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The purpose of this study is to assess the potential of deep neural net-

works, trained by unsupervised learning, for diffusion weighted imaging

(DWI) data modeling and denoising. DWI data were modeled by a biex-

ponential model and Rician bias was corrected for. Deep neural networks

that estimate the magnetic resonance (MR) diffusion-weighted signal decay

were trained on simulated signal data. Results for simulated data with known

σg and estimated σg were compared, where known σg was the most suit-

able method. Furthermore, a deep neural network trained directly on patient

prostate data was used to denoise images. The method of using deep neural

networks was compared with OBSIDIAN, which is a model-based, iterative

fitting procedure. The deep neural network showed an improvement of im-

age quality with respect to the raw data, but did not have the same quality as

OBSIDIAN. Using the trained deep neural network on the same patient data

resulted in a runtime of 1.9 ms. The results showed that there is some po-

tential in using deep neural networks for DWI data modelling and denoising,

but further optimization is needed.
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1 INTRODUCTION

Diffusion-weighted imaging (DWI) is a magnetic resonance imaging (MRI) tech-

nique that uses strong gradient pulses with a long duration to attain diffusion sen-

sitivity to the signal measured in tissues (McRobbie, Moore, Graves, & Prince,

2017, p. 39). In particular, the diffusion-weighted (DW) image is sensitive to the

self-diffusion of water molecules in tissues.

Cancer tissue has structural properties that differ from those of normal tissue in

ways that affect diffusion. For example, higher cell density in cancer tissue means

that more cell membranes block the diffusion path. DWI is a non-invasive method

that yields useful information in the assessment of prostate cancer. Elsewhere in the

body, DWI is useful for the diagnosis of acute stroke since diffusion abnormalities

become visible within the first hours of the stroke event, whereas stroke-related

changes that are visible on T1, T2, or proton density (PD) images take longer to

develop (McRobbie et al., 2017, p. 303-306).

The data from the DW image are derived from the magnitude of the complex

magnetic resonance (MR) signal, consisting of a real and an imaginary part. The

strong gradient pulses used in DWI to achieve high diffusion sensitivity attenuate

the signal. At the same time, the standard deviation of the underlying noise stays

the same, irrespective of the attenuation.

The image intensity of magnitude MR images has been shown to be governed

by a Rician distribution (Gudbjartsson & Patz, 1995), meaning that the real and

imaginary parts of the noise signal are independent and follow a Gaussian distribu-

tion. This means that a Rician bias is introduced when taking the magnitude of the

signal, M , received from two channels of the quadrature detector (Equation 1):

M =
√
(ν + nr)2 + n2

i (1)

where ν is the signal intensity which is assumed real, nr and ni are independent

Gaussian distributed random variables with the same standard deviation σg and
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zero mean, representing the real and imaginary channel (Koay & Basser, 2006).

The Rician bias is visualized by the horizontal lines in Figure 1. This indicates

that signal with low signal-to-noise ratio (SNR) is more biased than signal with

higher SNR, where SNR is defined as ν/σg.

0 1 2 3 4 5 6
SNR

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Pr
ob

ab
ilit

y

SNR = 0: Rayleigh distribution
SNR = 2: Rician distribution
SNR = 4: Near Gaussian distribution
SNR = 6: Near Gaussian distribution

Figure 1: Rician probability distribution function for different SNR. The Rician bias is
indicated by the shift of the distributions away from the mean (value of SNR). The Rician
bias is especially noticeable for SNRs < 2, where the shift of the mean of the distribution
is the greatest. For higher SNRs, the distributions become near Gaussian.

The expectation value of M can be calculated as (Koay & Basser, 2006):

⟨M⟩ = 1

2σ2
g

(
exp

(
− ν2

4σ2
g

)√
π

2
σg

[
(ν2 + 2σ2

g)I0

(
ν2

4σ2
g

)
+ I1

(
ν2

4σ2
g

)])
(2)

where I0 and I1 are the modified Bessel functions of order 0 and 1 respectively.

The Rician bias, RB, can be calculated as:

RB = ⟨M⟩ − ν (3)

The diffusion-weighted signal attenuation in DW images can be described with
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a biexponential model that assumes two diffusion compartments in tissues. These

compartments are the fast diffusion compartment, describing the extracellular dif-

fusion process, and the slow diffusion compartment, describing the intracellular

diffusion process (Riches, Hawtin, Charles-Edwards, & de Souza, 2009). In the

context of this model, the diffusion-weighted signal can be expressed mathemati-

cally as a biexponential function (see Equation 4):

S(b) = S0(fe
−bD1 + (1− f)e−bD2) (4)

where S0 is the signal without any diffusion-sensitizing gradients, D1 and D2 are

the fast and slow diffusion components respectively, f is the relative fraction be-

tween D1 and D2, and b is a measure of the amount of diffusion weighting used in

the DW image, called the b-value (see Equation 5):

b = γ2G2δ2(∆− δ/3) (5)

where γ is the gyromagnetic ratio, G is the amplitude of the gradients, δ is the

gradient duration and ∆ is the diffusion time.

Theoretically, a higher b-value reduces the amount of T2 shine-through while

increasing the contrast due to a higher sensitivity to tissue diffusivity (Seo, Chang,

Na, Kwon, & Lee, 2008). T2 shine-through refers to a high signal on DWI images

that is not due to restricted diffusion but rather a high T2 signal, which shines

through to the DW image. Higher b-values might be beneficial for detecting less

prominent changes in diffusion. However, the Rician bias is more pronounced for

higher b-values (see Figure 2).
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Figure 2: Simulated signal decay with the biexponential function, for SNR = 10 at b = 0,
showing an increasing Rician bias with higher b-values. This implies that the measured
signal (noisy signal) will be overestimated as the b-value increases.

One way to reduce the noise in DW images is to use deep neural networks

(DNN) trained on simulated or patient data. (Barbieri, Gurney-Champion, Klaassen,

& Thoeny, 2020) used a DNN to estimate diffusion-weighted related parameters

but did not correct for the Rician bias in the DW images. The general architecture

of the DNN from (Barbieri et al., 2020) was used when creating the DNN for this

study.

A neural network (NN) consists of an input layer, hidden layers, and an output

layer. The input layer is where the input data are inserted to be forwarded to the

first hidden layer. The output data from one layer become the input data to the

next through an activation function. The activation function performs nonlinear

transformations of the data in the NN.

The optimization process of the NN uses a loss function that compares the

input parameters of the network with the estimated parameters. The aim is to
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minimize the loss function, which is done by updating the weights associated with

the trainable parameters in the NN. The process of minimizing the loss function is

called optimization. The most common way to optimize a NN is by using gradient

descent (Ruder, 2016). However, the optimizer used in this study was an Adam-

optimizer (Kingma & Ba, 2017), as used by (Barbieri et al., 2020). The process of

optimizing all the weights can be time-consuming and computationally demanding.

However, once the weights have been fixed, the time it takes for the trained NN to

process new data is extremely short (Bishop, 1994).

A NN has parameters that require manual intervention, called hyperparameters.

Among these hyperparameters are epochs, batch size, and learning rate. The num-

ber of epochs describes how many times the NN is trained on the entire dataset.

Batch size refers to how many training samples are trained on before updating the

trainable parameters during the optimization. Learning rate determines how slow

or fast the NN trains by updating the weights by a certain amount each time an op-

timization occurs. Finding the optimal learning rate can be challenging. A learning

rate that is too slow can lead to very slow convergence. A very fast learning rate

can instead lead to divergence or just fluctuations of the loss function around the

minimum (Ruder, 2016).

There are two main ways a NN can learn: supervised learning and unsupervised

learning. When using supervised learning, the training data include both the input

and the output attributes (Kotsiantis, Zaharakis, Pintelas, et al., 2007). This method

is typically fast, and the NN gives accurate results when tested on new data from

the same distribution. However, it is not suitable for denoising of MR patient data,

where the target attributes are unknown prior to training.

Unlike supervised learning, unsupervised learning is done without the use of

target attributes (Alloghani, Al-Jumeily Obe, Mustafina, Hussain, & Aljaaf, 2020).

This study used an MR diffusion signal model for network training, eliminating

the need for target attributes.

This study aims to assess the potential of DNNs, using unsupervised learning
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for DWI data modeling and denoising of patient data. The DNN was trained on

simulated data, using σg as a known value and trainable parameter to see which

method performed better. To train the DNN directly on patient data, a predefined

diffusion model is used. The results obtained by the DNN are compared with the

results from OBSIDIAN (Kuczera, Alipoor, Langkilde, & Maier, 2021), which is a

model-based, iterative fitting procedure used to simultaneously estimate true signal

and underlying Gaussian noise on a pixel-by-pixel basis in magnitude MR images.

2 METHODS

2.1 Data generation and programming language

The open source machine learning framework PyTorch (Paszke et al., 2019) ver-

sion 1.11.0, based on the Torch-library was used to create the DNN. The program-

ming language used was Python version 3.9.7. All computations in this work were

performed on a laptop equipped with a quad-core Intel(R) Core(TM) i5-1035G1

CPU @ 3.6 GHz, 8 GB DDR4 RAM and Microsoft Windows 10 (Microsoft Corp.,

Redmond, WA, USA).

2.2 Deep neural network architecture

The DNN consisted of an input layer and three hidden layers with 20 nodes each.

Input data are DW signals at 20 different b-values, as defined in section 2.3. The

output layer consisted of 3 nodes corresponding to the parameters D1, D2, and f .

The activation function used in this study, and by (Barbieri et al., 2020), was the

Exponential Linear Unit (ELU). With ELU, the inputs, x, that have a value of 0 or

greater will output the same value. For x < 0, the output value is f(x) = α(ex-1),

where α is a positive constant (see Figure 3). The DNN is visualized in Figure 4:
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Figure 3: ELU activation function. Output values are: f(x) = x if x ≥ 0, and f(x) =
α(ex − 1) for x < 0, where α is a positive constant.
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Figure 4: A visual representation of the trained DNN. The blue and red lines correspond
to positive and negative weights respectively. Transparent lines indicate weaker weights
whereas the more visible lines indicate stronger weights. The weights in this figure are
randomly generated for visualization purposes.
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An Adam-optimizer (Kingma & Ba, 2017) was used for training with the mean

squared error (MSE) loss function between the noisy diffusion-weighted signals

and the denoised diffusion-weighted signals. For simulated data, 20 DNNs were

trained independently. The results from all DNNs were collected to achieve better

statistics.

The idea of using DNNs in this study is outlined in the following. A visual rep-

resentation is found in Figure 5. The simulated MR diffusion signal decay, referred

to as noisy signal, serves as input to the DNN. The initial network weights are set to

random values from a continuous uniform distribution ranging from (−
√
k,

√
k),

where k = 1/input_nodes = 1/20. After the first forward pass, estimates of D1,

D2, and f are used to obtain the denoised signal with Eq.(4). Then, if not stated

otherwise, Rician bias is added to the denoised signal with Eq.(3). This way, the

DNN is trained to account for Rician bias when estimating D1, D2, and f . Next,

the loss function is computed as the mean squared error (MSE) between the noisy

and denoised signals. An Adam-optimizer (Kingma & Ba, 2017) was used for

updating the weights of the DNN. In this case, as long as the predefined number

of epochs has not been reached, the process is iterated, using the updated DNN.

DNNs with and without Rician bias correction were trained to evaluate the effect

of the correction.
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Figure 5: General idea behind the process of using DNNs in this work. The noisy signals
are used as inputs to the DNN, which gives estimations of D1, D2, and f . With the
estimations, Eq.(4) can be used to obtain a denoised signal. Rician bias is added to the
denoised signal using Eq.(3), the loss function is computed, and the weights are updated.

2.3 Simulated data

A set of 21 b-values, linearly spaced from 0 to 3000 s/mm2, was used. For each

noisy signal, values for D1, D2, and f were taken from a random uniform dis-

tribution (see Table 1). The range of the distributions include typical parameter

values for normal and cancerous tissue (see section 2.3.4). The values were used

to calculate signals at these b-values, with a biexponential function (see Equation

4).

Table 1: The lower and upper limits of the random, uniform distribution of the parameters
D1, D2, and f .

D1 [µm2/ms] D2 [µm2/ms] f
Range of random

uniform distribution
[2, 2.4] [0.1, 0.5] [0.5, 0.9]

The noisy signals were normalized, and the b = 0 value was excluded (result-

ing in 20 b-values used) to avoid a signal decay component that would be caused by

blood perfusion in patient data. At lower b-values, the perfusion effects that arise

within the capillary networks are more noticeable (Shinmoto et al., 2012). The

training data for all simulated data consisted of 100 000 simulated noisy signals.
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Training data was generated for SNRs of 10, 20, 30, and 50 in all cases.

2.3.1 Training data - σg as single fixed value

The standard deviation σg used to generate the noise, that follows a Rician distri-

bution, was defined as 1/SNR meaning S0 = 1. This noise was added to the signals

(see section 2.3) to create the training data.

2.3.2 Training data - σg as input parameter

The training data was created the same way as in section 2.3.1 with the exception

that σg was not a single fixed value. SNR-values were chosen from a random

uniform distribution ranging from SNR = 10 to SNR = 50. Values for σg, for

each noisy signal, were calculated as S0/SNR where S0 = 1.

2.3.3 Training data - σg as trainable parameter

Instead of using a fixed value for σg, the DNN architecture was modified to esti-

mate σg at the same time as D1, D2, and f . The σg values were randomly chosen,

as in section 2.3.2. Rather than using a known value for σg for generating the noise

(and Rician bias), estimates of σg were used. The fitting procedure used these σg

values throughout the training process. As a result, the DNN’s output layer con-

sisted of 4 nodes (instead of 3, as in Figure 4), corresponding to estimations of D1,

D2, f , and σg.

2.3.4 Test data

The test data used to assess the DNN’s performance was created the same way as

the training data, except fixed values for D1, D2, f , and σg were chosen. The

values were: D1 = 2.2 µm2/ms, D2 = 0.4 µm2/ms, and f = 0.8 for normal

prostate tissue and D1 = 2.2 µm2/ms, D2 = 0.2 µm2/ms, and f = 0.6 for can-

cerous prostate tissue. These values were chosen in approximate accordance with

literature reference values (Langkilde et al., 2018). The value for σg was always
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defined as 1/SNR. The test data consisted of 10 000 simulated noisy signals cal-

culated with these values. A flowchart of the training process is shown in Figure

6.

Random values of
D1, D2, and f

(also for SNR if σg
is not known)
from uniform
distribution

Calculate signals
with biexponential

function using these
values

Add noise to signals

Training data

Specify fixed
values for  

D1, D2, and f

Calculate signals
with biexponential

function using
these values

Add noise to
signals

Test data

Create test dataTrain the network Estimated
parametersCreate training data

Create the network  
(# hidden layers,
nodes, activation

function, optimizer,
loss function etc)

Create batch
queues

Forward propagate
training data

Backward
propagate the error

gradient 

Calculate prediction
error made by

model

Use error to
estimate a gradient
used to update the

weights

Trained network

Yes

NoBreak criteria 
(nr of epochs)

Update network

Correct for Rician
bias (if applicable)

Use biexponential
function to calculate

noisy signals

Forward propagate

Assess trained
neural network's

performance

Test data

Figure 6: Flowchart of the method used for yielding estimations of the diffusion-weighted
related parameters. The green boxes represent the general workflow whereas the orange
boxes describe the workflow more in-depth. The break criterion is fulfilled when a prede-
fined number of epochs has been reached.
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2.4 Patient data - σg as input parameter

2.4.1 Patient data

The patient data was selected from the Göteborg-2 screening trial (Grenabo Bergdahl

et al., 2016) and have been used in a previous publication (Kuczera et al., 2021).

The data consisted of diffusion-weighted patient prostate data. The imaging pro-

tocol was performed on a Philips Ingenia CX 3T. Diffusion measurements were

taken with three encoding directions for 21 linearly spaced b-values ranging from

0 - 3000 s/mm2. Data from each patient consisted of 22 slices. The slice thick-

ness was 3 mm. A single-shot echo-planar imaging (single-shot EPI) sequence

was used. The echo time was 70.8 ms, the gradient strength was 80 mTm−1, dif-

fusion times were 34 ms, δ = 20 ms, and the slew rate was 100 Tm−1s−1 ms. No

averaging was performed.

2.4.2 Patient training data

The patient training data consisted of diffusion-weighted signals gathered from

three encoding directions. The patient training data used a σg-map as input to

the DNN. The pixel-wise σg-map was computed by the OBSIDIAN algorithm.

The σg-map and the diffusion-weighted signals were pixel-wise normalized by the

signal value at b = 0. Data used was from one slice from one patient.

In the analysis, pixels with SNR < 5 were excluded to avoid unrealistic diffu-

sion coefficients. The SNR values in every pixel of the image were computed by

the OBSIDIAN algorithm. A Region of interest (ROI) was placed in the peripheral

and transition zones of the prostate, respectively, by a certified radiologist. For

patient data, one DNN was trained (as opposed to the simulated data, where 20

DNNs were trained independently).
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2.4.3 Estimated parameters

The data in each pixel of the image were averaged from three encoding directions.

The DNN estimated D1, D2, and f in each pixel of the image. The denoised image

of a given b-value was obtained by calculating the diffusion-weighted signal in

each pixel using Eq.(4). Furthermore, estimated D1, D2, and f values, in the ROIs

mentioned in section 2.4.2, were compared between the DNN and OBSIDIAN. A

flowchart of the training process using patient data is shown in Figure 7.
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Figure 7: Flowchart of the method used for reconstructing images of the prostate from pa-
tient prostate data. The DNN was trained using patient prostate data. The green boxes
represent the general workflow whereas the orange boxes describe the workflow more
in-depth. The break criterion is fulfilled when a predefined number of epochs has been
reached.
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3 RESULTS

3.1 Simulated data - σg as single fixed value

Estimations of D1, D2, and f from 20 trained DNNs with and without Rician bias

correction and with σg = 1/SNR were collected. Rician bias correction greatly

improved estimations of D2 for low SNR (SNR = 10, 20). Results for higher SNR

(SNR = 30, 50) were not affected as much (see Figures 8 and 9). Rician bias

correction was used for all results in the following sections.
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Figure 8: Histograms of the estimated parameters D1, D2, and f for normal tissue, with
and without Rician bias correction applied for SNR = 10, 20. True values: D1 = 2.2
µm2/ms, D2 = 0.4 µm2/ms, and f = 0.8 represented by the red dashed line and the
mean of the estimations represented by the black dashed line.
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Figure 9: Histograms of the estimated parameters D1, D2, and f for normal tissue, with
and without Rician bias correction applied for SNR = 30, 50. True values: D1 = 2.2
µm2/ms, D2 = 0.4 µm2/ms, and f = 0.8 represented by the red dashed line and the
mean of the estimations represented by the black dashed line.

The mean and standard deviation of D1, D2, and f for normal and cancerous

tissue were summarized (see Table 2).
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Table 2: Estimated values of D1, D2, and f for normal and cancerous tissue for differ-
ent SNR with and without Rician bias correction. The effect of Rician bias correction is
especially noticeable in estimations of D2 for low SNR (SNR = 10, 20).

Normal prostate tissue
No Rician bias correction With Rician bias correction

SNR D1 [µm2/ms] D2 [µm2/ms] f D1 [µm2/ms] D2 [µm2/ms] f

10 2.51 ± 0.76 0.16 ± 0.14 0.79 ± 0.09 2.59 ± 1.09 0.44 ± 0.24 0.76 ± 0.15
20 2.24 ± 0.25 0.28 ± 0.11 0.81 ± 0.06 2.25 ± 0.28 0.40 ± 0.13 0.79 ± 0.07
30 2.21 ± 0.17 0.33 ± 0.09 0.81 ± 0.04 2.23 ± 0.18 0.40 ± 0.09 0.80 ± 0.04
50 2.18 ± 0.08 0.36 ± 0.04 0.81 ± 0.02 2.19 ± 0.09 0.38 ± 0.04 0.81 ± 0.02

True values 2.2 0.4 0.8 2.2 0.4 0.8
Cancerous prostate tissue

No Rician bias correction With Rician bias correction
SNR D1 [µm2/ms] D2 [µm2/ms] f D1 [µm2/ms] D2 [µm2/ms] f

10 2.72 ± 1.37 0.18 ± 0.14 0.58 ± 0.14 3.06 ± 1.75 0.23 ± 0.16 0.56 ± 0.15
20 2.26 ± 0.35 0.19 ± 0.08 0.59 ± 0.07 2.30 ± 0.37 0.20 ± 0.08 0.59 ± 0.07
30 2.20 ± 0.18 0.20 ± 0.05 0.60 ± 0.04 2.21 ± 0.18 0.20 ± 0.05 0.60 ± 0.05
50 2.20 ± 0.08 0.20 ± 0.03 0.60 ± 0.02 2.20 ± 0.08 0.20 ± 0.03 0.60 ± 0.02

True values 2.2 0.2 0.6 2.2 0.2 0.6

3.2 Simulated data - σg as input parameter

Estimations of D1, D2, and f from 20 trained DNNs and different SNR, for normal

and cancerous tissue (see Figures 10 and 11), generally yielded better results for

cancerous tissue.
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Figure 10: Histograms of the estimated parameters D1, D2, and f for normal tissue with
true values: D1 = 2.2 µm2/ms, D2 = 0.4 µm2/ms, and f = 0.8 represented by the
red dashed line and the mean of the estimations represented by the black dashed line. The
results were a collection of 20 independently trained DNNs for each SNR (SNR = 10, 20,
30, 50).
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Figure 11: Histograms of the estimated parameters D1, D2, and f for cancerous tissue
with true values: D1 = 2.2 µm2/ms, D2 = 0.2 µm2/ms, and f = 0.6 represented by the
red dashed line and the mean of the estimations represented by the black dashed line. The
results were a collection of 20 independently trained DNNs for each SNR (SNR = 10, 20,
30, 50).

Estimations of D1, D2, and f for normal and cancerous tissue were summa-

rized (see Table 3). Results showed that the DNN performed better for cancerous

prostate tissue, specifically when estimating D2.
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Table 3: The DNN’s estimated values for D1, D2, and f for different SNR and for normal
and cancerous tissue with Rician bias correction.

Normal prostate tissue Cancerous prostate tissue
SNR D1 [µm2/ms] D2 [µm2/ms] f D1 [µm2/ms] D2 [µm2/ms] f

10 2.36 ± 0.46 0.23 ± 0.13 0.79 ± 0.08 2.25 ± 0.46 0.19 ± 0.11 0.59 ± 0.10
20 2.25 ± 0.24 0.36 ± 0.09 0.80 ± 0.05 2.26 ± 0.25 0.21 ± 0.06 0.59 ± 0.05
30 2.22 ± 0.17 0.40 ± 0.07 0.80 ± 0.04 2.24 ± 0.16 0.20 ± 0.04 0.60 ± 0.03
50 2.22 ± 0.11 0.43 ± 0.05 0.80 ± 0.03 2.26 ± 0.10 0.21 ± 0.03 0.59 ± 0.02

True values 2.2 0.4 0.8 2.2 0.2 0.6

3.3 Simulated data - σg as trainable parameter

When training a single DNN, the results varied greatly each time it was run (see

Figure 12).
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SNR 20: First run

SNR 20: Second run

SNR 20: Third run

Figure 12: Histograms of D1, D2, f , and σg for normal prostate tissue. Rician bias
correction was applied. True values: D1 = 2.2 µm2/ms, D2 = 0.4 µm2/ms, f = 0.8,
and σg = 1/20 represented by the red dashed line. The mean of the estimations are
represented by the black dashed line. Each run shows the result from a single trained DNN
for SNR = 20. There is a clear variance in the results between each run.

By training 20 DNNs instead of 1, the distributions of the results changed

(see Figure 13). The histograms show the superposition of the results from the

20 trained DNNs.
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SNR 20

SNR 30

Figure 13: Histograms of D1, D2, f , and σg for normal prostate tissue with Rician bias
correction applied. True values: D1 = 2.2 µm2/ms, D2 = 0.4 µm2/ms, f = 0.8,
and σg = 1/SNR represented by the red dashed line. The mean of the estimations are
represented by the black dashed line. Results were a collection of 20 different trained
DNNs for each SNR.

3.4 Learning rate

As the training sample size changed, so did the distribution of the results. A larger

training sample size required a slower learning rate to achieve similar distributions

(see Figure 14).
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Figure 14: Histograms D1, D2, and f for normal prostate tissue and SNR = 20. True val-
ues are represented by the red dashed line and the mean of the estimations are represented
by the black dashed line. Results clearly show the distribution of the estimations, and also
the means, change when the training sample size is increased from 100 000 to 200 000
while keeping the learning rate constant. Lowering the learning rate to 0.0001 resolves this
issue for a training sample size of 200 000.

3.5 Patient data - σg as input parameter

The signal map by the DNN was compared with the raw scan data and the signal

map resulting from OBSIDIAN. The DNN reduces the noise in the image; how-

ever, introducing artifacts in the reconstructed image (see Figure 15).
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Figure 15: The signal map, for b = 1500 s/mm2, from the raw scan data, the DNN, and
OBSIDIAN. The pixel signal intensity for all images were averaged from three encoding
directions. Artifacts introduced by the DNN are marked with a red circle and a red ellip-
soid. The artifact in the red circle shows extreme signal loss in the fat of the patient, which
is not noticeable in either the raw scan data or the OBSIDIAN image. The artifact in the
red ellipsoid shows a sharp difference in contrast in pixels around the prostate tissue.

Using the trained DNN on the same patient data resulted in a computation time

of 1.9 ms. Estimations of D1, D2, and f , by the DNN and OBSIDIAN, in the

peripheral and transition zone of the prostate were compared in Table 4.

Table 4: Estimations of D1, D2, and f by the DNN trained directly on patient data vs the
results obtained from OBSIDIAN. Results were gathered in the peripheral and transition
zone of the prostate.

Method Peripheral zone Transition zone
D1 [µm2/ms] D2 [µm2/ms] f D1 [µm2/ms] D2 [µm2/ms] f

DNN 2.54 ± 0.75 0.61 ± 0.07 0.76 ± 0.10 2.74 ± 0.73 0.57 ± 0.06 0.66 ± 0.09
OBSIDIAN 2.78 ± 0.54 0.48 ± 0.21 0.77 ± 0.11 2.76 ± 0.55 0.46 ± 0.16 0.68 ± 0.10

3.6 Runtimes

The average time to train the DNNs was summarized in Table 5.

Table 5: The average runtimes when training the DNN with simulated and patient training
data, with Rician bias correction applied.

Method Runtime [s]
Simulated data - σg as single fixed value 715
Simulated data - σg as input parameter 715
Simulated data - σg as trainable parameter 715
Patient data - σg as input parameter 157
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4 DISCUSSION

Using σg as a single fixed value gave very accurate and precise results; however,

this method does not well represent patient data. Using σg as a trainable parameter

proved an unsuitable method with poor results. Using σg as input was the most

suitable method from this study and resulted in both accurate and precise estima-

tions.

For simulated data, the average runtime was 488 s without Rician bias cor-

rection and 715 s with the correction. Correcting for the Rician bias increased

runtimes by 47%. Despite slower runtimes, Rician bias correction is always rec-

ommended. This can prevent results that falsely imply a slower diffusion of D2.

For patient data, training the DNN on one slice took, on average, 157 s. Increas-

ing the training sample size from 100 000 to 200 000 (see Figure 14) increased the

runtime from 722 s to 1424 s. The learning rate did not affect the runtime in this

case. When using the trained DNN on the same patient data, the runtime was 1.9

ms.

The effect of using Rician bias correction is noticeable for estimations of D2

(see Table 2). D2 is underestimated at low SNR due to the Rician bias. The Rician

bias is not as prominent for SNR > 30 but should still be corrected since the SNR

varies across the image. Some pixels have a low SNR, while others have a high

SNR.

The DNN performed better for cancerous tissue since the signal intensity is less

attenuated at higher b-values. Molecules that diffuse faster lead to stronger atten-

uation of the signal intensity (Woodhams et al., 2011). Molecules diffuse faster in

less restricted areas (i.e., normal tissue), meaning the signal intensity will be lower.

Therefore, the signal intensity is less attenuated in areas with more restricted dif-

fusion (i.e., tumors).

For σg as a single fixed value, Rician bias correction greatly improved results

(see Table 2). This was especially noticeable for low SNR (SNR = 10, 20). Al-

though these are great results, σg is not a single fixed value in clinical data that
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consists of many different σg values across the image. Therefore, this method is

not suitable when the aim is to use the DNN on patient data.

Using σg as input to the DNN for simulated data, D1, D2, and f were especially

accurate for SNR > 10. The Rician bias correction barely affected the results for

SNR > 30. This is expected because the signals are less affected by the noise for

higher SNR.

Using σg as input parameter generated better results than using σg as a trainable

parameter. This is expected since using σg as a trainable parameter increases the

complexity of the DNN. If σg is known, it is better to use it as input to the DNN.

The performance of the DNN for σg as a trainable parameter varied greatly

(see Figure 12). When the noise is estimated at the same time as the parameters,

it becomes increasingly harder to find unique solutions for the fitting procedure.

Lacking noise knowledge prior to fitting will therefore lack consistency in case

of isotropic diffusion (Veraart et al., 2013). This method is therefore not recom-

mended. Instead, it is better to use σg as an input parameter, which showed promis-

ing results. However, if σg is unknown, it might be needed to optimize the DNN

further or use another approach for estimating σg.

The performance of the DNN on patient data is to some degree dependent on

the accuracy and variance of the noise estimates from OBSIDIAN. Application

of the OBSIDIAN method to patient data leads to σg maps with high-frequency

random fluctuations in the image space (Kuczera et al., 2021). Therefore, a low-

pass filtered σg map (obtained from OBSIDIAN) was used as input to reconstruct

the images (see Figure 15).

Using the DNN trained on patient data reduces the noise in the image. The

image quality is not as good as OBSIDIAN’s, and some artifacts are introduced in

the reconstructed image. The results might improve in the future by using more

slices from the same patient data or using data from more patients to train the

DNN. Finding the optimal hyperparameters for the problem is time-consuming but

can also improve results.
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It is unclear why the same learning rate can not be used for different train-

ing sample sizes. Increasing the training sample size from 100 000 to 200 000 but

keeping the same learning rate of 0.001 changes the distribution of the estimated

parameters (see Figure 14). The first thought was that the issue originates from

the optimizer. An Adam optimizer automatically updates the learning rate as train-

ing progresses. Therefore, a specific learning rate is not needed (Kingma & Ba,

2017). Removing the constant value for the learning rate and letting the optimizer

automatically update it was tested, but the issue remained. No literature explaining

this issue has been found. The mean of the estimations is still accurate, but the re-

sults become less precise. Also, results become less comparable if the distributions

change for different training sample sizes. The number of epochs can be adjusted

to achieve comparable distributions as an alternative to changing the learning rate.

The DNN does not restrict the range of the estimated parameters. This is due to

the ELU activation function that was used. ELU allows for infinitely large values

to be estimated, as shown in Figure 3. The DNN sometimes estimated D1 to be

higher than the self-diffusion coefficient of free water at 37◦C (see Figure 10),

which is 3.0 µm2/ms (Le Bihan & Iima, 2015), (Woodhams et al., 2011). This

might be avoided by using another activation function, e.g., sigmoid, where output

values can only assume values in the range of 0 to 1. However, the estimations

would need to be scaled, in this case, to use the sigmoid function.

5 CONCLUSION

The performance of DNNs trained by unsupervised learning was assessed. Results

showed that having a known σg gave more accurate estimations of D1, D2, and f

compared to σg estimated by the DNN. For simulated data, the DNN performed

better for cancerous prostate tissue. The average runtime for training the DNN

was 715 s with Rician bias correction. The most suitable method from this study

is to use σg as input to the DNN. This more accurately (compared to using σg as
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a single fixed value) represents σg from clinical data and yields promising results

for normal and cancerous prostate tissue. Using σg as a trainable parameter by the

DNN is unsuitable due to the large errors associated with this method.

Using the DNN trained directly on patient data reduces the noise and bias in the

image. The image quality is an improvement with respect to the raw data but does

not quite match the image quality obtained by OBSIDIAN. Still, the use of DNNs

look promising for DWI data modelling and denoising. Results might improve

with further optimization of the DNN. However, some artifacts are introduced in

the reconstructed image by the DNN. The real advantage of using a trained NN on

patient data is not necessarily to achieve better quality of the reconstructed image,

but rather to take advantage of the extremely short runtime required by a trained

NN on new patient data. Using the trained DNN on the same patient data resulted

in a runtime of 1.9 ms. This further proves the potential of DNNs in DWI data

modeling and denoising regarding runtimes.
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