for sagittal plane and 3 for transverse plane. Default
is 3.

• rowno: Number of rows for showing images. Default is 1.

• colno: Number of columns for showing images. Default is 1.

segcomparison('a01.nii.gz' ,'a01-seg.nii.gz', 'a1.nii.gz', 60)

segcomparison3D()

Displays label segmentation differences in supplied MR image for supplied label number in a
3D view. Region only present in filename_seg1 is displayed in green color. Region only
present in filename_seg2 is displayed in blue color. Region present in both files is displayed
in red color. 3D view can be rotated by dragging the mouse.

segcomparison3D() requires the rgl and misc3d packages.

Usage:

segcomparison3D(filename_MR ,filename_seg1, filename_seg2, targetlabel)

Arguments:

• filename_MR: A NIfTI-file of an MR image.

• filename_seg1: First NIfTI-file of segmentation (displays in green color).

• filename_seg1: Second NIfTI-file of segmentation (displays in blue color).

• targetlabel: One label number for which region is to be displayed.

segcomparison3D('a01.nii.gz' ,'a01-seg.nii.gz', 'a1.nii.gz', 60)

35

segcontour()

Displays anatomical segmentation contours of a medical MR image with one or more slices.
User inputs one NIfTI-file of segmentation, one NIfTI-file of MR image, a labelnametibble
with correct format and unique input columns, one or more numbers of target-slices, one or
more target-labels, for which anatomical segementations are to be displayed, an anatomical
plane and the number of rows and columns for combining multiple plots into one overall
graph. Parameters for the anatomical plane are 1 for coronal plane, 2 for sagittal plane and 3
for transverse plane. Returns image(s) with segmentation contour(s) for every slice with
legend. Only contours which are in the label name tibble and input label numbers will be
displayed in the result.

segcontour() requires the EBImage package for image processing.

Usage:

segcontour(filename_MR, filename_seg, labelnametibble, slice_no, target_la
bel, anatomical_plane, rowno, colno)

Arguments:

• filename_MR: A NIfTI-file of an MR image.

• filename_seg: A NIfTI-file of segmentation.

• labelnametibble: A label name tibble with correct format and unique columns. First column of
the label name tibble must contain an integer label number and second column must contain a
label name string. Label numbers and label names must be unique.

• slice_no: One or more slice numbers for which label contours are to be displayed.

• target_label: One or more label numbers for which label contours are to be displayed.

• anatomical_plane: 1 for coronal plane, 2 for sagittal plane and 3 for transverse plane. Default
is 3.

• rowno: Number of rows for showing images. Default is 1.

• colno: Number of columns for showing images. Default is 1.

segcontour('a01.nii.gz', 'a01-seg.nii.gz', labelnametibble, 57:59, 17:18,
1, 2, 2)

segsurface3D()

Displays anatomical segmentation surface of a medical MR image in a 3D view for the
supplied label numbers. 3D view can be rotated by dragging the mouse. Returns 3D view with
segmentations and a legend for label surfaces with label names. Only surfaces which are in
the label name tibble and input label numbers will be displayed in the result. The different
segments will have the color from the R, G, B columns in the labelnametibble.

segsurface3D() requires the packages rgl and misc3d.

Usage:

segsurface3D(filename_MR, filename_seg, labelnametibble, targetlabel)

36

Arguments:

• filename_MR: A NIfTI-file of an MR image.

• filename_seg: A NIfTI-file of segmentation.

• labelnametibble: A label name tibble with correct format and unique columns. First column of
the label name tibble should contain an integer label number and second column should
contain a label name string. Label numbers and label names must be unique. Three columns,
R, G, B, should be included in the labelnametibble.

• targetlabel: One or more label numbers for which label contours are to be shown.

segsurface3D('a01.nii.gz', 'a01-seg.nii.gz', labelnametibble, c(5,6))

slice_label()

Extracts label numbers using slices. Inputs one slice number. Returns a tibble with two
columns, which are slice number and label number. This function is primarily used by other
functions.

shiny_violinplot app
knitr::include_app("https://alisonhyp.shinyapps.io/shiny_violinplot/", hei
ght = "400px")

37

Shiny_violinplot is a shiny app which is designed to analyze data generated by functions
labelnaming2(), bzscore2(), bsimilarity2() or basymmetry2(). Users use these
functions to generate csv files and upload files to app with link
https://alisonhyp.shinyapps.io/shiny_violinplot/. The maximum file upload size is 5MB. Items
in Select item(s) are unique elements which are extracted from data in the variable_x
column in the input csv file. Select item(s) allows for selecting multiple input. The app
will plot a violinplot after users submit the selection. User can click on checkboxes to activate
or deactivate plot options. The position of the legend can be also selected by users. Users can
define their own titles, label names for x- and y-axis.

38

Workflow

Workflow for IKUB

References
1. A. Hammers et al., “Three-dimensional maximum probability atlas of the human

brain, with particular reference to the temporal lobe,” Hum. Brain Mapp., vol. 19, no.
4, pp. 224–247, Aug. 2003, doi: 10.1002/hbm.10123.

2. I. S. Gousias et al., “Automatic segmentation of brain MRIs of 2-year-olds into 83
regions of interest,” NeuroImage, vol. 40, no. 2, pp. 672–684, Apr. 2008, doi:
10.1016/j.neuroimage.2007.11.034.

3. I. Faillenot, R. A. Heckemann, M. Frot, and A. Hammers, “Macroanatomy and 3D
probabilistic atlas of the human insula,” NeuroImage, vol. 150, pp. 88–98, Apr. 2017,
doi: 10.1016/j.neuroimage.2017.01.073.

4. H. M. Wild, R. A. Heckemann, C. Studholme, and A. Hammers, “Gyri of the human
parietal lobe: Volumes, spatial extents, automatic labelling, and probabilistic atlases,”
PLOS ONE, vol. 12, no. 8, p. e0180866, Aug. 2017, doi:
10.1371/journal.pone.0180866.

5. R. A. Heckemann, S. Keihaninejad, P. Aljabar, D. Rueckert, J. V. Hajnal, and A.
Hammers, “Improving intersubject image registration using tissue-class information
benefits robustness and accuracy of multi-atlas based anatomical segmentation,”
NeuroImage, vol. 51, no. 1, pp. 221–227, May 2010, doi:
10.1016/j.neuroimage.2010.01.072.

39

Appendix 2 - Flowchart of function

40

41

42

43

44

45

46

